JP2008207520A - Organic thin film, method for producing the same, electronic device, organic luminescence element, display device and lightening equipment - Google Patents

Organic thin film, method for producing the same, electronic device, organic luminescence element, display device and lightening equipment Download PDF

Info

Publication number
JP2008207520A
JP2008207520A JP2007048777A JP2007048777A JP2008207520A JP 2008207520 A JP2008207520 A JP 2008207520A JP 2007048777 A JP2007048777 A JP 2007048777A JP 2007048777 A JP2007048777 A JP 2007048777A JP 2008207520 A JP2008207520 A JP 2008207520A
Authority
JP
Japan
Prior art keywords
group
organic
thin film
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007048777A
Other languages
Japanese (ja)
Inventor
Tatsuo Tanaka
達夫 田中
Rie Katakura
利恵 片倉
秀雄 ▲高▼
Hideo Ko
Hiroshi Kita
弘志 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2007048777A priority Critical patent/JP2008207520A/en
Publication of JP2008207520A publication Critical patent/JP2008207520A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an organic thin film comprising a process step of forming a film using a reaction solution containing a polymer of a polymerizable monomer, to provide an organic EL element having a long luminescence life and high efficacy of taking out quantum using the method, and to provide an electronic device and an organic EL element containing the organic thin film, and further to provide a display device and a lightning equipment comprising the organic EL element. <P>SOLUTION: The method for an organic thin film comprises a process step of giving energy to a reactive monomer to give a reaction solution containing a polymer of the reactive monomer and then forming a film using the reaction solution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機薄膜、有機薄膜の製造方法、電子デバイス、有機エレクトロルミネッセンス素子、表示装置及び照明装置に関する。   The present invention relates to an organic thin film, a method for producing an organic thin film, an electronic device, an organic electroluminescence element, a display device, and a lighting device.

従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(以下、ELDともいう)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。   Conventionally, as a light-emitting electronic display device, there is an electroluminescence display (hereinafter also referred to as ELD). Examples of the constituent elements of ELD include inorganic electroluminescent elements and organic electroluminescent elements (hereinafter also referred to as organic EL elements). Inorganic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.

一方、有機EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、この励起子(エキシトン)が失活する際の光の放出(蛍光・燐光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。   On the other hand, an organic EL element has a configuration in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer to recombine excitons. This is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when the exciton (exciton) is deactivated, and can emit light at a voltage of several volts to several tens of volts. Since it is a self-luminous type, it has a wide viewing angle, high visibility, and since it is a thin-film type complete solid-state device, it has attracted attention from the viewpoints of space saving and portability.

今後の実用化に向けた有機EL素子の開発としては、更に低消費電力で、効率よく高輝度に発光する有機EL素子が望まれている。   For the development of organic EL elements for practical use in the future, organic EL elements that emit light efficiently and with high luminance with lower power consumption are desired.

例えば、特許第3093796号公報には、スチルベン誘導体、ジスチリルアリーレン誘導体またはトリススチリルアリーレン誘導体に、微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成する技術が開示され、特開昭63−264692号公報には、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子が開示されており、特開平3−255190号公報には、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした有機発光層を有する素子等が知られている。   For example, Japanese Patent No. 3093796 discloses a technique for doping a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative with a small amount of a phosphor to improve emission luminance and extend the lifetime of the device. Japanese Patent Laid-Open No. 63-264692 discloses an element having an organic light-emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and a small amount of phosphor is doped therein. For example, an element having an organic light emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and doped with a quinacridone dye is known.

上記特許文献に開示されている技術では、励起一重項からの発光を用いる場合、一重項励起子と三重項励起子の生成比が1:3であるため発光性励起種の生成確率が25%であることと、光の取り出し効率が約20%であるため、外部取り出し量子効率(ηext)の限界は5%とされている。   In the technique disclosed in the above-mentioned patent document, when the emission from the excited singlet is used, the generation ratio of the singlet exciton and the triplet exciton is 1: 3, so the generation probability of the luminescent excited species is 25%. Since the light extraction efficiency is about 20%, the limit of the external extraction quantum efficiency (ηext) is set to 5%.

ところが、M.A.Baldo et al.,nature、395巻、151〜154ページ(1998年)により、プリンストン大より、励起三重項からのリン光発光を用いる有機EL素子の報告がされて以来、M.A.Baldo et al.,nature、403巻、17号、750〜753ページ(2000年)、米国特許第6,097,147号明細書により、室温で燐光を示す材料の研究が活発になってきている。   However, M.M. A. Baldo et al. , Nature, 395, 151-154 (1998), since Princeton University reported on an organic EL device using phosphorescence emission from an excited triplet. A. Baldo et al. , Nature, 403, 17, 750-753 (2000), and US Pat. No. 6,097,147, research on materials that exhibit phosphorescence at room temperature has become active.

更に、最近発見されたリン光発光を利用する有機EL素子では、以前の蛍光発光を利用する素子に比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。   In addition, recently discovered organic EL devices that use phosphorescence can realize a luminous efficiency that is approximately four times that of previous devices that use fluorescence. Research and development of light-emitting element layer configurations and electrodes are performed all over the world.

例えば、S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304ページ(2001年)には、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討がなされている。   For example, S.M. Lamansky et al. , J .; Am. Chem. Soc. , 123, 4304 (2001), a number of compounds are being studied for synthesis centering on heavy metal complexes such as iridium complexes.

また、有機EL素子は、電極と電極の間を厚さわずか0.1μm程度の有機材料の膜で構成するオールソリッド素子であり、なおかつその発光が2V〜20V程度の比較的低い電圧で達成できることから、次世代の平面ディスプレイや照明として期待されている技術である。   In addition, the organic EL element is an all-solid element composed of an organic material film having a thickness of only about 0.1 μm between the electrodes, and the light emission can be achieved with a relatively low voltage of about 2V to 20V. Therefore, it is a technology that is expected as a next-generation flat display and illumination.

更に、最近発見されたリン光発光を利用する有機ELでは、以前の蛍光発光を利用するそれに比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。   Furthermore, the recently discovered organic EL using phosphorescence emission can realize a light emission efficiency of about 4 times in principle compared to that using previous fluorescence emission. Research and development of device layer configurations and electrodes are performed all over the world.

また、有機EL素子の構成は、透明電極と対抗電極に有機層が挟まれただけの単純なものであり、平面ディスプレイの代表である液晶ディスプレイに比べ、部品点数が圧倒的に少ないため、製造コストも低く抑えられるはずであるが、現状では必ずしもそうではなく、性能的にもコスト的にも液晶ディスプレイに大きく水をあけられている。   In addition, the structure of the organic EL element is a simple one in which an organic layer is sandwiched between a transparent electrode and a counter electrode, and the number of parts is overwhelmingly smaller than that of a liquid crystal display, which is a typical flat display. Although the cost should be kept low, this is not always the case at present, and a large amount of water is drained from the liquid crystal display in terms of performance and cost.

特にコストに対しては、生産性の悪さがその要因と考えられる。   In particular, in terms of cost, poor productivity is considered as a factor.

現在商品化されている有機ELの殆どが、低分子材料を蒸着して成膜する、いわゆる蒸着法で製造されている。この蒸着法は精製が容易な低分子化合物を有機EL材料を用いることができる(高純度材料が得やすい)こと、更に積層構造を作るのが容易なことから、効率、寿命という面で非常に優れている。   Most of organic EL currently commercialized are manufactured by a so-called vapor deposition method in which a low molecular material is vapor deposited to form a film. In this vapor deposition method, an organic EL material can be used as a low-molecular compound that can be easily purified (a high-purity material can be easily obtained), and a laminated structure can be easily formed. Are better.

しかし、反面、10-4Pa以下という高真空条件下で蒸着を行うため、成膜する装置に制約が加わり、実際には小さい面積の基板にしか適用できず、さらに複数層積層するとなると成膜に時間がかかりスループットが低いことが欠点である。 However, since vapor deposition is performed under a high vacuum condition of 10 −4 Pa or less, restrictions are imposed on the film forming apparatus, and in practice it can be applied only to a substrate with a small area. It takes a long time and has a low throughput.

特に、照明用途や大面積の電子ディスプレイに適用する場合は問題となり、有機ELがそのようなアプリケーションに実用されていないひとつの原因となっている。   In particular, it is a problem when applied to lighting applications or large-area electronic displays, and organic EL is one of the causes that are not practically used for such applications.

一方、有機化合物層をスピンコート、インクジェット、印刷、スプレーといったプロセスで製造する塗布法は、常圧で薄膜を作製することできさらに大面積に均一な膜を作製するのに適しており、連続生産を可能とする手段のひとつとして、有機EL材料を含む溶液を用いた方法が提案されている。   On the other hand, coating methods that produce organic compound layers by processes such as spin coating, ink jet, printing, and spraying are suitable for producing thin films at normal pressure and for producing uniform films over a large area. As one of means for enabling the above, a method using a solution containing an organic EL material has been proposed.

