JP4492378B2 - Light emitting device and manufacturing method thereof - Google Patents

Light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP4492378B2
JP4492378B2 JP2005027484A JP2005027484A JP4492378B2 JP 4492378 B2 JP4492378 B2 JP 4492378B2 JP 2005027484 A JP2005027484 A JP 2005027484A JP 2005027484 A JP2005027484 A JP 2005027484A JP 4492378 B2 JP4492378 B2 JP 4492378B2
Authority
JP
Japan
Prior art keywords
substrate
light emitting
glass
emitting device
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005027484A
Other languages
Japanese (ja)
Other versions
JP2006216753A (en
Inventor
好伸 末広
誠治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2005027484A priority Critical patent/JP4492378B2/en
Priority to US11/334,745 priority patent/US20060171152A1/en
Publication of JP2006216753A publication Critical patent/JP2006216753A/en
Application granted granted Critical
Publication of JP4492378B2 publication Critical patent/JP4492378B2/en
Priority to US12/929,331 priority patent/US8294160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、発光素子をガラス封止材料で封止することにより形成される発光装置に関し、特に、量産性に優れ、かつガラス材料全体をコーティングすることで高温多湿環境でも封止性、耐劣化性に優れ、色むらを生じることのない発光装置およびその製造方法に関する。   The present invention relates to a light-emitting device formed by sealing a light-emitting element with a glass sealing material, in particular, excellent in mass productivity and coating performance over a high-temperature and high-humidity environment by coating the entire glass material. The present invention relates to a light-emitting device that has excellent properties and does not cause color unevenness, and a method for manufacturing the same.

従来の発光装置として、LED(Light Emitting Diode)素子をエポキシ樹脂等の透光性樹脂材料で封止した樹脂封止LEDがある。   As a conventional light emitting device, there is a resin-sealed LED in which an LED (Light Emitting Diode) element is sealed with a translucent resin material such as an epoxy resin.

樹脂封止LEDは、透光性樹脂材料を用いることで封止加工性に優れる反面、透光性樹脂材料が強い光に反応して黄変等の劣化を生じることが知られている。特に、短波長光を放出するIII族窒化物系化合物半導体発光素子を用いる場合には、当該素子から放出される高エネルギーの光と素子自体の発熱によって素子近傍の透光性樹脂が黄変し、光取り出し効率が無視できないほどに低下することがある。   It is known that the resin-sealed LED is excellent in sealing processability by using a translucent resin material, but the translucent resin material reacts with strong light to cause deterioration such as yellowing. In particular, when a group III nitride compound semiconductor light emitting device that emits short-wavelength light is used, the translucent resin near the device is yellowed by the high-energy light emitted from the device and the heat generated by the device itself. In some cases, the light extraction efficiency may be reduced to a degree that cannot be ignored.

このような封止部材の劣化を防止するものとして、封止材料に低融点ガラスを用いた発光装置が提案されている(例えば、特許文献1参照。)。   In order to prevent such deterioration of the sealing member, a light-emitting device using low-melting glass as a sealing material has been proposed (for example, see Patent Document 1).

図9は、特許文献1に記載される発光装置の縦断面図である。この発光装置10は、LED発光素子11と、プリント配線基板12と、プリント配線基板12の表面に設けられる配線パターン13と、LED発光素子11と配線パターン13とを電気的に接続するワイヤ14と、LED発光素子11およびワイヤ14を封止する低融点ガラス15とを有し、GaN系LED発光素子の屈折率2.3程度に近い屈折率が2程度の低融点ガラスを用いている。   FIG. 9 is a longitudinal sectional view of the light emitting device described in Patent Document 1. The light emitting device 10 includes an LED light emitting element 11, a printed wiring board 12, a wiring pattern 13 provided on the surface of the printed wiring board 12, and wires 14 that electrically connect the LED light emitting element 11 and the wiring pattern 13. The low-melting-point glass 15 that seals the LED light-emitting element 11 and the wire 14 is used, and the low-melting-point glass having a refractive index of about 2 that is close to the refractive index of about 2.3 of the GaN-based LED light-emitting element.

特許文献1に記載される発光装置によると、GaN系LED発光素子の屈折率に近い低融点ガラス15でLED発光素子11を封止することによって、LED発光素子11の表面で全反射して内部に戻る光が少なくなり、LED発光素子11から放出されて低融点ガラス15に入射する光の量が多くなる。その結果、エポキシ樹脂でLED発光素子11を封止している従来のものよりも高くなる。
特開平11−177129号公報(〔0007〕、図1)
According to the light-emitting device described in Patent Document 1, the LED light-emitting element 11 is sealed with the low melting point glass 15 having a refractive index close to that of the GaN-based LED light-emitting element, so that the LED light-emitting element 11 is totally reflected on the inside. The amount of light that returns to is reduced, and the amount of light emitted from the LED light emitting element 11 and incident on the low-melting glass 15 is increased. As a result, it becomes higher than the conventional one in which the LED light emitting element 11 is sealed with an epoxy resin.
JP-A-11-177129 ([0007], FIG. 1)

しかし、特許文献1に記載される発光装置では、低融点ガラスはエポキシ樹脂のように扱うことができないため、具現化や量産性に問題がある。   However, in the light emitting device described in Patent Document 1, low melting point glass cannot be handled like an epoxy resin, and thus there is a problem in realization and mass productivity.

LED発光素子に熱ダメージを与えることなく封止加工するには、高粘度状態のガラスで封止するのが望ましいが、ワイヤ形状を保持できず電気的短絡、断線が生じる。仮に、低粘度のガラスの場合、図9に示すようなモールドは困難である。樹脂系のプリント配線基板では加工温度に耐えることができず、無機系のプリント配線基板では金型によるプレスによって破損が生じる。また、高温加工が必要なガラス封止とLED発光素子において一括工程でなく各製品対応をするのは量産性に問題がある。さらに、量産性に優れ色むらのない蛍光体白色LEDや、極めて高温多湿雰囲気での耐性に優れるガラス封止LEDについては、これまでに提案がなかった。   In order to encapsulate the LED light emitting element without causing thermal damage, it is desirable to encapsulate it with glass in a high viscosity state, but the wire shape cannot be maintained, and an electrical short circuit or disconnection occurs. In the case of low-viscosity glass, molding as shown in FIG. 9 is difficult. Resin-based printed wiring boards cannot withstand the processing temperature, and inorganic printed wiring boards are damaged by pressing with a mold. In addition, glass sealing and LED light-emitting elements that require high-temperature processing have a problem in mass productivity to deal with each product instead of a batch process. Furthermore, there has been no proposal for a phosphor white LED having excellent mass productivity and no color unevenness and a glass-sealed LED having excellent resistance in an extremely high temperature and high humidity atmosphere.

