WO2014057752A1 - Light-emitting element and light-emitting device provided with same - Google Patents

Light-emitting element and light-emitting device provided with same Download PDF

Info

Publication number
WO2014057752A1
WO2014057752A1 PCT/JP2013/074142 JP2013074142W WO2014057752A1 WO 2014057752 A1 WO2014057752 A1 WO 2014057752A1 JP 2013074142 W JP2013074142 W JP 2013074142W WO 2014057752 A1 WO2014057752 A1 WO 2014057752A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
light emitting
resin
resin layer
Prior art date
Application number
PCT/JP2013/074142
Other languages
French (fr)
Japanese (ja)
Inventor
学道 重光
宏之 花戸
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014057752A1 publication Critical patent/WO2014057752A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a light emitting element and a light emitting device including the same. More specifically, the present invention relates to a light emitting element capable of emitting white light adjusted to a desired chromaticity with high light extraction efficiency and a light emitting device including the light emitting element.
  • White light emitting devices using semiconductor light emitting devices are expected to be applied to the next generation of general lighting and bulbs such as liquid crystal backlights, and tube markets such as fluorescent tubes and cold cathode tubes.
  • a white light emitting element is obtained by coating a light emitting diode chip with a resin containing phosphor, etc., and light from a phosphor excited by light from the light emitting diode chip and light from the light emitting diode chip. To obtain white light.
  • Patent Document 1 discloses a structure that improves the accuracy of chromaticity by using a plurality of LED chips and making the combination of chromaticity of each LED chip a predetermined combination. However, in this structure, when a module is used, chromaticity variation occurs due to variations in the amount of phosphor of each LED chip.
  • Patent Documents 2 to 4 disclose techniques for color matching in a separate process in a modularized state.
  • Patent Document 2 the phosphor layer for chromaticity adjustment containing the second phosphor provided in the outer layer in the light emitting direction than the phosphor-containing resin layer containing the first phosphor.
  • a configuration formed in a dot shape is disclosed, and it is disclosed that the color is finely adjusted by the phosphor layer for chromaticity adjustment.
  • Patent Document 3 discloses a light-emitting element containing a phosphor and having a light scattering portion formed on at least a part of the surface of a sealing resin portion covering a light-emitting diode chip, and the light scattering portion is disposed therein. Thus, it is disclosed that the efficiency of quantum conversion by a phosphor is improved.
  • Patent Document 4 has an LED element and a sealing material containing a phosphor in a transparent resin, and the sealing material is disposed in the periphery of the LED element, and the surface of the sealing material An LED light source having a transparent thin film with a refractive index different from the refractive index of the encapsulant is disclosed.
  • Patent Document 2 since the technique disclosed in Patent Document 2 requires a process of forming the chromaticity adjusting phosphor layer in a dot shape, it is difficult to accurately configure the chromaticity adjusting phosphor layer. Therefore, there is a problem that it is difficult to finely adjust the color in practice.
  • Patent Documents 3 and 4 can be used to easily and accurately construct the phosphor layer.
  • the light emitting element has been used mainly in the form of an LED module or the like, and is rarely used by being exposed to the external environment.
  • the light-emitting element exposed to the external environment it can be said that it is very useful if the light-emitting element can also exhibit effects such as an antifouling effect and an antifogging effect.
  • the present invention has been made in view of the above problems, and its purpose is to sufficiently suppress the occurrence of multiple scattering, to emit white light having desired chromaticity characteristics with high light extraction efficiency, and
  • An object of the present invention is to provide a light-emitting element having an excellent photocatalytic action and a light-emitting device including the light-emitting element.
  • the present inventor has made it possible to finely adjust the chromaticity of emitted light while suppressing the occurrence of multiple scattering with a simple structure and maintaining the light utilization efficiency, and The structure capable of producing a photocatalytic action has been intensively studied.
  • the phosphor is contained only in the phosphor-containing resin layer that seals the LED element, so that the phosphor is localized in a region in the vicinity of the LED element, and the phosphor-containing layer is covered via the space. It was found that the above-mentioned problems can be solved by providing a reflective film having a wavelength dependency on the reflectance on the outer surface of the cover part, and the present invention has been completed.
  • the light-emitting element includes an LED element and a phosphor that absorbs a part of light emitted from the LED element, converts the wavelength, and emits light, and seals the LED element.
  • a first resin portion and a cover portion that seals the first resin portion, and the first resin portion includes a surface of the first resin portion and an inner surface of the cover portion. It is sealed by the cover part through a cavity part which is a space between the two parts, and the cover part is provided with a reflection film having a wavelength dependency on the reflectance on the outer surface.
  • the light emitting device according to the present invention can sufficiently suppress the occurrence of multiple scattering, and has an effect that a light emitting device having desired chromaticity characteristics can be obtained efficiently and at low cost. Furthermore, effects such as antifouling, antifogging, antibacterial, air purification, and water purification can be achieved by the photocatalytic action of the reflective film.
  • FIG. 6 is a chromaticity diagram illustrating variation in chromaticity depending on the presence or absence of a reflective film in the light emitting device according to the present invention. It is a schematic sectional drawing of the light emitting element concerning 3rd and 4th embodiment of this invention. It is a schematic diagram which shows the outline of the process of the manufacturing method of a light emitting element. It is a side view which shows the outline of the structure of the light-emitting device concerning one Embodiment of this invention. It is a side view which shows the outline of the structure of the light-emitting device concerning one Embodiment of this invention. It is a general
  • a light-emitting element includes a LED element and a phosphor that absorbs part of light emitted from the LED element, converts the wavelength to emit light, and seals the LED element. And a cover portion that seals the first resin portion, and the first resin portion is a space between the surface of the first resin portion and the inner surface of the cover portion. It is sealed by the cover part through a certain hollow part, and the cover part includes a reflection film having a wavelength dependency on the reflectance on the outer surface.
  • FIG. 1 is a schematic cross-sectional structure diagram of a light emitting device 100 according to a first embodiment and a second embodiment described later.
  • the light emitting element 100 includes an LED element 1, a phosphor-containing resin layer (first resin part) 2, a space (cavity part) 3, a reflective film 4, a substrate 5, and a sealing cover (cover part). 40).
  • the phosphor-containing resin layer (first resin portion) 2 is formed on the outer peripheral portion of the LED device 1, and the LED device 1 is sealed. It has stopped.
  • the phosphor-containing resin layer (first resin part) 2 contains the phosphor, but the space (cavity part) 3 outside the phosphor-containing resin layer (first resin part) 2 is the fluorescent substance. It has a configuration that does not contain a body.
  • the “outer peripheral part” means that the LED element 1 is outside in the light emission direction as viewed from the LED element 1.
  • the LED element 1 is mounted on the mounting surface 6 of the substrate 5 with a silicone resin paste or the like.
  • the substrate 5 is preferably made of a material having a high reflective effect on the mounting surface, and for example, a ceramic substrate is preferably used.
  • a front surface electrode (not shown) for wire bonding is mounted on the mounting surface 6, and a back surface electrode (not shown) for connecting to an external circuit on the back surface (the surface on which the LED element 1 is not mounted). ), And a through hole (not shown) for conducting the front surface electrode and the back surface electrode is provided inside.
  • the LED element 1 may be any element that can emit blue light (wavelength of 435 nm or more and 480 nm or less).
  • a nitride-based compound semiconductor such as InGaN can be used.
  • the LED element 1 is mounted (die bonding) on the mounting surface 6 of the substrate 5 and is electrically connected to the surface electrode of the substrate 5 by a wire (not shown) made of, for example, gold. As a result, power is supplied to the LED element 1 from the back electrode of the substrate 5.
  • a phosphor-containing resin layer (first resin portion) 2 is formed on the outer peripheral portion of the LED element 1.
  • the phosphor-containing resin layer (first resin portion) 2 is a space between the surface of the phosphor-containing resin layer (first resin portion) 2 and the inner surface of the sealing cover (cover portion) 40. It is sealed with a sealing cover (cover part) 40 through the cavity 3.
  • a space (hollow part) 3 is surrounded by the surface of the phosphor-containing resin layer (first resin part) 2, the inner surface of the sealing cover (cover part) 40, and the mounting surface 6 of the substrate. This area
  • the number of the LED elements 1 may be one or plural. When there are a plurality of LED elements 1, a plurality of LED elements 1 may be arranged inside one phosphor-containing resin layer (first resin portion) 2.
  • first resin portions there are a plurality of phosphor-containing resin layers (first resin portions) 2 in which one or a plurality of LED elements 1 are arranged, and each of the phosphor-containing resin layers (first resin portions) 2
  • the phosphor-containing resin layer (first resin portion) is formed by the sealing cover (cover portion) 40 so that a space (hollow portion) 3 is formed between the surface and the inner surface of the sealing cover (cover portion) 40. 2 may be sealed, and the reflective film 4 may be formed on the outer surface of the sealing cover (cover portion) 40.
  • a space (cavity) 3 exists in the outer periphery of each of the plurality of phosphor-containing resin layers (first resin portions) 2, and the sealing cover (cover) covers the space (cavity) 3.
  • 40 may be formed, and the reflective film 4 may be formed so as to cover the outer surface of the sealing cover (cover portion) 40.
  • the “outer surface” refers to an outer surface in the light emitting direction when viewed from the LED element 1 among the surfaces, and the “inner surface” refers to light viewed from the LED element 1 among the surfaces.
  • the sealing cover (cover part) 40 is interposed through a cavity 3 that is a space between the surface of the phosphor-containing resin layer (first resin part) 2 and the inner surface of the sealing cover (cover part) 40. Then, the phosphor-containing resin layer (first resin portion) 2 is sealed.
  • the phosphor-containing resin layer (first resin portion) 2 is sealed through the cavity 3 means that the surface of the phosphor-containing resin layer (first resin portion) 2 is sealed with a cover (cover).
  • Part) 40 is not in direct contact with the inner surface of the inner surface and is not directly covered by the inner surface.
  • the inner surface of the sealing cover (cover part) 40 The sealing cover (cover part) 40 is arranged so that a space (hollow part) 3 exists between the surface of the phosphor-containing resin layer (first resin part) 2.
  • the sealing cover (cover part) 40 becomes a lid (lid part) with respect to the space (cavity part) 3 in which the phosphor-containing resin layer (first resin part) 2 exists, and the sealing cover ( It is only necessary that the space (hollow part) 3 can be closed by arranging the cover part 40.
  • the end portion of the sealing cover (cover portion) 40 arranged in this way is fixed to the mounting surface 6 of the substrate, and the phosphor-containing resin layer (first resin portion) 2 is formed. It is sealed.
  • the end portion of the sealing cover (cover portion) 40 is fixed to the mounting member 30, and the phosphor-containing resin layer (first resin portion) 2 is sealed.
  • the end portion of the sealing cover (cover portion) 40 is fixed to the base portion of the plug 33, and the phosphor-containing resin layer (first resin portion) 2 is sealed.
  • the LED elements 1 may be arranged at predetermined positions, for example, at equal intervals so as to satisfy a predetermined light emission amount.
  • the phosphor-containing resin layer (first resin portion) 2 is formed so as to cover the LED element 1 and seals the LED element 1.
  • the phosphor-containing resin layer (first resin portion) 2 is made of a resin containing a phosphor.
  • the resin is preferably a silicone resin because of its excellent translucency, and an epoxy resin, an acrylic resin, or the like can also be used.
  • the phosphor absorbs part of the light emitted from the LED element 1 (blue light), converts the wavelength, and emits yellow light.
  • Examples of such phosphors include CaAlSiN 3 : Eu, (Si ⁇ Al) 6 (O ⁇ N) 8 : Eu, BOSE (Ba, O, Sr, Si, Eu), SOSE (Sr, Ba, Si, O, Eu), YAG (Ce activated yttrium aluminum garnet), ⁇ sialon ((Ca), Si, Al, O, N, Eu), ⁇ sialon (Si, Al, O, N, Eu), etc. It can be used suitably.
  • the material constituting the sealing cover (cover portion) 40 is preferably a resin material such as polycarbonate or acrylic. Moreover, what mixed the inorganic particle or the polymer with the said resin material, and provided light diffusibility may be used. Furthermore, glass can also be used.
  • the sealing cover (cover portion) 40 includes a reflective film 4 having a wavelength dependency on the reflectance on the outer surface. “Having wavelength dependency in reflectance” means that the reflectance of light having a wavelength in a specific range is stronger than the reflectance of light having a wavelength in the other range. For example, if it reflects blue light more strongly than green light or red light, it can be said that the reflective film has a wavelength dependency of “high reflectance of blue light”.
  • the reflective film 4 has (1) the reflectance of visible light having a wavelength of 435 nm or more and 480 nm or less is higher than the reflectance of visible light having a wavelength of 500 nm or more and 700 nm or less, or (2) It is preferable that the reflectance of visible light having a wavelength of 500 nm to 700 nm is higher than the reflectance of visible light having a wavelength of 435 nm to 480 nm.
  • the reflectance of blue light is green light (wavelength 500 nm or more and 560 nm or less), yellow-green light (wavelength 560 nm or more and 580 nm or less), yellow light (wavelength 580 nm or more and 595 nm or less). ), Orange light (wavelength 595 nm or more and 605 nm or less) and red light (wavelength 605 nm or more and 700 nm or less).
  • the reflective film 4 when the reflective film 4 is not formed, the blue light emitted from the LED element and the yellow light from the phosphor that absorbs part of the light emitted from the LED element and converts the wavelength to emit light.
  • the reflective film 4 of (1) above may be formed on the outer surface of the sealing cover (cover portion) 40.
  • the blue light transmitted through the reflective film 4 and emitted from the light emitting element 100 is reduced, and the wavelength of the blue light is converted by the phosphor.
  • the ratio of yellow light in the emitted light increases, the light emitted from the light emitting element 100 has chromaticity shifted to the yellow side as compared with the emitted light in the case where there is no reflective film 4.
  • the reflective film 4 is (2), contrary to the case (1), the reflectance from the green light to the red light is high, and the light from the green light to the red light has a wavelength by the phosphor. Converted. As a result, since the ratio of blue light in the emitted light increases, the light emitted from the light emitting element 100 has a chromaticity shifted to the blue side as compared with the emitted light in the case where there is no reflective film 4. Become.
  • the reflective film 4 when the reflective film 4 is not formed, the light obtained by mixing the blue light emitted from the LED element and the yellow light from the phosphor is yellower than the prescribed chromaticity as white light.
  • the reflective film 4 of the above (2) is formed on the outer surface of the sealing cover (cover portion) 40.
  • FIG. 2 is a chromaticity diagram for explaining variation in chromaticity depending on the presence or absence of the reflective film 4 in the light emitting device 100 shown in FIG.
  • the light emitting device 100 includes a sealing cover (cover portion) 40, a space (hollow portion) 3, and a phosphor-containing resin layer (first resin portion) 2, and the reflective film 4 is not formed.
  • the plurality of LED elements 1 are sealed inside the phosphor-containing resin layer (first resin portion) 2, the result of measuring the chromaticity of the emitted light of all the LED elements 1 is shown in FIG. It is assumed that it is shown in (a).
  • the chromaticity can be measured by a conventionally known method using a commonly used chromaticity meter.
  • the light before forming the reflective film 4 is colored due to the dispersion of the phosphor dispersed in the phosphor-containing resin layer (first resin portion) 2.
  • the degree of variation varies widely.
  • the reflected blue light returns to the phosphor-containing resin layer (first resin portion) 2, undergoes wavelength conversion by the phosphor, and is emitted toward the reflection film 4. If the emitted light is yellow light, the light passes through the reflective film 4 and is emitted to the outside of the light emitting element 100.
  • the chromaticity of light emitted from the light emitting element 100 to the outside can be adjusted from the blue side to the yellow side (direction in which the chromaticity increases).
  • the reflective film 4 is preferably a dielectric film having a photocatalytic action. Since the reflective film 4 is a dielectric film having a photocatalytic action, the light emitting device of the present invention has effects such as an antifouling effect, an antifogging effect, an antibacterial effect, an air cleaning effect, and a water purification effect.
  • the light emitting device of the present invention exhibits an antifouling effect and an antifogging effect, so that the intensity and brightness of light emitted from the light emitting device can be kept constant, and the usable period of the light emitting device can be lengthened. it can.
  • the light emitting device of the present invention has an antibacterial effect, an air purification effect, and a water purification effect, thereby adding a more useful effect to the effect of stably emitting light having a desired chromaticity. It will be. Therefore, the commercial value of the present light emitting element can be further improved.
  • the dielectric film preferably contains TiO 2 .
  • TiO 2 is inexpensive, and a reflective film having a blue light reflectance higher than that of green light to red light can be formed by an inexpensive process such as vapor deposition or sputtering. That is, in addition to the antifouling effect and the like, an effect of preventing light pollution can be achieved by removing light having a short wavelength.
  • the material of the reflective film 4 not only TiO 2 but also a dielectric material can be used as the material of the reflective film 4.
  • ZnO, SiO 2 or the like can be preferably used.
  • the material forming the reflective film 4 may be a composition such as a composition of SiO 2 and ZnO and / or TiO 2 .
  • the reflective film 4 by designing the reflective film 4 so that the reflectance of light having a long wavelength is high, for example, a reflective film in which the reflectance of green light to red light is higher than that of blue light can be formed. .
  • the chromaticity of the light emitted to the outside from the light emitting element 100 can be adjusted from the yellow side to the blue side (direction in which the chromaticity decreases).
  • the adjustment of chromaticity in this case is realized not by the wavelength conversion efficiency by the phosphor but by the loss of the long wavelength component.
  • the preferred content of the dielectric material in the reflective film 4 varies depending on the physical properties of the dielectric material contained in the reflective film 4, the amount of wavelength component to be adjusted, the wavelength of light incident on the reflective film 4, etc. I can't say.
  • the wavelength dependency of the reflective film 4 depends on the refractive index of the resin (for example, acrylic resin) constituting the phosphor-containing resin layer (first resin part) 2 and the sealing cover (cover part) 40 and the reflective film 4. It depends on the refractive index.
  • the resin for example, acrylic resin
  • TiO 2 reffractive index of about 2.5
  • acrylic resin reffractive index of about 1.50
  • the wavelength dependence of the reflective film 4 also varies depending on the film thickness of the reflective film 4.
  • the wavelength dependence of the reflective film 4 is influenced by interference involving the refractive index of the resin constituting the sealing cover (cover portion) 40, the refractive index of the reflective film 4, and the film thickness of the reflective film 4. Therefore, it is preferable to perform toning by appropriately determining the refractive index of the reflecting film 4 and the film thickness of the reflecting film 4 according to the toning result to be obtained.
  • the material for forming the reflective film 4 may be selected as appropriate according to the type of light whose output is desired to be reduced by measuring the chromaticity of the light emitted from the light emitting element 100 when the reflective film 4 is not formed. Good.
  • the reflective film 4 can be formed by depositing a material containing the dielectric material on the outer surface of the sealing cover (cover portion) 40 using a method such as vapor deposition or sputtering.
  • the reflective film 4 is preferably a single layer film, but is not limited to this and may be a multilayer film. In the case of a multilayer film, it is possible to perform toning with reduced light loss by designing the reflectance of the visible light region to be low and the reflectance of only a limited wavelength region to be high.
  • the phosphor-containing resin layer (first resin portion) 2 contains a phosphor, and the space (cavity portion) 3 does not contain a phosphor.
  • FIG. 7 is a schematic cross-sectional structure diagram of a conventionally known light emitting device showing a state of phosphor distribution in the conventionally known light emitting device.
  • the phosphor-containing resin layer 2 ' is formed in one layer on the outer peripheral portion of the LED device 1, and contains the phosphor inside.
  • the LED element is a so-called single-sealed seal that is sealed only by the phosphor-containing resin layer 2 ′.
  • the concentration of the phosphor is such that the phosphor-containing resin layer 2 ′ has a concentration as shown in FIG. It is necessary to make it uniformly diffused at a low concentration inside.
  • the amount of the phosphor contained in the phosphor-containing resin layer (first resin portion) 2 shown in FIG. 1 and the amount of the phosphor contained in the phosphor-containing resin layer 2 ′ shown in FIG. In the case of the same degree, the volume of the phosphor-containing resin layer 2 ′ is made larger than the volume of the phosphor-containing resin layer (first resin portion) 2 and the number of wavelength conversions by the phosphor is increased, so that FIG.
  • the light emitting element 200 shown can emit outgoing light having the same chromaticity characteristics as the light emitting element 100 shown in FIG.
  • the wavelength conversion is made equal by adjusting the concentration of the phosphor according to the volume difference from the phosphor-containing resin layer (first resin portion) 2, and the light emitting element
  • the emitted light having the same chromaticity characteristic as 100 can be emitted.
  • the light emitting element 200 has a lower light extraction efficiency than the light emitting element 100. That is, fluorescence is generally scattered by the phosphor even when wavelength conversion (quantum effect) is not performed. At this time, when the phosphor concentration inside the phosphor-containing resin layer 2 ′ is low as in the light-emitting element 200, the light diffuses inside the phosphor-containing resin layer 2 ′ and goes to the outside of the light-emitting element 200. There is a problem in that the ratio of light that is lost due to multiple scattering before being emitted increases, and the light extraction efficiency decreases.
  • FIG. 7 a part of the light a emitted from the LED element 1 is reflected by the reflective film 4 and separated into emitted light c ′ and reflected light b ′.
  • the reflected reflected light b ′ is scattered by the phosphor present in the phosphor-containing resin layer 2 ′, and the phosphor concentration in the phosphor-containing resin layer 2 ′ is low, so that the inside of the phosphor-containing resin layer 2 ′.
  • D 'in FIG. 7 represents light diffused while being scattered by the phosphor. When such diffusion occurs, the light is not easily emitted to the outside of the light emitting element 200.
  • the phosphor content and the concentration of the phosphor are uniformly diffused at a low concentration in the sealing material disclosed in Patent Document 4 as in the light-emitting element 200. It is a light emitting element in a state. That is, the light-emitting element disclosed in Patent Document 4 has a problem that the loss of light due to multiple scattering is large, similar to the light-emitting element 200.
  • the phosphor-containing resin layer (first resin portion) 2 contains a phosphor, and the space (cavity portion) 3 does not contain a phosphor.
  • the phosphor is localized in the vicinity of the LED element 1. That is, the phosphor concentration in the phosphor-containing resin layer (first resin portion) 2 is much higher than the phosphor concentration in the phosphor-containing resin layer 2 ′.
  • a part of the light a emitted from the LED element 1 is reflected by the reflective film 4 and separated into emitted light c and reflected light b.
  • the reflected reflected light b is scattered by the phosphor present in the phosphor-containing resin layer (first resin portion) 2 (wavelength conversion is also performed), but the phosphor-containing resin layer (first resin portion). 2) Since the phosphor concentration inside 2 is high, the inside of the phosphor-containing resin layer (first resin portion) 2 is not diffused.
  • the wavelength-converted light d is quickly emitted outside the light emitting element 100 without being diffused.
  • part of the light is reflected by the reflective film 4 and undergoes further wavelength conversion by the phosphor.
  • the outgoing light c having the wavelength ⁇ and the light d having the wavelength ⁇ ′ are mixed, and white light having a desired chromaticity can be obtained.
  • the phosphor is accumulated in the region in the vicinity of the LED element 1, even if the fluorescence is scattered by the phosphor, the phosphor concentration inside the phosphor-containing resin layer 2 ′ is low. Unlike the light emitting element 200 and the light emitting element disclosed in Patent Document 4, light does not diffuse in the phosphor layer.
  • the concentration of the phosphor in the phosphor-containing resin layer (first resin portion) 2 is preferably as high as possible. This is because the phosphor can be further accumulated in a region in the vicinity of the LED element 1 and light can be prevented from diffusing inside the phosphor-containing resin layer (first resin portion) 2.
  • FIG. 1 is a schematic cross-sectional structure diagram of a light emitting device 100 according to the first and second embodiments.
  • the light emitting device 100 according to the second embodiment is the first embodiment, except that a resin layer (second resin portion) 3 that does not contain a phosphor is provided instead of the space (cavity portion) 3. This is the same as the light emitting device 100 according to the above. Since the light emitting device according to the first embodiment uses the space (hollow portion) 3, the manufacturing cost can be made lower than that of the light emitting device according to the second embodiment.
  • the resin portion is laminated in two layers on the outer peripheral portion of the LED device 1.
  • the fluorescent substance containing resin layer (1st resin part) 2 which is one layer inside the said resin part contains the said fluorescent substance, and the fluorescent substance which is the outer one layer among the said resin parts is used.
  • the resin layer (second resin part) 3 that is not contained has a configuration in which the phosphor is not contained.
  • the “outer peripheral part” means that the LED element 1 is outside in the light emission direction as viewed from the LED element 1.
  • the resin layer (second resin part) 3 not containing the phosphor is formed so as to cover the surface of the phosphor-containing resin layer (first resin part) 2, and the phosphor-containing resin layer (first resin part) 2) is sealed.
  • the surface of the resin layer (second resin portion) 3 not containing phosphor is covered with a sealing cover (cover portion) 40, and the sealing cover (cover portion) 40 is a resin not containing phosphor.
  • the layer (second resin part) 3 is sealed.
  • the resin constituting the resin layer (second resin portion) 3 not containing a phosphor is preferably a silicone resin because of its excellent translucency, and an epoxy resin or an acrylic resin can also be used.
  • the wavelength dependence of the reflective film 4 in the second embodiment is that the refractive index of the phosphor-containing resin layer (first resin portion) 2 and the resin layer (second resin portion) 3 not containing phosphor are configured.
  • the refractive index of the resin, the refractive index of the resin constituting the sealing cover (cover portion) 40, the refractive index of the reflective film 4, and the thickness of the reflective film 4 are affected by interference. Therefore, it is preferable to perform toning by appropriately determining the refractive index of the reflecting film 4 and the film thickness of the reflecting film 4 according to the toning result to be obtained.
  • the phosphor-containing resin layer (first resin portion) 2 in the light emitting device 100, the phosphor-containing resin layer (first resin portion) 2, the space (cavity portion), or the resin layer (first layer) containing no phosphor.
  • the second resin portion 3, the sealing cover (cover portion) 40, and the reflective film 4 are formed in a hemispherical shape on the mounting surface 6 of the substrate 5.
  • the form of the light emitting element is not limited to this.
  • a light-emitting element that takes a different form from the first and second embodiments will be described.
  • FIG. 3 is a schematic cross-sectional structure diagram of a light-emitting element 101 according to the third embodiment of the present invention.
  • the reflection frame 7 is disposed on the mounting surface 6 of the substrate 5.
  • the reflective frame 7 is for efficiently irradiating the reflective film 4 with light emitted from the LED element 1 or the phosphor, and a material having a high surface reflectance such as resin, ceramic, or metal material is used.
  • a material having a high surface reflectance such as resin, ceramic, or metal material is used.
  • the light beam emitted from the LED element 1 in the lateral direction can be emitted in the direction of the reflective film 4 by being reflected by the reflection frame 7.
  • the reflection frame 7 may be formed on the mounting surface 6 as a separate body from the substrate 5 or may be integrally formed with the substrate 5.
  • a phosphor-containing resin layer (first resin part) 2 containing a phosphor is formed on the outer peripheral part of the LED element 1, and a sealing cover (cover part) 40 is located between the upper surfaces of the reflection frame 7. It is arranged across.
  • a space (hollow portion) 3 is formed between the inner surface of the sealing cover (cover portion) 40 and the surface of the phosphor-containing resin layer (first resin portion) 2 and no phosphor is contained. . That is, the phosphor-containing resin layer (first resin portion) 2 is sealed by the sealing cover (cover portion) 40 through the space (cavity portion) 3. On the surface of the sealing cover (cover portion) 40, a reflective film 4 having a wavelength dependency on the reflectance is formed.
  • a part of the light a emitted from the LED element 1 is reflected by the reflective film 4 and separated into reflected light b and outgoing light c.
  • the reflected light b is wavelength-converted by the phosphor in the phosphor-containing resin layer (first resin portion) 2 and is emitted from the light emitting element 101 as the emitted light d.
  • the light a is partly wavelength-converted by a phosphor after being emitted, and is emitted from the light emitting element 101 as emitted light d ′.
  • the phosphor-containing resin layer (first resin part) 2, the space (cavity part) 3, the sealing cover (cover part) 40, and the reflective film 4 have the first shapes.
  • the reflective film 4 has wavelength dependency on the reflectance as described above, and therefore has an appropriate wavelength according to the chromaticity characteristics when the reflective film 4 is not provided. By selecting the reflective film 4 having the dependency, the light in which the outgoing lights c, d, and d ′ are mixed can be turned into white light having desired chromaticity characteristics.
  • the phosphor is contained only in the phosphor-containing resin layer (first resin portion) 2. That is, it is localized in a region near the LED element. Therefore, the problem of light loss due to multiple scattering does not occur. Furthermore, since the light emitting element 101 includes the reflective frame 7, white light having a desired chromaticity can be emitted more efficiently.
  • the light emitting device 101 according to the third embodiment is antifouling, antifogging based on the photocatalytic action, similarly to the light emitting device 100 according to the first and second embodiments. Effects such as antibacterial, air purification and water purification can be achieved.
  • FIG. 3 is a schematic cross-sectional structure diagram of the light emitting device 101 according to the third and fourth embodiments.
  • the light emitting device 101 according to the fourth embodiment is the third embodiment, except that a resin layer (second resin portion) 3 not containing a phosphor is provided instead of the space (cavity portion) 3. It is the same as the light emitting element 101 concerning.
  • the resin part is laminated in two layers on the outer peripheral part of the LED element 1, and contains a phosphor on the inner side, that is, on the side close to the LED element 1.
  • a resin layer (first resin portion) 2 is formed and seals the LED element 1.
  • the resin layer (2nd resin part) 3 which does not contain a fluorescent substance is formed so that the outer surface of the fluorescent substance containing resin layer (1st resin part) 2 may be covered, and fluorescent substance containing resin layer ( 1st resin part) 2 is sealed.
  • a sealing cover (cover portion) 40 is formed across the surface of the resin layer (second resin portion) 3 not containing the phosphor and the reflection frame 7 and contains the phosphor.
  • a non-resin layer (second resin portion) 3 is sealed, and a reflective film 4 having wavelength dependency on reflectance is formed on the outer surface of the sealing cover (cover portion) 40.
  • a part of the light a emitted from the LED element 1 is reflected by the reflective film 4 and separated into reflected light b and outgoing light c.
  • the reflected light b is wavelength-converted by the phosphor in the phosphor-containing resin layer (first resin portion) 2 and is emitted from the light emitting element 101 as the emitted light d.
  • the light a is partly wavelength-converted by a phosphor after being emitted, and is emitted from the light emitting element 101 as emitted light d ′.
  • the light emitting element 101 includes a phosphor-containing resin layer (first resin portion) 2, a resin layer (second resin portion) 3 not containing phosphor, a sealing cover (cover portion) 40, and a reflective film 4.
  • the reflection film 4 has wavelength dependency on the reflectance as described above, and therefore depends on the chromaticity characteristics when the reflection film 4 is not provided.
  • the reflective film 4 having an appropriate wavelength dependency, the light in which the outgoing lights c, d, and d ′ are mixed can be converted into white light having desired chromaticity characteristics.
  • the concentration of the phosphor is higher in the region near the LED element than the concentration in the region near the reflective film, the problem of light loss due to multiple scattering does not occur. Furthermore, since the light emitting element 101 includes the reflective frame 7, white light having a desired chromaticity can be emitted more efficiently.
  • the light emitting device 101 according to the fourth embodiment is similar to the light emitting device 100 according to the first or second embodiment and the light emitting device 101 according to the third embodiment.
  • effects such as antifouling, antifogging, antibacterial, air purification and water purification based on photocatalytic action can be achieved.
  • the light emitting element according to the present invention absorbs a part of light emitted from the LED element 1 on the mounting surface 6 of the substrate 5 so as to cover the LED element 1 mounted on the mounting surface of the substrate 5, for example.
  • a third step of measuring the outer surface of the sealing cover (cover portion) 40 according to the measured chromaticity characteristics. Includes a fourth step of forming a reflective film 4 having a wavelength dependence to the reflection factor, the.
  • the surface of the phosphor-containing layer (first resin part) 2 and the inside of the sealing cover (cover part) 40 may be a step of sealing the phosphor-containing layer (first resin portion) 2 with a sealing cover (cover portion) 40 so that a space (hollow portion) 3 is formed between the surface and the surface.
  • the third step emits from the LED element through the first resin portion and the sealing cover (cover portion) 40. It is preferable to be a step of measuring the chromaticity characteristics of the emitted light.
  • FIG. 4 is a schematic diagram showing an outline of the steps of the method for manufacturing a light emitting device.
  • FIG. 4A shows a method for manufacturing the light emitting device 100 according to the second embodiment.
  • FIG. 4B shows a method for manufacturing the light emitting device 101 according to the fourth embodiment.
  • FIG. 4C shows a method for manufacturing the light emitting device 100 according to the first embodiment.
  • the LED element 1 is mounted on the mounting surface 6 of the substrate 5, and FIG. (2), (b) (2), (c) As shown in (2), wire bonding is performed using the wire 8 and a conventionally known wire bonding machine 9.
  • the phosphor-containing resin layer (first resin portion) 2 is covered with the LED element 1 by using the dispenser 10 as shown in FIGS. 4 (a), (3), (c) and (3).
  • the LED element 1 is sealed by coating on the mounting surface 6 as described above. 4B and 3B, the phosphor-containing resin layer (first resin portion) 2 is formed in a recess formed by the mounting surface 6 and the reflection frame 7 so as to cover the LED element 1.
  • the LED element 1 is sealed by pouring.
  • the resin layer (second resin portion) 3 is formed on the surface of the phosphor-containing resin layer (first resin portion) 2 by using the dispenser 10. That is, in FIGS. 4A, 4B, and 4B, the resin layer (second resin portion) 3 is formed so as to cover the surface of the phosphor-containing resin layer (first resin portion) 2. Is forming.
  • “Covering the surface of the phosphor-containing resin layer (first resin portion) 2” means a resin layer (second resin portion) not containing a phosphor, as shown in FIGS. 3 including covering the entire surface of the phosphor-containing resin layer (first resin portion) 2, as shown in FIGS. 4B and 4, a resin layer containing no phosphor (second resin) Part) 3 to cover a part of the surface of the phosphor-containing resin layer (first resin part) 2 (only the upper surface).
  • a resin layer (second resin part) 3 that does not contain a phosphor As shown in FIGS. 4 (a), (5), and (b) (5), a resin layer that does not contain a phosphor (first)
  • the resin layer (second resin portion) 3 that does not contain a phosphor may be sealed by covering the surface of the second resin portion) 3 with a sealing cover (cover portion) 40.
  • the sealing cover (cover part) 40 is, for example, applied and cured with a material constituting the sealing cover (cover part) 40 on the surface of the resin layer (second resin part) 3 that does not contain a phosphor. Can be formed.
  • the light is emitted from the LED element 1 through the phosphor-containing resin layer (first resin portion) 2, the resin layer not containing phosphor (second resin portion) 3, and the sealing cover (cover portion) 40.
  • the reflective film 4 having the wavelength dependency necessary for obtaining the desired measurement result is selected, and the reflective film 4 is placed on the outer surface of the sealing cover (cover portion) 40, for example. It is formed by forming a film using a method such as vapor deposition or sputtering.
  • the light emitting element 100 or 101 can be manufactured by curing the resin portion 2, the resin layer (second resin portion) 3 not containing the phosphor, and the sealing cover (cover portion) 40.
  • FIG. 5 is a side view schematically showing the structure of the light emitting device 110 according to the embodiment of the present invention.
  • the light emitting device 110 includes an LED element 1, a phosphor-containing resin layer (first resin portion) 2, a resin layer (second resin portion) 3 that does not contain a cavity or phosphor, and a reflection
  • die 32 are provided.
  • the light emitting element is mounted on the mounting member 30.
  • the light emitting element is mounted on the mounting member 30 so that the back surface of the substrate 5 provided in the light emitting element is in contact with the surface of the mounting member 30.
  • the placement member 30 is connected to the back electrode of the substrate 5 so as to be energized. Further, the end portion of the sealing cover (cover portion) 40 is fixed to the mounting member 30.
  • the light-emitting device 110 of the present invention is provided with a heat sink 31, and the heat sink 31 has a function of releasing self-generated heat generated from the LED element 1.
  • the heat sink 31 By providing the heat sink 31 and releasing the self-generated heat, there is an effect of preventing the light emitting efficiency of the LED element from being lowered and shortening the life of the members used in the LED element and the light emitting device.
  • the metal material constituting the heat sink 31 provided in the light emitting device 110 of the present invention aluminum or the like is used.
  • the light emitting device 110 of the present invention is provided with a base 32.
  • the base 32 is a part for connecting the light emitting device 110 of the present invention and a lighting fixture.
  • the light emitting device 110 of the present invention includes the light emitting element of the present invention, and the light emitting element of the present invention includes the reflective film 4.
  • the reflective film 4 is a dielectric film having a photocatalytic action, and the dielectric film preferably contains TiO 2 . Since the reflective film 4 provided in the light emitting device of the present invention is a dielectric film having a photocatalytic action, the light emitting device 110 of the present invention has antifouling, antifogging, antibacterial, air purification, water purification, and the like. There is an effect. Furthermore, since the reflective film 4 can remove light having a short wavelength, it has an effect of preventing light pollution.
  • the light emitting device 110 can be manufactured as follows, for example. That is, the board
  • the mounting member 30, the heat sink 31, and the base 32 may be integrally formed, or may be connected to each other.
  • FIG. 6 is a side view schematically showing the structure of the light emitting device 111 according to the embodiment of the present invention.
  • the light emitting device 111 includes an LED element 1, a phosphor-containing resin layer (first resin portion) 2, a cavity portion or a resin layer (second resin portion) 3 that does not contain phosphor, a reflection
  • substrate 5, and the sealing cover (cover part) 40, the mounting member 30, and the plug 33 are provided.
  • the number of the LED elements 1 provided in the light emitting device 111 may be one or a plurality as shown in FIG.
  • the 6 can be manufactured, for example, as follows. That is, two LED elements 1 are mounted on the substrate 5, and these LED elements 1 are phosphor-containing resin layer (first resin part) according to the method described in the section “Method for producing light-emitting element”.
  • resin-encapsulated product A Nine items sealed in 2 (hereinafter referred to as resin-encapsulated product A) are placed on the placement member 30 in a row. In addition, you may increase the number of rows
  • a plug 33 is attached to the mounting member 30, and the surface of the phosphor-containing resin layer (first resin portion) 2 of the placed resin sealing material A and the inside of the sealing cover (cover portion) 40
  • the sealing cover (cover part) 40 is fixed to the base of the plug 33 so that the space (cavity part) 3 is between the surface and the phosphor-containing resin layer (first resin part) 2 is sealed. To do.
  • the light emitting device of the present invention is constituted by the respective resin encapsulated material A, the space (hollow part) 3 and the sealing cover (cover part) 40.
  • the phosphor-containing resin layer (first layer) is formed in the recess formed by the plug 33 and the mounting member 30 according to (b) and (4) of FIG.
  • a resin layer (second resin portion) 3 that does not contain a phosphor is injected so as to cover the surface of the resin portion 2, and a resin layer that does not contain a phosphor in accordance with (b) and (5) of FIG.
  • a sealing cover (cover portion) 40 may be formed on the surface of the (second resin portion) 3.
  • the light emitting element provided in the light emitting device 111 is mounted on the mounting member 30.
  • the light emitting element is mounted on the mounting member 30 so that the back surface of the substrate 5 provided in the light emitting element is in contact with the surface of the mounting member 30.
  • the mounting member 30 is connected to the back electrode 8 (not shown) of the substrate 5 so as to be energized.
  • the light emitting device 111 of the present invention is provided with a plug 33.
  • the plug 33 is a part for connecting the light emitting device 111 of the present invention and a lighting fixture.
  • the plug 33 provided in the light emitting device 111 of the present invention may have a function as the reflection frame already described.
  • the plug 33 functions as a reflection frame
  • the light emitted from the LED element 1 in the lateral direction is reflected by the plug 33, so that the plug 33 can be emitted in the direction of the reflective film 4.
  • the plug 33 functions as a reflection frame
  • the light emitting device 111 can emit white light having a desired chromaticity more efficiently.
  • the light emitting device 111 uses a dielectric film having a photocatalytic action as a reflection film, thereby preventing the above-described antifouling, antifogging, antibacterial, air cleaning, and water purification.
  • the effects such as the above can be achieved.
  • the effect of removing light of a short wavelength and preventing light pollution can also be exhibited.
  • the light emitting device since the light emitting element according to the present invention is exposed to the external environment, white light having desired chromaticity characteristics can be emitted with high light extraction efficiency.
  • a dielectric film having a photocatalytic action as the reflective film, the above-described various effects can be achieved.
  • a light-emitting element includes a LED element and a phosphor that absorbs a part of light emitted from the LED element, converts the wavelength, and emits light, and seals the LED element.
  • One resin portion and a cover portion for sealing the first resin portion, and the first resin portion is between the surface of the first resin portion and the inner surface of the cover portion. It is sealed by the cover part through a hollow part which is a space of the above-mentioned space, and the cover part is provided with a reflective film having a wavelength dependency on the reflectance on the outer surface.
  • the reflective film Part of the light emitted from the LED element is reflected by the reflective film and undergoes a wavelength conversion process by the phosphor, but the reflective film has a wavelength dependency on the reflectance. It is possible to easily control the reflectivity so as to reduce the reflectivity.
  • the reflection film since the reflection film is provided, light having a desired chromaticity characteristic can be obtained by increasing the number of wavelength conversions by the phosphor even when the amount of the phosphor is reduced. Therefore, since the usage-amount of the said fluorescent substance can be reduced, material cost can be reduced.
  • the phosphor is contained only in the first resin portion. Therefore, the concentration of the phosphor is not uniform in the region inside the cover part, and the phosphor is localized in the region near the LED element.
  • the concentration of the phosphor in the region inside the cover portion is uniform throughout, the light emitted from the LED element reflected by the reflective film is converted into fluorescence by the phosphor. Thereafter, the LED element may travel to the LED element side instead of the light emission direction. That is, the loss of light due to multiple scattering increases.
  • the phosphor is contained only in the first resin portion, the occurrence of multiple scattering can be sufficiently suppressed.
  • the light-emitting element according to the present invention can obtain a light-emitting element having desired chromaticity characteristics efficiently and at low cost.
  • the reflective film is preferably a dielectric film having a photocatalytic action.
  • the dielectric film preferably contains TiO 2 .
  • the light emitting element according to the present invention can be used as a useful light emitting element that also exhibits the above effects by exposing it to the external environment. Can do.
  • a light-emitting device is a light-emitting device including a light-emitting element, and the light-emitting element absorbs a part of light emitted from the light-emitting element according to the present invention; A first resin part that contains a phosphor that converts and emits light, and that seals the LED element; and a second resin part that seals the first resin part and does not contain the phosphor And a cover part that seals the second resin part, wherein the cover part is a light-emitting element including a reflective film having a wavelength dependency on reflectance on an outer surface.
  • the reflective film is preferably a dielectric film having a photocatalytic action.
  • the light emitting element to be used can stably emit light having desired chromaticity characteristics, and the light emitting element is exposed to the external environment. It can function as a device having effects such as antifouling, antifogging, antibacterial, air purification, and water purification. Therefore, a useful light-emitting device with very high added value can be provided.
  • the present invention can be suitably used in the field related to a light-emitting element in which a light-emitting element and a phosphor are combined.
  • the light-emitting device including the light-emitting element can be widely used in various electric devices such as a mobile phone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention provides a light-emitting element that is able to efficiently emit a desired light and conduct photocatalysis, and provides a light-emitting device provided with the light-emitting element. The light-emitting element is provided with a LED element (1), a first resin section (2) containing a phosphor, and a cover section (40). A hollow section (3) is provided between the outer surface of the first resin section (2) and the inner surface of the cover section (40). A reflecting film (4) having a wavelength dependency on reflectance is provided on the outer surface of the cover part (40).