しかしながら、高い発光効率、長寿命を同時に達成するためには、複数の機能層を積層することが望ましい。塗布法を用いて複数の層を積層するためには下層が上層の塗布液に溶解しないことが条件だが、数十nmオーダーという非常に薄い膜に対しては、わずかに溶解性を示す溶剤であっても下層の膜の一部が溶け出し、または溶媒によって界面が乱れてしまうという問題が生じる。   However, in order to achieve high luminous efficiency and long life at the same time, it is desirable to stack a plurality of functional layers. In order to stack a plurality of layers using the coating method, the lower layer must be insoluble in the upper coating solution, but for very thin films of the order of several tens of nm, a slightly soluble solvent is required. Even if it exists, the problem that a part of lower layer film | membrane melt | dissolves or an interface will be disturb | confused by a solvent arises.

このような下層材料の上層へのコンタミや界面の乱れは、素子の発光効率の低下や素子寿命の劣化を引き起こすため、改善の必要があり、これらの問題を解決するため、例えば高分子材料を用いることが提案されている。   Such contamination to the upper layer of the lower layer material and disturbance of the interface cause a decrease in the light emission efficiency of the device and a deterioration in the device life, and therefore need to be improved. To solve these problems, for example, a polymer material is used. It has been proposed to use.

しかし、一般的に高分子材料は精製が難しく、特に有機エレクトロルミネッセンス素子はごくわずかな不純物が素子の発光寿命を大きく低下させる原因になるため、適用が難しい。   However, in general, polymer materials are difficult to purify, and in particular, organic electroluminescence devices are difficult to apply because very few impurities can cause a significant decrease in the light emission lifetime of the device.

また、例えば、有機エレクトロルミネッセンス素子の構成層を製膜した後に、高分子量化するという技術があり、2つ以上のビニル基を有する材料を複数の層に添加する技術が開示され、重合反応は、陰極を積層する前の有機層製膜時点で紫外線や熱の照射で行う方法(例えば、特許文献1参照。)、同一層内の2分子間でディールスアルダー反応を起こさせて架橋させる製造方法(例えば、特許文献2参照。)等が挙げられる。   In addition, for example, there is a technique of increasing the molecular weight after forming a constituent layer of an organic electroluminescence element, and a technique of adding a material having two or more vinyl groups to a plurality of layers is disclosed. , A method of performing irradiation with ultraviolet rays or heat at the time of forming an organic layer before laminating the cathode (see, for example, Patent Document 1), and a production method of causing a Diels-Alder reaction between two molecules in the same layer to crosslink (For example, refer to Patent Document 2).

上記の技術は、いずれも製膜時または製膜直後(陰極を付ける前)に重合反応を完結させる方法であるが、有機EL素子の耐久性向上という実用上の観点からは、まだ、不十分であり、更なる素子の耐久性向上技術が求められている。
特開2001−297882号公報 特開2003−86371号公報
All of the above techniques are methods for completing the polymerization reaction at the time of film formation or immediately after film formation (before attaching the cathode), but are still insufficient from the practical viewpoint of improving the durability of the organic EL device. Therefore, there is a demand for further technology for improving the durability of elements.
JP 2001-297882 A JP 2003-86371 A

本発明の目的は、反応性モノマーの重合体を含有する反応溶液を用いて成膜する工程を有する有機薄膜の製造方法、該製造方法を用いて、外部取り出し量子効率が高く、且つ、発光寿命の長い有機EL素子を提供し、該有機薄膜を含む電子デバイス、有機EL素子、該有機EL素子を備えた表示装置、照明装置を提供することである。   An object of the present invention is to provide a method for producing an organic thin film having a step of forming a film using a reaction solution containing a polymer of a reactive monomer, and using the production method, the external extraction quantum efficiency is high, and the emission lifetime The organic EL element is provided, and an electronic device including the organic thin film, the organic EL element, a display device including the organic EL element, and a lighting device are provided.

本発明の上記目的は下記の構成1〜13により達成された。   The above object of the present invention has been achieved by the following constitutions 1 to 13.

1.反応性モノマーにエネルギー付与して、該反応性モノマーの重合体を含有する反応溶液を調製し、該反応溶液を用いて成膜する工程を有することを特徴とする有機薄膜の製造方法。   1. A method for producing an organic thin film, comprising the steps of: applying energy to a reactive monomer, preparing a reaction solution containing a polymer of the reactive monomer, and forming a film using the reaction solution.

2.前記エネルギー付与が光照射により行われることを特徴とする前記1に記載の有機薄膜の製造方法。   2. 2. The method for producing an organic thin film according to 1 above, wherein the energy application is performed by light irradiation.

3.前記エネルギー付与が加熱処理により行われることを特徴とする前記1に記載の有機薄膜の製造方法。   3. 2. The method for producing an organic thin film according to 1 above, wherein the energy application is performed by heat treatment.

4.前記反応溶液に重合開始剤が含まれていないことを特徴とする前記1〜3のいずれか1項に記載の有機薄膜の製造方法。   4). 4. The method for producing an organic thin film according to any one of 1 to 3, wherein the reaction solution does not contain a polymerization initiator.

5.前記反応溶液の含水量が100ppm以下であることを特徴とする前記1〜4のいずれか1項に記載の有機薄膜の製造方法。   5. 5. The method for producing an organic thin film according to any one of 1 to 4, wherein a water content of the reaction solution is 100 ppm or less.

6.前記反応溶液の溶存酸素量が100ppm以下であることを特徴とする前記1〜5のいずれか1項に記載の有機薄膜の製造方法。   6). 6. The method for producing an organic thin film according to any one of 1 to 5, wherein the amount of dissolved oxygen in the reaction solution is 100 ppm or less.

7.前記1〜6のいずれか1項に記載の有機薄膜の製造方法により製造されたことを特徴とする有機薄膜。   7. An organic thin film produced by the method for producing an organic thin film according to any one of 1 to 6 above.

8.前記7に記載の有機薄膜を用いて形成されたことを特徴とする電子デバイス。   8). 8. An electronic device formed using the organic thin film as described in 7 above.

9.前記7に記載の有機薄膜を用いて形成されたことを特徴とする有機エレクトロルミネッセンス素子。   9. 8. An organic electroluminescence element formed using the organic thin film as described in 7 above.

10.リン光発光性化合物を含有することを特徴とする前記9に記載の有機エレクトロルミネッセンス素子。   10. 10. The organic electroluminescence device as described in 9 above, which contains a phosphorescent compound.

11.白色に発光することを特徴とする前記9または10に記載の有機エレクトロルミネッセンス素子。   11. 11. The organic electroluminescence device as described in 9 or 10 above, which emits white light.

12.前記9〜11のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。   12 A display device comprising the organic electroluminescence element according to any one of 9 to 11 above.

13.前記9〜11のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。   13. The illuminating device provided with the organic electroluminescent element of any one of said 9-11.

本発明により、反応性モノマーの重合体を含有する反応溶液を用いて成膜する工程を有する有機薄膜の製造方法、該製造方法を用いて、外部取り出し量子効率が高く、且つ、発光寿命の長い有機EL素子を提供し、該有機薄膜を含む電子デバイス、有機EL素子、該有機EL素子を備えた表示装置、照明装置を提供することができた。   According to the present invention, a method for producing an organic thin film having a step of forming a film using a reaction solution containing a polymer of a reactive monomer, and using the production method, the external extraction quantum efficiency is high and the emission lifetime is long. An organic EL element was provided, and an electronic device including the organic thin film, an organic EL element, a display device including the organic EL element, and a lighting device could be provided.

本発明の有機薄膜の製造方法においては、請求項1〜6のいずれか1項に記載の構成を有することにより、反応性モノマーの重合体を含有する反応溶液を用いて成膜する工程を有する有機薄膜の製造方法を提供することができた。   In the manufacturing method of the organic thin film of this invention, it has the process formed into a film using the reaction solution containing the polymer of a reactive monomer by having the structure of any one of Claims 1-6. An organic thin film manufacturing method could be provided.

該製造方法を用いて、有機薄膜を含む電子デバイス、有機EL素子、該有機EL素子を備えた表示装置、照明装置を提供することができた。   Using the manufacturing method, an electronic device including an organic thin film, an organic EL element, a display device including the organic EL element, and a lighting device can be provided.

以下、本発明に係る各構成要素の詳細について、順次説明する。   Hereinafter, details of each component according to the present invention will be sequentially described.

《有機薄膜の製造方法》
本発明の有機薄膜の製造方法について説明する。
<< Method for producing organic thin film >>
The manufacturing method of the organic thin film of this invention is demonstrated.

本発明者等は、上記の問題を種々検討した結果、有機EL素子の構成層の成膜過程に注目して検討を行った。   As a result of various studies on the above-mentioned problems, the present inventors have focused attention on the film formation process of the constituent layers of the organic EL element.