従って、本発明の目的は、量産性に優れ、かつガラス材料全体をコーティングすることで高温多湿環境でも封止性、耐劣化性に優れ、色むらを生じることのない発光装置およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a light emitting device that is excellent in mass productivity and excellent in sealing and deterioration resistance even in a high temperature and high humidity environment by coating the entire glass material, and a method for manufacturing the same. It is to provide.

本発明は、上記目的を達成するため、発光素子と、前記発光素子を搭載する無機材料からなる基板と、前記基板上にて前記発光素子を封止するガラスからなる封止部と、前記発光素子を取り囲むように、前記封止部の上面から前記基板の内部にかけて、前記基板の厚さ方向に形成された切り込み面と、水分が浸透しない光透過性の無機材料からなり、前記封止部の表面全体を覆うとともに、前記切り込み面における前記封止部と前記基板との界面を覆うコート部とを有することを特徴とする発光装置を提供する。 The present invention, in order to achieve the above object, a light emitting element, a substrate made of an inorganic material for mounting the light emitting element, a sealing portion made of glass for sealing the light emitting element in the substrate, the light emitting The sealing portion is formed of a light-transmitting inorganic material that does not penetrate moisture, and a cut surface formed in the thickness direction of the substrate from the upper surface of the sealing portion to the inside of the substrate so as to surround the element. together they cover the entire surface of, to provide a light emitting device which is characterized in that chromatic and a coating portion covering the interface between the substrate and the sealing portion in the cut surface.

また、本発明は、上記した目的を達成するため、無機材料からなる基板を準備する第1のステップと、前記基板に複数の発光素子を搭載する第2のステップと、前記複数の発光素子搭載された前記基板をガラスからなる封止材料で封止する第3のステップと、前記封止材料から前記基板にかけて前記基板が分断されることのない深さまで形成され、前記発光素子を取り囲む切り込みを設ける第4のステップと、前記切り込みにより露出した前記封止材料と前記基板との界面及び前記封止材料の表面全体に水分が浸透しない光透過性の無機材料からなるコーティングを施す第5のステップと、前記切り込みに沿って前記光透過性の無機材料および前記基板を分割する第6のステップとを有することを特徴とする発光装置の製造方法を提供する。 Further, the present invention is to achieve the above object, a first step of preparing a substrate made of an inorganic material, a second step of mounting a plurality of light emitting elements on the substrate, wherein the plurality of light emitting elements A third step of sealing the mounted substrate with a sealing material made of glass ; and a notch that is formed to a depth that does not divide the substrate from the sealing material to the substrate and surrounds the light emitting element a fourth step of providing, first a coating consisting of surfactant and optically transparent inorganic material moisture across the surface impermeable to the sealing material and the substrate the sealing material exposed to Ri by the notch 5 and steps, provides a method for manufacturing a light emitting device characterized by having a sixth step of dividing the cut the light-transmitting inorganic material and said substrate along a

本発明によると、光透過性の無機材料コート部によって封止部および基板を覆うことにより、封止部の耐水性が向上し、基板と封止部の良好な密着性が確保される。また、多湿環境でも封止性、耐劣化性が得られる。   According to the present invention, by covering the sealing portion and the substrate with the light-transmitting inorganic material coating portion, the water resistance of the sealing portion is improved, and good adhesion between the substrate and the sealing portion is ensured. Further, sealing properties and deterioration resistance can be obtained even in a humid environment.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る発光装置としてのLEDを示す縦断面図である。
(First embodiment)
FIG. 1 is a longitudinal sectional view showing an LED as a light emitting device according to a first embodiment of the present invention.

(全体の構成)
このLED1は、フリップチップ型のLED素子2と、回路パターン4A、4B、およびビアパターン4Cとを有する無機材料基板であるAl基板3と、回路パターン4BとLED素子2の電極とを電気的に接続するAuバンプ5と、Al基板3およびLED素子2とを封止する無機封止材料であるガラス封止部6とを有する。
(Overall configuration)
This LED 1 includes a flip chip type LED element 2, an Al 2 O 3 substrate 3 that is an inorganic material substrate having circuit patterns 4A, 4B, and via patterns 4C, and circuit patterns 4B and electrodes of the LED elements 2. It has an Au bump 5 that is electrically connected, and a glass sealing portion 6 that is an inorganic sealing material that seals the Al 2 O 3 substrate 3 and the LED element 2.

(各部の構成)
LED素子2は、下地基板となるサファイア基板上にAlNバッファ層を介してn−GaN層と、発光層と、p−GaN層とを順次結晶成長させることによって形成したGaN系半導体層を有し、p−GaN層からエッチングを施すことによりn電極形成領域としてn−GaN層の一部を露出させた水平型の電極構造を有し、Auバンプ5を介して回路パターン4B上にフリップ実装されている。このLED素子2は、発光中心波長が470nmであり、熱膨張率は7×10−6/℃である。また、LED1の幅とLED素子2の幅とのサイズ比は1より大で、かつ5以下となるように構成されている。
(Configuration of each part)
The LED element 2 has a GaN-based semiconductor layer formed by sequentially growing an n-GaN layer, a light emitting layer, and a p-GaN layer through an AlN buffer layer on a sapphire substrate as a base substrate. , Having a horizontal electrode structure in which a part of the n-GaN layer is exposed as an n-electrode formation region by etching from the p-GaN layer, and is flip-mounted on the circuit pattern 4B via the Au bump 5 ing. The LED element 2 has an emission center wavelength of 470 nm and a thermal expansion coefficient of 7 × 10 −6 / ° C. The size ratio between the width of the LED 1 and the width of the LED element 2 is configured to be greater than 1 and 5 or less.

Al基板3は、熱膨張率が7×10−6/℃であり、LED素子2と略同等の熱膨張率を有し、素子搭載面、ビアホール3A、および裏面にタングステン(W)−ニッケル(Ni)−金(Au)で構成される回路パターン4A、4B、およびビアパターン4Cを有する。また、LED1の外縁となる部分に位置するように段部3Bを有している。 The Al 2 O 3 substrate 3 has a thermal expansion coefficient of 7 × 10 −6 / ° C., has a thermal expansion coefficient substantially equal to that of the LED element 2, and has tungsten (W) on the element mounting surface, the via hole 3 A, and the back surface. -Circuit patterns 4A, 4B and via patterns 4C made of nickel (Ni) -gold (Au) are included. Moreover, it has the step part 3B so that it may be located in the part used as the outer edge of LED1.