Description

発光素子およびこれを備えた発光装置LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE HAVING THE SAME
 本発明は発光素子およびこれを備えた発光装置に関する。より具体的には、高い光取り出し効率で、所望の色度に調整された白色光を出射可能な発光素子およびこれを備えた発光装置に関する。 The present invention relates to a light emitting element and a light emitting device including the same. More specifically, the present invention relates to a light emitting element capable of emitting white light adjusted to a desired chromaticity with high light extraction efficiency and a light emitting device including the light emitting element.
 半導体発光素子を用いた白色発光素子は、次世代の一般照明や液晶バックライトなどの電球、蛍光管および冷陰極管のような管球市場への応用が期待されている。このような白色発光素子は、蛍光体を含有する樹脂等により発光ダイオードチップを被覆したものであり、発光ダイオードチップからの光と、発光ダイオードチップからの光により励起された蛍光体からの光とによって白色光を得るものである。 White light emitting devices using semiconductor light emitting devices are expected to be applied to the next generation of general lighting and bulbs such as liquid crystal backlights, and tube markets such as fluorescent tubes and cold cathode tubes. Such a white light emitting element is obtained by coating a light emitting diode chip with a resin containing phosphor, etc., and light from a phosphor excited by light from the light emitting diode chip and light from the light emitting diode chip. To obtain white light.
 近年、白色発光素子に用いられる青色発光ダイオードや蛍光体などの技術開発による個々の白色発光素子の性能向上に伴い、蛍光灯や冷陰極管などの発光効率を凌ぐ白色発光素子が商品化されつつある。 In recent years, with the improvement in performance of individual white light-emitting elements due to the development of technologies such as blue light-emitting diodes and phosphors used in white light-emitting elements, white light-emitting elements that surpass luminous efficiency such as fluorescent lamps and cold cathode tubes are being commercialized. is there.
 しかしながら、これらの白色発光素子は、蛍光灯や冷陰極管などの色度のばらつきと比較すると、未だ色度のばらつきが大きいため、蛍光灯や冷陰極管程度まで色度のばらつきを低減することが要求されている。そこで、色度のばらつきを低減させるための構造が種々提案されている(特許文献1~4)。 However, these white light emitting elements still have large chromaticity variations compared to chromaticity variations such as fluorescent lamps and cold cathode fluorescent lamps. Is required. Therefore, various structures for reducing variations in chromaticity have been proposed (Patent Documents 1 to 4).
 特許文献1には、複数のLEDチップを用い、各LEDチップの色度の組合せを所定の組合せにすることによって色度の精度を向上させる構造が開示されている。しかしながら、当該構造では、モジュール状態にした場合に、各LEDチップの蛍光体量のばらつきなどによって、色度のばらつきを生じてしまう。 Patent Document 1 discloses a structure that improves the accuracy of chromaticity by using a plurality of LED chips and making the combination of chromaticity of each LED chip a predetermined combination. However, in this structure, when a module is used, chromaticity variation occurs due to variations in the amount of phosphor of each LED chip.
 そのため、特許文献2~4には、モジュール化された状態で別工程にて調色する技術が開示されている。 Therefore, Patent Documents 2 to 4 disclose techniques for color matching in a separate process in a modularized state.
 特許文献2には、第1の蛍光体を含有する蛍光体含有樹脂層よりも光出射方向に向かって外層に設けられた、第2の蛍光体を含有する上記色度調整用蛍光体層がドット状に形成されている構成が開示されており、上記色度調整用蛍光体層によって色を微調整することが開示されている。 In Patent Document 2, the phosphor layer for chromaticity adjustment containing the second phosphor provided in the outer layer in the light emitting direction than the phosphor-containing resin layer containing the first phosphor. A configuration formed in a dot shape is disclosed, and it is disclosed that the color is finely adjusted by the phosphor layer for chromaticity adjustment.
 特許文献3には、蛍光体を含有し、発光ダイオードチップを被覆する封止樹脂部の表面の少なくとも一部に光散乱部を形成した発光素子が開示されており、上記光散乱部を配置することによって蛍光体による量子変換の効率を向上させることが開示されている。 Patent Document 3 discloses a light-emitting element containing a phosphor and having a light scattering portion formed on at least a part of the surface of a sealing resin portion covering a light-emitting diode chip, and the light scattering portion is disposed therein. Thus, it is disclosed that the efficiency of quantum conversion by a phosphor is improved.
 特許文献4には、LED素子と、透明樹脂内に蛍光体を含む封止材とを有し、当該封止材が上記LED素子の周辺部に配置され、上記封止材の表面に、上記封止材の屈折率とは異なる屈折率を備える透明薄膜を有するLED光源が開示されている。 Patent Document 4 has an LED element and a sealing material containing a phosphor in a transparent resin, and the sealing material is disposed in the periphery of the LED element, and the surface of the sealing material An LED light source having a transparent thin film with a refractive index different from the refractive index of the encapsulant is disclosed.
日本国公開特許公報「特開2011-3594号(2011年1月6日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2011-3594 (published on January 6, 2011)” 日本国公開特許公報「特開2010-186968号公報(2010年8月26日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2010-186968 (Released on August 26, 2010)” 日本国公開特許公報「特開2009-130301号公報(2009年6月11日公開)」Japanese Patent Publication “JP 2009-130301 A” (published on June 11, 2009) 日本国公開特許公報「特開2010-16029号公報(2010年1月21日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2010-16029 (published on Jan. 21, 2010)”
 しかしながら、特許文献2に開示の技術は、上記色度調整用蛍光体層をドット状に形成するプロセスを要するため、上記色度調整用蛍光体層を精度良く構成することが困難である。そのため、実際上、色の微調整を行うことは困難であるという問題がある。 However, since the technique disclosed in Patent Document 2 requires a process of forming the chromaticity adjusting phosphor layer in a dot shape, it is difficult to accurately configure the chromaticity adjusting phosphor layer. Therefore, there is a problem that it is difficult to finely adjust the color in practice.
 一方、蛍光体層を簡単に、かつ、精度良く構成できる方法としては、特許文献3および4に開示された方法がある。 On the other hand, methods disclosed in Patent Documents 3 and 4 can be used to easily and accurately construct the phosphor layer.
 しかしながら、特許文献3に開示の方法では、蛍光体から放射された蛍光が、光散乱部および他の蛍光体によって散乱され、多重散乱による損失となってしまう割合が多くなるため、光の取り出し効率が低下してしまうという問題がある。 However, in the method disclosed in Patent Document 3, the ratio of the fluorescence emitted from the phosphor being scattered by the light scattering portion and other phosphors, resulting in a loss due to multiple scattering, increases the light extraction efficiency. There is a problem that will decrease.
 また、特許文献4に開示の方法も、蛍光体から放射された蛍光が、樹脂層中で他の蛍光体によって散乱され、蛍光体層中を光が拡散する多重散乱が生じ、光損失が大きくなるため、光の取り出し効率が低下してしまうという問題がある。 Also, in the method disclosed in Patent Document 4, the fluorescence emitted from the phosphor is scattered by other phosphors in the resin layer, resulting in multiple scattering in which light diffuses in the phosphor layer, resulting in large light loss. Therefore, there is a problem that the light extraction efficiency decreases.
 また、上記発光素子は、これまで、主としてLEDモジュール等の形態で用いられ、外部環境に露出させて用いられることは少ない。上記発光素子を外部環境に露出させて用いることを考えた場合、発光素子に防汚効果、防曇効果等の効果をも奏させることができれば非常に有用であるといえる。しかしながら、上記効果を奏する発光素子についてはこれまでに提案がなされていない。 In addition, the light emitting element has been used mainly in the form of an LED module or the like, and is rarely used by being exposed to the external environment. When considering using the light-emitting element exposed to the external environment, it can be said that it is very useful if the light-emitting element can also exhibit effects such as an antifouling effect and an antifogging effect. However, no proposal has been made for a light-emitting element that exhibits the above effects.
 本発明は上記の問題点に鑑みなされたものであり、その目的は、多重散乱の発生を十分に抑制でき、所望の色度特性を有する白色光を高い光取り出し効率で出射可能で、かつ、優れた光触媒作用を有する発光素子およびこれを備えた発光装置を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to sufficiently suppress the occurrence of multiple scattering, to emit white light having desired chromaticity characteristics with high light extraction efficiency, and An object of the present invention is to provide a light-emitting element having an excellent photocatalytic action and a light-emitting device including the light-emitting element.
 上記の課題を解決するために、本発明者は、簡単な構造で多重散乱の発生を抑制し、光利用効率を維持したまま、発光される光の色度の微調整を可能とし、かつ、光触媒作用を奏することが可能な構造について鋭意検討した。 In order to solve the above-mentioned problems, the present inventor has made it possible to finely adjust the chromaticity of emitted light while suppressing the occurrence of multiple scattering with a simple structure and maintaining the light utilization efficiency, and The structure capable of producing a photocatalytic action has been intensively studied.
 その結果、蛍光体を、LED素子を封止する蛍光体含有樹脂層にのみ含有させることによって、LED素子近傍の領域に局在させ、かつ、当該蛍光体含有層を、空間を介してカバー部によって封止し、上記カバー部の外表面に、反射率に波長依存性を有する反射膜を設けることによって上記課題を解決することができることを見出し、本発明を完成するに至った。 As a result, the phosphor is contained only in the phosphor-containing resin layer that seals the LED element, so that the phosphor is localized in a region in the vicinity of the LED element, and the phosphor-containing layer is covered via the space. It was found that the above-mentioned problems can be solved by providing a reflective film having a wavelength dependency on the reflectance on the outer surface of the cover part, and the present invention has been completed.
 すなわち、本発明の一態様にかかる発光素子は、LED素子と、当該LED素子からの発光の一部を吸収し、波長変換して発光する蛍光体を含有し、かつ、上記LED素子を封止する第一の樹脂部と、上記第一の樹脂部を封止するカバー部と、を備え、上記第一の樹脂部は、上記第一の樹脂部の表面と、上記カバー部の内表面との間の空間である空洞部を介して上記カバー部によって封止され、上記カバー部は、反射率に波長依存性を有する反射膜を外表面に備えることを特徴としている。 That is, the light-emitting element according to one embodiment of the present invention includes an LED element and a phosphor that absorbs a part of light emitted from the LED element, converts the wavelength, and emits light, and seals the LED element. A first resin portion and a cover portion that seals the first resin portion, and the first resin portion includes a surface of the first resin portion and an inner surface of the cover portion. It is sealed by the cover part through a cavity part which is a space between the two parts, and the cover part is provided with a reflection film having a wavelength dependency on the reflectance on the outer surface.
 本発明にかかる発光素子は、多重散乱の発生を十分に抑制することができ、所望の色度特性を有する発光素子を、効率よく、低コストで得ることができるという効果を奏する。さらに、反射膜の光触媒作用によって、防汚、防曇、抗菌、空気浄化、水浄化等の効果を奏することができる。 The light emitting device according to the present invention can sufficiently suppress the occurrence of multiple scattering, and has an effect that a light emitting device having desired chromaticity characteristics can be obtained efficiently and at low cost. Furthermore, effects such as antifouling, antifogging, antibacterial, air purification, and water purification can be achieved by the photocatalytic action of the reflective film.
本発明の第1および2の実施形態にかかる発光素子の概略断面構造図である。It is a schematic sectional structure figure of the light emitting element concerning the 1st and 2nd embodiment of the present invention. 本発明にかかる発光素子における、反射膜の有無による色度のばらつきを説明する色度図である。FIG. 6 is a chromaticity diagram illustrating variation in chromaticity depending on the presence or absence of a reflective film in the light emitting device according to the present invention. 本発明の第3および4の実施形態にかかる発光素子の概略断面構造図である。It is a schematic sectional drawing of the light emitting element concerning 3rd and 4th embodiment of this invention. 発光素子の製造方法の工程の概略を示す模式図である。It is a schematic diagram which shows the outline of the process of the manufacturing method of a light emitting element. 本発明の一実施形態にかかる発光装置の構造の概略を示す側面図である。It is a side view which shows the outline of the structure of the light-emitting device concerning one Embodiment of this invention. 本発明の一実施形態にかかる発光装置の構造の概略を示す側面図である。It is a side view which shows the outline of the structure of the light-emitting device concerning one Embodiment of this invention. 従来公知の発光素子における蛍光体の分布状態を示す、従来公知の発光素子の概略断面構造図である。It is a general | schematic cross-section figure of a conventionally well-known light emitting element which shows the distribution state of the fluorescent substance in a conventionally well-known light emitting element.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、同一の機能および作用を示す部材については同一の符号を付している。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected about the member which shows the same function and an effect | action.
 本発明にかかる発光素子は、LED素子と、当該LED素子からの発光の一部を吸収し、波長変換して発光する蛍光体を含有し、かつ、上記LED素子を封止する第一の樹脂部と、上記第一の樹脂部を封止するカバー部と、を備え、上記第一の樹脂部は、上記第一の樹脂部の表面と、上記カバー部の内表面との間の空間である空洞部を介して上記カバー部によって封止され、上記カバー部は、反射率に波長依存性を有する反射膜を外表面に備える。 A light-emitting element according to the present invention includes a LED element and a phosphor that absorbs part of light emitted from the LED element, converts the wavelength to emit light, and seals the LED element. And a cover portion that seals the first resin portion, and the first resin portion is a space between the surface of the first resin portion and the inner surface of the cover portion. It is sealed by the cover part through a certain hollow part, and the cover part includes a reflection film having a wavelength dependency on the reflectance on the outer surface.
 <第1の実施形態>
 (蛍光体含有樹脂層でLED素子が封止され、空洞部を備える発光素子)
 本発明にかかる発光素子の第1の実施形態について、図1に基づいて説明する。図1は、第1の実施形態および後述する第2の実施形態にかかる発光素子100の概略断面構造図である。
<First Embodiment>
(LED element sealed with phosphor-containing resin layer, light-emitting element having a cavity)
A light emitting device according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic cross-sectional structure diagram of a light emitting device 100 according to a first embodiment and a second embodiment described later.
 図1に示すように、発光素子100は、LED素子1、蛍光体含有樹脂層(第一の樹脂部)2、空間(空洞部)3、反射膜4、基板5および封止カバー(カバー部)40を備えている。 As shown in FIG. 1, the light emitting element 100 includes an LED element 1, a phosphor-containing resin layer (first resin part) 2, a space (cavity part) 3, a reflective film 4, a substrate 5, and a sealing cover (cover part). 40).
 すなわち、第1の実施形態では、本発明にかかる発光素子100は、蛍光体含有樹脂層(第一の樹脂部)2が、LED素子1の外周部に形成されており、LED素子1を封止している。そして、蛍光体含有樹脂層(第一の樹脂部)2は、上記蛍光体を含有するが、蛍光体含有樹脂層(第一の樹脂部)2の外側の空間(空洞部)3は上記蛍光体を含有していないという構成を備えている。なお、上記「外周部」とは、LED素子1から見て光の出射方向に外側であることを意味する。 That is, in the first embodiment, in the light emitting device 100 according to the present invention, the phosphor-containing resin layer (first resin portion) 2 is formed on the outer peripheral portion of the LED device 1, and the LED device 1 is sealed. It has stopped. The phosphor-containing resin layer (first resin part) 2 contains the phosphor, but the space (cavity part) 3 outside the phosphor-containing resin layer (first resin part) 2 is the fluorescent substance. It has a configuration that does not contain a body. The “outer peripheral part” means that the LED element 1 is outside in the light emission direction as viewed from the LED element 1.
 LED素子1はシリコーン系の樹脂ペースト等によって基板5の実装面6に実装されている。基板5は、実装面の反射作用が高い材質のものが好ましく、例えばセラミック基板などが好適に用いられる。 The LED element 1 is mounted on the mounting surface 6 of the substrate 5 with a silicone resin paste or the like. The substrate 5 is preferably made of a material having a high reflective effect on the mounting surface, and for example, a ceramic substrate is preferably used.
 基板5には、実装面6にワイヤボンディング用の表面電極(図示せず)、裏面(LED素子1が実装されていない側の面)に外部の回路と接続するための裏面電極(図示せず)、内部に表面電極と裏面電極とを導通するスルーホール(図示せず)が備えられている。 On the substrate 5, a front surface electrode (not shown) for wire bonding is mounted on the mounting surface 6, and a back surface electrode (not shown) for connecting to an external circuit on the back surface (the surface on which the LED element 1 is not mounted). ), And a through hole (not shown) for conducting the front surface electrode and the back surface electrode is provided inside.
 LED素子1は、青色光(波長435nm以上480nm以下)を発光可能な素子であればよい。例えば、InGaNなどの窒化物系化合物半導体等を用いることができる。 The LED element 1 may be any element that can emit blue light (wavelength of 435 nm or more and 480 nm or less). For example, a nitride-based compound semiconductor such as InGaN can be used.
 LED素子1は、基板5の実装面6に搭載(ダイボンディング)されており、例えば金からなる図示しないワイヤによって基板5の表面電極と電気的に接続されている。これにより、基板5の裏面電極からLED素子1に電力が供給される。 The LED element 1 is mounted (die bonding) on the mounting surface 6 of the substrate 5 and is electrically connected to the surface electrode of the substrate 5 by a wire (not shown) made of, for example, gold. As a result, power is supplied to the LED element 1 from the back electrode of the substrate 5.
 LED素子1の外周部には、蛍光体含有樹脂層(第一の樹脂部)2が形成されている。蛍光体含有樹脂層(第一の樹脂部)2は、蛍光体含有樹脂層(第一の樹脂部)2の表面と、封止カバー(カバー部)40の内表面との間の空間である空洞部3を介して封止カバー(カバー部)40によって封止されている。図1において、空間(空洞部)3は、蛍光体含有樹脂層(第一の樹脂部)2の表面と、封止カバー(カバー部)40の内表面と、基板の実装面6とによって囲まれた領域である。 A phosphor-containing resin layer (first resin portion) 2 is formed on the outer peripheral portion of the LED element 1. The phosphor-containing resin layer (first resin portion) 2 is a space between the surface of the phosphor-containing resin layer (first resin portion) 2 and the inner surface of the sealing cover (cover portion) 40. It is sealed with a sealing cover (cover part) 40 through the cavity 3. In FIG. 1, a space (hollow part) 3 is surrounded by the surface of the phosphor-containing resin layer (first resin part) 2, the inner surface of the sealing cover (cover part) 40, and the mounting surface 6 of the substrate. This area
 LED素子1の数は1個であってもよいし、複数個であってもよい。複数個の場合、1つの蛍光体含有樹脂層(第一の樹脂部)2の内部に複数個のLED素子1が配置されていてもよい。 The number of the LED elements 1 may be one or plural. When there are a plurality of LED elements 1, a plurality of LED elements 1 may be arranged inside one phosphor-containing resin layer (first resin portion) 2.
 また、内部に1個または複数個のLED素子1が配置された蛍光体含有樹脂層(第一の樹脂部)2が複数あり、それぞれの蛍光体含有樹脂層(第一の樹脂部)2の表面と、封止カバー(カバー部)40の内表面との間が空間(空洞部)3となるように、封止カバー(カバー部)40によって蛍光体含有樹脂層(第一の樹脂部)2が封止され、封止カバー(カバー部)40の外表面に反射膜4が形成されているものであってもよい。 Moreover, there are a plurality of phosphor-containing resin layers (first resin portions) 2 in which one or a plurality of LED elements 1 are arranged, and each of the phosphor-containing resin layers (first resin portions) 2 The phosphor-containing resin layer (first resin portion) is formed by the sealing cover (cover portion) 40 so that a space (hollow portion) 3 is formed between the surface and the inner surface of the sealing cover (cover portion) 40. 2 may be sealed, and the reflective film 4 may be formed on the outer surface of the sealing cover (cover portion) 40.