従来公知の有機EL素子の製造方法としては、真空蒸着法にて有機薄膜を製造する方法が一般的に用いられているが、従来の真空蒸着法では高真空が必要であり、製造可能な部材の大きさが限定されると同時に、部材の出し入れ工程が必要であり連続生産には不向きである。   As a method for producing a conventionally known organic EL element, a method for producing an organic thin film by a vacuum vapor deposition method is generally used. However, the conventional vacuum vapor deposition method requires a high vacuum and can be produced. The size of the material is limited, and at the same time, a step for putting in and out the member is required, which is not suitable for continuous production.

一方、連続生産を可能とする手段として、EL材料の溶液を用いた方法が提案されており、EL(エレクトロルミネッセンス)材料としては低分子材料、高分子材料を用いることが可能であるとされている。   On the other hand, as a means for enabling continuous production, a method using a solution of an EL material has been proposed, and a low molecular material or a high molecular material can be used as an EL (electroluminescence) material. Yes.

しかしながら、背景技術でも述べたように、低分子材料を用いた塗布では、積層膜形成時に下層と上層の混合が押さえられず、高性能のEL素子を得ることは困難である。また、高分子材料の場合には、積層膜の形成は可能になるものの、高分子製造時の触媒等を除去が難しく、これらがEL素子寿命を劣化させる一つの要因といわれている。   However, as described in the background art, in the application using a low molecular material, mixing of the lower layer and the upper layer cannot be suppressed at the time of forming the laminated film, and it is difficult to obtain a high-performance EL element. In the case of a polymer material, although a laminated film can be formed, it is difficult to remove a catalyst or the like during polymer production, and these are said to be one factor that degrades the lifetime of the EL element.

(反応溶液:反応性モノマーの重合体を含む溶液)
そこで、本発明者等は、有機EL素子材料(単に、EL材料ともいう)を合成する工程で反応性モノマーを用い、成膜前(成膜直前が好ましい)にエネルギー付与(により、前記反応性モノマーの重合体(重合物ともいう、また、単独重合体でも、共重合体でもよい))を形成することで、高純度の重合体が得られることを見出した。
(Reaction solution: solution containing polymer of reactive monomer)
Therefore, the present inventors used a reactive monomer in the step of synthesizing an organic EL element material (also simply referred to as EL material), and applied energy before film formation (preferably immediately before film formation). It has been found that a high-purity polymer can be obtained by forming a monomer polymer (also referred to as a polymer, or a homopolymer or a copolymer).

(エネルギー付与手段)
本発明に係るエネルギー付与手段としては、光照射(紫外線、赤外線、可視光線、電子線照射、中性子線照射、α線照射、X線照射等)、加熱処理等の付与手段を挙げることができるが、中でも、紫外線照射や加熱処理が好ましく用いられる。
(Energy provision means)
Examples of the energy application means according to the present invention include application means such as light irradiation (ultraviolet light, infrared light, visible light, electron beam irradiation, neutron beam irradiation, α-ray irradiation, X-ray irradiation, etc.) and heat treatment. Of these, ultraviolet irradiation and heat treatment are preferably used.

加熱処理としては、50℃〜200℃の範囲が好ましく、また、加熱時間は製造効率アップの観点から、1秒〜30分の範囲が好ましい。   The heat treatment is preferably in the range of 50 ° C. to 200 ° C., and the heating time is preferably in the range of 1 second to 30 minutes from the viewpoint of increasing production efficiency.

また、紫外線処理に用いる光源としては、例えば、スポット光源 LIGHTNINGCURE LC8(浜松ホトニクス製)が挙げられる。   Moreover, as a light source used for an ultraviolet-ray process, the spot light source LIGHTNINGCURE LC8 (made by Hamamatsu Photonics) is mentioned, for example.

(高純度の重合体)
本発明において、『高純度』とは、例えば、重合反応に用いる、従来公知の重合開始剤、連鎖移動剤、重合促進剤、重合反応停止剤、重合遅延剤等の重合体合成に用いられる、種々の添加剤を反応溶液が含まないことを意味する。
(High purity polymer)
In the present invention, "high purity" is used for polymer synthesis such as conventionally known polymerization initiators, chain transfer agents, polymerization accelerators, polymerization reaction terminators, polymerization retarders, etc. It means that the reaction solution does not contain various additives.

ここで、『種々の添加剤を含まない』とは、反応溶液において、前記添加剤の含有量が0.01質量%以下であることを意味し、好ましくは、0.01質量%以下である。   Here, “not containing various additives” means that the content of the additive in the reaction solution is 0.01% by mass or less, preferably 0.01% by mass or less. .

反応溶液中の添加剤の含有量は、市販のLC−MS(液体クロマトグラフ−質量分析計)を用いて測定可能である。   The content of the additive in the reaction solution can be measured using a commercially available LC-MS (liquid chromatograph-mass spectrometer).

(反応溶液中の含水量)
本発明に係る反応溶液の含水量としては、100ppm以下であることが好ましく、更に好ましくは、50ppm以下である。
(Water content in the reaction solution)
The water content of the reaction solution according to the present invention is preferably 100 ppm or less, and more preferably 50 ppm or less.

ここで、反応溶液の含水量は、市販のカールフィッシャー水分計により分析することができる。   Here, the water content of the reaction solution can be analyzed by a commercially available Karl Fischer moisture meter.

(反応溶液中の溶存酸素量)
本発明に係る反応溶液の溶存酸素量としては、100ppm以下であることが好ましく、更に好ましくは、50ppm以下である。
(Amount of dissolved oxygen in the reaction solution)
The amount of dissolved oxygen in the reaction solution according to the present invention is preferably 100 ppm or less, and more preferably 50 ppm or less.

ここで、反応溶液の溶存酸素量は、市販の溶存酸素計により分析することができる。   Here, the amount of dissolved oxygen in the reaction solution can be analyzed by a commercially available dissolved oxygen meter.

(反応性モノマー)
本発明に係る反応性モノマーについて説明する。
(Reactive monomer)
The reactive monomer according to the present invention will be described.

本発明に係る反応性モノマーは、重合反応性基を有する有機EL素子材料であり、後述する有機EL素子の構成層を形成する材料に重合反応性基を導入した化合物を用いることができる。   The reactive monomer according to the present invention is an organic EL element material having a polymerization reactive group, and a compound in which a polymerization reactive group is introduced into a material forming a constituent layer of an organic EL element described later can be used.

ここで、重合反応性基とは、ラジカル重合反応、イオン重合反応、縮重合反応等を起こすことが可能な基であればよく、例えば、ビニル基、ビニルオキシ基、アクリロイル基、メタクリロイル基、メルカプト基、ヒドロキシ基、カルボキシ基、シアネート基、イソシアネート基、チオシアネート基、イソチオシアネート基、オキシラン(エチレンオキシド)から導出される基(エポキシ基)、トリメチレンオキシド(オキセタン)から導出される基等を挙げることができる。   Here, the polymerization reactive group may be any group capable of causing a radical polymerization reaction, an ionic polymerization reaction, a condensation polymerization reaction, etc., for example, a vinyl group, a vinyloxy group, an acryloyl group, a methacryloyl group, a mercapto group. , Hydroxy group, carboxy group, cyanate group, isocyanate group, thiocyanate group, isothiocyanate group, group derived from oxirane (ethylene oxide) (epoxy group), group derived from trimethylene oxide (oxetane), etc. it can.

以下、反応性モノマーの具体例を示すが、本発明はこれらに限定されない。   Hereinafter, although the specific example of a reactive monomer is shown, this invention is not limited to these.

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

尚、上記の反応性モノマーの具体例の中で、化合物1−1〜1−26は、重合性反応基を有するホスト化合物として好ましく用いられ、化合物2−1〜2−33は、重合性反応基を有する発光ドーパント(単に、ドーパントともいう)として好ましく用いられる。   In the specific examples of the reactive monomer, compounds 1-1 to 1-26 are preferably used as host compounds having a polymerizable reactive group, and compounds 2-1 to 2-33 are polymerizable reactions. It is preferably used as a light-emitting dopant having a group (also simply referred to as a dopant).

また、化合物3−1〜3−21は、重合性反応基を有する電子輸送材料として好ましく用いられ、化合物4−1〜4−20は、重合性反応基を有する正孔輸送材料として好ましく用いられる。   Compounds 3-1 to 21-21 are preferably used as an electron transport material having a polymerizable reactive group, and compounds 4-1 to 4-20 are preferably used as a hole transport material having a polymerizable reactive group. .

上記の反応性モノマーは更に置換基を有していてもよく、該置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アリール基(例えば、フェニル基、ナフチル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。尚、これらの置換基は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。   The reactive monomer may further have a substituent, and examples of the substituent include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group). Octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, etc.), alkynyl group (eg, Ethynyl group, propargyl group etc.), aryl group (eg phenyl group, naphthyl group etc.), aromatic heterocyclic group (eg furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, Imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group, A ruborinyl group, a diazacarbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), a phthalazinyl group), a heterocyclic group (for example, a pyrrolidyl group, Imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (for example, Cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group) Etc.), Shiku An alkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), an arylthio group (eg, phenylthio group, naphthylthio group, etc.), an alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyl) Oxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butyl) Aminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl Group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecyl) Carbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group) ), An amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group). Group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, Dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylamino Carbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido) Octylureido group, dodecylureido group, phenylureido group naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group) , Dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecyl) Sulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (for example, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridyl group) Sulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group) Etc.), halogen atoms (eg fluorine atom, chlorine atom, bromine atom etc.), fluorinated hydrocarbon groups (eg fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group etc.), cyano group , Nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.). These substituents may be further substituted with the above substituents. In addition, a plurality of these substituents may be bonded to each other to form a ring.

