WO2012057234A1 - Substrate for light-emitting element, and light emitting device - Google Patents

Substrate for light-emitting element, and light emitting device Download PDF

Info

Publication number
WO2012057234A1
WO2012057234A1 PCT/JP2011/074726 JP2011074726W WO2012057234A1 WO 2012057234 A1 WO2012057234 A1 WO 2012057234A1 JP 2011074726 W JP2011074726 W JP 2011074726W WO 2012057234 A1 WO2012057234 A1 WO 2012057234A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
substrate
metal layer
layer
Prior art date
Application number
PCT/JP2011/074726
Other languages
French (fr)
Japanese (ja)
Inventor
勝寿 中山
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012540919A priority Critical patent/JP5958342B2/en
Publication of WO2012057234A1 publication Critical patent/WO2012057234A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a light emitting element substrate and a light emitting device using the same.
  • a wiring board for mounting a light-emitting element such as a light-emitting diode element has a structure in which a wiring conductor layer is disposed on or inside an insulating substrate.
  • a typical example of this wiring substrate is an insulating substrate made of alumina ceramic (hereinafter referred to as an alumina substrate).
  • alumina substrate a recess for accommodating a light emitting element is formed in the upper part, and a plurality of wiring conductor layers made of refractory metal powder such as tungsten and molybdenum are disposed on the surface and inside thereof, In some cases, the wiring conductor layer is electrically connected to the light emitting element housed in the recess.
  • a wiring board on which such a light emitting element is mounted (hereinafter also referred to as a light emitting element substrate or simply a substrate) further dissipates heat generated by the light emitting element quickly, or the light emitting element emits light.
  • a metal layer is often provided for purposes other than electrical connection, such as reflecting light as far forward as possible.
  • low temperature co-fired ceramics (Low Temperature Co-fired Ceramics, hereinafter) can be used as light-emitting element substrates in addition to alumina substrates because of low temperature firing, low dielectric constant and high electrical conductivity copper and silver wiring.
  • LTCC Low Temperature Co-fired Ceramics
  • the substrate for a light-emitting element having the recess is generally a green sheet having at least a flat plate-like green sheet (also referred to as a ceramic substrate precursor) that constitutes the bottom surface of the recess and a through-hole that constitutes the wall of the recess. It is manufactured by firing a laminate in which (also referred to as a ceramic frame precursor) is laminated. At this time, the wiring conductor layer is formed on the surface or inside of each green sheet before or after the green sheet is laminated, and is fired at the same time as the green sheet is fired.
  • the ceramic substrate precursor and the ceramic frame precursor described above may be composed of a single layer or a plurality of layers.
  • the light emitting element substrate having the recesses manufactured in this way stress concentration or the like due to firing shrinkage occurs in the above manufacturing process, and the center of the flat ceramic substrate constituting the recess bottom surface of the obtained substrate There was a problem that the club was warped. If a substrate with this warpage is used, when the light emitting element is mounted on the substrate, the mounting position of the light emitting element or the position of the bonding wire is shifted and disconnection occurs, the light emitting element is mounted with an inclination and the light directivity is affected. It was a problem in terms of, etc.
  • this board when this board is mounted on a printed wiring board or the like using solder, a warp on the back side of this board may cause a gap between the board and the solder, which may cause disconnection or prevent heat dissipation. There was a problem of becoming.
  • Patent Document 1 a ceramic member having a flat ceramic substrate constituting the bottom surface of the concave portion and a through hole constituting the wall portion of the concave portion. The method of forming a layer made of a ceramic material having a different shrinkage from the ceramic material constituting the other part in the vicinity of the interface between the two is employed.
  • Patent Document 2 and Patent Document 3 a plurality of green sheets including a thin green sheet having a through-hole in a portion corresponding to the bottom surface of the recess are laminated on the flat ceramic substrate constituting the bottom surface of the recess. In this way, while suppressing the warping of the central portion (the bottom surface of the recess), further recesses are formed, and the conductor layer is formed on the entire surface of the flat ceramic substrate or partially so as to fill the recesses. By doing so, the bottom surface of the recess is flattened.
  • the present invention has been made in order to solve the problem of warpage of a substrate for a light emitting element having the above-mentioned concave portion, and is a substrate for a light emitting element having a concave portion in which the amount of warpage of the entire substrate is reduced, and light using the same.
  • An object of the present invention is to provide a light-emitting device with high reliability in terms of directivity and electrical connection.
  • the substrate for a light-emitting element of the present invention comprises a plate-like substrate having a flat main surface made of the first inorganic insulating material, and a frame made of the second inorganic insulating material bonded to the upper main surface of the substrate.
  • a substrate for a light emitting element having a mounting portion for mounting a light emitting element on a bottom surface of a recess formed with a part of the upper main surface of the base as a bottom surface and an inner wall surface of the frame body as a side surface, Further, at least a part of the metal layer is disposed between the frame body and the base so as to straddle the outer periphery of the bottom surface of the recess, and has a metal layer disposed so as not to reach the outer edge of the base.
  • the metal layer is disposed between the frame body and the base so as to straddle the outer periphery of the bottom surface of the recess in the entire periphery.
  • the total length of the outer periphery of the portion where the metal layer is disposed across the outer periphery of the bottom surface of the recess is preferably 40% or more with respect to the total outer peripheral length of the bottom surface of the recess.
  • the distance (L) from the outer periphery of the bottom surface of the recess to the edge of the metal layer between the frame and the substrate is preferably 100 to 200 ⁇ m.
  • the metal layer has a function of reducing warpage of the entire substrate by being provided as described above, and the metal layer is electrically connected to, for example, an electrode of the light-emitting element. It can also serve as an element connection terminal, a heat dissipation layer, a reflective layer, or a base layer for forming a reflective layer.
  • the metal layer is disposed between the frame body and the base so as to straddle the outer periphery of the bottom surface of the recess.
  • the said metal layer is a reflection layer which can select the shape to arrange
  • the glass ceramic composition in which each of the first inorganic insulating material and the second inorganic insulating material constituting the base body and the frame body includes glass powder and ceramic powder, respectively. It is a sintered body, and the metal constituting the metal layer is preferably a metal mainly composed of silver.
  • the first inorganic insulating material and the second inorganic insulating material are both sintered bodies of an alumina ceramic composition, and the metal constituting the metal layer is tungsten and molybdenum.
  • the main component is at least one selected from the group consisting of: Further, it is preferable to form a metal reflective layer mainly composed of silver on the metal layer mainly composed of at least one selected from the group consisting of tungsten and molybdenum.
  • the light-emitting device of the present invention includes the light-emitting element substrate of the present invention and a light-emitting element mounted on the light-emitting element substrate.
  • the present invention it is possible to provide a light emitting element substrate in which the amount of warpage of the entire substrate is reduced in the light emitting element substrate having a recess. Further, according to the present invention, by mounting a light emitting element on such a light emitting element substrate, a light emitting device with high reliability in light directivity, electrical connection, and the like can be provided.
  • the substrate for a light-emitting element of the present invention comprises a plate-like substrate having a flat main surface made of the first inorganic insulating material, and a frame made of the second inorganic insulating material bonded to the upper main surface of the substrate.
  • a substrate for a light emitting element having a mounting portion for mounting a light emitting element on a bottom surface of a recess formed with a part of the upper main surface of the base as a bottom surface and an inner wall surface of the frame body as a side surface, Further, at least a part of the metal layer is disposed between the frame body and the base so as to straddle the outer periphery of the bottom surface of the recess, and has a metal layer disposed so as not to reach the outer edge of the base.
  • a plate-like substrate having a flat main surface refers to a substrate having a flat surface with a level at which both the upper and lower main surfaces can be recognized as a flat plate shape at the visual level.
  • substrate refers to a substrate whose upper and lower main surfaces are such flat surfaces.
  • abbreviations indicate levels that can be recognized as such on the visual level unless otherwise specified.
  • a part of the substrate straddles the outer periphery of the recess bottom surface on the bottom surface of the recess.
  • the bottom surface of the concave portion is flattened, the positional deviation and inclination of the light emitting element when mounting the light emitting element are reduced, the problem that the directivity of light is different from the design, and the occurrence of disconnection due to the positional deviation of the bonding wire. Can be suppressed. Further, when the light emitting element substrate is mounted on a printed wiring board or the like by using solder, problems such as disconnection and deterioration of heat dissipation, which are caused by the warpage of the substrate, can be reduced.
  • the substrate for a light emitting device of the present invention when an element connection terminal, a heat dissipation layer, a reflective layer, or a base layer for forming a reflective layer, which is usually provided on the bottom surface of the recess, is disposed, a part of the bottom surface of the recess If it can be provided so as to straddle the outer periphery of the substrate, it is not necessary to separately provide a metal layer for reducing the warpage of the entire substrate. That is, in the present invention, the metal layer for reducing warpage is usually formed by the element connection terminal, the heat dissipation layer, the reflection layer, or the reflection layer formed so that a part thereof straddles the outer periphery of the bottom surface of the recess.
  • the underlayer for the purpose.
  • the metal layer of the reflective layer is used in the present invention.
  • a metal layer may be used, and when a metal layer is used as a layer constituting the base layer, the metal layer of the base layer may be a metal layer in the present invention.
  • first inorganic insulating material and the second inorganic insulating material constituting the substrate and the frame respectively, specifically, an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, mullite And ceramics such as a sintered body of a glass ceramic composition containing glass powder and ceramic powder (hereinafter sometimes referred to as LTCC (low temperature co-sintered ceramic)). Since these ceramics have different firing temperatures, the substrate and the frame are usually made of the same kind of ceramic.
  • LTCC low temperature co-sintered ceramic
  • the substrate and the frame are usually made of the same kind of ceramic.
  • LTCC is preferable from the viewpoints of ease of manufacture, easy processability, economy, and the like.
  • the first and second inorganic insulating materials are made of the same kind of ceramics, for example, a glass ceramic composition capable of obtaining a high bending strength is applied to the base body in LTCC, and the frame body has diffuse reflectivity.
  • the raw material composition of the glass powder or the ceramic powder may be different depending on the required characteristics of the base body and the frame so that the glass ceramic composition emphasized is applied.
  • a metal layer containing silver as a main component as the metal layer (for example, a metal layer or alloy containing 95% by mass or more of silver) can be fired at a low temperature. It is preferable to design a substrate for a light-emitting element using this as a reflective layer. Further, when high-temperature co-fired ceramics such as alumina ceramics are selected as the inorganic insulating material, high-temperature firing is necessary, so that the metal layer includes at least one refractory metal selected from the group consisting of tungsten and molybdenum. A metal layer made of a refractory metal as a main component is selected.
  • these refractory metal layers formed to reduce the warpage of the substrate do not function sufficiently as a reflective layer, they are usually reflected using a highly reflective metal such as silver on the refractory metal layer after firing. Form a layer.
  • the refractory metal layer is designed to function also as an underlayer.
  • a light emitting element substrate in which the first and second inorganic insulating materials are each composed of a base body and a frame body made of LTCC, and the metal layer is designed as a reflective layer This will be described below.
  • FIG. 1A is a plan view showing an example of a light-emitting element substrate 1 for mounting one light-emitting element according to an embodiment of the present invention
  • FIG. 1B is a cross-sectional view taken along line XX in FIG. FIG.
  • the light emitting element substrate 1 has a substantially flat base 2 that is mainly composed of the light emitting element substrate 1 and has a substantially square shape when viewed from above.
  • the substrate 2 When the substrate 2 is used as a substrate for a light emitting element, it has an upper surface on which the light emitting element is mounted as a main surface 21, and in this example, the opposite surface is a back surface 23.
  • the thickness, size, etc. of the substrate 2 are not particularly limited, and can be the same as that of a normal light emitting element wiring substrate.
  • the light emitting element substrate 1 further includes a frame body 3 joined to the peripheral edge portion of the main surface 21 of the base body so as to form a concave portion 4 having a substantially circular portion at the center of the main surface 21 of the base body 2 as a bottom surface 24.
  • the side surface 25 of the recess 4 is formed by the inner wall surface of the frame 3.
  • a substantially central portion of the recess bottom surface 24 is a mounting portion 22 on which the light emitting element is mounted.
  • the side surface 25 of the recess 4 is provided substantially perpendicular to the bottom surface 24 thereof. That is, the frame body 3 is shaped so that the opening portions have the same shape in the upper and lower sides, and is joined to the peripheral edge portion of the substrate main surface 21.
  • the shape of the frame 3 may be, for example, a taper-shaped side surface with a large upper opening and a small lower opening.
  • Specific numerical values of the distance between the side surface 25 of the concave portion 4 and the edge of the light emitting element mounting portion 22 include the output of the mounted light emitting element, the size (size), and, if necessary, for example, Depending on the type of phosphor to be contained in the sealing layer, which will be described later, its content, conversion efficiency, etc., for example, the distance at which the light emitted from the light emitting element is most efficiently emitted in the light extraction direction is used as an index. It may be used.
  • the height of the side surface 25 of the concave portion 4 that is, the distance from the bottom surface 24 of the concave portion 4 to the highest position of the frame body 3 (that is, the height of the frame body 3) determines the light from the mounted light emitting element.
  • the height is not particularly limited as long as it can be sufficiently reflected in the extraction direction.
  • the height is 100 to 500 ⁇ m higher than the height of the highest part of the light emitting element when the light emitting element is mounted.
  • the height of the frame 3 is more preferably equal to or less than the height of 450 ⁇ m added to the height of the highest part of the light emitting element, and more preferably equal to or less than the height of 400 ⁇ m.
  • the base 2 and the frame 3 are both made of LTCC.
  • the bending strength of the substrate 2 and the frame 3 formed of the LTCC material is 250 MPa from the viewpoint of suppressing damage or the like when the light emitting element is mounted and thereafter used.
  • the above is preferable.
  • the LTCC material that constitutes the frame 3 is preferably the same as the material that constitutes the substrate 2 in consideration of adhesion to the substrate 2.
  • the LTCC material may be an LTCC material having diffuse reflectivity.
  • the LTCC having diffuse reflectivity is not particularly limited as long as the light extraction efficiency is improved in the light emitting device.
  • a material capable of obtaining light extraction efficiency corresponding to the silver reflective film is used.
  • a haze value measured by JIS K 7105 is used as an index for evaluating diffuse reflectance. The value is preferably 95% or more, and more preferably 98% or more.
  • the raw material composition, sintering conditions, and the like of the sintered body of the glass ceramic composition including the glass powder and the ceramic powder constituting the substrate 2 and the frame body 3 are as described later.
  • the element connection terminals 5 electrically connected to the pair of electrodes of the light emitting element are provided on the concave bottom surface 24 formed by a part of the main surface 21 of the base 2.
  • a pair of substantially rectangular shapes are provided so as to face the outer periphery of the element mounting portion 22, specifically, both sides.
  • a pair of external connection terminals 6 that are electrically connected to an external circuit are provided on the back surface 23 of the base 2, and the element connection terminals 5 and the external connection terminals 6 are electrically connected to the inside of the base 2.
  • a pair of through conductors 7 is provided. About the element connection terminal 5, the external connection terminal 6, and the through conductor 7, as long as these are electrically connected by a route of the light emitting element ⁇ the element connection terminal 5 ⁇ the through conductor 7 ⁇ the external connection terminal 6 ⁇ the external circuit, The position and shape of the arrangement are not limited to those shown in FIG. 1 and can be adjusted as appropriate.
  • the constituent materials of the element connection terminal 5, the external connection terminal 6, and the through conductor 7 are generally the same as those of the wiring conductor used for the light emitting element substrate. Any material can be used without particular limitation. Specific examples of the constituent material of these wiring conductors include metal materials mainly composed of copper, silver, gold, and the like. Among these metal materials, silver, a metal material composed of silver and platinum, or a metal material composed of silver and palladium is preferably used.
  • the element connection terminal 5 and the external connection terminal 6 are made of these metal materials, preferably on a metal layer having a thickness of 5 to 15 ⁇ m, and this layer is protected from oxidation and sulfidization and has conductivity.
  • a configuration in which a protective layer (not shown) is formed so as to cover the whole including its edge is preferable.
  • the conductive protective layer is not particularly limited as long as it is made of a conductive material having a function of protecting the metal layer. Specific examples include a conductive protective layer made of nickel plating, chrome plating, silver plating, nickel / silver plating, gold plating, nickel / gold plating, or the like.
  • a conductive protective layer for covering and protecting the element connection terminals 5 and the external connection terminals 6, for example, bonding wires and other connection materials used for connection with electrodes of light emitting elements to be described later
  • a metal plating layer having a gold plating layer as at least the outermost layer from the viewpoint of obtaining good bonding.
  • the conductive protective layer may be formed of only a gold plating layer, but is more preferably formed as a nickel / gold plating layer obtained by performing gold plating on nickel plating.
  • the thickness of the conductive protective layer is preferably 2 to 20 ⁇ m for the nickel plating layer and 0.1 to 1.0 ⁇ m for the gold plating layer.
  • the metal layer disposed to reduce the warpage in the light emitting element substrate of the present invention is formed on the bottom surface 24 of the recess 4 on the pair of the bottom surfaces 24. It includes a region where the element connection terminal 5 is disposed and a region excluding the vicinity thereof, and an edge thereof is disposed between the frame 3 and the substrate 2 across the outer periphery A of the bottom surface 24 of the recess. It is arranged so as not to reach the outer edge.
  • the area where the element connection terminal 5 is disposed and the region excluding the vicinity thereof are specifically electrically insulated from the element connection terminal 5 and the metal layer 8, and further, at the time of lamination or printing
  • This is a region that is considered so as not to cause deterioration of the insulation property or obstruction of the conductivity of the element connection terminal 5 due to a manufacturing defect such as positional misalignment, and preferably from the edge of the element connection terminal 5 It is a region outside 100 ⁇ m or more, and more preferably a region outside 150 ⁇ m from the edge.
  • the metal layer 8 has a similar shape (substantially circular shape) having the same center as the outer periphery of the bottom surface 24 of the recess 4, and straddles the entire outer periphery of the bottom surface 24. .
  • it is formed at a substantially circular edge.
  • the distance L from the outer periphery of the bottom surface 24 of the recess 4 to the edge of the metal layer 8 is such that the warp of the light emitting element substrate is sufficiently reduced and the frame 3 and the base body 2 are joined with sufficient adhesion strength. It is selected as appropriate.
  • the metal when taking into account the displacement (printing displacement) of the arrangement position of the metal layer 8 and the misalignment of the frame 3 and the substrate 2 when manufacturing the light emitting element substrate 1, the metal from the outer periphery of the bottom surface 24 of the recess 4.
  • the distance L to the edge of the layer 8 is preferably 100 to 200 ⁇ m, more preferably 130 to 170 ⁇ m.
  • the metal layer 8 is formed so that the edge extends over the entire outer periphery of the bottom surface 24 of the recess 4 and extends between the base 2 and the frame 3.
  • the metal layer 8 may be formed so that the edge of the metal layer 8 straddles a part of the outer periphery of the bottom surface 24 as necessary.
  • the metal layer 8 is disposed as a reflective layer, the metal layer 8 is disposed on the bottom surface 24 of the concave portion 4 as large as possible.
  • the metal layer is not considered in light reflection performance. In the range which does not impair the effect of this invention, the shape of the metal layer 8 can be changed suitably.
  • the metal layer 8 is not particularly limited as long as the metal layer 8 has a property of suppressing the stress that deforms into a convex shape during firing faster than the base 2 from the viewpoint of reducing warpage of the light emitting element substrate 1.
  • the metal layer 8 also has a function as a reflection layer. Therefore, the metal material constituting the metal layer 8 can be fired simultaneously with the LTCC substrate and is light reflective.
  • a metal material containing silver as a main component for example, a metal material containing 95% by mass or more of silver
  • Specific examples of the metal material containing silver as a main component include silver, a metal material composed of silver and platinum, or a metal material composed of silver and palladium.
  • the metal material composed of silver and platinum or the metal material composed of silver and palladium include a metal material in which the ratio of platinum or palladium to the total amount of the metal material is 5% by mass or less.
  • the metal layer 8 comprised only of silver is preferable from the point which can obtain a high reflectance in this invention.
  • the film thickness of the metal layer 8 is preferably 5 to 15 ⁇ m, more preferably 8 to 12 ⁇ m. If the thickness of the metal layer 8 is less than 5 ⁇ m, sufficient strength and light reflectivity may not be obtained, and if it exceeds 15 ⁇ m, it is economically disadvantageous and heat with the base 2 and the frame 3 during the manufacturing process. There is a possibility that deformation due to an expansion difference occurs, and a reduction in warpage of the substrate cannot be sufficiently achieved.
  • the light emitting element substrate 1 shown in FIG. 1 has an overcoat glass layer 9 for insulating and protecting the metal layer 8.
  • the overcoat glass layer 9 covers the whole of the metal layer 8 including the edge of the metal layer 8 except for the portion extending between the base 2 and the frame 3 of the metal layer 8 formed on the bottom surface 24 of the recess 4. Is formed.
  • the edge of the overcoat glass layer 9 may be in contact with the element connection terminal 5 as long as the insulation between the element connection terminal 5 provided on the concave bottom surface 24 and the metal layer 8 is ensured.
  • the distance between the two is preferably 75 ⁇ m or more, more preferably 100 ⁇ m or more, taking into account the occurrence of problems in manufacturing such as misalignment during lamination and printing.
  • the distance between the edge of the metal layer 8 and the edge of the overcoat glass layer 9 is that the metal layer 8 is an external deterioration factor. It is preferable that the distance be as short as possible within a range that is sufficiently protected from. Specifically, 10 to 50 ⁇ m is preferable, and 20 to 30 ⁇ m is more preferable.
  • the distance is less than 10 ⁇ m, the metal layer 8 is exposed, and the metal material constituting the metal layer 8, particularly the metal material mainly containing silver, which is preferably used, is oxidized or sulfided, and the light reflectivity is lowered. If it exceeds 50 ⁇ m, as a result, the area of the region where the metal layer 8 is disposed is reduced, so that the light reflectivity is lowered.
  • the film thickness of the overcoat glass layer 9 depends on the design of the light emitting device, it is 5 to 50 ⁇ m in consideration of the manufacturing cost, the deformation due to the difference in thermal expansion from the substrate, etc. preferable.
  • the surface of the overcoat glass layer 9 has surface smoothness in order to obtain sufficient heat dissipation at least in the light emitting element mounting portion 22.
  • the surface roughness Ra is preferably 0.03 [mu] m or less, more preferably 0.01 [mu] m or less, from the viewpoint of manufacturing ease while ensuring sufficient heat dissipation.
  • the raw material composition of the glass which comprises an overcoat glass layer is demonstrated in the below-mentioned manufacturing method.
  • the overcoat glass layer 9 does not cover the metal layer 8 formed between the base 2 and the frame 3, but the effect of the present invention is not impaired. As long as necessary, the metal layer 8 formed between the base 2 and the frame 3 may be covered.
  • a thermal via is embedded in the light emitting element substrate 1 in the direction perpendicular to the main surface 21 of the base 2 in the base 2 in order to reduce the thermal resistance.
  • a heat dissipation layer may be arranged in a direction parallel to 21.
  • the thermal via has a columnar shape smaller than the mounting portion 22, for example, and a plurality of thermal vias are provided immediately below the mounting portion 22.
  • FIG. 2 shows a light emitting element substrate 1 as an example different from the light emitting element substrate 1 shown in FIG. 1 of the light emitting element substrate 1 for mounting one light emitting element according to the embodiment of the present invention.
  • FIG. 2 is a plan view (a) and a sectional view taken along line XX of FIG.
  • the light emitting element substrate 1 shown in FIG. 2 is the same as the light emitting element substrate 1 shown in FIG. 1 except for the region where the metal layer 8 is formed. Therefore, only the metal layer 8 will be described below.
  • the metal layer 8 is provided to reduce the warpage of the light emitting element substrate and also serve as a reflective layer.
  • the metal layer 8 includes, on the bottom surface 24 of the concave portion 4, a portion of the bottom surface 24 where the pair of element connection terminals 5 are disposed and a region excluding the vicinity thereof, and the edge of the metal layer 8 is partially Further, it is disposed between the frame 3 and the base 2 so as to straddle the outer periphery A of the bottom surface 24 of the recess, and is arranged in a substantially square shape so as not to reach the outer edge of the base 2.
  • the region excluding the vicinity of the periphery of the element connection terminal 5 is the same as the region described in the light emitting element substrate 1 shown in FIG.
  • the shape of the outer edge of the metal layer 8 is a substantially similar shape (substantially square) with the same center as the shape of the base 2 as viewed from above, and each side constituting the outer edge of the metal layer 8 and the outer edge of the base 2 are formed. Each side is positioned so as to have a parallel relationship.
  • the metal layer 8 has a predetermined length and straddles the outer periphery at four locations of the substantially circular outer periphery A on the bottom surface 24 of the recess 4, and the edges of the metal layer 8 are the frame body 3 and the base body. It is formed to extend between two.
  • the ratio of the metal layer 8 straddling the outer periphery A of the bottom surface 24 of the recess 4 is the length of the outer periphery of the four locations where the metal layer 8 straddles the entire outer peripheral length (b) (in FIG. 2).
  • A1, a2, a3, and a4), the total percentage ((a1 + a2 + a3 + a4) / b ⁇ 100) is preferably 40% or more, and more preferably 60% or more.
  • 100% (that is, everything) is straddled as shown in FIG. 1 is particularly preferable.
  • the shape of the metal layer 8 is not particularly limited as long as the ratio of the metal layer 8 straddling the outer periphery of the bottom surface 24 of the recess 4 is in the above range.
  • the shape of the metal layer 8 By making the shape of the metal layer 8 into a substantially square shape as described above, it is preferable in that the ratio of the metal layer 8 straddling the outer periphery can be within the above range without considering the stacking deviation and printing deviation in detail.
  • the metal layer 8 is formed in a substantially square shape so that the ratio of straddling the outer periphery of the bottom surface 24 becomes 100%, the substantially circular metal layer shown in FIG. Although the same effect as that obtained is obtained, the area of the metal layer existing between the base 2 and the frame 3 is increased, which is not preferable for the adhesion between the base 2 and the frame 3.
  • the metal layer 8 In designing the metal layer 8 in this way, the light emitting element substrate itself and the characteristics required in manufacturing, for example, adhesion between the base 2 and the frame 3, warpage of the light emitting element substrate 1, ease of manufacture, etc. Accordingly, the shape of the metal layer, the ratio formed across the outer periphery of the bottom surface 24, the area of the metal layer formed between the base 2 and the frame 3, and the like are adjusted as appropriate. Specifically, it may be a polygonal metal layer. In the case of an n-polygon other than a substantially square, the total percentage of the length of the outer periphery of the portion where the metal layer 8 straddles the entire outer peripheral length (b) depends on the number of sides of the polygon. Calculated.