 つまり、複数あるそれぞれの蛍光体含有樹脂層(第一の樹脂部)2の外周部に空間(空洞部)3が存在し、空間(空洞部)3を覆うように封止カバー(カバー部)40が形成され、さらに、上記封止カバー(カバー部)40の外表面を覆うように反射膜4が形成されているものであってもよい。 That is, a space (cavity) 3 exists in the outer periphery of each of the plurality of phosphor-containing resin layers (first resin portions) 2, and the sealing cover (cover) covers the space (cavity) 3. 40 may be formed, and the reflective film 4 may be formed so as to cover the outer surface of the sealing cover (cover portion) 40.
 なお、上記「外表面」とは、表面のうち、LED素子1から見て光の出射方向に外側の表面をいい、上記「内表面」とは、表面のうち、LED素子1から見て光の出射方向に内側の表面をいう。 The “outer surface” refers to an outer surface in the light emitting direction when viewed from the LED element 1 among the surfaces, and the “inner surface” refers to light viewed from the LED element 1 among the surfaces. The inner surface in the emission direction.
 封止カバー(カバー部)40は、蛍光体含有樹脂層(第一の樹脂部)2の表面と、封止カバー(カバー部)40の内表面との間の空間である空洞部3を介して蛍光体含有樹脂層(第一の樹脂部)2を封止する。 The sealing cover (cover part) 40 is interposed through a cavity 3 that is a space between the surface of the phosphor-containing resin layer (first resin part) 2 and the inner surface of the sealing cover (cover part) 40. Then, the phosphor-containing resin layer (first resin portion) 2 is sealed.
 「空洞部3を介して蛍光体含有樹脂層(第一の樹脂部)2を封止する」とは、蛍光体含有樹脂層(第一の樹脂部)2の表面が、封止カバー(カバー部)40の内表面と接触して、当該内表面によって直接覆われるのではなく、例えば図1、後述する図5、図6に示すように、封止カバー(カバー部)40の内表面と蛍光体含有樹脂層(第一の樹脂部)2の表面との間に空間(空洞部)3が存在するように、封止カバー(カバー部)40を配置することをいう。 “The phosphor-containing resin layer (first resin portion) 2 is sealed through the cavity 3” means that the surface of the phosphor-containing resin layer (first resin portion) 2 is sealed with a cover (cover). Part) 40 is not in direct contact with the inner surface of the inner surface and is not directly covered by the inner surface. For example, as shown in FIG. 1 and FIGS. 5 and 6 described later, the inner surface of the sealing cover (cover part) 40 The sealing cover (cover part) 40 is arranged so that a space (hollow part) 3 exists between the surface of the phosphor-containing resin layer (first resin part) 2.
 つまり、封止カバー(カバー部)40が、蛍光体含有樹脂層(第一の樹脂部)2が存在している空間(空洞部)3に対して蓋(蓋部)となり、封止カバー(カバー部)40を配置することによって、空間(空洞部)3を閉じられた空間にすることができればよい。 That is, the sealing cover (cover part) 40 becomes a lid (lid part) with respect to the space (cavity part) 3 in which the phosphor-containing resin layer (first resin part) 2 exists, and the sealing cover ( It is only necessary that the space (hollow part) 3 can be closed by arranging the cover part 40.
 図1に示す発光素子100では、このように配置された封止カバー(カバー部)40の端部が基板の実装面6に固定され、蛍光体含有樹脂層(第一の樹脂部)2が封止されている。 In the light emitting device 100 shown in FIG. 1, the end portion of the sealing cover (cover portion) 40 arranged in this way is fixed to the mounting surface 6 of the substrate, and the phosphor-containing resin layer (first resin portion) 2 is formed. It is sealed.
 図5に示す発光装置110では、封止カバー(カバー部)40の端部が載置部材30に固定され、蛍光体含有樹脂層(第一の樹脂部)2が封止されている。 In the light emitting device 110 shown in FIG. 5, the end portion of the sealing cover (cover portion) 40 is fixed to the mounting member 30, and the phosphor-containing resin layer (first resin portion) 2 is sealed.
 図6に示す発光装置111では、封止カバー(カバー部)40の端部がプラグ33の基部に固定され、蛍光体含有樹脂層(第一の樹脂部)2が封止されている。 In the light emitting device 111 shown in FIG. 6, the end portion of the sealing cover (cover portion) 40 is fixed to the base portion of the plug 33, and the phosphor-containing resin layer (first resin portion) 2 is sealed.
 LED素子1の数が複数個である場合、LED素子1は、所定の発光量を満たすような所定の位置に、例えば等間隔で配置されていればよい。 When the number of the LED elements 1 is plural, the LED elements 1 may be arranged at predetermined positions, for example, at equal intervals so as to satisfy a predetermined light emission amount.
 蛍光体含有樹脂層(第一の樹脂部)2は、LED素子1を覆うように形成されており、LED素子1を封止している。蛍光体含有樹脂層(第一の樹脂部)2は、蛍光体を含有する樹脂からなっている。当該樹脂は、透光性に優れるためシリコーン樹脂であることが好ましく、エポキシ樹脂やアクリル系樹脂等を用いることもできる。 The phosphor-containing resin layer (first resin portion) 2 is formed so as to cover the LED element 1 and seals the LED element 1. The phosphor-containing resin layer (first resin portion) 2 is made of a resin containing a phosphor. The resin is preferably a silicone resin because of its excellent translucency, and an epoxy resin, an acrylic resin, or the like can also be used.
 蛍光体は、LED素子1からの発光(青色光)の一部を吸収し、波長変換して黄色光を発光するものである。そのような蛍光体としては例えば、CaAlSiN:Eu、(Si・Al)(O・N):Eu、BOSE(Ba、O、Sr、Si、Eu)、SOSE(Sr、Ba、Si、O、Eu)や、YAG(Ce賦活イットリウム・アルミニウム・ガーネット)、αサイアロン((Ca)、Si、Al、O、N、Eu)、βサイアロン(Si、Al、O、N、Eu)などを好適に用いることができる。 The phosphor absorbs part of the light emitted from the LED element 1 (blue light), converts the wavelength, and emits yellow light. Examples of such phosphors include CaAlSiN 3 : Eu, (Si · Al) 6 (O · N) 8 : Eu, BOSE (Ba, O, Sr, Si, Eu), SOSE (Sr, Ba, Si, O, Eu), YAG (Ce activated yttrium aluminum garnet), α sialon ((Ca), Si, Al, O, N, Eu), β sialon (Si, Al, O, N, Eu), etc. It can be used suitably.
 封止カバー(カバー部)40を構成する材料としては、ポリカーボネートまたはアクリル等の樹脂材料であることが好ましい。また、上記樹脂材料に無機粒子またはポリマーを混合し、光拡散性を付与したものであってもよい。さらにガラスを用いることもできる。 The material constituting the sealing cover (cover portion) 40 is preferably a resin material such as polycarbonate or acrylic. Moreover, what mixed the inorganic particle or the polymer with the said resin material, and provided light diffusibility may be used. Furthermore, glass can also be used.
 (反射膜による色度の調整について)
 封止カバー(カバー部)40は、反射率に波長依存性を有する反射膜4を外表面に備える。「反射率に波長依存性を有する」とは、特定の範囲の波長を有する光の反射率が、それ以外の範囲の波長を有する光の反射率よりも強いことを意味する。例えば、青色光を緑色光または赤色光よりも強く反射する性質であれば、その反射膜は「青色光の反射率が高い」という波長依存性を有するといえる。
(Regarding adjustment of chromaticity by reflecting film)
The sealing cover (cover portion) 40 includes a reflective film 4 having a wavelength dependency on the reflectance on the outer surface. “Having wavelength dependency in reflectance” means that the reflectance of light having a wavelength in a specific range is stronger than the reflectance of light having a wavelength in the other range. For example, if it reflects blue light more strongly than green light or red light, it can be said that the reflective film has a wavelength dependency of “high reflectance of blue light”.
 本発明では、反射膜4は、(1)435nm以上480nm以下の波長を有する可視光の反射率が、500nm以上700nm以下の波長を有する可視光の反射率よりも高いこと、または、(2)500nm以上700nm以下の波長を有する可視光の反射率が、435nm以上480nm以下の波長を有する可視光の反射率よりも高いことが好ましい。 In the present invention, the reflective film 4 has (1) the reflectance of visible light having a wavelength of 435 nm or more and 480 nm or less is higher than the reflectance of visible light having a wavelength of 500 nm or more and 700 nm or less, or (2) It is preferable that the reflectance of visible light having a wavelength of 500 nm to 700 nm is higher than the reflectance of visible light having a wavelength of 435 nm to 480 nm.
 上記(1)の場合は、青色光(波長435nm以上480nm以下)の反射率が、緑色光(波長500nm以上560nm以下)、黄緑光(波長560nm以上580nm以下)、黄色光(波長580nm以上595nm以下)、橙色光(波長595nm以上605nm以下)および赤色光(波長605nm以上700nm以下)の反射率よりも高い。 In the case of (1) above, the reflectance of blue light (wavelength 435 nm or more and 480 nm or less) is green light (wavelength 500 nm or more and 560 nm or less), yellow-green light (wavelength 560 nm or more and 580 nm or less), yellow light (wavelength 580 nm or more and 595 nm or less). ), Orange light (wavelength 595 nm or more and 605 nm or less) and red light (wavelength 605 nm or more and 700 nm or less).
 よって、反射膜4が形成されていない場合に、LED素子から発光される青色光と、当該LED素子からの発光の一部を吸収し、波長変換して発光する蛍光体からの黄色光とが混合された光が、白色光としての規定の色度よりも青色がかっている場合は、上記(1)の反射膜4を、封止カバー(カバー部)40の外表面に形成すればよい。 Therefore, when the reflective film 4 is not formed, the blue light emitted from the LED element and the yellow light from the phosphor that absorbs part of the light emitted from the LED element and converts the wavelength to emit light. When the mixed light is bluer than the prescribed chromaticity as white light, the reflective film 4 of (1) above may be formed on the outer surface of the sealing cover (cover portion) 40.
 これによって、反射膜4を透過して発光素子100から出射される青色光が減少し、当該青色光は上記蛍光体によって波長変換される。その結果、出射光中の黄色光の割合が増加するため、発光素子100から出射される光は、反射膜4がない場合の出射光と比較して黄色側にシフトした色度となる。 Thereby, the blue light transmitted through the reflective film 4 and emitted from the light emitting element 100 is reduced, and the wavelength of the blue light is converted by the phosphor. As a result, since the ratio of yellow light in the emitted light increases, the light emitted from the light emitting element 100 has chromaticity shifted to the yellow side as compared with the emitted light in the case where there is no reflective film 4.
 したがって、出射光が白色光としての規定の色度よりも青色がかっている発光素子100の出射光の色度を適正化することができ、発光素子100の品質を向上させることができる。 Therefore, it is possible to optimize the chromaticity of the emitted light of the light emitting element 100 in which the emitted light is bluer than the prescribed chromaticity as white light, and the quality of the light emitting element 100 can be improved.
 反射膜4が上記(2)の場合は、上記(1)の場合とは逆に、緑色光から赤色光までの反射率が高くなり、緑色光から赤色光までの光は上記蛍光体によって波長変換される。その結果、その結果、出射光中の青色光の割合が増加するため、発光素子100から出射される光は、反射膜4がない場合の出射光と比較して青色側にシフトした色度となる。 When the reflective film 4 is (2), contrary to the case (1), the reflectance from the green light to the red light is high, and the light from the green light to the red light has a wavelength by the phosphor. Converted. As a result, since the ratio of blue light in the emitted light increases, the light emitted from the light emitting element 100 has a chromaticity shifted to the blue side as compared with the emitted light in the case where there is no reflective film 4. Become.
 したがって、反射膜4が形成されていない場合に、LED素子から発光される青色光と、上記蛍光体からの黄色光とが混合された光が、白色光としての規定の色度よりも黄色がかっている場合は、上記(2)の反射膜4を、封止カバー(カバー部)40の外表面に形成する。これによって、出射光が白色光としての規定の色度よりも黄色がかっている発光素子100の出射光の色度を適正化することができ、発光素子100の品質を向上させることができる。 Therefore, when the reflective film 4 is not formed, the light obtained by mixing the blue light emitted from the LED element and the yellow light from the phosphor is yellower than the prescribed chromaticity as white light. In the case where it is worn, the reflective film 4 of the above (2) is formed on the outer surface of the sealing cover (cover portion) 40. Thereby, the chromaticity of the emitted light of the light emitting element 100 in which the emitted light is yellower than the prescribed chromaticity as white light can be optimized, and the quality of the light emitting element 100 can be improved.
 図2は、図1に示す発光素子100における、反射膜4の有無による色度のばらつきを説明する色度図である。ここで、封止カバー(カバー部)40、空間(空洞部)3および、蛍光体含有樹脂層(第一の樹脂部)2を備え、反射膜4が形成されていない状態の発光素子100につき、蛍光体含有樹脂層(第一の樹脂部)2の内部に複数のLED素子1が封止されている場合に、全てのLED素子1の出射光の色度を測定した結果が図2の(a)に示されているとする。なお、色度は、一般に用いられている色度計を用いて、従来公知の方法により測定を行うことができる。 FIG. 2 is a chromaticity diagram for explaining variation in chromaticity depending on the presence or absence of the reflective film 4 in the light emitting device 100 shown in FIG. Here, the light emitting device 100 includes a sealing cover (cover portion) 40, a space (hollow portion) 3, and a phosphor-containing resin layer (first resin portion) 2, and the reflective film 4 is not formed. When the plurality of LED elements 1 are sealed inside the phosphor-containing resin layer (first resin portion) 2, the result of measuring the chromaticity of the emitted light of all the LED elements 1 is shown in FIG. It is assumed that it is shown in (a). The chromaticity can be measured by a conventionally known method using a commonly used chromaticity meter.
 図2の(a)に示すように、反射膜4を形成する前の光は、蛍光体含有樹脂層(第一の樹脂部)2中に分散された蛍光体の分散状態のばらつきにより、色度のばらつきが広範囲に渡っている。 As shown in FIG. 2A, the light before forming the reflective film 4 is colored due to the dispersion of the phosphor dispersed in the phosphor-containing resin layer (first resin portion) 2. The degree of variation varies widely.
 ここで、発光素子100の出射光の色度をx方向、y方向ともに増加させたい場合は、黄色方向に色度を変化させる必要があるため、封止カバー(カバー部)40の表面に、反射膜4として上記(1)の反射膜を形成すると、青色光が緑色光~赤色光よりも強く反射される。 Here, when it is desired to increase the chromaticity of the emitted light of the light emitting element 100 in both the x direction and the y direction, it is necessary to change the chromaticity in the yellow direction, and therefore, on the surface of the sealing cover (cover portion) 40, When the reflective film (1) is formed as the reflective film 4, blue light is reflected more strongly than green light to red light.
 反射された青色光は蛍光体含有樹脂層(第一の樹脂部)2に戻り、当該蛍光体によって波長変換を受け、反射膜4に向けて出射される。当該出射された光が黄色光となっていれば、当該光は反射膜4を透過して発光素子100の外部へ出射される。 The reflected blue light returns to the phosphor-containing resin layer (first resin portion) 2, undergoes wavelength conversion by the phosphor, and is emitted toward the reflection film 4. If the emitted light is yellow light, the light passes through the reflective film 4 and is emitted to the outside of the light emitting element 100.
 一方、上記波長変換を受け、反射膜4に向けて出射された光がなお青色にシフトしている場合は、当該光に含有されている青色光は反射膜4によって反射され、再び上記蛍光体による波長変換を受ける。波長変換回数を増やし、このような動作を繰り返すことによって、少ない蛍光体量であっても光の損失を生じさせることなく、最終的には目的の色度の光(この場合黄色光)を得ることができる。 On the other hand, when the light that has been subjected to the wavelength conversion and is emitted toward the reflective film 4 is still shifted to blue, the blue light contained in the light is reflected by the reflective film 4, and again the phosphor. Undergoes wavelength conversion. By repeating the above operation by increasing the number of wavelength conversions, light of the desired chromaticity (in this case, yellow light) is finally obtained without causing light loss even with a small amount of phosphor. be able to.
 このように、反射膜4が形成されていることによって色度が調整されるため、図2(a)中に示す領域Aの部分に相当する色度のばらつきが打ち消され、図2の(b)に示すように、発光素子100から外部に出射される光の色度を、青色側から黄色側(色度が大きくなる方向)に調整することができる。 As described above, since the chromaticity is adjusted by forming the reflective film 4, the variation in chromaticity corresponding to the portion of the region A shown in FIG. ), The chromaticity of light emitted from the light emitting element 100 to the outside can be adjusted from the blue side to the yellow side (direction in which the chromaticity increases).
 反射膜4は、光触媒作用を有する誘電体膜であることが好ましい。反射膜4が光触媒作用を有する誘電体膜であることによって、本発明の発光素子は、防汚効果、防曇効果、抗菌効果、空気清浄化効果および水浄化効果等の効果を奏する。 The reflective film 4 is preferably a dielectric film having a photocatalytic action. Since the reflective film 4 is a dielectric film having a photocatalytic action, the light emitting device of the present invention has effects such as an antifouling effect, an antifogging effect, an antibacterial effect, an air cleaning effect, and a water purification effect.
 本発明の発光素子が防汚効果、防曇効果を奏することによって、発光素子から出射される光の強度や明るさを一定に保つことができる他、発光素子の使用可能期間を長くすることができる。 The light emitting device of the present invention exhibits an antifouling effect and an antifogging effect, so that the intensity and brightness of light emitted from the light emitting device can be kept constant, and the usable period of the light emitting device can be lengthened. it can.
 また、本発明の発光素子が抗菌効果、空気清浄化効果、水浄化効果を奏することによって、所望の色度を有する光を安定的に出射するという効果に対してさらに有用な効果が付加されることになる。よって、本発光素子の商品価値をより向上させることができる。 In addition, the light emitting device of the present invention has an antibacterial effect, an air purification effect, and a water purification effect, thereby adding a more useful effect to the effect of stably emitting light having a desired chromaticity. It will be. Therefore, the commercial value of the present light emitting element can be further improved.
 上記誘電体膜はTiOを含有することが好ましい。TiOは安価であると共に、蒸着やスパッタなどの安価なプロセスによって、青色光の反射率が緑色光~赤色光の反射率よりも高い反射膜を形成しうる。つまり、上記防汚効果等に加えて、短波長の光を除去することによって光害を防ぐ効果を奏することができる。 The dielectric film preferably contains TiO 2 . TiO 2 is inexpensive, and a reflective film having a blue light reflectance higher than that of green light to red light can be formed by an inexpensive process such as vapor deposition or sputtering. That is, in addition to the antifouling effect and the like, an effect of preventing light pollution can be achieved by removing light having a short wavelength.
 ただし、TiOに限らず、誘電体材料であれば反射膜4の材料となりうる。例えば、ZnO、SiOなども好適に用いることができる。また、反射膜4を形成する材料は、例えば、SiOとZnOおよび/またはTiOとの組成物のように、組成物であってもよい。 However, not only TiO 2 but also a dielectric material can be used as the material of the reflective film 4. For example, ZnO, SiO 2 or the like can be preferably used. The material forming the reflective film 4 may be a composition such as a composition of SiO 2 and ZnO and / or TiO 2 .
 一方、反射膜4を、長波長を有する光の反射率が高くなるように設計することによって、例えば、緑色光~赤色光の反射率が青色光の反射率よりも高い反射膜を形成しうる。これによって、発光素子100から外部に出射される光の色度を、黄色側から青色側(色度が小さくなる方向)に調整することができる。この場合の色度の調整は、蛍光体による波長変換効率ではなく、長波長成分の損失によって実現される。 On the other hand, by designing the reflective film 4 so that the reflectance of light having a long wavelength is high, for example, a reflective film in which the reflectance of green light to red light is higher than that of blue light can be formed. . Thereby, the chromaticity of the light emitted to the outside from the light emitting element 100 can be adjusted from the yellow side to the blue side (direction in which the chromaticity decreases). The adjustment of chromaticity in this case is realized not by the wavelength conversion efficiency by the phosphor but by the loss of the long wavelength component.
 反射膜4における上記誘電体材料の好適な含有率は、反射膜4に含有される誘電体材料の物性、調整したい波長成分の量、反射膜4に入射する光の波長等によって異なるため、一概には言えない。 The preferred content of the dielectric material in the reflective film 4 varies depending on the physical properties of the dielectric material contained in the reflective film 4, the amount of wavelength component to be adjusted, the wavelength of light incident on the reflective film 4, etc. I can't say.
 反射膜4の波長依存性は、蛍光体含有樹脂層(第一の樹脂部)2および上記封止カバー(カバー部)40を構成する樹脂(例えばアクリル樹脂)の屈折率と、反射膜4の屈折率とによって決まる。例えば、アクリル樹脂(屈折率約1.50)に対してTiO(屈折率約2.5)により、可視光波長域において、長波長の光に比べて短波長の光の反射率が高くなる。 The wavelength dependency of the reflective film 4 depends on the refractive index of the resin (for example, acrylic resin) constituting the phosphor-containing resin layer (first resin part) 2 and the sealing cover (cover part) 40 and the reflective film 4. It depends on the refractive index. For example, TiO 2 (refractive index of about 2.5) with respect to acrylic resin (refractive index of about 1.50) increases the reflectance of short-wavelength light in the visible wavelength region compared to long-wavelength light. .