《有機薄膜》
得られた高純度の、反応性モノマーの重合体を含む反応溶液を成膜工程にそのまま利用することで、従来の重合反応に用いられる種々の添加剤(重合反応に用いる、従来公知の重合開始剤、連鎖移動剤、重合促進剤、重合反応停止剤、重合遅延剤等)を含まない、高純度の重合体を用いた有機薄膜を形成することができる。
<Organic thin film>
By using the obtained reaction solution containing a high-purity, reactive monomer polymer as it is in the film-forming process, various additives used in the conventional polymerization reaction (the conventionally known polymerization start used in the polymerization reaction) An organic thin film using a high-purity polymer that does not contain an agent, a chain transfer agent, a polymerization accelerator, a polymerization reaction terminator, a polymerization retarder, and the like.

このようにして得られた本発明の有機薄膜は、本発明の有機EL素子や本発明の電子デバイス等に好適に用いることができる。   The organic thin film of the present invention thus obtained can be suitably used for the organic EL element of the present invention, the electronic device of the present invention, and the like.

《電子デバイス》
本発明の電子デバイスについて説明する。
《Electronic device》
The electronic device of the present invention will be described.

本発明の電子デバイスは、本発明の有機薄膜を用いて種々の電子デバイスが形成可能であるが、中でも、光が関与する素子が好ましく用いられる。   The electronic device of the present invention can be formed into various electronic devices using the organic thin film of the present invention. Among them, elements involving light are preferably used.

光が関与する素子としては、例えば、液晶表示素子、有機感光体薄膜を用いた電子写真、有機光電池、光化学ホールバーニング(PHB)記録素子、有機エレクトロルミネッセンス素子(有機EL素子)、ラングミュア・ブロジェット(LB)膜を用いた各種光機能素子等が挙げられるが、特に好ましくは、有機EL素子が挙げられる。   Examples of elements that involve light include liquid crystal display elements, electrophotography using organic photoreceptor thin films, organic photovoltaic cells, photochemical hole burning (PHB) recording elements, organic electroluminescence elements (organic EL elements), Langmuir / Blodgets. Various optical functional elements using the (LB) film may be mentioned, and an organic EL element is particularly preferable.

以下、本発明の電子デバイスの中で、好ましい態様である、有機EL素子について更に詳しく説明する。   Hereinafter, the organic EL element, which is a preferred embodiment among the electronic devices of the present invention, will be described in more detail.

《有機EL素子》
本発明の有機薄膜の製造方法により得られた有機薄膜を有する、本発明の有機EL素子について説明する。
<< Organic EL element >>
The organic EL device of the present invention having an organic thin film obtained by the method for producing an organic thin film of the present invention will be described.

本発明の有機薄膜の製造方法により、高純度の低分子を出発物質とする有機薄膜(単層膜でも、積層膜でもよい)の形成が可能となり、この方法で製造した有機EL素子は、不純物等の含有を抑制することができるので、有機EL素子の発光効率の向上、素子寿命の改善などが可能となる。   According to the method for producing an organic thin film of the present invention, it is possible to form an organic thin film (either a single layer film or a laminated film) using a high-purity low molecule as a starting material. Therefore, it is possible to improve the light emission efficiency of the organic EL device, improve the device life, and the like.

《有機EL素子の構成層》
本発明の有機EL素子の構成層について説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
<< Constituent layers of organic EL elements >>
The constituent layers of the organic EL element of the present invention will be described. In this invention, although the preferable specific example of the layer structure of an organic EL element is shown below, this invention is not limited to these.

(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
本発明の有機EL素子においては、青色発光層の発光極大波長は430nm〜480nmにあるものが好ましく、緑色発光層は発光極大波長が510nm〜550nm、赤色発光層は発光極大波長が600nm〜640nmの範囲にある単色発光層であることが好ましく、これらを用いた表示装置であることが好ましい。また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよい。更に、発光層間には非発光性の中間層を有していてもよい。本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。
(I) Anode / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) Anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode In the organic EL device of the present invention, the blue light emitting layer preferably has a light emission maximum wavelength of 430 nm to 480 nm, and the green light emitting layer has a light emission maximum wavelength of 510 nm to 550 nm, The red light emitting layer is preferably a monochromatic light emitting layer having a light emission maximum wavelength in the range of 600 nm to 640 nm, and is preferably a display device using these. Alternatively, a white light emitting layer may be formed by laminating at least three light emitting layers. Further, a non-light emitting intermediate layer may be provided between the light emitting layers. The organic EL element of the present invention is preferably a white light emitting layer, and is preferably a lighting device using these.

本発明の有機EL素子を構成する各層について説明する。   Each layer which comprises the organic EL element of this invention is demonstrated.

《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
<Light emitting layer>
The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.

発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm〜5μmの範囲に調整することが好ましく、さらに好ましくは2nm〜200nmの範囲に調整され、特に好ましくは、10nm〜20nmの範囲である。   The total film thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing unnecessary application of high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferable to adjust in the range of 2 nm to 5 μm, more preferably in the range of 2 nm to 200 nm, and particularly preferably in the range of 10 nm to 20 nm.

発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により製膜して形成することができる。   For the production of the light-emitting layer, a light-emitting dopant or a host compound, which will be described later, is formed and formed by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink-jet method. it can.

本発明の有機EL素子の発光層には、発光ホスト化合物と、発光ドーパント(リン光ドーパント(リン光発光性ドーパントともいう)や蛍光ドーパント等)の少なくとも1種類とを含有することが好ましい。   The light emitting layer of the organic EL device of the present invention preferably contains a light emitting host compound and at least one kind of light emitting dopant (such as a phosphorescent dopant (also referred to as a phosphorescent dopant) or a fluorescent dopant).

(ホスト化合物(発光ホスト等ともいう))
本発明に用いられるホスト化合物について説明する。
(Host compound (also called luminescent host))
The host compound used in the present invention will be described.

ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。   Here, the host compound in the present invention is a phosphorescent quantum yield of phosphorescence emission at a room temperature (25 ° C.) having a mass ratio of 20% or more in the compound contained in the light emitting layer. Is defined as a compound of less than 0.1. The phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.

ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。   As the host compound, known host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of light emission dopants mentioned later, and can thereby obtain arbitrary luminescent colors.

また、本発明に用いられる発光ホストとしては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でも良い。   The light emitting host used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (deposition polymerization property). Light emitting host).

併用してもよい公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。   As the known host compound that may be used in combination, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from becoming longer, and has a high Tg (glass transition temperature) is preferable.

公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。   Specific examples of known host compounds include compounds described in the following documents.

特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。   JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060, No. 2002. -302516, 2002-305083, 2002-305084, 2002-308837, and the like.

(発光ドーパント)
本発明に係る発光ドーパントについて説明する。
(Luminescent dopant)
The light emitting dopant according to the present invention will be described.

本発明に係る発光ドーパントとしては、蛍光ドーパント(蛍光性化合物ともいう)、リン光ドーパント(リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を用いることができるが、より発光効率の高い有機EL素子を得る観点からは、本発明の有機EL素子の発光層や発光ユニットに使用される発光ドーパント(単に、発光材料ということもある)としては、上記のホスト化合物を含有すると同時に、リン光ドーパントを含有することが好ましい。   As the light-emitting dopant according to the present invention, a fluorescent dopant (also referred to as a fluorescent compound) or a phosphorescent dopant (also referred to as a phosphorescent emitter, a phosphorescent compound, a phosphorescent compound, or the like) can be used. From the viewpoint of obtaining an organic EL device with high luminous efficiency, the light emitting dopant used in the light emitting layer or the light emitting unit of the organic EL device of the present invention (sometimes simply referred to as a light emitting material) contains the above host compound. At the same time, it is preferable to contain a phosphorescent dopant.

(リン光ドーパント)
本発明に係るリン光ドーパントについて説明する。
(Phosphorescent dopant)
The phosphorescent dopant according to the present invention will be described.

本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。   The phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, the phosphorescent dopant is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of 25. Although it is defined as a compound of 0.01 or more at ° C., a preferable phosphorescence quantum yield is 0.1 or more.

上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。   The phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.

リン光ドーパントの発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型、もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。   There are two types of light emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. The energy transfer type that obtains light emission from the phosphorescent dopant, and the other is that the phosphorescent dopant becomes a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. Although it is a trap type, in any case, the excited state energy of the phosphorescent dopant is required to be lower than the excited state energy of the host compound.

リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。   The phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL device.

本発明に係るリン光ドーパントとしては、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。   The phosphorescent dopant according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex compound). Rare earth complexes, most preferably iridium compounds.

以下に、リン光ドーパントとして用いられる化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。   Although the specific example of the compound used as a phosphorescence dopant below is shown, this invention is not limited to these. These compounds are described, for example, in Inorg. Chem. 40, 1704-1711, and the like.

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

Figure 2008207520
Figure 2008207520

(蛍光ドーパント(蛍光性化合物ともいう))
蛍光ドーパント(蛍光性化合物)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
(Fluorescent dopant (also called fluorescent compound))
Fluorescent dopants (fluorescent compounds) include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes Examples thereof include dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.

次に、本発明の有機EL素子の構成層として用いられる、注入層、阻止層、電子輸送層等について説明する。   Next, an injection layer, a blocking layer, an electron transport layer and the like used as the constituent layers of the organic EL element of the present invention will be described.

《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
<< Injection layer: electron injection layer, hole injection layer >>
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.

注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。   An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).

陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。   The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.

陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。   The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. . The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm although it depends on the material.

《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258, 11-204359, and “Organic EL elements and their forefront of industrialization” (issued by NTT, Inc. on November 30, 1998). There is a hole blocking (hole blocking) layer.

正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。   The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.

本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。   The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.

正孔阻止層には、前述のホスト化合物として挙げたアザカルバゾール誘導体を含有することが好ましい。   The hole blocking layer preferably contains the azacarbazole derivative mentioned as the host compound.

また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。   In the present invention, when a plurality of light emitting layers having different light emission colors are provided, the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers. In this case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the anode. Furthermore, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.

イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。   The ionization potential is defined by the energy required to emit an electron at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by the following method, for example.

(1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6−31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。   (1) Keywords using Gaussian 98 (Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.), which is molecular orbital calculation software manufactured by Gaussian, USA. The ionization potential can be obtained as a value obtained by rounding off the second decimal place of the value (eV unit converted value) calculated by performing structural optimization using B3LYP / 6-31G *. This calculation value is effective because the correlation between the calculation value obtained by this method and the experimental value is high.

(2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC−1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。   (2) The ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy. For example, a method known as ultraviolet photoelectron spectroscopy can be suitably used by using a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd.

一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3nm〜100nmであり、更に好ましくは5nm〜30nmである。   On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed. The film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm to 100 nm, and more preferably 5 nm to 30 nm.

《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.

正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。   The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.

正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。   The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.

芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。   Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl; N, N'-diphenyl-N, N'- Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' − (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3-methoxy-4′-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two of those described in US Pat. No. 5,061,569. Having a condensed aromatic ring in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-3086 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 8 are linked in a starburst type ( MTDATA) and the like.

更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。   Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.

また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。   JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used because a light-emitting element with higher efficiency can be obtained.

正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5nm〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。   The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. Although there is no restriction | limiting in particular about the film thickness of a positive hole transport layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5 nm-200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.

また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。   Alternatively, a hole transport layer having a high p property doped with impurities can be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.

本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。   In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.

《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.

従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。   Conventionally, in the case of a single electron transport layer and a plurality of layers, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the cathode side with respect to the light emitting layer is injected from the cathode. As long as it has a function of transferring electrons to the light-emitting layer, any material selected from conventionally known compounds can be selected and used. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.

また8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。   Also, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg, Cu , Ca, Sn, Ga, or Pb can also be used as an electron transport material.

その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。   In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. In addition, the distyrylpyrazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and similarly to the hole injection layer and the hole transport layer, inorganic semiconductors such as n-type-Si and n-type-SiC Can also be used as an electron transporting material.

電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5nm〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。   The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Although there is no restriction | limiting in particular about the film thickness of an electron carrying layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5 nm-200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.

また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。   Further, an electron transport layer having a high n property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.

本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。   In the present invention, it is preferable to use an electron transport layer having such a high n property because an element with lower power consumption can be manufactured.

《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
"anode"
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.

陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。   For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.

あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10nm〜1000nm、好ましくは10nm〜200nmの範囲で選ばれる。   Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.

《陰極》
一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
"cathode"
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.

陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。   The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.

また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50nm〜200nmの範囲で選ばれる。尚、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。   The sheet resistance as a cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.

また、陰極に上記金属を1nm〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。   Moreover, after producing the said metal by the film thickness of 1 nm-20 nm to a cathode, the transparent or semi-transparent cathode can be produced by producing the electroconductive transparent material quoted by description of the anode on it, By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.

《支持基板》
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support substrate》
As a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.

樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。   Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Can be mentioned.

樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m2・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、10-3ml/(m2・24h・MPa)以下、水蒸気透過度が、10-5g/(m2・24h)以下の高バリア性フィルムであることが好ましい。 On the surface of the resin film, an inorganic film, an organic film, or a hybrid film of both may be formed. Water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. , Relative humidity (90 ± 2)% RH) is preferably 0.01 g / (m 2 · 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987. A high barrier film having a permeability of 10 −3 ml / (m 2 · 24 h · MPa) or less and a water vapor permeability of 10 −5 g / (m 2 · 24 h) or less is preferable.

バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。   As a material for forming the barrier film, any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.

バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。   The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.

不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。   Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, and ceramic substrates.

本発明の有機EL素子の発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。   The external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.

ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。   Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element × 100.

また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。   In addition, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor. In the case of using a color conversion filter, the λmax of light emission of the organic EL element is preferably 480 nm or less.

《封止》
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
<Sealing>
As a sealing means used for this invention, the method of adhere | attaching a sealing member, an electrode, and a support substrate with an adhesive agent can be mentioned, for example.

封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。   As a sealing member, it should just be arrange | positioned so that the display area | region of an organic EL element may be covered, and concave plate shape or flat plate shape may be sufficient. Further, transparency and electrical insulation are not particularly limited.

具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。   Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.

本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m2・24h・MPa)以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下のものであることが好ましい。 In the present invention, a polymer film and a metal film can be preferably used because the element can be thinned. Furthermore, the polymer film has an oxygen permeability of 1 × 10 −3 ml / (m 2 · 24 h · MPa) or less measured by a method according to JIS K 7126-1987, and a method according to JIS K 7129-1992. It is preferable that the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured in (1) is 1 × 10 −3 g / (m 2 · 24 h) or less.

封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。   For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.

接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。   Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.

なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。   In addition, since an organic EL element may deteriorate by heat processing, what can be adhesive-hardened from room temperature to 80 degreeC is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.

また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。   In addition, it is also preferable that the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. . In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can. Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. The method for forming these films is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster-ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.

封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。   In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.

吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。   Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.

《保護膜、保護板》
有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film. In particular, when the sealing is performed by the sealing film, the mechanical strength is not necessarily high. Therefore, it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.

《光取り出し》
有機EL素子は空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
《Light extraction》
The organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.

この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63−314795号公報)、素子の側面等に反射面を形成する方法(特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等がある。   As a method of improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method of improving efficiency by providing a light collecting property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on a side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No. 62-172691), a flat having a lower refractive index between the substrate and the light emitter than the substrate A method of introducing a layer (Japanese Patent Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of a substrate, a transparent electrode layer and a light emitting layer (including between the substrate and the outside) (Japanese Patent Laid-Open No. 11-283951) Gazette).

本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。   In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.

本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。   In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.

透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。   When a medium having a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.

低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。   Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.

また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。   The thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.

全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。   The method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction. Light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating in any layer or medium (in a transparent substrate or transparent electrode), and the light is removed. I want to take it out.

導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。   The introduced diffraction grating desirably has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.

回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。   As described above, the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or in the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.

このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。   At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.

回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。   The arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.

《集光シート》
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
<Condenser sheet>
The organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the device light emitting surface. By condensing in the front direction, the luminance in a specific direction can be increased.

マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm〜100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。   As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are two-dimensionally arranged on the light extraction side of the substrate. One side is preferably 10 μm to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.

集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。   As the condensing sheet, for example, a sheet that is put into practical use in an LED backlight of a liquid crystal display device can be used. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used. As the shape of the prism sheet, for example, the base material may be formed by forming a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.

また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。   Moreover, in order to control the light emission angle from a light emitting element, you may use together a light diffusing plate and a film with a condensing sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.

《有機EL素子の作製方法》
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法を説明する。
<< Method for producing organic EL element >>
As an example of the method for producing the organic EL device of the present invention, a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.

まず適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm〜200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。   First, a desired electrode material, for example, a thin film made of an anode material is formed on a suitable substrate so as to have a film thickness of 1 μm or less, preferably 10 nm to 200 nm, to form an anode.

次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜を形成させる。   Next, an organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a hole blocking layer, which are organic EL element materials, is formed thereon.

これら各層の形成方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、本発明においてはスピンコート法、インクジェット法、印刷法等の塗布法による成膜が好ましい。   As a method for forming each of these layers, there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method) and the like as described above, but it is easy to obtain a homogeneous film and it is difficult to generate pinholes. In view of the above, film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is preferable in the present invention.