  • the total length of each side of the outer periphery of the n-polygon that the metal layer straddles with respect to the total outer peripheral length (b) of the n-polygon is c1.
  • C2, c3, c4,..., Cn the percentage of c1 + c2 + c3 + c4... + Cn) (c1 + c2 + c3 + c4.
  • the embodiment of the light emitting element substrate of the present invention has been described.
  • the light emitting element 11 such as a light emitting diode element is mounted on the mounting portion 22 using the light emitting element substrate 1 shown in FIG.
  • the light emitting device 10 shown in FIG. 3 can be manufactured.
  • the light emitting device 10 of the present invention has a light emitting diode element or the like mounted on a mounting portion 22 located substantially at the center of the bottom surface 24 of the recess 4 of the light emitting element substrate 1 by a die bond agent such as a silicone die bond agent.
  • the light emitting element 11 is mounted, and a pair of electrodes (not shown) is connected to each of the pair of element connection terminals 5 by bonding wires 12.
  • the light emitting device 10 is further configured by providing the sealing layer 13 so as to fill the concave portion 4 while covering the light emitting element 11 and the bonding wire 12 arranged as described above on the bottom surface 24 of the concave portion 4. ing.
  • the material (sealing material) which comprises the sealing layer 13 may contain the fluorescent substance normally used for the sealing layer of a light-emitting device as needed.
  • Such a light-emitting device 10 of the present invention is a light-emitting element substrate having a recess and a light-emitting element mounted on the bottom surface thereof, and the light-emitting element substrate 1 of the present invention in which the ratio of warpage of the substrate itself is reduced.
  • This is a light emitting device in which the positional deviation and inclination of the light emitting element are reduced and the problems such as the difference in the directivity of light from the design and the occurrence of disconnection due to the positional deviation of the bonding wire are suppressed.
  • Such a light-emitting device of the present invention can be suitably used as a backlight for a liquid crystal display of a mobile phone, a personal computer, or a flat television, for example, illumination for automobiles or decoration, general illumination, and other light sources.
  • the embodiment in the light emitting element substrate of the present invention and the light emitting device using the same has been described as an example, the light emitting element substrate and the light emitting device of the present invention are not limited thereto. As long as it does not contradict the spirit of the present invention, the configuration can be changed as necessary.
  • a method for manufacturing a light emitting element substrate according to the present invention will be described using the light emitting element substrate 1 shown in FIG. 1 as an example.
  • 1 can be manufactured by a manufacturing method including, for example, the following (A) green sheet manufacturing step, (B) paste layer forming step, (C) laminating step, and (D) firing step.
  • A green sheet manufacturing step
  • B paste layer forming step
  • C laminating step
  • D firing step.
  • symbol as the member of a finished product is attached
  • the base and the green sheet for the base are represented by the same reference numeral 2
  • the element connection terminal and the element connection terminal conductor paste layer are represented by the same reference numeral 5. is there.
  • Green sheet preparation process (A) process is a green sheet 2 for substrates and a frame that constitute a substrate of a substrate for a light emitting device using a glass ceramic composition (LTCC composition) containing glass powder and ceramic powder.
  • LTCC composition glass ceramic composition
  • the base green sheet 2 and the frame green sheet 3 are composed of a glass ceramic composition containing a glass powder and a ceramic powder described below, a binder, and a plasticizer, a dispersant, a solvent, and the like as necessary.
  • the slurry prepared by adding the material is formed into a sheet having a predetermined shape and film thickness such that the shape and film thickness after firing are within the above desired range by a doctor blade method or the like, and dried. Can be made.
  • the sheet-like molded product obtained above is subjected to (B) paste layer forming step and subjected to lamination in step (C).
  • a through hole is formed in the shape of the bottom surface 24 of the concave portion 4 (for example, a circle) by a normal method in the central portion of the sheet-like molded product obtained as described above. What was obtained is subjected to lamination in step (C).
  • the glass powder used in the glass ceramic composition is not necessarily limited, but the glass transition point (Tg) is preferably 550 ° C. or higher and 700 ° C. or lower. When the glass transition point (Tg) is less than 550 ° C., degreasing may be difficult. When the glass transition point (Tg) exceeds 700 ° C., the shrinkage start temperature becomes high and the dimensional accuracy may be lowered.
  • the crystallization peak temperature (Tc) measured by DTA is preferably 880 ° C. or less. When the crystallization peak temperature (Tc) exceeds 880 ° C., the dimensional accuracy may be lowered.
  • SiO 2 is 57 mol% or more and 65 mol% or less
  • B 2 O 3 is 13 mol% or more and 18 mol% or less
  • CaO is 9 mol% or more and 23 mol% or less.
  • Al 2 O 3 is contained in an amount of 3 mol% to 8 mol% and at least one selected from K 2 O and Na 2 O in total of 0.5 mol% to 6 mol%. Thereby, it becomes easy to improve the flatness of the surface of the obtained base or frame.
  • SiO 2 becomes a glass network former.
  • the content of SiO 2 is preferably 58 mol% or more, more preferably 59 mol% or more, and particularly preferably 60 mol% or more.
  • the content of SiO 2 is preferably 64 mol% or less, more preferably 63 mol% or less.
  • B 2 O 3 is a glass network former. If the content of B 2 O 3 is less than 13 mol%, there is a possibility that the glass melting temperature or the glass transition point (Tg) becomes too high. On the other hand, when the content of B 2 O 3 exceeds 18 mol%, it is difficult to obtain a stable glass and the chemical durability may be lowered.
  • the content of B 2 O 3 is preferably 14 mol% or more, more preferably 15 mol% or more. Further, the content of B 2 O 3 is preferably 17 mol% or less, more preferably 16 mol% or less.
  • Al 2 O 3 is added to increase the stability, chemical durability, and strength of the glass.
  • the content of Al 2 O 3 is less than 3 mol%, the glass may become unstable.
  • the content of Al 2 O 3 exceeds 8 mol%, the glass melting temperature and the glass transition point (Tg) may be excessively high.
  • the content of Al 2 O 3 is preferably 4 mol% or more, more preferably 5 mol% or more.
  • the content of Al 2 O 3 is preferably 7 mol% or less, more preferably 6 mol% or less.
  • CaO is added to increase glass stability and crystal precipitation, and to lower the glass melting temperature and glass transition point (Tg).
  • the content of CaO is less than 9 mol%, the glass melting temperature may be excessively high.
  • the content of CaO exceeds 23 mol%, the glass may become unstable.
  • the content of CaO is preferably 12 mol% or more, more preferably 13 mol% or more, and particularly preferably 14 mol% or more.
  • the CaO content is preferably 22 mol% or less, more preferably 21 mol% or less, and particularly preferably 20 mol% or less.
  • K 2 O and Na 2 O are added to lower the glass transition point (Tg).
  • Tg glass melting temperature
  • Tg glass melting point
  • the total content of K 2 O and Na 2 O is preferably 0.8 mol% or more and 5 mol% or less.
  • glass powder is not necessarily limited to what consists only of the said component, Other components can be contained in the range with which various characteristics, such as a glass transition point (Tg), are satisfy
  • the glass powder is obtained by producing glass from a glass raw material by a melting method and pulverizing by a dry pulverization method or a wet pulverization method so as to have the glass composition as described above.
  • a wet pulverization method water is preferable as the solvent.
  • the pulverization is performed using a pulverizer such as a roll mill, a ball mill, or a jet mill.
  • the 50% particle size (D 50 ) of the glass powder is preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the 50% particle size of the glass powder is less than 0.5 ⁇ m, the glass powder is likely to aggregate, making it difficult to handle and uniformly dispersing.
  • the 50% particle size of the glass powder exceeds 2 ⁇ m, the glass softening temperature may increase or the sintering may be insufficient.
  • the particle size is adjusted by, for example, classification as necessary after pulverization.
  • a particle size means the value obtained with the particle diameter measuring apparatus by a laser diffraction scattering method.
  • the ceramic powder those conventionally used for the production of LTCC substrates can be used without particular limitation.
  • alumina powder, zirconia powder, or a mixture of alumina powder and zirconia powder can be suitably used.
  • the mixture of an alumina powder and a zirconia powder is used preferably as said ceramic powder.
  • the mixture of alumina powder and zirconia powder is preferably a mixture in which the mixing ratio of alumina powder: zirconia powder is 90:10 to 60:40 by mass ratio.
  • the 50% particle size (D 50 ) of the ceramic powder is preferably 0.5 ⁇ m or more and 4 ⁇ m or less in any of the above cases.
  • a glass ceramic composition is prepared by blending and mixing such glass powder and ceramic powder such that the glass powder is 30% by mass to 50% by mass and the ceramic powder is 50% by mass to 70% by mass. obtain.
  • a slurry is obtained by adding a binder and, if necessary, a plasticizer, a dispersant, a solvent and the like to the glass ceramic composition.
  • a binder for example, polyvinyl butyral or acrylic resin is preferably used.
  • plasticizer for example, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate, or the like is used.
  • the solvent for example, an organic solvent such as toluene, xylene, 2-propanol, 2-butanol or the like is preferably used.
  • (B) Paste layer forming step In the (B) step, the following (B-1) wiring conductor paste layer forming step and (B-2) metal layer paste layer are applied to the green sheet 2 for the substrate obtained above. Each paste layer is formed in the order of the forming step and (B-3) overcoat glass paste layer forming step.
  • the substrate green sheet 2 is formed by using a conductor paste to form a wiring conductor paste layer (element connection terminal paste layer 5, external connection terminal paste layer 6, and A through conductor paste layer 7) is formed. Specifically, a pair of through-holes penetrating from the main surface 21 to the back surface 23 for arranging the pair of through-conductors 7 at the predetermined positions of the base green sheet 2 is formed and filled with the through-holes. Thus, the paste layer 7 for through conductors is formed. Further, the element connection terminal paste layer 5 is formed in a substantially rectangular shape so as to cover the through conductor paste layer 7 on the main surface 21, and the external connection terminal is electrically connected to the through conductor paste layer 7 on the back surface 23. A paste layer 6 is formed.
  • a conductor paste used for forming a wiring conductor paste layer for example, a metal powder mainly composed of copper, silver, gold, etc., added with a vehicle such as ethyl cellulose, and a solvent, etc., if necessary, is made into a paste.
  • a metal powder composed of silver, a metal powder composed of silver and platinum, or a metal powder composed of silver and palladium is preferably used.
  • Examples of a method for forming the element connection terminal paste layer 5, the external connection terminal paste layer 6, and the through conductor paste layer 7 include a method of applying and filling the conductor paste by a screen printing method.
  • the film thicknesses of the element connection terminal paste layer 5 and the external connection terminal paste layer 6 to be formed are adjusted so that the film thicknesses of the element connection terminals and the external connection terminals finally obtained are the above-described predetermined film thicknesses.
  • (B-2) Metal layer paste layer forming step The metal layer at the predetermined position excluding the portion where the element connection terminal paste layer 5 is formed and the vicinity thereof on the main surface 21 of the green sheet 2 for the substrate.
  • a paste layer 8 is formed.
  • the metal layer paste layer 8 is positioned so that the outer edge of the metal layer paste layer 8 is outside the outer periphery of the bottom surface 24 of the recess 4 after firing, preferably 100 to 200 ⁇ m outside on one side, more preferably 130 to 170 ⁇ m outside. It is formed in a shape similar to the outer periphery of the bottom surface 24 of the recess 4.
  • the film thickness of the metal layer paste layer 8 is adjusted so that the finally obtained metal layer has the predetermined film thickness.
  • the light emitting element substrate shown in FIG. 2 differs from the light emitting element substrate shown in FIG. 1 only in the shape of the outer edge of the metal layer paste layer 8.
  • the outer edge of the metal layer paste layer 8 has a substantially square shape similar to the shape of the main surface 21 of the base green sheet 2, and at least after firing,
  • the total length of the entire outer periphery of the bottom surface 24 is preferably 40% or more, more preferably 60% or more so that a part of the edge straddles the outer periphery of the bottom surface 24 of the recess 4. 8 is formed to straddle.
  • the light emitting element substrate shown in FIG. 2 can be manufactured in the same manner as the light emitting element substrate shown in FIG. 1 except for the shape when the metal layer paste layer is formed.
  • the metal layer paste it is possible to use a paste obtained by adding the above-described metal material containing silver as a main component to a vehicle such as ethyl cellulose and, if necessary, a solvent.
  • the overcoat glass paste a paste obtained by adding a vehicle such as ethyl cellulose to a glass powder (glass powder for an overcoat glass layer) and a solvent as required can be used.
  • the film thickness of the overcoat glass paste layer 9 to be formed is adjusted so that the film thickness of the finally obtained overcoat glass layer 9 becomes the desired film thickness.
  • any glass powder can be obtained by firing in the following (D) firing step, and its 50% particle size (D 50 ) is 0.5 ⁇ m or more and 2 ⁇ m.
  • the surface roughness Ra of the overcoat glass layer 9 can be adjusted, for example, by adjusting the particle size of the glass powder for the overcoat glass layer. That is, as the glass powder for the overcoat glass layer, the surface roughness Ra can be adjusted to the above preferable range within the range of the 50% particle size (D 50 ), which is sufficiently melted during firing and excellent in fluidity.
  • step (D) Firing step After the step (C), the obtained unsintered substrate 1 for light-emitting element is degreased to remove a binder or the like as necessary, and the glass ceramic composition or the like is sintered. Firing (firing temperature: 800 to 930 ° C.) is performed.
  • Degreasing can be performed, for example, by holding at a temperature of 500 ° C. to 600 ° C. for 1 hour to 10 hours.
  • the degreasing temperature is less than 500 ° C. or the degreasing time is less than 1 hour, the binder or the like may not be sufficiently removed.
  • the degreasing temperature is about 600 ° C. and the degreasing time is about 10 hours, the binder and the like can be sufficiently removed, and if it exceeds this, productivity and the like may be lowered.
  • the firing can be performed by appropriately adjusting the time in a temperature range of 800 ° C. to 930 ° C. in consideration of obtaining a dense structure of the base 2 and the frame 3 and productivity. Specifically, it is preferable to hold at a temperature of 850 ° C. or higher and 900 ° C. or lower for 20 minutes or longer and 60 minutes or shorter, particularly preferably at a temperature of 860 ° C. or higher and 880 ° C. or lower. If the firing temperature is less than 800 ° C., the base 2 and the frame 3 may not be obtained as a dense structure. On the other hand, if the firing temperature exceeds 930 ° C., the substrate may be deformed and the productivity may decrease.
  • the conductor paste for the wiring conductor or the metal layer paste when a metal paste containing a metal powder mainly composed of silver is used as the conductor paste for the wiring conductor or the metal layer paste, when the firing temperature exceeds 880 ° C., the metal paste is excessively softened. It may become impossible to maintain the shape.
  • the unsintered light emitting element substrate 1 is fired to obtain the light emitting element substrate 1.
  • the whole of the element connection terminals 5 and the external connection terminals 6 are covered as necessary.
  • the conductive protective layers used for conductor protection in the substrate for a light emitting element such as nickel plating, chrome plating, silver plating, nickel / silver plating, gold plating, nickel / gold plating, etc., described above can be provided.
  • nickel / gold plating is preferably used.
  • the nickel plating layer can be formed by electrolytic plating using a nickel sulfamate bath or the like, and the gold plating layer using a potassium gold cyanide bath or the like.
  • substrates, the green sheet 3 for frames, etc. do not necessarily need to consist of a single green sheet.
  • a laminate of a plurality of green sheets may be used.
  • the order of forming each part can be changed as appropriate as long as the light emitting element substrate can be manufactured.
  • the light emitting element substrate of the present invention is usually manufactured as a connection substrate or a large-sized substrate so that a large number of light emitting element substrates can be manufactured at a time, and a process for dividing the substrate is performed to manufacture individual light emitting element substrates. It may be produced by a method. In that case, as long as the timing of division is after the firing, it may be before the light emitting element is mounted, or after the light emitting element is mounted, before the solder fixing and mounting to the printed wiring board or the like.
  • the substrate for a light emitting element of the present invention using LTCC as an inorganic insulating material, the manufacturing method thereof, and the light emitting device have been described above.
  • alumina ceramic is used as the inorganic insulating material
  • a configuration and a manufacturing method of the embodiment of the substrate will be briefly described.
  • a light-emitting element substrate similar to the light-emitting element substrate 1 using LTCC shown in FIG. 1 is manufactured using alumina ceramics, in order to reduce warpage of the entire light-emitting element substrate, as already described.
  • a part of the metal layer to be provided is disposed between the base and the frame. For this reason, since co-firing with alumina ceramics is essential, one made of a refractory metal containing at least one refractory metal selected from the group consisting of tungsten and molybdenum as a main component is selected.
  • the metal layer composed of a refractory metal containing as a main component at least one of the refractory metals described above includes such a refractory metal (herein, the refractory metal includes an alloy of the refractory metal described above), It refers to a metal layer containing 90% or more.
  • the metal layer 8 is made of a metal material mainly composed of silver that can be fired at a low temperature, and functions as a reflective layer.
  • the metal layer made of tungsten, molybdenum, or the like used in combination with the metal material layer mainly composed of silver does not have sufficient light reflectivity.
  • it is designed to serve as a base layer for forming a reflective layer using a metal having good reflectivity such as silver.
  • a reflective layer such as silver is formed between the overcoat glass layer 9 and the metal layer 8 as compared with the light emitting element substrate 1 shown in FIG.
  • the constituent material of each member specifically, the inorganic insulating material, the metal material, etc. can be the same as the configuration of the light emitting element substrate 1 shown in FIG. .
  • a reflective layer silver reflective layer
  • the silver reflective layer is an outer periphery of the bottom surface 24 of the recess 4. It is not formed between the base 2 and the frame body 3 across the frame.
  • the overcoat glass layer 9 is formed as necessary, and may not be formed depending on the design of the light emitting element substrate.
  • the light emitting element substrate using such alumina ceramics can be manufactured as follows, for example.
  • a ′ Green sheet production step
  • an alumina ceramic composition containing alumina as a main component is used.
  • the base green sheet 2 and the frame green sheet 3 are obtained.
  • a composition for alumina ceramics which has an alumina as a main component the composition for alumina ceramics normally used when producing an alumina ceramic can be used without a restriction
  • a wiring conductor layer and a metal layer for reducing warping functions as a base layer of a reflective layer
  • a metal material mainly composed of a refractory metal such as tungsten or molybdenum is used as the metal material constituting the metal layer.
  • the wiring conductor paste layer and the metal layer paste layer are formed on the base green sheet 2 obtained in the step (A ′).
  • the obtained unsintered substrate 1 for light-emitting element is degreased to remove a binder or the like as necessary, and a composition for alumina ceramics or the like is obtained.
  • Firing (firing temperature: 1400 to 1700 ° C.) is performed for sintering.
  • the degreasing is preferably performed under a condition of holding at a temperature of 200 ° C. to 500 ° C. for about 1 hour to 10 hours.
  • the firing is preferably performed at a temperature of 1400 ° C. or higher and 1700 ° C. or lower for several hours.
  • heating in order not to oxidize the conductor during heating, particularly during firing, heating must be performed in a reducing atmosphere (for example, a hydrogen atmosphere), in an inert gas atmosphere, or in a vacuum, while maintaining a non-oxidizing atmosphere. Don't be.
  • a reducing atmosphere for example, a hydrogen atmosphere
  • an inert gas atmosphere for example, a hydrogen atmosphere
  • a vacuum for example, a vacuum
  • the unsintered light emitting element substrate 1 is baked to obtain the light emitting element substrate 1, and silver or the like having good reflectivity is applied to the surface of the metal layer 8 formed as the base layer of the reflective layer.
  • the reflective layer as a main component is formed by combining methods such as screen printing, sputter deposition, and ink jet coating.
  • an overcoat glass layer 9 similar to the light emitting element substrate 1 using, for example, the LTCC is formed as necessary so as to cover the entire reflective layer.
  • the conductive protective layer similar to that of the light emitting element substrate 1 using the LTCC can be disposed on the element connection terminals 5 and the external connection terminals 6 as needed so as to cover the whole. .
  • Example 1 A light emitting element substrate having a structure similar to that of the light emitting element substrate shown in FIG. 1 was manufactured by the method described below. In addition, the same code
  • the base green sheet 2 and the frame green sheet 3 for manufacturing the base 2 and the frame 3 of the light emitting element substrate 1 were prepared.
  • Each green sheet the following terms of oxide, SiO 2 is 60.4mol%, B 2 O 3 is 15.6mol%, Al 2 O 3 is 6 mol%, CaO is 15 mol%, K 2 O is 1 mol%, Na
  • the raw materials were blended and mixed so that the glass had a composition of 2 O in 2 mol%.
  • the raw material mixture was put in a platinum crucible and melted at 1600 ° C. for 60 minutes, and then the molten glass was poured out and cooled. This glass was pulverized with an alumina ball mill for 40 hours to produce a glass powder.
  • ethyl alcohol was used as a solvent for pulverization.
  • this glass ceramic composition 15 g of an organic solvent (mixed with toluene, xylene, 2-propanol, 2-butanol in a mass ratio of 4: 2: 2: 1), a plasticizer (di-2-ethylhexyl phthalate) 2.5 g of polyvinyl butyral (trade name: PVK # 3000K, manufactured by Denka Co., Ltd.) as a binder, 5 g, and 0.5 g of a dispersant (trade name: BYK180, manufactured by Big Chemie) were blended and mixed to prepare a slurry. .
  • an organic solvent mixed with toluene, xylene, 2-propanol, 2-butanol in a mass ratio of 4: 2: 2: 1
  • a plasticizer di-2-ethylhexyl phthalate
  • polyvinyl butyral trade name: PVK # 3000K, manufactured by Denka Co., Ltd.
  • a dispersant trade name
  • the slurry is applied on a PET film by a doctor blade method, and dried green sheets are laminated to form a substantially flat plate-like green sheet 2 having a thickness of 0.5 mm after firing.
  • the frame green sheet 3 having a substantially circular shape with a diameter of 4.2 mm after firing and a frame height of 0.5 mm was manufactured.
  • the light-emitting element substrate 1 is manufactured as a multi-piece connecting substrate, and is divided into pieces after firing, which will be described later, for a substantially square light-emitting element having an outer size of 5 mm ⁇ 5 mm.
  • a substrate 1 was obtained. The following description explains one division which becomes one light-emitting element substrate 1 after the division among the multi-piece connection substrates.
  • conductive powder (silver powder, manufactured by Daiken Chemical Industry Co., Ltd., trade name: S550) and ethyl cellulose as a vehicle are blended at a mass ratio of 85:15, and used as a solvent so that the solid content is 85% by mass.
  • kneading was conducted for 1 hour in a porcelain mortar, and further three times of dispersion with a three roll to produce a wiring conductor paste.
  • the metal layer paste is prepared by mixing silver powder (manufactured by Daiken Chemical Co., Ltd., trade name: S400-2) and ethyl cellulose as a vehicle in a mass ratio of 90:10, and a solid content of 87% by mass. Then, it was dispersed in ⁇ -terpineol as a solvent so as to be kneaded for 1 hour in a porcelain mortar, and further dispersed three times with three rolls.
  • a through hole having a diameter of 0.3 mm is formed in a portion corresponding to the pair of through conductors 7 of the green sheet 2 for the substrate by using a punching machine, and the wiring conductor paste obtained above is filled by screen printing.
  • a through conductor paste layer 7 was formed, and a pair of external connection terminal paste layers 6 was formed on the back surface 23. Further, a pair of element connection terminal paste layers 5 are formed in a substantially rectangular shape on the main surface 21 of the base green sheet 2 so as to cover the through conductor paste layer 7 by a screen printing method.
  • a green sheet 2 for a substrate with a substrate was obtained.
  • the center is the same as the center of the bottom surface 24 of the recess 4 so as to exclude the range of 150 ⁇ m from the edge of the element connection terminal paste layer 5 on the main surface 21 of the base green sheet 2.
  • a metal layer paste layer 8 was formed by screen printing the metal layer paste obtained above in a circular range having a diameter of 4.5 mm after firing. The film thickness of the metal layer paste layer 8 was adjusted so that the finally obtained metal layer had a film thickness of 10 ⁇ m.
  • the element connection terminal paste layer of the metal layer paste layer 8 is removed from the edge of the element connection terminal paste layer 5 on the main surface 21 of the base green sheet 2 so as to exclude the range of 100 ⁇ m.
  • the following overcoat glass paste is screen-printed in a circular area including the peripheral edge of 5 and the formed area is the same as the bottom surface 24 of the recess 4 (that is, the diameter becomes 4.2 mm after firing).
  • an overcoat glass paste layer 9 was formed.
  • the film thickness of the overcoat glass paste layer 9 was adjusted so that the film thickness of the finally obtained overcoat glass layer was 30 ⁇ m. Further, the surface roughness Ra of the overcoat glass layer 9 after firing was 0.006 ⁇ m as measured by Surfcom 1400D manufactured by Tokyo Seimitsu Co., Ltd.
  • the glass powder for the overcoat glass layer used for the preparation of the overcoat glass paste was produced as follows. First, in terms of the following oxides, the raw materials are blended and mixed so that SiO 2 is 81.6 mol%, B 2 O 3 is 16.6 mol%, and K 2 O is 1.8 mol%. The raw material mixture was put in a platinum crucible and melted at 1600 ° C. for 60 minutes, and then the molten glass was poured out and cooled. This glass was pulverized with an alumina ball mill for 8 to 60 hours to obtain a glass powder for an overcoat glass layer.
  • the glass powder for the overcoat glass layer was blended so as to be 60% by mass and the resin component (containing ethyl cellulose and ⁇ -terpineol at a mass ratio of 85:15) to 40% by mass. Were kneaded for 1 hour and further dispersed three times with three rolls to prepare an overcoat glass paste.
  • the resin component containing ethyl cellulose and ⁇ -terpineol at a mass ratio of 85:15
  • the green sheet 3 for a frame body obtained above was laminated on the main surface 21 of the green sheet 2 for a substrate with various paste layers obtained above to obtain an unsintered multi-piece connection substrate.
  • Degreasing was carried out by holding at 550 ° C. for 5 hours, and further holding at 870 ° C. for 30 minutes and firing to produce a multi-piece connected substrate.
  • the obtained multi-piece connection substrate was divided along the cut line to manufacture the light emitting device substrate 1.
  • the recess 4 having the side wall 25 as the inner wall surface of the frame 3 and the bottom surface 24 as a part of the substrate main surface 21 is a circle having a diameter of 4.2 mm with respect to the shape of the bottom surface 24. It was a shape.
  • the metal layer 8 was formed so that 150 ⁇ m entered between the base 2 and the frame 3 almost evenly so as to straddle the entire length (100%) of the outer periphery of the bottom surface 24.
  • the side surface 25 of the recess 4 is formed substantially perpendicular to the bottom surface 24, and the haze value on the inner wall surface of the frame body is 100% when measured with a haze meter (NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd.). .
  • Example 2 A light-emitting element substrate 1 that was the same as the light-emitting element substrate in Example 1 was prepared except that it had a substantially square metal layer 8 similar to the light-emitting element substrate shown in FIG.
  • the outer shape of the portion where the metal layer 8 was formed was a substantially square shape that became 3.5 mm square after firing.
  • the rate that the metal layer 8 straddled the outer periphery of the bottom surface 24 of the recess 4 was 43% with respect to the entire outer peripheral length.
  • the warpage of the light emitting element substrate 1 and the bonding strength between the base 2 and the frame 3 were measured. The results are shown in Table 1.
  • Example 2 Light-emitting element substrates 1 of Example 3 and Example 4 were produced in exactly the same manner as Example 2 except that the size of the metal layer 8 was changed to the size shown in Table 1.
  • the rate at which the metal layer 8 straddled the outer periphery of the bottom surface 24 of the recess 4 was 53% and 70%, respectively, with respect to the total outer peripheral length.
  • the warpage of the light emitting element substrate 1 and the bonding strength between the base 2 and the frame 3 were measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 In Example 1 above, except that the metal layer 8 was formed in a circular shape with a diameter of 4.2 mm exactly the same as the bottom surface 24 of the recess 4, and the metal layer 8 was formed so as not to straddle the outer periphery of the bottom surface 24 at all.
  • a light emitting device substrate 1 of a comparative example was produced in exactly the same manner as in Example 1.
  • the warpage of the light emitting element substrate 1 and the bonding strength between the base 2 and the frame 3 were measured in the same manner as in Example 1. The results are shown in Table 1.
  • the light emitting device according to the present invention has the light emitting element substrate according to the present invention in which the warpage is reduced as described above, thereby reducing the positional deviation and inclination of the light emitting element, the light directivity being different from the design, and the bonding wire.
  • This is a light-emitting device in which problems such as occurrence of disconnection due to misalignment are suppressed.
  • Such a light-emitting device of the present invention can be suitably used as a backlight for a liquid crystal display of a mobile phone, a personal computer, or a flat television, for example, illumination for automobiles or decoration, general illumination, and other light sources.
  • DESCRIPTION OF SYMBOLS 1 Light emitting element substrate, 2 ... Base