ガラス封止部6は、600℃以下の低融点でホットプレス加工が可能な低融点ガラスからなり、LED素子2およびAl基板3の熱膨張率と略同等の熱膨張率(7×10−6/℃)を有する。また、表面には半球状に形成された光学形状部6Aと、光学形状部6Aの表面にコート部として薄膜状に設けられるAlコート膜6Bとを有する。 The glass sealing portion 6 is made of a low melting point glass that can be hot-pressed at a low melting point of 600 ° C. or less, and has a thermal expansion coefficient (7 × approximately equal to the thermal expansion coefficient of the LED element 2 and the Al 2 O 3 substrate 3. 10 −6 / ° C.). Further, the surface has an optical shape portion 6A which is formed in a hemispherical shape and Al 2 O 3 coating film 6B provided in a thin film as a coating portion on a surface of the optical shape portion 6A.

Alコート膜6Bは、Alをスパッタリング処理することで光学形状部6Aの表面に塗布し、乾燥させることによって薄膜状に形成されている。このAlコート膜6Bは、ガラス封止部6の端面および段部3Bを覆うように設けられている。また、Alコート膜6Bは、Al基板3とガラス封止部6の端面を覆う端面保護部6Cを有する。 The Al 2 O 3 coat film 6B is formed into a thin film by applying Al 2 O 3 to the surface of the optical shape portion 6A by sputtering and drying it. The Al 2 O 3 coat film 6B is provided so as to cover the end face of the glass sealing portion 6 and the stepped portion 3B. Further, the Al 2 O 3 coat film 6B has an end face protection part 6C that covers the end face of the Al 2 O 3 substrate 3 and the glass sealing part 6.

(LEDの製造工程)
以下に、第1の実施の形態のLEDの製造方法について説明する。図2(a)から(c)は、LED製造工程の配線形成工程からガラス準備工程にかけてを示す概略図であり、図3(a)から(d)は、ガラス封止工程からLEDの分離にかけてを示す概略図である。
(LED manufacturing process)
Below, the manufacturing method of LED of 1st Embodiment is demonstrated. FIGS. 2A to 2C are schematic views showing the wiring manufacturing process from the LED manufacturing process to the glass preparation process, and FIGS. 3A to 3D are the glass sealing process to the separation of the LEDs. FIG.

(配線形成工程)
まず、図2(a)に示すように、上記したAl基板3に対し、回路パターンに応じてWペーストをスクリーン印刷する。次に、Wペーストを印刷されたガラス含有Al基板3を1500℃で熱処理することによりWをAl基板3に焼き付け、さらにW上にNiめっき、Auめっきを施すことで回路パターン4A、4B、およびビアパターン4Cを形成する。
(Wiring formation process)
First, as shown in FIG. 2A, W paste is screen-printed on the Al 2 O 3 substrate 3 according to the circuit pattern. Next, the glass-containing Al 2 O 3 substrate 3 printed with the W paste is heat-treated at 1500 ° C. so that W is baked on the Al 2 O 3 substrate 3, and further, Ni plating and Au plating are performed on the W. Patterns 4A and 4B and via pattern 4C are formed.

(LED素子実装工程)
次に、図2(b)に示すように、Al基板3の回路パターン4BにAuバンプ5を介してLED素子2をフリップ実装する。
(LED element mounting process)
Next, as shown in FIG. 2B, the LED element 2 is flip-mounted on the circuit pattern 4B of the Al 2 O 3 substrate 3 via the Au bumps 5.

(低融点ガラス準備工程)
次に、図2(c)に示すように、板状のP−ZnO−LiO系の低融点ガラス60をAl基板3に対して平行にセットする。
(Low melting point glass preparation process)
Next, as shown in FIG. 2C, a plate-like P 2 O 5 —ZnO—Li 2 O-based low melting glass 60 is set in parallel to the Al 2 O 3 substrate 3.

(ガラス封止工程)
次に、図3(a)に示すように、窒素雰囲気中で550〜600℃の温度で低融点ガラス60のホットプレス加工を行う。低融点ガラス60は、Al基板3とそれらに含まれる酸化物を介して基板表面に接着されるとともに、プレス金型の形状に応じて半球状の光学形状部6Aを有したガラス封止部6が成形される。
(Glass sealing process)
Next, as shown in FIG. 3A, hot pressing of the low-melting glass 60 is performed at a temperature of 550 to 600 ° C. in a nitrogen atmosphere. The low melting point glass 60 is bonded to the substrate surface via the Al 2 O 3 substrate 3 and oxides contained therein, and has a glass seal having a hemispherical optical shape portion 6A according to the shape of the press mold. A stop 6 is formed.

(溝形成工程)
次に、図3(b)に示すように、ガラス封止部6の薄肉部分をダイシングソーでハーフカットすることにより溝30を形成する。この溝30はAl基板3を分断することのない深さを有するように形成される。この状態では、ガラス封止部6とAl基板3との界面が露出し、平面方向に見てLEDとなる部分が切り込み面としての溝30によって取り囲まれたものとなる。
(Groove formation process)
Next, as shown in FIG.3 (b), the groove | channel 30 is formed by half-cutting the thin part of the glass sealing part 6 with a dicing saw. The groove 30 is formed to have a depth that does not divide the Al 2 O 3 substrate 3. In this state, the interface between the glass sealing portion 6 and the Al 2 O 3 substrate 3 is exposed, and the portion that becomes the LED when viewed in the plane direction is surrounded by the groove 30 as the cut surface.

(コート膜形成工程)
次に、図3(c)に示すように、ガラス封止部6の表面を覆うようにスパッタリング処理することによってAlコート膜6Bを形成する。この状態では、溝30によって取り囲まれたLEDとなる部分の表面全体をAlコート膜6Bで覆ったものとなる。
(Coat film forming process)
Next, as shown in FIG. 3C, an Al 2 O 3 coat film 6B is formed by performing a sputtering process so as to cover the surface of the glass sealing portion 6. In this state, the entire surface of the portion to be the LED surrounded by the groove 30 is covered with the Al 2 O 3 coat film 6B.

(LED分離工程)
次に、図3(d)に示すように、溝30に沿ってAl基板3を分割することにより、LED1を分離する。分割されたLED1は、ガラス封止部6の端面がAl基板3によって覆われた構成を有している。
(LED separation process)
Next, as shown in FIG. 3D, the LED 1 is separated by dividing the Al 2 O 3 substrate 3 along the groove 30. The divided LED 1 has a configuration in which an end surface of the glass sealing portion 6 is covered with an Al 2 O 3 substrate 3.

(LED1の動作)
以下に、第1の実施の形態の動作について説明する。図示しない電源部から回路パターン4Aを介して通電することにより、LED素子2の電極を介して発光層に通電される。発光層は、通電に基づいて発光して青色光を生じる。この青色光は、GaN系半導体層からサファイア基板を介してガラス封止部6に入射し、光学形状部6Aに至る。光学形状部6Aに至った青色光はAlコート膜6Bを透過して外部放射される。
(Operation of LED1)
The operation of the first embodiment will be described below. By energizing from the power supply unit (not shown) via the circuit pattern 4A, the light emitting layer is energized via the electrode of the LED element 2. The light emitting layer emits light based on energization to generate blue light. This blue light enters the glass sealing portion 6 from the GaN-based semiconductor layer through the sapphire substrate and reaches the optical shape portion 6A. The blue light reaching the optical shape portion 6A is transmitted through the Al 2 O 3 coat film 6B and emitted externally.