 また、反射膜4の波長依存性は、反射膜4の膜厚によっても変化する。つまり、反射膜4の波長依存性は、封止カバー(カバー部)40を構成する樹脂の屈折率と、反射膜4の屈折率と、反射膜4の膜厚と、が関与する干渉の影響を受けるため、得たい調色結果に応じて、反射膜4の屈折率、および反射膜4の膜厚を適宜決定し、調色を行うことが好ましい。 Further, the wavelength dependence of the reflective film 4 also varies depending on the film thickness of the reflective film 4. In other words, the wavelength dependence of the reflective film 4 is influenced by interference involving the refractive index of the resin constituting the sealing cover (cover portion) 40, the refractive index of the reflective film 4, and the film thickness of the reflective film 4. Therefore, it is preferable to perform toning by appropriately determining the refractive index of the reflecting film 4 and the film thickness of the reflecting film 4 according to the toning result to be obtained.
 反射膜4を形成する材料は、反射膜4が形成されていない状態での発光素子100からの出射光の色度を測定し、出射量を減少させたい光の種類に応じて適宜選択すればよい。反射膜4は、上記封止カバー(カバー部)40の外表面に上記誘電体材料を含有する材料を蒸着、スパッタなどの方法を用いて製膜することによって形成することができる。 The material for forming the reflective film 4 may be selected as appropriate according to the type of light whose output is desired to be reduced by measuring the chromaticity of the light emitted from the light emitting element 100 when the reflective film 4 is not formed. Good. The reflective film 4 can be formed by depositing a material containing the dielectric material on the outer surface of the sealing cover (cover portion) 40 using a method such as vapor deposition or sputtering.
 また、反射膜4は単層膜であることが好ましいが、これに限られるものではなく、多層膜であっても構わない。多層膜であれば、可視光域の反射率が低く、ある限定した波長域のみの反射率を高くする設計とすることにより、光の損失を抑えた調色が可能となる。 The reflective film 4 is preferably a single layer film, but is not limited to this and may be a multilayer film. In the case of a multilayer film, it is possible to perform toning with reduced light loss by designing the reflectance of the visible light region to be low and the reflectance of only a limited wavelength region to be high.
 (蛍光体の濃度について)
 上記第1の実施形態では、蛍光体含有樹脂層(第一の樹脂部)2が蛍光体を含有し、空間(空洞部)3は蛍光体を含有していない。
(About phosphor concentration)
In the first embodiment, the phosphor-containing resin layer (first resin portion) 2 contains a phosphor, and the space (cavity portion) 3 does not contain a phosphor.
 このような構成を取ることによって、多重散乱を抑制し、出射効率の低下を防ぐことができる。このことについて以下に説明する。 By adopting such a configuration, it is possible to suppress multiple scattering and prevent a decrease in emission efficiency. This will be described below.
 図7は、従来公知の発光素子における蛍光体の分布状態を示す、従来公知の発光素子の概略断面構造図である。 FIG. 7 is a schematic cross-sectional structure diagram of a conventionally known light emitting device showing a state of phosphor distribution in the conventionally known light emitting device.
 図7に示すように、従来公知の発光素子200は、蛍光体含有樹脂層2’がLED素子1の外周部に一層形成されており、かつ、内部に蛍光体を含有している。つまり、LED素子は蛍光体含有樹脂層2’のみによって封止されたいわゆる一重封止となっている。 As shown in FIG. 7, in the conventionally known light emitting device 200, the phosphor-containing resin layer 2 'is formed in one layer on the outer peripheral portion of the LED device 1, and contains the phosphor inside. In other words, the LED element is a so-called single-sealed seal that is sealed only by the phosphor-containing resin layer 2 ′.
 発光素子200において、第1の実施形態にかかる発光素子100と同等の色度を示す出射光を得る場合、当該蛍光体の濃度は、図7に示すように、蛍光体含有樹脂層2’の内部において低い濃度で均一に拡散した状態にする必要がある。 In the light emitting element 200, when obtaining the emitted light having the same chromaticity as the light emitting element 100 according to the first embodiment, the concentration of the phosphor is such that the phosphor-containing resin layer 2 ′ has a concentration as shown in FIG. It is necessary to make it uniformly diffused at a low concentration inside.
 これは、蛍光体含有樹脂層に含有される蛍光体量が同程度であれば、蛍光体含有樹脂層の容積が大きいほど、反射膜4によって反射された光が、蛍光体によって多く波長変換されることによる。 This is because if the amount of the phosphor contained in the phosphor-containing resin layer is approximately the same, the greater the volume of the phosphor-containing resin layer, the more the wavelength of the light reflected by the reflective film 4 is converted by the phosphor. By.
 例えば、図1に示す蛍光体含有樹脂層(第一の樹脂部)2に含有される蛍光体の量と、図7に示す蛍光体含有樹脂層2’に含有される蛍光体の量とが同程度である場合、蛍光体含有樹脂層2’の体積を蛍光体含有樹脂層(第一の樹脂部)2の体積よりも大きくし、蛍光体による波長変換回数を増やすことによって、図7に示す発光素子200は、図1に示す発光素子100と同程度の色度特性を有する出射光を出射することができる。 For example, the amount of the phosphor contained in the phosphor-containing resin layer (first resin portion) 2 shown in FIG. 1 and the amount of the phosphor contained in the phosphor-containing resin layer 2 ′ shown in FIG. In the case of the same degree, the volume of the phosphor-containing resin layer 2 ′ is made larger than the volume of the phosphor-containing resin layer (first resin portion) 2 and the number of wavelength conversions by the phosphor is increased, so that FIG. The light emitting element 200 shown can emit outgoing light having the same chromaticity characteristics as the light emitting element 100 shown in FIG.
 つまり、蛍光体含有樹脂層2’において、蛍光体含有樹脂層(第一の樹脂部)2との容積の差に応じた蛍光体の濃度調整を行うことによって、波長変換を同等にし、発光素子100と同程度の色度特性を有する出射光を出射することができる。 That is, in the phosphor-containing resin layer 2 ′, the wavelength conversion is made equal by adjusting the concentration of the phosphor according to the volume difference from the phosphor-containing resin layer (first resin portion) 2, and the light emitting element The emitted light having the same chromaticity characteristic as 100 can be emitted.
 しかしながら、発光素子200は、発光素子100よりも光の取り出し効率が低いものとなってしまう。すなわち、蛍光は一般に、波長変換(量子効果)が行われない場合でも蛍光体によって散乱される。このとき、発光素子200のように、蛍光体含有樹脂層2’内部の蛍光体濃度が低い場合は、蛍光体含有樹脂層2’の内部を光が拡散してしまい、発光素子200の外部へ出射されるまでに多重散乱による損失となってしまう光の割合が多くなり、光の取り出し効率が低下してしまうという問題がある。 However, the light emitting element 200 has a lower light extraction efficiency than the light emitting element 100. That is, fluorescence is generally scattered by the phosphor even when wavelength conversion (quantum effect) is not performed. At this time, when the phosphor concentration inside the phosphor-containing resin layer 2 ′ is low as in the light-emitting element 200, the light diffuses inside the phosphor-containing resin layer 2 ′ and goes to the outside of the light-emitting element 200. There is a problem in that the ratio of light that is lost due to multiple scattering before being emitted increases, and the light extraction efficiency decreases.
 図7において、LED素子1から出射された光aは、反射膜4において一部が反射され、出射光c’と反射光b’とに分離される。反射された反射光b’は、蛍光体含有樹脂層2’に存在する蛍光体によって散乱され、蛍光体含有樹脂層2’内部の蛍光体濃度が低いために蛍光体含有樹脂層2’の内部を拡散する。図7のd’は、蛍光体に散乱されながら拡散している光を表している。このような拡散が起こると、その光は、なかなか発光素子200の外部に出射されないことになる。 In FIG. 7, a part of the light a emitted from the LED element 1 is reflected by the reflective film 4 and separated into emitted light c ′ and reflected light b ′. The reflected reflected light b ′ is scattered by the phosphor present in the phosphor-containing resin layer 2 ′, and the phosphor concentration in the phosphor-containing resin layer 2 ′ is low, so that the inside of the phosphor-containing resin layer 2 ′. To diffuse. D 'in FIG. 7 represents light diffused while being scattered by the phosphor. When such diffusion occurs, the light is not easily emitted to the outside of the light emitting element 200.
 特許文献4に開示の発光素子は、蛍光体の含有量と当該蛍光体の濃度とが、特許文献4に開示される封止材において、発光素子200と同様に、低い濃度で均一に拡散した状態にある発光素子である。つまり、特許文献4に開示の発光素子は、発光素子200と同様に、多重散乱による光の損失が大きいという問題を有する。 In the light-emitting element disclosed in Patent Document 4, the phosphor content and the concentration of the phosphor are uniformly diffused at a low concentration in the sealing material disclosed in Patent Document 4 as in the light-emitting element 200. It is a light emitting element in a state. That is, the light-emitting element disclosed in Patent Document 4 has a problem that the loss of light due to multiple scattering is large, similar to the light-emitting element 200.
 一方、第1の実施形態にかかる発光素子100は、蛍光体含有樹脂層(第一の樹脂部)2が蛍光体を含有し、上記空間(空洞部)3は蛍光体を含有していないため、蛍光体はLED素子1の近傍に局在している。つまり、蛍光体含有樹脂層(第一の樹脂部)2における蛍光体濃度は、蛍光体含有樹脂層2’における蛍光体濃度よりも非常に高くなっている。 On the other hand, in the light emitting device 100 according to the first embodiment, the phosphor-containing resin layer (first resin portion) 2 contains a phosphor, and the space (cavity portion) 3 does not contain a phosphor. The phosphor is localized in the vicinity of the LED element 1. That is, the phosphor concentration in the phosphor-containing resin layer (first resin portion) 2 is much higher than the phosphor concentration in the phosphor-containing resin layer 2 ′.
 図1において、LED素子1から出射された光aは、反射膜4において一部が反射され、出射光cと反射光bとに分離される。反射された反射光bは、蛍光体含有樹脂層(第一の樹脂部)2に存在する蛍光体によって散乱されるが(波長変換も行われる)、蛍光体含有樹脂層(第一の樹脂部)2内部の蛍光体濃度が高いために蛍光体含有樹脂層(第一の樹脂部)2の内部を拡散することはない。 In FIG. 1, a part of the light a emitted from the LED element 1 is reflected by the reflective film 4 and separated into emitted light c and reflected light b. The reflected reflected light b is scattered by the phosphor present in the phosphor-containing resin layer (first resin portion) 2 (wavelength conversion is also performed), but the phosphor-containing resin layer (first resin portion). 2) Since the phosphor concentration inside 2 is high, the inside of the phosphor-containing resin layer (first resin portion) 2 is not diffused.
 つまり、波長変換された光dが、上記拡散をすることなく、速やかに発光素子100の外部に出射される。あるいは、反射膜4によって一部が反射され、蛍光体によるさらなる波長変換を受ける。そして、波長λの出射光cと、波長λ’の光dとが混合され、所望の色度を有する白色光を得ることができる。 That is, the wavelength-converted light d is quickly emitted outside the light emitting element 100 without being diffused. Alternatively, part of the light is reflected by the reflective film 4 and undergoes further wavelength conversion by the phosphor. Then, the outgoing light c having the wavelength λ and the light d having the wavelength λ ′ are mixed, and white light having a desired chromaticity can be obtained.
 このように、発光素子100では、蛍光体がLED素子1近傍の領域に集積しているため、蛍光が蛍光体によって散乱されたとしても、蛍光体含有樹脂層2’内部の蛍光体濃度が低い発光素子200や、特許文献4に開示の発光素子のように、蛍光体層中を光が拡散してしまうことはない。 Thus, in the light emitting element 100, since the phosphor is accumulated in the region in the vicinity of the LED element 1, even if the fluorescence is scattered by the phosphor, the phosphor concentration inside the phosphor-containing resin layer 2 ′ is low. Unlike the light emitting element 200 and the light emitting element disclosed in Patent Document 4, light does not diffuse in the phosphor layer.
 それゆえ、多重散乱を抑制し、高い光取り出し効率で所望の色度特性を有する光を発光素子100の外部へ出射することができるという利点を有している。 Therefore, there is an advantage that multiple scattering can be suppressed and light having desired chromaticity characteristics can be emitted outside the light emitting element 100 with high light extraction efficiency.
 多重散乱の防止という観点から、蛍光体含有樹脂層(第一の樹脂部)2における蛍光体の濃度は、できるだけ高いことが好ましい。蛍光体を、より一層LED素子1近傍の領域に集積させることができ、蛍光体含有樹脂層(第一の樹脂部)2内部を光が拡散することを防ぐことができるためである。 From the viewpoint of preventing multiple scattering, the concentration of the phosphor in the phosphor-containing resin layer (first resin portion) 2 is preferably as high as possible. This is because the phosphor can be further accumulated in a region in the vicinity of the LED element 1 and light can be prevented from diffusing inside the phosphor-containing resin layer (first resin portion) 2.
 <第2の実施形態>
 (蛍光体含有樹脂層と蛍光体を含有しない樹脂層とを備えた発光素子)
 本発明にかかる発光素子の第2の実施形態について、第1の実施形態と同様に図1に基づいて説明する。図1は、第1および第2の実施形態にかかる発光素子100の概略断面構造図である。
<Second Embodiment>
(Light emitting device provided with phosphor-containing resin layer and resin layer not containing phosphor)
A second embodiment of the light emitting device according to the present invention will be described with reference to FIG. 1 as in the first embodiment. FIG. 1 is a schematic cross-sectional structure diagram of a light emitting device 100 according to the first and second embodiments.
 第2の実施形態にかかる発光素子100は、空間(空洞部)3の代わりに、蛍光体を含有しない樹脂層(第二の樹脂部)3を備えていること以外は、第1の実施形態にかかる発光素子100と同じである。第1の実施形態にかかる発光素子は、空間(空洞部)3を用いているため、第2の実施形態にかかる発光素子よりも製造コストを安くすることができる。 The light emitting device 100 according to the second embodiment is the first embodiment, except that a resin layer (second resin portion) 3 that does not contain a phosphor is provided instead of the space (cavity portion) 3. This is the same as the light emitting device 100 according to the above. Since the light emitting device according to the first embodiment uses the space (hollow portion) 3, the manufacturing cost can be made lower than that of the light emitting device according to the second embodiment.
 第2の実施形態では、本発明にかかる発光素子100は、樹脂部が、LED素子1の外周部に二層積層されている。そして、上記樹脂部のうち内側の一層である蛍光体含有樹脂層(第一の樹脂部)2は、上記蛍光体を含有しており、上記樹脂部のうち外側の一層である、蛍光体を含有しない樹脂層(第二の樹脂部)3は上記蛍光体を含有していないという構成を備えている。なお、上記「外周部」とは、LED素子1から見て光の出射方向に外側であることを意味する。 In the second embodiment, in the light emitting device 100 according to the present invention, the resin portion is laminated in two layers on the outer peripheral portion of the LED device 1. And the fluorescent substance containing resin layer (1st resin part) 2 which is one layer inside the said resin part contains the said fluorescent substance, and the fluorescent substance which is the outer one layer among the said resin parts is used. The resin layer (second resin part) 3 that is not contained has a configuration in which the phosphor is not contained. The “outer peripheral part” means that the LED element 1 is outside in the light emission direction as viewed from the LED element 1.
 蛍光体を含有しない樹脂層(第二の樹脂部)3は、蛍光体含有樹脂層(第一の樹脂部)2の表面を覆うように形成され、蛍光体含有樹脂層(第一の樹脂部)2を封止している。また、蛍光体を含有しない樹脂層(第二の樹脂部)3の表面は、封止カバー(カバー部)40によって覆われており、封止カバー(カバー部)40は蛍光体を含有しない樹脂層(第二の樹脂部)3を封止している。 The resin layer (second resin part) 3 not containing the phosphor is formed so as to cover the surface of the phosphor-containing resin layer (first resin part) 2, and the phosphor-containing resin layer (first resin part) 2) is sealed. The surface of the resin layer (second resin portion) 3 not containing phosphor is covered with a sealing cover (cover portion) 40, and the sealing cover (cover portion) 40 is a resin not containing phosphor. The layer (second resin part) 3 is sealed.
 蛍光体を含有しない樹脂層(第二の樹脂部)3を構成する樹脂としては、透光性に優れるためシリコーン樹脂であることが好ましく、エポキシ樹脂やアクリル系樹脂等を用いることもできる。 The resin constituting the resin layer (second resin portion) 3 not containing a phosphor is preferably a silicone resin because of its excellent translucency, and an epoxy resin or an acrylic resin can also be used.
 (反射膜による色度の調整について)
 第2の実施形態における反射膜4の波長依存性は、蛍光体含有樹脂層(第一の樹脂部)2の屈折率と、蛍光体を含有しない樹脂層(第二の樹脂部)3を構成する樹脂の屈折率と、封止カバー(カバー部)40を構成する樹脂の屈折率と、反射膜4の屈折率と、反射膜4の膜厚と、が関与する干渉の影響を受ける。そのため、得たい調色結果に応じて、反射膜4の屈折率、および反射膜4の膜厚を適宜決定し、調色を行うことが好ましい。
(Regarding adjustment of chromaticity by reflecting film)
The wavelength dependence of the reflective film 4 in the second embodiment is that the refractive index of the phosphor-containing resin layer (first resin portion) 2 and the resin layer (second resin portion) 3 not containing phosphor are configured. The refractive index of the resin, the refractive index of the resin constituting the sealing cover (cover portion) 40, the refractive index of the reflective film 4, and the thickness of the reflective film 4 are affected by interference. Therefore, it is preferable to perform toning by appropriately determining the refractive index of the reflecting film 4 and the film thickness of the reflecting film 4 according to the toning result to be obtained.
 <第3の実施形態>
 (蛍光体含有樹脂層でLED素子が封止され、空洞部を備える発光素子の他の形態)
 第1および2の実施形態では、図1に示すように、発光素子100において、蛍光体含有樹脂層(第一の樹脂部)2、空間(空洞部)または蛍光体を含有しない樹脂層(第二の樹脂部)3、封止カバー(カバー部)40、反射膜4は、基板5の実装面6上に半球状に形成されている。しかし、発光素子の形態はこれに限られるものではない。第3の実施形態では、第1および第2の実施形態とは異なる形態を取る発光素子について説明する。
<Third Embodiment>
(Another form of light-emitting element in which the LED element is sealed with a phosphor-containing resin layer and has a hollow portion)
In the first and second embodiments, as shown in FIG. 1, in the light emitting device 100, the phosphor-containing resin layer (first resin portion) 2, the space (cavity portion), or the resin layer (first layer) containing no phosphor. The second resin portion 3, the sealing cover (cover portion) 40, and the reflective film 4 are formed in a hemispherical shape on the mounting surface 6 of the substrate 5. However, the form of the light emitting element is not limited to this. In the third embodiment, a light-emitting element that takes a different form from the first and second embodiments will be described.
 図3は、本発明の第3の実施形態にかかる発光素子101の概略断面構造図である。発光素子101では、基板5の実装面6の上に反射枠7が配置されている。 FIG. 3 is a schematic cross-sectional structure diagram of a light-emitting element 101 according to the third embodiment of the present invention. In the light emitting element 101, the reflection frame 7 is disposed on the mounting surface 6 of the substrate 5.
 反射枠7は、LED素子1や蛍光体からの発光を効率的に反射膜4に照射させるためのものであり、樹脂、セラミック、金属材料など表面の反射率が高いものが用いられる。例えば、LED素子1から横方向に出射した光線を反射枠7によって反射することにより、反射膜4の方向に出射することができる。反射枠7は、基板5と別体として実装面6上に形成されていてもよいし、基板5と一体成型されていてもよい。 The reflective frame 7 is for efficiently irradiating the reflective film 4 with light emitted from the LED element 1 or the phosphor, and a material having a high surface reflectance such as resin, ceramic, or metal material is used. For example, the light beam emitted from the LED element 1 in the lateral direction can be emitted in the direction of the reflective film 4 by being reflected by the reflection frame 7. The reflection frame 7 may be formed on the mounting surface 6 as a separate body from the substrate 5 or may be integrally formed with the substrate 5.
 発光素子101では、LED素子1の外周部に蛍光体を含有する蛍光体含有樹脂層(第一の樹脂部)2が形成され、封止カバー(カバー部)40が、反射枠7の上面間に跨って配置されている。 In the light emitting element 101, a phosphor-containing resin layer (first resin part) 2 containing a phosphor is formed on the outer peripheral part of the LED element 1, and a sealing cover (cover part) 40 is located between the upper surfaces of the reflection frame 7. It is arranged across.