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

Provided are: a substrate for a ceramic light-emitting element that has a concave section with reduced warpage of the entire substrate; and a light-emitting device using same that has highly reliable light directivity and electrical connectivity. The substrate for the light-emitting element has: a plate-shaped base with a flat main surface comprising a first inorganic insulating material; a frame comprising a second inorganic insulating material bonded to the upper side main surface of the base; and a mounting section for the light-emitting element in the bottom surface of the concave section, which is formed by using part of the upper side main surface of the base as the bottom surface thereof and an inside wall surface of the frame as the side surface thereof. The substrate for the light-emitting element is characterized by: being arranged on top of the concave section bottom surface, between the frame and the base and with at least part thereof straddling the outer circumference of the concave section bottom surface; and by having a metal layer provided so as to not touch the outer edge of the base.

Description

発光素子用基板および発光装置Light emitting element substrate and light emitting device
 本発明は、発光素子用基板およびこれを用いた発光装置に関する。 The present invention relates to a light emitting element substrate and a light emitting device using the same.
 従来、発光ダイオード素子等の発光素子を搭載するための配線基板は、絶縁基板の表面あるいは内部に配線導体層が配設された構造からなる。この配線基板の代表的な例として、アルミナセラミックスからなる絶縁基板(以下、アルミナ基板という)がある。このアルミナ基板には、上部に発光素子を収容するための凹部が形成され、その表面および内部には、タングステン、モリブデン等の高融点金属粉末からなる複数個の配線導体層が配設され、該配線導体層が凹部内に収納される発光素子と電気的に接続されるものがある。このような発光素子が搭載される配線基板(以下、発光素子用基板、又は単に基板ということもある)には、さらに、発光素子が発生する熱を速やかに放熱させる、あるいは発光素子が発光する光を可能な限り前方に反射させる等の、電気的な接続以外の目的で金属層が設けられる場合が多い。 Conventionally, a wiring board for mounting a light-emitting element such as a light-emitting diode element has a structure in which a wiring conductor layer is disposed on or inside an insulating substrate. A typical example of this wiring substrate is an insulating substrate made of alumina ceramic (hereinafter referred to as an alumina substrate). In this alumina substrate, a recess for accommodating a light emitting element is formed in the upper part, and a plurality of wiring conductor layers made of refractory metal powder such as tungsten and molybdenum are disposed on the surface and inside thereof, In some cases, the wiring conductor layer is electrically connected to the light emitting element housed in the recess. A wiring board on which such a light emitting element is mounted (hereinafter also referred to as a light emitting element substrate or simply a substrate) further dissipates heat generated by the light emitting element quickly, or the light emitting element emits light. A metal layer is often provided for purposes other than electrical connection, such as reflecting light as far forward as possible.
 また、発光素子用基板として、アルミナ基板以外に、低温焼成化、低誘電率化および高電気伝導性の銅、銀配線が可能なことから、低温同時焼成セラミックス(Low Temperature Co-fired Ceramics。以下、LTCCと示す。)により構成された絶縁基板が提案されている。 In addition to alumina substrates, low temperature co-fired ceramics (Low Temperature Co-fired Ceramics, hereinafter) can be used as light-emitting element substrates in addition to alumina substrates because of low temperature firing, low dielectric constant and high electrical conductivity copper and silver wiring. , Indicated as LTCC) has been proposed.
 上記凹部を有する発光素子用基板は、一般的には、少なくとも凹部の底面を構成する平板状のグリーンシート(セラミックス基体前駆体ともいう)と、凹部の壁部を構成する貫通孔を有するグリーンシート(セラミックス枠体前駆体ともいう)を積層した積層体を焼成することで製造される。この際、配線導体層は、グリーンシート積層体を焼成する前、グリーンシートの積層の前または後に各グリーンシート表面または内部に形成され、グリーンシート焼成時に同時に焼成される。上記したセラミックス基体前駆体およびセラミックス枠体前駆体は、単層で構成されても、複数層で構成されていてもよい。 The substrate for a light-emitting element having the recess is generally a green sheet having at least a flat plate-like green sheet (also referred to as a ceramic substrate precursor) that constitutes the bottom surface of the recess and a through-hole that constitutes the wall of the recess. It is manufactured by firing a laminate in which (also referred to as a ceramic frame precursor) is laminated. At this time, the wiring conductor layer is formed on the surface or inside of each green sheet before or after the green sheet is laminated, and is fired at the same time as the green sheet is fired. The ceramic substrate precursor and the ceramic frame precursor described above may be composed of a single layer or a plurality of layers.
 ここで、このようにして製造される凹部を有する発光素子用基板においては、上記製造過程で焼成収縮による応力集中等が発生し、得られる基板の凹部底面を構成する平板状のセラミックス基体の中央部が反り上がるという問題が発生していた。この反りを有する基板を用いると、基板に発光素子を搭載する際には、発光素子の搭載位置やボンディングワイヤの位置がずれ、断線が生じる、発光素子が傾きをもって搭載され光の指向性に影響する、等の点で問題であった。また、この基板をプリント配線基板等に半田を用いて実装する際には、この基板の裏面側における反りにより、基板と半田の間に部分的に隙間が生じ、断線の原因や放熱の妨げになる等の問題があった。 Here, in the light emitting element substrate having the recesses manufactured in this way, stress concentration or the like due to firing shrinkage occurs in the above manufacturing process, and the center of the flat ceramic substrate constituting the recess bottom surface of the obtained substrate There was a problem that the club was warped. If a substrate with this warpage is used, when the light emitting element is mounted on the substrate, the mounting position of the light emitting element or the position of the bonding wire is shifted and disconnection occurs, the light emitting element is mounted with an inclination and the light directivity is affected. It was a problem in terms of, etc. In addition, when this board is mounted on a printed wiring board or the like using solder, a warp on the back side of this board may cause a gap between the board and the solder, which may cause disconnection or prevent heat dissipation. There was a problem of becoming.
 上記凹部を有する発光素子用基板の反りの問題を解決するために、例えば、特許文献1においては、凹部底面を構成する平板状のセラミックス基体や凹部の壁部を構成する貫通孔を有するセラミックス部材について、両者の界面付近にそれ以外の部分を構成するセラミックス材料と収縮性の異なるセラミックス材料からなる層を形成させる方法をとっている。 In order to solve the problem of warpage of the light emitting element substrate having the concave portion, for example, in Patent Document 1, a ceramic member having a flat ceramic substrate constituting the bottom surface of the concave portion and a through hole constituting the wall portion of the concave portion The method of forming a layer made of a ceramic material having a different shrinkage from the ceramic material constituting the other part in the vicinity of the interface between the two is employed.
 また、特許文献2および特許文献3においては、凹部底面を構成する平板状のセラミックス基体について、凹部底面に相当する部分に貫通孔を有する層厚の薄いグリーンシートを含む複数のグリーンシートを積層して作製することにより、中央部(凹部底面)の反り上がりを抑えつつ、さらに凹みを形成させ、その凹み部分を充填するように上記平板状のセラミックス基体の表面全面または部分的に導体層を形成させることで、凹部底面の平坦化を図っている。 In Patent Document 2 and Patent Document 3, a plurality of green sheets including a thin green sheet having a through-hole in a portion corresponding to the bottom surface of the recess are laminated on the flat ceramic substrate constituting the bottom surface of the recess. In this way, while suppressing the warping of the central portion (the bottom surface of the recess), further recesses are formed, and the conductor layer is formed on the entire surface of the flat ceramic substrate or partially so as to fill the recesses. By doing so, the bottom surface of the recess is flattened.
日本特開2007-281108号公報Japanese Unexamined Patent Publication No. 2007-281108 日本特開2010-186880号公報Japanese Unexamined Patent Publication No. 2010-186880 日本特開2010-186881号公報Japanese Unexamined Patent Publication No. 2010-186881
 本発明は、上記凹部を有する発光素子用基板の反りの問題を解決するためになされたものであって、基板全体の反り量が低減された凹部を有する発光素子用基板およびこれを用いた光の指向性や電気的な接続等に信頼性の高い発光装置の提供を目的とする。 The present invention has been made in order to solve the problem of warpage of a substrate for a light emitting element having the above-mentioned concave portion, and is a substrate for a light emitting element having a concave portion in which the amount of warpage of the entire substrate is reduced, and light using the same. An object of the present invention is to provide a light-emitting device with high reliability in terms of directivity and electrical connection.
 本発明の発光素子用基板は、第1の無機絶縁材料からなる主面が平坦な板状の基体と、前記基体の上側主面に接合された第2の無機絶縁材料からなる枠体とを有し、前記基体の上側主面の一部を底面とし前記枠体の内壁面を側面として形成される凹部の底面に発光素子の搭載部を有する発光素子用基板であって、前記凹部底面上に、少なくともその一部が凹部底面の外周を跨いで枠体と基体の間に配置され、かつ基体の外縁に達しないように配設された金属層を有することを特徴とする。 The substrate for a light-emitting element of the present invention comprises a plate-like substrate having a flat main surface made of the first inorganic insulating material, and a frame made of the second inorganic insulating material bonded to the upper main surface of the substrate. A substrate for a light emitting element having a mounting portion for mounting a light emitting element on a bottom surface of a recess formed with a part of the upper main surface of the base as a bottom surface and an inner wall surface of the frame body as a side surface, Further, at least a part of the metal layer is disposed between the frame body and the base so as to straddle the outer periphery of the bottom surface of the recess, and has a metal layer disposed so as not to reach the outer edge of the base.
 本発明の発光素子用基板において、前記金属層が前記凹部底面の外周をその全周において跨いで枠体と基体の間に配置されているのが好ましい。または、前記金属層が前記凹部底面の外周を跨いで配設されている部分の外周の合計長は、前記凹部底面の全外周長に対して40%以上が好ましい。また、前記凹部底面の外周から前記枠体と基体の間の前記金属層の端縁までの距離(L)については、100~200μmが好ましい。
 上記した数値範囲を示す「~」とは、特段の定めがない限り、その前後に記載された数値を下限値及び上限値として含む意味で使用され、以下本明細書において「~」は、同様の意味をもって使用される。
 本発明の発光素子用基板において、前記金属層は、上記のように設けられることで基板全体の反りを低減する機能を有するが、この金属層は、例えば発光素子の電極と電気的に接続される素子接続端子や放熱層、反射層または反射層形成のための下地層を兼ねることができる。この場合、前記金属層は凹部底面の外周を跨いで枠体と基体の間に配置される。なかでも、配設する形状を比較的自由に選択できる反射層として、または反射層形成のための下地層として前記金属層を設けることが好ましい。
In the light emitting element substrate of the present invention, it is preferable that the metal layer is disposed between the frame body and the base so as to straddle the outer periphery of the bottom surface of the recess in the entire periphery. Alternatively, the total length of the outer periphery of the portion where the metal layer is disposed across the outer periphery of the bottom surface of the recess is preferably 40% or more with respect to the total outer peripheral length of the bottom surface of the recess. The distance (L) from the outer periphery of the bottom surface of the recess to the edge of the metal layer between the frame and the substrate is preferably 100 to 200 μm.
Unless otherwise specified, “to” indicating the numerical range described above is used to mean that the numerical values described before and after it are used as a lower limit value and an upper limit value, and hereinafter “to” Used with meaning.
In the substrate for a light-emitting element of the present invention, the metal layer has a function of reducing warpage of the entire substrate by being provided as described above, and the metal layer is electrically connected to, for example, an electrode of the light-emitting element. It can also serve as an element connection terminal, a heat dissipation layer, a reflective layer, or a base layer for forming a reflective layer. In this case, the metal layer is disposed between the frame body and the base so as to straddle the outer periphery of the bottom surface of the recess. Especially, it is preferable to provide the said metal layer as a reflection layer which can select the shape to arrange | position comparatively freely, or as a base layer for reflection layer formation.
 さらに、本発明の発光素子用基板においては、前記基体および枠体をそれぞれ構成する前記第1の無機絶縁材料および第2の無機絶縁材料がともにガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体であり、前記金属層を構成する金属が銀を主成分とする金属が好ましい。
 また、本発明の発光素子用基板においては、前記第1の無機絶縁材料および第2の無機絶縁材料がともにアルミナセラミックス組成物の焼結体であり、前記金属層を構成する金属がタングステンおよびモリブデンからなる群から選ばれる少なくとも1種を主成分とする金属であるのが好ましい。また、前記したタングステンおよびモリブデンからなる群から選ばれる少なくとも1種を主成分とする金属層上に銀を主成分とする金属の反射層を形成するのが好ましい。
Furthermore, in the substrate for a light emitting device of the present invention, the glass ceramic composition in which each of the first inorganic insulating material and the second inorganic insulating material constituting the base body and the frame body includes glass powder and ceramic powder, respectively. It is a sintered body, and the metal constituting the metal layer is preferably a metal mainly composed of silver.
In the substrate for a light emitting device of the present invention, the first inorganic insulating material and the second inorganic insulating material are both sintered bodies of an alumina ceramic composition, and the metal constituting the metal layer is tungsten and molybdenum. It is preferable that the main component is at least one selected from the group consisting of: Further, it is preferable to form a metal reflective layer mainly composed of silver on the metal layer mainly composed of at least one selected from the group consisting of tungsten and molybdenum.
 本発明の発光装置は、上記本発明の発光素子用基板と、前記発光素子用基板に搭載される発光素子とを有することを特徴とする。 The light-emitting device of the present invention includes the light-emitting element substrate of the present invention and a light-emitting element mounted on the light-emitting element substrate.
 本発明によれば、凹部を有する発光素子用基板において、基板全体の反り量が低減された発光素子用基板を提供できる。また、本発明によれば、このような発光素子用基板に発光素子を搭載することで、光の指向性や電気的な接続等において信頼性の高い発光装置を提供することができる。 According to the present invention, it is possible to provide a light emitting element substrate in which the amount of warpage of the entire substrate is reduced in the light emitting element substrate having a recess. Further, according to the present invention, by mounting a light emitting element on such a light emitting element substrate, a light emitting device with high reliability in light directivity, electrical connection, and the like can be provided.
本発明の発光素子用基板の実施形態の一例を示す図面で、(a)は平面図であり、(b)は断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is drawing which shows an example of embodiment of the board | substrate for light emitting elements of this invention, (a) is a top view, (b) is sectional drawing. 本発明の発光素子用基板の実施形態の別の一例を示す図面で、(a)は平面図であり、(b)は断面図である。It is drawing which shows another example of embodiment of the board | substrate for light emitting elements of this invention, (a) is a top view, (b) is sectional drawing. 図1に示す発光素子用基板を用いた本発明の発光装置の一例を示す図面で、(a)は平面図であり、(b)断面図である。It is drawing which shows an example of the light-emitting device of this invention using the board | substrate for light emitting elements shown in FIG. 1, (a) is a top view, (b) It is sectional drawing.
 以下に、図を参照しながら本発明の実施の形態を説明する。なお、本発明は、下記説明に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is limited to the following description and is not interpreted.
 本発明の発光素子用基板は、第1の無機絶縁材料からなる主面が平坦な板状の基体と、前記基体の上側主面に接合された第2の無機絶縁材料からなる枠体とを有し、前記基体の上側主面の一部を底面とし前記枠体の内壁面を側面として形成される凹部の底面に発光素子の搭載部を有する発光素子用基板であって、前記凹部底面上に、少なくともその一部が凹部底面の外周を跨いで枠体と基体の間に配置され、かつ基体の外縁に達しないように配設された金属層を有することを特徴とする。 The substrate for a light-emitting element of the present invention comprises a plate-like substrate having a flat main surface made of the first inorganic insulating material, and a frame made of the second inorganic insulating material bonded to the upper main surface of the substrate. A substrate for a light emitting element having a mounting portion for mounting a light emitting element on a bottom surface of a recess formed with a part of the upper main surface of the base as a bottom surface and an inner wall surface of the frame body as a side surface, Further, at least a part of the metal layer is disposed between the frame body and the base so as to straddle the outer periphery of the bottom surface of the recess, and has a metal layer disposed so as not to reach the outer edge of the base.
 本明細書において、主面が平坦な板状の基体とは、上側、下側の主面がともに目視レベルで平板形状と認識できるレベルの平坦面を有する基体をいい、以下、「略平板状の基体」とは、上下の主面がこのような平坦面からなる基体のことをいう。また、以下同様に、略を付けた表記は、特に断わらない限り目視レベルでそのように認識できるレベルのことをいう。 In the present specification, a plate-like substrate having a flat main surface refers to a substrate having a flat surface with a level at which both the upper and lower main surfaces can be recognized as a flat plate shape at the visual level. The term “substrate” refers to a substrate whose upper and lower main surfaces are such flat surfaces. Similarly, the abbreviations indicate levels that can be recognized as such on the visual level unless otherwise specified.
 本発明によれば、凹部を有しその底面に発光素子を搭載する無機絶縁材料からなる発光素子用基板において、凹部底面上で、少なくともその一部が凹部底面の外周を跨いで、凹部壁面を構成する枠体と凹部底面を構成する基体の間に配置され、かつ基体の外縁に達しないように配設された金属層を有することで、発光素子用基板の反り量、具体的には、中央に反り上がる反りの割合を低減することを可能としている。これにより、凹部底面は平坦化され、発光素子を搭載する際の発光素子の位置ずれや傾きが低減し、光の指向性が設計と異なるという問題や、ボンディングワイヤの位置ずれによる断線の発生を抑制できる。また、この発光素子用基板をプリント配線基板等に半田を用いて実装する際に、基板の反りが原因で発生していた断線や放熱性の悪化等の問題も低減できる。 According to the present invention, in a light emitting element substrate made of an inorganic insulating material having a recess and having a light emitting element mounted on the bottom surface, at least a part of the substrate straddles the outer periphery of the recess bottom surface on the bottom surface of the recess. By having a metal layer disposed between the frame body and the base body constituting the bottom surface of the recess and disposed so as not to reach the outer edge of the base body, the amount of warpage of the substrate for the light emitting element, specifically, It is possible to reduce the rate of warping that goes up to the center. As a result, the bottom surface of the concave portion is flattened, the positional deviation and inclination of the light emitting element when mounting the light emitting element are reduced, the problem that the directivity of light is different from the design, and the occurrence of disconnection due to the positional deviation of the bonding wire. Can be suppressed. Further, when the light emitting element substrate is mounted on a printed wiring board or the like by using solder, problems such as disconnection and deterioration of heat dissipation, which are caused by the warpage of the substrate, can be reduced.
 本発明の発光素子用基板においては、通常、凹部底面に設けられる、素子接続端子や放熱層、反射層または反射層形成のための下地層等を配設する際に、その一部が凹部底面の外周を跨ぐように設けることができれば、上記基板全体の反りを低減するための金属層をこれらと別に設ける必要はない。すなわち、本発明においては、通常、反りを低減するための金属層は、その一部が凹部底面の外周を跨ぐように配設された上記素子接続端子、放熱層、反射層または反射層形成のための下地層等で構成される。なかでも、配設する形状を比較的自由に選択できる反射層または反射層形成のための下地層として上記金属層を設けることが好ましい。
 本発明において基板の反りを低減するために凹部底面に配設される金属膜は、上記反射層を構成する層として金属層が用いられる場合には、当該反射層の金属層が、本発明における金属層であっても良く、また上記下地層を構成する層として金属層が用いられる場合には、当該下地層の金属層が、本発明における金属層であっても良い。
In the substrate for a light emitting device of the present invention, when an element connection terminal, a heat dissipation layer, a reflective layer, or a base layer for forming a reflective layer, which is usually provided on the bottom surface of the recess, is disposed, a part of the bottom surface of the recess If it can be provided so as to straddle the outer periphery of the substrate, it is not necessary to separately provide a metal layer for reducing the warpage of the entire substrate. That is, in the present invention, the metal layer for reducing warpage is usually formed by the element connection terminal, the heat dissipation layer, the reflection layer, or the reflection layer formed so that a part thereof straddles the outer periphery of the bottom surface of the recess. For the underlayer for the purpose. Especially, it is preferable to provide the said metal layer as a reflective layer which can select the shape to arrange | position relatively freely, or a base layer for reflective layer formation.
In the present invention, when the metal film disposed on the bottom surface of the recess in order to reduce the warpage of the substrate is used as a layer constituting the reflective layer, the metal layer of the reflective layer is used in the present invention. A metal layer may be used, and when a metal layer is used as a layer constituting the base layer, the metal layer of the base layer may be a metal layer in the present invention.
 また、上記基体および枠体をそれぞれ構成する第1の無機絶縁材料および第2の無機絶縁材料として、具体的には、酸化アルミニウム質焼結体(アルミナセラミックス)や窒化アルミニウム質焼結体、ムライト質焼結体、ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体(以下、LTCC(低温同時焼結セラミック)と記すことがある。)等のセラミックスが挙げられる。これらセラミックスはそれぞれ焼成温度が異なるため、通常、基体と枠体は同種のセラミックスからなる。本発明においては、上記第1および第2の無機絶縁材料として、製造の容易性、易加工性、経済性等の観点からLTCCが好ましい。なお、第1および第2の無機絶縁材料は、同種のセラミックスからなる限りにおいては、例えば、LTCCにおいて基体に高い抗折強度が得られるガラスセラミックス組成物を適用し、枠体に拡散反射性を重視したガラスセラミックス組成物を適用するというように、基体および枠体の要求特性に応じてガラス粉末やセラミックス粉末の原料組成は異なっていてもよい。 Further, as the first inorganic insulating material and the second inorganic insulating material constituting the substrate and the frame, respectively, specifically, an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, mullite And ceramics such as a sintered body of a glass ceramic composition containing glass powder and ceramic powder (hereinafter sometimes referred to as LTCC (low temperature co-sintered ceramic)). Since these ceramics have different firing temperatures, the substrate and the frame are usually made of the same kind of ceramic. In the present invention, as the first and second inorganic insulating materials, LTCC is preferable from the viewpoints of ease of manufacture, easy processability, economy, and the like. As long as the first and second inorganic insulating materials are made of the same kind of ceramics, for example, a glass ceramic composition capable of obtaining a high bending strength is applied to the base body in LTCC, and the frame body has diffuse reflectivity. The raw material composition of the glass powder or the ceramic powder may be different depending on the required characteristics of the base body and the frame so that the glass ceramic composition emphasized is applied.