(第1の実施の形態の効果)
上記した第1の実施の形態によると、以下の効果が得られる。
(Effects of the first embodiment)
According to the first embodiment described above, the following effects are obtained.

(1)LED素子2に対してガラス封止を行った後にガラス封止部6からAlコート膜6Bにかけて溝30を形成し、溝30を含むガラス表面にAlコート膜6Bを設けてガラス表面を保護するようにしたので、LED1を個別に分離してもガラス封止部6の端面が露出せずに保護される。このことによりガラスの低融点化、熱膨張率調整、屈折率調整等の制約により、ガラス封止部6が多少耐湿性の劣る特性でも高温多湿環境においてガラス封止部6が劣化することなく長期にわたって安定して使用することができる。また、スパッタリングによる膜形成を行っているので、溝30への膜形成がされやすい。 (1) forming a groove 30 from the glass sealing part 6 toward Al 2 O 3 coating film 6B after the glass sealing the LED element 2, Al 2 O 3 coating film 6B to a glass surface comprising a groove 30 Since the glass surface is protected by providing the LED 1, even if the LEDs 1 are individually separated, the end surface of the glass sealing portion 6 is protected without being exposed. As a result, the glass sealing part 6 is not deteriorated in a high temperature and high humidity environment for a long time even if the glass sealing part 6 is somewhat inferior in moisture resistance due to restrictions such as low melting point of glass, thermal expansion coefficient adjustment, refractive index adjustment, etc. Can be used stably. In addition, since the film is formed by sputtering, the film is easily formed in the groove 30.

(2)ガラス封止部6とAl基板3との間に水分が浸透しないので、ガラス封止部6とAl基板3との密着性低下を防ぐことができる。 (2) Since the water between the glass sealing part 6 and the Al 2 O 3 substrate 3 does not penetrate, it is possible to prevent the adhesion reduction of the glass sealing part 6 and the Al 2 O 3 substrate 3.

(3)ガラス封止部6の加工後にダイシングソーによるハーフカットによって溝30を形成するので、Alコート膜6B形成後にLED1を容易に分離することができ、生産性に優れる。 (3) Since the groove 30 is formed by half-cutting with a dicing saw after processing the glass sealing portion 6, the LED 1 can be easily separated after the Al 2 O 3 coat film 6B is formed, and the productivity is excellent.

なお、上記した第1の実施の形態では、ガラス封止部6の表面にAlコート膜6Bを設けたLED1を説明したが、例えば、SiO、SiN、MgF等を用いても良い。 In the first embodiment described above, the LED 1 in which the Al 2 O 3 coat film 6B is provided on the surface of the glass sealing portion 6 has been described. However, for example, SiO 2 , SiN, MgF 2 or the like may be used. good.

また、第1の実施の形態の実施の形態では、溝30をAl基板3に設けてAlコート膜6Bをコートし、溝30に沿って分割するものとしたが、例えば、ダイシングソーによらずにレーザ光で溝30を形成しても良い。レーザ加工は処理時間を短くでき、量産性をさらに向上することができる。特に、フェムト秒レーザのような短時間パルス照射によれば、滑らかな溝形成が可能である。 In the embodiment of the first embodiment, the groove 30 is provided on the Al 2 O 3 substrate 3 and the Al 2 O 3 coating film 6B is coated and divided along the groove 30. Instead of using a dicing saw, the groove 30 may be formed by laser light. Laser processing can shorten the processing time and can further improve mass productivity. In particular, smooth groove formation is possible by short-time pulse irradiation such as a femtosecond laser.

また、Al基板3とガラスとは、ガラスの熱膨張率が6.0〜7.7×10−6/℃の範囲で、実験によって良好な接合ができることが確認されている。接合の良否はガラスのサイズ、軟化特性、応力方向に依存するが、必ずしも数%以内の熱膨張率差である必要はなく、15%程度の差があるものでも、良好な接続ができるものであれば良い。 In addition, it has been confirmed by experiments that the Al 2 O 3 substrate 3 and the glass can be bonded satisfactorily in the range where the thermal expansion coefficient of the glass is 6.0 to 7.7 × 10 −6 / ° C. The quality of bonding depends on the size, softening characteristics, and stress direction of the glass, but it is not always necessary to have a difference in thermal expansion coefficient within a few percent. Even if there is a difference of about 15%, a good connection can be made. I need it.

(第2の実施の形態)
図4は、本発明の第2の実施の形態に係る発光装置としてのLEDを示す縦断面図である。以下の説明において、第1の実施の形態と同一の構成および機能を有する部分については同一の符号を付している。
(Second Embodiment)
FIG. 4 is a longitudinal sectional view showing an LED as a light emitting device according to the second embodiment of the present invention. In the following description, parts having the same configuration and function as those of the first embodiment are denoted by the same reference numerals.

(全体の構成)
このLED1は、光学形状部6Aの表面に第1の実施の形態で説明したAlコート膜6Bに代えて、ダイクロイックミラー6Dと、蛍光体含有ガラス層6Eとを設けた構成において第1の実施の形態と相違している。
(Overall configuration)
This LED 1 has a first configuration in which a dichroic mirror 6D and a phosphor-containing glass layer 6E are provided on the surface of the optical shape portion 6A in place of the Al 2 O 3 coating film 6B described in the first embodiment. This is different from the embodiment.

(各部の構成)
ダイクロイックミラー6Dは、TiO膜およびSiO膜を交互に積層して多層化することによって形成されており、500nm以下の光を透過し、500nm以上の光を反射する。このことよりダイクロイックミラー6DはLED素子2の発する470nmの青色光は透過するが、蛍光体含有ガラス層6Eに含有される蛍光体が発する黄色光については反射することにより、ガラス封止部6への入射を防ぐ。
(Configuration of each part)
The dichroic mirror 6D is formed by alternately laminating TiO 2 films and SiO 2 films to form a multilayer, and transmits light of 500 nm or less and reflects light of 500 nm or more. Accordingly, the dichroic mirror 6D transmits the blue light of 470 nm emitted from the LED element 2, but reflects the yellow light emitted from the phosphor contained in the phosphor-containing glass layer 6E to the glass sealing portion 6. Prevents incident light.