本発明に係る有機EL材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。   Examples of the liquid medium for dissolving or dispersing the organic EL material according to the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene. Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used. Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.

これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは、50nm〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。   After these layers are formed, a thin film made of a cathode material is formed thereon by 1 μm or less, preferably by a method such as vapor deposition or sputtering so that the film thickness is in the range of 50 nm to 200 nm. By providing, a desired organic EL element can be obtained.

また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。   In addition, it is also possible to reverse the production order and produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order. When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.

《用途》
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.

本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。   In the organic EL element of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.

本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。   The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with the total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.

また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000Cd/m2でのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。 Further, when the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 Cd / m 2 is X when the 2-degree viewing angle front luminance is measured by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1.

以下、実施例により本発明を説明するが、本発明はこれらに限定されない。尚、実施例に用いられる化合物を下記に示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these. In addition, the compound used for an Example is shown below.

Figure 2008207520
Figure 2008207520

実施例1
有機EL素子の作製は、下記の塗布溶液1−1〜1−5を各々調製した後、該塗布用液を用いて、各有機EL素子を作製した。
Example 1
For preparing the organic EL elements, the following coating solutions 1-1 to 1-5 were prepared, and then each organic EL element was manufactured using the coating solution.

《塗布溶液1−1〜1−5の調製》:光照射により重合体形成
窒素雰囲気下、CBP(600mg)及びIr−1(30mg)を脱水ジクロロエタン60mlに溶解し、撹拌下高圧水銀灯にて紫外光を120秒間照射し、塗布溶液1−1を調製した。
<< Preparation of Coating Solutions 1-1 to 1-5 >>: Polymer Formation by Light Irradiation Under a nitrogen atmosphere, CBP (600 mg) and Ir-1 (30 mg) were dissolved in 60 ml of dehydrated dichloroethane, and ultraviolet light was stirred with a high-pressure mercury lamp. The coating solution 1-1 was prepared by irradiating light for 120 seconds.

次いで、塗布溶液1−1の調製において、発光層に用いる化合物を表1に記載のように変更した以外は同様にして、塗布溶液1−2〜1−5を各々調製した。   Next, coating solutions 1-2 to 1-5 were respectively prepared in the same manner as in the preparation of the coating solution 1-1 except that the compounds used in the light emitting layer were changed as shown in Table 1.

得られた、塗布溶液1−2〜1−5の一部を、市販のLC−MS(液体クロマトグラフ−質量分析計)にて分析したところ、含有モノマーの重合体の生成を確認することができたが、塗布溶液1−1は紫外光の照射前後で組成に変化は認められなかった。   When a part of the obtained coating solutions 1-2 to 1-5 was analyzed by a commercially available LC-MS (liquid chromatograph-mass spectrometer), it was possible to confirm the formation of a polymer of the contained monomer. However, the composition of the coating solution 1-1 was not changed before and after irradiation with ultraviolet light.

また、これらの塗布溶液の含水量及び溶存酸素量を測定したところ、それぞれ10ppm以下であった。   Further, the water content and dissolved oxygen content of these coating solutions were measured and found to be 10 ppm or less, respectively.

《有機EL素子1−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行なった。
<< Production of Organic EL Element 1-1 >>
Transparent support provided with this ITO transparent electrode after patterning on a substrate (NH45 manufactured by NH Techno Glass) made of ITO (indium tin oxide) with a thickness of 100 nm on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.

この基板を市販のスピンコータに取り付け、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。   This substrate was attached to a commercially available spin coater, and a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm, After forming a film by spin coating in 30 seconds, the film was dried at 200 ° C. for 1 hour to provide a 30 nm-thick hole transport layer.

乾燥処理終了後、再び基板をスピンコータに取り付け、塗布溶液1−1を用い、1000rpm、30秒の条件下、スピンコートして有機薄膜(膜厚40nm)を形成し、60℃で1時間真空乾燥し、発光層とした。   After completion of the drying process, the substrate is again attached to the spin coater, and an organic thin film (film thickness: 40 nm) is formed by spin coating under the condition of 1000 rpm for 30 seconds using the coating solution 1-1, followed by vacuum drying at 60 ° C. for 1 hour. Thus, a light emitting layer was obtained.

次に、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにバソキュプロイン(BCP)を200mg入れ、また、別のモリブデン製抵抗加熱ボートにAlq3を200mg入れ、真空蒸着装置に取り付けた。 Next, this substrate is fixed to a substrate holder of a vacuum deposition apparatus, 200 mg of bathocuproine (BCP) is put into a molybdenum resistance heating boat, and 200 mg of Alq 3 is put into another resistance heating boat made of molybdenum. Attached.

真空槽を4×10-4Paまで減圧した後、BCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層に蒸着して、更に膜厚10nmの正孔阻止層を設けた。 After the pressure in the vacuum chamber is reduced to 4 × 10 −4 Pa, the heating boat containing BCP is energized and heated, and is deposited on the light emitting layer at a deposition rate of 0.1 nm / second, and further a positive film having a thickness of 10 nm. A hole blocking layer was provided.

続いて、Alq3の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で正孔阻止層上に蒸着して、膜厚40nmの電子輸送層を設けた。尚、蒸着時の基板温度は室温であった。 Subsequently, the heating boat containing Alq 3 was energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a thickness of 40 nm. In addition, the substrate temperature at the time of vapor deposition was room temperature.

引き続き、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1−1を作製した。   Then, 0.5 nm of lithium fluoride and 110 nm of aluminum were vapor-deposited, the cathode was formed, and the organic EL element 1-1 was produced.

《有機EL素子1−2〜1−5の作製》
有機EL素子1−1の作製において、塗布溶液1−1を塗布溶液1−2〜1−5に置き換えて有機薄膜を形成した以外は同様にして、有機EL素子1−2〜1−5を各々作製した。
<< Production of Organic EL Elements 1-2 to 1-5 >>
In the production of the organic EL element 1-1, the organic EL elements 1-2 to 1-5 were prepared in the same manner except that the coating solution 1-1 was replaced with the coating solutions 1-2 to 1-5 to form an organic thin film. Each was produced.

《有機EL素子1−1〜1−5の評価》
以下のようにして有機EL素子1−1〜1−5の評価を行った。
<< Evaluation of Organic EL Elements 1-1 to 1-5 >>
The organic EL elements 1-1 to 1-5 were evaluated as follows.

得られた有機EL素子1−1〜1−15を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図1、図2に示すような照明装置を形成して評価した。   When evaluating the obtained organic EL elements 1-1 to 1-15, the non-light-emitting surface of each organic EL element after production is covered with a glass case, and a glass substrate having a thickness of 300 μm is used as a sealing substrate. An epoxy-based photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material in the periphery, and this is placed on the cathode to be in close contact with the transparent support substrate and irradiated with UV light from the glass substrate side. Then, it was cured and sealed, and an illumination device as shown in FIGS. 1 and 2 was formed and evaluated.

図1は照明装置の概略図を示し、有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った)。   FIG. 1 shows a schematic diagram of a lighting device, in which an organic EL element 101 is covered with a glass cover 102 (in addition, sealing with a glass cover is performed in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere. (In a high purity nitrogen gas atmosphere with a purity of 99.999% or more).

図2は照明装置の断面図を示し、図2において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。   FIG. 2 shows a cross-sectional view of the lighting device. In FIG. 2, 105 denotes a cathode, 106 denotes an organic EL layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.

《外部取りだし量子効率》
有機EL素子1−1〜1−5の各々について、23℃、乾燥窒素ガス雰囲気下で2.5mA/cm2の定電流を印加した時の外部取り出し量子効率(%)を測定し、下記の表1に示す。測定には、分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。
《External extraction quantum efficiency》
For each of the organic EL elements 1-1 to 1-5, the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied at 23 ° C. in a dry nitrogen gas atmosphere. Table 1 shows. For the measurement, a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing) was used.

尚、表1の外部取りだし量子効率の測定結果は、有機EL素子1−1の測定値を100とした時の相対値で表した。   In addition, the measurement result of the external extraction quantum efficiency of Table 1 was expressed as a relative value when the measurement value of the organic EL element 1-1 was set to 100.

《発光寿命》
2.5mA/cm2の一定電流で駆動したときに、輝度が発光開始直後の輝度(初期輝度)の半分に低下するのに要した時間を測定し、半減寿命時間(τ05)として寿命の指標とした。測定には分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。
<Luminescent life>
When driven at a constant current of 2.5 mA / cm 2, the luminance is to measure the time required to drop to half of the emission immediately after the start of the luminance (initial luminance), as the half-life time (tau 0. 5) It was used as an index of life. A spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing) was used for the measurement.

尚、表1に示す発光寿命の測定結果は、有機EL素子1−1の測定値を100とした時の相対値で表した。   In addition, the measurement result of the light emission lifetime shown in Table 1 was represented by the relative value when the measured value of the organic EL element 1-1 was set to 100.

得られた結果を表1に示す。   The obtained results are shown in Table 1.