 封止カバー(カバー部)40の内表面と、蛍光体含有樹脂層(第一の樹脂部)2の表面との間は空間(空洞部)3となっており、蛍光体は含有されていない。つまり、蛍光体含有樹脂層(第一の樹脂部)2は、空間(空洞部)3を介して封止カバー(カバー部)40によって封止されている。封止カバー(カバー部)40の表面には、反射率に波長依存性を有する反射膜4が形成されている。 A space (hollow portion) 3 is formed between the inner surface of the sealing cover (cover portion) 40 and the surface of the phosphor-containing resin layer (first resin portion) 2 and no phosphor is contained. . That is, the phosphor-containing resin layer (first resin portion) 2 is sealed by the sealing cover (cover portion) 40 through the space (cavity portion) 3. On the surface of the sealing cover (cover portion) 40, a reflective film 4 having a wavelength dependency on the reflectance is formed.
 図3に示すように、LED素子1から出射された光aは、一部が反射膜4によって反射されて反射光bと出射光cとに分離される。反射光bは蛍光体含有樹脂層(第一の樹脂部)2において蛍光体によって波長変換され、出射光dとなって発光素子101から出射される。また、光aは、出射後、一部が蛍光体によって波長変換され、出射光d’となって発光素子101から出射される。 As shown in FIG. 3, a part of the light a emitted from the LED element 1 is reflected by the reflective film 4 and separated into reflected light b and outgoing light c. The reflected light b is wavelength-converted by the phosphor in the phosphor-containing resin layer (first resin portion) 2 and is emitted from the light emitting element 101 as the emitted light d. The light a is partly wavelength-converted by a phosphor after being emitted, and is emitted from the light emitting element 101 as emitted light d ′.
 第3の実施形態にかかる発光素子101は、蛍光体含有樹脂層(第一の樹脂部)2、空間(空洞部)3、封止カバー(カバー部)40、および反射膜4の形状が第1の実施形態にかかる発光素子100と異なるが、反射膜4は上述のように反射率に波長依存性を有しているため、反射膜4がない場合の色度特性に応じて適切な波長依存性を有する反射膜4を選択することにより、出射光c、d、d’が混合された光を、所望の色度特性を有する白色光とすることができる。 In the light emitting device 101 according to the third embodiment, the phosphor-containing resin layer (first resin part) 2, the space (cavity part) 3, the sealing cover (cover part) 40, and the reflective film 4 have the first shapes. Although different from the light emitting device 100 according to the first embodiment, the reflective film 4 has wavelength dependency on the reflectance as described above, and therefore has an appropriate wavelength according to the chromaticity characteristics when the reflective film 4 is not provided. By selecting the reflective film 4 having the dependency, the light in which the outgoing lights c, d, and d ′ are mixed can be turned into white light having desired chromaticity characteristics.
 また、上記蛍光体は、蛍光体含有樹脂層(第一の樹脂部)2の内部にのみ含有されている。つまり、上記LED素子近傍の領域に局在している。そのため、多重散乱による光損失の問題も生じない。さらに、発光素子101は反射枠7を備えているため、より効率的に所望の色度を有する白色光を出射することができる。 The phosphor is contained only in the phosphor-containing resin layer (first resin portion) 2. That is, it is localized in a region near the LED element. Therefore, the problem of light loss due to multiple scattering does not occur. Furthermore, since the light emitting element 101 includes the reflective frame 7, white light having a desired chromaticity can be emitted more efficiently.
 さらに、反射膜4を備えているため、第3の実施形態にかかる発光素子101は、第1および第2の実施形態にかかる発光素子100と同様に、光触媒作用に基づく防汚、防曇、抗菌、空気浄化、水浄化等の効果を奏することができる。 Furthermore, since the reflective film 4 is provided, the light emitting device 101 according to the third embodiment is antifouling, antifogging based on the photocatalytic action, similarly to the light emitting device 100 according to the first and second embodiments. Effects such as antibacterial, air purification and water purification can be achieved.
 <第4の実施形態>
 (蛍光体含有樹脂層と蛍光体を含有しない樹脂層とを備えた発光素子の他の形態)
 本発明にかかる発光素子の第4の実施形態について、第3の実施形態と同様に図3に基づいて説明する。図3は、第3および第4の実施形態にかかる発光素子101の概略断面構造図である。
<Fourth Embodiment>
(Other forms of light-emitting element including a phosphor-containing resin layer and a resin layer not containing a phosphor)
A fourth embodiment of the light emitting device according to the present invention will be described with reference to FIG. 3 as in the third embodiment. FIG. 3 is a schematic cross-sectional structure diagram of the light emitting device 101 according to the third and fourth embodiments.
 第4の実施形態にかかる発光素子101は、空間(空洞部)3の代わりに、蛍光体を含有しない樹脂層(第二の樹脂部)3を備えていること以外は、第3の実施形態にかかる発光素子101と同じである。 The light emitting device 101 according to the fourth embodiment is the third embodiment, except that a resin layer (second resin portion) 3 not containing a phosphor is provided instead of the space (cavity portion) 3. It is the same as the light emitting element 101 concerning.
 すなわち、第4の実施形態にかかる発光素子101では、樹脂部がLED素子1の外周部に二層積層されており、内側、すなわち、LED素子1に近い側に蛍光体を含有する蛍光体含有樹脂層(第一の樹脂部)2が形成され、LED素子1を封止している。そして、蛍光体含有樹脂層(第一の樹脂部)2の外表面を覆うように、蛍光体を含有していない樹脂層(第二の樹脂部)3が形成され、蛍光体含有樹脂層(第一の樹脂部)2を封止している。 That is, in the light emitting element 101 according to the fourth embodiment, the resin part is laminated in two layers on the outer peripheral part of the LED element 1, and contains a phosphor on the inner side, that is, on the side close to the LED element 1. A resin layer (first resin portion) 2 is formed and seals the LED element 1. And the resin layer (2nd resin part) 3 which does not contain a fluorescent substance is formed so that the outer surface of the fluorescent substance containing resin layer (1st resin part) 2 may be covered, and fluorescent substance containing resin layer ( 1st resin part) 2 is sealed.
 さらに、蛍光体を含有していない樹脂層(第二の樹脂部)3の表面と、反射枠7とに跨って、封止カバー(カバー部)40が形成されて、蛍光体を含有していない樹脂層(第二の樹脂部)3を封止しており、封止カバー(カバー部)40の外表面に、反射率に波長依存性を有する反射膜4が形成されている。 Further, a sealing cover (cover portion) 40 is formed across the surface of the resin layer (second resin portion) 3 not containing the phosphor and the reflection frame 7 and contains the phosphor. A non-resin layer (second resin portion) 3 is sealed, and a reflective film 4 having wavelength dependency on reflectance is formed on the outer surface of the sealing cover (cover portion) 40.
 図3に示すように、LED素子1から出射された光aは、一部が反射膜4によって反射されて反射光bと出射光cとに分離される。反射光bは蛍光体含有樹脂層(第一の樹脂部)2において蛍光体によって波長変換され、出射光dとなって発光素子101から出射される。また、光aは、出射後、一部が蛍光体によって波長変換され、出射光d’となって発光素子101から出射される。 As shown in FIG. 3, a part of the light a emitted from the LED element 1 is reflected by the reflective film 4 and separated into reflected light b and outgoing light c. The reflected light b is wavelength-converted by the phosphor in the phosphor-containing resin layer (first resin portion) 2 and is emitted from the light emitting element 101 as the emitted light d. The light a is partly wavelength-converted by a phosphor after being emitted, and is emitted from the light emitting element 101 as emitted light d ′.
 発光素子101は、蛍光体含有樹脂層(第一の樹脂部)2、蛍光体を含有していない樹脂層(第二の樹脂部)3、封止カバー(カバー部)40、および反射膜4の形状が第2の実施形態にかかる発光素子100と異なるが、反射膜4は上述のように反射率に波長依存性を有しているため、反射膜4がない場合の色度特性に応じて適切な波長依存性を有する反射膜4を選択することにより、出射光c、d、d’が混合された光を、所望の色度特性を有する白色光とすることができる。 The light emitting element 101 includes a phosphor-containing resin layer (first resin portion) 2, a resin layer (second resin portion) 3 not containing phosphor, a sealing cover (cover portion) 40, and a reflective film 4. Is different from the light emitting device 100 according to the second embodiment, but the reflection film 4 has wavelength dependency on the reflectance as described above, and therefore depends on the chromaticity characteristics when the reflection film 4 is not provided. By selecting the reflective film 4 having an appropriate wavelength dependency, the light in which the outgoing lights c, d, and d ′ are mixed can be converted into white light having desired chromaticity characteristics.
 また、上記蛍光体の濃度は、上記LED素子近傍の領域における濃度が、上記反射膜近傍の領域における濃度よりも高いため、多重散乱による光損失の問題も生じない。さらに、発光素子101は反射枠7を備えているため、より効率的に所望の色度を有する白色光を出射することができる。 Further, since the concentration of the phosphor is higher in the region near the LED element than the concentration in the region near the reflective film, the problem of light loss due to multiple scattering does not occur. Furthermore, since the light emitting element 101 includes the reflective frame 7, white light having a desired chromaticity can be emitted more efficiently.
 さらに、反射膜4を備えているため、第4の実施形態にかかる発光素子101は、第1または第2の実施形態にかかる発光素子100、第3の実施形態にかかる発光素子101と同様に、光触媒作用に基づく防汚、防曇、抗菌、空気浄化、水浄化等の効果を奏することができる。 Furthermore, since the reflective film 4 is provided, the light emitting device 101 according to the fourth embodiment is similar to the light emitting device 100 according to the first or second embodiment and the light emitting device 101 according to the third embodiment. In addition, effects such as antifouling, antifogging, antibacterial, air purification and water purification based on photocatalytic action can be achieved.
 (発光素子の製造方法)
 本発明にかかる発光素子は、例えば、基板5の実装面に搭載されたLED素子1を覆うように、上記基板5の実装面6に、上記LED素子1からの発光の一部を吸収し、波長変換して発光する蛍光体を含有する蛍光体含有層(第一の樹脂部)2を形成し、上記LED素子1を封止する第一の工程;上記蛍光体含有層(第一の樹脂部)2の表面に、上記蛍光体を含有しない第二の樹脂部3を形成し、当該第二の樹脂部3の表面に、封止カバー(カバー部)40を形成する第二の工程;上記LED素子1から蛍光体含有層(第一の樹脂部)2、蛍光体を含有しない第二の樹脂部3、および封止カバー(カバー部)40を介して出射される光の色度特性を測定する第三の工程;測定した上記色度特性に応じて、封止カバー(カバー部)40の外表面に、反射率に波長依存性を有する反射膜4を形成する第四の工程、を含む。
(Manufacturing method of light emitting element)
The light emitting element according to the present invention absorbs a part of light emitted from the LED element 1 on the mounting surface 6 of the substrate 5 so as to cover the LED element 1 mounted on the mounting surface of the substrate 5, for example. A first step of forming a phosphor-containing layer (first resin portion) 2 containing a phosphor that emits light after wavelength conversion; and sealing the LED element 1; the phosphor-containing layer (first resin) A second step of forming the second resin part 3 not containing the phosphor and forming a sealing cover (cover part) 40 on the surface of the second resin part 3; Chromaticity characteristics of light emitted from the LED element 1 through the phosphor-containing layer (first resin portion) 2, the second resin portion 3 not containing the phosphor, and the sealing cover (cover portion) 40. A third step of measuring the outer surface of the sealing cover (cover portion) 40 according to the measured chromaticity characteristics. Includes a fourth step of forming a reflective film 4 having a wavelength dependence to the reflection factor, the.
 上記第二の工程は、蛍光体を含有しない第二の樹脂部3を形成する代わりに、蛍光体含有層(第一の樹脂部)2の表面と、封止カバー(カバー部)40の内表面との間に空間(空洞部)3が形成されるように、封止カバー(カバー部)40によって蛍光体含有層(第一の樹脂部)2を封止する工程であってもよい。 In the second step, instead of forming the second resin part 3 containing no phosphor, the surface of the phosphor-containing layer (first resin part) 2 and the inside of the sealing cover (cover part) 40 It may be a step of sealing the phosphor-containing layer (first resin portion) 2 with a sealing cover (cover portion) 40 so that a space (hollow portion) 3 is formed between the surface and the surface.
 この場合は、蛍光体を含有しない第二の樹脂部3が存在しないため、上記第三の工程は、上記LED素子から上記第一の樹脂部および封止カバー(カバー部)40を介して出射される光の色度特性を測定する工程であることが好ましい。 In this case, since there is no second resin portion 3 that does not contain a phosphor, the third step emits from the LED element through the first resin portion and the sealing cover (cover portion) 40. It is preferable to be a step of measuring the chromaticity characteristics of the emitted light.
 図4は、発光素子の製造方法の工程の概略を示す模式図である。図4の(a)は第2の実施形態にかかる発光素子100の製造方法を示している。図4の(b)は第4の実施形態にかかる発光素子101の製造方法を示している。図4の(c)は、第1の実施形態にかかる発光素子100の製造方法を示している。 FIG. 4 is a schematic diagram showing an outline of the steps of the method for manufacturing a light emitting device. FIG. 4A shows a method for manufacturing the light emitting device 100 according to the second embodiment. FIG. 4B shows a method for manufacturing the light emitting device 101 according to the fourth embodiment. FIG. 4C shows a method for manufacturing the light emitting device 100 according to the first embodiment.
 まず、図4の(a)(1)、(b)(1)、(c)(1)に示すようにLED素子1を、基板5の実装面6に搭載し、図4の(a)(2)、(b)(2)、(c)(2)に示すようにワイヤ8および従来公知のワイヤボンディングマシーン9を用いてワイヤボンディングする。 First, as shown in FIGS. 4A, 1B, 1B, 1C, and 1C, the LED element 1 is mounted on the mounting surface 6 of the substrate 5, and FIG. (2), (b) (2), (c) As shown in (2), wire bonding is performed using the wire 8 and a conventionally known wire bonding machine 9.
 続いて、ディスペンサー10を用いて、図4の(a)(3)、(c)(3)に示すように、蛍光体含有樹脂層(第一の樹脂部)2を、LED素子1を覆うように実装面6上に塗布して、LED素子1を封止する。また、図4の(b)(3)では、蛍光体含有樹脂層(第一の樹脂部)2を、LED素子1を覆うように、実装面6と反射枠7とで形成された凹部に注入して、LED素子1を封止する。 Subsequently, the phosphor-containing resin layer (first resin portion) 2 is covered with the LED element 1 by using the dispenser 10 as shown in FIGS. 4 (a), (3), (c) and (3). The LED element 1 is sealed by coating on the mounting surface 6 as described above. 4B and 3B, the phosphor-containing resin layer (first resin portion) 2 is formed in a recess formed by the mounting surface 6 and the reflection frame 7 so as to cover the LED element 1. The LED element 1 is sealed by pouring.
 さらに、図4の(a)(4)に示すように、蛍光体含有樹脂層(第一の樹脂部)2を覆うように、ディスペンサー(図示しない)を用いて蛍光体を含有しない樹脂層(第二の樹脂部)3を形成し、モールド11によって蛍光体を含有しない樹脂層(第二の樹脂部)3を被覆して成型する。 Furthermore, as shown to (a) (4) of FIG. 4, so that the fluorescent substance containing resin layer (1st resin part) 2 may be covered, the resin layer which does not contain a fluorescent substance using a dispenser (not shown) ( (Second resin part) 3 is formed, and a resin layer (second resin part) 3 not containing a phosphor is covered and molded by a mold 11.
 図4の(b)(4)では、ディスペンサー10を用いて、蛍光体含有樹脂層(第一の樹脂部)2の表面上に樹脂層(第二の樹脂部)3を形成する。すなわち、図4の(a)(4)および(b)(4)では、蛍光体含有樹脂層(第一の樹脂部)2の表面を覆うように、樹脂層(第二の樹脂部)3を形成している。 4B and 4B, the resin layer (second resin portion) 3 is formed on the surface of the phosphor-containing resin layer (first resin portion) 2 by using the dispenser 10. That is, in FIGS. 4A, 4B, and 4B, the resin layer (second resin portion) 3 is formed so as to cover the surface of the phosphor-containing resin layer (first resin portion) 2. Is forming.
 「蛍光体含有樹脂層(第一の樹脂部)2の表面を覆う」とは、図4の(a)(4)に示すように、蛍光体を含有しない樹脂層(第二の樹脂部)3によって蛍光体含有樹脂層(第一の樹脂部)2の表面を全て覆うことも含み、図4の(b)(4)に示すように、蛍光体を含有しない樹脂層(第二の樹脂部)3によって蛍光体含有樹脂層(第一の樹脂部)2の表面の一部(上面のみ)を覆うことも含む。 “Covering the surface of the phosphor-containing resin layer (first resin portion) 2” means a resin layer (second resin portion) not containing a phosphor, as shown in FIGS. 3 including covering the entire surface of the phosphor-containing resin layer (first resin portion) 2, as shown in FIGS. 4B and 4, a resin layer containing no phosphor (second resin) Part) 3 to cover a part of the surface of the phosphor-containing resin layer (first resin part) 2 (only the upper surface).
 図4の(c)(4)では、蛍光体含有樹脂層(第一の樹脂部)2の表面と、封止カバー(カバー部)40の内表面との間に空間(空洞部)3が存在するように、封止カバー(カバー部)40の端部を実装面6に固定している。当該固定は、例えば、封止カバー(カバー部)40を構成する材料(ポリカーボネートまたはアクリル等の樹脂材料)を、モールドを用いて、封止カバー(カバー部)40の形状に調整すると共に、端部が実装面6に固定されるようにした後、上記材料を硬化させることによって行うことができる。 In (c) and (4) of FIG. 4, there is a space (hollow part) 3 between the surface of the phosphor-containing resin layer (first resin part) 2 and the inner surface of the sealing cover (cover part) 40. The end portion of the sealing cover (cover portion) 40 is fixed to the mounting surface 6 so as to exist. For example, the fixing is performed by adjusting a material (resin material such as polycarbonate or acrylic) constituting the sealing cover (cover portion) 40 to a shape of the sealing cover (cover portion) 40 using a mold. After the portion is fixed to the mounting surface 6, the material can be cured.
 蛍光体を含有しない樹脂層(第二の樹脂部)3を用いる場合は、図4の(a)(5)および(b)(5)に示すように、蛍光体を含有しない樹脂層(第二の樹脂部)3の表面を封止カバー(カバー部)40で覆うことによって、蛍光体を含有しない樹脂層(第二の樹脂部)3を封止すればよい。 When using a resin layer (second resin part) 3 that does not contain a phosphor, as shown in FIGS. 4 (a), (5), and (b) (5), a resin layer that does not contain a phosphor (first) The resin layer (second resin portion) 3 that does not contain a phosphor may be sealed by covering the surface of the second resin portion) 3 with a sealing cover (cover portion) 40.
 封止カバー(カバー部)40は、例えば、蛍光体を含有しない樹脂層(第二の樹脂部)3の表面に、封止カバー(カバー部)40を構成する材料を塗布して、硬化させることによって形成することができる。 The sealing cover (cover part) 40 is, for example, applied and cured with a material constituting the sealing cover (cover part) 40 on the surface of the resin layer (second resin part) 3 that does not contain a phosphor. Can be formed.
 次に、LED素子1から蛍光体含有樹脂層(第一の樹脂部)2、蛍光体を含有しない樹脂層(第二の樹脂部)3および封止カバー(カバー部)40を介して出射される光の色度特性、または、蛍光体含有樹脂層(第一の樹脂部)2、空間(空洞部)3および封止カバー(カバー部)40を介して出射される光の色度特性を測定する。 Next, the light is emitted from the LED element 1 through the phosphor-containing resin layer (first resin portion) 2, the resin layer not containing phosphor (second resin portion) 3, and the sealing cover (cover portion) 40. Or chromaticity characteristics of light emitted through the phosphor-containing resin layer (first resin portion) 2, the space (cavity portion) 3 and the sealing cover (cover portion) 40. taking measurement.
 そして、測定結果に基づいて、所望の測定結果を得るために必要な波長依存性を有する反射膜4を選択し、当該反射膜4を封止カバー(カバー部)40の外表面上に、例えば蒸着やスパッタなどの方法を用いて製膜することによって形成する。 Then, based on the measurement result, the reflective film 4 having the wavelength dependency necessary for obtaining the desired measurement result is selected, and the reflective film 4 is placed on the outer surface of the sealing cover (cover portion) 40, for example. It is formed by forming a film using a method such as vapor deposition or sputtering.
 最後に、図4の(a)(6)、(b)(6)および(c)(5)において矢印で示すように、UVを照射すること等によって、蛍光体含有樹脂層(第一の樹脂部)2、蛍光体を含有しない樹脂層(第二の樹脂部)3、および封止カバー(カバー部)40を硬化させて、発光素子100または101を製造することができる。 Finally, as shown by arrows in (a), (6), (b), (6), and (c), (5) of FIG. The light emitting element 100 or 101 can be manufactured by curing the resin portion 2, the resin layer (second resin portion) 3 not containing the phosphor, and the sealing cover (cover portion) 40.
 <第5の実施形態>
 (本発明にかかる発光素子を備えた発光装置の一形態)
 本発明にかかる発光装置の一実施形態について、図5に基づいて説明する。図5は本発明の一実施形態にかかる発光装置110の構造の概略を示す側面図である。
<Fifth Embodiment>
(One form of the light-emitting device provided with the light emitting element concerning this invention)
An embodiment of a light emitting device according to the present invention will be described with reference to FIG. FIG. 5 is a side view schematically showing the structure of the light emitting device 110 according to the embodiment of the present invention.