 ここで、上記無機絶縁材料としてLTCCを選択した場合には、低温焼成が可能なことから上記金属層として銀を主成分とする金属層(例えば、銀を95質量%以上含有する金属層または合金層を指す。)を用い、これを反射層として発光素子用基板を設計することが好ましい。また、上記無機絶縁材料としてアルミナセラミックス等の高温同時焼成セラミックスを選択した場合、高温焼成が必要なことから上記金属層としては、タングステンおよびモリブデンからなる群から選ばれる高融点金属の少なくとも1種を主成分とする高融点金属からなる金属層が選ばれる。基板の反りを低減するために形成されるこれら高融点金属層では反射層としての機能が十分でないため、通常、焼成後に高融点金属層上に銀等の反射性の良好な金属を用いた反射層を形成する。このような高融点金属層を採用する場合には、高融点金属層は、下地層としても機能するように設計される。 Here, when LTCC is selected as the inorganic insulating material, a metal layer containing silver as a main component as the metal layer (for example, a metal layer or alloy containing 95% by mass or more of silver) can be fired at a low temperature. It is preferable to design a substrate for a light-emitting element using this as a reflective layer. Further, when high-temperature co-fired ceramics such as alumina ceramics are selected as the inorganic insulating material, high-temperature firing is necessary, so that the metal layer includes at least one refractory metal selected from the group consisting of tungsten and molybdenum. A metal layer made of a refractory metal as a main component is selected. Since these refractory metal layers formed to reduce the warpage of the substrate do not function sufficiently as a reflective layer, they are usually reflected using a highly reflective metal such as silver on the refractory metal layer after firing. Form a layer. When such a refractory metal layer is employed, the refractory metal layer is designed to function also as an underlayer.
 本発明の発光素子用基板における実施形態の一例として、第1および第2の無機絶縁材料がそれぞれLTCCからなる基体と枠体で構成され、金属層が反射層として設計された発光素子用基板について以下に説明する。 As an example of an embodiment of the light emitting element substrate of the present invention, a light emitting element substrate in which the first and second inorganic insulating materials are each composed of a base body and a frame body made of LTCC, and the metal layer is designed as a reflective layer. This will be described below.
 図1において(a)は、本発明の実施形態である発光素子を1個搭載するための発光素子用基板1の一例を示す平面図、(b)は、(a)のX-X線断面図である。 1A is a plan view showing an example of a light-emitting element substrate 1 for mounting one light-emitting element according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line XX in FIG. FIG.
 発光素子用基板1は、これを主として構成する略平板状の、かつ上から見た形状が略正方形の基体2を有する。基体2は発光素子用基板とした際に発光素子を搭載する上側の面を主面21として有し、本例においてはその反対側の面を裏面23とする。基体2の厚さ、大きさ等は特に制限されず、通常の発光素子用配線基板と同様とすることができる。発光素子用基板1は、さらに、基体2の主面21の中央の略円形部分を底面24とする凹部4を構成するように基体の主面21の周縁部に接合された枠体3を有する。なお、この凹部4の側面25は、枠体3の内側の壁面で構成されている。発光素子用基板1においては、凹部底面24の略中央部が発光素子の搭載される搭載部22となっている。 The light emitting element substrate 1 has a substantially flat base 2 that is mainly composed of the light emitting element substrate 1 and has a substantially square shape when viewed from above. When the substrate 2 is used as a substrate for a light emitting element, it has an upper surface on which the light emitting element is mounted as a main surface 21, and in this example, the opposite surface is a back surface 23. The thickness, size, etc. of the substrate 2 are not particularly limited, and can be the same as that of a normal light emitting element wiring substrate. The light emitting element substrate 1 further includes a frame body 3 joined to the peripheral edge portion of the main surface 21 of the base body so as to form a concave portion 4 having a substantially circular portion at the center of the main surface 21 of the base body 2 as a bottom surface 24. . Note that the side surface 25 of the recess 4 is formed by the inner wall surface of the frame 3. In the light emitting element substrate 1, a substantially central portion of the recess bottom surface 24 is a mounting portion 22 on which the light emitting element is mounted.
 ここで、凹部4の側面25は、その底面24に対して略垂直に設けられている。つまり枠体3は、上下で開口部が同じ形状となるように成形され、基体主面21の周縁部に接合されている。枠体3の形状は必要に応じて、例えば、上側の開口部が大きく下側の開口部が小さい側面がテーパー状に成形されたものであってもよい。 Here, the side surface 25 of the recess 4 is provided substantially perpendicular to the bottom surface 24 thereof. That is, the frame body 3 is shaped so that the opening portions have the same shape in the upper and lower sides, and is joined to the peripheral edge portion of the substrate main surface 21. The shape of the frame 3 may be, for example, a taper-shaped side surface with a large upper opening and a small lower opening.
 上記凹部4の側面25と発光素子搭載部22の端縁との間の距離の具体的な数値は、搭載される発光素子の出力や、大きさ(サイズ)、さらに、必要に応じて、例えば、後述の封止層に含有させる蛍光体の種類やその含有量、変換効率等にもよるが、例えば、発光素子が発光する光が最も効率的に光取り出し方向に発光される距離を指標として用いてもよい。 Specific numerical values of the distance between the side surface 25 of the concave portion 4 and the edge of the light emitting element mounting portion 22 include the output of the mounted light emitting element, the size (size), and, if necessary, for example, Depending on the type of phosphor to be contained in the sealing layer, which will be described later, its content, conversion efficiency, etc., for example, the distance at which the light emitted from the light emitting element is most efficiently emitted in the light extraction direction is used as an index. It may be used.
 また、上記凹部4の側面25の高さ、すなわち凹部4の底面24から枠体3の最高位までの距離(すなわち、枠体3の高さ)は、搭載される発光素子からの光を光取り出し方向に十分反射できる高さであれば、特に制限されない。具体的には、発光装置の設計、例えば、搭載される発光素子の出力や、上記発光素子搭載部の端縁からの距離等にもよるが、発光装置を搭載する製品の形状や波長変換のための蛍光体を含有した封止材を効率よく充填する等の観点から、発光素子が搭載されたときの発光素子の最高部の高さより100~500μm高くすることが好ましい。なお、枠体3の高さは発光素子の最高部の高さに450μmを加えた高さ以下がより好ましく、400μmを加えた高さ以下がさらに好ましい。 Further, the height of the side surface 25 of the concave portion 4, that is, the distance from the bottom surface 24 of the concave portion 4 to the highest position of the frame body 3 (that is, the height of the frame body 3) determines the light from the mounted light emitting element. The height is not particularly limited as long as it can be sufficiently reflected in the extraction direction. Specifically, depending on the design of the light emitting device, for example, the output of the light emitting element to be mounted, the distance from the edge of the light emitting element mounting portion, etc., the shape of the product on which the light emitting device is mounted and the wavelength conversion From the standpoint of efficiently filling a sealing material containing a phosphor for the purpose, it is preferable that the height is 100 to 500 μm higher than the height of the highest part of the light emitting element when the light emitting element is mounted. The height of the frame 3 is more preferably equal to or less than the height of 450 μm added to the height of the highest part of the light emitting element, and more preferably equal to or less than the height of 400 μm.
 本例において基体2および枠体3は、ともにLTCCで構成される。基体2を構成するLTCC材料については、発光素子の搭載時、その後の使用時における損傷等を抑制する観点から、例えば、このLTCC材料により形成された基体2および枠体3の抗折強度は250MPa以上が好ましい。枠体3を構成するLTCC材料は、基体2との密着性を考慮すると、基体2を構成する材料と同じものが好ましい。 In this example, the base 2 and the frame 3 are both made of LTCC. With respect to the LTCC material constituting the substrate 2, for example, the bending strength of the substrate 2 and the frame 3 formed of the LTCC material is 250 MPa from the viewpoint of suppressing damage or the like when the light emitting element is mounted and thereafter used. The above is preferable. The LTCC material that constitutes the frame 3 is preferably the same as the material that constitutes the substrate 2 in consideration of adhesion to the substrate 2.
 また、発光装置の要求特性に応じて、上記LTCC材料として、拡散反射性を有するLTCC材料でもよい。拡散反射性を有するLTCCとしては、発光装置において光取り出し効率の向上が見られるものであれば、特に制限されない。好ましくは、銀反射膜に相当する光取り出し効率が得られるものが用いられる。なお、拡散反射性を評価する指標として、JIS K 7105により測定されるヘイズ値が用いられるが、その値は95%以上が好ましく、98%以上がより好ましい。
 なお、このような基体2および枠体3を構成するガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体の原料組成、焼結条件等については、後述の通りである。
Further, depending on the required characteristics of the light emitting device, the LTCC material may be an LTCC material having diffuse reflectivity. The LTCC having diffuse reflectivity is not particularly limited as long as the light extraction efficiency is improved in the light emitting device. Preferably, a material capable of obtaining light extraction efficiency corresponding to the silver reflective film is used. A haze value measured by JIS K 7105 is used as an index for evaluating diffuse reflectance. The value is preferably 95% or more, and more preferably 98% or more.
The raw material composition, sintering conditions, and the like of the sintered body of the glass ceramic composition including the glass powder and the ceramic powder constituting the substrate 2 and the frame body 3 are as described later.
 発光素子用基板1においては、基体2の主面21の一部で構成される凹部底面24上に、発光素子が有する一対の電極とそれぞれ電気的に接続される素子接続端子5が、この発光素子搭載部22の外側となる周辺部、具体的には両側に対向するようにして略長方形状に一対設けられている。 In the light emitting element substrate 1, the element connection terminals 5 electrically connected to the pair of electrodes of the light emitting element are provided on the concave bottom surface 24 formed by a part of the main surface 21 of the base 2. A pair of substantially rectangular shapes are provided so as to face the outer periphery of the element mounting portion 22, specifically, both sides.
 基体2の裏面23には、外部回路と電気的に接続される一対の外部接続端子6が設けられ、基体2の内部に、上記素子接続端子5と外部接続端子6とを電気的に接続する貫通導体7が一対設けられている。素子接続端子5、外部接続端子6および貫通導体7については、これらが発光素子→素子接続端子5→貫通導体7→外部接続端子6→外部回路との経路により電気的に接続される限りは、その配設される位置や形状は図1に示されるものに限定されず、適宜調整できる。 A pair of external connection terminals 6 that are electrically connected to an external circuit are provided on the back surface 23 of the base 2, and the element connection terminals 5 and the external connection terminals 6 are electrically connected to the inside of the base 2. A pair of through conductors 7 is provided. About the element connection terminal 5, the external connection terminal 6, and the through conductor 7, as long as these are electrically connected by a route of the light emitting element → the element connection terminal 5 → the through conductor 7 → the external connection terminal 6 → the external circuit, The position and shape of the arrangement are not limited to those shown in FIG. 1 and can be adjusted as appropriate.
 これら素子接続端子5、外部接続端子6および貫通導体7(以下、これらをまとめて「配線導体」ということもある。)の構成材料は、通常、発光素子用基板に用いられる配線導体と同様の構成材料であれば特に制限なく使用できる。これら配線導体の構成材料として、具体的には、銅、銀、金等を主成分とする金属材料が挙げられる。このような金属材料のなかでも、銀、銀と白金からなる金属材料、または銀とパラジウムからなる金属材料が好ましく用いられる。 The constituent materials of the element connection terminal 5, the external connection terminal 6, and the through conductor 7 (hereinafter, collectively referred to as “wiring conductor”) are generally the same as those of the wiring conductor used for the light emitting element substrate. Any material can be used without particular limitation. Specific examples of the constituent material of these wiring conductors include metal materials mainly composed of copper, silver, gold, and the like. Among these metal materials, silver, a metal material composed of silver and platinum, or a metal material composed of silver and palladium is preferably used.
 なお、素子接続端子5や外部接続端子6においては、これらの金属材料からなる、好ましくは厚さ5~15μmの金属層上に、この層を酸化や硫化から保護しかつ導電性を有する導電性保護層(図示せず)が、その端縁を含む全体を覆うように形成された構成が好ましい。導電性保護層としては上記金属層を保護する機能を有する導電性材料で構成されていれば、特に制限されない。具体的には、ニッケルメッキ、クロムメッキ、銀メッキ、ニッケル/銀メッキ、金メッキ、ニッケル/金メッキ等からなる導電性保護層が挙げられる。 The element connection terminal 5 and the external connection terminal 6 are made of these metal materials, preferably on a metal layer having a thickness of 5 to 15 μm, and this layer is protected from oxidation and sulfidization and has conductivity. A configuration in which a protective layer (not shown) is formed so as to cover the whole including its edge is preferable. The conductive protective layer is not particularly limited as long as it is made of a conductive material having a function of protecting the metal layer. Specific examples include a conductive protective layer made of nickel plating, chrome plating, silver plating, nickel / silver plating, gold plating, nickel / gold plating, or the like.
 本発明においては、これらのうちでも、上記素子接続端子5および外部接続端子6を被覆保護する導電性保護層として、例えば、後述する発光素子の電極との接続に用いるボンディングワイヤやその他接続材料との良好な接合が得られる等の点から、少なくとも最外層に金メッキ層を有する金属メッキ層を用いることが好ましい。導電性保護層は、金メッキ層のみで形成されていてもよいが、ニッケルメッキの上に金メッキを施したニッケル/金メッキ層として形成されていることがより好ましい。この場合、導電性保護層の膜厚としては、ニッケルメッキ層が2~20μm、金メッキ層が0.1~1.0μmが好ましい。 In the present invention, among these, as a conductive protective layer for covering and protecting the element connection terminals 5 and the external connection terminals 6, for example, bonding wires and other connection materials used for connection with electrodes of light emitting elements to be described later It is preferable to use a metal plating layer having a gold plating layer as at least the outermost layer from the viewpoint of obtaining good bonding. The conductive protective layer may be formed of only a gold plating layer, but is more preferably formed as a nickel / gold plating layer obtained by performing gold plating on nickel plating. In this case, the thickness of the conductive protective layer is preferably 2 to 20 μm for the nickel plating layer and 0.1 to 1.0 μm for the gold plating layer.
 本発明の発光素子用基板において反りを低減するために配設される金属層、本例では反射層の機能を兼ねる金属層8は、凹部4の底面24上に、該底面24の上記一対の素子接続端子5が配設された部分とその周囲近傍を除く領域を含み、さらにその端縁が凹部底面24の外周Aを跨いで枠体3と基体2の間に配置され、かつ基体2の外縁に達しないように配設されている。ここで、上記素子接続端子5が配設された部分とその周囲近傍を除く領域とは、具体的には、素子接続端子5と金属層8が電気的に絶縁され、さらに、積層時や印刷時の位置ズレなどの製造面での不具合により、絶縁性の悪化や、素子接続端子5の導電性の阻害などが発生しないように考慮した領域であり、好ましくは素子接続端子5の端縁から100μm以上外側の領域であり、より好ましくは上記端縁から150μm以上外側の領域である。 The metal layer disposed to reduce the warpage in the light emitting element substrate of the present invention, in this example, the metal layer 8 that also functions as a reflective layer, is formed on the bottom surface 24 of the recess 4 on the pair of the bottom surfaces 24. It includes a region where the element connection terminal 5 is disposed and a region excluding the vicinity thereof, and an edge thereof is disposed between the frame 3 and the substrate 2 across the outer periphery A of the bottom surface 24 of the recess. It is arranged so as not to reach the outer edge. Here, the area where the element connection terminal 5 is disposed and the region excluding the vicinity thereof are specifically electrically insulated from the element connection terminal 5 and the metal layer 8, and further, at the time of lamination or printing This is a region that is considered so as not to cause deterioration of the insulation property or obstruction of the conductivity of the element connection terminal 5 due to a manufacturing defect such as positional misalignment, and preferably from the edge of the element connection terminal 5 It is a region outside 100 μm or more, and more preferably a region outside 150 μm from the edge.
 図1に示すように発光素子用基板1において、金属層8は、凹部4の底面24の外周と中心を同じにした相似形状(略円形状)で、底面24の外周の全てを跨いでいる。ここでは略円形の端縁に形成されている。凹部4の底面24の外周から金属層8の端縁までの距離Lは、発光素子用基板の反りが十分に低減され、かつ枠体3と基体2の接合が十分な密着強度を持ってなされるように適宜選択される。さらに、発光素子用基板1を製造する際の、金属層8の配設位置のずれ(印刷ずれ)や枠体3と基体2の積層ずれ等を勘案すると、凹部4の底面24の外周から金属層8の端縁までの距離Lは、100~200μmが好ましく、130~170μmがより好ましい。 As shown in FIG. 1, in the light emitting element substrate 1, the metal layer 8 has a similar shape (substantially circular shape) having the same center as the outer periphery of the bottom surface 24 of the recess 4, and straddles the entire outer periphery of the bottom surface 24. . Here, it is formed at a substantially circular edge. The distance L from the outer periphery of the bottom surface 24 of the recess 4 to the edge of the metal layer 8 is such that the warp of the light emitting element substrate is sufficiently reduced and the frame 3 and the base body 2 are joined with sufficient adhesion strength. It is selected as appropriate. Further, when taking into account the displacement (printing displacement) of the arrangement position of the metal layer 8 and the misalignment of the frame 3 and the substrate 2 when manufacturing the light emitting element substrate 1, the metal from the outer periphery of the bottom surface 24 of the recess 4. The distance L to the edge of the layer 8 is preferably 100 to 200 μm, more preferably 130 to 170 μm.
 なお、図1に示す発光素子用基板1において、上記金属層8はその端縁が凹部4の底面24の外周の全てを跨いで基体2と枠体3の間に及ぶように形成されているが、後述の図2に示す例のように、必要に応じて、金属層8はその端縁が底面24の外周の一部を跨ぐように形成されていてもよい。また、本例において金属層8は反射層として配設されているために、凹部4の底面24上に可能な限り大面積で配設されているが、光反射性能に配慮せずに金属層の配設が可能な場合には、本発明の効果を損なわない範囲で、金属層8の形状は適宜変更できる。 In the light emitting element substrate 1 shown in FIG. 1, the metal layer 8 is formed so that the edge extends over the entire outer periphery of the bottom surface 24 of the recess 4 and extends between the base 2 and the frame 3. However, as in the example shown in FIG. 2 to be described later, the metal layer 8 may be formed so that the edge of the metal layer 8 straddles a part of the outer periphery of the bottom surface 24 as necessary. In this example, since the metal layer 8 is disposed as a reflective layer, the metal layer 8 is disposed on the bottom surface 24 of the concave portion 4 as large as possible. However, the metal layer is not considered in light reflection performance. In the range which does not impair the effect of this invention, the shape of the metal layer 8 can be changed suitably.
 金属層8は、発光素子用基板1の反りを低減させる観点から、基体2より焼成収縮が早く、焼成中に凸形状に変形する応力を抑制する性質を有するものであれば特に制限されない。しかし、図1に示す発光素子用基板1において、金属層8は反射層としての機能を兼ね備えることから、金属層8を構成する金属材料としては、LTCC基板と同時焼成が可能であり光反射性にも優れる銀を主成分として含む金属材料(例えば、銀を95質量%以上含有する金属材料)が好ましい。銀を主成分として含む金属材料として、具体的には、銀、銀と白金からなる金属材料、または銀とパラジウムからなる金属材料が挙げられる。銀と白金からなる金属材料、または銀とパラジウムからなる金属材料として、具体的には、金属材料全量に対する白金またはパラジウムの割合が5質量%以下の金属材料が挙げられる。これらのうちでも銀のみで構成される金属層8が本発明においては高い反射率を得られる点から好ましい。 The metal layer 8 is not particularly limited as long as the metal layer 8 has a property of suppressing the stress that deforms into a convex shape during firing faster than the base 2 from the viewpoint of reducing warpage of the light emitting element substrate 1. However, in the light emitting element substrate 1 shown in FIG. 1, the metal layer 8 also has a function as a reflection layer. Therefore, the metal material constituting the metal layer 8 can be fired simultaneously with the LTCC substrate and is light reflective. Further, a metal material containing silver as a main component (for example, a metal material containing 95% by mass or more of silver) is preferable. Specific examples of the metal material containing silver as a main component include silver, a metal material composed of silver and platinum, or a metal material composed of silver and palladium. Specific examples of the metal material composed of silver and platinum or the metal material composed of silver and palladium include a metal material in which the ratio of platinum or palladium to the total amount of the metal material is 5% by mass or less. Among these, the metal layer 8 comprised only of silver is preferable from the point which can obtain a high reflectance in this invention.
 金属層8の膜厚については、5~15μmが好ましく、8~12μmがより好ましい。金属層8の膜厚が5μm未満では十分な強度や光反射性が得られないおそれがあり、また、15μmを超えると経済的に不利であるとともに製造過程で基体2や枠体3との熱膨張差による変形が起こり、基板の反りの減少を十分に達成できなくなるおそれがある。 The film thickness of the metal layer 8 is preferably 5 to 15 μm, more preferably 8 to 12 μm. If the thickness of the metal layer 8 is less than 5 μm, sufficient strength and light reflectivity may not be obtained, and if it exceeds 15 μm, it is economically disadvantageous and heat with the base 2 and the frame 3 during the manufacturing process. There is a possibility that deformation due to an expansion difference occurs, and a reduction in warpage of the substrate cannot be sufficiently achieved.
 また、図1に示す発光素子用基板1は、金属層8を絶縁保護するオーバーコートガラス層9を有する。オーバーコートガラス層9は、凹部4の底面24上に形成された金属層8の、基体2と枠体3の間に及ぶ部分を除いて、金属層8の端縁を含む全体を覆うように形成されている。ここで、凹部底面24上に設けられた素子接続端子5と金属層8の絶縁性が確保されている限りにおいてオーバーコートガラス層9の端縁は、素子接続端子5に接していてもよいが、積層時や印刷時の位置ズレなどの製造面での不具合の発生を考慮して、両者間の距離は75μm以上が好ましく、100μm以上がより好ましい。 Further, the light emitting element substrate 1 shown in FIG. 1 has an overcoat glass layer 9 for insulating and protecting the metal layer 8. The overcoat glass layer 9 covers the whole of the metal layer 8 including the edge of the metal layer 8 except for the portion extending between the base 2 and the frame 3 of the metal layer 8 formed on the bottom surface 24 of the recess 4. Is formed. Here, the edge of the overcoat glass layer 9 may be in contact with the element connection terminal 5 as long as the insulation between the element connection terminal 5 provided on the concave bottom surface 24 and the metal layer 8 is ensured. The distance between the two is preferably 75 μm or more, more preferably 100 μm or more, taking into account the occurrence of problems in manufacturing such as misalignment during lamination and printing.
 金属層8の端縁がオーバーコートガラス層9で被覆されている部分においては、金属層8の端縁とオーバーコートガラス層9の端縁の間の距離は、金属層8が外部の劣化要因から十分に保護される範囲でできる限り短い距離とすることが好ましい。具体的には、10~50μmが好ましく、20~30μmがより好ましい。この距離が10μm未満では、金属層8の露出により、金属層8を構成する金属材料、特に好ましく用いられる銀を主成分として含む金属材料の酸化や硫化等が発生して光反射性が低下するおそれがあり、50μmを超えると結果として金属層8の配設される領域の面積が減少することで光反射性が低下する。 In the portion where the edge of the metal layer 8 is covered with the overcoat glass layer 9, the distance between the edge of the metal layer 8 and the edge of the overcoat glass layer 9 is that the metal layer 8 is an external deterioration factor. It is preferable that the distance be as short as possible within a range that is sufficiently protected from. Specifically, 10 to 50 μm is preferable, and 20 to 30 μm is more preferable. When the distance is less than 10 μm, the metal layer 8 is exposed, and the metal material constituting the metal layer 8, particularly the metal material mainly containing silver, which is preferably used, is oxidized or sulfided, and the light reflectivity is lowered. If it exceeds 50 μm, as a result, the area of the region where the metal layer 8 is disposed is reduced, so that the light reflectivity is lowered.
 オーバーコートガラス層9の膜厚は、発光装置の設計にもよるが、十分な絶縁保護の機能を確保し、かつ製造コスト、基体との熱膨張差による変形等を考慮すると、5~50μmが好ましい。また、オーバーコートガラス層9の表面は、少なくとも発光素子搭載部22において、十分な放熱性を得るために表面平滑性を有することが好ましい。この表面平滑性として具体的には、十分な放熱性を確保しつつ、かつ製造上の容易性の観点から、表面粗さRaとして、0.03μm以下が好ましく、0.01μm以下がより好ましい。なお、オーバーコートガラス層を構成するガラスの原料組成は、後述の製造方法において説明する。 Although the film thickness of the overcoat glass layer 9 depends on the design of the light emitting device, it is 5 to 50 μm in consideration of the manufacturing cost, the deformation due to the difference in thermal expansion from the substrate, etc. preferable. Moreover, it is preferable that the surface of the overcoat glass layer 9 has surface smoothness in order to obtain sufficient heat dissipation at least in the light emitting element mounting portion 22. Specifically, the surface roughness Ra is preferably 0.03 [mu] m or less, more preferably 0.01 [mu] m or less, from the viewpoint of manufacturing ease while ensuring sufficient heat dissipation. In addition, the raw material composition of the glass which comprises an overcoat glass layer is demonstrated in the below-mentioned manufacturing method.
 なお、図1に示す発光素子用基板1において、オーバーコートガラス層9は、基体2と枠体3の間に形成された金属層8を被覆していないが、本発明の効果が損われない限りにおいて必要に応じて、基体2と枠体3の間に形成された金属層8を被覆するように形成されてもよい。 In the light emitting element substrate 1 shown in FIG. 1, the overcoat glass layer 9 does not cover the metal layer 8 formed between the base 2 and the frame 3, but the effect of the present invention is not impaired. As long as necessary, the metal layer 8 formed between the base 2 and the frame 3 may be covered.
 図1には示されていないが、発光素子用基板1には、熱抵抗を低減するために基体2の内部に基体2の主面21と直交する方向にサーマルビアを埋設したり、主面21に平行する方向に放熱層を配設したりしてもよい。サーマルビアは、例えば搭載部22より小さい柱状であり、搭載部22の直下に複数設けられる。サーマルビアを設ける場合には、基体2の主面21に達しないように、裏面23から主面21の近傍にかけて設けることが好ましい。このような配置とすることで、主面21、特に搭載部22の平坦度を向上させることができ、熱抵抗を低減し、また発光素子を搭載したときの傾きも抑制できる。 Although not shown in FIG. 1, a thermal via is embedded in the light emitting element substrate 1 in the direction perpendicular to the main surface 21 of the base 2 in the base 2 in order to reduce the thermal resistance. A heat dissipation layer may be arranged in a direction parallel to 21. The thermal via has a columnar shape smaller than the mounting portion 22, for example, and a plurality of thermal vias are provided immediately below the mounting portion 22. When providing a thermal via, it is preferable to provide it from the back surface 23 to the vicinity of the main surface 21 so as not to reach the main surface 21 of the base 2. By adopting such an arrangement, the flatness of the main surface 21, particularly the mounting portion 22, can be improved, the thermal resistance can be reduced, and the inclination when the light emitting element is mounted can be suppressed.
 次に、本発明の発光素子用基板における実施形態の別の一例として、金属層が形成された領域が異なる以外は、上記図1で示される発光素子用基板と全く同様に設計された発光素子用基板について説明する。 Next, as another example of the embodiment of the light emitting element substrate of the present invention, a light emitting element designed in exactly the same manner as the light emitting element substrate shown in FIG. 1 except that the region where the metal layer is formed is different. The substrate for use will be described.
 図2は、本発明の実施形態である発光素子を1個搭載するための発光素子用基板1の上記図1に示された発光素子用基板1とは別の一例の発光素子用基板1を示す平面図(a)、およびそのX-X線断面図(b)である。 FIG. 2 shows a light emitting element substrate 1 as an example different from the light emitting element substrate 1 shown in FIG. 1 of the light emitting element substrate 1 for mounting one light emitting element according to the embodiment of the present invention. FIG. 2 is a plan view (a) and a sectional view taken along line XX of FIG.
 上述の通り、図2に示される発光素子用基板1では、金属層8が形成された領域以外は、上記図1に示される発光素子用基板1と同様である。したがって、以下、金属層8についてのみ説明する。
 図2に示される発光素子用基板1において、金属層8は発光素子用基板の反りを低減するとともに反射層の機能を兼ねて設けられている。金属層8は、凹部4の底面24上に、該底面24の上記一対の素子接続端子5が配設された部分とその周囲近傍を除く領域を含み、さらに金属層8の端縁が部分的に凹部底面24の外周Aを跨いで枠体3と基体2の間に配置され、かつ基体2の外縁に達しないように略正方形状に配設されている。なお、上記素子接続端子5の周囲近傍を除く領域とは、上記図1に示す発光素子用基板1で説明した領域と同様である。
As described above, the light emitting element substrate 1 shown in FIG. 2 is the same as the light emitting element substrate 1 shown in FIG. 1 except for the region where the metal layer 8 is formed. Therefore, only the metal layer 8 will be described below.
In the light emitting element substrate 1 shown in FIG. 2, the metal layer 8 is provided to reduce the warpage of the light emitting element substrate and also serve as a reflective layer. The metal layer 8 includes, on the bottom surface 24 of the concave portion 4, a portion of the bottom surface 24 where the pair of element connection terminals 5 are disposed and a region excluding the vicinity thereof, and the edge of the metal layer 8 is partially Further, it is disposed between the frame 3 and the base 2 so as to straddle the outer periphery A of the bottom surface 24 of the recess, and is arranged in a substantially square shape so as not to reach the outer edge of the base 2. The region excluding the vicinity of the periphery of the element connection terminal 5 is the same as the region described in the light emitting element substrate 1 shown in FIG.
 金属層8の外縁の形状は基体2を上から見た形状と中心を同じにした概ね相似の形状(略正方形)であり、金属層8の外縁を構成する各辺と基体2の外縁を構成する各辺はそれぞれ平行の関係になるように位置している。かつ、図2に示すように金属層8は、凹部4の底面24における略円形状の外周Aの4か所において、所定の長さで外周を跨いで、その端縁が枠体3と基体2の間に及ぶように形成されている。 The shape of the outer edge of the metal layer 8 is a substantially similar shape (substantially square) with the same center as the shape of the base 2 as viewed from above, and each side constituting the outer edge of the metal layer 8 and the outer edge of the base 2 are formed. Each side is positioned so as to have a parallel relationship. As shown in FIG. 2, the metal layer 8 has a predetermined length and straddles the outer periphery at four locations of the substantially circular outer periphery A on the bottom surface 24 of the recess 4, and the edges of the metal layer 8 are the frame body 3 and the base body. It is formed to extend between two.
 ここで、金属層8が凹部4の底面24の外周Aを跨いでいる割合は、全外周長(b)に対する、上記金属層8が跨いでいる4か所の外周の長さ(図2において、a1、a2、a3、a4で示される)の合計の百分率((a1+a2+a3+a4)/b×100)として、40%以上が好ましく、60%以上がより好ましい。なお、特に好ましくは、図1に示されるように100%(すなわち、全てを)跨いでいる場合である。 Here, the ratio of the metal layer 8 straddling the outer periphery A of the bottom surface 24 of the recess 4 is the length of the outer periphery of the four locations where the metal layer 8 straddles the entire outer peripheral length (b) (in FIG. 2). , A1, a2, a3, and a4), the total percentage ((a1 + a2 + a3 + a4) / b × 100) is preferably 40% or more, and more preferably 60% or more. In particular, the case where 100% (that is, everything) is straddled as shown in FIG. 1 is particularly preferable.
 金属層8の形状は、金属層8が凹部4の底面24の外周を跨いでいる割合が上記範囲になるような形状であれば特に制限されない。上記のように金属層8の形状を略正方形とすることで、積層ずれや印刷ずれを細かく考慮することなく、金属層8が外周を跨ぐ割合を上記範囲とすることができる点で好ましい。一方、略正方形の形状で、底面24の外周を跨いでいる割合が100%となるように金属層8を形成すると、反りの低減の点では、図1に示す略円形状の金属層を形成した場合と同様の効果が得られるが、基体2と枠体3との間に存在する金属層の面積が増え、基体2と枠体3との間の密着性にとっては好ましくない。 The shape of the metal layer 8 is not particularly limited as long as the ratio of the metal layer 8 straddling the outer periphery of the bottom surface 24 of the recess 4 is in the above range. By making the shape of the metal layer 8 into a substantially square shape as described above, it is preferable in that the ratio of the metal layer 8 straddling the outer periphery can be within the above range without considering the stacking deviation and printing deviation in detail. On the other hand, when the metal layer 8 is formed in a substantially square shape so that the ratio of straddling the outer periphery of the bottom surface 24 becomes 100%, the substantially circular metal layer shown in FIG. Although the same effect as that obtained is obtained, the area of the metal layer existing between the base 2 and the frame 3 is increased, which is not preferable for the adhesion between the base 2 and the frame 3.
 このように金属層8を設計するにあたっては、発光素子用基板そのものや製造上求められる特性、例えば、基体2と枠体3との密着性、発光素子用基板1の反り、製造容易性等に応じて、金属層の形状、底面24の外周を跨いで形成される割合、基体2と枠体3との間に形成される金属層の面積等を、適宜調整する。具体的には多角形の金属層の形状としても良い。なお、略正方形以外のn多角形の場合、全外周長(b)に対する、上記金属層8が跨いでいる箇所の外周の長さの合計の百分率は、その多角形の辺の数に応じて計算される。例えば、n多角形の場合、当該n多角形の全外周長(b)に対する、上記金属層が跨いでいるn多角形の外周の各辺の長さの合計(すなわち、外周の各辺をc1、c2、c3、c4、……、cnとしたとき、c1+c2+c3+c4……+cnの合計)の百分率(c1+c2+c3+c4……+cn)/b×100)として、40%以上が好ましく、60%以上がより好ましい。 In designing the metal layer 8 in this way, the light emitting element substrate itself and the characteristics required in manufacturing, for example, adhesion between the base 2 and the frame 3, warpage of the light emitting element substrate 1, ease of manufacture, etc. Accordingly, the shape of the metal layer, the ratio formed across the outer periphery of the bottom surface 24, the area of the metal layer formed between the base 2 and the frame 3, and the like are adjusted as appropriate. Specifically, it may be a polygonal metal layer. In the case of an n-polygon other than a substantially square, the total percentage of the length of the outer periphery of the portion where the metal layer 8 straddles the entire outer peripheral length (b) depends on the number of sides of the polygon. Calculated. For example, in the case of an n-polygon, the total length of each side of the outer periphery of the n-polygon that the metal layer straddles with respect to the total outer peripheral length (b) of the n-polygon (that is, each side of the outer periphery is c1. , C2, c3, c4,..., Cn, the percentage of c1 + c2 + c3 + c4... + Cn) (c1 + c2 + c3 + c4.
 以上、本発明の発光素子用基板の実施形態について説明したが、例えば、上記図1に示す発光素子用基板1を用いて、その搭載部22に発光ダイオード素子等の発光素子11を搭載することで、例えば、図3に示す発光装置10を作製できる。 As described above, the embodiment of the light emitting element substrate of the present invention has been described. For example, the light emitting element 11 such as a light emitting diode element is mounted on the mounting portion 22 using the light emitting element substrate 1 shown in FIG. Thus, for example, the light emitting device 10 shown in FIG. 3 can be manufactured.
 図3に示すように、本発明の発光装置10は、発光素子用基板1が有する凹部4の底面24の略中央に位置する搭載部22にシリコーンダイボンド剤等のダイボンド剤により発光ダイオード素子等の発光素子11が搭載され、その図示しない1対の電極がボンディングワイヤ12によって、1対の素子接続端子5のそれぞれに接続された構成である。発光装置10は、さらに、凹部4の底面24に上記のように配設された発光素子11やボンディングワイヤ12を覆いながら、凹部4を充填するように封止層13が設けられることにより構成されている。なお、封止層13を構成する材料(封止材)には、必要に応じて、発光装置の封止層に通常用いられる蛍光体が含有されていてもよい。 As shown in FIG. 3, the light emitting device 10 of the present invention has a light emitting diode element or the like mounted on a mounting portion 22 located substantially at the center of the bottom surface 24 of the recess 4 of the light emitting element substrate 1 by a die bond agent such as a silicone die bond agent. The light emitting element 11 is mounted, and a pair of electrodes (not shown) is connected to each of the pair of element connection terminals 5 by bonding wires 12. The light emitting device 10 is further configured by providing the sealing layer 13 so as to fill the concave portion 4 while covering the light emitting element 11 and the bonding wire 12 arranged as described above on the bottom surface 24 of the concave portion 4. ing. In addition, the material (sealing material) which comprises the sealing layer 13 may contain the fluorescent substance normally used for the sealing layer of a light-emitting device as needed.
 このような本発明の発光装置10は、凹部を有しその底面に発光素子を搭載する発光素子用基板であって、基板自体の反りの割合が低減された本発明の発光素子用基板1により、発光素子の位置ずれや傾きが低減し、光の指向性が設計と異なる等の問題や、ボンディングワイヤの位置ずれによる断線の発生等の問題が抑制された発光装置である。また、この発光装置10をさらにプリント配線基板等に半田を用いて実装する際に、基板の反りが原因で発生していた断線や放熱性の悪化等の問題も低減できる。このような本発明の発光装置は、例えば携帯電話やパソコンや平面テレビの液晶ディスプレイ等のバックライト、自動車用あるいは装飾用の照明、一般照明、その他の光源として好適に使用できる。 Such a light-emitting device 10 of the present invention is a light-emitting element substrate having a recess and a light-emitting element mounted on the bottom surface thereof, and the light-emitting element substrate 1 of the present invention in which the ratio of warpage of the substrate itself is reduced. This is a light emitting device in which the positional deviation and inclination of the light emitting element are reduced and the problems such as the difference in the directivity of light from the design and the occurrence of disconnection due to the positional deviation of the bonding wire are suppressed. Further, when the light emitting device 10 is further mounted on a printed wiring board or the like by using solder, problems such as disconnection and deterioration of heat dissipation caused by the warping of the board can be reduced. Such a light-emitting device of the present invention can be suitably used as a backlight for a liquid crystal display of a mobile phone, a personal computer, or a flat television, for example, illumination for automobiles or decoration, general illumination, and other light sources.
 以上、本発明の発光素子用基板およびこれを用いた発光装置における実施形態について例を挙げて説明したが、本発明の発光素子用基板および発光装置はこれらに限定されるものではない。本発明の趣旨に反しない限度において、また必要に応じて、その構成を適宜変更できる。 As mentioned above, although the embodiment in the light emitting element substrate of the present invention and the light emitting device using the same has been described as an example, the light emitting element substrate and the light emitting device of the present invention are not limited thereto. As long as it does not contradict the spirit of the present invention, the configuration can be changed as necessary.
 以下、本発明の発光素子用基板の製造方法について、図1に示される発光素子用基板1を例にして説明する。図1に示される発光素子用基板1は、例えば、以下の(A)グリーンシート作製工程、(B)ペースト層形成工程、(C)積層工程、(D)焼成工程を含む製造方法により製造できる。なお、製造に用いる部材については、完成品の部材と同一の符号を付して説明するものである。例えば、基体と基体用グリーンシートとは、同じ2の符号をもって表記し、また、素子接続用端子と素子接続用端子導体ペースト層とは、同じ5の符号をもって表記しており、他も同様である。 Hereinafter, a method for manufacturing a light emitting element substrate according to the present invention will be described using the light emitting element substrate 1 shown in FIG. 1 as an example. 1 can be manufactured by a manufacturing method including, for example, the following (A) green sheet manufacturing step, (B) paste layer forming step, (C) laminating step, and (D) firing step. . In addition, about the member used for manufacture, the same code | symbol as the member of a finished product is attached | subjected and demonstrated. For example, the base and the green sheet for the base are represented by the same reference numeral 2, and the element connection terminal and the element connection terminal conductor paste layer are represented by the same reference numeral 5. is there.
(A)グリーンシート作製工程
 (A)工程は、ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物(LTCC組成物)を用いて発光素子用基板の基体を構成する基体用グリーンシート2および枠体を構成する枠体用グリーンシート3を作製する工程である。具体的には、基体用グリーンシート2および枠体用グリーンシート3は、以下に説明するガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物にバインダー、必要に応じて可塑剤、分散剤、溶剤等を添加して調製されたスラリーを、ドクターブレード法等により、焼成後の形状・膜厚が上記所望の範囲内となるような所定の形状、膜厚のシート状に成形し、乾燥させることで作製できる。
(A) Green sheet preparation process (A) process is a green sheet 2 for substrates and a frame that constitute a substrate of a substrate for a light emitting device using a glass ceramic composition (LTCC composition) containing glass powder and ceramic powder. Is a step of producing a green sheet 3 for a frame that constitutes. Specifically, the base green sheet 2 and the frame green sheet 3 are composed of a glass ceramic composition containing a glass powder and a ceramic powder described below, a binder, and a plasticizer, a dispersant, a solvent, and the like as necessary. The slurry prepared by adding the material is formed into a sheet having a predetermined shape and film thickness such that the shape and film thickness after firing are within the above desired range by a doctor blade method or the like, and dried. Can be made.
 基体用グリーンシート2については、上記で得られたシート状成形物が、(B)ペースト層形成工程を経て(C)工程での積層に供される。枠体用グリーンシート3については、上記で得られたシート状成形物の中央部に、この工程で、通常の方法により凹部4の底面24の形(例えば、円形)に貫通孔を形成し、得られたものが(C)工程での積層に供される。 For the green sheet 2 for the substrate, the sheet-like molded product obtained above is subjected to (B) paste layer forming step and subjected to lamination in step (C). About the green sheet 3 for a frame, a through hole is formed in the shape of the bottom surface 24 of the concave portion 4 (for example, a circle) by a normal method in the central portion of the sheet-like molded product obtained as described above. What was obtained is subjected to lamination in step (C).
(ガラスセラミックス組成物およびスラリーの調製)
 上記ガラスセラミックス組成物に用いるガラス粉末は、必ずしも限定されないものの、ガラス転移点(Tg)が550℃以上700℃以下が好ましい。ガラス転移点(Tg)が550℃未満の場合、脱脂が困難となるおそれがあり、700℃を超える場合、収縮開始温度が高くなり、寸法精度が低下するおそれがある。
(Preparation of glass ceramic composition and slurry)
The glass powder used in the glass ceramic composition is not necessarily limited, but the glass transition point (Tg) is preferably 550 ° C. or higher and 700 ° C. or lower. When the glass transition point (Tg) is less than 550 ° C., degreasing may be difficult. When the glass transition point (Tg) exceeds 700 ° C., the shrinkage start temperature becomes high and the dimensional accuracy may be lowered.
 また、800℃以上930℃以下で焼成したときに結晶が析出することが好ましい。結晶が析出しない場合、十分な機械的強度を得ることができないおそれがある。さらに、DTA(示差熱分析)により測定される結晶化ピーク温度(Tc)が880℃以下が好ましい。結晶化ピーク温度(Tc)が880℃を超える場合、寸法精度が低下するおそれがある。 Further, it is preferable that crystals precipitate when fired at 800 ° C. or higher and 930 ° C. or lower. If crystals do not precipitate, sufficient mechanical strength may not be obtained. Furthermore, the crystallization peak temperature (Tc) measured by DTA (differential thermal analysis) is preferably 880 ° C. or less. When the crystallization peak temperature (Tc) exceeds 880 ° C., the dimensional accuracy may be lowered.
 このようなガラス粉末のガラス組成としては、例えば、下記酸化物換算表示で、SiOを57mol%以上65mol%以下、Bを13mol%以上18mol%以下、CaOを9mol%以上23mol%以下、Alを3mol%以上8mol%以下、KOおよびNaOから選ばれる少なくとも一方を合計で0.5mol%以上6mol%以下含有するものが好ましい。これにより、得られる基体や枠体の表面の平坦度を向上させることが容易となる。 As a glass composition of such a glass powder, for example, in the following oxide conversion display, SiO 2 is 57 mol% or more and 65 mol% or less, B 2 O 3 is 13 mol% or more and 18 mol% or less, and CaO is 9 mol% or more and 23 mol% or less. In addition, it is preferable that Al 2 O 3 is contained in an amount of 3 mol% to 8 mol% and at least one selected from K 2 O and Na 2 O in total of 0.5 mol% to 6 mol%. Thereby, it becomes easy to improve the flatness of the surface of the obtained base or frame.
 ここで、SiOは、ガラスのネットワークフォーマとなる。SiOの含有量が57mol%未満の場合、安定なガラスを得ることが難しく、また化学的耐久性も低下するおそれがある。一方、SiOの含有量が65mol%を超える場合、ガラス溶融温度やガラス転移点(Tg)が過度に高くなるおそれある。SiOの含有量は、好ましくは58mol%以上、より好ましくは59mol%以上、特に好ましくは60mol%以上である。また、SiOの含有量は、好ましくは64mol%以下、より好ましくは63mol%以下である。 Here, SiO 2 becomes a glass network former. When the content of SiO 2 is less than 57 mol%, it is difficult to obtain a stable glass and the chemical durability may be lowered. On the other hand, when the content of SiO 2 exceeds 65 mol%, the glass melting temperature and the glass transition point (Tg) may be excessively high. The content of SiO 2 is preferably 58 mol% or more, more preferably 59 mol% or more, and particularly preferably 60 mol% or more. The content of SiO 2 is preferably 64 mol% or less, more preferably 63 mol% or less.
 Bは、ガラスのネットワークフォーマとなる。Bの含有量が13mol%未満の場合、ガラス溶融温度やガラス転移点(Tg)が過度に高くなるおそれがある。一方、Bの含有量が18mol%を超える場合、安定なガラスを得ることが難しく、また化学的耐久性も低下するおそれがある。Bの含有量は、好ましくは14mol%以上、より好ましくは15mol%以上である。また、Bの含有量は、好ましくは17mol%以下、より好ましくは16mol%以下である。 B 2 O 3 is a glass network former. If the content of B 2 O 3 is less than 13 mol%, there is a possibility that the glass melting temperature or the glass transition point (Tg) becomes too high. On the other hand, when the content of B 2 O 3 exceeds 18 mol%, it is difficult to obtain a stable glass and the chemical durability may be lowered. The content of B 2 O 3 is preferably 14 mol% or more, more preferably 15 mol% or more. Further, the content of B 2 O 3 is preferably 17 mol% or less, more preferably 16 mol% or less.
 Alは、ガラスの安定性、化学的耐久性、および強度を高めるために添加される。Alの含有量が3mol%未満の場合、ガラスが不安定となるおそれがある。一方、Alの含有量が8mol%を超える場合、ガラス溶融温度やガラス転移点(Tg)が過度に高くなるおそれがある。Alの含有量は、好ましくは4mol%以上、より好ましくは5mol%以上である。また、Alの含有量は、好ましくは7mol%以下、より好ましくは6mol%以下である。 Al 2 O 3 is added to increase the stability, chemical durability, and strength of the glass. When the content of Al 2 O 3 is less than 3 mol%, the glass may become unstable. On the other hand, when the content of Al 2 O 3 exceeds 8 mol%, the glass melting temperature and the glass transition point (Tg) may be excessively high. The content of Al 2 O 3 is preferably 4 mol% or more, more preferably 5 mol% or more. The content of Al 2 O 3 is preferably 7 mol% or less, more preferably 6 mol% or less.
 CaOは、ガラスの安定性や結晶の析出性を高めると共に、ガラス溶融温度やガラス転移点(Tg)を低下させるために添加される。CaOの含有量が9mol%未満の場合、ガラス溶融温度が過度に高くなるおそれがある。一方、CaOの含有量が23mol%を超える場合、ガラスが不安定となるおそれがある。CaOの含有量は、好ましくは12mol%以上、より好ましくは13mol%以上、特に好ましくは14mol%以上である。また、CaOの含有量は、好ましくは22mol%以下、より好ましくは21mol%以下、特に好ましくは20mol%以下である。 CaO is added to increase glass stability and crystal precipitation, and to lower the glass melting temperature and glass transition point (Tg). When the content of CaO is less than 9 mol%, the glass melting temperature may be excessively high. On the other hand, when the content of CaO exceeds 23 mol%, the glass may become unstable. The content of CaO is preferably 12 mol% or more, more preferably 13 mol% or more, and particularly preferably 14 mol% or more. The CaO content is preferably 22 mol% or less, more preferably 21 mol% or less, and particularly preferably 20 mol% or less.
 KO、NaOは、ガラス転移点(Tg)を低下させるために添加される。KOおよびNaOの合計した含有量が0.5mol%未満の場合、ガラス溶融温度やガラス転移点(Tg)が過度に高くなるおそれがある。一方、KOおよびNaOの合計した含有量が6mol%を超える場合、化学的耐久性、特に耐酸性が低下するおそれがあり、電気的絶縁性も低下するおそれがある。KOおよびNaOの合計した含有量は、0.8mol%以上5mol%以下が好ましい。 K 2 O and Na 2 O are added to lower the glass transition point (Tg). When the total content of K 2 O and Na 2 O is less than 0.5 mol%, the glass melting temperature and the glass transition point (Tg) may be excessively high. On the other hand, when the total content of K 2 O and Na 2 O exceeds 6 mol%, chemical durability, particularly acid resistance may be lowered, and electrical insulation may be lowered. The total content of K 2 O and Na 2 O is preferably 0.8 mol% or more and 5 mol% or less.
 なお、ガラス粉末は、必ずしも上記成分のみからなるものに限定されず、ガラス転移点(Tg)等の諸特性を満たす範囲で他の成分を含有できる。他の成分を含有する場合、その合計した含有量は10mol%以下が好ましい。 In addition, glass powder is not necessarily limited to what consists only of the said component, Other components can be contained in the range with which various characteristics, such as a glass transition point (Tg), are satisfy | filled. When other components are contained, the total content is preferably 10 mol% or less.
 ガラス粉末は、上記したようなガラス組成となるように、ガラス原料を溶融法によってガラスを製造し、乾式粉砕法や湿式粉砕法によって粉砕することにより得る。湿式粉砕法の場合、溶媒としては水が好ましい。粉砕は、例えばロールミル、ボールミル、ジェットミル等の粉砕機を用いて行う。 The glass powder is obtained by producing glass from a glass raw material by a melting method and pulverizing by a dry pulverization method or a wet pulverization method so as to have the glass composition as described above. In the case of the wet pulverization method, water is preferable as the solvent. The pulverization is performed using a pulverizer such as a roll mill, a ball mill, or a jet mill.
 ガラス粉末の50%粒径(D50)は0.5μm以上2μm以下が好ましい。ガラス粉末の50%粒径が0.5μm未満の場合、ガラス粉末が凝集しやすく、取り扱いが困難となると共に、均一に分散させることが困難となる。一方、ガラス粉末の50%粒径が2μmを超える場合、ガラス軟化温度の上昇や焼結不足が発生するおそれがある。粒径の調整は、例えば粉砕後に必要に応じて分級することにより行う。なお、本明細書において、粒径はレーザ回折散乱法による粒子径測定装置により得られる値をいう。 The 50% particle size (D 50 ) of the glass powder is preferably 0.5 μm or more and 2 μm or less. When the 50% particle size of the glass powder is less than 0.5 μm, the glass powder is likely to aggregate, making it difficult to handle and uniformly dispersing. On the other hand, when the 50% particle size of the glass powder exceeds 2 μm, the glass softening temperature may increase or the sintering may be insufficient. The particle size is adjusted by, for example, classification as necessary after pulverization. In addition, in this specification, a particle size means the value obtained with the particle diameter measuring apparatus by a laser diffraction scattering method.
 一方、セラミックス粉末としては、従来からLTCC基板の製造に用いられるものを特に制限なく用いることができ、例えばアルミナ粉末、ジルコニア粉末、またはアルミナ粉末とジルコニア粉末との混合物を好適に用いることができる。また、本発明において必要に応じて用いられる、拡散反射性を有するLTCCを作製する場合には、上記セラミックス粉末として、アルミナ粉末とジルコニア粉末との混合物が好ましく用いられる。アルミナ粉末とジルコニア粉末の混合物としては、アルミナ粉末:ジルコニア粉末の混合割合が質量比で90:10~60:40の混合物が好ましい。セラミックス粉末の50%粒径(D50)は、上記いずれの場合も、例えば0.5μm以上4μm以下が好ましい。 On the other hand, as the ceramic powder, those conventionally used for the production of LTCC substrates can be used without particular limitation. For example, alumina powder, zirconia powder, or a mixture of alumina powder and zirconia powder can be suitably used. Moreover, when producing the LTCC which has a diffuse reflectance used as needed in this invention, the mixture of an alumina powder and a zirconia powder is used preferably as said ceramic powder. The mixture of alumina powder and zirconia powder is preferably a mixture in which the mixing ratio of alumina powder: zirconia powder is 90:10 to 60:40 by mass ratio. The 50% particle size (D 50 ) of the ceramic powder is preferably 0.5 μm or more and 4 μm or less in any of the above cases.
 このようなガラス粉末とセラミックス粉末とを、例えばガラス粉末が30質量%以上50質量%以下、セラミックス粉末が50質量%以上70質量%以下となるように配合、混合することによりガラスセラミックス組成物を得る。 A glass ceramic composition is prepared by blending and mixing such glass powder and ceramic powder such that the glass powder is 30% by mass to 50% by mass and the ceramic powder is 50% by mass to 70% by mass. obtain.
 このガラスセラミックス組成物に、バインダー、必要に応じて可塑剤、分散剤、溶剤等を添加することによりスラリーを得る。バインダーとしては、例えばポリビニルブチラール、アクリル樹脂等を好適に用いる。可塑剤としては、例えばフタル酸ジブチル、フタル酸ジオクチル、フタル酸ブチルベンジル等を用いる。また、溶剤としては、例えばトルエン、キシレン、2-プロパノール、2-ブタノール等の有機溶剤を好適に用いる。 A slurry is obtained by adding a binder and, if necessary, a plasticizer, a dispersant, a solvent and the like to the glass ceramic composition. As the binder, for example, polyvinyl butyral or acrylic resin is preferably used. As the plasticizer, for example, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate, or the like is used. As the solvent, for example, an organic solvent such as toluene, xylene, 2-propanol, 2-butanol or the like is preferably used.
(B)ペースト層形成工程
 (B)工程では、上記で得られた基体用グリーンシート2に、以下の(B-1)配線導体用ペースト層形成工程、(B-2)金属層用ペースト層形成工程、(B-3)オーバーコートガラスペースト層形成工程の順で各ペースト層を形成する。
(B) Paste layer forming step In the (B) step, the following (B-1) wiring conductor paste layer forming step and (B-2) metal layer paste layer are applied to the green sheet 2 for the substrate obtained above. Each paste layer is formed in the order of the forming step and (B-3) overcoat glass paste layer forming step.
(B-1)配線導体用ペースト層形成工程
 基体用グリーンシート2には、まず、導体ペーストを用いて配線導体用ペースト層(素子接続端子用ペースト層5、外部接続端子用ペースト層6、および貫通導体用ペースト層7)を形成する。具体的には、基体用グリーンシート2の上記所定位置に一対の貫通導体7を配設するための、主面21から裏面23に貫通する一対の貫通孔を作製し、この貫通孔を充填するように貫通導体用ペースト層7を形成する。また、主面21に貫通導体用ペースト層7を覆うように略長方形状に素子接続端子用ペースト層5を形成するとともに、裏面23に貫通導体用ペースト層7と電気的に接続する外部接続端子用ペースト層6を形成する。
(B-1) Wiring conductor paste layer forming step First, the substrate green sheet 2 is formed by using a conductor paste to form a wiring conductor paste layer (element connection terminal paste layer 5, external connection terminal paste layer 6, and A through conductor paste layer 7) is formed. Specifically, a pair of through-holes penetrating from the main surface 21 to the back surface 23 for arranging the pair of through-conductors 7 at the predetermined positions of the base green sheet 2 is formed and filled with the through-holes. Thus, the paste layer 7 for through conductors is formed. Further, the element connection terminal paste layer 5 is formed in a substantially rectangular shape so as to cover the through conductor paste layer 7 on the main surface 21, and the external connection terminal is electrically connected to the through conductor paste layer 7 on the back surface 23. A paste layer 6 is formed.
 配線導体用ペースト層の形成に用いる導体ペーストとしては、例えば銅、銀、金等を主成分とする金属粉末に、エチルセルロース等のビヒクル、必要に応じて溶剤等を添加してペースト状としたものを使用できる。なお、上記金属粉末としては、銀からなる金属粉末、銀と白金からなる金属粉末、または銀とパラジウムからなる金属粉末が好ましく用いられる。 As a conductor paste used for forming a wiring conductor paste layer, for example, a metal powder mainly composed of copper, silver, gold, etc., added with a vehicle such as ethyl cellulose, and a solvent, etc., if necessary, is made into a paste. Can be used. As the metal powder, a metal powder composed of silver, a metal powder composed of silver and platinum, or a metal powder composed of silver and palladium is preferably used.
 素子接続端子用ペースト層5、外部接続端子用ペースト層6、および貫通導体用ペースト層7の形成方法としては、スクリーン印刷法により上記導体ペーストを塗布、充填する方法が挙げられる。形成される素子接続端子用ペースト層5および外部接続端子用ペースト層6の膜厚は、最終的に得られる素子接続端子および外部接続端子の膜厚が上記所定の膜厚となるように調整される。 Examples of a method for forming the element connection terminal paste layer 5, the external connection terminal paste layer 6, and the through conductor paste layer 7 include a method of applying and filling the conductor paste by a screen printing method. The film thicknesses of the element connection terminal paste layer 5 and the external connection terminal paste layer 6 to be formed are adjusted so that the film thicknesses of the element connection terminals and the external connection terminals finally obtained are the above-described predetermined film thicknesses. The
(B-2)金属層用ペースト層形成工程
 上記基体用グリーンシート2の主面21上の、素子接続端子用ペースト層5が形成された部分およびその周囲近傍を除く、上記所定位置に金属層用ペースト層8を形成する。金属層用ペースト層8は、焼成後にその外側の端縁が凹部4の底面24の外周より外側に、好ましくは片側で100~200μm外側に、より好ましくは130~170μm外側に、位置するように凹部4の底面24の外周と相似形状で形成される。金属層用ペースト層8の膜厚は、最終的に得られる金属層の膜厚が上記所定の膜厚となるように調整される。
(B-2) Metal layer paste layer forming step The metal layer at the predetermined position excluding the portion where the element connection terminal paste layer 5 is formed and the vicinity thereof on the main surface 21 of the green sheet 2 for the substrate. A paste layer 8 is formed. The metal layer paste layer 8 is positioned so that the outer edge of the metal layer paste layer 8 is outside the outer periphery of the bottom surface 24 of the recess 4 after firing, preferably 100 to 200 μm outside on one side, more preferably 130 to 170 μm outside. It is formed in a shape similar to the outer periphery of the bottom surface 24 of the recess 4. The film thickness of the metal layer paste layer 8 is adjusted so that the finally obtained metal layer has the predetermined film thickness.
 ここで、図2に示す発光素子用基板が図1に示す発光素子用基板と異なるのは金属層用ペースト層8の外側の端縁の形状のみである。図2に示す発光素子用基板においては、金属層用ペースト層8の外側の端縁は、基体用グリーンシート2の主面21の形状と相似形状の略正方形であって、焼成後に、少なくともその端縁の一部が凹部4の底面24の外周を跨ぐように、好ましくは底面24の全外周のうちの合計長さで40%以上を、より好ましくは60%以上を、金属層用ペースト層8が跨ぐように形成される。図2に示す発光素子用基板は、金属層用ペースト層を形成する際の形状以外は、図1に示す発光素子用基板と全て同様にして作製できる。 Here, the light emitting element substrate shown in FIG. 2 differs from the light emitting element substrate shown in FIG. 1 only in the shape of the outer edge of the metal layer paste layer 8. In the light emitting element substrate shown in FIG. 2, the outer edge of the metal layer paste layer 8 has a substantially square shape similar to the shape of the main surface 21 of the base green sheet 2, and at least after firing, The total length of the entire outer periphery of the bottom surface 24 is preferably 40% or more, more preferably 60% or more so that a part of the edge straddles the outer periphery of the bottom surface 24 of the recess 4. 8 is formed to straddle. The light emitting element substrate shown in FIG. 2 can be manufactured in the same manner as the light emitting element substrate shown in FIG. 1 except for the shape when the metal layer paste layer is formed.
 金属層用ペーストとしては、上に説明した銀を主成分として含む金属材料をエチルセルロース等のビヒクル、必要に応じて溶剤等を添加してペースト状としたものを使用できる。 As the metal layer paste, it is possible to use a paste obtained by adding the above-described metal material containing silver as a main component to a vehicle such as ethyl cellulose and, if necessary, a solvent.
(B-3)オーバーコートガラスペースト層形成工程
 次いで、基体用グリーンシート2の主面21上に、凹部4の底面24となる部分に形成されている金属層用ペースト層8の端縁を含む全体を覆いかつ素子接続端子用ペースト層5が形成された部分およびその周囲近傍を除くように、オーバーコートガラスペースト層9を形成する。
(B-3) Overcoat Glass Paste Layer Formation Step Next, the edge of the metal layer paste layer 8 formed on the main surface 21 of the base green sheet 2 is formed on the portion serving as the bottom surface 24 of the recess 4. An overcoat glass paste layer 9 is formed so as to cover the whole and exclude the portion where the element connection terminal paste layer 5 is formed and the vicinity thereof.
 オーバーコートガラスペーストは、ガラス粉末(オーバーコートガラス層用ガラス粉末)に、エチルセルロース等のビヒクル、必要に応じて溶剤等を添加してペースト状としたものを使用できる。形成されるオーバーコートガラスペースト層9の膜厚は、最終的に得られるオーバーコートガラス層9の膜厚が上記所望の膜厚となるように調整される。 As the overcoat glass paste, a paste obtained by adding a vehicle such as ethyl cellulose to a glass powder (glass powder for an overcoat glass layer) and a solvent as required can be used. The film thickness of the overcoat glass paste layer 9 to be formed is adjusted so that the film thickness of the finally obtained overcoat glass layer 9 becomes the desired film thickness.
 オーバーコートガラス層用のガラス粉末としては、以下の(D)焼成工程における焼成により、膜状のガラスを得られるものであればよく、その50%粒径(D50)は0.5μm以上2μm以下が好ましい。また、オーバーコートガラス層9の表面粗さRaの調整は、例えばこのオーバーコートガラス層用のガラス粉末の粒度を調整することにより行える。すなわち、オーバーコートガラス層用ガラス粉末として、焼成時に十分に溶融し、流動性に優れる、上記50%粒径(D50)の範囲で、表面粗さRaを上記好ましい範囲に調整できる。 As the glass powder for the overcoat glass layer, any glass powder can be obtained by firing in the following (D) firing step, and its 50% particle size (D 50 ) is 0.5 μm or more and 2 μm. The following is preferred. The surface roughness Ra of the overcoat glass layer 9 can be adjusted, for example, by adjusting the particle size of the glass powder for the overcoat glass layer. That is, as the glass powder for the overcoat glass layer, the surface roughness Ra can be adjusted to the above preferable range within the range of the 50% particle size (D 50 ), which is sufficiently melted during firing and excellent in fluidity.
(C)積層工程
 上記(B)工程で得られた、各種ペースト層が形成された基体用グリーンシート2上に、上記(A)工程で作製した枠体用グリーンシート3を積層して、未焼結の発光素子用基板1を得る。
(C) Laminating Step On the green sheet 2 for the substrate on which the various paste layers are formed obtained in the step (B), the green sheet 3 for a frame body prepared in the step (A) is laminated. A sintered light-emitting element substrate 1 is obtained.
(D)焼成工程
 上記(C)工程後、得られた未焼結の発光素子用基板1について、必要に応じてバインダー等を除去するための脱脂を行い、ガラスセラミックス組成物等を焼結させるための焼成(焼成温度:800~930℃)を行う。
(D) Firing step After the step (C), the obtained unsintered substrate 1 for light-emitting element is degreased to remove a binder or the like as necessary, and the glass ceramic composition or the like is sintered. Firing (firing temperature: 800 to 930 ° C.) is performed.
 脱脂は、例えば500℃以上600℃以下の温度で1時間以上10時間以下保持することにより行える。脱脂温度が500℃未満もしくは脱脂時間が1時間未満の場合、バインダー等を十分に除去できないおそれがある。一方、脱脂温度は600℃程度、脱脂時間は10時間程度とすれば、十分にバインダー等を除去でき、これを超えるとかえって生産性等が低下するおそれがある。 Degreasing can be performed, for example, by holding at a temperature of 500 ° C. to 600 ° C. for 1 hour to 10 hours. When the degreasing temperature is less than 500 ° C. or the degreasing time is less than 1 hour, the binder or the like may not be sufficiently removed. On the other hand, if the degreasing temperature is about 600 ° C. and the degreasing time is about 10 hours, the binder and the like can be sufficiently removed, and if it exceeds this, productivity and the like may be lowered.
 また、焼成は、基体2および枠体3の緻密な構造の獲得と生産性を考慮して、800℃~930℃の温度範囲で適宜時間を調整することで行える。具体的には、850℃以上900℃以下の温度で20分以上60分以下保持することが好ましく、特に860℃以上880℃以下の温度で行うことが好ましい。焼成温度が800℃未満では、基体2および枠体3が緻密な構造として得られないおそれがある。一方、焼成温度は930℃を超えると基体が変形するなど生産性等が低下するおそれがある。また、上記配線導体用の導体ペーストや金属層用ペーストとして、銀を主成分とする金属粉末を含有する金属ペーストを用いた場合、焼成温度が880℃を超えると、過度に軟化するために所定の形状を維持できなくなるおそれがある。 In addition, the firing can be performed by appropriately adjusting the time in a temperature range of 800 ° C. to 930 ° C. in consideration of obtaining a dense structure of the base 2 and the frame 3 and productivity. Specifically, it is preferable to hold at a temperature of 850 ° C. or higher and 900 ° C. or lower for 20 minutes or longer and 60 minutes or shorter, particularly preferably at a temperature of 860 ° C. or higher and 880 ° C. or lower. If the firing temperature is less than 800 ° C., the base 2 and the frame 3 may not be obtained as a dense structure. On the other hand, if the firing temperature exceeds 930 ° C., the substrate may be deformed and the productivity may decrease. Further, when a metal paste containing a metal powder mainly composed of silver is used as the conductor paste for the wiring conductor or the metal layer paste, when the firing temperature exceeds 880 ° C., the metal paste is excessively softened. It may become impossible to maintain the shape.
 このようにして、未焼結の発光素子用基板1が焼成され発光素子用基板1が得られるが、焼成後、必要に応じて素子接続端子5および外部接続端子6の全体を被覆するように、上に説明した、ニッケルメッキ、クロムメッキ、銀メッキ、ニッケル/銀メッキ、金メッキ、ニッケル/金メッキ等の通常、発光素子用基板において導体保護用に用いられる導電性保護層をそれぞれ配設できる。これらのうちでも、ニッケル/金メッキが好ましく用いられ、例えば、ニッケルメッキ層はスルファミン酸ニッケル浴等を使用して、金メッキ層はシアン化金カリウム浴等を使用して、それぞれ電解メッキによって形成できる。 In this way, the unsintered light emitting element substrate 1 is fired to obtain the light emitting element substrate 1. After firing, the whole of the element connection terminals 5 and the external connection terminals 6 are covered as necessary. The conductive protective layers used for conductor protection in the substrate for a light emitting element, such as nickel plating, chrome plating, silver plating, nickel / silver plating, gold plating, nickel / gold plating, etc., described above can be provided. Of these, nickel / gold plating is preferably used. For example, the nickel plating layer can be formed by electrolytic plating using a nickel sulfamate bath or the like, and the gold plating layer using a potassium gold cyanide bath or the like.
 以上、本発明の発光素子用基板の実施形態の一例について、その製造方法を説明したが、基体用グリーンシート2、枠体用グリーンシート3等は、必ずしも単一のグリーンシートからなる必要はなく、複数枚のグリーンシートを積層したものであってもよい。また、各部の形成順序等についても、発光素子用基板の製造が可能な限度において適宜変更できる。 As mentioned above, although the manufacturing method was demonstrated about the example of embodiment of the board | substrate for light emitting elements of this invention, the green sheet 2 for base | substrates, the green sheet 3 for frames, etc. do not necessarily need to consist of a single green sheet. Alternatively, a laminate of a plurality of green sheets may be used. Further, the order of forming each part can be changed as appropriate as long as the light emitting element substrate can be manufactured.
 なお、本発明の発光素子用基板は、通常、多数個が一度に製造できるように連結基板または大寸法の基板を作製し、これを分割する工程を得て個々の発光素子用基板を作製する方法により作製されてもよい。その場合、分割のタイミングは、上記焼成後であれば、発光素子を搭載する前でもよいし、発光素子搭載後、プリント配線基板等に半田固定・実装される前でもよい。 In addition, the light emitting element substrate of the present invention is usually manufactured as a connection substrate or a large-sized substrate so that a large number of light emitting element substrates can be manufactured at a time, and a process for dividing the substrate is performed to manufacture individual light emitting element substrates. It may be produced by a method. In that case, as long as the timing of division is after the firing, it may be before the light emitting element is mounted, or after the light emitting element is mounted, before the solder fixing and mounting to the printed wiring board or the like.
 無機絶縁材料としてLTCCを用いた本発明の発光素子用基板、その製造方法、および発光装置について上に説明したが、以下に無機絶縁材料としてアルミナセラミックスを用いた場合の、本発明の発光素子用基板の実施形態について構成と製造方法を簡単に説明する。 The substrate for a light emitting element of the present invention using LTCC as an inorganic insulating material, the manufacturing method thereof, and the light emitting device have been described above. For the light emitting element of the present invention when alumina ceramic is used as the inorganic insulating material, A configuration and a manufacturing method of the embodiment of the substrate will be briefly described.
 例えば、図1に示すLTCCを用いた発光素子用基板1と同様の発光素子用基板を、アルミナセラミックスを用いて作製する場合、既に説明した通り、発光素子用基板全体の反りを低減させるために設ける上記金属層としては、その一部が基体と枠体の間に配設される。このことから、アルミナセラミックスとの同時焼成が必須となるため、タングステンおよびモリブデンからなる群から選ばれる高融点金属の少なくとも1種を主成分とする高融点金属からなるものが選ばれる。ここにおいて、上記した高融点金属の少なくとも1種を主成分とする高融点金属からなる金属層は、かかる高融点金属(ここにおいて高融点金属は、前記した高融点金属の合金も含む)を、90%以上含む金属層を指す。 For example, when a light-emitting element substrate similar to the light-emitting element substrate 1 using LTCC shown in FIG. 1 is manufactured using alumina ceramics, in order to reduce warpage of the entire light-emitting element substrate, as already described. A part of the metal layer to be provided is disposed between the base and the frame. For this reason, since co-firing with alumina ceramics is essential, one made of a refractory metal containing at least one refractory metal selected from the group consisting of tungsten and molybdenum as a main component is selected. Here, the metal layer composed of a refractory metal containing as a main component at least one of the refractory metals described above includes such a refractory metal (herein, the refractory metal includes an alloy of the refractory metal described above), It refers to a metal layer containing 90% or more.
 ここで、図1に示す発光素子用基板1において、金属層8は、低温焼成が可能な銀を主成分とする金属材料からなり、反射層としての機能を果たしているが、一方、アルミナセラミックス用いた発光素子用基板の場合、銀を主成分とする金属材料の層と組み合わせて用いる上記したタングステン、モリブデン等からなる金属層は光反射性を十分に有しないことから、この場合の金属層は、通常、焼成後にその上に銀等の反射性の良好な金属を用いた反射層を形成するための下地層としての役割が果たされるように設計される。 Here, in the light emitting element substrate 1 shown in FIG. 1, the metal layer 8 is made of a metal material mainly composed of silver that can be fired at a low temperature, and functions as a reflective layer. In the case of the conventional light emitting element substrate, the metal layer made of tungsten, molybdenum, or the like used in combination with the metal material layer mainly composed of silver does not have sufficient light reflectivity. Usually, after firing, it is designed to serve as a base layer for forming a reflective layer using a metal having good reflectivity such as silver.
 したがって、アルミナセラミックスを用いた発光素子用基板の構成としては、例えば、図1に示す発光素子用基板1に比し、オーバーコートガラス層9と金属層8の間に銀等の反射層を形成し、さらに各部材の構成材料、具体的には、無機絶縁材料、金属材料等をそれぞれアルミナセラミックス、高融点金属等に換える以外は、図1に示す発光素子用基板1の構成と同様にできる。なお、タングステン、モリブデン等からなる金属層の上層に銀等の反射性の良好な金属を用いた反射層(銀反射層)を形成する場合には、銀反射層は凹部4の底面24の外周を跨いで基体2と枠体3の間に及んで形成されることはない。また、オーバーコートガラス層9は、必要に応じて形成されるものであり、発光素子用基板の設計によっては形成されない場合もある。 Therefore, as a structure of the light emitting element substrate using alumina ceramics, for example, a reflective layer such as silver is formed between the overcoat glass layer 9 and the metal layer 8 as compared with the light emitting element substrate 1 shown in FIG. In addition, the constituent material of each member, specifically, the inorganic insulating material, the metal material, etc. can be the same as the configuration of the light emitting element substrate 1 shown in FIG. . When a reflective layer (silver reflective layer) using a metal having good reflectivity such as silver is formed on the upper layer of a metal layer made of tungsten, molybdenum or the like, the silver reflective layer is an outer periphery of the bottom surface 24 of the recess 4. It is not formed between the base 2 and the frame body 3 across the frame. The overcoat glass layer 9 is formed as necessary, and may not be formed depending on the design of the light emitting element substrate.
 また、このようなアルミナセラミックスを用いた発光素子用基板は、例えば、以下のようにして製造できる。
(A’)グリーンシート作製工程
 ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物(LTCC用組成物)に換えて、アルミナを主成分としたアルミナセラミックス用組成物を用いて、上記(A)グリーンシート作製工程と同様の工程を経て、基体用グリーンシート2および枠体用グリーンシート3を得る。なお、アルミナを主成分としたアルミナセラミックス用組成物としては、アルミナセラミックスを作製する際に通常用いるのと同様のアルミナセラミックス用組成物が特に制限なく使用できる。
Moreover, the light emitting element substrate using such alumina ceramics can be manufactured as follows, for example.
(A ′) Green sheet production step In place of the glass ceramic composition (LTCC composition) containing glass powder and ceramic powder, an alumina ceramic composition containing alumina as a main component is used. Through the same process as the sheet manufacturing process, the base green sheet 2 and the frame green sheet 3 are obtained. In addition, as a composition for alumina ceramics which has an alumina as a main component, the composition for alumina ceramics normally used when producing an alumina ceramic can be used without a restriction | limiting in particular.
(B’)配線導体用ペースト層および金属層用ペースト層形成工程
 アルミナセラミックスを用いた発光素子用基板の場合、配線導体層や反り低減させるための金属層(反射層の下地層として機能する)等の金属層を構成する金属材料としては、上記の通りタングステンやモリブデン等の高融点金属を主成分とする金属材料を用いる。すなわち、上記で用いた銀を主成分とする導体用ペーストおよび金属層用ペーストに換えて、タングステンやモリブデン等の高融点金属を主成分とした、高耐熱の配線導体用ペーストおよび金属層用ペーストを作製して、上記(B)配線導体用ペースト層および金属層用ペースト層形成工程と同様の工程を経る。このようにして、上記(A’)工程で得られた基体用グリーンシート2に配線導体用ペースト層および金属層用ペースト層を形成する。
(B ′) Wiring conductor paste layer and metal layer paste layer forming step In the case of a substrate for a light emitting device using alumina ceramics, a wiring conductor layer and a metal layer for reducing warping (functions as a base layer of a reflective layer) As described above, a metal material mainly composed of a refractory metal such as tungsten or molybdenum is used as the metal material constituting the metal layer. That is, in place of the silver-based conductor paste and metal layer paste used above, a highly heat-resistant wiring conductor paste and metal layer paste mainly composed of a refractory metal such as tungsten or molybdenum And (B) the same process as the (B) wiring conductor paste layer and metal layer paste layer forming process. In this manner, the wiring conductor paste layer and the metal layer paste layer are formed on the base green sheet 2 obtained in the step (A ′).
(C’)積層工程
 上記(C)積層と同様の工程を経て、未焼結の発光素子用基板1を得る。
(C ′) Lamination Step An unsintered substrate 1 for a light emitting element is obtained through the same step as the above (C) lamination.
(D’)焼成工程
 上記(C’)工程後、得られた未焼結の発光素子用基板1について、必要に応じてバインダー等を除去するための脱脂を行い、アルミナセラミックス用組成物等を焼結させるため焼成(焼成温度:1400~1700℃)を行う。脱脂は、例えば、200℃以上500℃以下の温度で約1時間以上10時間以下保持する条件が好ましい。焼成は、例えば、1400℃以上1700℃以下の温度で数時間保持する条件が好ましい。ただし、加熱時、特に焼成時に導体を酸化させないために、還元雰囲気(例えば、水素雰囲気)中もしくは、不活性ガス雰囲気中もしくは、真空中となる、非酸化性雰囲気を保った加熱をしなければならない。
(D ′) Firing Step After the step (C ′), the obtained unsintered substrate 1 for light-emitting element is degreased to remove a binder or the like as necessary, and a composition for alumina ceramics or the like is obtained. Firing (firing temperature: 1400 to 1700 ° C.) is performed for sintering. For example, the degreasing is preferably performed under a condition of holding at a temperature of 200 ° C. to 500 ° C. for about 1 hour to 10 hours. For example, the firing is preferably performed at a temperature of 1400 ° C. or higher and 1700 ° C. or lower for several hours. However, in order not to oxidize the conductor during heating, particularly during firing, heating must be performed in a reducing atmosphere (for example, a hydrogen atmosphere), in an inert gas atmosphere, or in a vacuum, while maintaining a non-oxidizing atmosphere. Don't be.
 このようにして、未焼結の発光素子用基板1が焼成され発光素子用基板1が得られるが、反射層の下地層として形成された金属層8の表面に、反射性のよい銀等を主成分とする反射層を、スクリーン印刷法、スパッタ蒸着法やインクジェット塗布法等の方法を組み合わせることによって形成する。さらに、この反射層の全体を被覆するようにして、必要に応じて、例えば、上記LTCCを用いた発光素子用基板1と同様のオーバーコートガラス層9を形成する。また、素子接続端子5および外部接続端子6に対しても、必要に応じて、その全体を被覆するように、上記LTCCを用いた発光素子用基板1と同様の導電性保護層を配設できる。 In this way, the unsintered light emitting element substrate 1 is baked to obtain the light emitting element substrate 1, and silver or the like having good reflectivity is applied to the surface of the metal layer 8 formed as the base layer of the reflective layer. The reflective layer as a main component is formed by combining methods such as screen printing, sputter deposition, and ink jet coating. Furthermore, an overcoat glass layer 9 similar to the light emitting element substrate 1 using, for example, the LTCC is formed as necessary so as to cover the entire reflective layer. Also, the conductive protective layer similar to that of the light emitting element substrate 1 using the LTCC can be disposed on the element connection terminals 5 and the external connection terminals 6 as needed so as to cover the whole. .
 以下に、本発明の実施例を説明する。なお、本発明はこれら実施例に限定されるものではない。
[実施例1]
 以下に説明する方法で、図1に示す発光素子用基板と同様の構造の発光素子用基板を作製した。なお、上記同様、焼成の前後で部材に用いる符号は同じものを用いた。
Examples of the present invention will be described below. The present invention is not limited to these examples.
[Example 1]
A light emitting element substrate having a structure similar to that of the light emitting element substrate shown in FIG. 1 was manufactured by the method described below. In addition, the same code | symbol used for a member before and behind baking was used similarly to the above.
 まず、発光素子用基板1の基体2および枠体3を作製するための基体用グリーンシート2、枠体用グリーンシート3を作製した。各グリーンシートは、下記酸化物換算で、SiOが60.4mol%、Bが15.6mol%、Alが6mol%、CaOが15mol%、KOが1mol%、NaOが2mol%の組成のガラスとなるように原料を配合、混合し、この原料混合物を白金ルツボに入れて1600℃で60分間溶融させた後、この溶融状態のガラスを流し出し冷却した。このガラスをアルミナ製ボールミルにより40時間粉砕してガラス粉末を製造した。なお、粉砕時の溶媒にはエチルアルコールを用いた。 First, the base green sheet 2 and the frame green sheet 3 for manufacturing the base 2 and the frame 3 of the light emitting element substrate 1 were prepared. Each green sheet, the following terms of oxide, SiO 2 is 60.4mol%, B 2 O 3 is 15.6mol%, Al 2 O 3 is 6 mol%, CaO is 15 mol%, K 2 O is 1 mol%, Na The raw materials were blended and mixed so that the glass had a composition of 2 O in 2 mol%. The raw material mixture was put in a platinum crucible and melted at 1600 ° C. for 60 minutes, and then the molten glass was poured out and cooled. This glass was pulverized with an alumina ball mill for 40 hours to produce a glass powder. In addition, ethyl alcohol was used as a solvent for pulverization.
 このガラス粉末が35質量%、アルミナ粉末(昭和電工社製、商品名:AL-45H)が40質量%、ジルコニア粉末(第一稀元素化学工業社製、商品名:HSY-3F-J)が25質量%となるように配合し、混合することによりガラスセラミックス組成物を製造した。このガラスセラミックス組成物50gに、有機溶剤(トルエン、キシレン、2-プロパノール、2-ブタノールを質量比4:2:2:1で混合したもの)15g、可塑剤(フタル酸ジ-2-エチルヘキシル)2.5g、バインダーとしてのポリビニルブチラール(デンカ社製、商品名:PVK#3000K)5g、さらに分散剤(ビックケミー社製、商品名:BYK180)0.5gを配合し、混合してスラリーを調製した。 35% by mass of this glass powder, 40% by mass of alumina powder (manufactured by Showa Denko KK, trade name: AL-45H), and zirconia powder (manufactured by Daiichi Rare Element Chemical Industries, trade name: HSY-3F-J) A glass ceramic composition was produced by blending and mixing so as to be 25% by mass. 50 g of this glass ceramic composition, 15 g of an organic solvent (mixed with toluene, xylene, 2-propanol, 2-butanol in a mass ratio of 4: 2: 2: 1), a plasticizer (di-2-ethylhexyl phthalate) 2.5 g of polyvinyl butyral (trade name: PVK # 3000K, manufactured by Denka Co., Ltd.) as a binder, 5 g, and 0.5 g of a dispersant (trade name: BYK180, manufactured by Big Chemie) were blended and mixed to prepare a slurry. .
 このスラリーをPETフィルム上にドクターブレード法により塗布し、乾燥させたグリーンシートを積層して、略平板状であって焼成後の厚さが0.5mmとなる基体用グリーンシート2、枠外の形状が基体用グリーンシート2と同様であり、枠内の形状が焼成後において直径4.2mmの略円形状あって、枠高さが0.5mmである枠体用グリーンシート3を製造した。なお、本実施例においては、発光素子用基板1を多数個取りの連結基板として製造し、後述の焼成後に、1個ずつに分割して、5mm×5mmの外寸の略正方形の発光素子用基板1とした。以下の記載は、多数個取り連結基板のうちの、分割後、1個の発光素子用基板1となる一区画について説明するものである。 The slurry is applied on a PET film by a doctor blade method, and dried green sheets are laminated to form a substantially flat plate-like green sheet 2 having a thickness of 0.5 mm after firing. Is the same as the green sheet 2 for the substrate, and the frame green sheet 3 having a substantially circular shape with a diameter of 4.2 mm after firing and a frame height of 0.5 mm was manufactured. In this embodiment, the light-emitting element substrate 1 is manufactured as a multi-piece connecting substrate, and is divided into pieces after firing, which will be described later, for a substantially square light-emitting element having an outer size of 5 mm × 5 mm. A substrate 1 was obtained. The following description explains one division which becomes one light-emitting element substrate 1 after the division among the multi-piece connection substrates.
 一方、導電性粉末(銀粉末、大研化学工業社製、商品名:S550)、ビヒクルとしてのエチルセルロースを質量比85:15の割合で配合し、固形分が85質量%となるように溶剤としてのαテレピネオールに分散した後、磁器乳鉢中で1時間混練を行い、さらに三本ロールにて3回分散を行って配線導体用ペーストを製造した。 On the other hand, conductive powder (silver powder, manufactured by Daiken Chemical Industry Co., Ltd., trade name: S550) and ethyl cellulose as a vehicle are blended at a mass ratio of 85:15, and used as a solvent so that the solid content is 85% by mass. After being dispersed in α-terpineol, kneading was conducted for 1 hour in a porcelain mortar, and further three times of dispersion with a three roll to produce a wiring conductor paste.
 また、金属層用ペーストは、銀粉末(大研化学工業社製、商品名:S400-2)と、ビヒクルとしてのエチルセルロースとを質量比90:10の割合で配合し、固形分が87質量%となるように溶剤としてのαテレピネオールに分散した後、磁器乳鉢中で1時間混練し、さらに三本ロールにて3回分散して製造した。 The metal layer paste is prepared by mixing silver powder (manufactured by Daiken Chemical Co., Ltd., trade name: S400-2) and ethyl cellulose as a vehicle in a mass ratio of 90:10, and a solid content of 87% by mass. Then, it was dispersed in α-terpineol as a solvent so as to be kneaded for 1 hour in a porcelain mortar, and further dispersed three times with three rolls.
 基体用グリーンシート2の一対の貫通導体7に相当する部分に孔空け機を用いて直径0.3mmの貫通孔を形成し、スクリーン印刷法により上記で得られた配線導体用ペーストを充填して貫通導体用ペースト層7を形成するとともに、裏面23に一対の外部接続端子用ペースト層6を形成した。さらに、基体用グリーンシート2の主面21上には、貫通導体用ペースト層7を覆うように略長方形状に一対の素子接続端子用ペースト層5をスクリーン印刷法により形成して配線導体ペースト層付き基体用グリーンシート2を得た。 A through hole having a diameter of 0.3 mm is formed in a portion corresponding to the pair of through conductors 7 of the green sheet 2 for the substrate by using a punching machine, and the wiring conductor paste obtained above is filled by screen printing. A through conductor paste layer 7 was formed, and a pair of external connection terminal paste layers 6 was formed on the back surface 23. Further, a pair of element connection terminal paste layers 5 are formed in a substantially rectangular shape on the main surface 21 of the base green sheet 2 so as to cover the through conductor paste layer 7 by a screen printing method. A green sheet 2 for a substrate with a substrate was obtained.
 次いで、上記基体用グリーンシート2の主面21上の、素子接続端子用ペースト層5の端縁から外側に150μmの範囲を除くようにして、中心が凹部4の底面24の中心と同じとなり、焼成後に直径が4.5mmとなる円形の範囲に上記で得られた金属層用ペーストをスクリーン印刷して金属層用ペースト層8を形成した。なお、金属層用ペースト層8の膜厚は、最終的に得られる金属層の膜厚が10μmとなるように調整した。 Next, the center is the same as the center of the bottom surface 24 of the recess 4 so as to exclude the range of 150 μm from the edge of the element connection terminal paste layer 5 on the main surface 21 of the base green sheet 2. A metal layer paste layer 8 was formed by screen printing the metal layer paste obtained above in a circular range having a diameter of 4.5 mm after firing. The film thickness of the metal layer paste layer 8 was adjusted so that the finally obtained metal layer had a film thickness of 10 μm.
 さらに、上記基体用グリーンシート2の主面21上の、素子接続端子用ペースト層5の端縁から外側に100μmの範囲を除くようにして、金属層用ペースト層8の素子接続端子用ペースト層5の周辺の端縁を含み、形成される範囲が凹部4の底面24と同じとなる(すなわち、焼成後に直径が4.2mmとなる)円形の範囲に以下のオーバーコートガラスペーストをスクリーン印刷してオーバーコートガラスペースト層9を形成した。なお、オーバーコートガラスペースト層9の膜厚は、最終的に得られるオーバーコートガラス層の膜厚が30μmとなるように調整した。また、焼成後のオーバーコートガラス層9の表面粗さRaは、東京精密社製サーフコム1400Dによる測定から0.006μmであった。 Further, the element connection terminal paste layer of the metal layer paste layer 8 is removed from the edge of the element connection terminal paste layer 5 on the main surface 21 of the base green sheet 2 so as to exclude the range of 100 μm. The following overcoat glass paste is screen-printed in a circular area including the peripheral edge of 5 and the formed area is the same as the bottom surface 24 of the recess 4 (that is, the diameter becomes 4.2 mm after firing). Thus, an overcoat glass paste layer 9 was formed. The film thickness of the overcoat glass paste layer 9 was adjusted so that the film thickness of the finally obtained overcoat glass layer was 30 μm. Further, the surface roughness Ra of the overcoat glass layer 9 after firing was 0.006 μm as measured by Surfcom 1400D manufactured by Tokyo Seimitsu Co., Ltd.
 ここで、オーバーコートガラスペーストの調製に用いたオーバーコートガラス層用ガラス粉末は以下のようにして製造した。まず、下記酸化物換算で、SiOが81.6mol%、Bが16.6mol%、KOが1.8mol%の組成のガラスになるように原料を配合、混合し、この原料混合物を白金ルツボに入れて1600℃で60分間溶融させた後、この溶融状態のガラスを流し出し冷却した。このガラスをアルミナ製ボールミルにより8~60時間粉砕してオーバーコートガラス層用ガラス粉末とした。 Here, the glass powder for the overcoat glass layer used for the preparation of the overcoat glass paste was produced as follows. First, in terms of the following oxides, the raw materials are blended and mixed so that SiO 2 is 81.6 mol%, B 2 O 3 is 16.6 mol%, and K 2 O is 1.8 mol%. The raw material mixture was put in a platinum crucible and melted at 1600 ° C. for 60 minutes, and then the molten glass was poured out and cooled. This glass was pulverized with an alumina ball mill for 8 to 60 hours to obtain a glass powder for an overcoat glass layer.
 このオーバーコートガラス層用ガラス粉末が60質量%、樹脂成分(エチルセルロースとαテレピネオールとを質量比で85:15の割合で含有するもの)が40質量%となるように配合した後、磁器乳鉢中で1時間混練し、さらに三本ロールにて3回分散してオーバーコートガラスペーストを調製した。 In this porcelain mortar, the glass powder for the overcoat glass layer was blended so as to be 60% by mass and the resin component (containing ethyl cellulose and α-terpineol at a mass ratio of 85:15) to 40% by mass. Were kneaded for 1 hour and further dispersed three times with three rolls to prepare an overcoat glass paste.
 上記で得られた、各種ペースト層付き基体用グリーンシート2の主面21上に、上記で得られた枠体用グリーンシート3を積層して未焼結の多数個取り連結基板を得た。上記で得られた未焼成の多数個取り連結基板に、未焼結の発光素子用基板1の各区画が焼成後に5mm×5mmの外寸となるような分割用のカットラインを入れた後、550℃で5時間保持して脱脂を行い、さらに870℃で30分間保持して焼成を行って多数個取り連結基板を製造した。得られた多数個取り連結基板をカットラインに沿って分割して発光素子用基板1を製造した。 The green sheet 3 for a frame body obtained above was laminated on the main surface 21 of the green sheet 2 for a substrate with various paste layers obtained above to obtain an unsintered multi-piece connection substrate. After putting the cut line for dividing such that each section of the unsintered light emitting element substrate 1 has an outer size of 5 mm × 5 mm after firing, in the unfired multi-piece connection substrate obtained above, Degreasing was carried out by holding at 550 ° C. for 5 hours, and further holding at 870 ° C. for 30 minutes and firing to produce a multi-piece connected substrate. The obtained multi-piece connection substrate was divided along the cut line to manufacture the light emitting device substrate 1.
 得られた発光素子用基板1における、枠体3の内壁面を側面25とし、基体主面21の一部を底面24とする凹部4は、底面24の形状については直径が4.2mmの円形状であった。また、金属層8は、底面24の外周の全長(100%)を跨ぐように基体2と枠体3の間に、ほぼ均等に150μmが入り込むように形成されていた。なお、凹部4の側面25は底面24に対して略垂直に形成され、枠体の内壁面におけるヘイズ値をヘイズメーター(日本電色工業社製、NDH2000)で測定したところ、100%であった。 In the obtained light emitting element substrate 1, the recess 4 having the side wall 25 as the inner wall surface of the frame 3 and the bottom surface 24 as a part of the substrate main surface 21 is a circle having a diameter of 4.2 mm with respect to the shape of the bottom surface 24. It was a shape. In addition, the metal layer 8 was formed so that 150 μm entered between the base 2 and the frame 3 almost evenly so as to straddle the entire length (100%) of the outer periphery of the bottom surface 24. The side surface 25 of the recess 4 is formed substantially perpendicular to the bottom surface 24, and the haze value on the inner wall surface of the frame body is 100% when measured with a haze meter (NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd.). .
 得られた発光素子用基板1について、反りを東京精密社製サーフコム1400Dにより測定したところ、発光素子用基板1の裏面23の最も低い位置(両端)と最も高い位置(略中央部)の高さの差は、10μmであった。また、得られた発光素子用基板1について、基体2と枠体3の接合強度をマルチボンドテスターSS-30WD(西進商事社製)により測定したところ、>40N/mm(基体2と枠体3界面に剥離なし)であった。結果を表1に示す。 When the warpage of the obtained light emitting element substrate 1 was measured with a surfcom 1400D manufactured by Tokyo Seimitsu Co., Ltd., the heights of the lowest position (both ends) and the highest position (substantially central portion) of the back surface 23 of the light emitting element substrate 1 The difference was 10 μm. Further, when the bonding strength between the base 2 and the frame 3 was measured with a multi-bond tester SS-30WD (manufactured by Seishin Shoji Co., Ltd.) for the obtained light emitting device substrate 1,> 40 N / mm 2 (base 2 and frame 3). 3) No peeling at the interface. The results are shown in Table 1.
[実施例2~4]
 図2に示す発光素子用基板と同様の略正方形状の金属層8を有する以外は、全て上記実施例1における発光素子用基板と同様の発光素子用基板1を作製した。
 実施例2においては、金属層8の形成された部分の外側の形状は、焼成後に3.5mm角となる略正方形状であった。また、実施例2の発光素子用基板1おいては、金属層8が凹部4の底面24の外周を跨いでいる率は、全外周長に対して43%であった。上記実施例1と同様にして、発光素子用基板1の反りと、基体2と枠体3の接合強度を測定した。結果を表1に示す。
[Examples 2 to 4]
A light-emitting element substrate 1 that was the same as the light-emitting element substrate in Example 1 was prepared except that it had a substantially square metal layer 8 similar to the light-emitting element substrate shown in FIG.
In Example 2, the outer shape of the portion where the metal layer 8 was formed was a substantially square shape that became 3.5 mm square after firing. Moreover, in the light emitting element use substrate 1 of Example 2, the rate that the metal layer 8 straddled the outer periphery of the bottom surface 24 of the recess 4 was 43% with respect to the entire outer peripheral length. In the same manner as in Example 1, the warpage of the light emitting element substrate 1 and the bonding strength between the base 2 and the frame 3 were measured. The results are shown in Table 1.
 実施例2において、金属層8の大きさを表1に示す大きさに変える以外は実施例2と全く同様にして実施例3、実施例4の発光素子用基板1を作製した。実施例3、実施例4においては、金属層8が凹部4の底面24の外周を跨いでいる率は、全外周長に対して、それぞれ53%および70%であった。これらの発光素子用基板1について、上記実施例1と同様にして、発光素子用基板1の反りと、基体2と枠体3の接合強度を測定した。結果を表1に示す。 Example 2 Light-emitting element substrates 1 of Example 3 and Example 4 were produced in exactly the same manner as Example 2 except that the size of the metal layer 8 was changed to the size shown in Table 1. In Example 3 and Example 4, the rate at which the metal layer 8 straddled the outer periphery of the bottom surface 24 of the recess 4 was 53% and 70%, respectively, with respect to the total outer peripheral length. For these light emitting element substrates 1, the warpage of the light emitting element substrate 1 and the bonding strength between the base 2 and the frame 3 were measured in the same manner as in Example 1. The results are shown in Table 1.
[比較例]
 上記実施例1において、金属層8を凹部4の底面24と全く同様の直径4.2mmの円形状に形成し、金属層8が底面24の外周を全く跨がないように形成した以外は、実施例1と全く同様にして比較例の発光素子用基板1を作製した。得られた発光素子用基板1について上記実施例1と同様にして、発光素子用基板1の反りと、基体2と枠体3の接合強度を測定した。結果を表1に示す。
[Comparative example]
In Example 1 above, except that the metal layer 8 was formed in a circular shape with a diameter of 4.2 mm exactly the same as the bottom surface 24 of the recess 4, and the metal layer 8 was formed so as not to straddle the outer periphery of the bottom surface 24 at all. A light emitting device substrate 1 of a comparative example was produced in exactly the same manner as in Example 1. For the obtained light emitting element substrate 1, the warpage of the light emitting element substrate 1 and the bonding strength between the base 2 and the frame 3 were measured in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、凹部を有しその底面に発光素子を搭載する発光素子用基板において、基板自体の反りの割合を低減することが可能となる。本発明の発光装置は、このように反りが低減された本発明の発光素子用基板により、発光素子の位置ずれや傾きが低減し、光の指向性が設計と異なる等の問題や、ボンディングワイヤの位置ずれによる断線の発生等の問題が抑制された発光装置である。また、この発光装置をさらにプリント配線基板等に半田を用いて実装する際に、基板の反りが原因で発生していた断線や放熱性の悪化等の問題も低減できる。このような本発明の発光装置は、例えば携帯電話やパソコンや平面テレビの液晶ディスプレイ等のバックライト、自動車用あるいは装飾用の照明、一般照明、その他の光源として好適に使用できる。
 なお、2010年10月27日に出願された日本特許出願2010-241077号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to reduce the ratio of curvature of board | substrate itself in the board | substrate for light emitting elements which has a recessed part and mounts a light emitting element in the bottom face. The light emitting device according to the present invention has the light emitting element substrate according to the present invention in which the warpage is reduced as described above, thereby reducing the positional deviation and inclination of the light emitting element, the light directivity being different from the design, and the bonding wire. This is a light-emitting device in which problems such as occurrence of disconnection due to misalignment are suppressed. In addition, when the light emitting device is further mounted on a printed wiring board or the like using solder, problems such as disconnection and deterioration of heat dissipation, which are caused by the warpage of the board, can be reduced. Such a light-emitting device of the present invention can be suitably used as a backlight for a liquid crystal display of a mobile phone, a personal computer, or a flat television, for example, illumination for automobiles or decoration, general illumination, and other light sources.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2010-241077 filed on Oct. 27, 2010 are incorporated herein as the disclosure of the present invention. .
1…発光素子用基板、2…基体(基板用グリーンシート)、3…枠体(枠体用グリーンシート)、4…凹部、5…素子接続端子(素子接続端子用ペースト層)、6…外部接続端子(外部接続端子用ペースト層)、7…貫通導体(貫通導体用ペースト層)、8…金属層(金属層用ペースト層)、9…オーバーコートガラス層(オーバーコートガラスペースト層)、10…発光装置、11…発光素子、12…ボンディングワイヤ、13…封止層21…基体の主面、22…発光素子搭載部、23…基体の裏面、24…凹部の底面、25…凹部の側面 DESCRIPTION OF SYMBOLS 1 ... Light emitting element substrate, 2 ... Base | substrate (green sheet for board | substrates), 3 ... Frame body (green sheet for frame bodies), 4 ... Recessed part, 5 ... Element connection terminal (element connection terminal paste layer), 6 ... External Connection terminal (external connection terminal paste layer), 7 ... through conductor (through conductor paste layer), 8 ... metal layer (metal layer paste layer), 9 ... overcoat glass layer (overcoat glass paste layer), 10 DESCRIPTION OF SYMBOLS ... Light-emitting device, 11 ... Light emitting element, 12 ... Bonding wire, 13 ... Sealing layer 21 ... Main surface of base | substrate, 22 ... Light-emitting-element mounting part, 23 ... Back surface of base | substrate, 24 ... Bottom face of a recessed part, 25 ... Side surface of a recessed part

Claims (9)

  1.  第1の無機絶縁材料からなる主面が平坦な板状の基体と、前記基体の上側主面に接合された第2の無機絶縁材料からなる枠体とを有し、前記基体の上側主面の一部を底面とし前記枠体の内壁面を側面として形成される凹部の底面に発光素子の搭載部を有する発光素子用基板であって、
     前記凹部底面上に、少なくともその一部が凹部底面の外周を跨いで枠体と基体の間に配置され、かつ基体の外縁に達しないように配設された金属層を有することを特徴とする発光素子用基板。
    A plate-like substrate having a flat main surface made of the first inorganic insulating material; and a frame made of a second inorganic insulating material joined to the upper main surface of the substrate, the upper main surface of the substrate A light emitting element substrate having a light emitting element mounting portion on a bottom surface of a recess formed with a part of the bottom surface as an inner wall surface of the frame body,
    A metal layer is provided on the bottom surface of the recess so that at least part of the metal layer is disposed between the frame body and the base so as to straddle the outer periphery of the bottom of the recess and does not reach the outer edge of the base. Light emitting element substrate.
  2.  前記金属層が前記凹部底面の外周をその全周において跨いで枠体と基体の間に配置されている請求項1に記載の発光素子用基板。 The light emitting element substrate according to claim 1, wherein the metal layer is disposed between the frame body and the base so as to straddle the outer periphery of the bottom surface of the recess in the entire periphery.
  3.  前記金属層が前記凹部底面の外周を跨いで配設されている部分の外周の合計長が、前記凹部底面の全外周長に対して40%以上である請求項1に記載の発光素子用基板。 2. The light emitting element substrate according to claim 1, wherein a total outer peripheral length of a portion where the metal layer is disposed across the outer periphery of the concave bottom surface is 40% or more with respect to a total outer peripheral length of the concave bottom surface. .
  4.  前記凹部底面の外周から前記枠体と基体の間の前記金属層の端縁までの距離(L)が、100~200μmである請求項1~3のいずれか1項に記載の発光素子用基板。 The light emitting element substrate according to any one of claims 1 to 3, wherein a distance (L) from an outer periphery of the bottom surface of the recess to an edge of the metal layer between the frame and the base is 100 to 200 µm. .
  5.  前記金属層が反射層または反射層形成のための下地層である請求項1~4のいずれか1項に記載の発光素子用基板。 The light emitting element substrate according to any one of claims 1 to 4, wherein the metal layer is a reflective layer or a base layer for forming the reflective layer.
  6.  前記第1の無機絶縁材料および第2の無機絶縁材料がともにガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体であり、前記金属層を構成する金属が銀を主成分とする金属である請求項1~5のいずれか1項に記載の発光素子用基板。 The first inorganic insulating material and the second inorganic insulating material are both sintered bodies of a glass ceramic composition containing glass powder and ceramic powder, and the metal constituting the metal layer is a metal mainly composed of silver. The light emitting device substrate according to any one of claims 1 to 5, wherein:
  7.  前記第1の無機絶縁材料および第2の無機絶縁材料がともにアルミナセラミックス組成物の焼結体であり、前記金属層を構成する金属がタングステンおよびモリブデンからなる群から選ばれる少なくとも1種を主成分とする金属である請求項1~5のいずれか1項に記載の発光素子用基板。 The first inorganic insulating material and the second inorganic insulating material are both sintered bodies of an alumina ceramic composition, and the metal constituting the metal layer is mainly composed of at least one selected from the group consisting of tungsten and molybdenum. The light-emitting element substrate according to claim 1, wherein the light-emitting element substrate is a metal.
  8.  前記したタングステンおよびモリブデンからなる群から選ばれる少なくとも1種を主成分とする金属層上に銀を主成分とする金属の反射層を形成した請求項7に記載の発光素子用基板。 The light emitting element substrate according to claim 7, wherein a metal reflective layer mainly composed of silver is formed on a metal layer mainly composed of at least one selected from the group consisting of tungsten and molybdenum.
  9.  請求項1~8のいずれか1項に記載の発光素子用基板と、
     前記発光素子用基板に搭載される発光素子と
     を有することを特徴とする発光装置。
    A light emitting device substrate according to any one of claims 1 to 8,
    And a light emitting device mounted on the light emitting device substrate.
PCT/JP2011/074726 2010-10-27 2011-10-26 Substrate for light-emitting element, and light emitting device WO2012057234A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012540919A JP5958342B2 (en) 2010-10-27 2011-10-26 Light emitting element substrate and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010241077 2010-10-27
JP2010-241077 2010-10-27

Publications (1)

Publication Number Publication Date
WO2012057234A1 true WO2012057234A1 (en) 2012-05-03

Family

ID=45993939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074726 WO2012057234A1 (en) 2010-10-27 2011-10-26 Substrate for light-emitting element, and light emitting device

Country Status (3)

Country Link
JP (1) JP5958342B2 (en)
TW (1) TW201233265A (en)
WO (1) WO2012057234A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014009311A1 (en) * 2012-07-09 2014-01-16 Ceramtec Gmbh Light-reflecting substrate for led applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028146A (en) * 2004-12-03 2010-02-04 Ngk Spark Plug Co Ltd Ceramic substrate
JP2010092973A (en) * 2008-10-06 2010-04-22 Sanyo Electric Co Ltd Electronic component
WO2010074038A1 (en) * 2008-12-24 2010-07-01 旭硝子株式会社 Light-emitting module and method for manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165735A (en) * 2005-12-16 2007-06-28 Drill Center:Kk Led mounting substrate and its manufacturing method
JP4948841B2 (en) * 2006-01-30 2012-06-06 京セラ株式会社 Light emitting device and lighting device
JP2007027799A (en) * 2006-11-01 2007-02-01 Sanyo Electric Co Ltd Led display device
JP2010109095A (en) * 2008-10-29 2010-05-13 Sumitomo Metal Electronics Devices Inc Light emitting element storage package

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028146A (en) * 2004-12-03 2010-02-04 Ngk Spark Plug Co Ltd Ceramic substrate
JP2010092973A (en) * 2008-10-06 2010-04-22 Sanyo Electric Co Ltd Electronic component
WO2010074038A1 (en) * 2008-12-24 2010-07-01 旭硝子株式会社 Light-emitting module and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014009311A1 (en) * 2012-07-09 2014-01-16 Ceramtec Gmbh Light-reflecting substrate for led applications

Also Published As

Publication number Publication date
JP5958342B2 (en) 2016-07-27
JPWO2012057234A1 (en) 2014-05-12
TW201233265A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP5640632B2 (en) Light emitting device
JP5742353B2 (en) Light emitting element substrate and light emitting device
JP5729375B2 (en) Light emitting device
EP2372798A1 (en) Substrate for light-emitting element and light-emitting device employing it
JP5499960B2 (en) Element substrate, light emitting device
WO2012036219A1 (en) Light-emitting element substrate and light-emitting device
JP5862574B2 (en) Light emitting element substrate and light emitting device
WO2011092945A1 (en) Substrate for mounting light emitting element, method for producing same, and light emitting device
WO2011059070A1 (en) Substrate for light-emitting elements and light-emitting device
JP5958342B2 (en) Light emitting element substrate and light emitting device
JP2012074478A (en) Substrate for light emitting element, and light emitting device
JP2012209310A (en) Substrate for light-emitting element, and light-emitting device
JP5812092B2 (en) Light emitting element substrate and light emitting device
JP5725029B2 (en) Light emitting element mounting substrate and light emitting device
JP6398996B2 (en) Light emitting element substrate and light emitting device
JP2012248593A (en) Light-emitting element substrate and light-emitting device
JP6492443B2 (en) Light emitting element substrate and light emitting device
JP2011176303A (en) Substrate for mounting light emitting element and method for manufacturing the same
JP2011176302A (en) Substrate for mounting light emitting element and method for manufacturing the same
JP2015070088A (en) Substrate for light-emitting element and light-emitting device
JP2011228652A (en) Substrate for light-emitting element and light-emitting device
JP2012099534A (en) Element substrate and light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836367

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012540919

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836367

Country of ref document: EP

Kind code of ref document: A1