蛍光体含有ガラス層6Eは、外径10μmの蛍光体粒子と、外径10μmのフッ化物低融点ガラス粒子とを混合した混合材料(軟化点約300℃)からなり、この混合材料を光学形状部6Aの形成されたガラス封止部6に静電塗装した後に350℃で加熱処理することによってガラス封止部6の表面に一体的に形成されている。この場合、LED素子2が放射する青色光で励起可能な蛍光体が用いられる。このような蛍光体としては。例えば、Ce:YAG(Yttrium Aluminum Garnet)蛍光体を用いることができる。   The phosphor-containing glass layer 6E is composed of a mixed material (softening point of about 300 ° C.) in which phosphor particles having an outer diameter of 10 μm and fluoride low-melting glass particles having an outer diameter of 10 μm are mixed. The glass sealing part 6 having 6A formed thereon is electrostatically coated and then heat-treated at 350 ° C. so as to be integrally formed on the surface of the glass sealing part 6. In this case, a phosphor that can be excited by blue light emitted from the LED element 2 is used. As such a phosphor. For example, a Ce: YAG (Yttrium Aluminum Garnet) phosphor can be used.

(第2の実施の形態の効果)
上記した第2の実施の形態によると、ガラス封止部6の表面全体にダイクロイックミラー6Dと蛍光体含有ガラス6Eとが形成されているので、色むらの少ないものとできる。更に、ガラス封止形態であるので、加熱状態で電圧印加することによる静電塗装が可能となり、ガラス封止部6の表面に蛍光体粒子とフッ化物低融点ガラス粒子とを混合した混合材料を静電付着させるので、第1の実施の形態の好ましい効果に加えて、凹凸形状のあるガラス封止部6の表面に混合材料を均一な膜厚で付着させることができ、熱融着による均一な膜厚の蛍光体含有ガラス層6Eを容易に形成することができる。また、フッ化物低融点ガラスによるフッ化物コートがガラス封止部6の表面に形成されるので、LED1の耐湿性をより向上させることができる。
(Effect of the second embodiment)
According to the second embodiment described above, since the dichroic mirror 6D and the phosphor-containing glass 6E are formed on the entire surface of the glass sealing portion 6, the color unevenness can be reduced. Furthermore, since it is a glass sealing form, electrostatic coating is possible by applying a voltage in a heated state, and a mixed material in which phosphor particles and fluoride low-melting glass particles are mixed on the surface of the glass sealing portion 6 is used. Since the electrostatic adhesion is performed, in addition to the preferable effect of the first embodiment, the mixed material can be adhered to the surface of the glass sealing portion 6 having an uneven shape with a uniform film thickness. A phosphor-containing glass layer 6E having a sufficient thickness can be easily formed. Moreover, since the fluoride coat by a fluoride low melting glass is formed in the surface of the glass sealing part 6, the moisture resistance of LED1 can be improved more.

(第3の実施の形態)
図5は、本発明の第3の実施の形態に係る発光装置としてのLEDを示す縦断面図である。
(Third embodiment)
FIG. 5 is a longitudinal sectional view showing an LED as a light emitting device according to a third embodiment of the present invention.

(全体の構成)
このLED1は、素子実装面と異なる高さの凹部3Cを有するAl基板3と、凹部3Cを覆うようにAl基板3およびLED素子2を封止するガラス封止部6とを有し、Alコート膜6Bあるいはダイクロイックミラー6Dを備えず、蛍光体含有ガラス層6Eのみを備える構成において第1あるいは第2の実施の形態と相違している。
(Overall configuration)
This LED 1 includes an Al 2 O 3 substrate 3 having a recess 3C having a height different from the element mounting surface, and a glass sealing portion 6 for sealing the Al 2 O 3 substrate 3 and the LED element 2 so as to cover the recess 3C. The second embodiment is different from the first or second embodiment in the configuration including only the phosphor-containing glass layer 6E without including the Al 2 O 3 coat film 6B or the dichroic mirror 6D.

(各部の構成)
ガラス封止部6は、ホットプレス加工に基づいて凹部3Cの側面を覆うとともに光学形状部6Aを有するように形成される。ガラス封止部6の表面には第2の実施の形態で説明した蛍光体含有ガラス層6Eをコートしている。
(Configuration of each part)
The glass sealing portion 6 is formed so as to cover the side surface of the recess 3C based on hot pressing and to have an optical shape portion 6A. The surface of the glass sealing portion 6 is coated with the phosphor-containing glass layer 6E described in the second embodiment.

(LEDの製造工程)
以下に、第3の実施の形態のLEDの製造方法について説明する。図6(a)から(c)は、LED製造工程の配線形成工程からガラス準備工程にかけてを示す概略図であり、図7(a)から(c)は、ガラス封止工程からLEDの分離にかけてを示す概略図である。
(LED manufacturing process)
Below, the manufacturing method of LED of 3rd Embodiment is demonstrated. FIGS. 6A to 6C are schematic diagrams showing the wiring manufacturing process from the LED manufacturing process to the glass preparation process, and FIGS. 7A to 7C are the glass sealing process to separation of the LEDs. FIG.

(配線形成工程)
まず、図6(a)に示すように、予め凹部3Cを設けられたAl基板3に対し、回路パターンに応じてWペーストをスクリーン印刷する。次に、Wペーストを印刷されたガラス含有Al基板3を1500℃で熱処理することによりWをAl基板3に焼き付け、さらにW上にNiめっき、Auめっきを施すことで回路パターン4A、4B、およびビアパターン4Cを形成する。なお、凹部3Cについては、回路パターン4A、4B、およびビアパターン4Cの形成後に切削、サンドブラスト等のプロセスによって形成される。
(Wiring formation process)
First, as shown in FIG. 6A, W paste is screen-printed on the Al 2 O 3 substrate 3 provided with the recesses 3C in advance according to the circuit pattern. Next, the glass-containing Al 2 O 3 substrate 3 printed with the W paste is heat-treated at 1500 ° C. so that W is baked on the Al 2 O 3 substrate 3, and further, Ni plating and Au plating are performed on the W. Patterns 4A and 4B and via pattern 4C are formed. The recess 3C is formed by a process such as cutting and sandblasting after the circuit patterns 4A and 4B and the via pattern 4C are formed.

(LED素子実装工程)
次に、図6(b)に示すように、Al基板3の回路パターン4BにAuバンプ5を介してLED素子2をフリップ実装する。
(LED element mounting process)
Next, as shown in FIG. 6B, the LED element 2 is flip-mounted on the circuit pattern 4B of the Al 2 O 3 substrate 3 via the Au bumps 5.

(低融点ガラス準備工程)
次に、図6(c)に示すように、板状のP−ZnO−LiO系の低融点ガラス60をAl基板3に対して平行にセットする。
(Low melting point glass preparation process)
Next, as shown in FIG. 6C, a plate-like P 2 O 5 —ZnO—Li 2 O-based low melting glass 60 is set in parallel to the Al 2 O 3 substrate 3.

(ガラス封止工程)
次に、図7(a)に示すように、窒素雰囲気中で550〜600℃の温度で低融点ガラス60のホットプレス加工を行う。低融点ガラス60は、Al基板3とそれらに含まれる酸化物を介して基板表面に接着されるとともに、プレス金型の形状に応じて半球状の光学形状部6Aを有したガラス封止部6が成形される。このとき、ガラス封止部6には凹部3Cに対応した位置に薄肉部として凹溝6Fが形成される。
(Glass sealing process)
Next, as shown in FIG. 7A, hot pressing of the low melting point glass 60 is performed at a temperature of 550 to 600 ° C. in a nitrogen atmosphere. The low melting point glass 60 is bonded to the substrate surface via the Al 2 O 3 substrate 3 and oxides contained therein, and has a glass seal having a hemispherical optical shape portion 6A according to the shape of the press mold. A stop 6 is formed. At this time, a concave groove 6F is formed in the glass sealing portion 6 as a thin portion at a position corresponding to the concave portion 3C.

(コート膜形成工程)
次に、図7(b)に示すように、蛍光体含有ガラス層6Eを形成する。
(Coat film forming process)
Next, as shown in FIG. 7B, a phosphor-containing glass layer 6E is formed.

(LED分離工程)
次に、図7(c)に示すように、凹溝6Fの部分をダイサーでカットすることによりLED1を分離する。
(LED separation process)
Next, as shown in FIG.7 (c), LED1 is isolate | separated by cutting the part of the ditch | groove 6F with a dicer.

(第3の実施の形態の効果)
上記した第3の実施の形態によると、凹部3Cを設けたAl基板3を低融点ガラス60でガラス封止するので、低融点ガラス60の熱収縮により生じる内部応力に基づいて低融点ガラス60が凹部3Cの側面に密着して凹凸封止される。このことにより、LED1の外縁におけるガラス封止部6とAl基板3の密着性が大になり、ガラス剥離や水分の浸透を極めて高いレベルで防ぐことができる。第3の実施の形態では、端面保護部6Cにおいてガラス封止部6が僅かに露出するが、この部位はLED素子2からの光が直接至るところではないので、光学的な影響は無視できるレベルで色むらは発生しない。なお、この場合にはガラス封止部6は耐湿性の高い材料を用いることが望ましい。
(Effect of the third embodiment)
According to the third embodiment described above, since the Al 2 O 3 substrate 3 provided with the recesses 3C is glass-sealed with the low melting glass 60, the low melting point is based on the internal stress caused by the thermal shrinkage of the low melting glass 60. The glass 60 is in close contact with the side surface of the recess 3 </ b> C and is sealed with unevenness. This increases the adhesion between the glass sealing portion 6 and the Al 2 O 3 substrate 3 at the outer edge of the LED 1, and can prevent glass peeling and moisture penetration at a very high level. In the third embodiment, the glass sealing portion 6 is slightly exposed in the end face protection portion 6C, but since this portion is not where the light from the LED element 2 reaches directly, the optical influence is negligible. Color unevenness does not occur. In this case, it is desirable to use a material having high moisture resistance for the glass sealing portion 6.

また、蛍光体含有層に加えてAlコートとしても良い。高温多湿状態でのガラスは、表面が白濁する変化が生じる。しかし、LED素子から直接光が達するガラス表面はAlコートが施されているので、光学特性には変化は生じない。 In addition to the phosphor-containing layer, an Al 2 O 3 coat may be used. The glass in a high temperature and high humidity state changes so that the surface becomes cloudy. However, since the glass surface where light directly reaches from the LED element is coated with Al 2 O 3 , the optical characteristics are not changed.

(第4の実施の形態)
図8(a)から(d)は、本発明の第4の実施の形態に係る発光装置としてのLEDの凹部を示す部分断面図である。
(Fourth embodiment)
FIGS. 8A to 8D are partial cross-sectional views showing the recesses of the LED as the light emitting device according to the fourth embodiment of the present invention.

(全体の構成)
第4の実施の形態は、第3の実施の形態で説明した凹部3Cにおいて、ガラス封止部6が露出しない構成としたものである。以下にその製造工程を説明する。
(Overall configuration)
In the fourth embodiment, the glass sealing portion 6 is not exposed in the recess 3C described in the third embodiment. The manufacturing process will be described below.

(ガラス封止工程)
図8(a)に示すガラス封止工程では、ガラス封止部6の形成により凹部3Cに設けられる凹溝6Fが後述する溝加工の障害とならない溝幅を有するように形成される。その他については図7(a)で説明したガラス封止工程と同様であるので詳細については省略する。
(Glass sealing process)
In the glass sealing step shown in FIG. 8A, the groove 6F provided in the recess 3C by the formation of the glass sealing portion 6 is formed so as to have a groove width that does not become an obstacle to the groove processing described later. Others are the same as the glass sealing step described in FIG.

(溝形成工程)
図8(b)に示す溝形成工程では、ガラス封止部6の凹溝6Fにレーザ光を照射して溝30を形成し、Al基板3を露出させる。なお、レーザ光の照射に代えてダイサーによるダイシングでAl基板3に達する深さを有する溝30を設けるようにしても良い。
(Groove formation process)
In the groove forming step shown in FIG. 8B, the groove 30 is formed by irradiating the concave groove 6F of the glass sealing portion 6 with laser light, and the Al 2 O 3 substrate 3 is exposed. A groove 30 having a depth reaching the Al 2 O 3 substrate 3 may be provided by dicing with a dicer instead of laser light irradiation.

(コート膜形成工程)
図8(c)に示すコート膜形成工程では、溝形成工程で露出させたAl基板3を覆うようにAlコート膜6Bを設けることで、レーザ光の照射により露出した凹溝6Fのガラスがコートされる。
(Coat film forming process)
In the coat film forming step shown in FIG. 8C, the Al 2 O 3 coat film 6B is provided so as to cover the Al 2 O 3 substrate 3 exposed in the groove forming step, so that the recesses exposed by the laser light irradiation are exposed. The glass of the groove 6F is coated.

(LED分離工程)
図8(d)に示すLED分離工程では、コート膜形成工程後に溝30の部分をダイサーでカットすることによりLED1を個別に分離する。分離されたLED1の端面は、Al基板3の凹部3Cにおいてガラス封止部6が凹凸封止されており、かつ、ガラス封止部6とAl基板3との境界がAlコート膜6Bで覆われたものとなる。
(LED separation process)
In the LED separation step shown in FIG. 8D, the LEDs 1 are individually separated by cutting the groove 30 with a dicer after the coating film forming step. The end face of the separated LED1 is, Al 2 O 3 and the glass sealing part 6 is hermetically uneven sealing the recess 3C of the substrate 3, and the boundary between the glass sealing part 6 and the Al 2 O 3 substrate 3 is Al The film is covered with the 2 O 3 coat film 6B.

(第4の実施の形態の効果)
上記した第4の実施の形態によると、凹部3Cを設けたAl基板3を低融点ガラス60でガラス封止し、ガラス封止された凹部3Cに溝30を設けてAlコート膜6Bでコートしたので、低融点ガラスの熱収縮に基づくAl基板3とガラス封止部6との高い密着性が得られるとともに、ガラス封止部6の全面保護による高い防湿性、耐劣化性を得ることができる。
(Effect of the fourth embodiment)
According to the fourth embodiment described above, the Al 2 O 3 substrate 3 provided with the recess 3C is glass-sealed with the low-melting glass 60, and the groove 30 is provided in the glass-sealed recess 3C to provide Al 2 O 3. Since coated with the coating film 6B, high adhesion between the Al 2 O 3 substrate 3 and the glass sealing part 6 based on the thermal shrinkage of the low-melting glass is obtained, and also high moisture resistance due to the entire surface protection of the glass sealing part 6 Deterioration resistance can be obtained.

本発明の第1の実施の形態に係る発光装置としてのLEDを示す縦断面図である。It is a longitudinal cross-sectional view which shows LED as a light-emitting device based on the 1st Embodiment of this invention. (a)から(c)は、LED製造工程の配線形成工程からガラス準備工程にかけてを示す概略図である。(A) to (c) is a schematic diagram showing the process from the wiring formation process to the glass preparation process in the LED manufacturing process. (a)から(d)は、ガラス封止工程からLEDの分離にかけてを示す概略図である。(A) to (d) is a schematic view showing the process from the glass sealing step to the separation of the LED. 本発明の第2の実施の形態に係る発光装置としてのLEDを示す縦断面図である。It is a longitudinal cross-sectional view which shows LED as a light-emitting device concerning the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る発光装置としてのLEDを示す縦断面図である。It is a longitudinal cross-sectional view which shows LED as a light-emitting device based on the 3rd Embodiment of this invention. (a)から(c)は、LED製造工程の配線形成工程からガラス準備工程にかけてを示す概略図である。(A) to (c) is a schematic diagram showing the process from the wiring formation process to the glass preparation process in the LED manufacturing process. (a)から(c)は、ガラス封止工程からLEDの分離にかけてを示す概略図である。(A) to (c) is a schematic view showing the process from the glass sealing step to the separation of the LED. (a)から(d)は、本発明の第4の実施の形態に係る発光装置としてのLEDの凹部を示す部分断面図である。(A) to (d) is a partial cross-sectional view showing a concave portion of an LED as a light emitting device according to a fourth embodiment of the present invention. 特許文献1に記載される発光装置の縦断面図である。It is a longitudinal cross-sectional view of the light-emitting device described in patent document 1. FIG.

符号の説明Explanation of symbols

1…LED、2…LED素子、3C…凹部、3…Al基板、3B…段部、4A…回路パターン、4B…回路パターン、4C…ビアパターン、5…Auバンプ、6…ガラス封止部、6A…光学形状部、6B…Alコート膜、6C…端面保護部、6D…ダイクロイックミラー、6E…蛍光体含有ガラス層、6F…凹溝、10…発光装置、11…LED発光素子、12…プリント配線基板、13…配線パターン、14…ワイヤ、15…低融点ガラス、30…溝、60…低融点ガラス、 1 ... LED, 2 ... LED element, 3C ... recess, 3 ... Al 2 O 3 substrate, 3B ... stepped portion, 4A ... circuit pattern, 4B ... circuit pattern, 4C ... via pattern, 5 ... Au bumps, 6 ... sealed glass stop portion, 6A ... optical shape portion, 6B ... Al 2 O 3 coating film, 6C ... end face protective portion, 6D ... dichroic mirror, 6E ... phosphor-containing glass layer, 6F ... groove, 10 ... light-emitting device, 11 ... LED Light emitting element, 12 ... printed wiring board, 13 ... wiring pattern, 14 ... wire, 15 ... low melting glass, 30 ... groove, 60 ... low melting glass,

Claims (8)

発光素子と、
前記発光素子を搭載する無機材料からなる基板と、
前記基板上にて前記発光素子を封止するガラスからなる封止部と、
前記発光素子を取り囲むように、前記封止部の上面から前記基板の内部にかけて、前記基板の厚さ方向に形成された切り込み面と、
水分が浸透しない光透過性の無機材料からなり、前記封止部の表面全体を覆うとともに、前記切り込み面における前記封止部と前記基板との界面を覆うコート部とを有することを特徴とする発光装置。
A light emitting element;
A substrate made of an inorganic material on which the light emitting element is mounted;
A sealing portion made of glass for sealing the light emitting element on the substrate;
A cut surface formed in the thickness direction of the substrate from the upper surface of the sealing portion to the inside of the substrate so as to surround the light emitting element,
Moisture made of a light transmissive inorganic material that does not penetrate, to cover the entire surface of the sealing portion, characterized in that organic and a coating portion covering the interface between the substrate and the sealing portion in the cut surface A light emitting device.
前記発光素子は、フリップ実装型発光素子であり、
前記基板は、前記封止部と同等の熱膨張率を有する無機材料からなることを特徴とする請求項1に記載の発光装置。
The light emitting element is a flip mounting type light emitting element,
The light emitting device according to claim 1, wherein the substrate is made of an inorganic material having a thermal expansion coefficient equivalent to that of the sealing portion.
前記コート部は、蛍光体含有材料であることを特徴とする請求項1又は2に記載の発光装置。 The coating unit, the light emitting device according to claim 1 or 2, characterized in that a phosphor-containing material. 前記コート部は、AlThe coat part is made of Al. 2 O 3 、SiO, SiO 2 、SiN、MgF, SiN, MgF 2 、TiOTiO 2 及びフッ化物ガラス粒子のいずれかからなることを特徴とする請求項1から3のいずれか1項に記載の発光装置。The light-emitting device according to any one of claims 1 to 3, wherein the light-emitting device is made of any one of a fluorescent glass particle and a fluoride glass particle. 前記コート部は、ダイクロイックミラーを含むものである請求項1から4のいずれか1項に記載の発光装置。 The light emitting device according to claim 1, wherein the coat part includes a dichroic mirror. 無機材料からなる基板を準備する第1のステップと、
前記基板に複数の発光素子を搭載する第2のステップと、
前記複数の発光素子搭載された前記基板をガラスからなる封止材料で封止する第3のステップと、
前記封止材料から前記基板にかけて前記基板が分断されることのない深さまで形成され、前記発光素子を取り囲む切り込みを設ける第4のステップと、
前記切り込みにより露出した前記封止材料と前記基板との界面及び前記封止材料の表面全体に水分が浸透しない光透過性の無機材料からなるコーティングを施す第5のステップと、
前記切り込みに沿って前記光透過性の無機材料および前記基板を分割する第6のステップとを有することを特徴とする発光装置の製造方法。
A first step of preparing a substrate made of an inorganic material;
A second step of mounting a plurality of light emitting elements on the substrate;
A third step of sealing the substrate on which the plurality of light emitting elements are mounted with a sealing material made of glass ;
A fourth step of forming a cut from the sealing material to the substrate to a depth that does not divide the substrate and surrounding the light emitting element;
A fifth step of applying a coating of surfactant and optically transparent inorganic material moisture across the surface impermeable to the sealing material and the substrate the sealing material exposed Ri by said cuts,
And a sixth step of dividing the light transmissive inorganic material and the substrate along the cut.
前記第5のステップにおいて、前記コーティングをスパッタリングによって設けることを特徴とする請求項に記載の発光装置の製造方法。 The method of manufacturing a light emitting device according to claim 6 , wherein in the fifth step, the coating is provided by sputtering. 前記第5のステップにおいて、前記コーティングを静電塗布によって設けることを特徴とする請求項に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 6 , wherein, in the fifth step, the coating is provided by electrostatic coating.
JP2005027484A 2005-01-20 2005-02-03 Light emitting device and manufacturing method thereof Active JP4492378B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005027484A JP4492378B2 (en) 2005-02-03 2005-02-03 Light emitting device and manufacturing method thereof
US11/334,745 US20060171152A1 (en) 2005-01-20 2006-01-19 Light emitting device and method of making the same
US12/929,331 US8294160B2 (en) 2005-01-20 2011-01-14 Light emitting device including a sealing portion, and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027484A JP4492378B2 (en) 2005-02-03 2005-02-03 Light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006216753A JP2006216753A (en) 2006-08-17
JP4492378B2 true JP4492378B2 (en) 2010-06-30