 図5に示すように、発光装置110は、LED素子1、蛍光体含有樹脂層(第一の樹脂部)2、空洞部もしくは蛍光体を含有しない樹脂層(第二の樹脂部)3、反射膜4、基板5および封止カバー(カバー部)40を備えている発光素子、載置部材30、ヒートシンク31、ならびに口金32を備えている。 As shown in FIG. 5, the light emitting device 110 includes an LED element 1, a phosphor-containing resin layer (first resin portion) 2, a resin layer (second resin portion) 3 that does not contain a cavity or phosphor, and a reflection The light emitting element provided with the film | membrane 4, the board | substrate 5, and the sealing cover (cover part) 40, the mounting member 30, the heat sink 31, and the nozzle | cap | die 32 are provided.
 本発明の発光装置110において、上記発光素子が、載置部材30上に搭載されている。発光素子に備えられている基板5の裏面と載置部材30の表面とが接するように、発光素子は上記載置部材30上に搭載されている。そして、載置部材30は、基板5の裏面電極と通電可能に接続されている。また、封止カバー(カバー部)40の端部は載置部材30に固定されている。 In the light emitting device 110 of the present invention, the light emitting element is mounted on the mounting member 30. The light emitting element is mounted on the mounting member 30 so that the back surface of the substrate 5 provided in the light emitting element is in contact with the surface of the mounting member 30. The placement member 30 is connected to the back electrode of the substrate 5 so as to be energized. Further, the end portion of the sealing cover (cover portion) 40 is fixed to the mounting member 30.
 本発明の発光装置110には、ヒートシンク31が備えられており、上記ヒートシンク31は、LED素子1から生じる自己発生熱を放出する機能を有する。上記ヒートシンク31を備え、自己発生熱を放出することによって、LED素子の発光効率の低下、ならびにLED素子および発光装置に使用される部材の短寿命化を防ぐ効果を奏する。 The light-emitting device 110 of the present invention is provided with a heat sink 31, and the heat sink 31 has a function of releasing self-generated heat generated from the LED element 1. By providing the heat sink 31 and releasing the self-generated heat, there is an effect of preventing the light emitting efficiency of the LED element from being lowered and shortening the life of the members used in the LED element and the light emitting device.
 本発明の発光装置110に備えられているヒートシンク31を構成する金属材料としては、アルミニウムなどが用いられている。 As the metal material constituting the heat sink 31 provided in the light emitting device 110 of the present invention, aluminum or the like is used.
 本発明の発光装置110には、口金32が備えられている。上記口金32は、本発明の発光装置110と照明器具とを接続するための部位である。 The light emitting device 110 of the present invention is provided with a base 32. The base 32 is a part for connecting the light emitting device 110 of the present invention and a lighting fixture.
 また、本発明の発光装置110には、本発明の発光素子が備えられており、本発明の発光素子には、反射膜4が備えられている。 In addition, the light emitting device 110 of the present invention includes the light emitting element of the present invention, and the light emitting element of the present invention includes the reflective film 4.
 上記反射膜4は、光触媒作用を有する誘電体膜であり、上記誘電体膜はTiOを含有することが好ましい。本発明の発光装置に備えられている反射膜4が光触媒作用を有する誘電体膜であることによって、本発明の発光装置110は、防汚、防曇、抗菌、空気清浄化および水浄化等の効果を奏する。さらに、反射膜4は、短波長の光を除去することができるため、光害を防ぐ効果を奏する。 The reflective film 4 is a dielectric film having a photocatalytic action, and the dielectric film preferably contains TiO 2 . Since the reflective film 4 provided in the light emitting device of the present invention is a dielectric film having a photocatalytic action, the light emitting device 110 of the present invention has antifouling, antifogging, antibacterial, air purification, water purification, and the like. There is an effect. Furthermore, since the reflective film 4 can remove light having a short wavelength, it has an effect of preventing light pollution.
 発光装置110は、例えば以下のように製造することができる。すなわち、載置部材30に基板5を搭載し、基板の実装面にLED素子1を搭載する。続いて、「発光素子の製造方法」の項で述べた方法に準じて、蛍光体含有樹脂層(第一の樹脂部)2、空洞部もしくは蛍光体を含有しない樹脂層(第二の樹脂部)3、反射膜4を作製することによって製造することができる。 The light emitting device 110 can be manufactured as follows, for example. That is, the board | substrate 5 is mounted in the mounting member 30, and the LED element 1 is mounted in the mounting surface of a board | substrate. Subsequently, the phosphor-containing resin layer (first resin portion) 2, the cavity portion, or the resin layer not containing phosphor (second resin portion) according to the method described in the section “Method for producing light-emitting element” 3) It can be manufactured by producing the reflective film 4.
 載置部材30、ヒートシンク31、および口金32は、一体成形されていてもよいし、それぞれが接続されていてもよい。 The mounting member 30, the heat sink 31, and the base 32 may be integrally formed, or may be connected to each other.
 <第6の実施形態>
 (本発明にかかる発光素子を備えた発光装置の他の形態)
 本発明にかかる発光装置の他の実施形態について、図6に基づいて説明する。図6は本発明の一実施形態にかかる発光装置111の構造の概略を示す側面図である。
<Sixth Embodiment>
(Another embodiment of a light-emitting device provided with a light-emitting element according to the present invention)
Another embodiment of the light emitting device according to the present invention will be described with reference to FIG. FIG. 6 is a side view schematically showing the structure of the light emitting device 111 according to the embodiment of the present invention.
 図6に示すように、発光装置111は、LED素子1、蛍光体含有樹脂層(第一の樹脂部)2、空洞部または蛍光体を含有しない樹脂層(第二の樹脂部)3、反射膜4、基板5および封止カバー(カバー部)40を備えている発光素子、載置部材30、ならびにプラグ33を備えている。 As shown in FIG. 6, the light emitting device 111 includes an LED element 1, a phosphor-containing resin layer (first resin portion) 2, a cavity portion or a resin layer (second resin portion) 3 that does not contain phosphor, a reflection The light emitting element provided with the film | membrane 4, the board | substrate 5, and the sealing cover (cover part) 40, the mounting member 30, and the plug 33 are provided.
 発光装置111に備えられているLED素子1の数は、1個であってもよいし、図6に示すように、複数個であってもよい。 The number of the LED elements 1 provided in the light emitting device 111 may be one or a plurality as shown in FIG.
 図6に示す発光装置は、例えば以下のように製造することができる。すなわち、基板5にLED素子1を2つ搭載し、これらのLED素子1を、「発光素子の製造方法」の項で述べた方法に準じて、蛍光体含有樹脂層(第一の樹脂部)2で封止した物(以下、樹脂封止物Aと称する)を1列に9つ、載置部材30上に載置する。なお、図6の紙面奥に向かって、必要に応じて、さらに列の数を増やしてもよい。 6 can be manufactured, for example, as follows. That is, two LED elements 1 are mounted on the substrate 5, and these LED elements 1 are phosphor-containing resin layer (first resin part) according to the method described in the section “Method for producing light-emitting element”. Nine items sealed in 2 (hereinafter referred to as resin-encapsulated product A) are placed on the placement member 30 in a row. In addition, you may increase the number of rows | lines further as needed toward the back of the paper surface of FIG.
 次に、載置部材30にプラグ33を取り付け、載置された樹脂封止物Aの蛍光体含有樹脂層(第一の樹脂部)2の表面と、封止カバー(カバー部)40の内表面との間が空間(空洞部)3となるように、封止カバー(カバー部)40を、プラグ33の基部に固定し、蛍光体含有樹脂層(第一の樹脂部)2を封止する。 Next, a plug 33 is attached to the mounting member 30, and the surface of the phosphor-containing resin layer (first resin portion) 2 of the placed resin sealing material A and the inside of the sealing cover (cover portion) 40 The sealing cover (cover part) 40 is fixed to the base of the plug 33 so that the space (cavity part) 3 is between the surface and the phosphor-containing resin layer (first resin part) 2 is sealed. To do.
 そして、「発光素子の製造方法」の項で述べたように、光の色度特性の測定、反射膜の形成、蛍光体含有樹脂層(第一の樹脂部)2、および封止カバー(カバー部)40の硬化を行うことにより、発光装置111を得ることができる。 As described in the section “Method for Manufacturing Light-Emitting Element”, measurement of light chromaticity characteristics, formation of a reflective film, phosphor-containing resin layer (first resin portion) 2, and sealing cover (cover) Part) 40 is cured to obtain the light emitting device 111.
 このとき、それぞれの樹脂封止物A、空間(空洞部)3および封止カバー(カバー部)40によって本発明の発光素子が構成される。 At this time, the light emitting device of the present invention is constituted by the respective resin encapsulated material A, the space (hollow part) 3 and the sealing cover (cover part) 40.
 あるいは、空間(空洞部)3を設ける代わりに、プラグ33と載置部材30とで形成された凹部に、図4の(b)(4)に準じて、蛍光体含有樹脂層(第一の樹脂部)2の表面を覆うように、蛍光体を含有しない樹脂層(第二の樹脂部)3を注入し、図4の(b)(5)に準じて、蛍光体を含有しない樹脂層(第二の樹脂部)3の表面に封止カバー(カバー部)40を形成してもよい。 Alternatively, instead of providing the space (hollow part) 3, the phosphor-containing resin layer (first layer) is formed in the recess formed by the plug 33 and the mounting member 30 according to (b) and (4) of FIG. A resin layer (second resin portion) 3 that does not contain a phosphor is injected so as to cover the surface of the resin portion 2, and a resin layer that does not contain a phosphor in accordance with (b) and (5) of FIG. A sealing cover (cover portion) 40 may be formed on the surface of the (second resin portion) 3.
 発光装置111に備えられている発光素子は、載置部材30上に搭載されている。発光素子に備えられている基板5の裏面と載置部材30の表面とが接するように、発光素子は上記載置部材30上に搭載されている。そして、載置部材30は、基板5の裏面電極8(図示しない)と通電可能に接続されている。 The light emitting element provided in the light emitting device 111 is mounted on the mounting member 30. The light emitting element is mounted on the mounting member 30 so that the back surface of the substrate 5 provided in the light emitting element is in contact with the surface of the mounting member 30. The mounting member 30 is connected to the back electrode 8 (not shown) of the substrate 5 so as to be energized.
 本発明の発光装置111には、プラグ33が備えられている。プラグ33は、本発明の発光装置111と照明器具とを接続するための部位である。 The light emitting device 111 of the present invention is provided with a plug 33. The plug 33 is a part for connecting the light emitting device 111 of the present invention and a lighting fixture.
 本発明の発光装置111に備えられているプラグ33は、既に述べた反射枠としての機能を有していてもよい。プラグ33が反射枠として機能することによって、LED素子1から横方向に出射した光線をプラグ33によって反射することにより、反射膜4の方向に出射することができる効果を奏する。この場合、発光装置111はプラグ33が反射枠として機能するため、より効率的に所望の色度を有する白色光を出射することができる。 The plug 33 provided in the light emitting device 111 of the present invention may have a function as the reflection frame already described. When the plug 33 functions as a reflection frame, the light emitted from the LED element 1 in the lateral direction is reflected by the plug 33, so that the plug 33 can be emitted in the direction of the reflective film 4. In this case, since the plug 33 functions as a reflection frame, the light emitting device 111 can emit white light having a desired chromaticity more efficiently.
 発光装置111は、発光装置110で説明したのと同様に、反射膜として光触媒作用を有する誘電体膜を用いることにより、光触媒作用によって上述した防汚、防曇、抗菌、空気清浄化および水浄化等の効果を奏することができる。また、短波長の光を除去し、光害を防ぐ効果を奏することもできる。 As described in the light emitting device 110, the light emitting device 111 uses a dielectric film having a photocatalytic action as a reflection film, thereby preventing the above-described antifouling, antifogging, antibacterial, air cleaning, and water purification. The effects such as the above can be achieved. Moreover, the effect of removing light of a short wavelength and preventing light pollution can also be exhibited.
 このように、本発明にかかる発光装置では、本発明にかかる発光素子が外部環境に露出しているため、所望の色度特性を有する白色光を高い光取り出し効率で出射可能であるだけでなく、反射膜として光触媒作用のある誘電体膜を用いることにより、上述の多様な効果を奏することができる。 As described above, in the light emitting device according to the present invention, since the light emitting element according to the present invention is exposed to the external environment, white light having desired chromaticity characteristics can be emitted with high light extraction efficiency. By using a dielectric film having a photocatalytic action as the reflective film, the above-described various effects can be achieved.
 〔まとめ〕
 本発明の一態様にかかる発光素子は、LED素子と、当該LED素子からの発光の一部を吸収し、波長変換して発光する蛍光体を含有し、かつ、上記LED素子を封止する第一の樹脂部と、上記第一の樹脂部を封止するカバー部と、を備え、上記第一の樹脂部は、上記第一の樹脂部の表面と、上記カバー部の内表面との間の空間である空洞部を介して上記カバー部によって封止され、上記カバー部は、反射率に波長依存性を有する反射膜を外表面に備えることを特徴としている。
[Summary]
A light-emitting element according to one embodiment of the present invention includes a LED element and a phosphor that absorbs a part of light emitted from the LED element, converts the wavelength, and emits light, and seals the LED element. One resin portion and a cover portion for sealing the first resin portion, and the first resin portion is between the surface of the first resin portion and the inner surface of the cover portion. It is sealed by the cover part through a hollow part which is a space of the above-mentioned space, and the cover part is provided with a reflective film having a wavelength dependency on the reflectance on the outer surface.
 LED素子からの発光の一部は、上記反射膜によって反射され、上記蛍光体による波長変換の過程を経るが、上記反射膜は反射率に波長依存性を有しているため、例えば青色光の反射率を低下させるというような反射率の制御を容易に行うことができる。 Part of the light emitted from the LED element is reflected by the reflective film and undergoes a wavelength conversion process by the phosphor, but the reflective film has a wavelength dependency on the reflectance. It is possible to easily control the reflectivity so as to reduce the reflectivity.
 また、上記反射膜を備えているため、蛍光体量を少なくした場合でも、上記蛍光体による波長変換回数を増加させることにより、所望の色度特性を有する光を得ることができる。よって、上記蛍光体の使用量を減らすことができるため、材料コストを低減することができる。 In addition, since the reflection film is provided, light having a desired chromaticity characteristic can be obtained by increasing the number of wavelength conversions by the phosphor even when the amount of the phosphor is reduced. Therefore, since the usage-amount of the said fluorescent substance can be reduced, material cost can be reduced.
 さらに、上記蛍光体は、上記第一の樹脂部にのみ含有されている。そのため、上記カバー部よりも内側の領域において、蛍光体の濃度は均一ではなく、蛍光体は上記LED素子近傍の領域に局在している。 Furthermore, the phosphor is contained only in the first resin portion. Therefore, the concentration of the phosphor is not uniform in the region inside the cover part, and the phosphor is localized in the region near the LED element.
 一方、上記カバー部よりも内側の領域における上記蛍光体の濃度が全体に均一な濃度である場合は、上記反射膜によって反射された上記LED素子からの発光が上記蛍光体によって蛍光に変換された後、光の出射方向ではなく、上記LED素子側へ進む場合がある。すなわち、多重散乱による光の損失が大きくなる。 On the other hand, when the concentration of the phosphor in the region inside the cover portion is uniform throughout, the light emitted from the LED element reflected by the reflective film is converted into fluorescence by the phosphor. Thereafter, the LED element may travel to the LED element side instead of the light emission direction. That is, the loss of light due to multiple scattering increases.
 本発明にかかる発光素子の上記構成によれば、上記蛍光体が、上記第一の樹脂部にのみ含有されているため、多重散乱の発生を十分に抑制することができる。 According to the configuration of the light emitting element according to the present invention, since the phosphor is contained only in the first resin portion, the occurrence of multiple scattering can be sufficiently suppressed.
 以上のことから、本発明にかかる発光素子は、所望の色度特性を有する発光素子を、効率よく、低コストで得ることができる。 From the above, the light-emitting element according to the present invention can obtain a light-emitting element having desired chromaticity characteristics efficiently and at low cost.
 本発明の一態様にかかる発光素子は、上記反射膜は、光触媒作用のある誘電体膜であることが好ましい。 In the light-emitting element according to one embodiment of the present invention, the reflective film is preferably a dielectric film having a photocatalytic action.
 また、本発明の一態様にかかる発光素子は、上記誘電体膜がTiOを含有することが好ましい。 In the light-emitting element according to one embodiment of the present invention, the dielectric film preferably contains TiO 2 .
 上記構成によれば、誘電体膜の光触媒作用による防汚、防曇、抗菌、空気浄化、水浄化等の効果が得られることが期待できる。特に、誘電体膜がTiOを含有する場合は、上記効果をより確実に得ることができる。 According to the above configuration, it can be expected that effects such as antifouling, antifogging, antibacterial, air purification, water purification and the like due to the photocatalytic action of the dielectric film can be obtained. In particular, when the dielectric film contains TiO 2 , the above effect can be obtained more reliably.
 それゆえ、所望の色度特性を有する光を安定的に出射することができるだけでなく、本発明にかかる発光素子を外部環境に露出させることにより、上記効果をも奏する有用な発光素子として用いることができる。 Therefore, not only can the light having the desired chromaticity characteristics be stably emitted, but the light emitting element according to the present invention can be used as a useful light emitting element that also exhibits the above effects by exposing it to the external environment. Can do.
 本発明にかかる発光装置は、発光素子を備える発光装置であって、上記発光素子は、本発明にかかる発光素子;または、LED素子と、当該LED素子からの発光の一部を吸収し、波長変換して発光する蛍光体を含有し、かつ、上記LED素子を封止する第一の樹脂部と、上記第一の樹脂部を封止し、かつ、蛍光体を含有しない第二の樹脂部と、上記第二の樹脂部を封止するカバー部と、を備え、上記カバー部が、反射率に波長依存性を有する反射膜を外表面に備える発光素子、であることを特徴としている。 A light-emitting device according to the present invention is a light-emitting device including a light-emitting element, and the light-emitting element absorbs a part of light emitted from the light-emitting element according to the present invention; A first resin part that contains a phosphor that converts and emits light, and that seals the LED element; and a second resin part that seals the first resin part and does not contain the phosphor And a cover part that seals the second resin part, wherein the cover part is a light-emitting element including a reflective film having a wavelength dependency on reflectance on an outer surface.
 また、本発明の一態様にかかる発光装置は、上記反射膜は、光触媒作用のある誘電体膜であることが好ましい。 In the light-emitting device according to one embodiment of the present invention, the reflective film is preferably a dielectric film having a photocatalytic action.
 上記構成によれば、上述のように、用いる発光素子が所望の色度特性を有する光を安定的に出射することができるだけでなく、発光素子が外部環境に露出しているため、光触媒作用による防汚、防曇、抗菌、空気浄化、水浄化等の効果を奏する装置として機能させることができる。したがって、非常に付加価値の高い、有用な発光装置を提供することができる。 According to the above configuration, as described above, the light emitting element to be used can stably emit light having desired chromaticity characteristics, and the light emitting element is exposed to the external environment. It can function as a device having effects such as antifouling, antifogging, antibacterial, air purification, and water purification. Therefore, a useful light-emitting device with very high added value can be provided.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、発光素子と蛍光体とを組み合わせた発光素子に関する分野に好適に用いることができる。また、発光素子を備える発光装置として携帯電話などの各種電気機器等の分野に広く用いることができる。 The present invention can be suitably used in the field related to a light-emitting element in which a light-emitting element and a phosphor are combined. In addition, the light-emitting device including the light-emitting element can be widely used in various electric devices such as a mobile phone.
 1 LED素子
 2 蛍光体含有樹脂層(第一の樹脂部)
 3 蛍光体を含有しない樹脂層(第二の樹脂部)
 4 反射膜
 5 基板
 6 実装面
 7 反射枠
 30 載置部材
 31 ヒートシンク
 32 口金
 33 プラグ
 40 封止カバー
 100~101 発光素子
 110~111 発光装置
DESCRIPTION OF SYMBOLS 1 LED element 2 Phosphor containing resin layer (1st resin part)
3 Resin layer not containing phosphor (second resin part)
4 Reflective film 5 Substrate 6 Mounting surface 7 Reflective frame 30 Mounting member 31 Heat sink 32 Base 33 Plug 40 Sealing cover 100 to 101 Light emitting element 110 to 111 Light emitting device