Figure 2008207520
Figure 2008207520

表1から、比較の有機EL素子に比べて、本発明の有機EL素子は、長寿命化が達成されていることが明らかである。   From Table 1, it is clear that the organic EL device of the present invention has a longer life than the comparative organic EL device.

実施例2
《塗布溶液2−1〜2−3の調製》:加熱処理により重合体形成
窒素雰囲気下、例示化合物4−1(600mg)を脱水キシレン60mlに溶解し、130℃で30分加熱し、塗布溶液2−1を調製した。
Example 2
<< Preparation of Coating Solutions 2-1 to 2-3 >>: Polymer Formation by Heat Treatment In a nitrogen atmosphere, Exemplified Compound 4-1 (600 mg) is dissolved in 60 ml of dehydrated xylene and heated at 130 ° C. for 30 minutes to form a coating solution. 2-1.

続いて、窒素雰囲気下、例示化合物1−21(600mg)及び例示化合物2−25(30mg)を脱水キシレン60mlに溶解し、130℃で30分加熱し、塗布溶液2−2を調製した。   Subsequently, Exemplified Compound 1-21 (600 mg) and Exemplified Compound 2-25 (30 mg) were dissolved in 60 ml of dehydrated xylene under a nitrogen atmosphere and heated at 130 ° C. for 30 minutes to prepare a coating solution 2-2.

更に、窒素雰囲気下、例示化合物3−14(600mg)を脱水キシレン60mlに溶解し、130℃で30分加熱し、塗布溶液2−3を調製した。   Further, Exemplified Compound 3-14 (600 mg) was dissolved in 60 ml of dehydrated xylene under a nitrogen atmosphere and heated at 130 ° C. for 30 minutes to prepare a coating solution 2-3.

調製した塗布溶液2−1〜2−3の各々一部を、実施例1に記載と同様にして、市販のLC−MS(液体クロマトグラフ−質量分析計)にて分析し、含有モノマーの重合体の生成を確認することができた。また、これらの塗布溶液の含水量及び溶存酸素量を測定したところ、それぞれ10ppm以下であった。   A part of each of the prepared coating solutions 2-1 to 2-3 was analyzed by a commercially available LC-MS (liquid chromatograph-mass spectrometer) in the same manner as described in Example 1 to determine the weight of the contained monomer. Formation of coalescence could be confirmed. Further, the water content and dissolved oxygen content of these coating solutions were measured and found to be 10 ppm or less, respectively.

《有機EL素子2−1の作製》:青色発光素子
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行なった。
<< Preparation of the organic EL element 2-1 >>: Blue light emitting element Patterned on a substrate (NA45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode Then, the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.

この基板を市販のスピンコータに取り付け、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔注入層を設けた。   This substrate was attached to a commercially available spin coater, and a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm, After forming a film by spin coating in 30 seconds, the film was dried at 200 ° C. for 1 hour to provide a hole injection layer having a thickness of 30 nm.

乾燥処理終了後、再び基板をスピンコータに取り付け、塗布溶液2−1を用いて、1000rpm、30秒の条件下、スピンコートにより、有機薄膜として正孔輸送層を設け、続いて、塗布溶液2−2を用いて、1000rpm、30秒の条件下、スピンコートにより、有機薄膜として発光層を設け、更に、塗布溶液2−3を用いて、1000rpm、30秒の条件下、スピンコートにて正孔阻止層を設けた。   After completion of the drying treatment, the substrate is again attached to the spin coater, and a hole transport layer is provided as an organic thin film by spin coating under the condition of 1000 rpm for 30 seconds using the coating solution 2-1, followed by coating solution 2- 2 is used to form a light emitting layer as an organic thin film by spin coating under conditions of 1000 rpm for 30 seconds, and further, holes are formed by spin coating under conditions of 1000 rpm for 30 seconds using coating solution 2-3. A blocking layer was provided.

続いて、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにAlq3を200mg入れ、真空蒸着装置に取り付けた。 Subsequently, this substrate was fixed to a substrate holder of a vacuum deposition apparatus, 200 mg of Alq 3 was placed in a molybdenum resistance heating boat, and attached to the vacuum deposition apparatus.

真空槽を4×10-4Paまで減圧した後、Alq3の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層上に蒸着して、更に膜厚40nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。 After reducing the vacuum chamber to 4 × 10 −4 Pa, the heating boat containing Alq 3 was energized and heated, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / sec. An electron transport layer having a thickness of 40 nm was provided. In addition, the substrate temperature at the time of vapor deposition was room temperature.

引き続き、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子2−1を作製した。   Then, 0.5 nm of lithium fluoride and 110 nm of aluminum were vapor-deposited, the cathode was formed, and the organic EL element 2-1 was produced.

この素子に通電したところ青色の発光が得られ、有機EL表示装置として使用出来ることが判った。   When this element was energized, blue light emission was obtained, indicating that it could be used as an organic EL display device.

実施例3
《有機EL素子3−1の作製》:白色照明装置の作製
実施例1の有機EL素子1−4の作製において、例示化合物2−19(30mg)をIr−1(9mg)、Ir−9(9mg)、Ir−14(12mg)に置き換えた以外は同様にして有機薄膜(発光層)を形成し、有機EL素子3−1を作製した。
Example 3
<< Preparation of Organic EL Element 3-1 >> Preparation of White Lighting Device In preparation of organic EL element 1-4 of Example 1, Illustrated Compound 2-19 (30 mg) was replaced with Ir-1 (9 mg), Ir-9 ( 9 mg) and Ir-14 (12 mg) were used in the same manner to form an organic thin film (light-emitting layer) to produce an organic EL device 3-1.

この素子に通電したところほぼ白色の光が得られ、照明装置として使用出来ることが判った。   When this element was energized, almost white light was obtained, and it was found that it could be used as a lighting device.

照明装置の概略図である。It is the schematic of an illuminating device. 照明装置の断面図である。It is sectional drawing of an illuminating device.

符号の説明Explanation of symbols

101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
DESCRIPTION OF SYMBOLS 101 Organic EL element 102 Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate with a transparent electrode 108 Nitrogen gas 109 Water catching agent

Claims (13)

反応性モノマーにエネルギー付与して、該反応性モノマーの重合体を含有する反応溶液を調製し、該反応溶液を用いて成膜する工程を有することを特徴とする有機薄膜の製造方法。 A method for producing an organic thin film, comprising the steps of: applying energy to a reactive monomer, preparing a reaction solution containing a polymer of the reactive monomer, and forming a film using the reaction solution. 前記エネルギー付与が光照射により行われることを特徴とする請求項1に記載の有機薄膜の製造方法。 The method for producing an organic thin film according to claim 1, wherein the energy application is performed by light irradiation. 前記エネルギー付与が加熱処理により行われることを特徴とする請求項1に記載の有機薄膜の製造方法。 The method for producing an organic thin film according to claim 1, wherein the energy application is performed by heat treatment. 前記反応溶液に重合開始剤が含まれていないことを特徴とする請求項1〜3のいずれか1項に記載の有機薄膜の製造方法。 The method for producing an organic thin film according to any one of claims 1 to 3, wherein the reaction solution contains no polymerization initiator. 前記反応溶液の含水量が100ppm以下であることを特徴とする請求項1〜4のいずれか1項に記載の有機薄膜の製造方法。 The method for producing an organic thin film according to any one of claims 1 to 4, wherein the water content of the reaction solution is 100 ppm or less. 前記反応溶液の溶存酸素量が100ppm以下であることを特徴とする請求項1〜5のいずれか1項に記載の有機薄膜の製造方法。 The method for producing an organic thin film according to any one of claims 1 to 5, wherein the amount of dissolved oxygen in the reaction solution is 100 ppm or less. 請求項1〜6のいずれか1項に記載の有機薄膜の製造方法により製造されたことを特徴とする有機薄膜。 The organic thin film manufactured by the manufacturing method of the organic thin film of any one of Claims 1-6. 請求項7に記載の有機薄膜を用いて形成されたことを特徴とする電子デバイス。 An electronic device formed using the organic thin film according to claim 7. 請求項7に記載の有機薄膜を用いて形成されたことを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescence element formed using the organic thin film according to claim 7. リン光発光性化合物を含有することを特徴とする請求項9に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent device according to claim 9, comprising a phosphorescent compound. 白色に発光することを特徴とする請求項9または10に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 9, which emits white light. 請求項9〜11のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。 A display device comprising the organic electroluminescence element according to claim 9. 請求項9〜11のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。 The illuminating device provided with the organic electroluminescent element of any one of Claims 9-11.
JP2007048777A 2007-02-28 2007-02-28 Organic thin film, method for producing the same, electronic device, organic luminescence element, display device and lightening equipment Pending JP2008207520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007048777A JP2008207520A (en) 2007-02-28 2007-02-28 Organic thin film, method for producing the same, electronic device, organic luminescence element, display device and lightening equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048777A JP2008207520A (en) 2007-02-28 2007-02-28 Organic thin film, method for producing the same, electronic device, organic luminescence element, display device and lightening equipment

Publications (1)

Publication Number Publication Date
JP2008207520A true JP2008207520A (en) 2008-09-11

Family

ID=39784233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048777A Pending JP2008207520A (en) 2007-02-28 2007-02-28 Organic thin film, method for producing the same, electronic device, organic luminescence element, display device and lightening equipment

Country Status (1)

Country Link
JP (1) JP2008207520A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011051404A1 (en) 2009-10-28 2011-05-05 Basf Se Heteroleptic carbene complexes and use thereof in organic electronics
WO2011073149A1 (en) 2009-12-14 2011-06-23 Basf Se Metal complexes comprising diazabenzimidazol carbene-ligands and the use thereof in oleds
WO2011093309A1 (en) * 2010-01-28 2011-08-04 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element
JP2013060368A (en) * 2011-09-12 2013-04-04 Yamagata Univ Carbazole derivative and organic electroluminescent element using the same
WO2014012972A1 (en) 2012-07-19 2014-01-23 Basf Se Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
KR20140072021A (en) * 2011-07-11 2014-06-12 메르크 파텐트 게엠베하 Compositions for organic electroluminescent devices
WO2014147134A1 (en) 2013-03-20 2014-09-25 Basf Se Azabenzimidazole carbene complexes as efficiency booster in oleds
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
WO2015000955A1 (en) 2013-07-02 2015-01-08 Basf Se Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
EP3015469A1 (en) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3053918A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd 2-carbazole substituted benzimidazoles for electronic applications
EP3054498A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3070144A1 (en) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017109722A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3239161A1 (en) 2013-07-31 2017-11-01 UDC Ireland Limited Luminescent diazabenzimidazole carbene metal complexes
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
EP3415521A1 (en) 2011-06-14 2018-12-19 UDC Ireland Limited Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11189806B2 (en) 2009-10-28 2021-11-30 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
WO2011051404A1 (en) 2009-10-28 2011-05-05 Basf Se Heteroleptic carbene complexes and use thereof in organic electronics
US11871654B2 (en) 2009-10-28 2024-01-09 Udc Ireland Limited Heteroleptic carbene complexes and the use thereof in organic electronics
US11839140B2 (en) 2009-12-14 2023-12-05 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
US10090476B2 (en) 2009-12-14 2018-10-02 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
US10916716B2 (en) 2009-12-14 2021-02-09 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDS
US9487548B2 (en) 2009-12-14 2016-11-08 Udc Ireland Limited Metal complexes comprising diazabenzimidazolocarbene ligands and the use thereof in OLEDs
US11444254B2 (en) 2009-12-14 2022-09-13 Udc Ireland Limited Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
WO2011073149A1 (en) 2009-12-14 2011-06-23 Basf Se Metal complexes comprising diazabenzimidazol carbene-ligands and the use thereof in oleds
JPWO2011093309A1 (en) * 2010-01-28 2013-06-06 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element
JP5648641B2 (en) * 2010-01-28 2015-01-07 コニカミノルタ株式会社 Organic photoelectric conversion element
WO2011093309A1 (en) * 2010-01-28 2011-08-04 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
EP3415521A1 (en) 2011-06-14 2018-12-19 UDC Ireland Limited Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in oleds
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
JP2014527037A (en) * 2011-07-11 2014-10-09 メルク パテント ゲーエムベーハー Compounds for organic electroluminescent devices
KR102008034B1 (en) * 2011-07-11 2019-08-06 메르크 파텐트 게엠베하 Compositions for organic electroluminescent devices
US9583717B2 (en) 2011-07-11 2017-02-28 Merck Patent Gmbh Compounds for organic electroluminescent devices
KR20140072021A (en) * 2011-07-11 2014-06-12 메르크 파텐트 게엠베하 Compositions for organic electroluminescent devices
JP2013060368A (en) * 2011-09-12 2013-04-04 Yamagata Univ Carbazole derivative and organic electroluminescent element using the same
US9590196B2 (en) 2012-07-19 2017-03-07 Udc Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in OLEDs
EP3133079A1 (en) 2012-07-19 2017-02-22 UDC Ireland Limited Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
WO2014012972A1 (en) 2012-07-19 2014-01-23 Basf Se Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
WO2014147134A1 (en) 2013-03-20 2014-09-25 Basf Se Azabenzimidazole carbene complexes as efficiency booster in oleds
WO2014177518A1 (en) 2013-04-29 2014-11-06 Basf Se Transition metal complexes with carbene ligands and the use thereof in oleds
EP3266789A1 (en) 2013-07-02 2018-01-10 UDC Ireland Limited Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
EP3608329A1 (en) 2013-07-02 2020-02-12 UDC Ireland Limited Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
WO2015000955A1 (en) 2013-07-02 2015-01-08 Basf Se Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
EP3239161A1 (en) 2013-07-31 2017-11-01 UDC Ireland Limited Luminescent diazabenzimidazole carbene metal complexes
US10347851B2 (en) 2013-12-20 2019-07-09 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US11075346B2 (en) 2013-12-20 2021-07-27 Udc Ireland Limited Highly efficient OLED devices with very short decay times
EP3916822A1 (en) 2013-12-20 2021-12-01 UDC Ireland Limited Highly efficient oled devices with very short decay times
US11765967B2 (en) 2013-12-20 2023-09-19 Udc Ireland Limited Highly efficient OLED devices with very short decay times
US10370396B2 (en) 2014-03-31 2019-08-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometallated aryl group and their use in organic light emitting diodes
US10118939B2 (en) 2014-03-31 2018-11-06 Udc Ireland Limited Metal complexes, comprising carbene ligands having an o-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
US9862739B2 (en) 2014-03-31 2018-01-09 Udc Ireland Limited Metal complexes, comprising carbene ligands having an O-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676A1 (en) 2014-08-07 2016-02-10 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
EP3015469A1 (en) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016067261A1 (en) 2014-10-30 2016-05-06 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
WO2016079169A1 (en) 2014-11-18 2016-05-26 Basf Se Pt- or pd-carbene complexes for use in organic light emitting diodes
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
WO2016097983A1 (en) 2014-12-15 2016-06-23 Idemitsu Kosan Co., Ltd. 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (oleds)
EP3053918A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd 2-carbazole substituted benzimidazoles for electronic applications
EP3054498A1 (en) 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
WO2016125110A1 (en) 2015-02-06 2016-08-11 Idemitsu Kosan Co., Ltd. Bisimidazolodiazocines
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3070144A1 (en) 2015-03-17 2016-09-21 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
WO2016157113A1 (en) 2015-03-31 2016-10-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
EP4060757A1 (en) 2015-06-03 2022-09-21 UDC Ireland Limited Highly efficient oled devices with very short decay times
WO2016193243A1 (en) 2015-06-03 2016-12-08 Udc Ireland Limited Highly efficient oled devices with very short decay times
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056052A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017109722A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them
WO2017109727A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Hetero-condensed phenylquinazolines and their use in electronic devices
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds

Similar Documents

Publication Publication Date Title
JP5930002B2 (en) Organic electroluminescence element, display device and lighting device
JP5018891B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5359869B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5387563B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE
JP5088025B2 (en) ORGANIC ELECTROLUMINESCENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5201054B2 (en) Organic electroluminescent material, organic electroluminescent element, blue phosphorescent light emitting element, display device and lighting device
JP2008207520A (en) Organic thin film, method for producing the same, electronic device, organic luminescence element, display device and lightening equipment
JP5560517B2 (en) Organic electroluminescence element, display device and lighting device
JP2009114370A (en) Organic electroluminescence element material, organic electroluminescence element, display device, and lighting system
JP2009114369A (en) Organic electroluminescent material, organic electroluminescent element, display and illuminator
JP2009059767A (en) Organic electroluminescent element, illumination apparatus, and display device
JP2007284408A (en) Compound, organic electroluminescence element containing the same compound, luminaire and display unit
JP5569531B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, DISPLAY DEVICE AND LIGHTING DEVICE
WO2012173079A1 (en) Organic electroluminescence element, illumination device, and display device
JP5629970B2 (en) Organic electroluminescence element, display device and lighting device
JP2010037312A (en) Compound for organic electroluminescent element, organic electroluminescent element, method for producing polymerized membrane, method for producing organic electroluminescent element, white organic electroluminescent element, display device and illumination device
JP5045605B2 (en) Lighting device
JP5218185B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME
JP2010040967A (en) Organic electroluminescence element, method of manufacturing polymerized film, white organic electroluminescence element, display, and illuminating apparatus
JP2009152435A (en) White organic electroluminescent device, manufacturing method thereof, display unit, and lighting apparatus
JP5577579B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT MATERIAL, DISPLAY DEVICE AND LIGHTING DEVICE
JP5320881B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL
JP5831596B2 (en) Organic electroluminescent materials
JP5369378B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, AND ELECTRONIC DISPLAY DEVICE
JP2008047428A (en) Organic electroluminescence element, manufacturing method therefor, lighting device, and display device