Family

ID=36979711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027484A Active JP4492378B2 (en) 2005-01-20 2005-02-03 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4492378B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008621A1 (en) 2013-07-19 2015-01-22 セントラル硝子株式会社 Phosphor-dispersed glass and method for producing same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855869B2 (en) * 2006-08-25 2012-01-18 日亜化学工業株式会社 Method for manufacturing light emitting device
JP4650378B2 (en) * 2006-08-31 2011-03-16 日亜化学工業株式会社 Method for manufacturing light emitting device
DE102006046199A1 (en) 2006-09-29 2008-04-03 Osram Opto Semiconductors Gmbh Optoelectronic component, has semiconductor layer sequence with active area, which emits electromagnetic radiations with spectrum in operation
JP5315607B2 (en) * 2006-12-07 2013-10-16 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP5061139B2 (en) * 2009-02-12 2012-10-31 株式会社住田光学ガラス Method for manufacturing light emitting device
DE112010004424T5 (en) * 2009-12-26 2012-11-08 Achrolux Inc. Uniform film layer structure that converts the wavelength of emitted light, and methods of forming the same
JP5370238B2 (en) * 2010-03-30 2013-12-18 豊田合成株式会社 Method for manufacturing light emitting device
US9039216B2 (en) 2010-04-01 2015-05-26 Lg Innotek Co., Ltd. Light emitting device package and light unit having the same
KR101081170B1 (en) 2010-04-01 2011-11-07 엘지이노텍 주식회사 Light emitting device packag and method for fabricating thereof
JP5755420B2 (en) * 2010-09-01 2015-07-29 日亜化学工業株式会社 Light emitting device
JP5619533B2 (en) * 2010-09-01 2014-11-05 日亜化学工業株式会社 Light emitting device
WO2014057752A1 (en) * 2012-10-09 2014-04-17 シャープ株式会社 Light-emitting element and light-emitting device provided with same
JP6451579B2 (en) * 2015-09-30 2019-01-16 日亜化学工業株式会社 Light emitting device
JP6733232B2 (en) * 2016-03-16 2020-07-29 豊田合成株式会社 Light emitting device and manufacturing method thereof
JP2017183572A (en) * 2016-03-31 2017-10-05 セントラル硝子株式会社 Manufacturing method of optical device
JP6432656B2 (en) * 2017-08-22 2018-12-05 日亜化学工業株式会社 Light emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368286A (en) * 2001-06-11 2002-12-20 Citizen Electronics Co Ltd Light-emitting diode and method of manufacturing the same
JP2004031843A (en) * 2002-06-28 2004-01-29 Kyocera Corp Light-emitting diode
WO2004082036A1 (en) * 2003-03-10 2004-09-23 Toyoda Gosei Co., Ltd. Solid element device and method for manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368286A (en) * 2001-06-11 2002-12-20 Citizen Electronics Co Ltd Light-emitting diode and method of manufacturing the same
JP2004031843A (en) * 2002-06-28 2004-01-29 Kyocera Corp Light-emitting diode
WO2004082036A1 (en) * 2003-03-10 2004-09-23 Toyoda Gosei Co., Ltd. Solid element device and method for manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008621A1 (en) 2013-07-19 2015-01-22 セントラル硝子株式会社 Phosphor-dispersed glass and method for producing same

Also Published As

Publication number Publication date
JP2006216753A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP4492378B2 (en) Light emitting device and manufacturing method thereof
JP4961887B2 (en) Solid state device
US8294160B2 (en) Light emitting device including a sealing portion, and method of making the same
JP5251038B2 (en) Light emitting device
EP2596948B1 (en) Method of making a semiconductor device
JP5109226B2 (en) Light emitting device
JP4142080B2 (en) Light emitting device
US10461227B2 (en) Method for manufacturing light emitting device, and light emitting device
US20080284310A1 (en) Light emitting device, light source and method of making the device
WO2014122881A1 (en) Light-emitting device
KR20070034005A (en) White light emitting device and its manufacturing method
US11424384B2 (en) Light-emitting device and method of manufacturing the same
JP4590994B2 (en) Light emitting device and manufacturing method thereof
JP4637160B2 (en) Method for manufacturing solid element device
JP5407116B2 (en) Light emitting device
JP5126127B2 (en) Method for manufacturing light emitting device
JP7227458B2 (en) light emitting device
JP4008943B2 (en) Method for manufacturing solid element device
JP2014501447A (en) Composite substrate, semiconductor chip having composite substrate, and composite substrate and method for manufacturing semiconductor chip
KR102343872B1 (en) Light emitting device and package including the same
KR20200134465A (en) Light emitting device package, lighting device and method of manufacturing the same
KR101779084B1 (en) Semicondutor light emitting device structure and method of manufacturing the same
JP2006080316A (en) Solid-state element device
JP7193698B2 (en) Light-emitting device and method for manufacturing light-emitting device
JP5457325B6 (en) Solid state device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

R150 Certificate of patent or registration of utility model

Ref document number: 4492378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4