Claims (5)

  1.  LED素子と、当該LED素子からの発光の一部を吸収し、波長変換して発光する蛍光体を含有し、かつ、上記LED素子を封止する第一の樹脂部と、上記第一の樹脂部を封止するカバー部と、を備え、
     上記第一の樹脂部は、上記第一の樹脂部の表面と、上記カバー部の内表面との間の空間である空洞部を介して上記カバー部によって封止され、
     上記カバー部は、反射率に波長依存性を有する反射膜を外表面に備えることを特徴とする発光素子。
    A first resin portion that contains the LED element, a phosphor that absorbs part of the light emitted from the LED element, converts the wavelength to emit light, and seals the LED element; and the first resin. A cover part for sealing the part,
    The first resin part is sealed by the cover part through a hollow part that is a space between the surface of the first resin part and the inner surface of the cover part,
    The light emitting element characterized by the said cover part being equipped with the reflective film which has a wavelength dependence in a reflectance on an outer surface.
  2.  上記反射膜は、光触媒作用のある誘電体膜であることを特徴とする請求項1に記載の発光素子。 2. The light emitting device according to claim 1, wherein the reflective film is a dielectric film having a photocatalytic action.
  3.  上記誘電体膜がTiOを含有することを特徴とする請求項2に記載の発光素子。 The light emitting device according to claim 2, wherein the dielectric film contains TiO 2 .
  4.  発光素子を備える発光装置であって、
     上記発光素子は、請求項1に記載の発光素子;または、
     LED素子と、当該LED素子からの発光の一部を吸収し、波長変換して発光する蛍光体を含有し、かつ、上記LED素子を封止する第一の樹脂部と、上記第一の樹脂部を封止し、かつ、蛍光体を含有しない第二の樹脂部と、上記第二の樹脂部を封止するカバー部と、を備え、
     上記カバー部が、反射率に波長依存性を有する反射膜を外表面に備える発光素子、であることを特徴とする発光装置。
    A light emitting device including a light emitting element,
    The light-emitting element according to claim 1; or
    A first resin portion that contains the LED element, a phosphor that absorbs part of the light emitted from the LED element, converts the wavelength to emit light, and seals the LED element; and the first resin. A second resin part that seals the part and does not contain a phosphor, and a cover part that seals the second resin part,
    A light-emitting device, wherein the cover part is a light-emitting element including a reflection film having a wavelength dependency on reflectance on an outer surface.
  5.  上記反射膜は、光触媒作用のある誘電体膜であることを特徴とする請求項4に記載の発光装置。 The light-emitting device according to claim 4, wherein the reflective film is a dielectric film having a photocatalytic action.
PCT/JP2013/074142 2012-10-09 2013-09-06 Light-emitting element and light-emitting device provided with same WO2014057752A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012224235 2012-10-09
JP2012-224235 2012-10-09

Publications (1)

Publication Number Publication Date
WO2014057752A1 true WO2014057752A1 (en) 2014-04-17

Family

ID=50477223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074142 WO2014057752A1 (en) 2012-10-09 2013-09-06 Light-emitting element and light-emitting device provided with same

Country Status (1)

Country Link
WO (1) WO2014057752A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145519A (en) * 1997-09-02 1999-05-28 Toshiba Corp Semiconductor light-emitting element, semiconductor light-emitting device, and image-display device
JP2006216753A (en) * 2005-02-03 2006-08-17 Toyoda Gosei Co Ltd Light-emitting device and its manufacturing method
JP2010129300A (en) * 2008-11-26 2010-06-10 Keiji Iimura Semiconductor light-emitting lamp and electric-bulb-shaped semiconductor light-emitting lamp
WO2011088363A2 (en) * 2010-01-15 2011-07-21 Express Imaging Systems, Llc Apparatus, method to change light source color temperature with reduced optical filtering losses
JP2011151059A (en) * 2010-01-19 2011-08-04 Heiji Niiyama Light-emitting device
JP2012049229A (en) * 2010-08-25 2012-03-08 Sharp Corp Light emitting device and method for manufacturing the same
JP2012174985A (en) * 2011-02-23 2012-09-10 Jvc Kenwood Corp White led lighting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145519A (en) * 1997-09-02 1999-05-28 Toshiba Corp Semiconductor light-emitting element, semiconductor light-emitting device, and image-display device
JP2006216753A (en) * 2005-02-03 2006-08-17 Toyoda Gosei Co Ltd Light-emitting device and its manufacturing method
JP2010129300A (en) * 2008-11-26 2010-06-10 Keiji Iimura Semiconductor light-emitting lamp and electric-bulb-shaped semiconductor light-emitting lamp
WO2011088363A2 (en) * 2010-01-15 2011-07-21 Express Imaging Systems, Llc Apparatus, method to change light source color temperature with reduced optical filtering losses
JP2011151059A (en) * 2010-01-19 2011-08-04 Heiji Niiyama Light-emitting device
JP2012049229A (en) * 2010-08-25 2012-03-08 Sharp Corp Light emitting device and method for manufacturing the same
JP2012174985A (en) * 2011-02-23 2012-09-10 Jvc Kenwood Corp White led lighting device

Similar Documents

Publication Publication Date Title
JP5676599B2 (en) LED package having scattering particle region
US7906892B2 (en) Light emitting device
TWI385829B (en) Lighting device
JP5431706B2 (en) Light emitting device
CN107665940B (en) Light emitting device and method for manufacturing the same
TWI794311B (en) Light-emitting module and integrated light-emitting module
US20070096113A1 (en) Led device
JP3640153B2 (en) Illumination light source
WO2011132716A1 (en) Semiconductor light emitting device and production method for semiconductor light emitting device
JP2004056075A (en) Light-emitting device and method of manufacturing the same
JP6457225B2 (en) Light emitting device
US11043615B2 (en) Light-emitting device having a dielectric multilayer film arranged on the side surface of the light-emitting element
WO2011004795A1 (en) Light emitting device
JP2012069577A (en) Semiconductor light-emitting device and method of manufacturing the same
JP2009302339A (en) Semiconductor light emitting device
WO2012053386A1 (en) Method for producing light-emitting device, and light-emitting device
JP2013038353A (en) Light-emitting module
JP2011198800A (en) Semiconductor light-emitting element
US8461609B2 (en) Light emitting device package
KR101258228B1 (en) Light emitting device having plurality of light-converting material laters
JP4868960B2 (en) Light emitting device and manufacturing method thereof
KR101625911B1 (en) LED device having enhanced efficiency
WO2014034785A1 (en) Light emitting element and method for manufacturing light emitting element
WO2014057752A1 (en) Light-emitting element and light-emitting device provided with same
WO2014132542A1 (en) Light emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP