WO2011132716A1 - Semiconductor light emitting device and production method for semiconductor light emitting device - Google Patents

Semiconductor light emitting device and production method for semiconductor light emitting device Download PDF

Info

Publication number
WO2011132716A1
WO2011132716A1 PCT/JP2011/059750 JP2011059750W WO2011132716A1 WO 2011132716 A1 WO2011132716 A1 WO 2011132716A1 JP 2011059750 W JP2011059750 W JP 2011059750W WO 2011132716 A1 WO2011132716 A1 WO 2011132716A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor light
light emitting
emitting device
phosphor
emitting element
Prior art date
Application number
PCT/JP2011/059750
Other languages
French (fr)
Japanese (ja)
Inventor
暁夫 笠倉
佐藤 義人
修治 大中
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Publication of WO2011132716A1 publication Critical patent/WO2011132716A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape

Definitions

  • the present invention relates to a semiconductor light-emitting device using a semiconductor light-emitting element, and more particularly to a semiconductor light-emitting device that emits light obtained by wavelength-converting light emitted from a semiconductor light-emitting element with a phosphor and a method for manufacturing the same.
  • Semiconductor light-emitting devices using semiconductor light-emitting elements such as light-emitting diodes and semiconductor laser diodes have been widely used as light sources for various lighting devices and display devices.
  • a semiconductor light-emitting device that combines a plurality of light-emitting diodes that emit different colors to obtain a desired emission color has been developed and used. For example, by combining three types of light emitting diodes that emit blue light, green light, and red light, and adjusting the drive current supplied to each diode, the light emitted from each light emitting diode is synthesized to produce a desired white color.
  • a semiconductor light-emitting device that obtains light is disclosed in Patent Document 1.
  • a light emitting diode has a relatively narrow emission spectrum width, and when light emitted from the light emitting diode is used for illumination as it is, there is a problem that color rendering, which is important in general illumination, decreases. Therefore, in order to solve such problems, a light emitting unit has been developed that emits light after wavelength conversion of light emitted from a light emitting diode with a phosphor, and a semiconductor light emitting device that combines such light emitting units is, for example, It is disclosed in Patent Document 2.
  • a green light emitting unit combining a blue light emitting unit using a blue light emitting diode and a green phosphor that emits green light when excited by blue light emitted from the blue light emitting diode.
  • a red light emitting unit is used in which a blue light emitting diode is combined with a red phosphor that is excited by blue light emitted from the blue light emitting diode and emits red light.
  • the blue light emitting unit, green light emitting unit, and red light emitting unit ensure excellent color rendering by combining the light emitted from each of the light emitting units, and adjust the light output of each light emitting unit to change the light emitting colors of the semiconductor light emitting device. It can be changed to.
  • Patent Document 3 discloses a light emitting device that obtains desired white light by converting the wavelength of light emitted from a semiconductor light emitting element in a fluorescent portion.
  • a near-ultraviolet semiconductor light-emitting element that emits near-ultraviolet light
  • a red phosphor and a green phosphor are used to convert the wavelength of the near-ultraviolet light emitted from the near-ultraviolet semiconductor light-emitting element into desired white light.
  • a fluorescent portion in which a blue phosphor is combined.
  • the fluorescent part includes a first fluorescent part in which the phosphors are combined so that white light having a desired color temperature can be obtained, and white light having a different color temperature from the first fluorescent part. It consists of a second fluorescent part combined with a phosphor.
  • Patent Document 3 In one embodiment disclosed in Patent Document 3, four near-ultraviolet semiconductor light-emitting elements are arranged on a wiring board in four rows in a row, and an annular and conical shape surrounds these near-ultraviolet semiconductor light-emitting devices.
  • a trapezoidal reflector is provided on the wiring board. The reflector is divided into two regions by providing a partition so as to divide the near-ultraviolet semiconductor light-emitting element in one row and the near-ultraviolet semiconductor light-emitting device in the other row.
  • the first fluorescent portion described above is provided so as to cover the near-ultraviolet semiconductor light-emitting element in the region, and the second region described above is provided in the other region.
  • the phosphor of the first fluorescent part is adjusted by adjusting the power supplied to the near ultraviolet semiconductor light emitting element in one column and the power supplied to the near ultraviolet semiconductor light emitting element in the other column.
  • the white light adjusted to an arbitrary color temperature between the color temperature of the white light emitted from the white light and the color temperature of the white light emitted from the phosphor of the second fluorescent part can be obtained.
  • Patent Document 3 In another embodiment disclosed in Patent Document 3, four near-ultraviolet semiconductor light-emitting elements are arranged in two rows on a wiring board in the same manner as in the above-described embodiment, and a frustoconical reflector is formed. Instead, an annular side wall made of a thermosetting or UV curable resin is formed on the wiring board so as to surround the near-ultraviolet semiconductor light emitting element. Further, instead of the above-mentioned partition, a partition wall made of a thermosetting or UV curable resin also separates the near-ultraviolet semiconductor light-emitting element in one row from the near-ultraviolet semiconductor light-emitting device in the other row. Is formed.
  • the first fluorescent portion described above is provided so as to cover the near-ultraviolet semiconductor light-emitting element in the one region formed by the side wall and the partition wall, and the first region described above is provided in the other region.
  • Two fluorescent portions are provided so as to cover the near-ultraviolet semiconductor light emitting element in the region.
  • the second power can be obtained from the color temperature of the white light emitted from the phosphor of the first fluorescent part by adjusting the power supplied to the near-ultraviolet semiconductor light emitting element as in the above-described embodiment.
  • white light adjusted to an arbitrary color temperature up to the color temperature of white light emitted from the fluorescent material of the fluorescent part can be obtained.
  • the semiconductor light emitting device of Patent Document 3 as described above is also used. It is conceivable to adopt a structure similar to that of the apparatus. That is, in this case, a plurality of blue light emitting diodes are divided into three groups and arranged on the wiring board. And a reflector is provided so that these blue light emitting diodes may be surrounded, and a partition is provided so that a blue light emitting diode may be divided into each group.
  • one of the three regions formed by the reflector and the partition is not provided with a fluorescent part containing a phosphor, one of the remaining two regions is a fluorescent part containing a green phosphor, and the other is
  • the semiconductor light emitting device can be configured by providing a fluorescent portion containing a red phosphor.
  • An annular side wall made of the thermosetting or UV curable resin as described above is formed in place of the reflector, and a partition wall made of the same thermosetting or UV curable resin is formed in place of the partition. In this manner, a semiconductor light emitting device can be configured.
  • a reflector is mounted on a wiring board on which a semiconductor light emitting element is disposed, and a partition for partitioning the inside of the reflector into a plurality of regions is mounted. Since it is necessary to accommodate the corresponding fluorescent parts in each region divided by the partition, the manufacturing process becomes complicated, and there are problems in terms of manufacturing man-hours and manufacturing costs. Such a problem also occurs when annular side walls and partition walls made of a thermosetting or UV curable resin are formed instead of the reflector and the partition.
  • the semiconductor light emitting elements are unevenly distributed for each group, and emitted from each group. Since the white light is obtained by combining the light, the quality of the white light is deteriorated due to color unevenness. Therefore, in order to prevent such deterioration in quality, when the semiconductor light emitting elements of the same group are dispersed and arranged instead of one, the number of reflectors and annular side walls further increases. The manufacturing process becomes more complicated.
  • the semiconductor light emitting device configured as described above is applied to a lighting device or a display device, in order to improve the reliability and durability of the semiconductor light emitting device, in addition to the fluorescent part, the reflector and the partition, or the annular side wall and the partition A protective member for protecting the wall from the surrounding environment needs to be attached to the light emitting device. For this reason, there is a problem that the manufacturing process is further complicated.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a semiconductor light-emitting device that can simplify the manufacturing process and ensure high reliability and durability, and a method for manufacturing the same. It is to provide.
  • a semiconductor light emitting device of the present invention has a wiring board, a plurality of semiconductor light emitting elements mounted on the wiring board and having a light emission characteristic in a predetermined wavelength range, and a predetermined light transmission characteristic.
  • a cavity having a first surface and a second surface opposite to the first surface is formed in a plate shape and is recessed at a position corresponding to the semiconductor light emitting element on the first surface.
  • a plurality of sealing members; and a fluorescent portion that contains each of the plurality of cavities and contains a phosphor that converts the wavelength of at least part of the light emitted from the semiconductor light emitting device, and the semiconductor light emitting device is mounted
  • the first surface of the sealing member is bonded to one surface of the wiring board thus formed, so that each of the plurality of semiconductor light emitting elements has the fluorescence in the cavity corresponding to the semiconductor light emitting element. Characterized in that it is covered by.
  • one surface of the wiring board on which the semiconductor light emitting element is mounted and the first surface of the sealing member are bonded to each other, whereby the semiconductor light emitting device is formed in the cavity.
  • the element and the fluorescent part are sealed.
  • the water vapor permeability of the wiring board and the sealing member measured at 23 ° C. by the JISK7129B method may be 10 g / m 2 ⁇ day or less, and 23 by the JISK7129B method.
  • the wiring board and the sealing member measured at ° C. may have a water vapor transmission coefficient of 10 g ⁇ mm / m 2 ⁇ day or less.
  • the oxygen permeability of the wiring board and the sealing member measured at 23 ° C. by the JISK7126B (1987) method is 1000 cm 3 / m 2 ⁇ day ⁇ atm or less.
  • the oxygen permeability coefficient of the wiring board and the sealing member measured at 23 ° C. by the JISK7126B (1987) method may be 1000 cm 3 ⁇ mm 2 ⁇ day ⁇ atm or less.
  • the sealing member is one or more selected from the group consisting of glass, acrylic resin, epoxy resin, urethane resin, fluororesin, silicone resin, quartz, and ceramic. It may be composed of the following materials.
  • the semiconductor light emitting device configured as described above, at least a part of the light emitted from the semiconductor light emitting element is in the cavity provided on the first surface of the sealing member corresponding to the semiconductor light emitting element.
  • the wavelength is converted by the phosphor of the fluorescent part that fills the semiconductor light-emitting element and the wavelength-converted light is transmitted through the sealing member and emitted from the second surface of the sealing member.
  • the phosphor converts light emitted from the semiconductor light emitting element into light having a wavelength range different from the predetermined wavelength range
  • the sealing The member has higher transparency than the light emitted from the semiconductor light emitting element with respect to the light whose wavelength is converted by the phosphor, and is emitted from the semiconductor light emitting element toward the sealing member.
  • the light may have a higher reflectance than light that is wavelength-converted by the phosphor and travels from the cavity toward the sealing member.
  • the semiconductor light emitting device When the semiconductor light emitting device is configured in this way, the light whose wavelength is converted by the phosphor transmits the sealing member better than the light emitted from the semiconductor light emitting element, and the second of the sealing member. On the other hand, the light emitted from the semiconductor light emitting element is reflected by the sealing member better than the light wavelength-converted by the phosphor and is wavelength-converted by the phosphor filled in the cavity. Will get the opportunity again.
  • the phosphor contained in the fluorescent portion filled in a part of the plurality of cavities is contained in the remaining cavity of the plurality of cavities. You may have the wavelength conversion characteristic different from the wavelength conversion characteristic which the fluorescent substance contained in the fluorescent part with which it was filled has.
  • the semiconductor light emitting device When the semiconductor light emitting device is configured in this way, the light converted in wavelength by the fluorescent material in the fluorescent part filled in a part of the plurality of cavities and the remaining cavity in the plurality of cavities are filled. Light obtained by synthesizing at least two types of light of which the wavelength has been converted by the phosphor of the fluorescent portion is emitted from the semiconductor light emitting device.
  • a second phosphor that converts the wavelength into a region and a third phosphor that converts the light emitted from the semiconductor light emitting device into a blue region are used, and the plurality of cavities contain the first phosphor A first cavity for filling the fluorescent part, a second cavity for filling the fluorescent part containing the second phosphor, and a third cavity for filling the fluorescent part containing the third phosphor. Also good.
  • the semiconductor light-emitting device When the semiconductor light-emitting device is configured in this way, the light wavelength-converted into the red region by the first phosphor, the light wavelength-converted into the green region by the second phosphor, and the wavelength in the blue region by the third phosphor. Light obtained by combining the converted light is emitted from the semiconductor light emitting device.
  • the fluorescent part may have a laminated structure in which two or more phosphors having different wavelength conversion characteristics are laminated.
  • the semiconductor light emitting device is configured in this way, the combined light of the light whose wavelength is converted in each layer of the phosphor having the laminated structure is emitted from the semiconductor light emitting device.
  • the fluorescent part phosphors filled in some of the cavities have wavelength conversion characteristics different from those of the fluorescent parts filled in the remaining cavities, or as described above.
  • the sealing member by controlling the current flowing through each of the semiconductor light emitting elements via the wiring substrate, the sealing member The chromaticity of light emitted from the second surface may be variable.
  • the semiconductor light emitting element may emit light in a wavelength range of 360 to 480 nm.
  • a method for manufacturing a semiconductor light emitting device of the present invention includes a step of mounting a plurality of semiconductor light emitting elements having light emission characteristics in a predetermined wavelength range on a wiring board, and predetermined light transmission characteristics. And a position corresponding to the semiconductor light emitting element on the first surface of the sealing member formed in a plate shape having the first surface and the second surface opposite to the first surface.
  • the first surface of the sealing member is disposed so that each of the plurality of the semiconductor light emitting elements is located in the corresponding cavity and is covered with the fluorescent portion filled in the cavity.
  • Said arrangement Characterized in that it comprises a step of bonding the substrate.
  • each of the plurality of semiconductor light emitting elements mounted on the wiring board fills a cavity recessed in the first surface of the sealing member corresponding to the semiconductor light emitting element.
  • a semiconductor light emitting device in which the wiring substrate and the sealing member are joined so as to be covered with the fluorescent portion that is formed is obtained.
  • the step of filling the cavity with the fluorescent portion containing the phosphor is performed by using a coating material so that the cavity is exposed and the periphery of the cavity is covered. Masking the first surface of the sealing member; applying the fluorescent part from above the covering; and applying the fluorescent part, and then applying the covering to the first of the sealing member. And a step of removing from one surface.
  • each of the plurality of semiconductor light emitting elements mounted on the wiring board is filled in the cavity recessed in the first surface of the sealing member corresponding to the semiconductor light emitting element.
  • the wiring board and the sealing member are bonded so as to be covered with the fluorescent portion. Therefore, a troublesome structure such as a reflector and a partition for filling a fluorescent part containing a phosphor or an annular side wall and a partition wall is not required, and the semiconductor light emitting device can be simplified. With such a simple configuration, the reliability and durability of the semiconductor light emitting device can be increased, and the number of manufacturing steps and the manufacturing cost can be reduced.
  • the sealing member not only fills the fluorescent part, but also can protect the fluorescent part and the semiconductor light emitting element from the surrounding environment, so members such as a reflector and an annular side wall for filling the fluorescent part, There is no need to separately provide a protective member for protecting the light emitting device from the environment. In this respect, it is possible to further reduce the number of manufacturing steps and the manufacturing cost while further improving the reliability and durability of the semiconductor light emitting device.
  • a semiconductor light emitting device of the present invention after filling each of the cavities recessed in the first surface of the sealing member with a fluorescent part containing a phosphor, a plurality of semiconductor light emitting elements are formed.
  • the mounted wiring board is bonded to the first surface of the sealing member so that each of the semiconductor light emitting elements is located in the corresponding cavity and covered with the fluorescent portion filled in the cavity.
  • the fluorescent substance contained in the fluorescent part filled in the cavity and the fluorescent substance contained in the fluorescent part filled in the remaining cavity may have different wavelength conversion characteristics, or among the plurality of cavities, the first The cavity may be filled with a fluorescent part containing a first phosphor, the second cavity may be filled with a fluorescent part containing a second phosphor, and the third cavity may be filled with a fluorescent part containing a third phosphor.
  • a phosphor that converts light in a predetermined wavelength range emitted from the semiconductor light emitting element into light in a wavelength range different from the predetermined wavelength range is used, and the sealing member is a phosphor.
  • the light having a wavelength higher than that of the light emitted from the semiconductor light emitting element is higher in transmittance than the light emitted from the semiconductor light emitting element, and the light having a higher reflectance than the light converted from wavelength by the phosphor.
  • the light emitted from the semiconductor light emitting element is reflected by the sealing member better than the light wavelength-converted by the phosphor, and the opportunity to be wavelength-converted by the phosphor filled in the cavity is obtained again.
  • the opportunity for wavelength conversion of the light emitted from the semiconductor light emitting element by the phosphor increases.
  • the light whose wavelength has been converted by the phosphor is more satisfactorily transmitted through the sealing member and emitted from the second surface of the sealing member than the light emitted from the semiconductor light emitting element.
  • the amount of light that is wavelength-converted by the phosphor and emitted from the semiconductor light emitting device is increased, and the wavelength of the phosphor is increased. It is possible to reduce the amount of light emitted from the semiconductor light emitting device without being converted.
  • FIG. 1 is a plan view showing an overall configuration of a semiconductor light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the semiconductor light emitting device taken along line II-II in FIG.
  • FIG. 3 is a perspective view showing an example of the surface treatment of the second surface of the sealing member.
  • FIG. 4 is a perspective view showing an example of the surface treatment of the second surface of the sealing member.
  • FIG. 5 is a perspective view showing an example of the surface treatment of the second surface of the sealing member.
  • FIG. 6 is a perspective view illustrating an example of the surface treatment of the second surface of the sealing member.
  • FIG. 7 is a perspective view illustrating an example of the surface treatment of the second surface of the sealing member.
  • FIG. 8 is a perspective view illustrating an example of the surface treatment of the second surface of the sealing member.
  • FIG. 9 is a schematic diagram showing an example of the arrangement of fluorescent portions in the semiconductor light emitting device shown in FIG.
  • FIG. 10 is a schematic diagram showing a first modification of the arrangement of the fluorescent portions in the semiconductor light emitting device shown in FIG.
  • FIG. 11 is a schematic diagram showing a second modification of the arrangement of the fluorescent portions in the semiconductor light emitting device shown in FIG. 12 is a circuit configuration diagram of the semiconductor light emitting device having the fluorescent portion shown in FIG. 9 or FIG.
  • FIG. 13 is a time chart showing an example of the drive current of each light emitting diode in the circuit configuration shown in FIG. FIG.
  • FIG. 14 is a circuit configuration diagram of the semiconductor light emitting device having the fluorescent portion shown in FIG.
  • FIG. 15 is a time chart showing an example of the operating state of each transistor and the drive current of each light emitting diode in the circuit configuration shown in FIG.
  • FIG. 16 is a process diagram illustrating an outline of a manufacturing process for forming a cavity in a sealing member of a semiconductor light emitting device.
  • FIG. 17 is a process diagram showing an outline of a manufacturing process for housing a fluorescent part in a cavity formed in a sealing member.
  • FIG. 18 is a process diagram showing an outline of a manufacturing process for joining a sealing member of a semiconductor light emitting device and a wiring board.
  • 19A is a cross-sectional view of a modification in which the shape of the cavity in the semiconductor light emitting device shown in FIG. 1 is different
  • FIG. 19B is the shape of the cavity in the semiconductor light emitting device shown in FIG. It is sectional drawing of a different modification
  • 20A is a cross-sectional view of a modification in which the shape of the cavity in the semiconductor light emitting device shown in FIG. 1 is different
  • FIG. 20B is the shape of the cavity in the semiconductor light emitting device shown in FIG. It is sectional drawing of a different modification
  • 21A is a cross-sectional view of a modification in which the shape of the cavity in the semiconductor light emitting device shown in FIG. 1 is different
  • FIG. 21A is a cross-sectional view of a modification in which the shape of the cavity in the semiconductor light emitting device shown in FIG. 1 is different
  • FIG. 21B is the shape of the cavity in the semiconductor light emitting device shown in FIG. It is sectional drawing of a different modification.
  • FIG. 22A is a cross-sectional view of a modified example in which the shape of the cavity in the semiconductor light emitting device shown in FIG. 1 is different, and FIG. 22B is the shape of the cavity in the semiconductor light emitting device shown in FIG. It is sectional drawing of a different modification.
  • FIG. 23 is a cross-sectional view of a modification in which the shape of the cavity and the structure of the fluorescent part in the semiconductor light emitting device shown in FIG. 1 are different.
  • FIG. 1 is a plan view showing the overall configuration of a semiconductor light emitting device 1 according to an embodiment of the present invention
  • FIG. 2 shows a cross-sectional view of the semiconductor light emitting device 1 along the line II-II in FIG. Note that these drawings schematically represent the semiconductor light emitting device of the present invention as an embodiment for the sake of explanation, and do not accurately represent the scale of each member.
  • the semiconductor light emitting device 1 includes a wiring board 2 and a sealing member 3 bonded to the wiring board 2.
  • a plurality of semiconductor light emitting elements 4 are mounted so as to be electrically connected to the wiring pattern of the wiring board 2.
  • the sealing member 3 has a light transmission characteristic corresponding to a light emission characteristic required for the semiconductor light emitting device 1 and a second surface which is a surface opposite to the first surface 3a and the first surface 3a.
  • the first surface 3 a is provided with a plurality of cavities 5 corresponding to the respective semiconductor light emitting elements 4 mounted on the wiring board 2.
  • Each cavity 5 is recessed with a hemispherical wall surface from the first surface 3 a of the sealing member 3, and the fluorescent portion 6 accommodated (filled) in the cavity 5 stores the semiconductor light emitting element 4. Covering.
  • the sealing member 3 includes four third surfaces 3c that are side surfaces orthogonal to the first surface 3a and the second surface 3b. Have.
  • each light emitted from each fluorescent portion is referred to as primary light
  • light emitted from the semiconductor light emitting device 1, that is, light collected from each primary light is emitted light.
  • Shall be referred to as
  • the semiconductor light emitting element 4 emits light that excites phosphors and fluorescent components (hereinafter collectively referred to as phosphors) contained in the phosphor section 6 described later, and unless the gist of the present invention is changed.
  • phosphors phosphors and fluorescent components
  • Various semiconductor light emitting elements can be used.
  • the semiconductor light emitting element 4 light having a wavelength range of 360 nm to 480 nm, that is, a light emitting light in the near ultraviolet wavelength region to the blue region can be used.
  • an ultraviolet light emitting diode element that emits ultraviolet light (emission peak wavelength: 300 to 400 nm), a violet light emitting diode element that emits violet light (emission peak wavelength: 400 to 440 nm), and a blue light emitting diode element that emits blue light (light emission).
  • a near-ultraviolet light-emitting diode element that emits near-ultraviolet light (for example, an emission peak wavelength of 380 to 400 nm) is used.
  • the integration density of the semiconductor light emitting elements 4 in the semiconductor light emitting device 1 is not particularly limited as long as the gist of the present invention is not changed, but is preferably 4 pieces / cm 2 or more, more preferably 16 pieces / cm 2 or more, The number is preferably 20 pieces / cm 2 or more, particularly preferably 25 pieces / cm 2 or more. Further, it is usually 625 pieces / cm 2 or less, preferably 400 pieces / cm 2 or less, more preferably 256 pieces / cm 2 or less.
  • the semiconductor light emitting device 1 can be downsized. can do.
  • the semiconductor light emitting elements 4 can be randomly arranged. However, from the viewpoint of high integration and control of the semiconductor light emitting elements, the semiconductor light emitting elements 4 are usually preferably arranged regularly. As shown, it is preferably arranged in a matrix. Further, the arrangement interval of the semiconductor light emitting elements 4 is determined by the arrangement interval of the cavities 5 of the sealing member 3 described later.
  • the shape of the semiconductor light emitting element 4 when projected from the light extraction surface of the semiconductor light emitting device 1, that is, the second surface 3b side of the sealing member 3, is, for example, a rectangular shape, a circular shape, or a polygonal shape. As long as the gist is not changed, an arbitrary shape can be used. However, due to the ease of processing of the substrate for the semiconductor light emitting element 4, the shape is usually rectangular or close to it.
  • the semiconductor light emitting elements 4 used in the semiconductor light emitting device 1 may all have the same shape, or each or a part thereof may have a different shape.
  • the area of the semiconductor light emitting element 4 when projected from the light extraction surface side of the semiconductor light emitting device 1 is preferably 20000 ⁇ m 2 or more, more preferably 40000 ⁇ m 2 or more, and further preferably 80000 ⁇ m 2 or more. Moreover, it is usually 360,000 ⁇ m 2 or less, preferably 250,000 ⁇ m 2 or less, and more preferably 200000 ⁇ m 2 or less.
  • the length of one side is 100 ⁇ m or more, more preferably 200 ⁇ m or more, still more preferably 250 ⁇ m or more, and particularly preferably 300 ⁇ m. That's it. Moreover, it is preferable to set it as 600 micrometers or less, More preferably, it is 500 micrometers or less, More preferably, it is 400 micrometers or less.
  • a light emitting diode hereinafter abbreviated as LED
  • a semiconductor laser diode hereinafter abbreviated as LD
  • the semiconductor light emitting element 4 is not limited to these, and various semiconductor light emitting elements can be used as long as the gist of the present invention is not changed.
  • the semiconductor light-emitting element 4 is a GaN-based LED or GaN-based LD in which a GaN-based compound semiconductor layer is formed on a light-emitting diode element substrate.
  • GaN-based LEDs and GaN-based LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in the same wavelength region, and are extremely bright with very low power when combined with phosphors. The reason is that light emission can be obtained. For example, for a drive current of 20 mA, GaN-based LEDs and GaN-based LDs usually have a light emission intensity that is 100 times or more that of SiC-based LEDs.
  • a GaN-based LED or GaN-based LD preferably has an Al X Ga Y N light-emitting layer, a GaN light-emitting layer, or an In X Ga Y N light-emitting layer.
  • a GaN-based LED those having an In X Ga Y N light emitting layer have a very strong emission intensity and are particularly preferable.
  • a GaN-based LD a light emitting intensity of a multi-quantum well structure composed of an In X Ga Y N layer and a GaN layer is very strong and is particularly preferable.
  • the value of X + Y is usually in the range of 0.8 to 1.2.
  • those in which these light emitting layers are doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics.
  • GaN-based LED it is usually possible to configure these light emitting layer, p layer, n layer, electrode, and light emitting diode element substrate as basic components.
  • a light emitting layer having a heterostructure sandwiched between an n-type and p-type Al x Ga y N layer, a GaN layer, or an In x Ga y N layer is preferable because of high luminous efficiency.
  • a structure in which the heterostructure is a quantum well structure is more preferable because of higher luminous efficiency.
  • the semiconductor light emitting device 4 used in this embodiment has an operating power of usually 5 W or less, preferably 4 W or less, more preferably 3 W or less, and usually 0.060 W or more, preferably 0. 065W or more, more preferably 0.070W or more. If the power during operation is too small, the light output generally tends to be small and disadvantageous in terms of cost. On the other hand, if the power is too large, it is difficult to dissipate heat, and the fluorescent part 6, the wiring board 2, or the semiconductor light emitting device 4 itself may be thermally deteriorated or cause a failure due to electrode migration, and the life of the semiconductor light emitting device 1 may be shortened.
  • a GaN-based LED that uses an InGaN semiconductor as a light-emitting layer and emits light in the near-ultraviolet region is used as the semiconductor light-emitting element 4.
  • the GaN-based LED is mounted on the wiring board 2 by flip-chip mounting. Do. That is, with the GaN-based LED light emitting layer facing the lower surface and the light emitting diode element substrate facing the upper surface, the two electrodes formed on the light emitting layer and the wiring pattern electrodes provided on the wiring substrate 2 are made of metal. Join through bumps.
  • a total of 36 GaN LEDs are arranged in a 1 cm 2 region on the wiring board 2 with six GaN LEDs in one horizontal row and six rows. Yes.
  • a submount when mounting the semiconductor light emitting element 4 on the wiring board 2 by flip chip mounting, a submount may be used. Further, the method for mounting the semiconductor light emitting element 4 on the wiring substrate 2 is not limited to such flip chip mounting, and an appropriate method can be selected according to the type and structure of the semiconductor light emitting element 4.
  • the semiconductor light emitting element 4 made of a conductive material is connected to the electrode on the wiring board 2 side via the light emitting element substrate, and one electrode located on the upper surface side of the semiconductor light emitting element 4 is connected to the wiring board 2 side by a metal wire. It is also possible to employ single wire bonding that connects to the electrodes. However, when the semiconductor light emitting element 4 is mounted on the wiring board 2 by flip chip mounting as in the present embodiment, the mounting area can be reduced compared to the case of wire bonding, and the density can be increased.
  • the semiconductor light emitting element 4 can be integrated.
  • Wiring board High heat dissipation board or insulating board
  • a highly heat radiating metal substrate or an insulating substrate is used as a base.
  • other materials may be appropriately used for the heat radiating metal substrate, which will be described later, or the insulating substrate.
  • the contained composite member may be used for the wiring board 2.
  • Heat dissipation metal substrate As the heat dissipating metal substrate, a heat dissipating aluminum substrate, an aluminum alloy substrate, a copper substrate, or various metal substrates such as a copper alloy substrate, or a composite substrate of various metal substrates and an insulating substrate can be used. Among these, an aluminum substrate is suitable as the base of the wiring board 2 from the viewpoints of cost, lightness, and heat dissipation. In consideration of adhesion to the sealing member 3, an aluminum substrate, an aluminum alloy substrate, a copper substrate, or a copper alloy substrate is preferable.
  • the wiring substrate 2 is formed of a metal composite substrate having a heat radiating metal substrate on which a semiconductor light emitting element 4 as a light source is mounted and an electric wiring substrate on which electric wiring to the semiconductor light emitting element 4 is formed.
  • the metal composite substrate is particularly limited as long as it has such a heat dissipation metal substrate and an electric wiring substrate and a light source mounting surface of the heat dissipation metal substrate is provided with a noble metal plating film. is not.
  • a noble metal plating film on the light source mounting surface of the heat radiating metal substrate and mounting the semiconductor light emitting element 4 as the light source on the noble metal plating film, it is possible to ensure high bonding strength.
  • epoxy and silicone resin adhesives and silver paste have been used to mount light sources. By mounting a light source using a precious metal plating film in this way, In the reliability evaluation test such as the impact test and the actual use, it is possible to satisfactorily suppress the occurrence of defects such as peeling of the bonding interface.
  • a known method can be adopted as a method for mounting the semiconductor light-emitting element 4 that is a light source.
  • the semiconductor light emitting element 4 side is plated to form a joining surface, and a die bonding material such as epoxy resin or silicone resin is used to join the noble metal plating film formed on the light source mounting surface of the heat dissipation metal substrate.
  • the semiconductor light emitting element 4 may be mounted.
  • the semiconductor light emitting element 4 can also be mounted by using AuSn paste, AgSn paste, or the like and bonding it to a noble metal plating film formed on the light source mounting surface of the heat dissipation metal substrate. If AuSn paste is used, bonding can be performed by metal diffusion bonding, so that high bonding reliability can be ensured. Further, since the semiconductor light emitting element 4 can be mounted on the heat dissipation metal substrate by metal bonding, considerably better heat dissipation can be expected than when mounting using the die bonding material as described above.
  • the insulating substrate for example, a substrate formed using a material selected from ceramic, resin, glass epoxy, composite resin containing a filler in the resin, and the like can be used.
  • the insulating substrate has good thermal conductivity.
  • a ceramic substrate such as alumina or aluminum nitride, or a composite resin substrate containing a filler having high thermal conductivity is suitable.
  • the wiring board 2 is formed in a flat plate shape as a whole.
  • the semiconductor light emitting element 4 is provided at the mounting position of the semiconductor light emitting element 4 on the surface on which the semiconductor light emitting element 4 is mounted.
  • a recess 2a is formed so as to surround the semiconductor light emitting element 4, and each semiconductor light emitting element 4 is mounted in the recess 2a.
  • the concave portion 2a is used to accommodate the fluorescent portion 6 overflowing from the cavity 5 when the wiring board 2 and the sealing member 3 described later are joined.
  • the concave portion 2a is not essential and is provided as necessary.
  • the fluorescent portion 6 does not overflow from the cavity 5, or when the fluorescent portion 6 overflows is accommodated by another means. In such a case, it is not necessary to provide the recess 2a.
  • the shape and position of the recess 2a are not limited to those of the present embodiment.
  • an annular groove surrounding the semiconductor light emitting element 4 or a recess formed close to the semiconductor light emitting element 4 can be used.
  • various modifications can be made and any fluorescent part 6 overflowing from the cavity 5 can be accommodated.
  • the shape of the wiring board 2 does not necessarily need to be flat, and may be a shape that can be appropriately joined to the sealing member 3 described later.
  • the wiring board 2 itself can be formed to have a curved shape according to this.
  • a step or a protrusion may be provided on the surface of the wiring board 2.
  • a reflecting member for reflecting light emitted from the semiconductor light emitting element 4 may be formed at least around each semiconductor light emitting element 4.
  • a reflecting member is not particularly limited in its formation position and shape as long as the gist of the present invention is not changed.
  • the reflecting member may be, for example, a layer made of a metal printed on the wiring board 2 at the same time as a wiring pattern to be described later, such as a metal such as ceramic, silver, aluminum, kovar, silver-platinum, silver-palladium.
  • a layer made of an alloy such as a white solder resist may be used.
  • a wiring pattern for supplying power to each semiconductor light emitting element 4 to control light emission of each semiconductor light emitting element 4 is provided corresponding to the electric circuit configuration of the semiconductor light emitting device 1.
  • the electrical circuit configuration of the semiconductor light emitting device 1 will be specifically described in the section “5. Configuration of the semiconductor light emitting device”.
  • the wiring pattern is not particularly limited as long as the electrical circuit configuration of the semiconductor light emitting device 1 is realized, and is appropriately selected according to the type and purpose of the semiconductor light emitting device 1, the mounting method of the semiconductor light emitting element 4, and the like.
  • the wiring pattern when the semiconductor light emitting element 4 is flip-chip mounted as in the present embodiment is configured by a pad pattern, a power feeding land pattern, and a conductive line pattern that connects them.
  • the power feeding land pattern is usually formed outside the region where the semiconductor light emitting element 4 is mounted, and is electrically connected to an external power source or a controller and used to receive power controlled by the controller. Also, a plurality of pad patterns are provided corresponding to the plurality of semiconductor light emitting elements 4, and are electrically connected to the electrodes on the semiconductor light emitting element 4 side through metal bumps. Further, the power feeding land pattern and the pad pattern are electrically connected via a conductive wire pattern to constitute an electric circuit of the semiconductor light emitting device 1.
  • the wiring pattern can be formed on only one surface such as the surface of the wiring substrate 2.
  • the semiconductor light emitting elements 4 are arranged in a matrix, In the case where a plurality of types of primary light is obtained using a plurality of types of fluorescent portions 6, a multilayer wiring pattern can be employed.
  • the material used for the wiring pattern provided on the surface of the wiring board 2 is preferably a material having a high reflectance with respect to light, and in the case of this embodiment, the reflectance of near ultraviolet light is preferably 70% or more. Preferably it is 75% or more, More preferably, it is 80% or more.
  • the luminance of the semiconductor light emitting device can be improved.
  • a material for the wiring pattern there are usually gold, silver, copper, aluminum and the like. Among them, gold, silver, and copper are preferable from the viewpoint that it is easy to obtain a luminance improvement effect and a luminance maintenance effect.
  • One type of these materials may be used for the wiring pattern, or two or more types may be used in combination.
  • the water vapor of the wiring board 2 is prevented from entering the area surrounded by the wiring board 2 and the sealing member 3 (that is, the cavity 5 and the fluorescent portion 6) from the outside of the semiconductor light emitting device 1 from the outside. It is preferable to adjust the permeability, water vapor permeability coefficient, oxygen permeability, and oxygen permeability coefficient as follows. Specifically, when measured at 23 ° C. by the JISK7129B method, the water vapor permeability of the wiring board 2 is preferably 10 g / m 2 ⁇ day or less, and more preferably 5 / m 2 ⁇ day or less. It is preferably 2 / m 2 ⁇ day or less. Further, when measured at 23 ° C.
  • the water vapor transmission coefficient of the wiring board 2 is preferably 10 g ⁇ mm / m 2 ⁇ day or less, and preferably 5 g ⁇ mm / m 2 ⁇ day or less. More preferably, it is 2 g ⁇ mm / m 2 ⁇ day or less.
  • the oxygen permeability of the wiring board 2 is preferably 1000 cm 3 / m 2 ⁇ day ⁇ atm or less, and 500 cm 3 / m 2 ⁇ day ⁇ atm. More preferably, it is 200 cm ⁇ 3 > / m ⁇ 2 > * day * atm or less.
  • the oxygen transmission coefficient of the wiring board 2 is preferably 1000 cm 3 ⁇ mm / m 2 ⁇ day ⁇ atm or less, preferably 100 cm 3 ⁇ mm / m 2. More preferably, it is not more than day ⁇ atm, and particularly preferably not more than 10 cm 3 ⁇ mm / m 2 ⁇ day ⁇ atm.
  • the wiring board 2 prevents the external gas such as water vapor or oxygen from entering the region surrounded by the wiring board 2 and the sealing member 3 (that is, the cavity 5 and the fluorescent portion 6) from the outside of the semiconductor light emitting device 1. It is preferable to adjust the thickness as follows. Specifically, the thickness of the wiring board 2 is preferably 0.2 mm or more, more preferably 0.5 mm or more, and particularly preferably 1.0 mm or more. Note that the thickness of the wiring board 2 is preferably 10 mm or less from the viewpoint of weight reduction and compactness of the semiconductor light emitting device.
  • the fluorescent part 6 is composed of a phosphor that converts the wavelength of at least a part of light emitted from the semiconductor light emitting element 4 and a filler for dispersing and holding the phosphor.
  • the sealing member By covering the semiconductor light emitting element 4 that is accommodated in each of the plurality of cavities 5 that are recessed in the first surface 3 a and mounted on the wiring board 2 corresponding to each cavity 5, The phosphors dispersed and contained are dispersed around the semiconductor light emitting element 4.
  • the type of phosphor contained in each fluorescent part 6 can be appropriately selected according to the light emission characteristics required for the semiconductor light emitting device 1.
  • Each cavity 5 may contain a fluorescent portion 6 containing a single type of phosphor, or may contain a fluorescent portion 6 containing a mixture of a plurality of types of phosphors. It may be.
  • Each of the cavities 5 preferably contains (fills) a fluorescent portion so that there is no gap. As a result, the number of reflections at the interface can be reduced, so that the light subjected to wavelength conversion by the semiconductor light emitting element 4 and the fluorescent part 6 can be efficiently extracted outside the semiconductor light emitting device 1.
  • the primary light from some of the fluorescent parts 6 is different from the primary light from the remaining fluorescent parts 6, for example, when the light emitted from the semiconductor light emitting element 4 is ultraviolet light or violet light.
  • three types of phosphors that is, a phosphor, a green phosphor, and a blue phosphor
  • three primary colors of RGB red, green, and blue
  • the wavelength of the yellow light is converted into Y (yellow), and the blue light of the semiconductor light emitting element 4 having a complementary color relationship, the wavelength converted yellow light, As a result, white light having various color temperatures can be obtained.
  • the blue light emitted from the semiconductor light emitting element 4 is wavelength-converted to RG (red and green) by the red phosphor and the green phosphor, and the blue light of the semiconductor light emitting element 4 and the wavelength-converted red light and By synthesizing and mixing green light, white light having various color temperatures can be obtained as emitted light.
  • the light emitted from the semiconductor light emitting element 4 is blue light, it is possible to obtain emitted light of a color other than white light by adjusting the selection of phosphors, the combination ratio, or the color mixture. Even in such a case, since primary light having a wide spectrum width can be obtained from the fluorescent portion 6, excellent color rendering can be ensured for the emitted light of the semiconductor light emitting device 1.
  • the phosphor is not particularly limited as long as at least a part of the light emitted from the semiconductor light emitting element 4 can be wavelength-converted.
  • the semiconductor light emitting element 4 that emits light in the near ultraviolet region as described above. Therefore, a phosphor capable of converting the wavelength of at least part of light in such a wavelength region is used.
  • the base crystal (Ca , Sr) Metal nitrides typified by AlSiN 3 and the like, phosphates typified by Ca 5 (PO 4 ) 3 Cl and the like and sulfides typified by ZnS, SrS and CaS, or Y 2 O 2 S , Oxysulfides represented by La 2 O 2 S, and the like, ions of rare earth metals such as Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Ag, A combination of metal ions such as Cu, Au, Al, Mn, and Sb as activators or coactivators is preferred. Preferred examples of the host crystal are shown in Table 1.
  • the element composition for these base crystals and the activator element or coactivator element there is no particular limitation on the element composition for these base crystals and the activator element or coactivator element, and it is possible to partially replace the elements of the same family.
  • the obtained phosphor is What is necessary is just to convert the wavelength of light in the wavelength range of the near ultraviolet region as described above.
  • phosphors that differ only in part of the structure are omitted as appropriate, and the omitted parts are shown separated by commas (,).
  • commas For example, “Y 2 SiO 5 : Ce 3+ ”, “Y 2 SiO 5 : Tb 3+ ” and “Y 2 SiO 5 : Ce 3+ , Tb 3+ ” are changed to “Y 2 SiO 5 : Ce 3+ , Tb 3+ ”, “La 2 O 2 S: Eu”, “Y 2 O 2 S: Eu” and “(La, Y) 2 O 2 S: Eu” are collectively shown as “(La, Y) 2 O 2 S: Eu”. ing.
  • the following phosphors can be used, but these are merely examples, and phosphors that can be used in the present invention are not limited thereto. In the following examples, as described above, phosphors that are different only in part of the structure are appropriately omitted.
  • Red phosphor As long as the gist of the present invention is not changed, any red phosphor can be used, but the emission peak wavelength is usually 570 nm or more, preferably 580 nm or more, more preferably 585 nm or more, and usually 780 nm or less. Those having a wavelength range of preferably 700 nm or less, more preferably 680 nm or less are suitable.
  • red phosphor for example, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Ca, Sr, Ba) Si (N, O) 2 : Eu, (Ca, Sr, Ba) ) AlSi (N, O) 3 : Eu, (Sr, Ba) 3 SiO 5 : Eu, (Ca, Sr) S: Eu, (La, Y) 2 O 2 S: Eu, Eu (dibenzoylmethane) 3 ⁇ -diketone Eu complex such as 1,10-phenanthroline complex, carboxylic acid Eu complex, K 2 SiF 6 : Mn is preferable, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Sr, Ca) AlSi (N, O): Eu, (La, Y) 2 O 2 S: Eu, K 2 SiF 6 : Mn are more preferable.
  • any orange phosphor can be used, but the emission peak wavelength is 580 nm or more, preferably 585 nm or more, and 620 nm or less, preferably 600 nm or less. Those in the range are preferred.
  • (Sr, Ba) 3 SiO 5 : Eu, (Sr, Ba) 2 SiO 4 : Eu, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, ( Ca, Sr, Ba) AlSi (N, O) 3 : Ce and the like are preferable.
  • the emission peak wavelength is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, usually less than 500 nm, Those having a wavelength range of preferably 490 nm or less, more preferably 480 nm or less, further preferably 470 nm or less, and particularly preferably 460 nm or less are suitable.
  • (Ca, Sr, Ba) MgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, (Ba, Ca , Mg, Sr) 2 SiO 4 : Eu, (Ba, Ca, Sr) 3 MgSi 2 O 8 : Eu and the like are preferable, and (Ba, Sr) MgAl 10 O 17 : Eu, (Ca, Sr, Ba) 10 ( PO 4 ) 6 (Cl, F) 2 : Eu and Ba 3 MgSi 2 O 8 : Eu are more preferable, and Sr 10 (PO 4 ) 6 Cl 2 : Eu and BaMgAl 10 O 17 : Eu are particularly preferable.
  • Green phosphor As long as the gist of the present invention is not changed, any green phosphor can be used, but the emission peak wavelength is usually 500 nm or more, preferably 510 nm or more, more preferably 515 nm or more, usually less than 550 nm, Those having a wavelength range of preferably 542 nm or less, more preferably 535 nm or less are suitable. If the emission peak wavelength of the green phosphor is too short, the light emitted from the green phosphor tends to be bluish, while if the emission peak wavelength is too long, it tends to be yellowish. There is a risk that the characteristics will deteriorate.
  • the green phosphor for example, Y 3 (Al, Ga) 5 O 12 : Ce, CaSc 2 O 4 : Ce, Ca 3 (Sc, Mg) 2 Si 3 O 12 : Ce, (Sr, Ba) 2 SiO 4 : Eu, (Si, Al) 6 (O, N) 8 : Eu ( ⁇ sialon), (Ba, Sr) 3 Si 6 O 12 : N 2 : Eu, SrGa 2 S 4 : Eu, BaMgAl 10 O 17 : Eu, Mn and the like are preferable.
  • the emission peak wavelength is usually 530 nm or more, preferably 540 nm or more, more preferably 550 nm or more, and usually 620 nm or less. Those having a wavelength range of preferably 600 nm or less, more preferably 580 nm or less are suitable.
  • Y 3 Al 5 O 12 Ce
  • (Y, Gd) 3 Al 5 O 12 Ce
  • (Sr, Ca, Ba, Mg) 2 SiO 4 Eu
  • (Ca, Sr) Si 2 N 2 O 2 : Eu or the like is preferable.
  • RGB red, green and blue
  • a plurality of cavities 5 formed in the sealing member 3 are divided into a cavity 5 that houses a fluorescent part 6 containing a red phosphor, a cavity 5 that contains a fluorescent part 6 containing a green phosphor, and blue fluorescence. If these are divided into the cavities 5 that contain the fluorescent parts 6 containing the body and these are dispersedly arranged, the primary lights emitted from the respective fluorescent parts 6 are combined to produce various colors as well as white. Can be obtained at various color temperatures.
  • each cavity 5 accommodates a fluorescent portion 6 containing a mixture of three types of phosphors, a red phosphor, a green phosphor, and a blue phosphor, and a part of the plurality of cavities 5.
  • the ratio of the red phosphor, the green phosphor and the blue phosphor contained in the fluorescent part 6 accommodated in the cavity 5, and the red phosphor and the green fluorescence contained in the fluorescent part 6 accommodated in the remaining cavity 5 By adjusting the ratio of the body and the blue phosphor, it is possible to obtain white light having two different color temperatures.
  • the phosphor contained in the fluorescent part 6 preferably has a particle size such that light emitted from the semiconductor light emitting element 4 can be sufficiently scattered in the fluorescent part 6, but the particle size of the phosphor is particularly limited.
  • the median particle size (D50) is usually 0.1 ⁇ m or more, preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, and usually 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less. is there. When the median particle diameter (D50) of the phosphor is in such a range, the light emitted from the semiconductor light emitting element 4 is sufficiently scattered in the fluorescent portion 6.
  • the wavelength conversion by the phosphor is efficiently performed.
  • the light emitted from the semiconductor light emitting element 4 is sufficiently scattered in the fluorescent part 6, so that each type of fluorescent substance is The light is absorbed uniformly and the light emitted from the phosphor is also scattered well in the fluorescent portion 6, so that the light emitted from the phosphor is well synthesized.
  • the median particle diameter (D50) of the phosphor contained in the fluorescent part 6 is larger than the above range, not only the light emitted from the semiconductor light emitting element 4 is not sufficiently scattered in the fluorescent part 6, but also the phosphor Since the inside of the fluorescent part 6 cannot be sufficiently filled, the light emitted from the semiconductor light emitting element 4 is not sufficiently absorbed by the phosphor, and there is a possibility that wavelength conversion by the phosphor is not performed efficiently.
  • the median particle diameter (D50) of the phosphor contained in the fluorescent part 6 is smaller than the above range, the luminous efficiency of the phosphor is lowered, and the illuminance may be lowered.
  • the particle size distribution (QD) of the phosphor is preferably smaller in order to align the dispersed state of the particles in the fluorescent part 6, but in order to reduce the particle size, the classification yield is lowered and the cost is increased. It is 0.03 or more, preferably 0.05 or more, more preferably 0.07 or more, and is usually 0.4 or less, preferably 0.3 or less, more preferably 0.2 or less.
  • the concentration of the phosphor in the fluorescent portion 6 is set in a range in which light emitted from the semiconductor light emitting element is sufficiently absorbed and concentration quenching does not occur.
  • the concentration of the phosphor in the fluorescent part 6 can be arbitrarily set as long as the gist of the present invention is not changed. For example, it is usually 5% by weight or more, preferably 6% by weight or more, more preferably 7% by weight or more. In addition, it is usually 90% by weight or less, preferably 70% by weight or less, more preferably 40% by weight or less, still more preferably 25% by weight or less, and particularly preferably 20% by weight or less.
  • the filler that forms the fluorescent part 6 by being mixed with the phosphor and dispersing and holding the phosphor is not particularly limited, but the phosphor can be well dispersed and held.
  • a curable material any of an inorganic material, an organic material, and a mixture of both can be used.
  • the inorganic material for example, a solution obtained by hydrolyzing a solution containing a metal alkoxide, a ceramic precursor polymer or a metal alkoxide by a sol-gel method, or a combination thereof, an inorganic material (for example, a siloxane bond). Inorganic material).
  • examples of the organic material include a thermosetting resin and a photocurable resin (UV curable resin).
  • a thermosetting resin such as poly (meth) methyl acrylate, styrene resins such as polystyrene and styrene-acrylonitrile copolymers, polycarbonate resins, polyester resins, phenoxy resins, butyral resins, polyvinyl alcohol, ethyl cellulose, Examples thereof include cellulose resins such as cellulose acetate and cellulose acetate butyrate, epoxy resins, phenol resins, and silicone resins.
  • the silicon-containing compound is a compound having a silicon atom in the molecule, organic materials such as polyorganosiloxane (silicone-based material), inorganic materials such as silicon oxide, silicon nitride, and silicon oxynitride, and borosilicate and phosphosilicate. There are glass materials such as acid salts and alkali silicates. These can be used alone or in combination of two or more in any ratio and combination.
  • a silicone-based material is preferable from the viewpoints of transparency, adhesiveness, ease of handling, and a cured product having stress relaxation force.
  • silicone resins for semiconductor light emitting devices for example, Japanese Patent Application Laid-Open No. 10-228249, Japanese Patent No. 2927279, and Japanese Patent Application Laid-Open No. 2001-36147 show use as fillers. Yes.
  • the filler preferably has a light transmittance of 80% or more in a wavelength region of 350 nm to 500 nm when the film thickness is 1 mm, more preferably 85% or more, Usually, it is 98% or less.
  • the sealing member 3 is formed in a plate shape having the first surface 3a and the second surface 3b, and transmits the primary light emitted from each fluorescent part 6 to the second. It has a light transmission characteristic radiated from the surface 3b.
  • the material of the sealing member 3 is not particularly limited as long as it has such light transmission characteristics.
  • glass acrylic resin, epoxy resin, urethane resin, fluorine resin, silicone resin, quartz, And one or more materials selected from the group consisting of ceramics can be used.
  • glass is used as the material of the sealing member 3 in consideration of the primary light transmittance and excellent durability.
  • the sealing member 3 is made of, for example, an acrylic resin (for example, Acrysil Wrap manufactured by Mitsubishi Rayon Co., Ltd.), an epoxy resin (for example, two-pack type epoxy resin YL7301 manufactured by Japan Epoxy Resin Co., Ltd., Mitsubishi Gas Chemical).
  • a two-pack type epoxy resin Maxive manufactured by Shin-Etsu Chemical Co., Ltd. an organically modified silicone resin (for example, SCR-1012 manufactured by Shin-Etsu Chemical Co., Ltd.), a fluororesin (for example, a fluororesin Eight Seal 3000 manufactured by Taihei Kasei Co., Ltd.) and the like are preferable.
  • glass is suitable from the viewpoint of gas barrier properties.
  • the light transmittance in the wavelength region of 350 nm to 500 nm is preferably 80% or more, more preferably 85% or more. Usually, it is 98% or less. If the sealing member 3 can satisfy the following water vapor permeability, water vapor permeability coefficient, oxygen permeability, or oxygen permeability coefficient as a whole, a composite material in which another material is appropriately contained in the above-described specific material is sealed. It may be used for the stop member 3.
  • the hardness of the sealing member 3 for example, Shore D in JISK7215 (1986) is preferably 20 or more, more preferably 40, and further preferably 60.
  • the sealing member 3 having a certain hardness is easier to handle, is less likely to deform the sealing member 3, is preferable for protecting the fluorescent part inside the recessed cavity, and has a constant cavity capacity. It is possible to prevent the color deviation of the semiconductor light emitting device from occurring as a result, or to facilitate the handling of the sealing member in the manufacturing process.
  • the sealing member 3 is configured so that an external gas such as water vapor or oxygen does not enter the region surrounded by the wiring substrate 2 and the sealing member 3 (that is, the cavity 5 and the fluorescent portion 6) from the outside of the semiconductor light emitting device 1. It is preferable to adjust the water vapor permeability, water vapor permeability coefficient, oxygen permeability, and oxygen permeability coefficient as follows. Specifically, when measured at 23 ° C. by the JISK7129B method, the water vapor permeability of the sealing member 3 is preferably 10 g / m 2 ⁇ day or less, and preferably 5 / m 2 ⁇ day or less. More preferred is 2 / m 2 ⁇ day or less.
  • the water vapor transmission coefficient of the sealing member 3 is preferably 10 g ⁇ mm / m 2 ⁇ day or less, and preferably 5 g ⁇ mm / m 2 ⁇ day or less. Is more preferable, and 2 g ⁇ mm / m 2 ⁇ day or less is particularly preferable.
  • the oxygen permeability of the sealing member 3 is preferably 1000 cm 3 / m 2 ⁇ day ⁇ atm or less, and 500 cm 3 / m 2 ⁇ day ⁇ . It is more preferably at most atm, and particularly preferably at most 200 cm 3 / m 2 ⁇ day ⁇ atm.
  • the oxygen transmission coefficient of the sealing member 3 is preferably 1000 cm 3 ⁇ mm / m 2 ⁇ day ⁇ atm or less, preferably 100 cm 3 ⁇ mm / m. more preferably 2 ⁇ day ⁇ atm or less, particularly preferably not more than 10cm 3 ⁇ mm / m 2 ⁇ day ⁇ atm.
  • the sealing member prevents the external gas such as water vapor or oxygen from entering the region surrounded by the wiring substrate 2 and the sealing member 3 (that is, the cavity 5 and the fluorescent portion 6) from the outside of the semiconductor light emitting device 1. It is preferable to adjust the thickness of 3 as follows. Specifically, the thickness of the sealing member 3 is preferably 0.2 mm or more, more preferably 0.5 mm or more, and particularly preferably 1.0 mm or more. In addition, it is preferable that the thickness of the sealing member 3 is 10 mm or less from a viewpoint of weight reduction and compactization of a semiconductor light-emitting device.
  • the primary light emitted from the fluorescent part 6 is at least partially scattered in the sealing member 3, when a plurality of types of fluorescent parts 6 having different primary lights are used, The primary light is well synthesized and high quality outgoing light with no unevenness can be obtained. Therefore, an additive that promotes the scattering of primary light may be added to the sealing member 3 as necessary, and the primary light scattering in the sealing member 3 may be added to the second surface 3b of the sealing member 3. Or may be subjected to a surface treatment that promotes emission to the outside. In addition, with respect to the four third surfaces 3 c that are the side surfaces of the sealing member 3, light emitted from the fluorescent portions 6 and the semiconductor light emitting elements 4 are emitted in order to prevent leakage of light from within the sealing member 3.
  • FIGS. 3 to 8 are perspective views showing the sealing member 3 in which the above-described surface treatment is performed on the third surface 3b. All of them schematically represent the surface treatment, and the scale and the like are accurately shown. Not shown in
  • FIG. 3 is a perspective view showing an example of the sealing member 3 in which the second surface 3b is a rough surface on which fine irregularities are formed.
  • FIG. 4 is a perspective view showing an example of the sealing member 3 in which a V-groove / triangular prism shape is provided on the second surface 3b instead of such a rough surface.
  • V-groove / triangular prism shape is provided on the second surface 3b instead of such a rough surface.
  • prism-shaped ridges 3d and V-grooves having a triangular cross section are alternately arranged in parallel. I am doing. Note that the extending direction, size, and number of V-grooves and prismatic ridges are not limited to those shown in FIG.
  • the optical characteristics of the sealing member 3 can set suitably according to the light emission characteristic from the fluorescence part 6, etc.
  • the sizes of the ridges 3d and the V-grooves may be different from each other, and the distribution of the ridges 3d and the V-grooves having different sizes may be different from each other in terms of light emission characteristics and sealing required for the semiconductor light emitting device 2. It is also possible to set appropriately according to the optical characteristics of the member 3 or the light emission characteristics from the fluorescent part 6.
  • FIG. 5 is a perspective view showing an example of the sealing member 3 in which a cylindrical prism shape is applied to the second surface 3b instead of such a V-groove / triangular prism shape.
  • a plurality of prismatic collars 3e having a semicircular cross section are formed in parallel. Note that the extending direction, size, and number of prism-shaped ridges 3e having a semicircular cross-section are not limited to the example of FIG. 5, but the light-emitting characteristics required for the semiconductor light-emitting device 2 and the sealing member 3 Can be set as appropriate according to the optical characteristics of the light-emitting element or the light-emitting characteristics from the fluorescent part 6.
  • the sizes of the ridges 3e can be different from each other, and the distribution of the ridges 3e having different sizes can be determined by the light emission characteristics required for the semiconductor light emitting device 2 and the optical characteristics of the sealing member 3. Alternatively, it may be set as appropriate according to the light emission characteristics from the fluorescent part 6.
  • FIG. 6 is a perspective view showing an example of the sealing member 3 in which a plurality of Fresnel lenses 3f are formed on the second surface 3b.
  • the same Fresnel lens is formed at a position facing the cavity 5 formed on the first surface 3 a of the sealing member 3.
  • the number, position, size, optical characteristics, and the like of the Fresnel lens are not limited to the example shown in FIG. 6, but the light emission characteristics required for the semiconductor light emitting device 2, the optical characteristics of the sealing member 3, or the fluorescent part. 6 can be set as appropriate in accordance with the light emission characteristics from 6.
  • a convex lens or a concave lens may be formed.
  • the number, position, size, optical characteristics, etc. of the convex lens or concave lens depend on the light emission characteristics required for the semiconductor light emitting device 2, the optical characteristics of the sealing member 3, or the light emission characteristics from the fluorescent part 6. Can be set as appropriate.
  • FIG. 7 is a perspective view showing an example of the sealing member 3 in which a plurality of pyramidal protrusions 3g are formed on the second surface 3b.
  • the pyramid pyramid protrusions having the same shape are used.
  • 3g is regularly arranged.
  • the pyramid is not limited to a quadrangular pyramid, and may be a triangular pyramid, a hexagonal pyramid, or a cone. Further, the number, position, size, etc. of the pyramids are not limited to the example of FIG. 7, and the light emission characteristics required for the semiconductor light emitting device 2, the optical characteristics of the sealing member 3, or the light emission from the fluorescent part 6 It can be set as appropriate according to the characteristics.
  • the respective pyramids can be made different without being the same, and the distribution of the different pyramids can be determined based on the light emission characteristics required for the semiconductor light emitting device 2, the optical characteristics of the sealing member 3, or the light emission from the fluorescent portion 6. It is also possible to set appropriately according to the characteristics.
  • FIG. 8 is a perspective view showing an example of the sealing member 3 in which a plurality of hemispherical convex portions 3h are formed on the second surface 3b instead of the pyramidal convex portions, and the example in FIG. 8 has the same shape.
  • the hemispherical protrusions 3h are regularly arranged.
  • the number, position, size, and the like of the hemispherical protrusions 3 h are not limited to the example of FIG. 8, and the light emission characteristics required for the semiconductor light emitting device 2, the optical characteristics of the sealing member 3, or the fluorescent part 6 It can be set as appropriate according to the emission characteristics of the light.
  • the respective hemispherical protrusions 3h can be made different without being the same, and the distribution of the different hemispherical protrusions 3h can be determined by the light emission characteristics required for the semiconductor light emitting device 2 and the optical characteristics of the sealing member 3. Alternatively, it may be set as appropriate according to the light emission characteristics from the fluorescent part 6.
  • the second surface 3b of the sealing member 3 may be subjected to various surface treatments in order to promote the scattering of the primary light in the sealing member 3 or to promote the emission to the outside.
  • the form of the surface treatment mentioned above is an example, Surface treatment is not limited to these, Moreover, it is also possible to apply to the 2nd surface 3b of the sealing member 3 combining several surface treatment mentioned above. It is.
  • cavities 5 are provided for each semiconductor light emitting element 4 at positions corresponding to the semiconductor light emitting elements 4 mounted on the wiring substrate 2. It is recessed. Accordingly, in the present embodiment, the cavities 5 correspond to the semiconductor light emitting elements 4 arranged in a matrix on the wiring board 2 and are arranged in a matrix as shown in FIG.
  • the interval between the adjacent cavities 5 can be arbitrarily set as long as the gist of the present invention is not changed, but is separated to such an extent that the influence of light emission from the semiconductor light emitting element 4 in the opposite cavity 5 can be suppressed. It is preferable. Thereby, improvement of light extraction efficiency is expected. Specifically, it is 50 ⁇ m or more, preferably 100 ⁇ m or more, and more preferably 200 ⁇ m or more. From the viewpoint of integration or synthesis of primary light, it is preferably 1.5 mm or less.
  • the opening area and depth of the cavity 5 are not particularly limited as long as the gist of the present invention is not changed, and can usually be appropriately determined according to the size of the semiconductor light emitting element 4.
  • the opening area is preferably 5 mm 2 or less, more preferably 1 mm 2 or less, and still more preferably 0.25 mm 2 or less. With such an opening area, the semiconductor light emitting element 4 can be highly integrated and a large luminous flux can be obtained.
  • the depth of the cavity 5 is, for example, usually 200 ⁇ m or more, preferably 250 ⁇ m or more, more preferably 300 ⁇ m or more, and usually 3000 ⁇ m or less, preferably 2000 ⁇ m or less, more preferably 1500 ⁇ m or less. Thereby, the wavelength of the light emitted from the semiconductor light emitting element 4 can be changed efficiently.
  • Each cavity 5 is recessed in a hemispherical shape from the first surface 3a of the sealing member 3, and when the sealing member 3 is joined to the wiring substrate 2, as shown in FIG.
  • Each of the upper semiconductor light emitting elements 4 is positioned inside the corresponding cavity 5.
  • each cavity 5 contains a fluorescent portion 6 containing a phosphor as described above, and each of the semiconductor light emitting elements 4 on the wiring board 2 is joined by the bonding of the sealing member 3 and the wiring board 2.
  • the phosphors contained in the fluorescent part 6 are present around the semiconductor light emitting element 4 by being covered with the fluorescent part 6 accommodated in the corresponding cavity 5.
  • the cavities 5 are formed to have the same size.
  • the sizes of the cavities 5 are not necessarily the same, and the wall surface shape of the cavities 5 is also limited to a hemispherical shape as in the present embodiment. Is not to be done. That is, the size and shape of the cavity 5 can be appropriately selected according to the light emission characteristics required for the semiconductor light emitting device 1, the type and characteristics of the fluorescent portion 6 to be accommodated, the characteristics of the semiconductor light emitting element 4, and the like.
  • the cavity 5 can be formed by using a method such as wet etching, dry etching, laser beam irradiation, sand blasting, grinding, or the like. For a specific forming method in this embodiment, refer to “6. This will be described in the section “Method for Manufacturing Semiconductor Light Emitting Device”.
  • the semiconductor light emitting element 4 It is preferable to add a function as an optical filter to the sealing member 3 by applying a coating that suppresses transmission of emitted light.
  • the function of the sealing member 3 is higher than the light emitted from the semiconductor light emitting element 4 than the light whose wavelength is converted by the phosphor contained in the fluorescent part 6 accommodated in the cavity 5. It is obtained by forming a coating layer 7 having a rate.
  • the coating layer 7 is formed of an interference film made of a multilayer dielectric laminated film in which a plurality of high refractive index layers and low refractive index layers are alternately laminated. Specifically, for example, by laminating a thin film made of TiO 2 as a high refractive index layer and a thin film made of SiO 2 as a low refractive index layer alternately in the cavity 5 by vapor deposition or sputtering (for example, respectively) Such a coating layer 7 is formed over the entire wall surface of the cavity 5.
  • the coating layer 7 thus formed has a transmittance of 90% or more for visible light in a wavelength region longer than light in the near ultraviolet region, and has a reflectance of 90% or more for light in the near ultraviolet region. .
  • the near-ultraviolet light emitted from the semiconductor light emitting element 4 is partly wavelength-converted by the phosphor contained in the fluorescent part 6, and the near-ultraviolet light is emitted.
  • the visible light in the wavelength region longer than the light in the region reaches the coating layer 7 of the cavity 5, and the remaining near-ultraviolet light reaches the coating layer 7 without being wavelength-converted by the phosphor.
  • the coating layer 7 has a higher reflectance than the visible light obtained by converting the wavelength of the near-ultraviolet light emitted from the semiconductor light-emitting element 4 with a phosphor.
  • the coating layer 7 As a result, compared to the case where the coating layer 7 is not provided, the amount of visible light that is wavelength-converted by the phosphor and emitted from the semiconductor light-emitting device 1 is increased, and the semiconductor light-emitting device is not wavelength-converted by the phosphor. The amount of near-ultraviolet light emitted from 1 can be reduced.
  • the coating layer 7 can be formed on the second surface 3b of the sealing member 3 instead of being formed on the wall surface of the cavity 5 as in the present embodiment.
  • near-ultraviolet light that has traveled through the sealing member 3 and reached the coating layer 7 without being wavelength-converted by the phosphor is scattered within the sealing member 3. Therefore, it does not necessarily return to the cavity 5 corresponding to the semiconductor light emitting element 4 that is the source of the generation, and may return to the cavity 5 corresponding to another semiconductor light emitting element 4. For this reason, when the phosphor contained in the fluorescent part 6 differs depending on the cavity 5, there is a possibility that the desired characteristic of the emitted light cannot be obtained with high accuracy.
  • the coating layer 7 may be formed on the flat second surface 3b, it is easier to form the coating layer 7 than when coating the wall surface of the hemispherical cavity 5. Accordingly, such a coating layer 7 has a case where the fluorescent parts 6 containing the same fluorescent substance are accommodated in the respective cavities 5 rather than the case where the fluorescent substance contained in the fluorescent part 6 differs depending on the cavity 5. Is suitable.
  • the configuration and material of the coating layer 7 are not limited to those described above, and any coating material having the same function can be applied.
  • the wavelength region of light emitted from the semiconductor light emitting element 4 and the fluorescence What is necessary is just to select suitably according to the wavelength range etc. of the light obtained by the wavelength conversion by a body.
  • the coating layer 7 is formed on the entire wall surface of the cavity 5, but the coating layer 7 may be formed only on a part of the wall surface of the cavity 5, or the wall surface of the cavity 5 may be formed.
  • the coating layer 7 may be formed on the entire first surface 3 a of the sealing member 3.
  • the main body of the sealing member 3 may have the same function as the coating layer 7.
  • the above-described effects can be obtained by providing such a function in the sealing member 3, it is not necessarily provided in the semiconductor light emitting device 1, and may be omitted as necessary. It is. Further, according to the characteristics of the semiconductor light-emitting element 4 and the light-emitting characteristics required for the semiconductor light-emitting device 1, the light in a predetermined wavelength region is transmitted favorably and the light outside the wavelength region is reflected well.
  • the sealing member 3 has an optical band-pass filter function that reflects well with respect to light in a predetermined wavelength region and conversely transmits light outside the wavelength region. You may make it let.
  • the semiconductor light emitting device 1 is formed in a plate shape having the wiring substrate 2 on which the plurality of semiconductor light emitting elements 4 are mounted, the first surface 3a, and the second surface 3b. And a sealing member 3 having a cavity 5 recessed in the first surface 3a, and a fluorescent portion 6 accommodated in each of the cavities 5. Then, as shown in FIG. 2, the wiring board 2 and the sealing member 3 are arranged such that the surface of the wiring board 2 on which the semiconductor light emitting element 4 is mounted and the first surface 3 a of the sealing member 3 face each other. And the semiconductor light emitting element 4 on the wiring substrate 2 are covered with the fluorescent parts 6 accommodated in the corresponding cavities 5, respectively, and the phosphor contained in the fluorescent part 6 is replaced with the semiconductor light emitting element. 4 is around.
  • each fluorescent part 6 and the semiconductor light emitting element 2 are sealed in the cavity 5 by bonding the wiring substrate 2 and the sealing member 3.
  • Each fluorescent part 6 and the semiconductor light emitting element 2 can be protected from the external environment. Therefore, it is not necessary to provide a separate protective member, and the reliability and durability of the semiconductor light emitting device 1 can be improved with a simple configuration. Further, for example, when bonding the wiring board 2 and the sealing member 3, an adhesive having excellent sealing properties is used, or after bonding the wiring board 2 and the sealing member 3, the wiring board 2 and the sealing member 3 are used.
  • the reliability and durability of the semiconductor light emitting device 1 can be further improved if the sealing performance is improved by forming a seal at the peripheral edge of the semiconductor light emitting device.
  • an epoxy resin, an acrylic resin, a silicone resin, a urethane resin, or the like can be used as the adhesive. It is more preferable to select an adhesive in consideration of the adhesion between the wiring board 2 and the sealing member 3. In addition, the adhesive prevents the external gas such as water vapor or oxygen from entering the region surrounded by the wiring substrate 2 and the sealing member 3 (that is, the cavity 5 and the fluorescent portion 6) from the outside of the semiconductor light emitting device 1. It is preferable to adjust the water vapor permeability, water vapor permeability coefficient, oxygen permeability, and oxygen permeability coefficient as follows. Specifically, when measured at 23 ° C.
  • the water vapor permeability of the adhesive is preferably 10 g / m 2 ⁇ day or less, and more preferably 5 / m 2 ⁇ day or less. It is preferably 2 / m 2 ⁇ day or less.
  • the water vapor transmission coefficient of the adhesive is preferably 10 g ⁇ mm / m 2 ⁇ day or less, and preferably 5 g ⁇ mm / m 2 ⁇ day or less. More preferably, it is 2 g ⁇ mm / m 2 ⁇ day or less.
  • the water vapor transmission coefficient of the adhesive is preferably 10 g ⁇ mm / m 2 ⁇ day or less, and preferably 5 g ⁇ mm / m 2 ⁇ day or less. More preferably, it is 2 g ⁇ mm / m 2 ⁇ day or less.
  • the oxygen permeability of the adhesive is preferably 1000 cm 3 / m 2 ⁇ day ⁇ atm or less, and 500 cm 3 / m 2 ⁇ day ⁇ atm. More preferably, it is 200 cm ⁇ 3 > / m ⁇ 2 > * day * atm or less. Then, when measured at 23 ° C.
  • the oxygen permeability coefficient of the adhesive is preferably not more than 1000cm 3 ⁇ mm / m 2 ⁇ day ⁇ atm, 100cm 3 ⁇ mm / m 2 More preferably, it is not more than day ⁇ atm, and particularly preferably not more than 10 cm 3 ⁇ mm / m 2 ⁇ day ⁇ atm. Note that if the above-described water vapor permeability, water vapor permeability coefficient, oxygen permeability, or oxygen permeability coefficient can be satisfied as a whole of the adhesive, a composite material in which another material is appropriately added to the above-described specific material is bonded. It may be used as an agent.
  • the adhesive prevents the external gas such as water vapor or oxygen from entering the region surrounded by the wiring substrate 2 and the sealing member 3 (that is, the cavity 5 and the fluorescent portion 6) from the outside of the semiconductor light emitting device 1. It is preferable to adjust the thickness as follows. Specifically, the thickness of the adhesive is preferably 0.2 mm or more, more preferably 0.5 mm or more, and particularly preferably 1.0 mm or more. In addition, it is preferable that the thickness of the said adhesive agent is 10 mm or less from a viewpoint of weight reduction and compactization of a semiconductor light-emitting device.
  • a total of 36 semiconductor light emitting elements 4 are arranged in a matrix by mounting six semiconductor light emitting elements 4 in one horizontal row on the wiring board 2.
  • 36 cavities 5 are recessed in the first surface 3 a of the sealing member 3. It is possible to make all the phosphors contained in the fluorescent parts 6 accommodated in the respective cavities 5 the same, and to obtain the same primary light, but in this embodiment, a plurality of types of phosphors are used, Multiple types of primary light are obtained.
  • a GaN-based LED that emits near-ultraviolet light is used as the semiconductor light-emitting element 4, and accordingly, a red phosphor, a green phosphor, and a blue phosphor that convert the wavelength of near-ultraviolet light to the phosphor corresponding thereto.
  • Three types of phosphors are used. Of the 36 cavities 5, 12 cavities (first cavities) 5 have fluorescent parts 6 containing red phosphors, and 12 of the remaining 24 cavities (second cavities) 5 have 12 cavities (second cavities) 5. The fluorescent portion 6 containing green phosphor is housed, and the remaining 12 cavities (third cavities) 5 contain the fluorescent portion 6 containing blue phosphor.
  • FIG. 9 is a schematic diagram illustrating an example of the arrangement of the fluorescent portions 6 in the semiconductor light emitting device 1.
  • the cavity 5 containing the fluorescent part 6 containing the red phosphor is assigned R
  • the cavity 5 containing the green part 6 containing the green phosphor is given G
  • the blue fluorescence The cavity 5 in which the fluorescent part 6 containing the body is accommodated is denoted by B.
  • the primary light emitted from each fluorescent part 6 is prevented by preventing the cavities 5 containing the fluorescent parts 6 containing the same type of phosphor in the vertical and horizontal directions from being adjacent to each other. Can be synthesized well to obtain uniform emission light.
  • the near-ultraviolet light emitted from each semiconductor light-emitting element 4 is scattered in the fluorescent part 6 covering each semiconductor light-emitting element 4 and is contained in the fluorescent part 6. To be absorbed.
  • the phosphor contained in the fluorescent portion 6 is a red phosphor, red light is emitted from the phosphor, when the green phosphor is green light, green light is emitted, and when blue phosphor is emitted, blue light is emitted from the phosphor. It is done.
  • the primary light emitted from the phosphor reaches the wall surface of the cavity 5 together with near-ultraviolet light that has not been wavelength-converted by the phosphor.
  • the near-ultraviolet light emitted from the semiconductor light-emitting element 4 has a higher reflectance than visible light in a longer wavelength region than the near-ultraviolet light, and the visible light has a higher transmission than the near-ultraviolet light.
  • the coating layer 7 having better transparency due to the property is formed on the wall surface of the cavity 5 as described above, most of the red light, green light, and blue light emitted from each phosphor is the coating layer 7.
  • the near-ultraviolet light that reaches the coating layer 7 on the wall surface of the cavity 5 without being wavelength-converted by the phosphor is reflected by the coating layer 7 to be reflected in the fluorescent part.
  • the red light, the green light, and the blue light that have reached the inside of the sealing member 3 are scattered and synthesized in the sealing member 3 and emitted as white light from the second surface 3b of the sealing member 3. .
  • the spectrum width of the primary light from the fluorescent part 6 is relatively wide, and by combining the red light, the green light, and the blue light in this way, it becomes possible to obtain outgoing light close to light having a continuous spectrum. Excellent color rendering can be ensured.
  • the coating layer 7 is provided, the opportunity to convert the wavelength of the near-ultraviolet light reflected by the coating layer 7 by the phosphor contained in the fluorescent portion 6 is obtained again.
  • the coating layer 7 As a result, compared to the case where the coating layer 7 is not provided, the amount of visible light that is wavelength-converted by the phosphor and emitted from the semiconductor light-emitting device 1 is increased, and the semiconductor light-emitting device 1 is not wavelength-converted by the phosphor. It is possible to reduce the amount of near-ultraviolet light emitted from the.
  • FIG. 10 is a schematic diagram showing a first modification of the arrangement of the fluorescent portions 6 in the semiconductor light emitting device 1 in the same manner as FIG.
  • the cavities 5 that accommodate the fluorescent portions 6 containing the same type of phosphors are arranged in a vertical row.
  • the semiconductor light emitting element 4 disposed in the cavity 5 containing the fluorescent portion 6 containing the red phosphor is not energized, and other semiconductor light emitting elements 4 are energized, green light and blue light are emitted. And the combined light is obtained.
  • the semiconductor light emitting element 4 is energized without energizing only the semiconductor light emitting element 4 corresponding to any one type of phosphor, two kinds of phosphors corresponding to the energized semiconductor light emitting element 4 are used. Outgoing light obtained by synthesizing the primary light is obtained.
  • all the semiconductor light emitting elements 4 are energized, emitted light obtained by combining red light, green light and blue light is obtained.
  • white light is obtained.
  • Output light of various chromaticities including light can be obtained.
  • the chromaticity, luminance, saturation, and color temperature of light emitted from the semiconductor light emitting device 1 can be arbitrarily adjusted by adjusting the power supplied to each semiconductor light emitting element 4. It becomes possible.
  • the kind and number of the phosphors to be included in the fluorescent part 6 are not limited to the above-described examples, and arbitrary ones can be used and are appropriately selected according to the light emission characteristics required for the semiconductor light emitting device 1. be able to.
  • a single fluorescent portion 6 it is possible for a single fluorescent portion 6 to contain a plurality of phosphors.
  • the semiconductor light-emitting element 4 is a GaN-based LED that emits near-ultraviolet light as in the present embodiment, and a red phosphor, a green phosphor, and a blue phosphor that convert the wavelength of near-ultraviolet light are mixed in a filler.
  • Each fluorescent part 6 is formed.
  • the primary light obtained from each phosphor portion 6 is also the same. That is, by adjusting the ratio of the red phosphor, the green phosphor, and the blue phosphor, it is possible to obtain the semiconductor light emitting device 1 that emits white light having a desired fixed color temperature, for example.
  • the ratio of the red phosphor, the green phosphor, and the blue phosphor is adjusted, and the primary light different between the fluorescent part 6 accommodated in a part of the plurality of cavities 5 and the fluorescent part 6 accommodated in the remaining part. Can also be obtained.
  • the ratio of the red phosphor, the green phosphor and the blue phosphor is adjusted so that the color temperature of the white light emitted from some of the fluorescent parts 6 and the color temperature of the white light emitted from the remaining fluorescent parts 6 are different. can do.
  • An example of the arrangement of the cavity 5 in which one fluorescent part 6 is accommodated and the cavity 5 in which the other fluorescent part 6 is accommodated when two types of fluorescent parts 6 are formed in this way is the second example of this embodiment. A modification is shown in FIG.
  • FIG. 11 is a schematic diagram showing a second modification of the arrangement of the fluorescent portions 6 in the semiconductor light emitting device 1.
  • the cavity 5 that houses the fluorescent part 6 that emits the primary light of the first color temperature T1 (for example, 2600K) is given W1
  • the fluorescence that emits the primary light of the second color temperature T2 for example, 9000K.
  • the cavity 5 that accommodates the portion 6 is marked with W2.
  • the primary light from each fluorescent part 6 is synthesized well by preventing the cavities 5 containing the same fluorescent part 6 from being adjacent to each other. Outgoing light with uniform temperature can be obtained.
  • positioning of the two types of cavity 5 shown in FIG. 11 is an example, Comprising: These cavities 5 can be arrange
  • the fluorescent parts 6 are arranged in the cavity 5 that houses the fluorescent part 6 that emits the primary light of the first color temperature T1.
  • the light emitted from the semiconductor light emitting device 1 becomes white light having the first color temperature T1.
  • the semiconductor light emitting element 4 disposed in the cavity 5 that houses the fluorescent portion 6 that emits the primary light of the second color temperature T2 is energized, the emitted light of the semiconductor light emitting device 1 is emitted from the second color temperature T2.
  • White light when only the semiconductor light emitting element 4 disposed in the cavity 5 that houses the fluorescent portion 6 that emits the primary light of the second color temperature T2 is energized, the emitted light of the semiconductor light emitting device 1 is emitted from the second color temperature T2.
  • the near-ultraviolet light emitted from each semiconductor light emitting element 4 is scattered in the fluorescent part 6 covering each semiconductor light emitting element 4, and the fluorescence contained in the fluorescent part 6.
  • Primary light is emitted by wavelength conversion by the body.
  • the primary light emitted from the phosphor reaches the wall surface of the cavity 5 together with near-ultraviolet light that has not been wavelength-converted by the phosphor.
  • the near-ultraviolet light emitted from the semiconductor light-emitting element 4 has a higher reflectance than visible light in a longer wavelength region than the near-ultraviolet light, and is higher than the near-ultraviolet light with respect to the visible light.
  • the coating layer 7 having good transparency due to the transmittance When the coating layer 7 having good transparency due to the transmittance is formed on the wall surface of the cavity 5, most of the primary light emitted from each phosphor transmits the coating layer 7 well and the sealing member 3, most of the near-ultraviolet light that reaches the coating layer 7 on the wall surface of the cavity 5 without being wavelength-converted by the phosphor is reflected by the coating layer 7 and returns to the fluorescent part 6.
  • the white light having the first color temperature T1 and the white light having the second color temperature T2 that have reached the inside of the sealing member 3 are scattered and combined in the sealing member 3, and the second light of the sealing member 3 is combined.
  • the light is emitted from the surface 3b as emitted light.
  • the spectral width of the primary light from the fluorescent portion 6 is relatively wide, and in this way, the white light having the first color temperature T1 and the white light having the second color temperature T2 are combined, and in this case as well, it is continuous. Output light close to light having a spectrum can be obtained, and excellent color rendering can be ensured.
  • the sealing member 3 has the coating layer 7, there is an opportunity for wavelength conversion of near-ultraviolet light reflected by the coating layer 7 by the phosphor contained in the fluorescent portion 6. Get again.
  • the amount of visible light that is wavelength-converted by the phosphor and emitted from the semiconductor light-emitting device 1 is increased, and the semiconductor light-emitting device 1 is not wavelength-converted by the phosphor. It is possible to reduce the amount of near-ultraviolet light emitted from the.
  • the emission color of the semiconductor light emitting device 1 can be varied in various ways.
  • Light with a wide spectrum from near ultraviolet light to near infrared light such as illumination light from warm white to bulb color, CIE standard light (A, B, C, and D65), light with sunlight (natural light) spectrum, etc. It is possible to obtain light.
  • the primary light wavelength is preferably a combination of 400 nm to 490 nm (blue) and 560 nm to 590 nm (yellow), preferably a combination of 480 nm to 500 nm (blue green) and 580 nm to 700 nm (red).
  • a combination of 490 nm (blue) and 560 nm to 590 nm (yellow) is preferred.
  • the primary light wavelengths are combinations of 430 nm to 500 nm, 500 nm to 580 nm, and 580 nm to 700 nm, combinations of 430 nm to 480 nm, 480 nm to 500 nm, and 580 nm to 700 nm, 430 nm to 500 nm, 560 nm to 590 nm, and 590 nm to 590 nm, respectively.
  • a combination of 700 nm is preferred.
  • combinations of 430 nm to 500 nm, 500 nm to 580 nm, and 580 nm to 700 nm are preferable.
  • the primary light wavelengths are combinations of 430 nm to 500 nm, 500 nm to 580 nm, 580 nm to 620 nm, and 620 nm to 700 nm, combinations of 430 nm to 480 nm, 480 nm to 500 nm, 500 nm to 580 nm, and 580 nm to 700 nm, respectively.
  • Combinations of 480 nm, 480 nm to 500 nm, 560 nm to 590 nm, and 590 nm to 700 nm are preferred.
  • combinations of 430 nm to 500 nm, 500 nm to 580 nm, 580 nm to 620 nm, and 620 nm to 700 nm are preferable.
  • Combinations of primary light wavelengths of 430 nm to 480 nm, 480 nm to 500 nm, 500 nm to 580 nm, 580 nm to 620 nm, and 620 nm to 700 nm are preferable.
  • an electric circuit for appropriately supplying electric power to each semiconductor light emitting element 4 is configured in order to obtain desired emitted light by the primary light emitted from the fluorescent portion 6. .
  • such an electric circuit is realized by the wiring pattern of the wiring board 2 as described above.
  • the wiring pattern of the wiring board 2 is used. Is connected to the controller. Note that such a controller can be provided on the wiring board 2.
  • the manufacturing process can be simplified, and the apparatus can be used when the semiconductor light emitting device 1 is applied to a lighting device or an image display device. A compact configuration is possible.
  • the electrical circuit of the semiconductor light emitting device 1 can be variously configured according to the configuration of the semiconductor light emitting device 1, the required light emission characteristics, and the like.
  • FIG. 9 shows an example of the arrangement of the fluorescent part 6 of this embodiment.
  • FIG. 12 shows an example of an electric circuit when three types of fluorescent parts 6 are provided as in the semiconductor light emitting device 1 of FIG. 10 showing the first modification.
  • the semiconductor light-emitting element located in the cavity 5 containing the fluorescent part 6 containing the red phosphor is denoted by reference numeral 4r
  • a semiconductor light emitting element located in the cavity 5 containing the fluorescent part 6 containing the blue phosphor is denoted by 4b.
  • the semiconductor light emitting elements 4r corresponding to the fluorescent part 6 containing a red phosphor are connected in series.
  • the most anode side of these semiconductor light emitting elements 4r is connected to a power supply line for supplying the power supply voltage Vcc to the ground via a current adjusting resistor Rr, and the most cathode side is connected to the collector of the transistor Qr. Yes.
  • the emitter of the transistor Qr is connected to the ground.
  • the transistor Qr can be switched between an on state and an off state in accordance with a base signal.
  • each semiconductor light emitting element is connected via a resistor Rr from a power supply line that supplies a power supply voltage Vcc.
  • a drive current flows through 4r, and each semiconductor light emitting element 4r emits light.
  • the resistor Rr is provided to determine a drive current supplied to each semiconductor light emitting element 4r when the transistor Qr is turned on.
  • the voltage applied to the resistor Rr is a voltage obtained by subtracting the sum of the forward voltages Vf of the semiconductor light emitting element 4r and the saturation voltage between the collector and the emitter of the transistor Qr from the power supply voltage Vcc. Therefore, the resistance value of the resistor Rr can be obtained from the voltage applied to the resistor Rr at this time and the desired current value that flows through the semiconductor light emitting element 4r when the transistor Qr is turned on.
  • a semiconductor light emitting element 4g corresponding to the fluorescent part 6 containing the green phosphor is also connected in series, and similarly to the semiconductor light emitting element 4r, the most anode side of these semiconductor light emitting elements 4g supplies the power supply voltage Vcc to the ground.
  • the power supply line is connected through a current adjusting resistor Rg, and the most cathode side is connected to the collector of the transistor Qg.
  • the emitter of the transistor Qg is connected to the ground, and the transistor Qg operates in accordance with the base signal in the same manner as the transistor Qr.
  • each semiconductor light emitting element 4g emits light.
  • the resistance value of the resistor Rg is also obtained based on the total forward voltage Vf of the semiconductor light emitting element 4g and the collector-emitter saturation voltage of the transistor Qg, as in the case of the resistor Rr.
  • a semiconductor light emitting element 4b corresponding to the fluorescent part 6 containing the blue phosphor is also connected in series, and, like the semiconductor light emitting element 4r, the most anode side of these semiconductor light emitting elements 4b supplies the power supply voltage Vcc to the ground.
  • the power supply line is connected via a current adjusting resistor Rb, and the most cathode side is connected to the collector of the transistor Qb.
  • the emitter of the transistor Qb is connected to the ground, and the transistor Qb operates in accordance with the base signal in the same manner as the transistor Qr.
  • each semiconductor light emitting element 4b emits light.
  • the resistance value of the resistor Rb is also obtained based on the total forward voltage Vf of the semiconductor light emitting element 4b and the saturation voltage between the collector and emitter of the transistor Qb, as in the case of the resistor Rb.
  • the transistor Qr, the transistor Qg, the transistor Qb, and the resistors Rr, Rg, and Rb constitute a controller of the semiconductor light emitting device 1 together with the PWM controller 8.
  • the bases of the transistor Qr, the transistor Qg, and the transistor Qb are electrically connected to the PWM control unit 8 so as to receive a drive pulse signal output from the PWM control unit 8.
  • the drive pulse signal output from the PWM controller 8 is a variable pulse width signal. When the drive pulse signal is at the H level, the transistor Qr, transistor Qg, or transistor Qb that has received the drive pulse signal is turned on. When the drive pulse signal is at the L level, the transistor Qr, transistor Qg, or transistor Qb that has received the drive pulse signal is turned off.
  • FIG. 13 shows the current flowing through the semiconductor light emitting element 4r, the semiconductor light emitting element 4g, and the semiconductor light emitting element 4b when such a drive pulse signal is sent from the PWM controller 8 to the bases of the transistor Qr, transistor Qg, and transistor Qb.
  • the drive pulse signals are all sent from the PWM control unit 8 with a period to, and the current of each semiconductor light emitting element also flows in a pulse form with the period to as shown in FIG. .
  • the semiconductor light emitting element 4r emits light when the current Ir flows, the semiconductor light emitting element 4g emits light when the current Ig flows, and the semiconductor light emitting element 4b emits light when the current Ib flows.
  • the green light emission time tg is the shortest
  • the blue light emission time tb is the longest
  • the red light emission time tr is between them.
  • the emission intensity of red light, green light and blue light is determined by the respective emission times
  • the emission color of the semiconductor light emitting device 1 is determined by the emission intensity of red light, green light and blue light.
  • a desired emission color can be obtained by individually variably adjusting the pulse width of the driving pulse signal to the transistor Qr, the transistor Qg, and the transistor Qb.
  • the drive pulse signals for the transistors Qr, Qg, and Qb are sent at the same timing.
  • the timing of sending the drive pulse signal is not limited to this. It is also possible to send the messages in different ways. In this case, when emitting light by combining red light, green light, and blue light, each semiconductor light emitting element cannot emit light continuously, but power is distributed to each semiconductor light emitting element from a power source. Therefore, the power supply capacity can be reduced. In this case, the current adjusting resistors Rr, Rg, and Rb can be shared.
  • the semiconductor light emitting element 4r, the semiconductor light emitting element 4g, and the semiconductor light emitting element 4b are connected in series.
  • the connection method is not limited to this, and the semiconductor light emitting element 4r is not limited thereto.
  • parallel connection and series connection may be used together, or all of them may be connected in parallel.
  • the transistor Qr, the transistor Qg, and the transistor Qb are each turned on and off by the drive pulse signal of the PMW control unit 8, but instead, the transistor Qr is turned on by the drive pulse signal.
  • the currents flowing through the transistor Qg and the transistor Qb may also be controlled.
  • the resistors Rr, Rg, and Rb for adjusting current are not necessary.
  • constant current circuits may be inserted in place of the resistors Rr, Rg, and Rb, respectively, and the transistors Qr, Qg, and Qb may be turned on and off as in the example of FIG.
  • FIG. 14 shows an electric circuit in the case of providing.
  • reference numeral 4w1 denotes a semiconductor light emitting element positioned in the cavity 5 that houses the fluorescent part 6 that emits the primary light of the first color temperature T1, and the fluorescent part 6 that emits the primary light of the second color temperature T2.
  • the semiconductor light emitting element located in the accommodated cavity 5 is denoted by reference numeral 4w2.
  • the collectors of the transistors Q1 and Q2 are connected to a power supply line that supplies the power supply voltage Vcc to the ground, the emitter of the transistor Q1 is connected to the collector of the transistor Q3, and the emitter of the transistor Q2 is Each is connected to the collector of the transistor Q4.
  • the emitters of the transistors Q3 and Q4 are each connected to the ground.
  • the semiconductor light emitting element 4w1 corresponding to the fluorescent part 6 that emits the primary light of the first color temperature T1 is connected in series, and the anode side is connected to the connection point between the emitter of the transistor Q1 and the collector of the transistor Q3, The cathode side is connected to one end side of the current adjusting resistor Rw.
  • the semiconductor light emitting element 4w2 corresponding to the fluorescent part 6 that emits the primary light of the second color temperature T2 is also connected in series, and the most cathode side is connected to the connection point between the emitter of the transistor Q1 and the collector of the transistor Q3.
  • the anode side is connected to one end side of the resistor Rw for current adjustment like the semiconductor light emitting element 4w1.
  • the other end of the resistor Rw is connected to a connection point between the emitter of the transistor Q2 and the collector of the transistor Q4.
  • All of the four transistors Q1 to Q4 can be switched between an on state and an off state in accordance with the respective base signals, and the transistors Q1 and Q4 are synchronized while the transistors Q2 and Q3 are in the off state.
  • the transistor Q2 and the transistor Q3 are turned on synchronously while the transistor Q1 and the transistor Q4 are turned off.
  • a driving current flows from the power supply line that supplies the power supply voltage Vcc to each semiconductor light emitting element 4w1 through the transistor Q1, the resistor Rw, and the transistor Q4.
  • Each semiconductor light emitting element 4w1 emits light.
  • the resistor Rw is provided to determine the drive current supplied to the semiconductor light emitting element 4w1 or the semiconductor light emitting element 4w2.
  • the voltage applied to the resistor Rw is the sum of the forward voltage Vf of each semiconductor light emitting element 4w1 or each semiconductor light emitting element 4w2 from the power supply voltage Vcc, the saturation voltage between the collector and emitter of the transistor Q1, and the collector and emitter of the transistor Q4.
  • the voltage is obtained by subtracting the sum of the saturation voltages between them. Therefore, the resistance value of the resistor Rw is obtained from the voltage applied to the resistor Rw at this time and the desired current value that flows through the semiconductor light emitting element 4w1 and the semiconductor light emitting element 4w2 when the transistor Q1 and the transistor Q4 are in the on state.
  • the electric characteristics of the four transistors Q1 to Q4 are substantially the same. Instead of the sum of the saturation voltage between the collector and the emitter of the transistor Q1 and the saturation voltage between the collector and the emitter of the transistor Q4, the transistor Q2 The sum of the saturation voltage between the collector and the emitter and the saturation voltage between the collector and the emitter of the transistor Q3 may be used.
  • the four transistors Q1 to Q4 and the resistor Rw together with the PWM controller 9 constitute a controller of the semiconductor light emitting device 1.
  • the bases of the four transistors Q1 to Q4 are electrically connected to the PWM control unit 9 so as to receive drive pulse signals output from the PWM control unit 9.
  • the drive pulse signal output from the PWM controller 9 is a signal having a variable pulse width, and when the drive pulse signal is at the H level, the drive pulse signal is received from the four transistors Q1 to Q4. Is turned on and the drive pulse signal is at the L level, the transistor that has received the drive pulse signal among the four transistors Q1 to Q4 is turned off.
  • FIG. 15 schematically shows an example of the operating states of the transistors Q1 to Q4 and the current flowing through the resistor Rw when the drive pulse signal is sent from the PWM controller 9 to the bases of the four transistors Q1 to Q4, respectively. It is a time chart shown.
  • the current flowing through the resistor Rw corresponds to the current flowing through the semiconductor light emitting element 4w1 or the semiconductor light emitting element 4w2
  • the positive current shown in FIG. 15 corresponds to the drive current I1 flowing through the semiconductor light emitting element 4w1
  • the negative current corresponds to the drive current I2 flowing through the semiconductor light emitting element 4w2.
  • the drive pulse signals are all sent from the PWM control unit 9 at a period t0.
  • the current of each semiconductor element is also pulsed at a period t0 as shown in FIG. Flowing.
  • the transistor Q1 and the transistor Q4 are turned on by the drive pulse signal from the PWM controller 9, the transistor Q2 and the transistor Q3 are turned off, and the semiconductor light emitting element 4w1 is turned on as described above. While the drive current I1 flows and the drive current I1 flows, the semiconductor light emitting element 4w1 emits light.
  • the transistor Q2 and the transistor Q3 are turned on by the drive pulse signal from the PWM control unit 9, the transistors Q1 and Q4 are turned off, and the drive current I2 is supplied to the semiconductor light emitting element 4w2 as described above.
  • the semiconductor light emitting element 4w2 emits light while the drive current I2 flows.
  • the light emission time t1 of the semiconductor light emitting element 4w1 is longer than the light emission time t2 of the semiconductor light emitting element 4w2, and the sum of the light emission time t1 and the light emission time t2 is the period t0.
  • the emission intensity of the white light at the color temperature T1 and the white light at the color temperature T2 is determined by the respective emission times, and is emitted from the semiconductor light emitting device 1 by the emission intensity of the white light at the color temperature T1 and the white light at the color temperature T2. Since the color temperature of the white light to be determined is determined, white light having a desired color temperature can be obtained by variably adjusting the ratio of the pulse width t1 and the pulse width t2 in the drive pulse signal output from the PWM controller 9. It becomes.
  • the semiconductor light emitting element 4w1 and the semiconductor light emitting element 4w2 are connected in series.
  • the connection method is not limited to this, and the semiconductor light emitting element 4w1 and the semiconductor light emitting element 4w2 are connected.
  • parallel connection and series connection may be used together, or all may be connected in parallel.
  • the four transistors Q1 to Q4 are turned on and off by the drive pulse signal of the PMW controller 9, but instead, the transistors Q1 to Q4 flow through the drive pulse signal.
  • the current may also be controlled.
  • the resistor Rw for adjusting the current is not necessary.
  • a constant current circuit may be inserted in place of the resistor Rw, and the four transistors Q1 to Q4 may be turned on and off as in the example of FIG.
  • the transistors Q2 and Q3 are turned off when the transistors Q1 and Q4 are on, and the transistors Q1 and Q4 are turned off when the transistors Q2 and Q3 are on.
  • a period in which all of the four transistors Q1 to Q4 are off may be provided.
  • each semiconductor light emitting element can emit light simultaneously or continuously.
  • the semiconductor light-emitting device 1 of this embodiment includes a step for forming the cavity 5 in the sealing member 3, a step for accommodating the fluorescent portion 6 in the cavity 5, and a semiconductor light-emitting element on the wiring substrate 2.
  • the manufacturing process includes a process for mounting 4 and a process for bonding the wiring substrate 2 to which the semiconductor light emitting element 4 is mounted and the sealing member 3 in which the fluorescent portion 6 is housed in the cavity 5 as main manufacturing processes. Manufactured by the method.
  • the cavity 5 is formed in the sealing member 3.
  • the material of the sealing member 3 is not limited as long as the gist of the present invention is not changed. Therefore, the method for forming the cavity 5 in the sealing member 3 may be appropriately selected according to the material of the sealing member 3 and the specifications of the cavity 5 as long as the gist of the present invention is not changed.
  • the sealing member 3 made of glass is used.
  • the cavity 5 is formed in the sealing member 3 by wet etching. Below, the formation method of the cavity 5 is demonstrated using FIG.
  • a glass material having a first surface 3 a and a second surface 3 b and having a plate shape is prepared as the sealing member 3.
  • a masking process is performed over the entire sealing member 3 using a masking material 10 that is resistant to the etching solution.
  • a masking material 10 that is resistant to the etching solution.
  • at least the first surface 3 a of the sealing member 3 is masked by screen printing, and the first surface of the sealing member 3 is formed at the position where the cavity 5 is formed according to the opening shape of the cavity 5.
  • the sealing member 5 is immersed in an etching solution prepared by containing hydrogen fluoride and sulfuric acid in water for a predetermined time, thereby sealing as shown in FIG.
  • the cavity 5 is recessed in the first surface 3 a of the member 3.
  • the sealing member 3 is washed to remove the etching solution, and the masking covering the sealing member 3 is further removed, so that the cavity 5 is provided as shown in FIG.
  • the obtained sealing member 3 is obtained.
  • the cavity 5 has a higher reflectance on the wall surface of the cavity 5 than the light wavelength-converted by the fluorescent part 6 with respect to the light emitted from the semiconductor light-emitting element 4.
  • a coating layer 7 is obtained by forming an interference film made of a multilayer dielectric laminated film in which a plurality of refractive index layers and low refractive index layers are alternately laminated on the wall surface of the cavity 5.
  • the near-ultraviolet light emitted from the semiconductor light emitting element 4 has a higher reflectance than visible light in a wavelength region longer than the near-ultraviolet light, and has a higher transmittance than the near-ultraviolet light with respect to the visible light.
  • the coating layer 7 having good transparency is formed, a thin film made of TiO 2 as a high refractive index layer and a thin film made of SiO 2 as a low refractive index layer are alternately formed in the cavity 5 by vapor deposition or sputtering.
  • the coating layer 7 is formed by laminating a plurality of times.
  • Such a coating layer 7 can also be formed on the second surface 3b of the sealing member 3 as described above. In this case, the coating layer 7 can also be formed before the cavity 5 is formed. . Further, when the material of the sealing member 3 itself has the same function as that of the coating layer 7, the process for forming the coating layer 7 as described above is not necessary.
  • the wet etching employed in the present embodiment when forming the cavity 5 is not limited to the above-described method, and a masking process method, the type of etching solution, and the like can be appropriately selected. For example, after covering the entire sealing member 3 with a metal such as chromium by sputtering or the like, only the metal coating at the position where the cavity 5 is formed is removed according to the shape of the opening of the cavity 5 and then etching with an etching solution is performed. You may go. Further, instead of wet etching, methods such as dry etching, laser beam irradiation, sand blasting, and grinding can be used.
  • each of the cavities 5 of the sealing member 3 obtained in this way is filled with a fluorescent part material 6 ′ having a fluidity by mixing a phosphor and a filler, thereby forming the fluorescent part 6.
  • a fluorescent part material 6 ′ having a fluidity by mixing a phosphor and a filler, thereby forming the fluorescent part 6.
  • various methods can be used for filling the fluorescent part material 6 ′.
  • the fluorescent part material 6 ′ is used by using a squeegee.
  • the fluorescent part 6 is formed by filling each cavity 5 with the fluorescent part material 6 ′. Below, the formation process of such a fluorescence part 6 is demonstrated using FIG.
  • a metal mask (covering material) 11 having an opening corresponding to each cavity 5 on the first surface 3a of the sealing member 3 in which the cavity 5 is formed.
  • each cavity 5 is exposed and the periphery of each cavity 5 is covered with a metal mask 11.
  • the fluorescent part material 6 ′ is placed on the metal mask 11, and the squeegee 12 is slid in the direction of the arrow A shown in FIG.
  • Each cavity 5 is filled with the fluorescent part material 6 ′ through the opening of the metal mask 11.
  • the metal mask 11 that is in close contact with the sealing member 3 is removed, thereby removing the cavity 5.
  • the fluorescent part 6 accommodated in the is formed. At this time, depending on the thickness of the used metal mask 11, the fluorescent part 6 may rise from the first surface 3 a of the sealing member 3.
  • the cavity 5 that accommodates the same type of fluorescent part 6 is left, and the other cavities 5 are provided.
  • the cavity 5 that is not covered with the metal mask 11 is filled with the fluorescent part material 6 ′ as described above, for each type of fluorescent part 6. It suffices to repeat the number of types of part 6.
  • the fluorescent part material 6 ′ is applied to the sealing member 3 using a squeegee so that each cavity 5 is filled with the fluorescent part material 6 ′ to form the fluorescent part 6.
  • the method of applying the fluorescent part material 6 ′ is not limited to this, and may be performed by printing such as screen printing. Further, instead of coating, the fluorescent part 6 may be formed by filling each cavity 5 with the fluorescent part material 6 ′ by potting.
  • the semiconductor light emitting device 1 is obtained by bonding the wiring substrate 2 on which the semiconductor light emitting element 4 is mounted and the sealing member 3 in which the fluorescent portion 6 is accommodated in each cavity 5 as described above.
  • the mounting of each semiconductor light emitting element 4 to the wiring board 2 prior to such a bonding step can be performed by a generally well-known method, and thus detailed description is omitted here, but this embodiment In this case, the semiconductor light emitting element 4 is mounted on the wiring board 2 by flip chip mounting as described above.
  • the mounting of the semiconductor light emitting element 4 to the wiring board 2 is not limited to this, and an appropriate method can be selected according to the type and structure of the semiconductor light emitting element 4. Bonding, single wire bonding, or the like can also be employed. Below, the manufacturing process for joining the wiring board 2 and the sealing member 3 is demonstrated using FIG.
  • each cavity 5 the sealing member 3 in which the fluorescent portion 6 is accommodated in each cavity 5 is fixed so that the first surface 3a faces upward. Then, an adhesive (not shown) is applied to the first surface 3a of the sealing member 3 from the outer edge portion to a predetermined range.
  • the surface where the semiconductor light emitting element 4 is mounted faces upward and faces the first surface 3a of the sealing member 3 above the sealing member 3.
  • the wiring board 2 is positioned. At this time, each semiconductor light-emitting element 4 is positioned directly above the corresponding cavity 5, that is, for example, so that the center of the cavity 5 and the center of the semiconductor light-emitting element 4 when viewed in a plan view coincide with each other.
  • the wiring board 2 and the sealing member 3 are aligned.
  • the wiring board 2 is moved in the direction of arrow B shown in FIG. 18B, and the wiring board 2 is joined to the sealing member 3 as shown in FIG.
  • the semiconductor light emitting elements 4 mounted on the wiring board 2 are positioned in the corresponding cavities 5, and the semiconductor light emitting elements 4 are covered by the fluorescent portions 6 accommodated in the cavities 5.
  • the fluorescent part 6 overflowing from the cavity 5 due to the entry of the semiconductor light emitting element 4, or the fluorescent part rising from the first surface 3 a of the sealing member 3 when the fluorescent part 6 is accommodated in the cavity 5 as described above. 6 is accommodated in a recess 2 a formed in the wiring board 2 at the mounting position of each semiconductor light emitting element 4.
  • the filler that forms the fluorescent part 6 together with the phosphor has fluidity at least until the above-described joining step is completed, and in this embodiment, a thermosetting resin is used. Therefore, after bonding the wiring board 2 and the sealing member 3 as shown in FIG. 18C, the semiconductor light emitting device 1 is heated at a predetermined temperature (for example, 150 ° C.) for a predetermined time (for example, 1 hour). Thus, the fluorescent part 6 accommodated in each cavity 5 is cured.
  • the filler is not limited to the thermosetting resin, and various curable materials such as a photocurable resin (UV curable resin) can be used. Moreover, it is also possible to enclose the fluorescent part 6 in the cavity 5 while maintaining fluidity without curing.
  • the semiconductor light emitting device 1 of the present embodiment can be obtained. Therefore, it is not necessary to separately attach the reflector and the partition to the wiring board as in the prior art, or to form the annular side wall and the partition wall on the wiring board, and the manufacturing process can be simplified. Further, since the sealing member 3 also has a function of protecting the fluorescent portion 6 and the semiconductor light emitting element 4 from the surrounding environment, it is not necessary to attach a separate protective member, and the manufacturing process is further simplified.
  • the application of the semiconductor light-emitting device of the present invention is not particularly limited, and can be applied to various fields where general light-emitting devices are used.
  • a light source for various illumination devices such as an illumination lamp as a substitute for a conventional lamp such as an incandescent lamp and a fluorescent lamp, a thin illumination, and an image such as a liquid crystal display
  • the semiconductor light-emitting device can obtain light of various chromaticities, saturations and luminances, and can ensure excellent color rendering, so that it is suitable as a light source for lighting devices and image display devices. It is.
  • the semiconductor light emitting device of the present invention is excellent in reliability and durability because the fluorescent part and the semiconductor light emitting element are protected by the sealing member, and a long-life semiconductor light emitting device can be obtained. In view of being able to do so, it is suitable as a light source for an illumination device or an image display device.
  • the semiconductor light-emitting device of this invention when using the semiconductor light-emitting device of this invention as a light source of an illuminating device or an image display apparatus, a single semiconductor light-emitting device may be used and a several semiconductor light-emitting device may be used.
  • a single semiconductor light-emitting device may be used and a several semiconductor light-emitting device may be used.
  • the application example at the time of using the semiconductor light-emitting device of this invention as a light source of an illuminating device is demonstrated.
  • Passenger aircraft cabin lights play an important role in the mental stability and alerting of passengers and passengers. That is, it is preferable to obtain illumination light suitable for the physical condition or mental condition of the occupant or passenger, or the surrounding environment by changing the color temperature, chromaticity, brightness, saturation, etc. of the light emitted from the cabin lamp. For example, when passengers get on and off, the ratio of blue is increased to increase tension and brightness, and when relaxing or sleeping, white light with a relatively low color temperature (for example, 2700 K), white at around 3000 K when eating It is preferable to use light and turn on or blink in red when alerting in an emergency or the like.
  • a relatively low color temperature for example, 2700 K
  • the light emitted from the semiconductor light-emitting device of the present invention can change the color temperature, chromaticity, luminance, and saturation in various ways while ensuring good color rendering, so that an illumination device that satisfies such requirements can be obtained. Is possible. Moreover, since the semiconductor light-emitting device of this invention is excellent in reliability and durability as mentioned above, the service fall by the malfunction of a guest room lamp can also be suppressed.
  • an illumination device using the semiconductor light-emitting device of the present invention as a light source is used as a cabin lamp, and can be changed continuously or stepwise from cold color illumination light to white illumination light to warm color illumination light, so that the mental state becomes higher.
  • the illumination light may be changed to the cold color side.
  • the semiconductor light emitting device of the present invention can be used for various display devices of automobiles as well as cabin lights.
  • a semiconductor light-emitting device whose emission color changes in conjunction with the air conditioner in the passenger compartment is provided at the air outlet of the air conditioner, etc., which emits warm color light when the air conditioning temperature is high, and cold color light when the air conditioning temperature is low So that the air conditioning temperature of the air conditioner can be grasped sensuously.
  • the semiconductor light emitting device of the present invention can be used as a display device in which the display color, the color temperature, and the like vary depending on the operating state of the in-vehicle device.
  • the present invention is not limited to the above embodiment, and various modifications can be made without changing the gist of the present invention. It is.
  • the structure of the cavity 5 and the fluorescent part 6 can be changed as follows.
  • modified examples of the structures of the cavity 5 and the fluorescent part 6 will be described with reference to FIGS.
  • symbol is attached
  • a cavity 15 having a flat surface and a substantially rectangular cross section is shown. May be formed. That is, the shape of the cavity 15 is a substantially rectangular parallelepiped shape or a substantially cubic shape. With such a structure, the side surface of the cavity 15 is substantially parallel to the side surface of the semiconductor light emitting element 4, and the bottom surface of the cavity 15 is substantially parallel to the upper and lower surfaces of the semiconductor light emitting element 4.
  • the distance from the side surface and the upper surface of the semiconductor light emitting element 4 to the surface of the cavity 15 is substantially equal, and a fluorescent portion having a uniform thickness is formed around the semiconductor light emitting element 4 (side surface and upper surface).
  • the upper surface of the semiconductor light emitting element 4 is the surface opposite to the surface bonded to the wiring substrate 2, and the lower surface is the surface bonded to the wiring substrate 2.
  • a cavity 25 or 15 having a semi-elliptical cross section may be formed. That is, the shape of the cavity 25 or 15 is a shell shape.
  • a cavity 35 or 15 having a triangular cross-sectional shape may be formed. That is, the shape of the cavity 35 or 15 is conical or pyramidal.
  • a cavity 45 having a rectangular cross-sectional shape may be formed. That is, the shape of the cavity 45 is a columnar shape or a prism shape.
  • the space around the upper surface of the cavity 45 shown in FIG. 22 is larger than the space around the side surface of the semiconductor light emitting element 4 as compared with the cavity 15 shown in FIG. For this reason, in the semiconductor light emitting device 1 shown in FIGS. 22A and 22B, the thickness of the fluorescent portion located around the upper surface of the semiconductor light emitting element 4 is increased, and the thickness of the fluorescent portion located around the side surface is increased. Becomes smaller. 20 and FIG. 22, since the cavity has a vertically long shape, the light emitted from the semiconductor light emitting element is transmitted to the side surface of the cavity (the boundary between the fluorescent part and the sealing member). By reflecting on the surface, the light distribution of the light emitted from the cavity portion can be increased on the upper surface.
  • the side surface of the cavity (the boundary surface between the fluorescent portion and the sealing member) is not perpendicular to the bottom surface. It is possible to prevent total reflection at the boundary surface between the fluorescent part and the sealing member) and improve extraction of light emitted from the cavity part.
  • a fluorescent part 16 having a laminated structure may be formed.
  • the fluorescent part 6 is a single layer, but the fluorescent part 16 is a laminate.
  • a fluorescent part 16 can be obtained by laminating a plurality of layers containing at least one kind or plural kinds of phosphors.
  • the phosphor is contained in each layer uniformly or with a continuous concentration distribution.
  • the order of stacking the phosphor-containing layers is not limited, but a red phosphor-containing layer 16r is provided so as to cover the semiconductor light emitting element 4, and a green phosphor-containing layer 16g is provided so as to cover the red phosphor-containing layer 16r. Is preferably provided, and a blue phosphor-containing layer 16b is provided so as to cover the green phosphor-containing layer 16g, and the blue phosphor-containing layer 16b is in contact with the surface of the cavity.
  • the reason for stacking in this order is that when the phosphor-containing layer whose wavelength after conversion by the phosphor is a short wavelength is arranged on the semiconductor light emitting element 4 side, the light of the wavelength after party conversion is more This is because the phosphor efficiency of the phosphor-containing layer on the surface side (that is, the cavity side) may contribute to excitation of the phosphor, resulting in a decrease in luminous efficiency. Therefore, by using the laminated structure as described above, desired white light can be obtained while maintaining good luminous efficiency.
  • the specific structure of the fluorescent part 16 is not limited to these, and the fluorescent part 16 may be configured using a layer containing a phosphor that converts the wavelength into an arbitrary wavelength region.
  • the film thickness of the fluorescent part 16 (when the phosphor-containing layer is a laminate, the film thickness of the entire laminate) is usually 20 ⁇ m or more, preferably 50 ⁇ m or more, and more preferably 75 ⁇ m or more. Moreover, it is 3000 micrometers or less normally, Preferably it is 2000 micrometers or less, More preferably, it is 1500 micrometers or less. Thereby, the wavelength of light emitted from the semiconductor light emitting element 4 can be efficiently converted.
  • each fluorescent portion 16 is not particularly limited as long as the object and effect of the present invention are not impaired, and is usually selected as appropriate according to the size of the semiconductor light emitting element 4, and among them, the projected area is 5 mm. is preferably 2 or less, more preferably 1 mm 2 or less, more preferably 0.25 mm 2 or less. By setting it to the above value or less, the semiconductor light emitting element 4 can be highly integrated in the semiconductor light emitting device 1 and a large luminous flux can be obtained.
  • the projection area of the fluorescent part 16 referred to in the present invention means an area of a shape in which each fluorescent part 16 is projected from the light extraction surface side of the semiconductor light emitting device 1.
  • the plurality of semiconductor light emitting elements 4 are included in the fluorescent portion 16, it is preferable to increase the size of the fluorescent portion 16 according to the number.
  • the fluorescent part 16 is a sealing member 3 for sealing the semiconductor light emitting element 4 and the wiring substrate 2, and at least a part or all of the light emitted from the semiconductor light emitting element 4. And an inorganic or organic phosphor that converts the wavelength to an arbitrary wavelength.
  • the fluorescent part 16 may contain a thixotropic agent, a refractive index adjusting agent, a light diffusing agent, or the like as necessary.
  • the distance between each fluorescence part 16 is separated so that absorption of the light mutually emitted between adjacent semiconductor light emitting elements may be reduced like the distance between each fluorescence part 6. .
  • the gap between the fluorescent portions is 50 ⁇ m or more, preferably 100 ⁇ m or more, more preferably 200 ⁇ m or more, and preferably 1.5 mm or less from the viewpoint of integration.
  • the semiconductor light emitting element 4 is covered with the fluorescent part containing the phosphor, but the present invention is not limited to such a structure, and other structures may be used.
  • the semiconductor light emitting element 4 may be covered with a covering member 50 that does not contain a phosphor, and the fluorescent portion 6 may be provided so as to cover the covering member 50.
  • the covering member 50 is made of a material that can transmit light emitted from the semiconductor light emitting element 4, and is generally made of a material obtained by removing the phosphor from the fluorescent portion described above. More specifically, the covering member 50 may be a translucent resin such as an acrylic resin, an epoxy resin, a silicone resin, a urethane resin, and a fluororesin.
  • the fluorescent portion 6 is not affected by the heat generated in the semiconductor light emitting element 4, and the light emission characteristics and reliability of the semiconductor light emitting device 1 itself are improved. Can be achieved.
  • the fluorescent part 6 is formed on the covering member 50.
  • the fluorescent part 6 includes a red fluorescent substance containing layer 16r, a green fluorescent substance containing layer 16g, and a blue fluorescent substance containing layer 16b. The portion 16 may be formed.
  • the semiconductor light emitting element 4 is covered with the covering member 50, and the covering member 50 is further covered with the fluorescent portion 6.
  • the present invention is not limited to such a laminated structure.
  • the formation positions of the covering member 50 and the fluorescent part 6 or the fluorescent part 16 may be interchanged. That is, the semiconductor light emitting element 4 may be covered with the fluorescent part 6 or the fluorescent part 16, and the fluorescent part 6 or the fluorescent part 16 may be further covered with the covering member 50.
  • the semiconductor light emitting device of the present invention suppresses uneven color in the emitted light and can adjust the chromaticity, saturation, and luminance of the emitted light in various and easy ways, for example, various illuminations such as an illumination lamp and a thin illumination It can be used as a light source for a device and a light source (backlight, front light, etc.) for an image display device such as a liquid crystal display.
  • various illuminations such as an illumination lamp and a thin illumination It can be used as a light source for a device and a light source (backlight, front light, etc.) for an image display device such as a liquid crystal display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Led Device Packages (AREA)

Abstract

Disclosed are a semiconductor light emitting device in which the production process can be simplified and high reliability and durability can be maintained and a production method therefor. Specifically disclosed are: a semiconductor light emitting device equipped with a circuit board, a plurality of semiconductor light emitting elements that are mounted on the circuit board and have light emitting properties of a prescribed wavelength range, a sealing member that has prescribed optical transmission properties, is formed in a sheet shape with a first surface and a second surface on the opposite side of said first surface, and has a plurality of cavities depressed in positions on the aforementioned first surface corresponding to the aforementioned semiconductor light emitting elements, and fluorescent sections comprising fluorescent bodies that are filled into each of the aforementioned plurality of cavities and convert the wavelength of at least a portion of the light emitted by the semiconductor light emitting elements, wherein each of the plurality of semiconductor light emitting elements are covered by the fluorescent sections in the cavities corresponding to said semiconductor light emitting elements by joining the first surface of the sealing member to one surface of the circuit board upon which the aforementioned semiconductor light emitting elements have been mounted; and a production method therefor.

Description

半導体発光装置及び半導体発光装置の製造方法Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
 本発明は半導体発光素子を用いた半導体発光装置に関し、特に半導体発光素子が発する光を蛍光体により波長変換して得た光を発する半導体発光装置及びその製造方法に関する。 The present invention relates to a semiconductor light-emitting device using a semiconductor light-emitting element, and more particularly to a semiconductor light-emitting device that emits light obtained by wavelength-converting light emitted from a semiconductor light-emitting element with a phosphor and a method for manufacturing the same.
 発光ダイオードや半導体レーザダイオードなどの半導体発光素子を用いた半導体発光装置は、さまざまな照明装置や表示装置などの光源として従来より広く用いられている。また、異なる色を発光する複数の発光ダイオードを組み合わせ、所望の発光色を得るようにした半導体発光装置も開発され用いられている。例えば、青色光、緑色光及び赤色光を発する3種類の発光ダイオードを組み合わせ、各ダイオードに供給される駆動電流を調整することにより、各発光ダイオードから発せられた光を合成することによって所望の白色光を得るようにした半導体発光装置が特許文献1に開示されている。 Semiconductor light-emitting devices using semiconductor light-emitting elements such as light-emitting diodes and semiconductor laser diodes have been widely used as light sources for various lighting devices and display devices. In addition, a semiconductor light-emitting device that combines a plurality of light-emitting diodes that emit different colors to obtain a desired emission color has been developed and used. For example, by combining three types of light emitting diodes that emit blue light, green light, and red light, and adjusting the drive current supplied to each diode, the light emitted from each light emitting diode is synthesized to produce a desired white color. A semiconductor light-emitting device that obtains light is disclosed in Patent Document 1.
 元来発光ダイオードは発光スペクトル幅が比較的細く、発光ダイオードから発する光をそのまま照明に用いた場合、一般的な照明において重要となる演色性が低下するという問題がある。そこで、このような問題を解消すべく、発光ダイオードが発する光を蛍光体によって波長変換してから発光するようにした発光ユニットが開発され、このような発光ユニットを組み合わせた半導体発光装置が、例えば特許文献2に開示されている。特許文献2の半導体発光装置では、青色発光ダイオードを用いた青色発光ユニットと、青色発光ダイオードに、この青色発光ダイオードが発した青色光で励起されて緑色光を発する緑色蛍光体を組み合わせた緑色発光ユニットと、青色発光ダイオードに、この青色発光ダイオードが発した青色光で励起されて赤色光を発する赤色蛍光体を組み合わせた赤色発光ユニットとが用いられている。そして、これらの青色発光ユニット、緑色発光ユニット及び赤色発光ユニットがそれぞれ発する光の合成によって優れた演色性を確保すると共に、各発光ユニットの光出力を調整することにより半導体発光装置の発光色を多彩に変化させることができるようになっている。 Originally, a light emitting diode has a relatively narrow emission spectrum width, and when light emitted from the light emitting diode is used for illumination as it is, there is a problem that color rendering, which is important in general illumination, decreases. Therefore, in order to solve such problems, a light emitting unit has been developed that emits light after wavelength conversion of light emitted from a light emitting diode with a phosphor, and a semiconductor light emitting device that combines such light emitting units is, for example, It is disclosed in Patent Document 2. In the semiconductor light emitting device of Patent Document 2, a green light emitting unit combining a blue light emitting unit using a blue light emitting diode and a green phosphor that emits green light when excited by blue light emitted from the blue light emitting diode. A red light emitting unit is used in which a blue light emitting diode is combined with a red phosphor that is excited by blue light emitted from the blue light emitting diode and emits red light. The blue light emitting unit, green light emitting unit, and red light emitting unit ensure excellent color rendering by combining the light emitted from each of the light emitting units, and adjust the light output of each light emitting unit to change the light emitting colors of the semiconductor light emitting device. It can be changed to.
 また、このように青色発光ユニット、緑色発光ユニット及び赤色発光ユニットがそれぞれ発する光の合成によって白色光を得る半導体発光装置に代え、赤色蛍光体、緑色蛍光体及び青色蛍光体を混合して形成された蛍光部で半導体発光素子が発する光を波長変換することにより、所望の白色光を得るようにした発光装置が特許文献3に開示されている。この発光装置では、近紫外光を発光する近紫外半導体発光素子が用いられると共に、この近紫外半導体発光素子が発する近紫外光を所望の白色光に波長変換するように赤色蛍光体、緑色蛍光体及び青色蛍光体が組み合わされた蛍光部が用いられる。蛍光部は、所望の色温度の白色光が得られるように各蛍光体が組み合わされた第1の蛍光部と、この第1の蛍光部とは色温度の異なる白色光が得られるように各蛍光体が組み合わされた第2の蛍光部とからなる。 In addition, instead of the semiconductor light emitting device that obtains white light by synthesizing the light emitted from the blue light emitting unit, the green light emitting unit, and the red light emitting unit, a red phosphor, a green phosphor, and a blue phosphor are mixed and formed. Patent Document 3 discloses a light emitting device that obtains desired white light by converting the wavelength of light emitted from a semiconductor light emitting element in a fluorescent portion. In this light-emitting device, a near-ultraviolet semiconductor light-emitting element that emits near-ultraviolet light is used, and a red phosphor and a green phosphor are used to convert the wavelength of the near-ultraviolet light emitted from the near-ultraviolet semiconductor light-emitting element into desired white light. And a fluorescent portion in which a blue phosphor is combined. The fluorescent part includes a first fluorescent part in which the phosphors are combined so that white light having a desired color temperature can be obtained, and white light having a different color temperature from the first fluorescent part. It consists of a second fluorescent part combined with a phosphor.
 特許文献3に開示された1つの実施形態では、近紫外半導体発光素子が1列に4個ずつ2列に配線基板上に配列されており、これら近紫外半導体発光素子を取り囲むように環状かつ円錐台形状のリフレクタが配線基板上に設けられている。リフレクタ内は、一方の列の近紫外半導体発光素子と他方の列の近紫外半導体発光素子とを区分するように間仕切りが設けられることによって2つの領域に分割されている。そして、リフレクタと間仕切りとによって形成された一方の領域内には上述の第1の蛍光部が当該領域内の近紫外半導体発光素子を覆うように設けられ、他方の領域内には上述の第2の蛍光部が当該領域内の近紫外半導体発光素子を覆うように設けられている。こうして構成された半導体発光装置では、一方の列の近紫外半導体発光素子に対する供給電力と、他方の列の近紫外半導体発光素子に対する供給電力とを調整することにより、第1の蛍光部の蛍光体が発する白色光の色温度から、第2の蛍光部の蛍光体が発する白色光の色温度までの間の任意の色温度に調整した白色光が得られるようになっている。 In one embodiment disclosed in Patent Document 3, four near-ultraviolet semiconductor light-emitting elements are arranged on a wiring board in four rows in a row, and an annular and conical shape surrounds these near-ultraviolet semiconductor light-emitting devices. A trapezoidal reflector is provided on the wiring board. The reflector is divided into two regions by providing a partition so as to divide the near-ultraviolet semiconductor light-emitting element in one row and the near-ultraviolet semiconductor light-emitting device in the other row. In the one region formed by the reflector and the partition, the first fluorescent portion described above is provided so as to cover the near-ultraviolet semiconductor light-emitting element in the region, and the second region described above is provided in the other region. Is provided so as to cover the near-ultraviolet semiconductor light-emitting element in the region. In the semiconductor light emitting device configured in this way, the phosphor of the first fluorescent part is adjusted by adjusting the power supplied to the near ultraviolet semiconductor light emitting element in one column and the power supplied to the near ultraviolet semiconductor light emitting element in the other column. The white light adjusted to an arbitrary color temperature between the color temperature of the white light emitted from the white light and the color temperature of the white light emitted from the phosphor of the second fluorescent part can be obtained.
 また、特許文献3に開示されたもう1つの実施形態では、上述の実施形態と同様に近紫外半導体発光素子が4個ずつ2列に配線基板上に配列されると共に、円錐台形状のリフレクタに代え、熱硬化性またはUV硬化性の樹脂からなる環状の側壁が、近紫外半導体発光素子を取り囲むように配線基板上に形成されている。また、上述の間仕切りに代えて、同じく熱硬化性またはUV硬化性の樹脂からなる仕切り壁が、一方の列の近紫外半導体発光素子と他方の列の近紫外半導体発光素子とを区分するように形成されている。そして、側壁と仕切り壁とによって形成された一方の領域内には上述の第1の蛍光部が当該領域内の近紫外半導体発光素子を覆うように設けられ、他方の領域内には上述の第2の蛍光部が当該領域内の近紫外半導体発光素子を覆うように設けられている。こうして構成された発光装置においても、上述の実施形態と同様に近紫外半導体発光素子への供給電力を調整することにより、第1の蛍光部の蛍光体が発する白色光の色温度から、第2の蛍光部の蛍光体が発する白色光の色温度までの間の任意の色温度に調整した白色光が得られるようになっている。 Further, in another embodiment disclosed in Patent Document 3, four near-ultraviolet semiconductor light-emitting elements are arranged in two rows on a wiring board in the same manner as in the above-described embodiment, and a frustoconical reflector is formed. Instead, an annular side wall made of a thermosetting or UV curable resin is formed on the wiring board so as to surround the near-ultraviolet semiconductor light emitting element. Further, instead of the above-mentioned partition, a partition wall made of a thermosetting or UV curable resin also separates the near-ultraviolet semiconductor light-emitting element in one row from the near-ultraviolet semiconductor light-emitting device in the other row. Is formed. The first fluorescent portion described above is provided so as to cover the near-ultraviolet semiconductor light-emitting element in the one region formed by the side wall and the partition wall, and the first region described above is provided in the other region. Two fluorescent portions are provided so as to cover the near-ultraviolet semiconductor light emitting element in the region. In the light emitting device configured as described above, the second power can be obtained from the color temperature of the white light emitted from the phosphor of the first fluorescent part by adjusting the power supplied to the near-ultraviolet semiconductor light emitting element as in the above-described embodiment. Thus, white light adjusted to an arbitrary color temperature up to the color temperature of white light emitted from the fluorescent material of the fluorescent part can be obtained.
 特許文献2の半導体発光装置のように、青色発光ユニット、緑色発光ユニット及び赤色発光ユニットからそれぞれ発せられる光の合成によって白色光を得る半導体発光装置においても、上述したような特許文献3の半導体発光装置と同様の構造を採用することが考えられる。即ち、この場合には複数の青色発光ダイオードが3つのグループに区分されて配線基板上に配置される。そして、これら青色発光ダイオードを取り囲むようにリフレクタが設けられると共に、青色発光ダイオードを各グループに区分するように間仕切りが設けられる。更に、リフレクタと間仕切りによって形成される3つの領域のうちの1つには蛍光体を含有した蛍光部を設けず、残りの2つの領域の一方には緑色蛍光体を含有した蛍光部、他方には赤色蛍光体を含有した蛍光部を設けることにより、半導体発光装置を構成することができる。なお、リフレクタに代えて上述のような熱硬化性またはUV硬化性の樹脂からなる環状の側壁を形成すると共に、間仕切りに代えて同じく熱硬化性またはUV硬化性の樹脂からなる仕切り壁を形成するようにして半導体発光装置を構成することも可能である。 In the semiconductor light emitting device that obtains white light by combining the light emitted from the blue light emitting unit, the green light emitting unit, and the red light emitting unit, as in the semiconductor light emitting device of Patent Document 2, the semiconductor light emitting device of Patent Document 3 as described above is also used. It is conceivable to adopt a structure similar to that of the apparatus. That is, in this case, a plurality of blue light emitting diodes are divided into three groups and arranged on the wiring board. And a reflector is provided so that these blue light emitting diodes may be surrounded, and a partition is provided so that a blue light emitting diode may be divided into each group. Further, one of the three regions formed by the reflector and the partition is not provided with a fluorescent part containing a phosphor, one of the remaining two regions is a fluorescent part containing a green phosphor, and the other is The semiconductor light emitting device can be configured by providing a fluorescent portion containing a red phosphor. An annular side wall made of the thermosetting or UV curable resin as described above is formed in place of the reflector, and a partition wall made of the same thermosetting or UV curable resin is formed in place of the partition. In this manner, a semiconductor light emitting device can be configured.
日本国特開2006-4839号公報Japanese Unexamined Patent Publication No. 2006-4839 日本国特開2007-122950号公報Japanese Unexamined Patent Publication No. 2007-122950 国際公開第2009/063915号International Publication No. 2009/063915
 特許文献3に示されるような半導体発光装置を製造する場合、半導体発光素子を配置した配線基板上にリフレクタを装着すると共に、このリフレクタ内を複数領域に区分するための間仕切りを装着した上で、間仕切りで区分された各領域内にそれぞれ対応する蛍光部を収容する必要があるため、製造工程が複雑になり、製造工数や製造コストの面で問題がある。このような問題は、リフレクタ及び間仕切りに代えて、熱硬化性またはUV硬化性の樹脂からなる環状の側壁及び仕切り壁を形成するようにした場合にも同様に生じる。 When manufacturing a semiconductor light emitting device as shown in Patent Document 3, a reflector is mounted on a wiring board on which a semiconductor light emitting element is disposed, and a partition for partitioning the inside of the reflector into a plurality of regions is mounted. Since it is necessary to accommodate the corresponding fluorescent parts in each region divided by the partition, the manufacturing process becomes complicated, and there are problems in terms of manufacturing man-hours and manufacturing costs. Such a problem also occurs when annular side walls and partition walls made of a thermosetting or UV curable resin are formed instead of the reflector and the partition.
 また、上述のように、複数の半導体発光素子をいくつかのグループに分け、グループごとに間仕切りで区分するようにした場合、グループごとに半導体発光素子が偏在し、各グループからまとまって発せられた光が合成されることにより白色光が得られるため、色むらが生じるなどして白色光の品質が低下する。そこで、このような品質の低下を防止するべく、同じグループの半導体発光素子を1つにまとめずに分散させて配置するようにした場合には、更にリフレクタや環状側壁の数が増加するため、より製造工程が複雑となる。 In addition, as described above, when a plurality of semiconductor light emitting elements are divided into several groups and divided by a partition for each group, the semiconductor light emitting elements are unevenly distributed for each group, and emitted from each group. Since the white light is obtained by combining the light, the quality of the white light is deteriorated due to color unevenness. Therefore, in order to prevent such deterioration in quality, when the semiconductor light emitting elements of the same group are dispersed and arranged instead of one, the number of reflectors and annular side walls further increases. The manufacturing process becomes more complicated.
 更に、上述のように構成される半導体発光装置を照明装置や表示装置に適用する場合、半導体発光装置の信頼性や耐久性を高めるべく、蛍光部のほか、リフレクタと間仕切り、あるいは環状側壁と仕切り壁を周囲の環境から保護するための保護部材を発光装置に装着する必要がある。このため、さらに製造工程が複雑になるという問題がある。 Furthermore, when the semiconductor light emitting device configured as described above is applied to a lighting device or a display device, in order to improve the reliability and durability of the semiconductor light emitting device, in addition to the fluorescent part, the reflector and the partition, or the annular side wall and the partition A protective member for protecting the wall from the surrounding environment needs to be attached to the light emitting device. For this reason, there is a problem that the manufacturing process is further complicated.
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、製造工程を簡素化可能であると共に高い信頼性及び耐久性を確保可能な半導体発光装置及びその製造方法を提供することにある。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a semiconductor light-emitting device that can simplify the manufacturing process and ensure high reliability and durability, and a method for manufacturing the same. It is to provide.
 上記目的を達成するため、本発明の半導体発光装置は、配線基板と、前記配線基板に装着され、所定波長範囲の発光特性を有する複数の半導体発光素子と、所定の光透過特性を有すると共に、第1の面及び該第1の面とは反対側の第2の面を有して板状に形成され、前記第1の面における前記半導体発光素子に対応する位置に凹設されたキャビティを複数有する封止部材と、複数の前記キャビティのそれぞれに充填され、前記半導体発光素子が発する光の少なくとも一部を波長変換する蛍光体を含有した蛍光部と、を備え、前記半導体発光素子が装着された前記配線基板の一面に前記封止部材の前記第1の面が接合されることにより、複数の前記半導体発光素子のそれぞれが、該半導体発光素子に対応する前記キャビティにおいて前記蛍光部で覆われていることを特徴とする。 In order to achieve the above object, a semiconductor light emitting device of the present invention has a wiring board, a plurality of semiconductor light emitting elements mounted on the wiring board and having a light emission characteristic in a predetermined wavelength range, and a predetermined light transmission characteristic. A cavity having a first surface and a second surface opposite to the first surface is formed in a plate shape and is recessed at a position corresponding to the semiconductor light emitting element on the first surface. A plurality of sealing members; and a fluorescent portion that contains each of the plurality of cavities and contains a phosphor that converts the wavelength of at least part of the light emitted from the semiconductor light emitting device, and the semiconductor light emitting device is mounted The first surface of the sealing member is bonded to one surface of the wiring board thus formed, so that each of the plurality of semiconductor light emitting elements has the fluorescence in the cavity corresponding to the semiconductor light emitting element. Characterized in that it is covered by.
 このように構成された半導体発光装置によれば、前記半導体発光素子が装着された前記配線基板の一面と前記封止部材の前記第1の面が接合することにより、前記キャビティ内に前記半導体発光素子及び前記蛍光部が密封される。 According to the semiconductor light emitting device configured as described above, one surface of the wiring board on which the semiconductor light emitting element is mounted and the first surface of the sealing member are bonded to each other, whereby the semiconductor light emitting device is formed in the cavity. The element and the fluorescent part are sealed.
 このように構成される半導体発光装置において、JISK7129B法によって23℃で測定した前記配線基板及び前記封止部材の水蒸気透過度は、10g/m・day以下であってもよく、JISK7129B法によって23℃で測定した前記配線基板及び前記封止部材の水蒸気透過係数は、10g・mm/m・day以下であってもよい。 In the semiconductor light emitting device configured as described above, the water vapor permeability of the wiring board and the sealing member measured at 23 ° C. by the JISK7129B method may be 10 g / m 2 · day or less, and 23 by the JISK7129B method. The wiring board and the sealing member measured at ° C. may have a water vapor transmission coefficient of 10 g · mm / m 2 · day or less.
 また、このように構成される半導体発光装置において、JISK7126B(1987)法によって23℃で測定した前記配線基板及び前記封止部材の酸素透過度は、1000cm/m・day・atm以下であってもよく、JISK7126B(1987)法によって23℃で測定した前記配線基板及び前記封止部材の酸素透過係数は、1000cm・mm/m・day・atm以下であってもよい。 Further, in the semiconductor light emitting device configured as described above, the oxygen permeability of the wiring board and the sealing member measured at 23 ° C. by the JISK7126B (1987) method is 1000 cm 3 / m 2 · day · atm or less. Alternatively, the oxygen permeability coefficient of the wiring board and the sealing member measured at 23 ° C. by the JISK7126B (1987) method may be 1000 cm 3 · mm 2 · day · atm or less.
 更に、このように構成される半導体発光装置において、前記封止部材は、ガラス、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、フッ素樹脂、シリコーン樹脂、石英、及びセラミックからなる群から選ばれる1又は2以上の材料から構成されてもよい。 Furthermore, in the semiconductor light emitting device configured as described above, the sealing member is one or more selected from the group consisting of glass, acrylic resin, epoxy resin, urethane resin, fluororesin, silicone resin, quartz, and ceramic. It may be composed of the following materials.
 このように構成された半導体発光装置によれば、半導体発光素子から発せられた光の少なくとも一部は、当該半導体発光素子に対応して封止部材の第1の面に設けられているキャビティ内に充填されて半導体発光素子を覆う蛍光部の蛍光体によって波長変換され、波長変換された光が封止部材を透過して封止部材の第2の面から放出される。 According to the semiconductor light emitting device configured as described above, at least a part of the light emitted from the semiconductor light emitting element is in the cavity provided on the first surface of the sealing member corresponding to the semiconductor light emitting element. The wavelength is converted by the phosphor of the fluorescent part that fills the semiconductor light-emitting element and the wavelength-converted light is transmitted through the sealing member and emitted from the second surface of the sealing member.
 また、このように構成される半導体発光装置において、前記蛍光体は、前記半導体発光素子から発せられた光を前記所定波長範囲とは異なる波長範囲の光に変換するものであって、前記封止部材は、前記蛍光体によって波長変換された光に対し、前記半導体発光素子から発せられた光よりも高い透過性を有すると共に、前記半導体発光素子から発せられて前記キャビティから前記封止部材へ向かう光に対し、前記蛍光体によって波長変換されて前記キャビティから前記封止部材へ向かう光よりも高い反射率を有するものであってもよい。 Further, in the semiconductor light emitting device configured as described above, the phosphor converts light emitted from the semiconductor light emitting element into light having a wavelength range different from the predetermined wavelength range, and the sealing The member has higher transparency than the light emitted from the semiconductor light emitting element with respect to the light whose wavelength is converted by the phosphor, and is emitted from the semiconductor light emitting element toward the sealing member. The light may have a higher reflectance than light that is wavelength-converted by the phosphor and travels from the cavity toward the sealing member.
 このように半導体発光装置を構成した場合、蛍光体で波長変換された光は、半導体発光素子から発せられた光に比べて、より良好に封止部材を透過して封止部材の第2の面から出射される一方、半導体発光素子から発せられた光は蛍光体で波長変換された光に比べ、より良好に封止部材で反射されて、キャビティ内に充填された蛍光体により波長変換される機会を再び得ることになる。 When the semiconductor light emitting device is configured in this way, the light whose wavelength is converted by the phosphor transmits the sealing member better than the light emitted from the semiconductor light emitting element, and the second of the sealing member. On the other hand, the light emitted from the semiconductor light emitting element is reflected by the sealing member better than the light wavelength-converted by the phosphor and is wavelength-converted by the phosphor filled in the cavity. Will get the opportunity again.
 更に、上述のいずれかの半導体発光装置において、複数の前記キャビティのうちの一部の前記キャビティに充填された蛍光部に含有される蛍光体は、複数の前記キャビティのうちの残部の前記キャビティに充填された蛍光部に含有される蛍光体が有する波長変換特性と異なる波長変換特性を有していてもよい。 Furthermore, in any one of the semiconductor light-emitting devices described above, the phosphor contained in the fluorescent portion filled in a part of the plurality of cavities is contained in the remaining cavity of the plurality of cavities. You may have the wavelength conversion characteristic different from the wavelength conversion characteristic which the fluorescent substance contained in the fluorescent part with which it was filled has.
 このように半導体発光装置を構成した場合、複数のキャビティのうちの一部のキャビティに充填された蛍光部の蛍光体によって波長変換された光と、複数のキャビティのうちの残部のキャビティに充填された蛍光部の蛍光体によって波長変換された光の、少なくとも2種類の光を合成して得られた光が半導体発光装置から発せられる。 When the semiconductor light emitting device is configured in this way, the light converted in wavelength by the fluorescent material in the fluorescent part filled in a part of the plurality of cavities and the remaining cavity in the plurality of cavities are filled. Light obtained by synthesizing at least two types of light of which the wavelength has been converted by the phosphor of the fluorescent portion is emitted from the semiconductor light emitting device.
 また、上述のいずれかの半導体発光装置において、前記蛍光体として、前記半導体発光素子から発せられた光を赤色領域に波長変換する第1蛍光体と、前記半導体発光素子から発せられた光を緑色領域に波長変換する第2蛍光体と、前記半導体発光素子から発せられた光を青色領域に波長変換する第3蛍光体とが用いられ、複数の前記キャビティは、前記第1蛍光体を含有した蛍光部を充填する第1キャビティと、前記第2蛍光体を含有した蛍光部を充填する第2キャビティと、前記第3蛍光体を含有した蛍光部を充填する第3キャビティとからなるようにしてもよい。 In any one of the semiconductor light-emitting devices described above, as the phosphor, a first phosphor that converts the wavelength of light emitted from the semiconductor light-emitting element into a red region, and the light emitted from the semiconductor light-emitting element is green. A second phosphor that converts the wavelength into a region and a third phosphor that converts the light emitted from the semiconductor light emitting device into a blue region are used, and the plurality of cavities contain the first phosphor A first cavity for filling the fluorescent part, a second cavity for filling the fluorescent part containing the second phosphor, and a third cavity for filling the fluorescent part containing the third phosphor. Also good.
 このように半導体発光装置を構成した場合、第1蛍光体によって赤色領域に波長変換された光と、第2蛍光体によって緑色領域に波長変換された光と、第3蛍光体によって青色領域に波長変換された光とを合成した光が半導体発光装置から発せられる。 When the semiconductor light-emitting device is configured in this way, the light wavelength-converted into the red region by the first phosphor, the light wavelength-converted into the green region by the second phosphor, and the wavelength in the blue region by the third phosphor. Light obtained by combining the converted light is emitted from the semiconductor light emitting device.
 また、上述のいずれかの半導体発光装置において、前記蛍光部は、互いに異なる波長変換特性を備える2以上の蛍光体が積層された積層構造を有してもよい。このように半導体発光装置を構成した場合、積層構造を有する蛍光体の各層において波長変換された光の合成光が半導体発光装置から発せられる。 Further, in any one of the semiconductor light emitting devices described above, the fluorescent part may have a laminated structure in which two or more phosphors having different wavelength conversion characteristics are laminated. When the semiconductor light emitting device is configured in this way, the combined light of the light whose wavelength is converted in each layer of the phosphor having the laminated structure is emitted from the semiconductor light emitting device.
 また、前述のように、一部のキャビティに充填された蛍光部の蛍光体が、残部のキャビティに充填された蛍光部の蛍光体と異なる波長変換特性を有するようにした場合、あるいは上述のように、第1蛍光体、第2蛍光体及び第3蛍光体を用いるようにした場合において、前記配線基板を介して前記半導体発光素子のそれぞれに流れる電流を制御することにより、前記封止部材の前記第2の面から放射される光の色度を可変としてもよい。 In addition, as described above, the fluorescent part phosphors filled in some of the cavities have wavelength conversion characteristics different from those of the fluorescent parts filled in the remaining cavities, or as described above. In addition, in the case where the first phosphor, the second phosphor, and the third phosphor are used, by controlling the current flowing through each of the semiconductor light emitting elements via the wiring substrate, the sealing member The chromaticity of light emitted from the second surface may be variable.
 具体的には、上述のいずれかの半導体発光装置において、前記半導体発光素子は、360~480nmの波長範囲の光を発するものであってもよい。 Specifically, in any of the semiconductor light emitting devices described above, the semiconductor light emitting element may emit light in a wavelength range of 360 to 480 nm.
 また、前述の目的を達成するため、本発明の半導体発光装置の製造方法は、所定波長範囲の発光特性を有する複数の半導体発光素子を配線基板に装着する工程と、所定の光透過特性を有すると共に、第1の面及び該第1の面とは反対側の第2の面を有して板状に形成された封止部材の前記第1の面に、前記半導体発光素子に対応する位置にキャビティを複数凹設する工程と、前記半導体発光素子が発する光の少なくとも一部を波長変換する蛍光体を含有した蛍光部を複数の前記キャビティのそれぞれに充填する工程と、前記配線基板に装着された複数の前記半導体発光素子のそれぞれが、対応する前記キャビティ内に位置すると共に、前記キャビティ内に充填されている前記蛍光部で覆われるように、前記封止部材の前記第1の面を前記配線基板に接合する工程とを備えることを特徴とする。 In order to achieve the above-described object, a method for manufacturing a semiconductor light emitting device of the present invention includes a step of mounting a plurality of semiconductor light emitting elements having light emission characteristics in a predetermined wavelength range on a wiring board, and predetermined light transmission characteristics. And a position corresponding to the semiconductor light emitting element on the first surface of the sealing member formed in a plate shape having the first surface and the second surface opposite to the first surface. Mounting a plurality of cavities in the plurality of cavities, filling each of the plurality of cavities with a fluorescent portion containing a phosphor that converts a wavelength of at least part of light emitted from the semiconductor light emitting element, and mounting the wiring board on the wiring board The first surface of the sealing member is disposed so that each of the plurality of the semiconductor light emitting elements is located in the corresponding cavity and is covered with the fluorescent portion filled in the cavity. Said arrangement Characterized in that it comprises a step of bonding the substrate.
 このような半導体発光装置の製造方法により、配線基板に装着された複数の半導体発光素子のそれぞれが、当該半導体発光素子に対応して封止部材の第1の面に凹設されたキャビティに充填されている蛍光部によって覆われるように、配線基板と封止部材とが接合された半導体発光装置が得られる。 With such a method of manufacturing a semiconductor light emitting device, each of the plurality of semiconductor light emitting elements mounted on the wiring board fills a cavity recessed in the first surface of the sealing member corresponding to the semiconductor light emitting element. Thus, a semiconductor light emitting device in which the wiring substrate and the sealing member are joined so as to be covered with the fluorescent portion that is formed is obtained.
 このように構成される半導体発光装置の製造方法において、前記キャビティに前記蛍光体を含有した蛍光部を充填する工程は、前記キャビティが露出すると共に当該キャビティの周囲が被覆されるように被覆材で前記封止部材の前記第1の面をマスキングする工程と、前記被覆材の上から前記蛍光部を塗布する工程と、前記蛍光部を塗布した後に、前記被覆材を前記封止部材の前記第1の面から除去する工程とからなるようにしてもよい。 In the method for manufacturing a semiconductor light emitting device configured as described above, the step of filling the cavity with the fluorescent portion containing the phosphor is performed by using a coating material so that the cavity is exposed and the periphery of the cavity is covered. Masking the first surface of the sealing member; applying the fluorescent part from above the covering; and applying the fluorescent part, and then applying the covering to the first of the sealing member. And a step of removing from one surface.
 本発明の半導体発光装置によれば、配線基板に装着された複数の半導体発光素子のそれぞれが、当該半導体発光素子に対応して封止部材の第1の面に凹設されたキャビティに充填された蛍光部によって覆われるように、配線基板と封止部材とが接合されている。従って、蛍光体を含有した蛍光部を充填するためのリフレクタと間仕切り、あるいは環状側壁と仕切り壁などのような手間のかかる構成が不要となり、半導体発光装置を簡素な構成とすることができる。このような簡素な構成により、半導体発光装置の信頼性や耐久性を高めることができると共に、製造工数や製造コストを低減することが可能となる。 According to the semiconductor light emitting device of the present invention, each of the plurality of semiconductor light emitting elements mounted on the wiring board is filled in the cavity recessed in the first surface of the sealing member corresponding to the semiconductor light emitting element. The wiring board and the sealing member are bonded so as to be covered with the fluorescent portion. Therefore, a troublesome structure such as a reflector and a partition for filling a fluorescent part containing a phosphor or an annular side wall and a partition wall is not required, and the semiconductor light emitting device can be simplified. With such a simple configuration, the reliability and durability of the semiconductor light emitting device can be increased, and the number of manufacturing steps and the manufacturing cost can be reduced.
 また、封止部材は蛍光部を充填するだけではなく、蛍光部や半導体発光素子などを周囲の環境から保護することができるので、蛍光部を充填するためのリフレクタや環状側壁などの部材と、発光装置を環境から保護するための保護部材とを別個に設ける必要がなくなる。このような点で、半導体発光装置の信頼性や耐久性を更に高めながら、製造工数や製造コストをより一層低減することが可能となる。 In addition, the sealing member not only fills the fluorescent part, but also can protect the fluorescent part and the semiconductor light emitting element from the surrounding environment, so members such as a reflector and an annular side wall for filling the fluorescent part, There is no need to separately provide a protective member for protecting the light emitting device from the environment. In this respect, it is possible to further reduce the number of manufacturing steps and the manufacturing cost while further improving the reliability and durability of the semiconductor light emitting device.
 また、本発明の半導体発光装置の製造方法によれば、封止部材の第1の面に凹設されたキャビティのそれぞれに蛍光体を含有した蛍光部を充填した後、複数の半導体発光素子が装着された配線基板を、当該半導体発光素子のそれぞれが、対応するキャビティ内に位置すると共に、キャビティ内に充填されている蛍光部で覆われるように、封止部材の第1の面に接合することにより半導体発光装置を得ることができるので、従来のようにリフレクタ及び間仕切りを配線基板に装着したり、環状側壁及び仕切り壁を配線基板上に形成したりする必要がなくなり、製造工程を簡素化することができる。更に、封止部材が蛍光部や半導体発光素子などを周囲の環境から保護する機能も兼ね備えているので、別途保護部材を装着する必要がなくなり、より一層製造工程が簡素化される。 In addition, according to the method for manufacturing a semiconductor light emitting device of the present invention, after filling each of the cavities recessed in the first surface of the sealing member with a fluorescent part containing a phosphor, a plurality of semiconductor light emitting elements are formed. The mounted wiring board is bonded to the first surface of the sealing member so that each of the semiconductor light emitting elements is located in the corresponding cavity and covered with the fluorescent portion filled in the cavity. This makes it possible to obtain a semiconductor light-emitting device, which eliminates the need to mount reflectors and partitions on the wiring board as in the past, and to form annular side walls and partition walls on the wiring board, simplifying the manufacturing process. can do. Furthermore, since the sealing member also has a function of protecting the fluorescent portion, the semiconductor light emitting element, and the like from the surrounding environment, it is not necessary to separately attach a protective member, and the manufacturing process is further simplified.
 このように、本発明の半導体発光装置及び半導体発光装置の製造方法では、半導体発光装置の構造や製造工程を簡素化することができるので、前述のように、複数のキャビティのうちの一部のキャビティに充填された蛍光部に含有される蛍光体と、残部のキャビティに充填された蛍光部に含有される蛍光体とで異なる波長変換特性を有するようにしたり、複数のキャビティのうち、第1キャビティには第1蛍光体を含有する蛍光部、第2キャビティには第2蛍光体を含有する蛍光部、第3キャビティには第3蛍光体を含有する蛍光部をそれぞれ充填するようにしたりして、半導体発光素子と蛍光体との組み合わせを複数採用するような半導体発光装置の場合であっても、良好な信頼性及び耐久性を確保し、製造工数や製造コストの増大を良好に抑制することが可能となる。 As described above, according to the semiconductor light emitting device and the method for manufacturing the semiconductor light emitting device of the present invention, the structure and manufacturing process of the semiconductor light emitting device can be simplified. The fluorescent substance contained in the fluorescent part filled in the cavity and the fluorescent substance contained in the fluorescent part filled in the remaining cavity may have different wavelength conversion characteristics, or among the plurality of cavities, the first The cavity may be filled with a fluorescent part containing a first phosphor, the second cavity may be filled with a fluorescent part containing a second phosphor, and the third cavity may be filled with a fluorescent part containing a third phosphor. Therefore, even in the case of a semiconductor light emitting device that employs a plurality of combinations of semiconductor light emitting elements and phosphors, it is possible to ensure good reliability and durability, and to increase manufacturing man-hours and manufacturing costs. It is possible to suppress the.
 また、本発明の半導体発光装置において、半導体発光素子から発せられた所定波長範囲の光を当該所定波長範囲とは異なる波長範囲の光に変換する蛍光体を用いると共に、封止部材が、蛍光体によって波長変換された光に対し、半導体発光素子から発せられた光よりも高い透過性を有すると共に、半導体発光素子から発せられた光に対し、蛍光体によって波長変換された光よりも高い反射率を有する場合には、上述したような効果に加え、次のような効果を得ることができる。 In the semiconductor light emitting device of the present invention, a phosphor that converts light in a predetermined wavelength range emitted from the semiconductor light emitting element into light in a wavelength range different from the predetermined wavelength range is used, and the sealing member is a phosphor. The light having a wavelength higher than that of the light emitted from the semiconductor light emitting element is higher in transmittance than the light emitted from the semiconductor light emitting element, and the light having a higher reflectance than the light converted from wavelength by the phosphor. In addition to the effects described above, the following effects can be obtained.
 即ち、半導体発光素子から発せられた光は蛍光体で波長変換された光に比べ、より良好に封止部材で反射され、キャビティ内に充填された蛍光体により波長変換される機会を再び得るので、半導体発光素子から発せられた光が蛍光体によって波長変換される機会が増大する。このとき、蛍光体で波長変換された光は、半導体発光素子から発せられた光に比べて、より良好に封止部材を透過して封止部材の第2の面から出射される。このため、このような光透過特性を有していない封止部材を用いた場合に比べ、蛍光体で波長変換されて半導体発光装置から放出される光の量を増大させると共に、蛍光体で波長変換されずに半導体発光装置から放出される光の量を低減することが可能となる。 That is, the light emitted from the semiconductor light emitting element is reflected by the sealing member better than the light wavelength-converted by the phosphor, and the opportunity to be wavelength-converted by the phosphor filled in the cavity is obtained again. The opportunity for wavelength conversion of the light emitted from the semiconductor light emitting element by the phosphor increases. At this time, the light whose wavelength has been converted by the phosphor is more satisfactorily transmitted through the sealing member and emitted from the second surface of the sealing member than the light emitted from the semiconductor light emitting element. For this reason, as compared with the case of using a sealing member that does not have such light transmission characteristics, the amount of light that is wavelength-converted by the phosphor and emitted from the semiconductor light emitting device is increased, and the wavelength of the phosphor is increased. It is possible to reduce the amount of light emitted from the semiconductor light emitting device without being converted.
図1は、本発明の一実施形態に係る半導体発光装置の全体構成を示す平面図である。FIG. 1 is a plan view showing an overall configuration of a semiconductor light emitting device according to an embodiment of the present invention. 図2は、図1中のII-II線に沿った半導体発光装置の断面図である。FIG. 2 is a cross-sectional view of the semiconductor light emitting device taken along line II-II in FIG. 図3は、封止部材における第2の面の表面処理の例を示す斜視図である。FIG. 3 is a perspective view showing an example of the surface treatment of the second surface of the sealing member. 図4は、封止部材における第2の面の表面処理の例を示す斜視図である。FIG. 4 is a perspective view showing an example of the surface treatment of the second surface of the sealing member. 図5は、封止部材における第2の面の表面処理の例を示す斜視図である。FIG. 5 is a perspective view showing an example of the surface treatment of the second surface of the sealing member. 図6は、封止部材における第2の面の表面処理の例を示す斜視図である。FIG. 6 is a perspective view illustrating an example of the surface treatment of the second surface of the sealing member. 図7は、封止部材における第2の面の表面処理の例を示す斜視図である。FIG. 7 is a perspective view illustrating an example of the surface treatment of the second surface of the sealing member. 図8は、封止部材における第2の面の表面処理の例を示す斜視図である。FIG. 8 is a perspective view illustrating an example of the surface treatment of the second surface of the sealing member. 図9は、図1に示す半導体発光装置における蛍光部の配置の一例を示す模式図である。FIG. 9 is a schematic diagram showing an example of the arrangement of fluorescent portions in the semiconductor light emitting device shown in FIG. 図10は、図1に示す半導体発光装置における蛍光部の配置の第1変形例を示す模式図である。FIG. 10 is a schematic diagram showing a first modification of the arrangement of the fluorescent portions in the semiconductor light emitting device shown in FIG. 図11は、図1に示す半導体発光装置における蛍光部の配置の第2変形例を示す模式図である。FIG. 11 is a schematic diagram showing a second modification of the arrangement of the fluorescent portions in the semiconductor light emitting device shown in FIG. 図12は、図9または図10に示す蛍光部を有する半導体発光装置の回路構成図である。12 is a circuit configuration diagram of the semiconductor light emitting device having the fluorescent portion shown in FIG. 9 or FIG. 図13は、図12に示す回路構成における各発光ダイオードの駆動電流の一例を示すタイムチャートである。FIG. 13 is a time chart showing an example of the drive current of each light emitting diode in the circuit configuration shown in FIG. 図14は、図11に示す蛍光部を有する半導体発光装置の回路構成図である。FIG. 14 is a circuit configuration diagram of the semiconductor light emitting device having the fluorescent portion shown in FIG. 図15は、図14に示す回路構成における各トランジスタの作動状態、及び各発光ダイオードの駆動電流の一例を示すタイムチャートである。FIG. 15 is a time chart showing an example of the operating state of each transistor and the drive current of each light emitting diode in the circuit configuration shown in FIG. 図16は、半導体発光装置の封止部材にキャビティを形成するための製造工程の概要を示す工程図である。FIG. 16 is a process diagram illustrating an outline of a manufacturing process for forming a cavity in a sealing member of a semiconductor light emitting device. 図17は、封止部材に形成されたキャビティに蛍光部を収容するための製造工程の概要を示す工程図である。FIG. 17 is a process diagram showing an outline of a manufacturing process for housing a fluorescent part in a cavity formed in a sealing member. 図18は、半導体発光装置の封止部材と配線基板との接合するための製造工程の概要を示す工程図である。FIG. 18 is a process diagram showing an outline of a manufacturing process for joining a sealing member of a semiconductor light emitting device and a wiring board. 図19(a)は図1に示す半導体発光装置におけるキャビティの形状が異なる変形例の断面図であり、図19(b)は図1に示す半導体発光装置におけるキャビティの形状及び蛍光部の構造が異なる変形例の断面図である。19A is a cross-sectional view of a modification in which the shape of the cavity in the semiconductor light emitting device shown in FIG. 1 is different, and FIG. 19B is the shape of the cavity in the semiconductor light emitting device shown in FIG. It is sectional drawing of a different modification. 図20(a)は図1に示す半導体発光装置におけるキャビティの形状が異なる変形例の断面図であり、図20(b)は図1に示す半導体発光装置におけるキャビティの形状及び蛍光部の構造が異なる変形例の断面図である。20A is a cross-sectional view of a modification in which the shape of the cavity in the semiconductor light emitting device shown in FIG. 1 is different, and FIG. 20B is the shape of the cavity in the semiconductor light emitting device shown in FIG. It is sectional drawing of a different modification. 図21(a)は図1に示す半導体発光装置におけるキャビティの形状が異なる変形例の断面図であり、図21(b)は図1に示す半導体発光装置におけるキャビティの形状及び蛍光部の構造が異なる変形例の断面図である。21A is a cross-sectional view of a modification in which the shape of the cavity in the semiconductor light emitting device shown in FIG. 1 is different, and FIG. 21B is the shape of the cavity in the semiconductor light emitting device shown in FIG. It is sectional drawing of a different modification. 図22(a)は図1に示す半導体発光装置におけるキャビティの形状が異なる変形例の断面図であり、図22(b)は図1に示す半導体発光装置におけるキャビティの形状及び蛍光部の構造が異なる変形例の断面図である。FIG. 22A is a cross-sectional view of a modified example in which the shape of the cavity in the semiconductor light emitting device shown in FIG. 1 is different, and FIG. 22B is the shape of the cavity in the semiconductor light emitting device shown in FIG. It is sectional drawing of a different modification. 図23は図1に示す半導体発光装置におけるキャビティの形状及び蛍光部の構造が異なる変形例の断面図である。FIG. 23 is a cross-sectional view of a modification in which the shape of the cavity and the structure of the fluorescent part in the semiconductor light emitting device shown in FIG. 1 are different.
 以下、図面に基づき本発明の一実施形態について詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the content demonstrated below, In the range which does not change the summary, it can change arbitrarily and can implement.
 図1は、本発明の実施形態に係る半導体発光装置1の全体構成を示す平面図であり、図1のII-II線に沿う半導体発光装置1の断面図を図2に示す。なお、これらの図は、説明のために一実施形態として本発明の半導体発光装置を模式的に表すものであり、各部材の縮尺等を正確に表すものではない。 FIG. 1 is a plan view showing the overall configuration of a semiconductor light emitting device 1 according to an embodiment of the present invention, and FIG. 2 shows a cross-sectional view of the semiconductor light emitting device 1 along the line II-II in FIG. Note that these drawings schematically represent the semiconductor light emitting device of the present invention as an embodiment for the sake of explanation, and do not accurately represent the scale of each member.
 図1及び図2に示すように、本実施形態において半導体発光装置1は、配線基板2と、この配線基板2に接合された封止部材3とを有する。配線基板2上には、配線基板2の配線パターンと電気的に接続されるようにして複数の半導体発光素子4が装着されている。一方、封止部材3は、半導体発光装置1に求められる発光特性に応じた光透過特性を有すると共に、第1の面3a及び当該第1の面3aの反対側の面となる第2の面3bを有して板状に形成されており、第1の面3aには、配線基板2に装着されたそれぞれの半導体発光素子4に対応して複数のキャビティ5が設けられている。各キャビティ5は、封止部材3の第1の面3aから半球面状の壁面を有して凹設されており、キャビティ5内に収容(充填)された蛍光部6が半導体発光素子4を覆っている。なお、封止部材3は、第1の面3a及び第2の面3bのほか、これら第1の面3a及び第2の面3bに対して直交した側面となる4つの第3の面3cを有している。 As shown in FIGS. 1 and 2, in the present embodiment, the semiconductor light emitting device 1 includes a wiring board 2 and a sealing member 3 bonded to the wiring board 2. On the wiring board 2, a plurality of semiconductor light emitting elements 4 are mounted so as to be electrically connected to the wiring pattern of the wiring board 2. On the other hand, the sealing member 3 has a light transmission characteristic corresponding to a light emission characteristic required for the semiconductor light emitting device 1 and a second surface which is a surface opposite to the first surface 3a and the first surface 3a. The first surface 3 a is provided with a plurality of cavities 5 corresponding to the respective semiconductor light emitting elements 4 mounted on the wiring board 2. Each cavity 5 is recessed with a hemispherical wall surface from the first surface 3 a of the sealing member 3, and the fluorescent portion 6 accommodated (filled) in the cavity 5 stores the semiconductor light emitting element 4. Covering. In addition to the first surface 3a and the second surface 3b, the sealing member 3 includes four third surfaces 3c that are side surfaces orthogonal to the first surface 3a and the second surface 3b. Have.
 以下では、本実施形態における半導体発光装置1の各構成について詳細に説明する。なお、以下の説明においては、特に断りがない限り、各蛍光部から出射する個々の光を一次光と称すると共に、半導体発光装置1から出射する光、即ち各一次光を集めた光を出射光と称するものとする。 Hereinafter, each configuration of the semiconductor light emitting device 1 in the present embodiment will be described in detail. In the following description, unless otherwise specified, each light emitted from each fluorescent portion is referred to as primary light, and light emitted from the semiconductor light emitting device 1, that is, light collected from each primary light is emitted light. Shall be referred to as
 1.半導体発光素子
 (発光波長)
 半導体発光素子4は、後述する蛍光部6に含まれる蛍光体や蛍光成分(以下、これらを総称して蛍光体という)を励起する光を発するものであって、本発明の要旨を変更しない限りにおいて、様々な半導体発光素子を用いることができる。例えば半導体発光素子4として、360nm~480nmの波長範囲の光、即ち近紫外波長領域から青色領域の光を発するものを用いることができる。具体的には、紫外光を発する紫外発光ダイオード素子(発光ピーク波長300~400nm)、紫色光を発する紫色発光ダイオード素子(発光ピーク波長400~440nm)、及び青色光を発する青色発光ダイオード素子(発光ピーク波長440~480nm)などを用いることができ、本実施形態では近紫外光を発する近紫外発光ダイオード素子(例えば、発光ピーク波長380~400nm)を用いている。
1. Semiconductor light emitting device (emission wavelength)
The semiconductor light emitting element 4 emits light that excites phosphors and fluorescent components (hereinafter collectively referred to as phosphors) contained in the phosphor section 6 described later, and unless the gist of the present invention is changed. Various semiconductor light emitting elements can be used. For example, as the semiconductor light emitting element 4, light having a wavelength range of 360 nm to 480 nm, that is, a light emitting light in the near ultraviolet wavelength region to the blue region can be used. Specifically, an ultraviolet light emitting diode element that emits ultraviolet light (emission peak wavelength: 300 to 400 nm), a violet light emitting diode element that emits violet light (emission peak wavelength: 400 to 440 nm), and a blue light emitting diode element that emits blue light (light emission). In this embodiment, a near-ultraviolet light-emitting diode element that emits near-ultraviolet light (for example, an emission peak wavelength of 380 to 400 nm) is used.
 (集積密度及び配置)
 半導体発光装置1における半導体発光素子4の集積密度は、本発明の要旨を変更しない限り特に制限はないが、4個/cm以上が好ましく、より好ましくは16個/cm以上であり、更に好ましくは20個/cm以上、特に好ましくは25個/cm以上である。また、通常は625個/cm以下、好ましくは400個/cm以下、より好ましくは256個/cm以下である。半導体発光素子4の単位面積当たりの個数を、このような上限値以下とすることにより、半導体発光装置1から大光束を得やすくなり、下限値以上とすることにより、半導体発光装置1を小型化することができる。
(Integration density and arrangement)
The integration density of the semiconductor light emitting elements 4 in the semiconductor light emitting device 1 is not particularly limited as long as the gist of the present invention is not changed, but is preferably 4 pieces / cm 2 or more, more preferably 16 pieces / cm 2 or more, The number is preferably 20 pieces / cm 2 or more, particularly preferably 25 pieces / cm 2 or more. Further, it is usually 625 pieces / cm 2 or less, preferably 400 pieces / cm 2 or less, more preferably 256 pieces / cm 2 or less. By setting the number of the semiconductor light emitting elements 4 per unit area to be equal to or smaller than such an upper limit value, it becomes easier to obtain a large luminous flux from the semiconductor light emitting device 1, and by reducing the number of the semiconductor light emitting devices 4 to be equal to or larger than the lower limit value, the semiconductor light emitting device 1 can be downsized. can do.
 半導体発光装置1において、半導体発光素子4はランダムに配置することが可能であるが、高集積化及び半導体発光素子の制御の観点から、通常は規則的に配置することが好ましく、特に図1に示すようにマトリックス状に配置するのが好ましい。また、半導体発光素子4の配置間隔は、後述する封止部材3のキャビティ5の配置間隔によって定まる。 In the semiconductor light emitting device 1, the semiconductor light emitting elements 4 can be randomly arranged. However, from the viewpoint of high integration and control of the semiconductor light emitting elements, the semiconductor light emitting elements 4 are usually preferably arranged regularly. As shown, it is preferably arranged in a matrix. Further, the arrangement interval of the semiconductor light emitting elements 4 is determined by the arrangement interval of the cavities 5 of the sealing member 3 described later.
 (形状)
 半導体発光装置1の光取り出し面、即ち封止部材3の第2の面3bの側から投影した場合の半導体発光素子4の形状としては、例えば矩形状、円形状、多角形状など、本発明の要旨を変更しない限りにおいて、任意の形状とすることが可能である。但し、半導体発光素子4用の基板の加工の容易性などから、通常は矩形状、もしくはそれに近い形状とされる。なお、半導体発光装置1に用いられる半導体発光素子4は、全てが同じ形状を有していてもよいし、それぞれまたは一部が異なる形状を有していてもよい。
(shape)
The shape of the semiconductor light emitting element 4 when projected from the light extraction surface of the semiconductor light emitting device 1, that is, the second surface 3b side of the sealing member 3, is, for example, a rectangular shape, a circular shape, or a polygonal shape. As long as the gist is not changed, an arbitrary shape can be used. However, due to the ease of processing of the substrate for the semiconductor light emitting element 4, the shape is usually rectangular or close to it. The semiconductor light emitting elements 4 used in the semiconductor light emitting device 1 may all have the same shape, or each or a part thereof may have a different shape.
 半導体発光装置1の光取り出し面側から投影した場合の半導体発光素子4の面積は、20000μm以上が好ましく、より好ましくは40000μm以上、更に好ましくは80000μm以上である。また、通常は360000μm以下、好ましくは250000μm以下、より好ましくは200000μm以下である。半導体発光素子4の面積を、このように下限値以上とすることにより、効率の良い発光を得ることが可能となり、上限値以下とすることにより、目的とする単位面積当たりの個数で半導体発光素子4を配置することが可能となる。 The area of the semiconductor light emitting element 4 when projected from the light extraction surface side of the semiconductor light emitting device 1 is preferably 20000 μm 2 or more, more preferably 40000 μm 2 or more, and further preferably 80000 μm 2 or more. Moreover, it is usually 360,000 μm 2 or less, preferably 250,000 μm 2 or less, and more preferably 200000 μm 2 or less. By setting the area of the semiconductor light emitting element 4 to the lower limit value or more in this way, it becomes possible to obtain efficient light emission, and by setting it to the upper limit value or less, the number of semiconductor light emitting elements per target unit area can be obtained. 4 can be arranged.
 また、半導体発光素子4の形状を上述のように矩形状とする場合、通常は一辺の長さを100μm以上とするのが好ましく、より好ましくは200μm以上、更に好ましくは250μm以上、特に好ましくは300μm以上である。また、600μm以下とするのが好ましく、より好ましくは500μm以下、更に好ましくは400μm以下である。矩形状の半導体発光素子4の一辺の長さをこのような範囲内とすることにより、目的とする集積密度で、半導体発光素子4を適正に配置可能となる。 Further, when the shape of the semiconductor light emitting element 4 is rectangular as described above, it is usually preferable that the length of one side is 100 μm or more, more preferably 200 μm or more, still more preferably 250 μm or more, and particularly preferably 300 μm. That's it. Moreover, it is preferable to set it as 600 micrometers or less, More preferably, it is 500 micrometers or less, More preferably, it is 400 micrometers or less. By setting the length of one side of the rectangular semiconductor light-emitting element 4 within such a range, the semiconductor light-emitting element 4 can be appropriately arranged with a target integration density.
 (具体例)
 上述した半導体発光素子4として具体的には、発光ダイオード(以下、LEDと略称する)や、半導体レーザダイオード(以下、LDと略称する)などを用いることができる。なお、半導体発光素子4はこれらに限定されるものではなく、本発明の要旨を変更しない限りにおいて、様々な半導体発光素子を用いることができる。
(Concrete example)
Specifically, a light emitting diode (hereinafter abbreviated as LED), a semiconductor laser diode (hereinafter abbreviated as LD), or the like can be used as the semiconductor light emitting element 4 described above. The semiconductor light emitting element 4 is not limited to these, and various semiconductor light emitting elements can be used as long as the gist of the present invention is not changed.
 半導体発光素子4として特に好ましいのは、発光ダイオード素子用基板上にGaN系化合物半導体層が形成されたGaN系LEDやGaN系LDである。GaN系LEDやGaN系LDは、同様の波長領域の光を発するSiC系LEDに比して、発光出力や外部量子効率が格段に大きく、蛍光体との組み合わせにより非常に低電力で非常に明るい発光を得ることができるのがその理由である。例えば、20mAの駆動電流に対し、通常GaN系LEDやGaN系LDはSiC系LEDの100倍以上の発光強度を有する。 Particularly preferred as the semiconductor light-emitting element 4 is a GaN-based LED or GaN-based LD in which a GaN-based compound semiconductor layer is formed on a light-emitting diode element substrate. GaN-based LEDs and GaN-based LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in the same wavelength region, and are extremely bright with very low power when combined with phosphors. The reason is that light emission can be obtained. For example, for a drive current of 20 mA, GaN-based LEDs and GaN-based LDs usually have a light emission intensity that is 100 times or more that of SiC-based LEDs.
 GaN系LEDやGaN系LDにおいては、AlGaN発光層、GaN発光層、またはInGaN発光層を有しているのが好ましい。そして、GaN系LEDの場合には、これらのうちInGaN発光層を有するものの発光強度が非常に強く、特に好ましい。また、GaN系LDの場合は、InGaN層とGaN層との多重量子井戸構造を有するものの発光強度が非常に強く、特に好ましい。なお、ここでX+Yの値は、通常0.8以上、1.2以下の範囲にある。GaN系LEDにおいては、これら発光層にZnやSiをドープしたものやドーパントなしのものが、発光特性を調整する上で好ましい。 A GaN-based LED or GaN-based LD preferably has an Al X Ga Y N light-emitting layer, a GaN light-emitting layer, or an In X Ga Y N light-emitting layer. In the case of a GaN-based LED, those having an In X Ga Y N light emitting layer have a very strong emission intensity and are particularly preferable. In the case of a GaN-based LD, a light emitting intensity of a multi-quantum well structure composed of an In X Ga Y N layer and a GaN layer is very strong and is particularly preferable. Here, the value of X + Y is usually in the range of 0.8 to 1.2. In the GaN-based LED, those in which these light emitting layers are doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics.
 GaN系LEDの場合、通常はこれら発光層、p層、n層、電極、及び発光ダイオード素子用基板を基本構成要素として構成することが可能である。そして、発光層をn型とp型とのAlGaN層、GaN層、またはInGaN層などでサンドイッチにしたヘテロ構造を有しているものが、発光効率が高く好ましいが、更にヘテロ構造を量子井戸構造にしたものは、発光効率が更に高く、より好ましい。これらの積層方法は、一般的に発光ダイオード素子の形成方法と同様とすることができる。 In the case of a GaN-based LED, it is usually possible to configure these light emitting layer, p layer, n layer, electrode, and light emitting diode element substrate as basic components. A light emitting layer having a heterostructure sandwiched between an n-type and p-type Al x Ga y N layer, a GaN layer, or an In x Ga y N layer is preferable because of high luminous efficiency. Further, a structure in which the heterostructure is a quantum well structure is more preferable because of higher luminous efficiency. These laminating methods can be generally the same as the method for forming the light emitting diode element.
 本実施形態に用いる半導体発光素子4は、動作時の電力が1素子当たり通常は5W以下、好ましくは4W以下、更に好ましくは3W以下であり、また、通常は0.060W以上、好ましくは0.065W以上、更に好ましくは0.070W以上である。動作時の電力が小さすぎると、光出力が総じて少なくなりコスト的にも不利となる傾向がある一方で、大きすぎると放熱が困難となって、蛍光部6、配線基板2、あるいは半導体発光素子4自身が熱劣化したり、電極マイグレーションによる故障を引き起こしたりするおそれがあるほか、半導体発光装置1の寿命が短くなるおそれもある。 The semiconductor light emitting device 4 used in this embodiment has an operating power of usually 5 W or less, preferably 4 W or less, more preferably 3 W or less, and usually 0.060 W or more, preferably 0. 065W or more, more preferably 0.070W or more. If the power during operation is too small, the light output generally tends to be small and disadvantageous in terms of cost. On the other hand, if the power is too large, it is difficult to dissipate heat, and the fluorescent part 6, the wiring board 2, or the semiconductor light emitting device 4 itself may be thermally deteriorated or cause a failure due to electrode migration, and the life of the semiconductor light emitting device 1 may be shortened.
 本実施形態では、InGaN半導体が発光層に用いられて近紫外領域の光を発するGaN系LEDを半導体発光素子4として用いており、このGaN系LEDの配線基板2への装着はフリップチップ実装によって行う。即ち、GaN系LEDの発光層を下面側、発光ダイオード素子用基板を上面側に向け、発光層に形成されている2つの電極と、配線基板2に設けられている配線パターンの電極とを金属バンプを介して接合する。また本実施形態の場合、図1に示すように、配線基板2上の1cmの領域に、横1列で6個のGaN系LEDを6列として計36個のGaN系LEDを配置している。 In this embodiment, a GaN-based LED that uses an InGaN semiconductor as a light-emitting layer and emits light in the near-ultraviolet region is used as the semiconductor light-emitting element 4. The GaN-based LED is mounted on the wiring board 2 by flip-chip mounting. Do. That is, with the GaN-based LED light emitting layer facing the lower surface and the light emitting diode element substrate facing the upper surface, the two electrodes formed on the light emitting layer and the wiring pattern electrodes provided on the wiring substrate 2 are made of metal. Join through bumps. In the case of the present embodiment, as shown in FIG. 1, a total of 36 GaN LEDs are arranged in a 1 cm 2 region on the wiring board 2 with six GaN LEDs in one horizontal row and six rows. Yes.
 なお、フリップチップ実装によって配線基板2に半導体発光素子4を装着する際には、サブマウントを用いてもよい。また、半導体発光素子4の配線基板2上への装着方法は、このようなフリップチップ実装に限られるものではなく、半導体発光素子4の種類や構造に応じて適切な方法を選択可能である。例えば、半導体発光素子4を配線基板2の所定位置に接着固定した後、半導体発光素子4の上面側に位置する2つの電極を金属ワイヤによって配線基板2側の電極と接続するダブルワイヤボンディングや、導電性材料からなる半導体発光素子4の発光素子用基板を介して配線基板2側の電極に接続すると共に、半導体発光素子4の上面側に位置する1つの電極を金属ワイヤによって配線基板2側の電極に接続するシングルワイヤボンディングなどを採用することも可能である。但し、本実施形態のようにフリップチップ実装によって半導体発光素子4を配線基板2に装着するようにした場合、ワイヤボンディングの場合に比べて実装面積を小さくすることが可能であり、より高密度に半導体発光素子4を集積することができる。 In addition, when mounting the semiconductor light emitting element 4 on the wiring board 2 by flip chip mounting, a submount may be used. Further, the method for mounting the semiconductor light emitting element 4 on the wiring substrate 2 is not limited to such flip chip mounting, and an appropriate method can be selected according to the type and structure of the semiconductor light emitting element 4. For example, after bonding and fixing the semiconductor light emitting element 4 at a predetermined position on the wiring board 2, double wire bonding in which two electrodes positioned on the upper surface side of the semiconductor light emitting element 4 are connected to the electrode on the wiring board 2 side by a metal wire, The semiconductor light emitting element 4 made of a conductive material is connected to the electrode on the wiring board 2 side via the light emitting element substrate, and one electrode located on the upper surface side of the semiconductor light emitting element 4 is connected to the wiring board 2 side by a metal wire. It is also possible to employ single wire bonding that connects to the electrodes. However, when the semiconductor light emitting element 4 is mounted on the wiring board 2 by flip chip mounting as in the present embodiment, the mounting area can be reduced compared to the case of wire bonding, and the density can be increased. The semiconductor light emitting element 4 can be integrated.
 2.配線基板
 (高放熱基板または絶縁性基板)
 配線基板2には、高放熱性の放熱金属基板、または絶縁性基板がベースとして用いられる。なお、後述する水蒸気透過度、水蒸気透過係数、酸素透過度又は酸素透過係数を配線基板2全体として満たすことができれば、後述する高放熱性の放熱金属基板、または絶縁性基板に他の材料を適宜含有させた複合部材を配線基板2に用いてもよい。
 (放熱金属基板)
 放熱性金属基板としては、放熱性を有するアルミ基板、アルミ合金基板、銅基板、又は、銅合金基板などの各種金属基板、或いは、各種金属基板と絶縁基板との複合基板を用いることができ、中でも、コスト、軽量性、放熱性の観点からアルミ基板が配線基板2のベースとして好適である。また、封止部材3との密着性を考慮すると、アルミ基板、アルミ合金基板、銅基板、又は、銅合金基板が好適である。配線基板2は、光源である半導体発光素子4が装着される放熱金属基板と、半導体発光素子4に対する電気配線が形成された電気配線用基板とを有した金属複合基板からなる。この金属複合基板としては、このような放熱金属基板と電気配線用基板とを有して、放熱金属基板の光源実装面に貴金属メッキ膜が設けられているものであれば、特に制限されるものではない。このように放熱金属基板の光源実装面に貴金属メッキ膜を設け、この貴金属メッキ膜に光源である半導体発光素子4を装着することで、高い接合強度を確保することが可能となる。従来、光源の実装には、エポキシ系、シリコーン樹脂系の各種接着剤や、銀ペーストなどが用いられてきたが、このように貴金属メッキ膜を用いて光源を実装することにより、実装工程、熱衝撃試験等の信頼性評価試験、及び実際の使用時において、接合界面の剥離が生じるなどの不具合の発生を良好に抑制することができる。
2. Wiring board (High heat dissipation board or insulating board)
For the wiring board 2, a highly heat radiating metal substrate or an insulating substrate is used as a base. In addition, if the water vapor permeability, water vapor permeability coefficient, oxygen permeability, or oxygen permeability coefficient, which will be described later, can be satisfied as the entire wiring board 2, other materials may be appropriately used for the heat radiating metal substrate, which will be described later, or the insulating substrate. The contained composite member may be used for the wiring board 2.
(Heat dissipation metal substrate)
As the heat dissipating metal substrate, a heat dissipating aluminum substrate, an aluminum alloy substrate, a copper substrate, or various metal substrates such as a copper alloy substrate, or a composite substrate of various metal substrates and an insulating substrate can be used. Among these, an aluminum substrate is suitable as the base of the wiring board 2 from the viewpoints of cost, lightness, and heat dissipation. In consideration of adhesion to the sealing member 3, an aluminum substrate, an aluminum alloy substrate, a copper substrate, or a copper alloy substrate is preferable. The wiring substrate 2 is formed of a metal composite substrate having a heat radiating metal substrate on which a semiconductor light emitting element 4 as a light source is mounted and an electric wiring substrate on which electric wiring to the semiconductor light emitting element 4 is formed. The metal composite substrate is particularly limited as long as it has such a heat dissipation metal substrate and an electric wiring substrate and a light source mounting surface of the heat dissipation metal substrate is provided with a noble metal plating film. is not. Thus, by providing the noble metal plating film on the light source mounting surface of the heat radiating metal substrate and mounting the semiconductor light emitting element 4 as the light source on the noble metal plating film, it is possible to ensure high bonding strength. Conventionally, epoxy and silicone resin adhesives and silver paste have been used to mount light sources. By mounting a light source using a precious metal plating film in this way, In the reliability evaluation test such as the impact test and the actual use, it is possible to satisfactorily suppress the occurrence of defects such as peeling of the bonding interface.
 放熱性金属基板を配線基板のベースとして用いる場合、光源である半導体発光素子4の実装方法しては、公知の方法を採用することができる。この場合、半導体発光素子4側にメッキ処理を施して接合面を形成し、エポキシ樹脂やシリコーン樹脂などのダイボンディング材を用い、放熱金属基板の光源実装面に形成した貴金属メッキ膜と接合させて半導体発光素子4を実装すればよい。 When using a heat-dissipating metal substrate as a base of a wiring substrate, a known method can be adopted as a method for mounting the semiconductor light-emitting element 4 that is a light source. In this case, the semiconductor light emitting element 4 side is plated to form a joining surface, and a die bonding material such as epoxy resin or silicone resin is used to join the noble metal plating film formed on the light source mounting surface of the heat dissipation metal substrate. The semiconductor light emitting element 4 may be mounted.
 また、ダイボンディング材のほかにも、AuSnペースト、AgSnペーストなどを用い、放熱金属基板の光源実装面に形成した貴金属メッキ膜と接合させることにより、半導体発光素子4を実装することもできる。AuSnペーストを用いれば、金属拡散結合により接合することができるので、高い接合信頼性を確保することができる。また、金属結合により放熱金属基板に半導体発光素子4を実装可能であるため、上述のようなダイボンディング材を用いて実装する場合よりも、かなり良好な放熱性が期待できる。 In addition to the die bonding material, the semiconductor light emitting element 4 can also be mounted by using AuSn paste, AgSn paste, or the like and bonding it to a noble metal plating film formed on the light source mounting surface of the heat dissipation metal substrate. If AuSn paste is used, bonding can be performed by metal diffusion bonding, so that high bonding reliability can be ensured. Further, since the semiconductor light emitting element 4 can be mounted on the heat dissipation metal substrate by metal bonding, considerably better heat dissipation can be expected than when mounting using the die bonding material as described above.
 (絶縁性基板)
 絶縁性基板としては、例えばセラミック、樹脂、ガラスエポキシ、樹脂中にフィラーを含有した複合樹脂などから選択された材料を用いて形成されたものを使用することができる。特に半導体発光素子4からの発熱を効率よく放熱するためには、絶縁性基板が良好な熱伝導性を有していることが望ましい。この場合、例えばアルミナや窒化アルミニウムなどのセラミック基板、高熱伝導性を有するフィラーを含有した複合樹脂基板などが好適である。
(Insulating substrate)
As the insulating substrate, for example, a substrate formed using a material selected from ceramic, resin, glass epoxy, composite resin containing a filler in the resin, and the like can be used. In particular, in order to efficiently dissipate the heat generated from the semiconductor light emitting element 4, it is desirable that the insulating substrate has good thermal conductivity. In this case, for example, a ceramic substrate such as alumina or aluminum nitride, or a composite resin substrate containing a filler having high thermal conductivity is suitable.
 (配線基板の形状)
 本実施形態において配線基板2は、全体として平板状に形成されているが、図2に示すように半導体発光素子4を装着する面には、半導体発光素子4の装着位置に半導体発光素子4を取り囲むように凹部2aを形成し、この凹部2a内に各半導体発光素子4が装着されるようになっている。この凹部2aは、後述する配線基板2と封止部材3との接合の際に、キャビティ5内から溢れ出た蛍光部6を収容するために用いられる。凹部2aは必須のものではなく、必要に応じて設けられるものであって、例えばキャビティ5から蛍光部6が溢れ出るようなことがない場合や、溢れ出た蛍光部6を別の手段で収容するような場合などでは、凹部2aを設ける必要がない。また、凹部2aの形状や位置は、本実施形態のものに限定されるものではなく、例えば半導体発光素子4を取り囲む環状溝や半導体発光素子4に近接して形成された凹所など、本発明の要旨を変更しない限りにおいて様々に変更可能であって、キャビティ5から溢れ出る蛍光部6を収容可能なものであればよい。
(Wiring board shape)
In the present embodiment, the wiring board 2 is formed in a flat plate shape as a whole. However, as shown in FIG. 2, the semiconductor light emitting element 4 is provided at the mounting position of the semiconductor light emitting element 4 on the surface on which the semiconductor light emitting element 4 is mounted. A recess 2a is formed so as to surround the semiconductor light emitting element 4, and each semiconductor light emitting element 4 is mounted in the recess 2a. The concave portion 2a is used to accommodate the fluorescent portion 6 overflowing from the cavity 5 when the wiring board 2 and the sealing member 3 described later are joined. The concave portion 2a is not essential and is provided as necessary. For example, when the fluorescent portion 6 does not overflow from the cavity 5, or when the fluorescent portion 6 overflows is accommodated by another means. In such a case, it is not necessary to provide the recess 2a. Further, the shape and position of the recess 2a are not limited to those of the present embodiment. For example, an annular groove surrounding the semiconductor light emitting element 4 or a recess formed close to the semiconductor light emitting element 4 can be used. As long as the gist of the above is not changed, various modifications can be made and any fluorescent part 6 overflowing from the cavity 5 can be accommodated.
 なお、配線基板2の形状は、必ずしも平坦である必要はなく、後述する封止部材3との接合が適切に行われるような形状であればよい。例えば、封止部材3の配線基板2との接合面が曲面状をなす場合、配線基板2自体もこれに合わせて曲面状をなすように形成することができる。また、配線基板2の表面に段差や凸部を設けてもよい。 In addition, the shape of the wiring board 2 does not necessarily need to be flat, and may be a shape that can be appropriately joined to the sealing member 3 described later. For example, when the bonding surface of the sealing member 3 with the wiring board 2 is curved, the wiring board 2 itself can be formed to have a curved shape according to this. Further, a step or a protrusion may be provided on the surface of the wiring board 2.
 また、配線基板2上には、半導体発光素子4から発せられる光を反射するための反射部材が、少なくとも各半導体発光素子4の周囲に形成されていてもよい。このような反射部材は、本発明の要旨を変更しない限りにおいて、特にその形成位置や形状などに制限はない。反射部材としては、例えば後述する配線パターンと同時に配線基板2上にプリントされた金属からなる層などであってもよく、セラミック、銀、アルミニウムなどの金属や、コバール、銀-白金、銀-パラジウムなどの合金、白色ソルダーレジストなどからなる層などであってもよい。また、これらを組み合わせることにより反射部材を形成することも可能である。 Further, on the wiring substrate 2, a reflecting member for reflecting light emitted from the semiconductor light emitting element 4 may be formed at least around each semiconductor light emitting element 4. Such a reflecting member is not particularly limited in its formation position and shape as long as the gist of the present invention is not changed. The reflecting member may be, for example, a layer made of a metal printed on the wiring board 2 at the same time as a wiring pattern to be described later, such as a metal such as ceramic, silver, aluminum, kovar, silver-platinum, silver-palladium. A layer made of an alloy such as a white solder resist may be used. Moreover, it is also possible to form a reflective member by combining these.
 (配線パターン)
 上述した配線基板2には、各半導体発光素子4に電力を供給して各半導体発光素子4の発光を制御するための配線パターンが、半導体発光装置1の電気回路構成に対応して設けられる。なお、半導体発光装置1の電気回路構成については、「5.半導体発光装置の構成」の項で具体的に説明する。配線パターンは、半導体発光装置1の電気回路構成を実現するものであれば特に制限はなく、半導体発光装置1の種類や目的、半導体発光素子4の実装方法などに応じて適宜選択される。例えば、本実施形態のように半導体発光素子4をフリップチップ実装する場合の配線パターンは、パッドパターン、給電ランドパターン、及びこれらを接続する導線パターンなどによって構成される。
(Wiring pattern)
On the wiring board 2 described above, a wiring pattern for supplying power to each semiconductor light emitting element 4 to control light emission of each semiconductor light emitting element 4 is provided corresponding to the electric circuit configuration of the semiconductor light emitting device 1. The electrical circuit configuration of the semiconductor light emitting device 1 will be specifically described in the section “5. Configuration of the semiconductor light emitting device”. The wiring pattern is not particularly limited as long as the electrical circuit configuration of the semiconductor light emitting device 1 is realized, and is appropriately selected according to the type and purpose of the semiconductor light emitting device 1, the mounting method of the semiconductor light emitting element 4, and the like. For example, the wiring pattern when the semiconductor light emitting element 4 is flip-chip mounted as in the present embodiment is configured by a pad pattern, a power feeding land pattern, and a conductive line pattern that connects them.
 給電ランドパターンは、通常は半導体発光素子4を装着する領域の外側に形成され、外部電源やコントローラと電気的に接続され、コントローラによって制御された電力を受け取るためなどに用いられる。またパッドパターンは、複数の半導体発光素子4に対応して複数設けられており、半導体発光素子4側の電極と金属バンプを介して電気的に接続される。更に、これら給電ランドパターン及びパッドパターンは、導線パターンを介して電気的に接続され、半導体発光装置1の電気回路を構成する。 The power feeding land pattern is usually formed outside the region where the semiconductor light emitting element 4 is mounted, and is electrically connected to an external power source or a controller and used to receive power controlled by the controller. Also, a plurality of pad patterns are provided corresponding to the plurality of semiconductor light emitting elements 4, and are electrically connected to the electrodes on the semiconductor light emitting element 4 side through metal bumps. Further, the power feeding land pattern and the pad pattern are electrically connected via a conductive wire pattern to constitute an electric circuit of the semiconductor light emitting device 1.
 配線パターンは、半導体発光装置1の電気回路構成が単純な場合、配線基板2の表面など1つの面のみに形成することが可能であるが、例えば半導体発光素子4をマトリックス状に配置すると共に、複数種類の蛍光部6を用いて複数種類の一次光を得るような場合などには、多層の配線パターンを採用することができる。 When the electric circuit configuration of the semiconductor light emitting device 1 is simple, the wiring pattern can be formed on only one surface such as the surface of the wiring substrate 2. For example, the semiconductor light emitting elements 4 are arranged in a matrix, In the case where a plurality of types of primary light is obtained using a plurality of types of fluorescent portions 6, a multilayer wiring pattern can be employed.
 また、配線基板2の表面に設けられる配線パターンに用いる材料は、光に対する反射率の高いものが好ましく、本実施形態の場合は近紫外光の反射率が70%以上であるのが好ましく、より好ましくは75%以上、更に好ましくは80%以上である。このような反射率の配線パターンを用いることで、半導体発光装置の輝度を良好なものとすることができる。配線パターンの材料としては、通常は金、銀、銅、アルミニウムなどがあり、中でも金、銀、銅が輝度向上や輝度の維持効果を得やすいという面から好ましい。配線パターンには、これらの材料のうちの1種を用いてもよく、また2種以上を組み合わせて用いてもよい。 The material used for the wiring pattern provided on the surface of the wiring board 2 is preferably a material having a high reflectance with respect to light, and in the case of this embodiment, the reflectance of near ultraviolet light is preferably 70% or more. Preferably it is 75% or more, More preferably, it is 80% or more. By using the wiring pattern having such a reflectance, the luminance of the semiconductor light emitting device can be improved. As a material for the wiring pattern, there are usually gold, silver, copper, aluminum and the like. Among them, gold, silver, and copper are preferable from the viewpoint that it is easy to obtain a luminance improvement effect and a luminance maintenance effect. One type of these materials may be used for the wiring pattern, or two or more types may be used in combination.
(配線基板のガスバリア性)
 配線基板2及び封止部材3によって囲まれた領域(すなわち、キャビティ5及び蛍光部6)に、半導体発光装置1の外部から水蒸気や酸素等の外部ガスが進入しないように、配線基板2の水蒸気透過度、水蒸気透過係数、酸素透過度、及び酸素透過係数を以下のように調整することが好ましい。具体的には、JISK7129B法によって23℃で測定した場合に、配線基板2の水蒸気透過度は、10g/m・day以下であることが好ましく、5/m・day以下であることがより好ましく、2/m・day以下であることが特に好ましい。また、JISK7129B法によって23℃で測定した場合に、配線基板2の水蒸気透過係数は、10g・mm/m・day以下であることが好ましく、5g・mm/m・day以下であることがより好ましく、2g・mm/m・day以下であることが特に好ましい。
(Gas barrier property of wiring board)
The water vapor of the wiring board 2 is prevented from entering the area surrounded by the wiring board 2 and the sealing member 3 (that is, the cavity 5 and the fluorescent portion 6) from the outside of the semiconductor light emitting device 1 from the outside. It is preferable to adjust the permeability, water vapor permeability coefficient, oxygen permeability, and oxygen permeability coefficient as follows. Specifically, when measured at 23 ° C. by the JISK7129B method, the water vapor permeability of the wiring board 2 is preferably 10 g / m 2 · day or less, and more preferably 5 / m 2 · day or less. It is preferably 2 / m 2 · day or less. Further, when measured at 23 ° C. by the JISK7129B method, the water vapor transmission coefficient of the wiring board 2 is preferably 10 g · mm / m 2 · day or less, and preferably 5 g · mm / m 2 · day or less. More preferably, it is 2 g · mm / m 2 · day or less.
 更に、JISK7126B(1987)法によって23℃で測定した場合に、配線基板2の酸素透過度は、1000cm/m・day・atm以下であることが好ましく、500cm/m・day・atm以下であることがより好ましく、200cm/m・day・atm以下であることが特に好ましい。また、JISK7126B(1987)法によって23℃で測定した場合に、配線基板2の酸素透過係数は、1000cm・mm/m・day・atm以下であることが好ましく、100cm・mm/m・day・atm以下であることがより好ましく、10cm・mm/m・day・atm以下であることが特に好ましい。 Further, when measured at 23 ° C. by the JISK7126B (1987) method, the oxygen permeability of the wiring board 2 is preferably 1000 cm 3 / m 2 · day · atm or less, and 500 cm 3 / m 2 · day · atm. More preferably, it is 200 cm < 3 > / m < 2 > * day * atm or less. Further, when measured at 23 ° C. by the JISK7126B (1987) method, the oxygen transmission coefficient of the wiring board 2 is preferably 1000 cm 3 · mm / m 2 · day · atm or less, preferably 100 cm 3 · mm / m 2. More preferably, it is not more than day · atm, and particularly preferably not more than 10 cm 3 · mm / m 2 · day · atm.
 また、配線基板2及び封止部材3によって囲まれた領域(すなわち、キャビティ5及び蛍光部6)に、半導体発光装置1の外部から水蒸気や酸素等の外部ガスが進入しないように、配線基板2の厚さを以下のように調整することが好ましい。具体的に、配線基板2の厚さは、0.2mm以上であることが好ましく、0.5mm以上であることがより好ましく、1.0mm以上であることが特に好ましい。なお、半導体発光装置の軽量化、コンパクト化の観点から、配線基板2の厚さは、10mm以下であることが好ましい。 In addition, the wiring board 2 prevents the external gas such as water vapor or oxygen from entering the region surrounded by the wiring board 2 and the sealing member 3 (that is, the cavity 5 and the fluorescent portion 6) from the outside of the semiconductor light emitting device 1. It is preferable to adjust the thickness as follows. Specifically, the thickness of the wiring board 2 is preferably 0.2 mm or more, more preferably 0.5 mm or more, and particularly preferably 1.0 mm or more. Note that the thickness of the wiring board 2 is preferably 10 mm or less from the viewpoint of weight reduction and compactness of the semiconductor light emitting device.
 3.蛍光部
 蛍光部6は、半導体発光素子4から発せられる光の少なくとも一部を波長変換する蛍光体と、この蛍光体を分散保持するための充填材とからなり、前述したように、封止部材3の第1の面3aに凹設された複数のキャビティ5のそれぞれに収容され、各キャビティ5に対応して配線基板2上に装着された半導体発光素子4を覆うことにより、蛍光部6内に分散して含有される蛍光体が半導体発光素子4の周囲に分散して存在するようになっている。各蛍光部6に含有される蛍光体の種類は、半導体発光装置1に求められる発光特性に応じて適宜選択可能である。そして、各蛍光部6からは全てが同様の一次光が発せられるようにしてもよいし、一部の蛍光部6からの一次光と、残りの蛍光部6からの一次光とが異なるようにしてもよい。また、個々のキャビティ5には、単一の種類の蛍光体を含有した蛍光部6を収容するようにしてもよいし、複数種類の蛍光体を混合して含有した蛍光部6を収容するようにしてもよい。
3. Fluorescent part The fluorescent part 6 is composed of a phosphor that converts the wavelength of at least a part of light emitted from the semiconductor light emitting element 4 and a filler for dispersing and holding the phosphor. As described above, the sealing member By covering the semiconductor light emitting element 4 that is accommodated in each of the plurality of cavities 5 that are recessed in the first surface 3 a and mounted on the wiring board 2 corresponding to each cavity 5, The phosphors dispersed and contained are dispersed around the semiconductor light emitting element 4. The type of phosphor contained in each fluorescent part 6 can be appropriately selected according to the light emission characteristics required for the semiconductor light emitting device 1. Then, the same primary light may be emitted from each fluorescent part 6, or the primary light from some fluorescent parts 6 may be different from the primary light from the remaining fluorescent parts 6. May be. Each cavity 5 may contain a fluorescent portion 6 containing a single type of phosphor, or may contain a fluorescent portion 6 containing a mixture of a plurality of types of phosphors. It may be.
 キャビティ5のそれぞれは、空隙がないように蛍光部が収容(充填)されていることが好ましい。これにより界面での反射回数を軽減することができるため、半導体発光素子4及び蛍光部6で波長変換された光を半導体発光装置1の外部に効率よく取り出すことができる。 Each of the cavities 5 preferably contains (fills) a fluorescent portion so that there is no gap. As a result, the number of reflections at the interface can be reduced, so that the light subjected to wavelength conversion by the semiconductor light emitting element 4 and the fluorescent part 6 can be efficiently extracted outside the semiconductor light emitting device 1.
 一部の蛍光部6からの一次光と、残りの蛍光部6からの一次光とが異なるようにする場合、例えば、半導体発光素子4から発せられる光が紫外光ないし紫色光の場合は、赤色蛍光体、緑色蛍光体、及び青色蛍光体の3種の蛍光体を用いることにより、RGB(赤色、緑色及び青色)の3原色の色を発生させることができる。従って、これら3原色の一次光を合成して混色することにより、白色だけではなく発光色を多彩に変化させることができると共に、様々な色温度の出射光を得ることができる。また、半導体発光素子4から発せられた光が蛍光部6内で散乱しながら蛍光体によって波長変換され、蛍光部6から一次光となって発せられるので、比較的スペクトル幅の狭い発光ダイオードなどの光を直接用いる場合に比べ、スペクトル幅の広い一次光が得られる。この結果、半導体発光装置1の出射光には優れた演色性を確保することができる。 When the primary light from some of the fluorescent parts 6 is different from the primary light from the remaining fluorescent parts 6, for example, when the light emitted from the semiconductor light emitting element 4 is ultraviolet light or violet light, By using three types of phosphors, that is, a phosphor, a green phosphor, and a blue phosphor, three primary colors of RGB (red, green, and blue) can be generated. Therefore, by synthesizing and mixing the primary lights of these three primary colors, it is possible to change not only the white color but also the emission color in various ways, and obtain outgoing light with various color temperatures. In addition, since light emitted from the semiconductor light emitting element 4 is wavelength-converted by the phosphor while being scattered in the fluorescent part 6, and is emitted as primary light from the fluorescent part 6, a light emitting diode having a relatively narrow spectrum width or the like is used. Compared with the case where light is directly used, primary light having a wide spectral width can be obtained. As a result, excellent color rendering properties can be secured for the emitted light of the semiconductor light emitting device 1.
 また、半導体発光素子4から発せられる光が青色光の場合は、黄色蛍光体によりY(黄色)に波長変換し、補色関係にある半導体発光素子4の青色光と、波長変換された黄色光とを合成して混色することにより、出射光として様々な色温度の白色光を得ることができる。あるいは、半導体発光素子4から発せられた青色光を、赤色蛍光体と緑色蛍光体とによりRG(赤色と緑色)に波長変換し、半導体発光素子4の青色光と、波長変換された赤色光及び緑色光とを合成して混色することにより、出射光として様々な色温度の白色光を得ることもできる。なお、半導体発光素子4から発せられる光が青色光の場合も、蛍光体の選択や組合せの比率、あるいは混色の調整により白色光以外の色の出射光を得ることが可能である。このような場合においても、蛍光部6からスペクトル幅の広い一次光が得られるので、半導体発光装置1の出射光には優れた演色性を確保することができる。 Further, when the light emitted from the semiconductor light emitting element 4 is blue light, the wavelength of the yellow light is converted into Y (yellow), and the blue light of the semiconductor light emitting element 4 having a complementary color relationship, the wavelength converted yellow light, As a result, white light having various color temperatures can be obtained. Alternatively, the blue light emitted from the semiconductor light emitting element 4 is wavelength-converted to RG (red and green) by the red phosphor and the green phosphor, and the blue light of the semiconductor light emitting element 4 and the wavelength-converted red light and By synthesizing and mixing green light, white light having various color temperatures can be obtained as emitted light. Even when the light emitted from the semiconductor light emitting element 4 is blue light, it is possible to obtain emitted light of a color other than white light by adjusting the selection of phosphors, the combination ratio, or the color mixture. Even in such a case, since primary light having a wide spectrum width can be obtained from the fluorescent portion 6, excellent color rendering can be ensured for the emitted light of the semiconductor light emitting device 1.
 蛍光体は、半導体発光素子4が発する光の少なくとも一部を波長変換することが可能なものであればよいが、本実施形態では、前述したように近紫外領域の光を発する半導体発光素子4を用いるので、このような波長領域の光の少なくとも一部を波長変換可能な蛍光体が用いられる。蛍光体の組成に特に制限はないが、母体結晶となるY、YVO、ZnSiO、YAl12、SrSiOなどに代表される金属酸化物、(Ca,Sr)AlSiNなどに代表される金属窒化物、Ca(POClなどに代表されるリン酸塩及びZnS、SrS、CaSなどに代表される硫化物、あるいはYS、LaSなどに代表される酸硫化物などに、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Ybなどの希土類金属のイオンや、Ag、Cu、Au、Al、Mn、Sbなどの金属イオンを付活元素または共付活元素として組み合わせたものが好ましい。母体結晶の好ましい例を表1に示す。但し、これらの母体結晶及び付活元素または共付活元素について、元素組成に特に制限はなく、同族の元素と一部置き換えることも可能であり、本実施形態の場合、得られた蛍光体は上述のように近紫外領域の波長範囲の光を波長変換するものであればよい。 The phosphor is not particularly limited as long as at least a part of the light emitted from the semiconductor light emitting element 4 can be wavelength-converted. However, in the present embodiment, the semiconductor light emitting element 4 that emits light in the near ultraviolet region as described above. Therefore, a phosphor capable of converting the wavelength of at least part of light in such a wavelength region is used. There are no particular restrictions on the composition of the phosphor, but metal oxides represented by Y 2 O 3 , YVO 4 , Zn 2 SiO 4 , Y 3 Al 5 O 12 , Sr 2 SiO 4, etc. that form the base crystal (Ca , Sr) Metal nitrides typified by AlSiN 3 and the like, phosphates typified by Ca 5 (PO 4 ) 3 Cl and the like and sulfides typified by ZnS, SrS and CaS, or Y 2 O 2 S , Oxysulfides represented by La 2 O 2 S, and the like, ions of rare earth metals such as Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Ag, A combination of metal ions such as Cu, Au, Al, Mn, and Sb as activators or coactivators is preferred. Preferred examples of the host crystal are shown in Table 1. However, there is no particular limitation on the element composition for these base crystals and the activator element or coactivator element, and it is possible to partially replace the elements of the same family. In the case of this embodiment, the obtained phosphor is What is necessary is just to convert the wavelength of light in the wavelength range of the near ultraviolet region as described above.
 なお、蛍光体を例示する際には、構造の一部のみが相違する蛍光体を適宜省略し、省略箇所はカンマ(,)で区切って示している。例えば、「YSiO:Ce3+」、「YSiO:Tb3+」及び「YSiO:Ce3+,Tb3+」を「YSiO:Ce3+,Tb3+」と、「LaS:Eu」、「YS:Eu」及び「(La,Y)S:Eu」を「(La,Y)S:Eu」としてまとめて示している。 In the case of illustrating phosphors, phosphors that differ only in part of the structure are omitted as appropriate, and the omitted parts are shown separated by commas (,). For example, “Y 2 SiO 5 : Ce 3+ ”, “Y 2 SiO 5 : Tb 3+ ” and “Y 2 SiO 5 : Ce 3+ , Tb 3+ ” are changed to “Y 2 SiO 5 : Ce 3+ , Tb 3+ ”, “ “La 2 O 2 S: Eu”, “Y 2 O 2 S: Eu” and “(La, Y) 2 O 2 S: Eu” are collectively shown as “(La, Y) 2 O 2 S: Eu”. ing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 半導体発光装置1において、具体的には、以下に示す蛍光体を用いることが可能であるが、これらはあくまで例示であって、本発明で使用可能な蛍光体はこれに限られるものではない。なお、以下の例示においても、上述したようにして、構造の一部のみが異なる蛍光体を適宜省略して示している。 In the semiconductor light emitting device 1, specifically, the following phosphors can be used, but these are merely examples, and phosphors that can be used in the present invention are not limited thereto. In the following examples, as described above, phosphors that are different only in part of the structure are appropriately omitted.
 (赤色蛍光体)
 本発明の要旨を変更しない限りにおいて、任意の赤色蛍光体を用いることができるが、その発光ピーク波長は、通常は570nm以上、好ましくは580nm以上、より好ましくは585nm以上で、通常は780nm以下、好ましくは700nm以下、より好ましくは680nm以下の波長範囲にあるものが好適である。
(Red phosphor)
As long as the gist of the present invention is not changed, any red phosphor can be used, but the emission peak wavelength is usually 570 nm or more, preferably 580 nm or more, more preferably 585 nm or more, and usually 780 nm or less. Those having a wavelength range of preferably 700 nm or less, more preferably 680 nm or less are suitable.
 中でも、赤色蛍光体として例えば、(Ca,Sr,Ba)Si(N,O):Eu、(Ca,Sr,Ba)Si(N,O):Eu、(Ca,Sr,Ba)AlSi(N,O):Eu、(Sr,Ba)SiO:Eu、(Ca,Sr)S:Eu、(La,Y)S:Eu、Eu(ジベンゾイルメタン)・1,10-フェナントロリン錯体などのβ-ジケトン系Eu錯体、カルボン酸系Eu錯体、KSiF:Mnが好ましく、(Ca,Sr,Ba)Si(N,O):Eu、(Sr,Ca)AlSi(N,O):Eu、(La,Y)S:Eu、KSiF:Mnがより好ましい。 Among them, as the red phosphor, for example, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Ca, Sr, Ba) Si (N, O) 2 : Eu, (Ca, Sr, Ba) ) AlSi (N, O) 3 : Eu, (Sr, Ba) 3 SiO 5 : Eu, (Ca, Sr) S: Eu, (La, Y) 2 O 2 S: Eu, Eu (dibenzoylmethane) 3 Β-diketone Eu complex such as 1,10-phenanthroline complex, carboxylic acid Eu complex, K 2 SiF 6 : Mn is preferable, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Sr, Ca) AlSi (N, O): Eu, (La, Y) 2 O 2 S: Eu, K 2 SiF 6 : Mn are more preferable.
 (橙色蛍光体)
 本発明の要旨を変更しない限りにおいて、任意の橙色蛍光体を用いることができるが、その発光ピーク波長は、発光ピーク波長が580nm以上、好ましくは585nm以上で、620nm以下、好ましくは600nm以下の波長範囲にあるものが好適である。
(Orange phosphor)
As long as the gist of the present invention is not changed, any orange phosphor can be used, but the emission peak wavelength is 580 nm or more, preferably 585 nm or more, and 620 nm or less, preferably 600 nm or less. Those in the range are preferred.
 中でも、橙色蛍光体として例えば、(Sr,Ba)SiO:Eu、(Sr,Ba)SiO:Eu、(Ca,Sr,Ba)Si(N,O):Eu、(Ca,Sr,Ba)AlSi(N,O):Ce等が好ましい。 Among them, as an orange phosphor, for example, (Sr, Ba) 3 SiO 5 : Eu, (Sr, Ba) 2 SiO 4 : Eu, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, ( Ca, Sr, Ba) AlSi (N, O) 3 : Ce and the like are preferable.
 (青色蛍光体)
 本発明の要旨を変更しない限りにおいて、任意の青色蛍光体を用いることができるが、その発光ピーク波長は、通常は420nm以上、好ましくは430nm以上、より好ましくは440nm以上で、通常は500nm未満、好ましくは490nm以下、より好ましくは480nm以下、更に好ましくは470nm以下、特に好ましくは460nm以下の波長範囲にあるものが好適である。
(Blue phosphor)
As long as the gist of the present invention is not changed, any blue phosphor can be used, but the emission peak wavelength is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, usually less than 500 nm, Those having a wavelength range of preferably 490 nm or less, more preferably 480 nm or less, further preferably 470 nm or less, and particularly preferably 460 nm or less are suitable.
 中でも、青色蛍光体として例えば、(Ca,Sr,Ba)MgAl1017:Eu、(Sr,Ca,Ba,Mg)10(PO(Cl,F):Eu、(Ba,Ca,Mg,Sr)SiO:Eu、(Ba,Ca,Sr)MgSi:Eu等が好ましく、(Ba,Sr)MgAl1017:Eu、(Ca,Sr,Ba)10(PO(Cl,F):Eu、BaMgSi:Euがより好ましく、Sr10(POCl:Eu、BaMgAl1017:Euが特に好ましい。 Among them, as a blue phosphor, for example, (Ca, Sr, Ba) MgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, (Ba, Ca , Mg, Sr) 2 SiO 4 : Eu, (Ba, Ca, Sr) 3 MgSi 2 O 8 : Eu and the like are preferable, and (Ba, Sr) MgAl 10 O 17 : Eu, (Ca, Sr, Ba) 10 ( PO 4 ) 6 (Cl, F) 2 : Eu and Ba 3 MgSi 2 O 8 : Eu are more preferable, and Sr 10 (PO 4 ) 6 Cl 2 : Eu and BaMgAl 10 O 17 : Eu are particularly preferable.
 (緑色蛍光体)
 本発明の要旨を変更しない限りにおいて、任意の緑色蛍光体を用いることができるが、その発光ピーク波長は、通常は500nm以上、好ましくは510nm以上、より好ましくは515nm以上で、通常は550nm未満、好ましくは542nm以下、より好ましくは535nm以下の波長範囲にあるものが好適である。緑色蛍光体の発光ピーク波長が短すぎると緑色蛍光体が発する光が青みを帯びる傾向がある一方で、発光ピーク波長が長すぎると黄みを帯びる傾向があり、いずれの場合も緑色光としての特性が低下するおそれがある。
(Green phosphor)
As long as the gist of the present invention is not changed, any green phosphor can be used, but the emission peak wavelength is usually 500 nm or more, preferably 510 nm or more, more preferably 515 nm or more, usually less than 550 nm, Those having a wavelength range of preferably 542 nm or less, more preferably 535 nm or less are suitable. If the emission peak wavelength of the green phosphor is too short, the light emitted from the green phosphor tends to be bluish, while if the emission peak wavelength is too long, it tends to be yellowish. There is a risk that the characteristics will deteriorate.
 中でも、緑色蛍光体として例えば、Y(Al,Ga)12:Ce、CaSc:Ce、Ca(Sc,Mg)Si12:Ce、(Sr,Ba)SiO:Eu、(Si,Al)(O,N):Eu(βサイアロン)、(Ba,Sr)Si12:N:Eu、SrGa:Eu、BaMgAl1017:Eu,Mn等が好ましい。 Among them, as the green phosphor, for example, Y 3 (Al, Ga) 5 O 12 : Ce, CaSc 2 O 4 : Ce, Ca 3 (Sc, Mg) 2 Si 3 O 12 : Ce, (Sr, Ba) 2 SiO 4 : Eu, (Si, Al) 6 (O, N) 8 : Eu (β sialon), (Ba, Sr) 3 Si 6 O 12 : N 2 : Eu, SrGa 2 S 4 : Eu, BaMgAl 10 O 17 : Eu, Mn and the like are preferable.
 なお、半導体発光装置1を照明装置に用いる場合には、Y(Al,Ga)12:Ce、CaSc:Ce、Ca(Sc,Mg)Si12:Ce、(Sr,Ba)SiO:Eu、(Si,Al)(O,N):Eu(βサイアロン)、(Ba,Sr)Si12:N:Eu、α-サイアロン、LaSi11:Ce(但し、その一部がCaやOで置換されていてもよい)等が好ましい。 In the case of using the semiconductor light-emitting device 1 to the lighting device, Y 3 (Al, Ga) 5 O 12: Ce, CaSc 2 O 4: Ce, Ca 3 (Sc, Mg) 2 Si 3 O 12: Ce, (Sr, Ba) 2 SiO 4 : Eu, (Si, Al) 6 (O, N) 8 : Eu (β sialon), (Ba, Sr) 3 Si 6 O 12 : N 2 : Eu, α-sialon, La 3 Si 6 N 11 : Ce (however, a part thereof may be substituted with Ca or O) and the like are preferable.
 また、半導体発光装置1を画像表示装置に用いる場合は、(Sr,Ba)SiO:Eu、(Si,Al)(O,N):Eu(βサイアロン)、(Ba,Sr)Si12:N:Eu、SrGa:Eu、BaMgAl1017:Eu,Mn等が好ましい。 When the semiconductor light emitting device 1 is used for an image display device, (Sr, Ba) 2 SiO 4 : Eu, (Si, Al) 6 (O, N) 8 : Eu (β sialon), (Ba, Sr) 3 Si 6 O 12 : N 2 : Eu, SrGa 2 S 4 : Eu, BaMgAl 10 O 17 : Eu, Mn and the like are preferable.
 (黄色蛍光体)
 本発明の要旨を変更しない限りにおいて、任意の緑色蛍光体を用いることができるが、その発光ピーク波長は、通常は530nm以上、好ましくは540nm以上、より好ましくは550nm以上で、通常は620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲にあるものが好適である。
(Yellow phosphor)
As long as the gist of the present invention is not changed, any green phosphor can be used, but the emission peak wavelength is usually 530 nm or more, preferably 540 nm or more, more preferably 550 nm or more, and usually 620 nm or less. Those having a wavelength range of preferably 600 nm or less, more preferably 580 nm or less are suitable.
 中でも、黄色蛍光体として例えば、YAl12:Ce、(Y,Gd)Al12:Ce、(Sr,Ca,Ba,Mg)SiO:Eu、(Ca,Sr)Si:Eu等が好ましい。 Among them, as the yellow phosphor, for example, Y 3 Al 5 O 12 : Ce, (Y, Gd) 3 Al 5 O 12 : Ce, (Sr, Ca, Ba, Mg) 2 SiO 4 : Eu, (Ca, Sr) Si 2 N 2 O 2 : Eu or the like is preferable.
 (蛍光体の組み合わせ)
 本発明の要旨を変更しない限りにおいて、半導体発光装置1に求められる発光特性に応じ、蛍光体を様々に組み合わせることができる。例えば、前述したように、半導体発光素子4から紫外光ないし紫色光を発するようにして、赤色蛍光体、緑色蛍光体及び青色蛍光体の3種の蛍光体を用いれば、RGB(赤色、緑色及び青色)の3原色の色を発生させることができる。そこで、封止部材3に形成される複数のキャビティ5を、赤色蛍光体を含有した蛍光部6を収容するキャビティ5と、緑色蛍光体を含有した蛍光部6を収容するキャビティ5と、青色蛍光体を含有した蛍光部6を収容するキャビティ5とに区分してこれらを分散配置すれば、各蛍光部6から出射される3原色の一次光を合成することにより、白色だけではなく様々な色の出射光を、様々な色温度で得ることが可能となる。
(Phosphor combination)
As long as the gist of the present invention is not changed, various phosphors can be combined according to the light emission characteristics required for the semiconductor light emitting device 1. For example, as described above, RGB (red, green and blue) can be obtained by emitting three kinds of phosphors of red phosphor, green phosphor and blue phosphor so as to emit ultraviolet light or violet light from the semiconductor light emitting element 4. 3) primary colors can be generated. Therefore, a plurality of cavities 5 formed in the sealing member 3 are divided into a cavity 5 that houses a fluorescent part 6 containing a red phosphor, a cavity 5 that contains a fluorescent part 6 containing a green phosphor, and blue fluorescence. If these are divided into the cavities 5 that contain the fluorescent parts 6 containing the body and these are dispersedly arranged, the primary lights emitted from the respective fluorescent parts 6 are combined to produce various colors as well as white. Can be obtained at various color temperatures.
 また、このように1つのキャビティ5に1種類の蛍光体を含有した蛍光部6を収容するのではなく、1つのキャビティ5に複数種類の蛍光体を含有した蛍光部6を収容するようにすることもできる。この場合、例えばそれぞれのキャビティ5には赤色蛍光体、緑色蛍光体及び青色蛍光体の3種の蛍光体を混合して含有した蛍光部6を収容すると共に、複数のキャビティ5のうちの一部のキャビティ5に収容された蛍光部6に含有される赤色蛍光体、緑色蛍光体及び青色蛍光体の比率と、残部のキャビティ5に収容された蛍光部6に含有される赤色蛍光体、緑色蛍光体及び青色蛍光体の比率とを調整することにより、2種類の異なる色温度の白色光を得るようにすることが可能である。 Further, instead of accommodating the fluorescent part 6 containing one kind of phosphor in one cavity 5 as described above, the fluorescent part 6 containing plural kinds of phosphors is accommodated in one cavity 5. You can also In this case, for example, each cavity 5 accommodates a fluorescent portion 6 containing a mixture of three types of phosphors, a red phosphor, a green phosphor, and a blue phosphor, and a part of the plurality of cavities 5. The ratio of the red phosphor, the green phosphor and the blue phosphor contained in the fluorescent part 6 accommodated in the cavity 5, and the red phosphor and the green fluorescence contained in the fluorescent part 6 accommodated in the remaining cavity 5 By adjusting the ratio of the body and the blue phosphor, it is possible to obtain white light having two different color temperatures.
 (蛍光体の粒径)
 蛍光部6に含有される蛍光体は、半導体発光素子4から発せられる光が蛍光部6内で十分に散乱可能な粒径を有していることが好ましいが、蛍光体の粒径に特に制限はなく、例えば、中央粒径(D50)で、通常は0.1μm以上、好ましくは2μm以上、更に好ましくは5μm以上であり、また通常は100μm以下、好ましくは50μm以下、更に好ましくは20μm以下である。蛍光体の中央粒径(D50)がこのような範囲にある場合には、半導体発光素子4から発せられた光が、蛍光部6において十分に散乱される。そして、半導体発光素子4から発せられた光が蛍光部6内の蛍光体に十分に吸収されるため、蛍光体による波長変換が効率よく行われる。また、1つの蛍光部6に複数種類の蛍光体を含有する場合には、半導体発光素子4から発せられた光が、蛍光部6において十分に散乱されることで、それぞれの種類の蛍光体にむらなく光が吸収されると共に、蛍光体から発せられる光も蛍光部6内で良好に散乱するので、蛍光体から発せられた光の合成も良好に行われる。
(Particle size of phosphor)
The phosphor contained in the fluorescent part 6 preferably has a particle size such that light emitted from the semiconductor light emitting element 4 can be sufficiently scattered in the fluorescent part 6, but the particle size of the phosphor is particularly limited. For example, the median particle size (D50) is usually 0.1 μm or more, preferably 2 μm or more, more preferably 5 μm or more, and usually 100 μm or less, preferably 50 μm or less, more preferably 20 μm or less. is there. When the median particle diameter (D50) of the phosphor is in such a range, the light emitted from the semiconductor light emitting element 4 is sufficiently scattered in the fluorescent portion 6. And since the light emitted from the semiconductor light emitting element 4 is sufficiently absorbed by the phosphor in the fluorescent portion 6, the wavelength conversion by the phosphor is efficiently performed. In addition, when a plurality of types of phosphors are contained in one fluorescent part 6, the light emitted from the semiconductor light emitting element 4 is sufficiently scattered in the fluorescent part 6, so that each type of fluorescent substance is The light is absorbed uniformly and the light emitted from the phosphor is also scattered well in the fluorescent portion 6, so that the light emitted from the phosphor is well synthesized.
 蛍光部6に含有される蛍光体の中央粒径(D50)が上記範囲より大きい場合には、半導体発光素子4から発せられた光が蛍光部6において十分に散乱されないばかりでなく、蛍光体が蛍光部6内を十分に埋め尽くすことができないため、半導体発光素子4から発せられた光が蛍光体に十分吸収されず、蛍光体による波長変換が効率よく行われなくなるおそれがある。一方、蛍光部6に含有される蛍光体の中央粒径(D50)が上記範囲より小さい場合には、蛍光体の発光効率が低下するため、照度が低下するおそれがある。 When the median particle diameter (D50) of the phosphor contained in the fluorescent part 6 is larger than the above range, not only the light emitted from the semiconductor light emitting element 4 is not sufficiently scattered in the fluorescent part 6, but also the phosphor Since the inside of the fluorescent part 6 cannot be sufficiently filled, the light emitted from the semiconductor light emitting element 4 is not sufficiently absorbed by the phosphor, and there is a possibility that wavelength conversion by the phosphor is not performed efficiently. On the other hand, when the median particle diameter (D50) of the phosphor contained in the fluorescent part 6 is smaller than the above range, the luminous efficiency of the phosphor is lowered, and the illuminance may be lowered.
 蛍光体の粒度分布(QD)は、蛍光部6における粒子の分散状態をそろえるために小さい方が好ましいが、小さくするためには分級収率が下がってコストアップを招くことになるので、通常は0.03以上、好ましくは0.05以上、より好ましくは0.07以上であり、また通常は0.4以下、好ましくは0.3以下、より好ましくは0.2以下とするのがよい。 The particle size distribution (QD) of the phosphor is preferably smaller in order to align the dispersed state of the particles in the fluorescent part 6, but in order to reduce the particle size, the classification yield is lowered and the cost is increased. It is 0.03 or more, preferably 0.05 or more, more preferably 0.07 or more, and is usually 0.4 or less, preferably 0.3 or less, more preferably 0.2 or less.
 (蛍光体の濃度)
 蛍光部6における蛍光体の濃度が低すぎる場合、半導体発光素子から発せられる光が十分に吸収されずに封止体3からそのまま外方に放射されてしまう恐れがある。また、蛍光体の濃度が高すぎる場合には、濃度消光が発生し蛍光体から十分な光を得ることができなくなる。従って、蛍光部6における蛍光体の濃度は、半導体発光素子から発せられる光が十分に吸収されると共に、濃度消光を生じないような範囲に設定されるのが好ましい。
(Phosphor concentration)
When the concentration of the phosphor in the fluorescent portion 6 is too low, the light emitted from the semiconductor light emitting element may not be sufficiently absorbed and may be emitted to the outside as it is from the sealing body 3. Further, when the concentration of the phosphor is too high, concentration quenching occurs, and sufficient light cannot be obtained from the phosphor. Therefore, it is preferable that the concentration of the phosphor in the fluorescent portion 6 is set in a range in which light emitted from the semiconductor light emitting element is sufficiently absorbed and concentration quenching does not occur.
 蛍光部6における蛍光体の濃度は、本発明の要旨を変更しない限りにおいて任意に設定可能であるが、例えば、通常は5重量%以上、好ましくは6重量%以上、より好ましくは7重量%以上で、また通常は90重量%以下、好ましくは70重量%以下、より好ましくは40重量%以下、更に好ましくは25重量%以下、特に好ましくは20重量%以下とするのがよい。 The concentration of the phosphor in the fluorescent part 6 can be arbitrarily set as long as the gist of the present invention is not changed. For example, it is usually 5% by weight or more, preferably 6% by weight or more, more preferably 7% by weight or more. In addition, it is usually 90% by weight or less, preferably 70% by weight or less, more preferably 40% by weight or less, still more preferably 25% by weight or less, and particularly preferably 20% by weight or less.
 (充填材)
 蛍光体と混合され、蛍光体を分散させて保持することにより蛍光部6を形成する充填材は、特に限定されるものではないが、蛍光体を良好に分散させて保持することが可能であるだけではなく、キャビティ5内に蛍光体と共に充填される際に適切な流動性を有する一方で、半導体発光素子4を覆った後に硬化可能な材料であるのが好ましい。このような硬化性材料としては、無機系材料及び有機系材料、並びに両者の混合物のいずれを用いることも可能である。
(Filler)
The filler that forms the fluorescent part 6 by being mixed with the phosphor and dispersing and holding the phosphor is not particularly limited, but the phosphor can be well dispersed and held. In addition, it is preferable to use a material that can be cured after covering the semiconductor light emitting element 4 while having appropriate fluidity when filled in the cavity 5 together with the phosphor. As such a curable material, any of an inorganic material, an organic material, and a mixture of both can be used.
 無機系材料としては、例えば、金属アルコキシド、セラミック前駆体ポリマーもしくは金属アルコキシドを含有する溶液をゾル-ゲル法により加水分解重合した溶液、またはこれらの組み合わせを固化した無機系材料(例えば、シロキサン結合を有する無機系材料)などがある。 As the inorganic material, for example, a solution obtained by hydrolyzing a solution containing a metal alkoxide, a ceramic precursor polymer or a metal alkoxide by a sol-gel method, or a combination thereof, an inorganic material (for example, a siloxane bond). Inorganic material).
 一方、有機系材料としては、例えば、熱硬化性樹脂、光硬化性樹脂(UV硬化性樹脂)などがある。具体的には、ポリ(メタ)アクリル酸メチルなどの(メタ)アクリル樹脂、ポリスチレンやスチレン-アクリロニトリル共重合体などのスチレン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、ブチラール樹脂、ポリビニルアルコール、エチルセルロースやセルロースアセテート及びセルロースアセテートブチレートなどのセルロース系樹脂、エポキシ樹脂、フェノール樹脂、シリコーン樹脂などがある。 On the other hand, examples of the organic material include a thermosetting resin and a photocurable resin (UV curable resin). Specifically, (meth) acrylic resins such as poly (meth) methyl acrylate, styrene resins such as polystyrene and styrene-acrylonitrile copolymers, polycarbonate resins, polyester resins, phenoxy resins, butyral resins, polyvinyl alcohol, ethyl cellulose, Examples thereof include cellulose resins such as cellulose acetate and cellulose acetate butyrate, epoxy resins, phenol resins, and silicone resins.
 従来の半導体発光装置において、充填材としては一般的にエポキシ樹脂が用いられてきたが、本実施形態の半導体発光装置1においては、半導体発光素子4からの発光に対して劣化が少なく、耐熱性にも優れたケイ素含有化合物を使用するのが好ましい。ケイ素含有化合物とは、分子中にケイ素原子を有する化合物をいい、ポリオルガノシロキサンなどの有機材料(シリコーン系材料)、酸化ケイ素、窒化ケイ素、酸窒化ケイ素などの無機材料、及びホウケイ酸塩、ホスホケイ酸塩、アルカリケイ酸塩などのガラス材料がある。これらは1種単独、または2種以上を任意の比率及び組み合わせで用いることができる。これらの中でも、透明性、接着性、ハンドリングの容易さ、ならびに硬化物が応力緩和力を有する点から、シリコーン系材料が好ましい。半導体発光装置用のシリコーン樹脂に関しては、例えば日本国特開平10-228249号公報、日本国特許第2927279号公報、日本国特開2001-36147号公報などに、充填材としての使用が示されている。 In the conventional semiconductor light emitting device, epoxy resin has generally been used as a filler. However, in the semiconductor light emitting device 1 of the present embodiment, there is little deterioration with respect to light emitted from the semiconductor light emitting element 4, and heat resistance. It is also preferable to use an excellent silicon-containing compound. The silicon-containing compound is a compound having a silicon atom in the molecule, organic materials such as polyorganosiloxane (silicone-based material), inorganic materials such as silicon oxide, silicon nitride, and silicon oxynitride, and borosilicate and phosphosilicate. There are glass materials such as acid salts and alkali silicates. These can be used alone or in combination of two or more in any ratio and combination. Among these, a silicone-based material is preferable from the viewpoints of transparency, adhesiveness, ease of handling, and a cured product having stress relaxation force. Regarding silicone resins for semiconductor light emitting devices, for example, Japanese Patent Application Laid-Open No. 10-228249, Japanese Patent No. 2927279, and Japanese Patent Application Laid-Open No. 2001-36147 show use as fillers. Yes.
 また、光取り出し効率の観点から、充填材は膜厚を1mmとしたときの350nm~500nmの波長領域の光の透過率が80%以上であるのが好ましく、より好ましくは85%以上であり、通常は98%以下となっている。 From the viewpoint of light extraction efficiency, the filler preferably has a light transmittance of 80% or more in a wavelength region of 350 nm to 500 nm when the film thickness is 1 mm, more preferably 85% or more, Usually, it is 98% or less.
 4.封止部材
 本実施形態において封止部材3は、第1の面3a及び第2の面3bを有した板状に形成されており、各蛍光部6から発せられる一次光を透過して第2の面3bから放射する光透過特性を有している。封止部材3の材料としては、このような光透過特性を有するものであれば特に限定されるものではないが、例えばガラス、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、フッ素樹脂、シリコーン樹脂、石英、及びセラミックからなる群より選ばれる1種以上の材料などを用いることができる。本実施形態では、一次光の透過性や優れた耐久性を考慮し、封止部材3の材料としてガラスを用いている。加工性及び密封性の観点から、封止部材3は、例えばアクリル樹脂(例えば、三菱レーヨン社製アクリシラップ等)、エポキシ樹脂(例えば、ジャパンエポキシレジン社製2液型エポキシ樹脂YL7301、三菱ガス化学社製2液型エポキシ樹脂マクシーブ)、有機変性シリコーン樹脂(例えば、信越化学社製SCR-1012)、フッ素樹脂(例えば、太平化成社製フッ素樹脂エイトシール3000)等が好ましい。また、ガスバリア性の観点からは、ガラスが好適である。また、光取り出し効率の観点から、例えば約1mmの膜厚を有する封止部材3において、350nm~500nmの波長領域の光の透過率が80%以上であることが好ましく、より好ましくは85%以上であり、通常は98%以下となっている。なお、後述する水蒸気透過度、水蒸気透過係数、酸素透過度又は酸素透過係数を封止部材3全体として満たすことができれば、上述した具体的な材料に他の材料を適宜含有させた複合材料を封止部材3に用いてもよい。
4). Sealing member In the present embodiment, the sealing member 3 is formed in a plate shape having the first surface 3a and the second surface 3b, and transmits the primary light emitted from each fluorescent part 6 to the second. It has a light transmission characteristic radiated from the surface 3b. The material of the sealing member 3 is not particularly limited as long as it has such light transmission characteristics. For example, glass, acrylic resin, epoxy resin, urethane resin, fluorine resin, silicone resin, quartz, And one or more materials selected from the group consisting of ceramics can be used. In the present embodiment, glass is used as the material of the sealing member 3 in consideration of the primary light transmittance and excellent durability. From the viewpoint of processability and sealing properties, the sealing member 3 is made of, for example, an acrylic resin (for example, Acrysil Wrap manufactured by Mitsubishi Rayon Co., Ltd.), an epoxy resin (for example, two-pack type epoxy resin YL7301 manufactured by Japan Epoxy Resin Co., Ltd., Mitsubishi Gas Chemical). A two-pack type epoxy resin Maxive manufactured by Shin-Etsu Chemical Co., Ltd.), an organically modified silicone resin (for example, SCR-1012 manufactured by Shin-Etsu Chemical Co., Ltd.), a fluororesin (for example, a fluororesin Eight Seal 3000 manufactured by Taihei Kasei Co., Ltd.) and the like are preferable. Moreover, glass is suitable from the viewpoint of gas barrier properties. From the viewpoint of light extraction efficiency, for example, in the sealing member 3 having a film thickness of about 1 mm, the light transmittance in the wavelength region of 350 nm to 500 nm is preferably 80% or more, more preferably 85% or more. Usually, it is 98% or less. If the sealing member 3 can satisfy the following water vapor permeability, water vapor permeability coefficient, oxygen permeability, or oxygen permeability coefficient as a whole, a composite material in which another material is appropriately contained in the above-described specific material is sealed. It may be used for the stop member 3.
 封止部材3の硬度は、例えば、JISK7215(1986年)におけるショアDが20以上であることが好ましく、40であることがより好ましく、60であることが更に好ましい。一定の硬度を有する封止部材3の方が取り扱いが容易であり、封止部材3が変形しにくいこと、凹設されたキャビティ内部の蛍光部を保護するために好ましいこと、キャビティの容量が一定に保持できること、その結果として半導体発光装置の色ずれが生じることを防止することができること、或いは、製造工程において封止部材の取り扱いを容易にすることができるためである。 As for the hardness of the sealing member 3, for example, Shore D in JISK7215 (1986) is preferably 20 or more, more preferably 40, and further preferably 60. The sealing member 3 having a certain hardness is easier to handle, is less likely to deform the sealing member 3, is preferable for protecting the fluorescent part inside the recessed cavity, and has a constant cavity capacity. It is possible to prevent the color deviation of the semiconductor light emitting device from occurring as a result, or to facilitate the handling of the sealing member in the manufacturing process.
(封止部材のガスバリア性)
 配線基板2及び封止部材3によって囲まれた領域(すなわち、キャビティ5及び蛍光部6)に、半導体発光装置1の外部から水蒸気や酸素等の外部ガスが進入しないように、封止部材3の水蒸気透過度、水蒸気透過係数、酸素透過度、及び酸素透過係数を以下のように調整することが好ましい。具体的には、JISK7129B法によって23℃で測定した場合に、封止部材3の水蒸気透過度は、10g/m・day以下であることが好ましく、5/m・day以下であることがより好ましく、2/m・day以下であることが特に好ましい。また、JISK7129B法によって23℃で測定した場合に、封止部材3の水蒸気透過係数は、10g・mm/m・day以下であることが好ましく、5g・mm/m・day以下であることがより好ましく、2g・mm/m・day以下であることが特に好ましい。
(Gas barrier property of sealing member)
The sealing member 3 is configured so that an external gas such as water vapor or oxygen does not enter the region surrounded by the wiring substrate 2 and the sealing member 3 (that is, the cavity 5 and the fluorescent portion 6) from the outside of the semiconductor light emitting device 1. It is preferable to adjust the water vapor permeability, water vapor permeability coefficient, oxygen permeability, and oxygen permeability coefficient as follows. Specifically, when measured at 23 ° C. by the JISK7129B method, the water vapor permeability of the sealing member 3 is preferably 10 g / m 2 · day or less, and preferably 5 / m 2 · day or less. More preferred is 2 / m 2 · day or less. Further, when measured at 23 ° C. by the JISK7129B method, the water vapor transmission coefficient of the sealing member 3 is preferably 10 g · mm / m 2 · day or less, and preferably 5 g · mm / m 2 · day or less. Is more preferable, and 2 g · mm / m 2 · day or less is particularly preferable.
 更に、JISK7126B(1987)法によって23℃で測定した場合に、封止部材3の酸素透過度は、1000cm/m・day・atm以下であることが好ましく、500cm/m・day・atm以下であることがより好ましく、200cm/m・day・atm以下であることが特に好ましい。また、JISK7126B(1987)法によって23℃で測定した場合に、封止部材3の酸素透過係数は、1000cm・mm/m・day・atm以下であることが好ましく、100cm・mm/m・day・atm以下であることがより好ましく、10cm・mm/m・day・atm以下であることが特に好ましい。 Furthermore, when measured at 23 ° C. by the JISK7126B (1987) method, the oxygen permeability of the sealing member 3 is preferably 1000 cm 3 / m 2 · day · atm or less, and 500 cm 3 / m 2 · day ·. It is more preferably at most atm, and particularly preferably at most 200 cm 3 / m 2 · day · atm. Further, when measured at 23 ° C. by the JISK7126B (1987) method, the oxygen transmission coefficient of the sealing member 3 is preferably 1000 cm 3 · mm / m 2 · day · atm or less, preferably 100 cm 3 · mm / m. more preferably 2 · day · atm or less, particularly preferably not more than 10cm 3 · mm / m 2 · day · atm.
 また、配線基板2及び封止部材3によって囲まれた領域(すなわち、キャビティ5及び蛍光部6)に、半導体発光装置1の外部から水蒸気や酸素等の外部ガスが進入しないように、封止部材3の厚さを以下のように調整することが好ましい。具体的に、封止部材3の厚さは、0.2mm以上であることが好ましく、0.5mm以上であることがより好ましく、1.0mm以上であることが特に好ましい。なお、半導体発光装置の軽量化、コンパクト化の観点から、封止部材3の厚さは、10mm以下であることが好ましい。 Further, the sealing member prevents the external gas such as water vapor or oxygen from entering the region surrounded by the wiring substrate 2 and the sealing member 3 (that is, the cavity 5 and the fluorescent portion 6) from the outside of the semiconductor light emitting device 1. It is preferable to adjust the thickness of 3 as follows. Specifically, the thickness of the sealing member 3 is preferably 0.2 mm or more, more preferably 0.5 mm or more, and particularly preferably 1.0 mm or more. In addition, it is preferable that the thickness of the sealing member 3 is 10 mm or less from a viewpoint of weight reduction and compactization of a semiconductor light-emitting device.
 なお、蛍光部6から発せられた一次光は、少なくとも一部が封止部材3内において散乱するため、一次光の異なる複数種類の蛍光部6を採用した場合には、封止部材3内において一次光が良好に合成され、むらのない良質の出射光を得ることができる。従って、必要に応じて封止部材3内に一次光の散乱を促進する添加物を加えてもよいし、封止部材3の第2の面3bに、封止部材3内における一次光の散乱を促進したり、外部への出射を促進するような表面処理を施したりしてもよい。また、封止部材3の側面となる4つの第3の面3cについては、封止部材3内からの光の漏出を防止するため、各蛍光部6から発せられる光や半導体発光素子4が発する光に対して高い反射機能を有した材料を塗布したり貼付したりしてもよい。封止部材3の第2の面3bに対する表面処理の例を、図3~図8に示す。これら図3~図8は、第3の面3bに上述した表面処理を施した封止部材3を示す斜視図であるが、いずれも表面処理を模式的に表すものであり、縮尺等を正確に示すものではない。 In addition, since the primary light emitted from the fluorescent part 6 is at least partially scattered in the sealing member 3, when a plurality of types of fluorescent parts 6 having different primary lights are used, The primary light is well synthesized and high quality outgoing light with no unevenness can be obtained. Therefore, an additive that promotes the scattering of primary light may be added to the sealing member 3 as necessary, and the primary light scattering in the sealing member 3 may be added to the second surface 3b of the sealing member 3. Or may be subjected to a surface treatment that promotes emission to the outside. In addition, with respect to the four third surfaces 3 c that are the side surfaces of the sealing member 3, light emitted from the fluorescent portions 6 and the semiconductor light emitting elements 4 are emitted in order to prevent leakage of light from within the sealing member 3. A material having a high reflection function with respect to light may be applied or pasted. Examples of surface treatment for the second surface 3b of the sealing member 3 are shown in FIGS. 3 to 8 are perspective views showing the sealing member 3 in which the above-described surface treatment is performed on the third surface 3b. All of them schematically represent the surface treatment, and the scale and the like are accurately shown. Not shown in
 図3は、第2の面3bを微細凹凸が形成された粗面とした封止部材3の例を示す斜視図である。また図4は、このような粗面に代えて、第2の面3bにV溝・三角プリズム形状を付与した封止部材3の例を示す斜視図である。図4の例では、第2の面3bに互いに平行な複数のV溝を形成することにより、三角形断面のプリズム状の畝3dとV溝とが交互に並設され、V溝・三角プリズム形状をなしている。なお、V溝やプリズム状の畝の延設方向、大きさ及び数は図4のものに限定されるものではなく、半導体発光装置2に求められる発光特性、封止部材3の光学的特性、あるいは蛍光部6からの発光特性などに応じて適宜設定可能である。また、畝3dやV溝の大きさは、それぞれ同一とせずに異ならせることも可能であり、大きさの異なる畝3dやV溝の分布を、半導体発光装置2に求められる発光特性、封止部材3の光学的特性、あるいは蛍光部6からの発光特性などに応じて適宜設定することも可能である。 FIG. 3 is a perspective view showing an example of the sealing member 3 in which the second surface 3b is a rough surface on which fine irregularities are formed. FIG. 4 is a perspective view showing an example of the sealing member 3 in which a V-groove / triangular prism shape is provided on the second surface 3b instead of such a rough surface. In the example of FIG. 4, by forming a plurality of V-grooves parallel to each other on the second surface 3b, prism-shaped ridges 3d and V-grooves having a triangular cross section are alternately arranged in parallel. I am doing. Note that the extending direction, size, and number of V-grooves and prismatic ridges are not limited to those shown in FIG. 4, and the light emission characteristics required for the semiconductor light emitting device 2, the optical characteristics of the sealing member 3, Or it can set suitably according to the light emission characteristic from the fluorescence part 6, etc. FIG. Further, the sizes of the ridges 3d and the V-grooves may be different from each other, and the distribution of the ridges 3d and the V-grooves having different sizes may be different from each other in terms of light emission characteristics and sealing required for the semiconductor light emitting device 2. It is also possible to set appropriately according to the optical characteristics of the member 3 or the light emission characteristics from the fluorescent part 6.
 また、図5は、このようなV溝・三角プリズム形状に代えて、円筒プリズム形状を第2の面3bに付与した封止部材3の例を示す斜視図である。図5の例では、半円形状の断面を有したプリズム状の畝3eが複数平行に形成されている。なお、半円形状断面を有したプリズム状の畝3eの延設方向、大きさ及び数は図5の例に限定されるものではなく、半導体発光装置2に求められる発光特性、封止部材3の光学的特性、あるいは蛍光部6からの発光特性などに応じて適宜設定可能である。また、畝3eの大きさは、それぞれ同一とせずに異ならせることも可能であり、大きさの異なる畝3eの分布を、半導体発光装置2に求められる発光特性、封止部材3の光学的特性、あるいは蛍光部6からの発光特性などに応じて適宜設定することも可能である。 FIG. 5 is a perspective view showing an example of the sealing member 3 in which a cylindrical prism shape is applied to the second surface 3b instead of such a V-groove / triangular prism shape. In the example of FIG. 5, a plurality of prismatic collars 3e having a semicircular cross section are formed in parallel. Note that the extending direction, size, and number of prism-shaped ridges 3e having a semicircular cross-section are not limited to the example of FIG. 5, but the light-emitting characteristics required for the semiconductor light-emitting device 2 and the sealing member 3 Can be set as appropriate according to the optical characteristics of the light-emitting element or the light-emitting characteristics from the fluorescent part 6. Also, the sizes of the ridges 3e can be different from each other, and the distribution of the ridges 3e having different sizes can be determined by the light emission characteristics required for the semiconductor light emitting device 2 and the optical characteristics of the sealing member 3. Alternatively, it may be set as appropriate according to the light emission characteristics from the fluorescent part 6.
 図6は、第2の面3bに複数のフレネルレンズ3fを形成した封止部材3の例を示す斜視図である。図6の例では、封止部材3の第1の面3aに形成されているキャビティ5に対向する位置に同様のフレネルレンズがそれぞれ形成されている。なお、フレネルレンズの数、位置、大きさあるいは光学特性などは図6の例に限定されるものではなく、半導体発光装置2に求められる発光特性、封止部材3の光学的特性、あるいは蛍光部6からの発光特性などに応じて適宜設定可能である。また、フレネルレンズに代えて、凸レンズまたは凹レンズを形成するようにしてもよい。この場合も、凸レンズもしくは凹レンズの数、位置、大きさまたは光学特性などは、半導体発光装置2に求められる発光特性、封止部材3の光学的特性、あるいは蛍光部6からの発光特性などに応じて適宜設定可能である。 FIG. 6 is a perspective view showing an example of the sealing member 3 in which a plurality of Fresnel lenses 3f are formed on the second surface 3b. In the example of FIG. 6, the same Fresnel lens is formed at a position facing the cavity 5 formed on the first surface 3 a of the sealing member 3. Note that the number, position, size, optical characteristics, and the like of the Fresnel lens are not limited to the example shown in FIG. 6, but the light emission characteristics required for the semiconductor light emitting device 2, the optical characteristics of the sealing member 3, or the fluorescent part. 6 can be set as appropriate in accordance with the light emission characteristics from 6. Further, instead of the Fresnel lens, a convex lens or a concave lens may be formed. Also in this case, the number, position, size, optical characteristics, etc. of the convex lens or concave lens depend on the light emission characteristics required for the semiconductor light emitting device 2, the optical characteristics of the sealing member 3, or the light emission characteristics from the fluorescent part 6. Can be set as appropriate.
 図7は、第2の面3bに複数の角錐状凸部3gを形成した封止部材3の例を示す斜視図であり、図7の例では同様の形状をした四角錐の角錐状凸部3gが規則的に配列されている。なお、角錐は四角錐に限定されるものではなく、三角錐や六角錐などでもよいし円錐であってもよい。また、角錐の数、位置あるいは大きさなどは図7の例に限定されるものではなく、半導体発光装置2に求められる発光特性、封止部材3の光学的特性、あるいは蛍光部6からの発光特性などに応じて適宜設定可能である。更に、それぞれの角錐を同一とせずに異ならせることも可能であり、異なる角錐の分布を、半導体発光装置2に求められる発光特性、封止部材3の光学的特性、あるいは蛍光部6からの発光特性などに応じて適宜設定することも可能である。 FIG. 7 is a perspective view showing an example of the sealing member 3 in which a plurality of pyramidal protrusions 3g are formed on the second surface 3b. In the example of FIG. 7, the pyramid pyramid protrusions having the same shape are used. 3g is regularly arranged. The pyramid is not limited to a quadrangular pyramid, and may be a triangular pyramid, a hexagonal pyramid, or a cone. Further, the number, position, size, etc. of the pyramids are not limited to the example of FIG. 7, and the light emission characteristics required for the semiconductor light emitting device 2, the optical characteristics of the sealing member 3, or the light emission from the fluorescent part 6 It can be set as appropriate according to the characteristics. Further, the respective pyramids can be made different without being the same, and the distribution of the different pyramids can be determined based on the light emission characteristics required for the semiconductor light emitting device 2, the optical characteristics of the sealing member 3, or the light emission from the fluorescent portion 6. It is also possible to set appropriately according to the characteristics.
 図8は、角錐状凸部に代えて複数の半球状凸部3hを第2の面3bに形成した封止部材3の例を示す斜視図であり、図8の例では同様の形状をした半球状凸部3hが規則的に配列されている。半球状凸部3hの数、位置あるいは大きさなどは図8の例に限定されるものではなく、半導体発光装置2に求められる発光特性、封止部材3の光学的特性、あるいは蛍光部6からの発光特性などに応じて適宜設定可能である。更に、それぞれの半球状凸部3hを同一とせずに異ならせることも可能であり、異なる半球状凸部3hの分布を、半導体発光装置2に求められる発光特性、封止部材3の光学的特性、あるいは蛍光部6からの発光特性などに応じて適宜設定することも可能である。 FIG. 8 is a perspective view showing an example of the sealing member 3 in which a plurality of hemispherical convex portions 3h are formed on the second surface 3b instead of the pyramidal convex portions, and the example in FIG. 8 has the same shape. The hemispherical protrusions 3h are regularly arranged. The number, position, size, and the like of the hemispherical protrusions 3 h are not limited to the example of FIG. 8, and the light emission characteristics required for the semiconductor light emitting device 2, the optical characteristics of the sealing member 3, or the fluorescent part 6 It can be set as appropriate according to the emission characteristics of the light. Further, the respective hemispherical protrusions 3h can be made different without being the same, and the distribution of the different hemispherical protrusions 3h can be determined by the light emission characteristics required for the semiconductor light emitting device 2 and the optical characteristics of the sealing member 3. Alternatively, it may be set as appropriate according to the light emission characteristics from the fluorescent part 6.
 このように、封止部材3の第2の面3bには、封止部材3内における一次光の散乱を促進したり外部への出射を促進したりするべく、様々な表面処理を施すことが可能である。なお、上述した表面処理の形態は一例であって、表面処理はこれらに限定されるものではなく、また上述した表面処理を複数組み合わせて封止部材3の第2の面3bに施すことも可能である。 As described above, the second surface 3b of the sealing member 3 may be subjected to various surface treatments in order to promote the scattering of the primary light in the sealing member 3 or to promote the emission to the outside. Is possible. In addition, the form of the surface treatment mentioned above is an example, Surface treatment is not limited to these, Moreover, it is also possible to apply to the 2nd surface 3b of the sealing member 3 combining several surface treatment mentioned above. It is.
 (キャビティ)
 配線基板2との接合面となる封止部材3の第1の面3aには、配線基板2に装着された半導体発光素子4のそれぞれに対応する位置に、半導体発光素子4ごとにキャビティ5が凹設されている。従って、本実施形態においてキャビティ5は、配線基板2上にマトリックス状に配置された半導体発光素子4に対応し、図1に示すようにマトリックス状に配置されている。
(cavity)
On the first surface 3 a of the sealing member 3 that is a bonding surface with the wiring substrate 2, cavities 5 are provided for each semiconductor light emitting element 4 at positions corresponding to the semiconductor light emitting elements 4 mounted on the wiring substrate 2. It is recessed. Accordingly, in the present embodiment, the cavities 5 correspond to the semiconductor light emitting elements 4 arranged in a matrix on the wiring board 2 and are arranged in a matrix as shown in FIG.
 隣り合うキャビティ5の間隔は、本発明の要旨を変更しない限りにおいて任意に設定可能であるが、それぞれ相手側のキャビティ5にある半導体発光素子4からの発光の影響を抑制できる程度に離間しているのが好ましい。これにより、光取り出し効率の向上が期待される。具体的には50μm以上、好ましくは100μm以上、更に好ましくは200μm以上であることが好ましく、集積化や一次光の合成の観点からは1.5mm以下であることが好ましい。 The interval between the adjacent cavities 5 can be arbitrarily set as long as the gist of the present invention is not changed, but is separated to such an extent that the influence of light emission from the semiconductor light emitting element 4 in the opposite cavity 5 can be suppressed. It is preferable. Thereby, improvement of light extraction efficiency is expected. Specifically, it is 50 μm or more, preferably 100 μm or more, and more preferably 200 μm or more. From the viewpoint of integration or synthesis of primary light, it is preferably 1.5 mm or less.
 また、キャビティ5の開口面積や深さも、本発明の要旨を変更しない限りにおいて特に制限がなく、通常は半導体発光素子4の大きさに応じて適宜定めることが可能である。開口面積については、例えば5mm以下であることが好ましく、より好ましくは1mm以下、更に好ましくは0.25mm以下であるのがよい。このような開口面積とすることによって、半導体発光素子4の高集積化が可能となり、大光束が得られるようになる。一方、キャビティ5の深さについては、例えば、通常は200μm以上、好ましくは250μm以上、更に好ましくは300μm以上であり、また通常は3000μm以下、好ましくは2000μm以下、更に好ましくは1500μm以下である。これにより半導体発光素子4から発せられる光を効率よく波長変化することが可能となる。 Further, the opening area and depth of the cavity 5 are not particularly limited as long as the gist of the present invention is not changed, and can usually be appropriately determined according to the size of the semiconductor light emitting element 4. For example, the opening area is preferably 5 mm 2 or less, more preferably 1 mm 2 or less, and still more preferably 0.25 mm 2 or less. With such an opening area, the semiconductor light emitting element 4 can be highly integrated and a large luminous flux can be obtained. On the other hand, the depth of the cavity 5 is, for example, usually 200 μm or more, preferably 250 μm or more, more preferably 300 μm or more, and usually 3000 μm or less, preferably 2000 μm or less, more preferably 1500 μm or less. Thereby, the wavelength of the light emitted from the semiconductor light emitting element 4 can be changed efficiently.
 各キャビティ5は、封止部材3の第1の面3aから半球面状に凹設されており、図2に示すように、封止部材3を配線基板2に接合したときに、配線基板2上の半導体発光素子4のそれぞれが、対応するキャビティ5の内側に位置するようになっている。このとき各キャビティ5には、上述したように蛍光体を含有した蛍光部6が収容されており、封止部材3と配線基板2との接合によって、配線基板2上の半導体発光素子4のそれぞれが、対応するキャビティ5内に収容された蛍光部6で覆われることにより、蛍光部6が含有する蛍光体が半導体発光素子4の周囲に存在している。 Each cavity 5 is recessed in a hemispherical shape from the first surface 3a of the sealing member 3, and when the sealing member 3 is joined to the wiring substrate 2, as shown in FIG. Each of the upper semiconductor light emitting elements 4 is positioned inside the corresponding cavity 5. At this time, each cavity 5 contains a fluorescent portion 6 containing a phosphor as described above, and each of the semiconductor light emitting elements 4 on the wiring board 2 is joined by the bonding of the sealing member 3 and the wiring board 2. However, the phosphors contained in the fluorescent part 6 are present around the semiconductor light emitting element 4 by being covered with the fluorescent part 6 accommodated in the corresponding cavity 5.
 本実施形態において各キャビティ5は同じ大きさに形成されているが、キャビティ5の大きさは必ずしも同一でなくてもよく、キャビティ5の壁面形状も、本実施形態のような半球面状に限定されるものではない。即ち、キャビティ5の大きさや形状は、半導体発光装置1に求められる発光特性、収容する蛍光部6の種類や特性、半導体発光素子4の特性などに応じて適宜選択することが可能である。また、キャビティ5は、ウェットエッチング、ドライエッチング、レーザビーム照射、サンドブラスト、研削加工などの方法を用いることによって形成することが可能であり、本実施形態における具体的な形成方法については、「6.半導体発光装置の製造方法」の項で説明する。 In the present embodiment, the cavities 5 are formed to have the same size. However, the sizes of the cavities 5 are not necessarily the same, and the wall surface shape of the cavities 5 is also limited to a hemispherical shape as in the present embodiment. Is not to be done. That is, the size and shape of the cavity 5 can be appropriately selected according to the light emission characteristics required for the semiconductor light emitting device 1, the type and characteristics of the fluorescent portion 6 to be accommodated, the characteristics of the semiconductor light emitting element 4, and the like. The cavity 5 can be formed by using a method such as wet etching, dry etching, laser beam irradiation, sand blasting, grinding, or the like. For a specific forming method in this embodiment, refer to “6. This will be described in the section “Method for Manufacturing Semiconductor Light Emitting Device”.
 (光学フィルタ機能)
 このようにして形成された各キャビティ5の壁面に、キャビティ5内に収容された蛍光部6に含有されている蛍光体で波長変換された光を良好に透過させる一方で、半導体発光素子4が発する光の透過を抑制するようなコーティングを施すことにより、封止部材3に光学フィルタとしての機能を付加するのが好ましい。例えば、このような封止部材3の機能は、半導体発光素子4が発する光に対し、キャビティ5内に収容された蛍光部6に含有されている蛍光体で波長変換された光よりも高い反射率を有するコーティング層7を形成することによって得られる。
(Optical filter function)
While the light of the wavelength converted by the phosphor contained in the fluorescent part 6 accommodated in the cavity 5 is satisfactorily transmitted to the wall surface of each cavity 5 formed in this way, the semiconductor light emitting element 4 It is preferable to add a function as an optical filter to the sealing member 3 by applying a coating that suppresses transmission of emitted light. For example, the function of the sealing member 3 is higher than the light emitted from the semiconductor light emitting element 4 than the light whose wavelength is converted by the phosphor contained in the fluorescent part 6 accommodated in the cavity 5. It is obtained by forming a coating layer 7 having a rate.
 例えば、本実施形態のような近紫外領域の光を発する半導体発光素子4を用い、蛍光部6に含有される蛍光体によって近紫外領域の光より長い波長領域の可視光を得るようにする場合、高屈折率層と低屈折率層とを交互に複数積層した多層誘電体積層膜からなる干渉膜によりコーティング層7を形成する。具体的には、例えば高屈折率層としてTiOからなる薄膜を、また低屈折率層としてSiOからなる薄膜を、それぞれ蒸着またはスパッタリングによりキャビティ5に交互に複数回積層することにより(例えばそれぞれ16層ずつの32層)、キャビティ5の壁面全体にわたってこのようなコーティング層7を形成する。こうして形成されたコーティング層7は、近紫外領域の光より長い波長領域の可視光に対して90%以上の透過率を有すると共に、近紫外領域の光に対して90%以上の反射率を有する。 For example, when the semiconductor light emitting device 4 that emits light in the near ultraviolet region as in the present embodiment is used, visible light having a longer wavelength region than light in the near ultraviolet region is obtained by the phosphor contained in the fluorescent part 6. The coating layer 7 is formed of an interference film made of a multilayer dielectric laminated film in which a plurality of high refractive index layers and low refractive index layers are alternately laminated. Specifically, for example, by laminating a thin film made of TiO 2 as a high refractive index layer and a thin film made of SiO 2 as a low refractive index layer alternately in the cavity 5 by vapor deposition or sputtering (for example, respectively) Such a coating layer 7 is formed over the entire wall surface of the cavity 5. The coating layer 7 thus formed has a transmittance of 90% or more for visible light in a wavelength region longer than light in the near ultraviolet region, and has a reflectance of 90% or more for light in the near ultraviolet region. .
 このようなコーティング層7を各キャビティ5の壁面に形成した場合、半導体発光素子4から発せられた近紫外光は、その一部が蛍光部6に含有されている蛍光体によって波長変換され近紫外領域の光より長い波長領域の可視光となってキャビティ5のコーティング層7に達し、残りの近紫外光も蛍光体によって波長変換されずにコーティング層7に達する。このときコーティング層7は、半導体発光素子4が発した近紫外光に対し、蛍光体で波長変換されて得られた可視光よりも高い反射率を有し、当該可視光に対しては半導体発光素子4が発した近紫外光よりも高い透過率を有している。従って、蛍光体から発せられた可視光の多くは封止部材3内を通過した後、封止部材3の第2の面3bから放射される一方、半導体発光素子4から発せられてコーティング層7に達した近紫外光の多くはコーティング層7によって反射され、再び蛍光部6に含有される蛍光体によって波長変換される機会を得る。この結果、コーティング層7を有していない場合に比べ、蛍光体で波長変換されて半導体発光装置1から放出される可視光の量を増大させると共に、蛍光体で波長変換されずに半導体発光装置1から放出される近紫外光の量を低減することができる。 When such a coating layer 7 is formed on the wall surface of each cavity 5, the near-ultraviolet light emitted from the semiconductor light emitting element 4 is partly wavelength-converted by the phosphor contained in the fluorescent part 6, and the near-ultraviolet light is emitted. The visible light in the wavelength region longer than the light in the region reaches the coating layer 7 of the cavity 5, and the remaining near-ultraviolet light reaches the coating layer 7 without being wavelength-converted by the phosphor. At this time, the coating layer 7 has a higher reflectance than the visible light obtained by converting the wavelength of the near-ultraviolet light emitted from the semiconductor light-emitting element 4 with a phosphor. It has a higher transmittance than near-ultraviolet light emitted from the element 4. Therefore, most of the visible light emitted from the phosphor passes through the sealing member 3 and is then emitted from the second surface 3b of the sealing member 3, while it is emitted from the semiconductor light emitting element 4 and is applied to the coating layer 7. Most of the near-ultraviolet light that has reached is reflected by the coating layer 7 and has the opportunity to be wavelength-converted again by the phosphor contained in the fluorescent part 6. As a result, compared to the case where the coating layer 7 is not provided, the amount of visible light that is wavelength-converted by the phosphor and emitted from the semiconductor light-emitting device 1 is increased, and the semiconductor light-emitting device is not wavelength-converted by the phosphor. The amount of near-ultraviolet light emitted from 1 can be reduced.
 なお、このコーティング層7は、本実施形態のようにキャビティ5の壁面に形成する代わりに、封止部材3の第2の面3b上に形成することも可能である。この場合、半導体発光素子4から発せられた後、蛍光体で波長変換されずに封止部材3内を進んでコーティング層7に達した近紫外光は、封止部材3内で散乱するなどして必ずしも発生元の半導体発光素子4に対応したキャビティ5内に戻るとは限らず、別の半導体発光素子4に対応したキャビティ5内に戻る可能性がある。このため、キャビティ5によって蛍光部6に含有される蛍光体が異なる場合には、所望の出射光の特性を精度よく得られなくなる可能性がある。しかしながら、このコーティング層7は平坦な第2の面3bに形成すればよいので、半球面状のキャビティ5の壁面にコーティングを行う場合に比べ、コーティング層7の形成が容易になる。従って、このようなコーティング層7は、キャビティ5によって蛍光部6に含有される蛍光体が異なる場合よりも、同じ蛍光体を含有した蛍光部6を各キャビティ5に収容するようにした場合の方が適している。 The coating layer 7 can be formed on the second surface 3b of the sealing member 3 instead of being formed on the wall surface of the cavity 5 as in the present embodiment. In this case, after being emitted from the semiconductor light emitting element 4, near-ultraviolet light that has traveled through the sealing member 3 and reached the coating layer 7 without being wavelength-converted by the phosphor is scattered within the sealing member 3. Therefore, it does not necessarily return to the cavity 5 corresponding to the semiconductor light emitting element 4 that is the source of the generation, and may return to the cavity 5 corresponding to another semiconductor light emitting element 4. For this reason, when the phosphor contained in the fluorescent part 6 differs depending on the cavity 5, there is a possibility that the desired characteristic of the emitted light cannot be obtained with high accuracy. However, since the coating layer 7 may be formed on the flat second surface 3b, it is easier to form the coating layer 7 than when coating the wall surface of the hemispherical cavity 5. Accordingly, such a coating layer 7 has a case where the fluorescent parts 6 containing the same fluorescent substance are accommodated in the respective cavities 5 rather than the case where the fluorescent substance contained in the fluorescent part 6 differs depending on the cavity 5. Is suitable.
 コーティング層7の構成及び材質などは、上述のものに限定されるものではなく、同様の機能を有したものであれば適用可能であって、半導体発光素子4が発する光の波長領域や、蛍光体による波長変換で得られる光の波長領域などに応じて適宜選択すればよい。例えば、本実施形態ではキャビティ5の壁面全体にコーティング層7を形成するようにしたが、キャビティ5の壁面の一部にのみコーティング層7を形成するようにしてもよいし、キャビティ5の壁面を含めて封止部材3の第1の面3aの全体にコーティング層7を形成するようにしてもよい。また、コーティング層7に代えて、封止部材3の本体にコーティング層7と同様の機能を持たせるようにしてもよい。 The configuration and material of the coating layer 7 are not limited to those described above, and any coating material having the same function can be applied. The wavelength region of light emitted from the semiconductor light emitting element 4 and the fluorescence What is necessary is just to select suitably according to the wavelength range etc. of the light obtained by the wavelength conversion by a body. For example, in this embodiment, the coating layer 7 is formed on the entire wall surface of the cavity 5, but the coating layer 7 may be formed only on a part of the wall surface of the cavity 5, or the wall surface of the cavity 5 may be formed. In addition, the coating layer 7 may be formed on the entire first surface 3 a of the sealing member 3. Further, instead of the coating layer 7, the main body of the sealing member 3 may have the same function as the coating layer 7.
 なお、このような機能を封止部材3に設けることによって上述したような効果を得ることができるが、半導体発光装置1に必ず設けなければならないものではなく、必要に応じて省略することも可能である。また、半導体発光素子4の特性や、半導体発光装置1に求められる発光特性などに応じ、所定の波長領域の光を良好に透過させると共に、当該波長領域以外の光に対しては良好に反射するような機能、或はその逆に所定の波長領域の光に対しては良好に反射すると共に、当該波長領域以外の光を良好に透過させるような光学バンドパスフィルタ機能を封止部材3に持たせるようにしてもよい。 Although the above-described effects can be obtained by providing such a function in the sealing member 3, it is not necessarily provided in the semiconductor light emitting device 1, and may be omitted as necessary. It is. Further, according to the characteristics of the semiconductor light-emitting element 4 and the light-emitting characteristics required for the semiconductor light-emitting device 1, the light in a predetermined wavelength region is transmitted favorably and the light outside the wavelength region is reflected well. The sealing member 3 has an optical band-pass filter function that reflects well with respect to light in a predetermined wavelength region and conversely transmits light outside the wavelength region. You may make it let.
 5.半導体発光装置の構成
 (半導体発光装置の構造)
 上述したように、本実施形態において半導体発光装置1は、複数の半導体発光素子4が装着された配線基板2と、第1の面3a及び第2の面3bを有して板状に形成され、第1の面3aにキャビティ5が凹設された封止部材3と、キャビティ5のそれぞれに収容された蛍光部6とを有している。そして、図2に示すように、半導体発光素子4が装着されている配線基板2の面と、封止部材3の第1の面3aとが対向するように、配線基板2と封止部材3とを接合することにより、配線基板2上の半導体発光素子4が、それぞれ対応するキャビティ5内に収容されている蛍光部6によって覆われ、蛍光部6内に含有された蛍光体が半導体発光素子4の周囲に存在するようになっている。
5. Configuration of semiconductor light emitting device (Structure of semiconductor light emitting device)
As described above, in the present embodiment, the semiconductor light emitting device 1 is formed in a plate shape having the wiring substrate 2 on which the plurality of semiconductor light emitting elements 4 are mounted, the first surface 3a, and the second surface 3b. And a sealing member 3 having a cavity 5 recessed in the first surface 3a, and a fluorescent portion 6 accommodated in each of the cavities 5. Then, as shown in FIG. 2, the wiring board 2 and the sealing member 3 are arranged such that the surface of the wiring board 2 on which the semiconductor light emitting element 4 is mounted and the first surface 3 a of the sealing member 3 face each other. And the semiconductor light emitting element 4 on the wiring substrate 2 are covered with the fluorescent parts 6 accommodated in the corresponding cavities 5, respectively, and the phosphor contained in the fluorescent part 6 is replaced with the semiconductor light emitting element. 4 is around.
 このように、半導体発光装置1は、配線基板2と封止部材3とを接合することにより、各蛍光部6及び半導体発光素子2がキャビティ5内に封止されるので、封止部材3によって各蛍光部6及び半導体発光素子2を外部の環境から保護することができる。従って、別途保護部材を設ける必要がなくなり、簡単な構成で半導体発光装置1の信頼性及び耐久性を向上することができる。また、例えば配線基板2と封止部材3とを接合する際にシール性の優れた接着剤を用いたり、配線基板2と封止部材3とを接合した後に、配線基板2と封止部材3との接合周縁部分にシールを形成したりすることにより密封性を高めれば、半導体発光装置1の信頼性及び耐久性を更に向上することができる。 As described above, in the semiconductor light emitting device 1, each fluorescent part 6 and the semiconductor light emitting element 2 are sealed in the cavity 5 by bonding the wiring substrate 2 and the sealing member 3. Each fluorescent part 6 and the semiconductor light emitting element 2 can be protected from the external environment. Therefore, it is not necessary to provide a separate protective member, and the reliability and durability of the semiconductor light emitting device 1 can be improved with a simple configuration. Further, for example, when bonding the wiring board 2 and the sealing member 3, an adhesive having excellent sealing properties is used, or after bonding the wiring board 2 and the sealing member 3, the wiring board 2 and the sealing member 3 are used. The reliability and durability of the semiconductor light emitting device 1 can be further improved if the sealing performance is improved by forming a seal at the peripheral edge of the semiconductor light emitting device.
 当該接着剤には、例えば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、ウレタン樹脂等を用いることができる。配線基板2と封止部材3との密着性を考慮して、接着剤を選択することがより好ましい。また、配線基板2及び封止部材3によって囲まれた領域(すなわち、キャビティ5及び蛍光部6)に、半導体発光装置1の外部から水蒸気や酸素等の外部ガスが進入しないように、当該接着剤の水蒸気透過度、水蒸気透過係数、酸素透過度、及び酸素透過係数を以下のように調整することが好ましい。具体的には、JISK7129B法によって23℃で測定した場合に、当該接着剤の水蒸気透過度は、10g/m・day以下であることが好ましく、5/m・day以下であることがより好ましく、2/m・day以下であることが特に好ましい。また、JISK7129B法によって23℃で測定した場合に、当該接着剤の水蒸気透過係数は、10g・mm/m・day以下であることが好ましく、5g・mm/m・day以下であることがより好ましく、2g・mm/m・day以下であることが特に好ましい。更に、JISK7126B(1987)法によって23℃で測定した場合に、当該接着剤の酸素透過度は、1000cm/m・day・atm以下であることが好ましく、500cm/m・day・atm以下であることがより好ましく、200cm/m・day・atm以下であることが特に好ましい。そして、JISK7126B(1987)法によって23℃で測定した場合に、当該接着剤の酸素透過係数は、1000cm・mm/m・day・atm以下であることが好ましく、100cm・mm/m・day・atm以下であることがより好ましく、10cm・mm/m・day・atm以下であることが特に好ましい。なお、上述した水蒸気透過度、水蒸気透過係数、酸素透過度又は酸素透過係数を当該接着剤全体として満たすことができれば、上述した具体的な材料に他の材料を適宜含有させた複合材料を当該接着剤に用いてもよい。 For example, an epoxy resin, an acrylic resin, a silicone resin, a urethane resin, or the like can be used as the adhesive. It is more preferable to select an adhesive in consideration of the adhesion between the wiring board 2 and the sealing member 3. In addition, the adhesive prevents the external gas such as water vapor or oxygen from entering the region surrounded by the wiring substrate 2 and the sealing member 3 (that is, the cavity 5 and the fluorescent portion 6) from the outside of the semiconductor light emitting device 1. It is preferable to adjust the water vapor permeability, water vapor permeability coefficient, oxygen permeability, and oxygen permeability coefficient as follows. Specifically, when measured at 23 ° C. by the JIS K7129B method, the water vapor permeability of the adhesive is preferably 10 g / m 2 · day or less, and more preferably 5 / m 2 · day or less. It is preferably 2 / m 2 · day or less. Further, when measured at 23 ° C. by the JISK7129B method, the water vapor transmission coefficient of the adhesive is preferably 10 g · mm / m 2 · day or less, and preferably 5 g · mm / m 2 · day or less. More preferably, it is 2 g · mm / m 2 · day or less. Furthermore, when measured at 23 ° C. by the JISK7126B (1987) method, the oxygen permeability of the adhesive is preferably 1000 cm 3 / m 2 · day · atm or less, and 500 cm 3 / m 2 · day · atm. More preferably, it is 200 cm < 3 > / m < 2 > * day * atm or less. Then, when measured at 23 ° C. by JISK7126B (1987) method, the oxygen permeability coefficient of the adhesive is preferably not more than 1000cm 3 · mm / m 2 · day · atm, 100cm 3 · mm / m 2 More preferably, it is not more than day · atm, and particularly preferably not more than 10 cm 3 · mm / m 2 · day · atm. Note that if the above-described water vapor permeability, water vapor permeability coefficient, oxygen permeability, or oxygen permeability coefficient can be satisfied as a whole of the adhesive, a composite material in which another material is appropriately added to the above-described specific material is bonded. It may be used as an agent.
 また、配線基板2及び封止部材3によって囲まれた領域(すなわち、キャビティ5及び蛍光部6)に、半導体発光装置1の外部から水蒸気や酸素等の外部ガスが進入しないように、当該接着剤の厚さを以下のように調整することが好ましい。具体的に、当該接着剤の厚さは、0.2mm以上であることが好ましく、0.5mm以上であることがより好ましく、1.0mm以上であることが特に好ましい。なお、半導体発光装置の軽量化、コンパクト化の観点から、当該接着剤の厚さは、10mm以下であることが好ましい。 In addition, the adhesive prevents the external gas such as water vapor or oxygen from entering the region surrounded by the wiring substrate 2 and the sealing member 3 (that is, the cavity 5 and the fluorescent portion 6) from the outside of the semiconductor light emitting device 1. It is preferable to adjust the thickness as follows. Specifically, the thickness of the adhesive is preferably 0.2 mm or more, more preferably 0.5 mm or more, and particularly preferably 1.0 mm or more. In addition, it is preferable that the thickness of the said adhesive agent is 10 mm or less from a viewpoint of weight reduction and compactization of a semiconductor light-emitting device.
 本実施形態では、配線基板2に横1列で6個の半導体発光素子4が6列装着されることにより、合計36個の半導体発光素子4がマトリックス状に配置されている。これに対応し、封止部材3の第1の面3aには36個のキャビティ5が凹設されている。各キャビティ5に収容された蛍光部6に含有される蛍光体をすべて同一とし、いずれも同じ一次光を得るようにすることも可能であるが、本実施形態では複数種類の蛍光体を用い、複数種類の一次光を得るようにしている。 In this embodiment, a total of 36 semiconductor light emitting elements 4 are arranged in a matrix by mounting six semiconductor light emitting elements 4 in one horizontal row on the wiring board 2. Correspondingly, 36 cavities 5 are recessed in the first surface 3 a of the sealing member 3. It is possible to make all the phosphors contained in the fluorescent parts 6 accommodated in the respective cavities 5 the same, and to obtain the same primary light, but in this embodiment, a plurality of types of phosphors are used, Multiple types of primary light are obtained.
 本実施形態では半導体発光素子4として、近紫外光を発するGaN系LEDを用いているので、これに対応して蛍光体には近紫外光を波長変換する赤色蛍光体、緑色蛍光体、及び青色蛍光体の3種の蛍光体を用いる。そして、36個のキャビティ5のうち、12個のキャビティ(第1キャビティ)5には赤色蛍光体を含有した蛍光部6が、残り24個のうちの12個のキャビティ(第2キャビティ)5には緑色蛍光体を含有した蛍光部6が、また残りの12個のキャビティ(第3キャビティ)5には青色蛍光体を含有した蛍光部6が収容されている。 In the present embodiment, a GaN-based LED that emits near-ultraviolet light is used as the semiconductor light-emitting element 4, and accordingly, a red phosphor, a green phosphor, and a blue phosphor that convert the wavelength of near-ultraviolet light to the phosphor corresponding thereto. Three types of phosphors are used. Of the 36 cavities 5, 12 cavities (first cavities) 5 have fluorescent parts 6 containing red phosphors, and 12 of the remaining 24 cavities (second cavities) 5 have 12 cavities (second cavities) 5. The fluorescent portion 6 containing green phosphor is housed, and the remaining 12 cavities (third cavities) 5 contain the fluorescent portion 6 containing blue phosphor.
 これらのキャビティ5の配置に特に制限がないが、本実施形態では図9のように各キャビティ5を配置している。図9は、半導体発光装置1における蛍光部6の配置の一例を示す模式図である。図9において、赤色蛍光体を含有する蛍光部6を収容したキャビティ5には符号Rを付し、緑色蛍光体を含有する蛍光部6を収容したキャビティ5には符号Gを付し、青色蛍光体を含有する蛍光部6を収容したキャビティ5には符号Bを付している。図9に示すように、縦方向及び横方向では同じ種類の蛍光体を含有する蛍光部6を収容したキャビティ5が隣り合わないようにすることで、それぞれの蛍光部6から出射された一次光を良好に合成してむらのない出射光を得ることができる。 The arrangement of these cavities 5 is not particularly limited, but in the present embodiment, the cavities 5 are arranged as shown in FIG. FIG. 9 is a schematic diagram illustrating an example of the arrangement of the fluorescent portions 6 in the semiconductor light emitting device 1. In FIG. 9, the cavity 5 containing the fluorescent part 6 containing the red phosphor is assigned R, and the cavity 5 containing the green part 6 containing the green phosphor is given G, and the blue fluorescence The cavity 5 in which the fluorescent part 6 containing the body is accommodated is denoted by B. As shown in FIG. 9, the primary light emitted from each fluorescent part 6 is prevented by preventing the cavities 5 containing the fluorescent parts 6 containing the same type of phosphor in the vertical and horizontal directions from being adjacent to each other. Can be synthesized well to obtain uniform emission light.
 このような半導体発光装置1では、それぞれの半導体発光素子4から発せられた近紫外光が、各半導体発光素子4を覆う蛍光部6内で散乱しながら、蛍光部6に含有されている蛍光体に吸収される。そして、蛍光部6に含有された蛍光体が赤色蛍光体の場合には赤色光が、緑色蛍光体の場合には緑色光が、また青色蛍光体の場合には青色光がそれぞれ蛍光体から発せられる。こうして蛍光体から発せられた一次光は、蛍光体によって波長変換されなかった近紫外光と共にキャビティ5の壁面に達する。 In such a semiconductor light-emitting device 1, the near-ultraviolet light emitted from each semiconductor light-emitting element 4 is scattered in the fluorescent part 6 covering each semiconductor light-emitting element 4 and is contained in the fluorescent part 6. To be absorbed. When the phosphor contained in the fluorescent portion 6 is a red phosphor, red light is emitted from the phosphor, when the green phosphor is green light, green light is emitted, and when blue phosphor is emitted, blue light is emitted from the phosphor. It is done. Thus, the primary light emitted from the phosphor reaches the wall surface of the cavity 5 together with near-ultraviolet light that has not been wavelength-converted by the phosphor.
 このとき、半導体発光素子4が発する近紫外光に対しては、近紫外光より長い波長領域の可視光よりも高い反射率を有し、当該可視光に対しては近紫外光よりも高い透過性により良好な透過性を有するコーティング層7が、前述のようにキャビティ5の壁面に形成されている場合は、各蛍光体から発せられた赤色光、緑色光及び青色光の多くがコーティング層7を良好に透過して封止部材3内に達する一方、蛍光体によって波長変換されずにキャビティ5の壁面のコーティング層7に達した近紫外光の多くは、コーティング層7によって反射されて蛍光部6内に戻る。 At this time, the near-ultraviolet light emitted from the semiconductor light-emitting element 4 has a higher reflectance than visible light in a longer wavelength region than the near-ultraviolet light, and the visible light has a higher transmission than the near-ultraviolet light. When the coating layer 7 having better transparency due to the property is formed on the wall surface of the cavity 5 as described above, most of the red light, green light, and blue light emitted from each phosphor is the coating layer 7. The near-ultraviolet light that reaches the coating layer 7 on the wall surface of the cavity 5 without being wavelength-converted by the phosphor is reflected by the coating layer 7 to be reflected in the fluorescent part. Return to 6.
 こうして封止部材3内に達した赤色光、緑色光及び青色光は、封止部材3内で散乱して合成され、封止部材3の第2の面3bから白色光となって放射される。蛍光部6からの一次光のスペクトル幅が比較的広く、このようにして赤色光、緑色光及び青色光が合成されることにより、連続スペクトルを有した光に近い出射光を得ることが可能となり、優れた演色性を確保することができる。また、コーティング層7を設けた場合には、コーティング層7で反射された近紫外光が蛍光部6に含有される蛍光体によって波長変換される機会を再び得る。この結果、コーティング層7を設けていない場合に比べ、蛍光体で波長変換されて半導体発光装置1から放出される可視光の量を増大させると共に、蛍光体で波長変換されずに半導体発光装置1から放出される近紫外光の量を低減することが可能となる。 The red light, the green light, and the blue light that have reached the inside of the sealing member 3 are scattered and synthesized in the sealing member 3 and emitted as white light from the second surface 3b of the sealing member 3. . The spectrum width of the primary light from the fluorescent part 6 is relatively wide, and by combining the red light, the green light, and the blue light in this way, it becomes possible to obtain outgoing light close to light having a continuous spectrum. Excellent color rendering can be ensured. Moreover, when the coating layer 7 is provided, the opportunity to convert the wavelength of the near-ultraviolet light reflected by the coating layer 7 by the phosphor contained in the fluorescent portion 6 is obtained again. As a result, compared to the case where the coating layer 7 is not provided, the amount of visible light that is wavelength-converted by the phosphor and emitted from the semiconductor light-emitting device 1 is increased, and the semiconductor light-emitting device 1 is not wavelength-converted by the phosphor. It is possible to reduce the amount of near-ultraviolet light emitted from the.
 図9に示すキャビティ5の配置は一例であって、これに限定されるものではなく、半導体発光装置1に求められる発光特性などに応じてさまざまに設定可能である。例えば、その変形例を第1変形例として図10に示す。図10は、半導体発光装置1における蛍光部6の配置の第1変形例を、図9と同様にして示す模式図である。図10に示すように、第1変形例では同じ種類の蛍光体を含有した蛍光部6を収容するキャビティ5が縦1列に並ぶようになっている。 The arrangement of the cavities 5 shown in FIG. 9 is an example, and is not limited to this, and can be variously set according to the light emission characteristics required for the semiconductor light emitting device 1. For example, the modification is shown in FIG. 10 as a first modification. FIG. 10 is a schematic diagram showing a first modification of the arrangement of the fluorescent portions 6 in the semiconductor light emitting device 1 in the same manner as FIG. As shown in FIG. 10, in the first modification, the cavities 5 that accommodate the fluorescent portions 6 containing the same type of phosphors are arranged in a vertical row.
 図9及び図10に例示するように、赤色蛍光体、緑色蛍光体及び青色蛍光体を別個に含有した蛍光部6を用いる場合、例えば赤色蛍光体を含有する蛍光部6を収容したキャビティ5に配置されている半導体発光素子4のみに通電した場合には、半導体発光装置1の出射光が赤色光となる。また、緑色蛍光体を含有する蛍光部6を収容したキャビティ5に配置されている半導体発光素子4のみに通電した場合には、半導体発光装置1の出射光が緑色光となり、青色蛍光体を含有する蛍光部6を収容したキャビティ5に配置されている半導体発光素子4のみに通電した場合には、半導体発光装置1の出射光が青色光となる。 As illustrated in FIG. 9 and FIG. 10, when using the fluorescent part 6 containing red phosphor, green fluorescent substance and blue fluorescent substance separately, for example, in the cavity 5 containing the fluorescent part 6 containing red fluorescent substance. When only the semiconductor light emitting element 4 arranged is energized, the emitted light of the semiconductor light emitting device 1 becomes red light. Further, when only the semiconductor light emitting element 4 disposed in the cavity 5 containing the fluorescent portion 6 containing the green phosphor is energized, the emitted light of the semiconductor light emitting device 1 becomes green light and contains the blue phosphor. When only the semiconductor light emitting element 4 disposed in the cavity 5 containing the fluorescent part 6 to be energized is energized, the emitted light of the semiconductor light emitting device 1 becomes blue light.
 一方、例えば赤色蛍光体を含有する蛍光部6を収容したキャビティ5に配置されている半導体発光素子4にのみ通電せず、他の半導体発光素子4に通電した場合には、緑色光と青色光との合成光が得られる。このように、いずれか1種類の蛍光体に対応した半導体発光素子4にのみ通電せずに、他の半導体発光素子4に通電すれば、通電した半導体発光素子4に対応する蛍光体による2種類の一次光を合成した出射光が得られる。そして、全ての半導体発光素子4に通電した場合には、赤色光、緑色光及び青色光を合成した出射光が得られ、このときの各半導体発光素子4に対する供給電力を調整することにより、白色光を含む様々な色度の出射光を得ることができる。 On the other hand, for example, when the semiconductor light emitting element 4 disposed in the cavity 5 containing the fluorescent portion 6 containing the red phosphor is not energized, and other semiconductor light emitting elements 4 are energized, green light and blue light are emitted. And the combined light is obtained. As described above, when the semiconductor light emitting element 4 is energized without energizing only the semiconductor light emitting element 4 corresponding to any one type of phosphor, two kinds of phosphors corresponding to the energized semiconductor light emitting element 4 are used. Outgoing light obtained by synthesizing the primary light is obtained. When all the semiconductor light emitting elements 4 are energized, emitted light obtained by combining red light, green light and blue light is obtained. By adjusting the power supplied to each semiconductor light emitting element 4 at this time, white light is obtained. Output light of various chromaticities including light can be obtained.
 このように、本実施形態では、各半導体発光素子4に供給する電力を調整することにより、半導体発光装置1から出射する光の色度、輝度、彩度及び色温度を任意に調整することが可能となる。なお、蛍光部6に含有させる蛍光体の種類や数は上述した例に限定されるものではなく、任意のものを使用可能であり、半導体発光装置1に求められる発光特性に応じて適宜選択することができる。 Thus, in this embodiment, the chromaticity, luminance, saturation, and color temperature of light emitted from the semiconductor light emitting device 1 can be arbitrarily adjusted by adjusting the power supplied to each semiconductor light emitting element 4. It becomes possible. In addition, the kind and number of the phosphors to be included in the fluorescent part 6 are not limited to the above-described examples, and arbitrary ones can be used and are appropriately selected according to the light emission characteristics required for the semiconductor light emitting device 1. be able to.
 例えば、1つの蛍光部6に複数の蛍光体が含有されるようにすることも可能である。この場合、例えば、半導体発光素子4を本実施形態と同じく近紫外光を発するGaN系LEDとし、近紫外光を波長変換する赤色蛍光体、緑色蛍光体及び青色蛍光体を充填材に混合して各蛍光部6を形成する。ここで、各蛍光部6における赤色蛍光体、緑色蛍光体及び青色蛍光体の含有量及び含有比率を同一とした場合には、それぞれの蛍光部6から得られる一次光も同一となる。即ち、赤色蛍光体、緑色蛍光体及び青色蛍光体の比率を調整することにより、例えば所望の固定的な色温度の白色光を出射するような半導体発光装置1を得ることができる。 For example, it is possible for a single fluorescent portion 6 to contain a plurality of phosphors. In this case, for example, the semiconductor light-emitting element 4 is a GaN-based LED that emits near-ultraviolet light as in the present embodiment, and a red phosphor, a green phosphor, and a blue phosphor that convert the wavelength of near-ultraviolet light are mixed in a filler. Each fluorescent part 6 is formed. Here, when the contents and the content ratios of the red phosphor, the green phosphor, and the blue phosphor in each phosphor portion 6 are the same, the primary light obtained from each phosphor portion 6 is also the same. That is, by adjusting the ratio of the red phosphor, the green phosphor, and the blue phosphor, it is possible to obtain the semiconductor light emitting device 1 that emits white light having a desired fixed color temperature, for example.
 一方、赤色蛍光体、緑色蛍光体及び青色蛍光体の比率を調整し、複数のキャビティ5のうちの一部に収容される蛍光部6と残部に収容される蛍光部6とで、異なる一次光を得るようにすることもできる。例えば、一部の蛍光部6が発する白色光の色温度と、残部の蛍光部6が発する白色光の色温度とを異なるように、赤色蛍光体、緑色蛍光体及び青色蛍光体の比率を調整することができる。このように2種類の蛍光部6を形成した場合の、一方の蛍光部6を収容したキャビティ5と、他方の蛍光部6を収容したキャビティ5との配置の例を、本実施形態の第2変形例として図11に示す。 On the other hand, the ratio of the red phosphor, the green phosphor, and the blue phosphor is adjusted, and the primary light different between the fluorescent part 6 accommodated in a part of the plurality of cavities 5 and the fluorescent part 6 accommodated in the remaining part. Can also be obtained. For example, the ratio of the red phosphor, the green phosphor and the blue phosphor is adjusted so that the color temperature of the white light emitted from some of the fluorescent parts 6 and the color temperature of the white light emitted from the remaining fluorescent parts 6 are different. can do. An example of the arrangement of the cavity 5 in which one fluorescent part 6 is accommodated and the cavity 5 in which the other fluorescent part 6 is accommodated when two types of fluorescent parts 6 are formed in this way is the second example of this embodiment. A modification is shown in FIG.
 図11は、半導体発光装置1における蛍光部6の配置の第2変形例を示す模式図である。図11において、第1の色温度T1(例えば2600K)の一次光を発する蛍光部6を収容したキャビティ5にはW1を付し、第2の色温度T2(例えば9000K)の一次光を発する蛍光部6を収容したキャビティ5にはW2を付している。図11に示すように、縦方向及び横方向では同一の蛍光部6を収容したキャビティ5が隣り合わないようにすることによって、それぞれの蛍光部6からの一次光を良好に合成して、色温度にむらのない出射光を得ることができる。なお、図11に示す2種類のキャビティ5の配置は一例であって、これらキャビティ5は任意に配置することが可能である。 FIG. 11 is a schematic diagram showing a second modification of the arrangement of the fluorescent portions 6 in the semiconductor light emitting device 1. In FIG. 11, the cavity 5 that houses the fluorescent part 6 that emits the primary light of the first color temperature T1 (for example, 2600K) is given W1, and the fluorescence that emits the primary light of the second color temperature T2 (for example, 9000K). The cavity 5 that accommodates the portion 6 is marked with W2. As shown in FIG. 11, in the vertical direction and the horizontal direction, the primary light from each fluorescent part 6 is synthesized well by preventing the cavities 5 containing the same fluorescent part 6 from being adjacent to each other. Outgoing light with uniform temperature can be obtained. In addition, arrangement | positioning of the two types of cavity 5 shown in FIG. 11 is an example, Comprising: These cavities 5 can be arrange | positioned arbitrarily.
 第2変形例のように発光色の色温度が相互に異なる2種類の蛍光部6を用いた場合、例えば第1の色温度T1の一次光を発する蛍光部6を収容したキャビティ5に配置されている半導体発光素子4のみに通電した場合、半導体発光装置1の出射光は第1の色温度T1の白色光となる。また、第2の色温度T2の一次光を発する蛍光部6を収容したキャビティ5に配置されている半導体発光素子4のみに通電した場合、半導体発光装置1の出射光は第2の色温度T2の白色光となる。そして、全ての半導体素子4に通電した場合には、第1の色温度T1の白色光と第2の色温度T2の白色光とを合成した出射光が得られる。従って、このときの各半導体発光素子4に対する供給電力を調整することにより、半導体発光装置1の出射光として、色温度T1~T2の範囲の任意の色温度の白色光を得ることが可能となる。 When two types of fluorescent parts 6 having different color temperatures of the emission colors are used as in the second modification, for example, the fluorescent parts 6 are arranged in the cavity 5 that houses the fluorescent part 6 that emits the primary light of the first color temperature T1. When only the semiconductor light emitting element 4 is energized, the light emitted from the semiconductor light emitting device 1 becomes white light having the first color temperature T1. Further, when only the semiconductor light emitting element 4 disposed in the cavity 5 that houses the fluorescent portion 6 that emits the primary light of the second color temperature T2 is energized, the emitted light of the semiconductor light emitting device 1 is emitted from the second color temperature T2. White light. When all the semiconductor elements 4 are energized, emitted light obtained by combining the white light having the first color temperature T1 and the white light having the second color temperature T2 is obtained. Therefore, by adjusting the power supplied to each semiconductor light emitting element 4 at this time, it is possible to obtain white light having an arbitrary color temperature in the range of the color temperatures T1 to T2 as the emitted light from the semiconductor light emitting device 1. .
 このような半導体発光装置1においても、それぞれの半導体発光素子4から発せられた近紫外光が、各半導体発光素子4を覆う蛍光部6内で散乱しながら、蛍光部6に含有されている蛍光体で波長変換されることにより一次光が発せられる。こうして蛍光体から発せられた一次光は、蛍光体によって波長変換されなかった近紫外光と共にキャビティ5の壁面に達する。このときも、半導体発光素子4が発する近紫外光に対して、近紫外光より長い波長領域にある可視光よりも高い反射率を有し、当該可視光に対しては近紫外光よりも高い透過率により良好な透過性を有するコーティング層7が、キャビティ5の壁面に形成されている場合は、各蛍光体から発せられた一次光の多くがコーティング層7を良好に透過して封止部材3内に達する一方、蛍光体によって波長変換されずにキャビティ5の壁面のコーティング層7に達した近紫外光の多くは、コーティング層7によって反射されて蛍光部6内に戻る。 Also in such a semiconductor light emitting device 1, the near-ultraviolet light emitted from each semiconductor light emitting element 4 is scattered in the fluorescent part 6 covering each semiconductor light emitting element 4, and the fluorescence contained in the fluorescent part 6. Primary light is emitted by wavelength conversion by the body. Thus, the primary light emitted from the phosphor reaches the wall surface of the cavity 5 together with near-ultraviolet light that has not been wavelength-converted by the phosphor. Also at this time, the near-ultraviolet light emitted from the semiconductor light-emitting element 4 has a higher reflectance than visible light in a longer wavelength region than the near-ultraviolet light, and is higher than the near-ultraviolet light with respect to the visible light. When the coating layer 7 having good transparency due to the transmittance is formed on the wall surface of the cavity 5, most of the primary light emitted from each phosphor transmits the coating layer 7 well and the sealing member 3, most of the near-ultraviolet light that reaches the coating layer 7 on the wall surface of the cavity 5 without being wavelength-converted by the phosphor is reflected by the coating layer 7 and returns to the fluorescent part 6.
 こうして封止部材3内に達した第1の色温度T1の白色光及び第2の色温度T2の白色光は、封止部材3内で散乱して合成され、封止部材3の第2の面3bから出射光となって放射される。蛍光部6からの一次光のスペクトル幅が比較的広く、このようにして第1の色温度T1の白色光及び第2の色温度T2の白色光が合成されることにより、この場合にも連続スペクトルを有した光に近い出射光を得ることが可能となり、優れた演色性を確保することができる。また、この場合にも、封止部材3がコーティング層7を有していれば、コーティング層7で反射された近紫外光が、蛍光部6に含有される蛍光体によって波長変換される機会を再び得る。この結果、コーティング層7を設けていない場合に比べ、蛍光体で波長変換されて半導体発光装置1から放出される可視光の量を増大させると共に、蛍光体で波長変換されずに半導体発光装置1から放出される近紫外光の量を低減することが可能となる。 Thus, the white light having the first color temperature T1 and the white light having the second color temperature T2 that have reached the inside of the sealing member 3 are scattered and combined in the sealing member 3, and the second light of the sealing member 3 is combined. The light is emitted from the surface 3b as emitted light. The spectral width of the primary light from the fluorescent portion 6 is relatively wide, and in this way, the white light having the first color temperature T1 and the white light having the second color temperature T2 are combined, and in this case as well, it is continuous. Output light close to light having a spectrum can be obtained, and excellent color rendering can be ensured. Also in this case, if the sealing member 3 has the coating layer 7, there is an opportunity for wavelength conversion of near-ultraviolet light reflected by the coating layer 7 by the phosphor contained in the fluorescent portion 6. Get again. As a result, compared to the case where the coating layer 7 is not provided, the amount of visible light that is wavelength-converted by the phosphor and emitted from the semiconductor light-emitting device 1 is increased, and the semiconductor light-emitting device 1 is not wavelength-converted by the phosphor. It is possible to reduce the amount of near-ultraviolet light emitted from the.
 このように、複数種類の蛍光体を用いると共に、組み合わせる蛍光体の種類を適宜選択することにより、半導体発光装置1の発光色を多彩に変化させることが可能であり、昼光色~昼白色~白色~温白色~電球色などの照明光、CIE標準の光(A、B、C、及びD65)、太陽光(自然光)スペクトルを有する光など、近紫外光から近赤外光の広範囲スペクトルを有する出射光を得ることが可能である。 As described above, by using a plurality of types of phosphors and appropriately selecting the types of phosphors to be combined, the emission color of the semiconductor light emitting device 1 can be varied in various ways. Light with a wide spectrum from near ultraviolet light to near infrared light, such as illumination light from warm white to bulb color, CIE standard light (A, B, C, and D65), light with sunlight (natural light) spectrum, etc. It is possible to obtain light.
 半導体発光装置1からの出射光を白色光とする場合に、好ましい蛍光体の一次光の波長範囲の組み合わせ例は以下のとおりである。
・2色混合の場合
 一次光の波長がそれぞれ400nm~490nm(青色)及び560nm~590nm(黄色)の組み合わせ、480nm~500nm(青緑色)及び580nm~700nm(赤色)の組み合わせが好ましく、中でも400nm~490nm(青色)及び560nm~590nm(黄色)の組み合わせが好ましい。
When the emitted light from the semiconductor light emitting device 1 is white light, examples of combinations of wavelength ranges of preferable primary light of the phosphor are as follows.
In the case of two-color mixing, the primary light wavelength is preferably a combination of 400 nm to 490 nm (blue) and 560 nm to 590 nm (yellow), preferably a combination of 480 nm to 500 nm (blue green) and 580 nm to 700 nm (red). A combination of 490 nm (blue) and 560 nm to 590 nm (yellow) is preferred.
・3色混合の場合
 一次光の波長がそれぞれ430nm~500nm、500nm~580nm及び580nm~700nmの組み合わせ、430nm~480nm、480nm~500nm及び580nm~700nmの組み合わせ、430nm~500nm、560nm~590nm及び590nm~700nmの組み合わせが好ましい。中でも、430nm~500nm、500nm~580nm及び580nm~700nmの組み合わせが好ましい。
In the case of mixing three colors, the primary light wavelengths are combinations of 430 nm to 500 nm, 500 nm to 580 nm, and 580 nm to 700 nm, combinations of 430 nm to 480 nm, 480 nm to 500 nm, and 580 nm to 700 nm, 430 nm to 500 nm, 560 nm to 590 nm, and 590 nm to 590 nm, respectively. A combination of 700 nm is preferred. Among these, combinations of 430 nm to 500 nm, 500 nm to 580 nm, and 580 nm to 700 nm are preferable.
・4色混合の場合
 一次光の波長がそれぞれ430nm~500nm、500nm~580nm、580nm~620nm及び620nm~700nmの組み合わせ、430nm~480nm、480nm~500nm、500nm~580nm及び580nm~700nmの組み合わせ、430nm~480nm、480nm~500nm、560nm~590nm及び590nm~700nmの組み合わせが好ましい。中でも、430nm~500nm、500nm~580nm、580nm~620nm及び620nm~700nmの組み合わせが好ましい。
In the case of four-color mixing, the primary light wavelengths are combinations of 430 nm to 500 nm, 500 nm to 580 nm, 580 nm to 620 nm, and 620 nm to 700 nm, combinations of 430 nm to 480 nm, 480 nm to 500 nm, 500 nm to 580 nm, and 580 nm to 700 nm, respectively. Combinations of 480 nm, 480 nm to 500 nm, 560 nm to 590 nm, and 590 nm to 700 nm are preferred. Of these, combinations of 430 nm to 500 nm, 500 nm to 580 nm, 580 nm to 620 nm, and 620 nm to 700 nm are preferable.
・5色混合の場合
 一次光の波長がそれぞれ430nm~480nm、480nm~500nm、500nm~580nm、580nm~620nm及び620nm~700nmの組み合わせが好ましい。
In the case of mixing of five colors Combinations of primary light wavelengths of 430 nm to 480 nm, 480 nm to 500 nm, 500 nm to 580 nm, 580 nm to 620 nm, and 620 nm to 700 nm are preferable.
 (半導体発光装置の回路構成)
 半導体発光装置1では、上述したように蛍光部6から発せられる一次光により所望の出射光を得るべく、各半導体発光素子4に対して適切に電力を供給するための電気回路が構成されている。本実施形態において、このような電気回路は、前述したように配線基板2の配線パターンによって実現される。また、各半導体発光素子4に供給される電力を調整して、各蛍光部6から発せられる一次光を合成することで所望の出射光を得るようにする場合には、配線基板2の配線パターンに接続されるコントローラが設けられる。なお、このようなコントローラは、配線基板2上に設けるようにすることも可能である。この場合には、コントローラと配線基板2とを電気ケーブル等で接続する必要がなくなり、製造工程を簡素化できると共に、半導体発光装置1を照明装置や画像表示装置などに適用した場合に、装置をコンパクトに構成することが可能となる。
(Circuit configuration of semiconductor light emitting device)
In the semiconductor light emitting device 1, as described above, an electric circuit for appropriately supplying electric power to each semiconductor light emitting element 4 is configured in order to obtain desired emitted light by the primary light emitted from the fluorescent portion 6. . In the present embodiment, such an electric circuit is realized by the wiring pattern of the wiring board 2 as described above. In addition, when the power supplied to each semiconductor light-emitting element 4 is adjusted and desired light is obtained by synthesizing the primary light emitted from each fluorescent part 6, the wiring pattern of the wiring board 2 is used. Is connected to the controller. Note that such a controller can be provided on the wiring board 2. In this case, it is not necessary to connect the controller and the wiring board 2 with an electric cable or the like, the manufacturing process can be simplified, and the apparatus can be used when the semiconductor light emitting device 1 is applied to a lighting device or an image display device. A compact configuration is possible.
 半導体発光装置1の電気回路は、半導体発光装置1の構成や必要とされる発光特性などに応じてさまざまに構成可能であるが、例えば本実施形態の蛍光部6の配置の一例を示す図9、またはその第1変形例を示す図10の半導体発光装置1のように3種類の蛍光部6を設けた場合の電気回路の例を図12に示す。なお、図12において、赤色蛍光体を含有する蛍光部6を収容したキャビティ5に位置する半導体発光素子を符号4r、緑色蛍光体を含有する蛍光部6を収容したキャビティ5に位置する半導体発光素子を符号4g、青色蛍光体を含有する蛍光部6を収容したキャビティ5に位置する半導体発光素子を符号4bで示すものとする。 The electrical circuit of the semiconductor light emitting device 1 can be variously configured according to the configuration of the semiconductor light emitting device 1, the required light emission characteristics, and the like. For example, FIG. 9 shows an example of the arrangement of the fluorescent part 6 of this embodiment. FIG. 12 shows an example of an electric circuit when three types of fluorescent parts 6 are provided as in the semiconductor light emitting device 1 of FIG. 10 showing the first modification. In FIG. 12, the semiconductor light-emitting element located in the cavity 5 containing the fluorescent part 6 containing the red phosphor is denoted by reference numeral 4r, and the semiconductor light-emitting element located in the cavity 5 containing the fluorescent part 6 containing the green phosphor. 4g, and a semiconductor light emitting element located in the cavity 5 containing the fluorescent part 6 containing the blue phosphor is denoted by 4b.
 図12に示すように、赤色蛍光体を含有する蛍光部6に対応した半導体発光素子4rが直列に接続されている。そして、これら半導体発光素子4rの最もアノード側が、グランドとの間で電源電圧Vccを供給する電源ラインに、電流調整用の抵抗Rrを介して接続され、最もカソード側がトランジスタQrのコレクタに接続されている。また、トランジスタQrのエミッタはグランドに接続されている。トランジスタQrはベース信号に応じてオン状態とオフ状態とに切り換え可能であって、トランジスタQrがオン状態となったときに、電源電圧Vccを供給する電源ラインから抵抗Rrを介して各半導体発光素子4rに駆動電流が流れ、各半導体発光素子4rが発光する。 As shown in FIG. 12, the semiconductor light emitting elements 4r corresponding to the fluorescent part 6 containing a red phosphor are connected in series. The most anode side of these semiconductor light emitting elements 4r is connected to a power supply line for supplying the power supply voltage Vcc to the ground via a current adjusting resistor Rr, and the most cathode side is connected to the collector of the transistor Qr. Yes. The emitter of the transistor Qr is connected to the ground. The transistor Qr can be switched between an on state and an off state in accordance with a base signal. When the transistor Qr is turned on, each semiconductor light emitting element is connected via a resistor Rr from a power supply line that supplies a power supply voltage Vcc. A drive current flows through 4r, and each semiconductor light emitting element 4r emits light.
 抵抗Rrは、トランジスタQrがオン状態となったときに各半導体発光素子4rに供給される駆動電流を定めるために設けられている。抵抗Rrに印加される電圧は、電源電圧Vccから半導体発光素子4rの順方向電圧Vfの合計と、トランジスタQrのコレクタ-エミッタ間の飽和電圧とを差し引いた電圧となる。従って、このとき抵抗Rrに印加される電圧と、トランジスタQrがオン状態となったときに半導体発光素子4rに流す所望の電流値とから抵抗Rrの抵抗値を求めることができる。 The resistor Rr is provided to determine a drive current supplied to each semiconductor light emitting element 4r when the transistor Qr is turned on. The voltage applied to the resistor Rr is a voltage obtained by subtracting the sum of the forward voltages Vf of the semiconductor light emitting element 4r and the saturation voltage between the collector and the emitter of the transistor Qr from the power supply voltage Vcc. Therefore, the resistance value of the resistor Rr can be obtained from the voltage applied to the resistor Rr at this time and the desired current value that flows through the semiconductor light emitting element 4r when the transistor Qr is turned on.
 緑色蛍光体を含有する蛍光部6に対応した半導体発光素子4gも直列に接続され、半導体発光素子4rと同様に、これら半導体発光素子4gの最もアノード側が、グランドとの間で電源電圧Vccを供給する電源ラインに電流調整用の抵抗Rgを介して接続され、最もカソード側がトランジスタQgのコレクタに接続されている。また、トランジスタQgのエミッタはグランドに接続されており、トランジスタQgはトランジスタQrと同様にベース信号に応じて作動する。従って、トランジスタQgがオン状態となると、電源電圧Vccを供給する電源ラインから抵抗Rgを介して各半導体発光素子4gに駆動電流が流れ、各半導体発光素子4gが発光する。なお、抵抗Rgの抵抗値も、抵抗Rrの場合と同様に、半導体発光素子4gの順方向電圧Vfの合計と、トランジスタQgのコレクタ-エミッタ間の飽和電圧とに基づき求められる。 A semiconductor light emitting element 4g corresponding to the fluorescent part 6 containing the green phosphor is also connected in series, and similarly to the semiconductor light emitting element 4r, the most anode side of these semiconductor light emitting elements 4g supplies the power supply voltage Vcc to the ground. The power supply line is connected through a current adjusting resistor Rg, and the most cathode side is connected to the collector of the transistor Qg. The emitter of the transistor Qg is connected to the ground, and the transistor Qg operates in accordance with the base signal in the same manner as the transistor Qr. Accordingly, when the transistor Qg is turned on, a drive current flows from the power supply line supplying the power supply voltage Vcc to each semiconductor light emitting element 4g via the resistor Rg, and each semiconductor light emitting element 4g emits light. The resistance value of the resistor Rg is also obtained based on the total forward voltage Vf of the semiconductor light emitting element 4g and the collector-emitter saturation voltage of the transistor Qg, as in the case of the resistor Rr.
 青色蛍光体を含有する蛍光部6に対応した半導体発光素子4bも直列に接続され、半導体発光素子4rと同様に、これら半導体発光素子4bの最もアノード側が、グランドとの間で電源電圧Vccを供給する電源ラインに電流調整用の抵抗Rbを介して接続され、最もカソード側がトランジスタQbのコレクタに接続されている。また、トランジスタQbのエミッタはグランドに接続されており、トランジスタQbはトランジスタQrと同様にベース信号に応じて作動する。従って、トランジスタQbがオン状態となると、電源電圧Vccを供給する電源ラインから抵抗Rbを介して各半導体発光素子4bに駆動電流が流れ、各半導体発光素子4bが発光する。なお、抵抗Rbの抵抗値も、抵抗Rbの場合と同様に、半導体発光素子4bの順方向電圧Vfの合計と、トランジスタQbのコレクタ-エミッタ間の飽和電圧とに基づき求められる。 A semiconductor light emitting element 4b corresponding to the fluorescent part 6 containing the blue phosphor is also connected in series, and, like the semiconductor light emitting element 4r, the most anode side of these semiconductor light emitting elements 4b supplies the power supply voltage Vcc to the ground. The power supply line is connected via a current adjusting resistor Rb, and the most cathode side is connected to the collector of the transistor Qb. The emitter of the transistor Qb is connected to the ground, and the transistor Qb operates in accordance with the base signal in the same manner as the transistor Qr. Accordingly, when the transistor Qb is turned on, a drive current flows from the power supply line supplying the power supply voltage Vcc to each semiconductor light emitting element 4b via the resistor Rb, and each semiconductor light emitting element 4b emits light. The resistance value of the resistor Rb is also obtained based on the total forward voltage Vf of the semiconductor light emitting element 4b and the saturation voltage between the collector and emitter of the transistor Qb, as in the case of the resistor Rb.
 トランジスタQr、トランジスタQg及びトランジスタQb、並びに抵抗Rr、Rg及びRbは、PWM制御部8と共に半導体発光装置1のコントローラを構成する。トランジスタQr、トランジスタQg及びトランジスタQbのベースは、PWM制御部8に電気的に接続され、PWM制御部8が出力する駆動パルス信号を受けるようになっている。このPWM制御部8が出力する駆動パルス信号はパルス幅が可変の信号であって、駆動パルス信号がHレベルにあるときに、当該駆動パルス信号を受けたトランジスタQr、トランジスタQgまたはトランジスタQbがオン状態となり、駆動パルス信号がLレベルにあるときに、当該駆動パルス信号を受けたトランジスタQr、トランジスタQgまたはトランジスタQbがオフ状態となる。 The transistor Qr, the transistor Qg, the transistor Qb, and the resistors Rr, Rg, and Rb constitute a controller of the semiconductor light emitting device 1 together with the PWM controller 8. The bases of the transistor Qr, the transistor Qg, and the transistor Qb are electrically connected to the PWM control unit 8 so as to receive a drive pulse signal output from the PWM control unit 8. The drive pulse signal output from the PWM controller 8 is a variable pulse width signal. When the drive pulse signal is at the H level, the transistor Qr, transistor Qg, or transistor Qb that has received the drive pulse signal is turned on. When the drive pulse signal is at the L level, the transistor Qr, transistor Qg, or transistor Qb that has received the drive pulse signal is turned off.
 図13は、このような駆動パルス信号をPWM制御部8からトランジスタQr、トランジスタQg及びトランジスタQbの各ベースに送ったときの、半導体発光素子4r、半導体発光素子4g及び半導体発光素子4bに流れる電流の一例を、それぞれIr、Ig及びIbで模式的に示すタイムチャートである。駆動パルス信号はいずれも周期toでPWM制御部8から送出されるようになっており、これに対応してそれぞれの半導体発光素子の電流も、図13に示すように周期toでパルス状に流れる。 FIG. 13 shows the current flowing through the semiconductor light emitting element 4r, the semiconductor light emitting element 4g, and the semiconductor light emitting element 4b when such a drive pulse signal is sent from the PWM controller 8 to the bases of the transistor Qr, transistor Qg, and transistor Qb. Is a time chart schematically showing one example of Ir, Ig, and Ib, respectively. The drive pulse signals are all sent from the PWM control unit 8 with a period to, and the current of each semiconductor light emitting element also flows in a pulse form with the period to as shown in FIG. .
 半導体発光素子4rは電流Irが流れているときに発光し、半導体発光素子4gは電流Igが流れているときに発光し、半導体発光素子4bは電流Ibが流れているときに発光するので、図13の例では緑色光の発光時間tgが最も短い一方で、青色光の発光時間tbが最も長く赤色光の発光時間trが両者の中間にあることになる。赤色光、緑色光及び青色光の発光強度は、それぞれの発光時間によって定まり、赤色光、緑色光及び青色光の発光強度によって、半導体発光装置1の発光色が定まるので、PWM制御部8が出力する駆動パルス信号のパルス幅を、トランジスタQr、トランジスタQg及びトランジスタQbに対してそれぞれ個別に可変調整することで、所望の発光色を得ることが可能となる。 The semiconductor light emitting element 4r emits light when the current Ir flows, the semiconductor light emitting element 4g emits light when the current Ig flows, and the semiconductor light emitting element 4b emits light when the current Ib flows. In the example 13, while the green light emission time tg is the shortest, the blue light emission time tb is the longest, and the red light emission time tr is between them. The emission intensity of red light, green light and blue light is determined by the respective emission times, and the emission color of the semiconductor light emitting device 1 is determined by the emission intensity of red light, green light and blue light. A desired emission color can be obtained by individually variably adjusting the pulse width of the driving pulse signal to the transistor Qr, the transistor Qg, and the transistor Qb.
 なお、図13の例ではトランジスタQr、トランジスタQg及びトランジスタQbに対する駆動パルス信号を同じタイミングで送出するようにしているが、駆動パルス信号の送出タイミングはこれに限定されるものではなく、例えばそれぞれ位相が異なるようにして送出するようにしてもよい。この場合、赤色光、緑色光及び青色光を合成して出射光を得るときには、各半導体発光素子を連続的に発光させることができないが、各半導体発光素子には電源から分散して電力を供給することができるので、電源容量を少なくすることができる。また、この場合には電流調整用の抵抗Rr、Rg及びRbを共通化することもできる。 In the example of FIG. 13, the drive pulse signals for the transistors Qr, Qg, and Qb are sent at the same timing. However, the timing of sending the drive pulse signal is not limited to this. It is also possible to send the messages in different ways. In this case, when emitting light by combining red light, green light, and blue light, each semiconductor light emitting element cannot emit light continuously, but power is distributed to each semiconductor light emitting element from a power source. Therefore, the power supply capacity can be reduced. In this case, the current adjusting resistors Rr, Rg, and Rb can be shared.
 図12の電気回路の例では、半導体発光素子4r、半導体発光素子4g及び半導体発光素子4bはそれぞれ直列に接続するようにしたが、接続方法はこれに限定されるものではなく、半導体発光素子4r、半導体発光素子4g及び半導体発光素子4bのそれぞれにおいて、並列接続と直列接続とを併用してもよいし、全部を並列に接続してもよい。更に、図12の電気回路の例では、PMW制御部8の駆動パルス信号によってトランジスタQr、トランジスタQg及びトランジスタQbをそれぞれオン-オフ作動させるようにしたが、これに代えて駆動パルス信号によりトランジスタQr、トランジスタQg及びトランジスタQbに流れる電流も併せて制御するようにしてもよい。この場合には電流調整用の抵抗Rr、抵抗Rg及び抵抗Rbが不要となる。また、抵抗Rr、抵抗Rg及び抵抗Rbに代えて定電流回路をそれぞれ挿入し、図12の例と同様にトランジスタQr、トランジスタQg及びトランジスタQbをそれぞれオン-オフ作動させるようにしてもよい。 In the example of the electric circuit of FIG. 12, the semiconductor light emitting element 4r, the semiconductor light emitting element 4g, and the semiconductor light emitting element 4b are connected in series. However, the connection method is not limited to this, and the semiconductor light emitting element 4r is not limited thereto. In each of the semiconductor light emitting element 4g and the semiconductor light emitting element 4b, parallel connection and series connection may be used together, or all of them may be connected in parallel. Furthermore, in the example of the electric circuit of FIG. 12, the transistor Qr, the transistor Qg, and the transistor Qb are each turned on and off by the drive pulse signal of the PMW control unit 8, but instead, the transistor Qr is turned on by the drive pulse signal. The currents flowing through the transistor Qg and the transistor Qb may also be controlled. In this case, the resistors Rr, Rg, and Rb for adjusting current are not necessary. Further, constant current circuits may be inserted in place of the resistors Rr, Rg, and Rb, respectively, and the transistors Qr, Qg, and Qb may be turned on and off as in the example of FIG.
 次に、半導体発光装置1の電気回路のもう1つの例として、本実施形態の蛍光部6の配置の第2変形例を示す図11の半導体発光装置1のように、2種類の蛍光部6を設けた場合の電気回路を図14に示す。なお、図14において、第1の色温度T1の一次光を発する蛍光部6を収容したキャビティ5に位置する半導体発光素子を符号4w1、第2の色温度T2の一次光を発する蛍光部6を収容したキャビティ5に位置する半導体発光素子を符号4w2で示すものとする。 Next, as another example of the electric circuit of the semiconductor light emitting device 1, two types of fluorescent portions 6, such as the semiconductor light emitting device 1 of FIG. 11 showing a second modification of the arrangement of the fluorescent portions 6 of the present embodiment, are shown. FIG. 14 shows an electric circuit in the case of providing. In FIG. 14, reference numeral 4w1 denotes a semiconductor light emitting element positioned in the cavity 5 that houses the fluorescent part 6 that emits the primary light of the first color temperature T1, and the fluorescent part 6 that emits the primary light of the second color temperature T2. The semiconductor light emitting element located in the accommodated cavity 5 is denoted by reference numeral 4w2.
 図14に示すように、トランジスタQ1及びトランジスタQ2のコレクタは、グランドとの間で電源電圧Vccを供給する電源ラインに接続され、トランジスタQ1のエミッタはトランジスタQ3のコレクタに、またトランジスタQ2のエミッタはトランジスタQ4のコレクタにそれぞれ接続されている。また、トランジスタQ3及びトランジスタQ4のエミッタはそれぞれグランドに接続されている。そして、第1の色温度T1の一次光を発する蛍光部6に対応した半導体発光素子4w1が直列に接続され、最もアノード側がトランジスタQ1のエミッタとトランジスタQ3のコレクタとの接続点に接続され、最もカソード側が電流調整用の抵抗Rwの一端側に接続されている。また、第2の色温度T2の一次光を発する蛍光部6に対応した半導体発光素子4w2も直列に接続され、最もカソード側がトランジスタQ1のエミッタとトランジスタQ3のコレクタとの接続点に接続され、最もアノード側は、半導体発光素子4w1と同じく電流調整用の抵抗Rwの一端側に接続されている。更に、抵抗Rwの他端側は、トランジスタQ2のエミッタとトランジスタQ4のコレクタとの接続点に接続されている。 As shown in FIG. 14, the collectors of the transistors Q1 and Q2 are connected to a power supply line that supplies the power supply voltage Vcc to the ground, the emitter of the transistor Q1 is connected to the collector of the transistor Q3, and the emitter of the transistor Q2 is Each is connected to the collector of the transistor Q4. The emitters of the transistors Q3 and Q4 are each connected to the ground. The semiconductor light emitting element 4w1 corresponding to the fluorescent part 6 that emits the primary light of the first color temperature T1 is connected in series, and the anode side is connected to the connection point between the emitter of the transistor Q1 and the collector of the transistor Q3, The cathode side is connected to one end side of the current adjusting resistor Rw. Further, the semiconductor light emitting element 4w2 corresponding to the fluorescent part 6 that emits the primary light of the second color temperature T2 is also connected in series, and the most cathode side is connected to the connection point between the emitter of the transistor Q1 and the collector of the transistor Q3. The anode side is connected to one end side of the resistor Rw for current adjustment like the semiconductor light emitting element 4w1. Further, the other end of the resistor Rw is connected to a connection point between the emitter of the transistor Q2 and the collector of the transistor Q4.
 4つのトランジスタQ1~Q4は、いずれもそれぞれのベース信号に応じてオン状態とオフ状態とに切り換え可能であって、トランジスタQ2及びトランジスタQ3がオフ状態にある間にトランジスタQ1及びトランジスタQ4が同期してオン状態となり、トランジスタQ1及びトランジスタQ4がオフ状態にある間にトランジスタQ2及びトランジスタQ3が同期してオン状態となるようになっている。そして、トランジスタQ1及びトランジスタQ4がオン状態になったときに、電源電圧Vccを供給する電源ラインから、トランジスタQ1、抵抗Rw及びトランジスタQ4を介して各半導体発光素子4w1に駆動電流が流れることにより、各半導体発光素子4w1が発光する。一方、トランジスタQ2及びトランジスタQ3がオン状態になったときには、電源電圧Vccを供給する電源ラインから、トランジスタQ2、抵抗Rw及びトランジスタQ3を介して各半導体発光素子4w2に駆動電流が流れることにより、各半導体発光素子4w2が発光する。 All of the four transistors Q1 to Q4 can be switched between an on state and an off state in accordance with the respective base signals, and the transistors Q1 and Q4 are synchronized while the transistors Q2 and Q3 are in the off state. The transistor Q2 and the transistor Q3 are turned on synchronously while the transistor Q1 and the transistor Q4 are turned off. When the transistor Q1 and the transistor Q4 are turned on, a driving current flows from the power supply line that supplies the power supply voltage Vcc to each semiconductor light emitting element 4w1 through the transistor Q1, the resistor Rw, and the transistor Q4. Each semiconductor light emitting element 4w1 emits light. On the other hand, when the transistor Q2 and the transistor Q3 are turned on, a driving current flows from the power supply line that supplies the power supply voltage Vcc to each semiconductor light emitting element 4w2 via the transistor Q2, the resistor Rw, and the transistor Q3. The semiconductor light emitting element 4w2 emits light.
 抵抗Rwは、半導体発光素子4w1または半導体発光素子4w2に供給される駆動電流を定めるために設けられている。抵抗Rwに印加される電圧は、電源電圧Vccから各半導体発光素子4w1または各半導体発光素子4w2の順方向電圧Vfの合計と、トランジスタQ1のコレクタ-エミッタ間の飽和電圧及びトランジスタQ4のコレクタ-エミッタ間の飽和電圧の和とを差し引いた電圧となる。従って、このとき抵抗Rwに印加される電圧と、トランジスタQ1及びトランジスタQ4がオン状態にあるときに半導体発光素子4w1及び半導体発光素子4w2に流す所望の電流値とから抵抗Rwの抵抗値を求めることができる。なお、4つのトランジスタQ1~Q4の電気的特性は実質的に同一であり、トランジスタQ1のコレクタ-エミッタ間の飽和電圧及びトランジスタQ4のコレクタ-エミッタ間の飽和電圧の和に代えて、トランジスタQ2のコレクタ-エミッタ間の飽和電圧及びトランジスタQ3のコレクタ-エミッタ間の飽和電圧の和を用いてもよい。 The resistor Rw is provided to determine the drive current supplied to the semiconductor light emitting element 4w1 or the semiconductor light emitting element 4w2. The voltage applied to the resistor Rw is the sum of the forward voltage Vf of each semiconductor light emitting element 4w1 or each semiconductor light emitting element 4w2 from the power supply voltage Vcc, the saturation voltage between the collector and emitter of the transistor Q1, and the collector and emitter of the transistor Q4. The voltage is obtained by subtracting the sum of the saturation voltages between them. Therefore, the resistance value of the resistor Rw is obtained from the voltage applied to the resistor Rw at this time and the desired current value that flows through the semiconductor light emitting element 4w1 and the semiconductor light emitting element 4w2 when the transistor Q1 and the transistor Q4 are in the on state. Can do. The electric characteristics of the four transistors Q1 to Q4 are substantially the same. Instead of the sum of the saturation voltage between the collector and the emitter of the transistor Q1 and the saturation voltage between the collector and the emitter of the transistor Q4, the transistor Q2 The sum of the saturation voltage between the collector and the emitter and the saturation voltage between the collector and the emitter of the transistor Q3 may be used.
 図14の電気回路においても、4つのトランジスタQ1~Q4、及び抵抗Rwは、PWM制御部9と共に半導体発光装置1のコントローラを構成する。4つのトランジスタQ1~Q4のベースはPWM制御部9に電気的に接続され、PWM制御部9が出力する駆動パルス信号を受けるようになっている。このPWM制御部9が出力する駆動パルス信号はパルス幅が可変の信号であって、駆動パルス信号がHレベルにあるときに、4つのトランジスタQ1~Q4のうちで当該駆動パルス信号を受けたものがオン状態となり、駆動パルス信号がLレベルにあるときに、4つのトランジスタQ1~Q4のうちで当該駆動パルス信号を受けたものがオフ状態となる。 14, the four transistors Q1 to Q4 and the resistor Rw together with the PWM controller 9 constitute a controller of the semiconductor light emitting device 1. The bases of the four transistors Q1 to Q4 are electrically connected to the PWM control unit 9 so as to receive drive pulse signals output from the PWM control unit 9. The drive pulse signal output from the PWM controller 9 is a signal having a variable pulse width, and when the drive pulse signal is at the H level, the drive pulse signal is received from the four transistors Q1 to Q4. Is turned on and the drive pulse signal is at the L level, the transistor that has received the drive pulse signal among the four transistors Q1 to Q4 is turned off.
 図15は、このようにしてPWM制御部9から駆動パルス信号を4つのトランジスタQ1~Q4のベースにそれぞれ送ったときの、トランジスタQ1~Q4の作動状態と、抵抗Rwに流れる電流の一例を模式的に示すタイムチャートである。抵抗Rwに流れる電流は、半導体発光素子4w1または半導体発光素子4w2に流れる電流に対応しており、図15に示す正の電流が半導体発光素子4w1に流れる駆動電流I1に相当し、負の電流の絶対値が半導体発光素子4w2に流れる駆動電流I2に相当する。また、駆動パルス信号はいずれも周期t0でPWM制御部9から送出されるようになっており、これに対応してそれぞれの半導体素子の電流も、図15に示すように周期t0でパルス状に流れる。 FIG. 15 schematically shows an example of the operating states of the transistors Q1 to Q4 and the current flowing through the resistor Rw when the drive pulse signal is sent from the PWM controller 9 to the bases of the four transistors Q1 to Q4, respectively. It is a time chart shown. The current flowing through the resistor Rw corresponds to the current flowing through the semiconductor light emitting element 4w1 or the semiconductor light emitting element 4w2, and the positive current shown in FIG. 15 corresponds to the drive current I1 flowing through the semiconductor light emitting element 4w1, and the negative current The absolute value corresponds to the drive current I2 flowing through the semiconductor light emitting element 4w2. The drive pulse signals are all sent from the PWM control unit 9 at a period t0. Correspondingly, the current of each semiconductor element is also pulsed at a period t0 as shown in FIG. Flowing.
 具体的には、PWM制御部9からの駆動パルス信号によりトランジスタQ1及びトランジスタQ4がオン状態となったときには、トランジスタQ2及びトランジスタQ3がオフ状態となっており、上述したように半導体発光素子4w1に駆動電流I1が流れ、駆動電流I1が流れている間、半導体発光素子4w1が発光する。一方、PWM制御部9からの駆動パルス信号によりトランジスタQ2及びトランジスタQ3がオン状態となったときには、トランジスタQ1及びトランジスタQ4がオフ状態となっており、上述したように半導体発光素子4w2に駆動電流I2が流れ、駆動電流I2が流れている間、半導体発光素子4w2が発光する。 Specifically, when the transistor Q1 and the transistor Q4 are turned on by the drive pulse signal from the PWM controller 9, the transistor Q2 and the transistor Q3 are turned off, and the semiconductor light emitting element 4w1 is turned on as described above. While the drive current I1 flows and the drive current I1 flows, the semiconductor light emitting element 4w1 emits light. On the other hand, when the transistor Q2 and the transistor Q3 are turned on by the drive pulse signal from the PWM control unit 9, the transistors Q1 and Q4 are turned off, and the drive current I2 is supplied to the semiconductor light emitting element 4w2 as described above. The semiconductor light emitting element 4w2 emits light while the drive current I2 flows.
 従って、図15の例では、半導体発光素子4w1の発光時間t1の方が、半導体発光素子4w2の発光時間t2より長く、発光時間t1と発光時間t2との和が周期t0となっている。色温度T1の白色光及び色温度T2の白色光の発光強度は、それぞれの発光時間によって定まり、色温度T1の白色光及び色温度T2の白色光の発光強度によって、半導体発光装置1から出射される白色光の色温度が定まるので、PWM制御部9が出力する駆動パルス信号におけるパルス幅t1とパルス幅t2との比率を可変調整することで、所望の色温度の白色光を得ることが可能となる。 Therefore, in the example of FIG. 15, the light emission time t1 of the semiconductor light emitting element 4w1 is longer than the light emission time t2 of the semiconductor light emitting element 4w2, and the sum of the light emission time t1 and the light emission time t2 is the period t0. The emission intensity of the white light at the color temperature T1 and the white light at the color temperature T2 is determined by the respective emission times, and is emitted from the semiconductor light emitting device 1 by the emission intensity of the white light at the color temperature T1 and the white light at the color temperature T2. Since the color temperature of the white light to be determined is determined, white light having a desired color temperature can be obtained by variably adjusting the ratio of the pulse width t1 and the pulse width t2 in the drive pulse signal output from the PWM controller 9. It becomes.
 なお、図14の例では、半導体発光素子4w1及び半導体発光素子4w2はそれぞれ直列に接続するようにしたが、接続方法はこれに限定されるものではなく、半導体発光素子4w1及び半導体発光素子4w2のそれぞれにおいて、並列接続と直列接続とを併用してもよいし、全部を並列に接続してもよい。更に、図14の例では、PMW制御部9の駆動パルス信号によって4つのトランジスタQ1~Q4をそれぞれオン-オフ作動させるようにしたが、これに代えて駆動パルス信号によりこれらトランジスタQ1~Q4に流れる電流も併せて制御するようにしてもよい。この場合には電流調整用の抵抗Rwが不要となる。また、抵抗Rwに代えて定電流回路を挿入し、図14の例と同様に4つのトランジスタQ1~Q4をそれぞれオン-オフ作動させるようにしてもよい。 In the example of FIG. 14, the semiconductor light emitting element 4w1 and the semiconductor light emitting element 4w2 are connected in series. However, the connection method is not limited to this, and the semiconductor light emitting element 4w1 and the semiconductor light emitting element 4w2 are connected. In each, parallel connection and series connection may be used together, or all may be connected in parallel. Further, in the example of FIG. 14, the four transistors Q1 to Q4 are turned on and off by the drive pulse signal of the PMW controller 9, but instead, the transistors Q1 to Q4 flow through the drive pulse signal. The current may also be controlled. In this case, the resistor Rw for adjusting the current is not necessary. Further, a constant current circuit may be inserted in place of the resistor Rw, and the four transistors Q1 to Q4 may be turned on and off as in the example of FIG.
 また、図14の例では、トランジスタQ1及びトランジスタQ4がオン状態にあるときにはトランジスタQ2及びトランジスタQ3をオフ状態とし、トランジスタQ2及びトランジスタQ3がオン状態にあるときにはトランジスタQ1及びトランジスタQ4をオフ状態としたが、4つのトランジスタQ1~Q4がいずれもオフ状態となる期間を設けるようにしてもよい。 In the example of FIG. 14, the transistors Q2 and Q3 are turned off when the transistors Q1 and Q4 are on, and the transistors Q1 and Q4 are turned off when the transistors Q2 and Q3 are on. However, a period in which all of the four transistors Q1 to Q4 are off may be provided.
 なお、第1の色温度T1の一次光を発する蛍光部6と第2の色温度T2の一次光を発する蛍光部6とを組み合わせて使用する場合、図14のような電気回路に代えて、前述した図12と同様の電気回路を適用することも可能である。この場合には、各半導体発光素子を同時に、あるいは連続的に発光させることが可能となる。 In addition, when using in combination with the fluorescence part 6 which emits the primary light of 1st color temperature T1, and the fluorescence part 6 which emits the primary light of 2nd color temperature T2, it replaces with an electric circuit like FIG. An electric circuit similar to that shown in FIG. 12 can also be applied. In this case, each semiconductor light emitting element can emit light simultaneously or continuously.
 6.半導体発光装置の製造方法
 本実施形態の半導体発光装置1は、封止部材3にキャビティ5を形成するための工程、キャビティ5に蛍光部6を収容するための工程、配線基板2に半導体発光素子4を装着するための工程、及び半導体発光素子4が装着された配線基板2とキャビティ5に蛍光部6が収容された封止部材3とを接合するための工程を主要な製造工程とする製造方法によって製造される。
6). Manufacturing Method of Semiconductor Light-Emitting Device The semiconductor light-emitting device 1 of this embodiment includes a step for forming the cavity 5 in the sealing member 3, a step for accommodating the fluorescent portion 6 in the cavity 5, and a semiconductor light-emitting element on the wiring substrate 2. The manufacturing process includes a process for mounting 4 and a process for bonding the wiring substrate 2 to which the semiconductor light emitting element 4 is mounted and the sealing member 3 in which the fluorescent portion 6 is housed in the cavity 5 as main manufacturing processes. Manufactured by the method.
 (封止部材の製造工程)
 この製造工程では、封止部材3にキャビティ5を形成する。封止部材3は、蛍光部6から発せられた一次光を透過するものであれば、本発明の要旨を変更しない限りにおいて、その材質が限定されるものではない。従って、封止部材3におけるキャビティ5の形成方法も、本発明の要旨を変更しない限りにおいて、封止部材3の材質やキャビティ5の仕様に応じ適宜選択すればよい。本実施形態では、ガラスからなる封止部材3を用いており、本実施形態では、ウェットエッチングにより封止部材3にキャビティ5を形成する。以下では、図16を用いてキャビティ5の形成方法を説明する。
(Manufacturing process of sealing member)
In this manufacturing process, the cavity 5 is formed in the sealing member 3. As long as the sealing member 3 transmits the primary light emitted from the fluorescent part 6, the material of the sealing member 3 is not limited as long as the gist of the present invention is not changed. Therefore, the method for forming the cavity 5 in the sealing member 3 may be appropriately selected according to the material of the sealing member 3 and the specifications of the cavity 5 as long as the gist of the present invention is not changed. In this embodiment, the sealing member 3 made of glass is used. In this embodiment, the cavity 5 is formed in the sealing member 3 by wet etching. Below, the formation method of the cavity 5 is demonstrated using FIG.
 まず、図16の(a)に示すように、第1の面3a及び第2の面3bを有して板状をなすガラス材を封止部材3として準備する。次に、図16の(b)に示すように、エッチング液に対して耐性を有するマスキング材10を用い、封止部材3の全体にわたってマスキング処理を行う。このとき、少なくとも封止部材3の第1の面3aについては、スクリーン印刷法によってマスキング処理を行い、キャビティ5の形成位置において、キャビティ5の開口形状に応じて封止部材3の第1の面3aを露出させる。 First, as shown in FIG. 16A, a glass material having a first surface 3 a and a second surface 3 b and having a plate shape is prepared as the sealing member 3. Next, as shown in FIG. 16B, a masking process is performed over the entire sealing member 3 using a masking material 10 that is resistant to the etching solution. At this time, at least the first surface 3 a of the sealing member 3 is masked by screen printing, and the first surface of the sealing member 3 is formed at the position where the cavity 5 is formed according to the opening shape of the cavity 5. Expose 3a.
 次に、水にフッ化水素と硫酸とを含有させて調製したエッチング液中に、この封止部材5を所定の時間にわたって浸漬することにより、図16の(c)に示すように、封止部材3の第1の面3aにキャビティ5を凹設する。こうしてエッチング処理を行った後、封止部材3を洗浄してエッチング液を除去し、更に封止部材3を覆うマスキングを除去することにより、図16の(d)に示すようにキャビティ5を有した封止部材3を得る。 Next, the sealing member 5 is immersed in an etching solution prepared by containing hydrogen fluoride and sulfuric acid in water for a predetermined time, thereby sealing as shown in FIG. The cavity 5 is recessed in the first surface 3 a of the member 3. After performing the etching treatment in this manner, the sealing member 3 is washed to remove the etching solution, and the masking covering the sealing member 3 is further removed, so that the cavity 5 is provided as shown in FIG. The obtained sealing member 3 is obtained.
 なお、キャビティ5の壁面に、半導体発光素子4が発する光に対し蛍光部6で波長変換された光よりも高い反射率を有し、蛍光部6で波長変換された光に対しては半導体発光素子4が発する光より高い透過率により良好な透過性を有するコーティング層7を設ける場合には、図16の(d)に示すようにキャビティ5を有した封止部材3を得た後、高屈折率層と低屈折率層とを交互に複数積層した多層誘電体積層膜からなる干渉膜をキャビティ5の壁面に形成することでコーティング層7を得る。例えば、半導体発光素子4が発する近紫外光に対して、近紫外光より長い波長領域の可視光よりも高い反射率を有し、当該可視光に対しては近紫外光より高い透過率を有することにより良好な透過性を有するコーティング層7を形成する場合、高屈折率層としてTiOからなる薄膜を、また低屈折率層としてSiOからなる薄膜を、それぞれ蒸着またはスパッタリングによりキャビティ5に交互に複数回積層してコーティング層7を形成する。 The cavity 5 has a higher reflectance on the wall surface of the cavity 5 than the light wavelength-converted by the fluorescent part 6 with respect to the light emitted from the semiconductor light-emitting element 4. In the case of providing the coating layer 7 having good transmittance with a higher transmittance than the light emitted from the element 4, after obtaining the sealing member 3 having the cavity 5 as shown in FIG. A coating layer 7 is obtained by forming an interference film made of a multilayer dielectric laminated film in which a plurality of refractive index layers and low refractive index layers are alternately laminated on the wall surface of the cavity 5. For example, the near-ultraviolet light emitted from the semiconductor light emitting element 4 has a higher reflectance than visible light in a wavelength region longer than the near-ultraviolet light, and has a higher transmittance than the near-ultraviolet light with respect to the visible light. When the coating layer 7 having good transparency is formed, a thin film made of TiO 2 as a high refractive index layer and a thin film made of SiO 2 as a low refractive index layer are alternately formed in the cavity 5 by vapor deposition or sputtering. The coating layer 7 is formed by laminating a plurality of times.
 このようなコーティング層7は、前述したように封止部材3の第2の面3bに形成することも可能であり、この場合にはキャビティ5の形成前にコーティング層7を形成することもできる。また、封止部材3の素材そのものにコーティング層7と同様の機能を持たせた場合には、上述したようなコーティング層7を形成するための工程が不要となる。 Such a coating layer 7 can also be formed on the second surface 3b of the sealing member 3 as described above. In this case, the coating layer 7 can also be formed before the cavity 5 is formed. . Further, when the material of the sealing member 3 itself has the same function as that of the coating layer 7, the process for forming the coating layer 7 as described above is not necessary.
 キャビティ5を形成する際に本実施形態で採用したウェットエッチングは、上述の方法に限定されるものではなく、マスキング処理の方法やエッチング液の種類などを適宜選択可能である。例えば、スパッタリングなどにより封止部材3の全体をクロムなどの金属で被覆した後、キャビティ5の形成位置の金属被覆のみを、キャビティ5の開口形状に応じて除去してから、エッチング液によるエッチングを行ってもよい。また、ウェットエッチングに代えて、ドライエッチング、レーザビーム照射、サンドブラスト、研削加工などの方法を用いることもできる。 The wet etching employed in the present embodiment when forming the cavity 5 is not limited to the above-described method, and a masking process method, the type of etching solution, and the like can be appropriately selected. For example, after covering the entire sealing member 3 with a metal such as chromium by sputtering or the like, only the metal coating at the position where the cavity 5 is formed is removed according to the shape of the opening of the cavity 5 and then etching with an etching solution is performed. You may go. Further, instead of wet etching, methods such as dry etching, laser beam irradiation, sand blasting, and grinding can be used.
 (蛍光部の形成工程)
 こうして得られた封止部材3の各キャビティ5に対し、蛍光体と充填材とが混合されて流動性を有する蛍光部用材料6’を充填して蛍光部6を形成する。蛍光部用材料6’の充填は、本発明の要旨を変更しない限りにおいて、様々な方法を採用することが可能であるが、本実施形態においては、スキージを用いて蛍光部用材料6’を塗布することにより、各キャビティ5に蛍光部用材料6’を充填して蛍光部6を形成する。以下では、このような蛍光部6の形成工程について、図17を用いて説明する。
(Formation process of fluorescent part)
Each of the cavities 5 of the sealing member 3 obtained in this way is filled with a fluorescent part material 6 ′ having a fluidity by mixing a phosphor and a filler, thereby forming the fluorescent part 6. As long as the gist of the present invention is not changed, various methods can be used for filling the fluorescent part material 6 ′. In this embodiment, the fluorescent part material 6 ′ is used by using a squeegee. By applying, the fluorescent part 6 is formed by filling each cavity 5 with the fluorescent part material 6 ′. Below, the formation process of such a fluorescence part 6 is demonstrated using FIG.
 まず、図17の(a)に示すように、キャビティ5が形成されている封止部材3の第1の面3aに、各キャビティ5に対応して開口を有したメタルマスク(被覆材)11を密着させることにより、各キャビティ5を露出させると共に各キャビティ5の周囲をメタルマスク11で被覆する。次に、図17の(b)に示すように、メタルマスク11上に蛍光部用材料6’を載せ、スキージ12を図17の(c)に示す矢印Aの方向に摺動させることにより、メタルマスク11の開口を介して各キャビティ5内に蛍光部用材料6’が充填される。 First, as shown in FIG. 17A, a metal mask (covering material) 11 having an opening corresponding to each cavity 5 on the first surface 3a of the sealing member 3 in which the cavity 5 is formed. By adhering to each other, each cavity 5 is exposed and the periphery of each cavity 5 is covered with a metal mask 11. Next, as shown in FIG. 17B, the fluorescent part material 6 ′ is placed on the metal mask 11, and the squeegee 12 is slid in the direction of the arrow A shown in FIG. Each cavity 5 is filled with the fluorescent part material 6 ′ through the opening of the metal mask 11.
 こうして、各キャビティ5内への蛍光部用材料6’の充填が完了すると、図17の(d)に示すように、封止部材3に密着しているメタルマスク11を取り外すことにより、キャビティ5に収容された蛍光部6が形成される。このとき、使用したメタルマスク11の厚みによっては、封止部材3の第1の面3aから蛍光部6が盛り上がった状態となることもある。 Thus, when the filling of the fluorescent part material 6 ′ into each cavity 5 is completed, as shown in FIG. 17D, the metal mask 11 that is in close contact with the sealing member 3 is removed, thereby removing the cavity 5. The fluorescent part 6 accommodated in the is formed. At this time, depending on the thickness of the used metal mask 11, the fluorescent part 6 may rise from the first surface 3 a of the sealing member 3.
 なお、例えば含有する蛍光体が異なるような複数種類の蛍光部6を、上述したスキージ12の摺動により形成する場合は、同種の蛍光部6を収容するキャビティ5を残し、それ以外のキャビティ5を全てメタルマスク11で覆った後、メタルマスク11で覆われていないキャビティ5に、上述のようにして蛍光部用材料6’を充填するといった作業を、それぞれの種類の蛍光部6ごとに蛍光部6の種類の数だけ繰り返せばよい。 For example, when a plurality of types of fluorescent parts 6 having different phosphors are formed by sliding the squeegee 12 described above, the cavity 5 that accommodates the same type of fluorescent part 6 is left, and the other cavities 5 are provided. Are covered with the metal mask 11 and then the cavity 5 that is not covered with the metal mask 11 is filled with the fluorescent part material 6 ′ as described above, for each type of fluorescent part 6. It suffices to repeat the number of types of part 6.
 本実施形態ではスキージを用いて蛍光部用材料6’を封止部材3に塗布することで、各キャビティ5に蛍光部用材料6’を充填して蛍光部6を形成するようにしたが、蛍光部用材料6’の塗布の方法はこれに限定されるものではなく、例えばスクリーン印刷などの印刷によって行うようにしてもよい。また、塗布に代えて、ポッティングにより各キャビティ5内に蛍光部用材料6’を充填して蛍光部6を形成するようにしてもよい。 In the present embodiment, the fluorescent part material 6 ′ is applied to the sealing member 3 using a squeegee so that each cavity 5 is filled with the fluorescent part material 6 ′ to form the fluorescent part 6. The method of applying the fluorescent part material 6 ′ is not limited to this, and may be performed by printing such as screen printing. Further, instead of coating, the fluorescent part 6 may be formed by filling each cavity 5 with the fluorescent part material 6 ′ by potting.
 (配線基板と封止部材との接合)
 半導体発光素子4が装着された配線基板2と、上述のようにして各キャビティ5に蛍光部6が収容された封止部材3とを接合することにより、半導体発光装置1が得られる。このような接合工程に先立つ配線基板2への各半導体発光素子4の装着は、一般的によく知られている方法により行うことができるので、ここでは詳細な説明を省略するが、本実施形態の場合、配線基板2への半導体発光素子4の装着は、前述したようにフリップチップ実装によって行われる。配線基板2への半導体発光素子4の装着は、これに限定されるものではなく、半導体発光素子4の種類や構造に応じて適切な方法を選択可能であって、前述したように、ダブルワイヤボンディングや、シングルワイヤボンディングなどを採用することも可能である。以下では、配線基板2と封止部材3とを接合するための製造工程について、図18を用いて説明する。
(Bonding of wiring board and sealing member)
The semiconductor light emitting device 1 is obtained by bonding the wiring substrate 2 on which the semiconductor light emitting element 4 is mounted and the sealing member 3 in which the fluorescent portion 6 is accommodated in each cavity 5 as described above. The mounting of each semiconductor light emitting element 4 to the wiring board 2 prior to such a bonding step can be performed by a generally well-known method, and thus detailed description is omitted here, but this embodiment In this case, the semiconductor light emitting element 4 is mounted on the wiring board 2 by flip chip mounting as described above. The mounting of the semiconductor light emitting element 4 to the wiring board 2 is not limited to this, and an appropriate method can be selected according to the type and structure of the semiconductor light emitting element 4. Bonding, single wire bonding, or the like can also be employed. Below, the manufacturing process for joining the wiring board 2 and the sealing member 3 is demonstrated using FIG.
 まず、図18の(a)に示すように、各キャビティ5内に蛍光部6を収容した封止部材3を、第1の面3aが上になるようにして固定する。そして、封止部材3の第1の面3aには、外縁部から所定の範囲にかけて接着剤(図示省略)を塗布する。次に、図18の(b)に示すように、半導体発光素子4を装着した面が下に向いて封止部材3の第1の面3aと対向するように、封止部材3の上方に配線基板2を位置させる。このとき、各半導体発光素子4が、それぞれ対応するキャビティ5の真上に位置するように、即ち、例えば平面視したときのキャビティ5の中心と半導体発光素子4の中心とが一致するように、配線基板2と封止部材3との位置合わせを行う。 First, as shown in FIG. 18A, the sealing member 3 in which the fluorescent portion 6 is accommodated in each cavity 5 is fixed so that the first surface 3a faces upward. Then, an adhesive (not shown) is applied to the first surface 3a of the sealing member 3 from the outer edge portion to a predetermined range. Next, as shown in FIG. 18B, the surface where the semiconductor light emitting element 4 is mounted faces upward and faces the first surface 3a of the sealing member 3 above the sealing member 3. The wiring board 2 is positioned. At this time, each semiconductor light-emitting element 4 is positioned directly above the corresponding cavity 5, that is, for example, so that the center of the cavity 5 and the center of the semiconductor light-emitting element 4 when viewed in a plan view coincide with each other. The wiring board 2 and the sealing member 3 are aligned.
 次に、図18の(b)に示す矢印Bの方向に配線基板2を移動させ、図18の(c)に示すように、配線基板2を封止部材3に接合する。これにより、配線基板2に装着されている半導体発光素子4がそれぞれ対応するキャビティ5内に位置するようになり、キャビティ5内に収容されている蛍光部6によって半導体発光素子4が覆われる。このとき、半導体発光素子4の進入によってキャビティ5から溢れ出る蛍光部6や、前述のようにキャビティ5への蛍光部6の収容時に封止部材3の第1の面3aから盛り上がっていた蛍光部6は、各半導体発光素子4の装着位置において配線基板2に形成された凹所2a内に収容される。このようにして配線基板2と封止部材3とが接合されることにより、封止部材3に塗布された接着剤で封止部材3が配線基板2に固定されると共に、各半導体発光素子4及び蛍光部6がキャビティ5内に封止される。 Next, the wiring board 2 is moved in the direction of arrow B shown in FIG. 18B, and the wiring board 2 is joined to the sealing member 3 as shown in FIG. As a result, the semiconductor light emitting elements 4 mounted on the wiring board 2 are positioned in the corresponding cavities 5, and the semiconductor light emitting elements 4 are covered by the fluorescent portions 6 accommodated in the cavities 5. At this time, the fluorescent part 6 overflowing from the cavity 5 due to the entry of the semiconductor light emitting element 4, or the fluorescent part rising from the first surface 3 a of the sealing member 3 when the fluorescent part 6 is accommodated in the cavity 5 as described above. 6 is accommodated in a recess 2 a formed in the wiring board 2 at the mounting position of each semiconductor light emitting element 4. By bonding the wiring board 2 and the sealing member 3 in this way, the sealing member 3 is fixed to the wiring board 2 with the adhesive applied to the sealing member 3, and each semiconductor light emitting element 4. The fluorescent part 6 is sealed in the cavity 5.
 蛍光体と共に蛍光部6を形成する充填材は、少なくとも上述の接合工程が終了するまでは流動性を有しており、本実施形態においては熱硬化性樹脂を用いている。そこで、図18の(c)に示すように配線基板2と封止部材3とを接合した後、所定温度(例えば150℃)で所定時間(例えば1時間)にわたって半導体発光装置1を加熱することにより、各キャビティ5内に収容されている蛍光部6を硬化させる。なお、充填材は熱硬化性樹脂に限定されるものではなく、例えば光硬化性樹脂(UV硬化樹脂)など様々な硬化性材料を用いることができる。また、蛍光部6を硬化させずに流動性を有したままキャビティ5内に封入しておくことも可能である。 The filler that forms the fluorescent part 6 together with the phosphor has fluidity at least until the above-described joining step is completed, and in this embodiment, a thermosetting resin is used. Therefore, after bonding the wiring board 2 and the sealing member 3 as shown in FIG. 18C, the semiconductor light emitting device 1 is heated at a predetermined temperature (for example, 150 ° C.) for a predetermined time (for example, 1 hour). Thus, the fluorescent part 6 accommodated in each cavity 5 is cured. The filler is not limited to the thermosetting resin, and various curable materials such as a photocurable resin (UV curable resin) can be used. Moreover, it is also possible to enclose the fluorescent part 6 in the cavity 5 while maintaining fluidity without curing.
 以上のような製造工程により、本実施形態の半導体発光装置1を得ることができる。従って、従来のように個別にリフレクタ及び間仕切りを配線基板に装着したり、環状側壁及び仕切り壁を配線基板上に形成したりする必要がなくなり、製造工程を簡素化することができる。更に、封止部材3が蛍光部6や半導体発光素子4などを周囲の環境から保護する機能も兼ね備えているので、別途保護部材を装着する必要がなくなり、より一層製造工程が簡素化される。 Through the manufacturing process as described above, the semiconductor light emitting device 1 of the present embodiment can be obtained. Therefore, it is not necessary to separately attach the reflector and the partition to the wiring board as in the prior art, or to form the annular side wall and the partition wall on the wiring board, and the manufacturing process can be simplified. Further, since the sealing member 3 also has a function of protecting the fluorescent portion 6 and the semiconductor light emitting element 4 from the surrounding environment, it is not necessary to attach a separate protective member, and the manufacturing process is further simplified.
 7.半導体発光装置の用途
 本発明の半導体発光装置の用途は特に制限されるものではなく、一般的な発光装置が用いられる各種の分野に適用することが可能である。本発明の半導体発光装置の用途の具体例として、例えば、従来の白熱灯や蛍光灯などのランプの代替としての照明灯、薄型照明などといった種々の照明装置用の光源、及び液晶ディスプレイなどの画像表示装置用の光源(バックライト及びフロントライトなど)がある。
7). Application of Semiconductor Light-Emitting Device The application of the semiconductor light-emitting device of the present invention is not particularly limited, and can be applied to various fields where general light-emitting devices are used. As specific examples of the use of the semiconductor light emitting device of the present invention, for example, a light source for various illumination devices such as an illumination lamp as a substitute for a conventional lamp such as an incandescent lamp and a fluorescent lamp, a thin illumination, and an image such as a liquid crystal display There are light sources (backlights, frontlights, etc.) for display devices.
 前述したように本発明による半導体発光装置は様々な色度、彩度及び輝度の光を得ることが可能であると共に、優れた演色性を確保できるので、照明装置や画像表示装置の光源として好適である。また、本発明の半導体発光装置は、封止部材によって蛍光部や半導体発光素子が保護されるようになっているので信頼性及び耐久性に優れており、長寿命の半導体発光装置を得ることができるという点でも、照明装置や画像表示装置の光源として好適である。なお、本発明の半導体発光装置を照明装置や画像表示装置の光源として用いる場合には、単一の半導体発光装置を用いてもよいし、複数の半導体発光装置を用いてもよい。以下では、本発明の半導体発光装置を照明装置の光源として用いた場合の応用例について説明する。 As described above, the semiconductor light-emitting device according to the present invention can obtain light of various chromaticities, saturations and luminances, and can ensure excellent color rendering, so that it is suitable as a light source for lighting devices and image display devices. It is. In addition, the semiconductor light emitting device of the present invention is excellent in reliability and durability because the fluorescent part and the semiconductor light emitting element are protected by the sealing member, and a long-life semiconductor light emitting device can be obtained. In view of being able to do so, it is suitable as a light source for an illumination device or an image display device. In addition, when using the semiconductor light-emitting device of this invention as a light source of an illuminating device or an image display apparatus, a single semiconductor light-emitting device may be used and a several semiconductor light-emitting device may be used. Below, the application example at the time of using the semiconductor light-emitting device of this invention as a light source of an illuminating device is demonstrated.
 (旅客用航空機の照明装置)
 旅客用航空機の客室灯は、乗員や乗客の精神安定や注意喚起を図る上で重要な役割を果たす。即ち、客室灯が発する光の色温度や色度、輝度、彩度などを変えることにより、乗員や乗客の身体状態や精神状態、あるいは周囲の環境に適合した照明光を得ることが好ましい。例えば、乗客の乗降時には青色の比率を高めて緊張感を喚起すると共に輝度を明るくし、リラックス時や就寝時には比較的低い色温度(例えば2700K)の白色光、食事の際には3000K前後の白色光とし、非常時などの注意喚起時には赤色で点灯または点滅させることが好ましい。本発明の半導体発光装置が発する光は、良好な演色性を確保しつつ、色温度や色度、輝度、彩度を様々に変更可能であるので、このような要求を満たす照明装置を得ることが可能である。また、上述のように本発明の半導体発光装置は信頼性及び耐久性に優れているので、客室灯の作動不良によるサービス低下も抑制することができる。
(Lighting equipment for passenger aircraft)
Passenger aircraft cabin lights play an important role in the mental stability and alerting of passengers and passengers. That is, it is preferable to obtain illumination light suitable for the physical condition or mental condition of the occupant or passenger, or the surrounding environment by changing the color temperature, chromaticity, brightness, saturation, etc. of the light emitted from the cabin lamp. For example, when passengers get on and off, the ratio of blue is increased to increase tension and brightness, and when relaxing or sleeping, white light with a relatively low color temperature (for example, 2700 K), white at around 3000 K when eating It is preferable to use light and turn on or blink in red when alerting in an emergency or the like. The light emitted from the semiconductor light-emitting device of the present invention can change the color temperature, chromaticity, luminance, and saturation in various ways while ensuring good color rendering, so that an illumination device that satisfies such requirements can be obtained. Is possible. Moreover, since the semiconductor light-emitting device of this invention is excellent in reliability and durability as mentioned above, the service fall by the malfunction of a guest room lamp can also be suppressed.
 (自動車の照明装置)
 自動車の客室灯の場合においても、客室灯が発する光は運転者をはじめとする乗員の身体状態や精神状態に影響を及ぼす。乗用車の場合には走行中に客室灯を点灯する機会が少ないが、長距離バスや路線バスなどでは客室灯を点灯する機会が多く、上述した旅客用航空機の場合と同様の機能を客室灯に持たせることが好ましい。また、乗用車やトラックなどの場合であっても、客室灯を点灯した場合には、乗員の身体状態や精神状態に応じて色温度や色度、輝度、彩度が変化する光を客室灯が発するのが好ましい。例えば、本発明の半導体発光装置を光源とする照明装置を客室灯として用い、寒色系照明光~白色照明光~暖色系照明光と連続的または段階的に変更可能として、精神状態が高揚するほど照明光を寒色系側に変更するようにしてもよい。
(Automobile lighting device)
Even in the case of a car cabin light, the light emitted from the cabin lamp affects the physical and mental state of the driver and other passengers. In the case of passenger cars, there are few opportunities to turn on the cabin lights while driving, but there are many opportunities to turn on the cabin lights on long-distance buses and route buses, etc., and the same function as the passenger aircraft described above is applied to the cabin lights. It is preferable to have it. Even in the case of passenger cars, trucks, etc., when the cabin lights are lit, the cabin lights emit light whose color temperature, chromaticity, brightness, and saturation change according to the physical and mental state of the passenger. Preferably. For example, an illumination device using the semiconductor light-emitting device of the present invention as a light source is used as a cabin lamp, and can be changed continuously or stepwise from cold color illumination light to white illumination light to warm color illumination light, so that the mental state becomes higher. The illumination light may be changed to the cold color side.
 また、客室灯に限らず、自動車の各種表示装置に本発明の半導体発光装置を使用することが可能である。例えば、車室内の空調装置と連動して発光色が変化する半導体発光装置を空調装置の吹出口などに設け、空調温度が高いほど暖色系の光を発し、空調温度が低いほど寒色系の光を発するようにして、空調装置の空調温度を感覚的に把握できるようにしてもよい。このように、車載装置の作動状態に応じ、表示色や色温度などが様々に変化するような表示装置として本発明の半導体発光装置を使用することが可能である。 In addition, the semiconductor light emitting device of the present invention can be used for various display devices of automobiles as well as cabin lights. For example, a semiconductor light-emitting device whose emission color changes in conjunction with the air conditioner in the passenger compartment is provided at the air outlet of the air conditioner, etc., which emits warm color light when the air conditioning temperature is high, and cold color light when the air conditioning temperature is low So that the air conditioning temperature of the air conditioner can be grasped sensuously. As described above, the semiconductor light emitting device of the present invention can be used as a display device in which the display color, the color temperature, and the like vary depending on the operating state of the in-vehicle device.
 以上で本発明の一実施形態に係る半導体発光装置についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を変更しない限りにおいて様々に変更することが可能である。例えば、キャビティ5及び蛍光部6の構造を以下ように変更することができる。以下において図19~図23を参照しつつ、キャビティ5及び蛍光部6の構造の変形例を説明する。なお、上述した実施例と同一構造の部分については、同一符号を付し、その説明を省略する。 This completes the description of the semiconductor light emitting device according to one embodiment of the present invention. However, the present invention is not limited to the above embodiment, and various modifications can be made without changing the gist of the present invention. It is. For example, the structure of the cavity 5 and the fluorescent part 6 can be changed as follows. Hereinafter, modified examples of the structures of the cavity 5 and the fluorescent part 6 will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected about the part of the same structure as the Example mentioned above, and the description is abbreviate | omitted.
 8.キャビティ及び蛍光部の構造の変形例
 キャビティ構造の変形例として、例えば図19(a)及び(b)に示すように、その表面が平坦な形状を有し、断面形状が略矩形状のキャビティ15を形成してもよい。すなわち、キャビティ15の形状は、略直方体状又は略立方体状である。このような構造により、キャビティ15の側面は半導体発光素子4の側面と、キャビティ15の底面は半導体発光素子4の上面及び下面と略平行になる。また、半導体発光素子4の側面及上面からキャビティ15の表面までの距離はほぼ等しく、半導体発光素子4の周囲(側面及び上面)に均一の厚さの蛍光部が形成されている。なお、ここで、半導体発光素子4の上面を配線基板2と接合する面とは反対側の面とし、下面を配線基板2と接合する面とする。
8). Modification Example of Structure of Cavity and Fluorescent Part As a modification example of the cavity structure, for example, as shown in FIGS. 19A and 19B, a cavity 15 having a flat surface and a substantially rectangular cross section is shown. May be formed. That is, the shape of the cavity 15 is a substantially rectangular parallelepiped shape or a substantially cubic shape. With such a structure, the side surface of the cavity 15 is substantially parallel to the side surface of the semiconductor light emitting element 4, and the bottom surface of the cavity 15 is substantially parallel to the upper and lower surfaces of the semiconductor light emitting element 4. Further, the distance from the side surface and the upper surface of the semiconductor light emitting element 4 to the surface of the cavity 15 is substantially equal, and a fluorescent portion having a uniform thickness is formed around the semiconductor light emitting element 4 (side surface and upper surface). Here, the upper surface of the semiconductor light emitting element 4 is the surface opposite to the surface bonded to the wiring substrate 2, and the lower surface is the surface bonded to the wiring substrate 2.
 キャビティ構造の他の変形例としては、例えば図20(a)及び(b)に示すように、半楕円形状の断面形状を有するキャビティ25又は15を形成してもよい。すなわち、キャビティ25又は15の形状は、砲弾型状である。また、キャビティ構造の他の変形例としては、例えば図21(a)及び(b)に示すように、三角形状の断面形状を有するキャビティ35又は15を形成してもよい。すなわち、キャビティ35又は15の形状は、円錐状又は角錐状である。更に、キャビティ構造の他の変形例としては、例えば図22(a)及び(b)に示すように、矩形状の断面形状を有するキャビティ45を形成してもよい。すなわち、キャビティ45の形状は、円柱状又は角柱状である。ここで、図22に示したキャビティ45は、図19に示したキャビティ15と比較して、半導体発光素子4の側面周囲の空間よりも上面周囲の空間が大きくなっている。このため、図22(a)及び(b)に示す半導体発光装置1においては、半導体発光素子4の上面周囲に位置する蛍光部の厚さが大きくなり、側面周囲に位置する蛍光部の厚さが小さくなる。また、図20及び図22のキャビティ構造の変形例においては、キャビティの形状が縦長な構造であるため、半導体発光素子から放出される光を、キャビティの側面(蛍光部と封止部材との境界面)において反射させることにより、キャビティ部から放出される光の配光性を上面に多くすることができる。また、図21のキャビティ構造の変形例においては、キャビティの側面(蛍光部と封止部材との境界面)が底面と垂直ではないため、半導体発光素子から放出される光を、キャビティの側面(蛍光部と封止部材との境界面)において全反射することを防ぎ、キャビティ部から放出される光の取り出しを向上させることができる。 As another modification of the cavity structure, for example, as shown in FIGS. 20A and 20B, a cavity 25 or 15 having a semi-elliptical cross section may be formed. That is, the shape of the cavity 25 or 15 is a shell shape. As another modification of the cavity structure, for example, as shown in FIGS. 21A and 21B, a cavity 35 or 15 having a triangular cross-sectional shape may be formed. That is, the shape of the cavity 35 or 15 is conical or pyramidal. Furthermore, as another modified example of the cavity structure, for example, as shown in FIGS. 22A and 22B, a cavity 45 having a rectangular cross-sectional shape may be formed. That is, the shape of the cavity 45 is a columnar shape or a prism shape. Here, the space around the upper surface of the cavity 45 shown in FIG. 22 is larger than the space around the side surface of the semiconductor light emitting element 4 as compared with the cavity 15 shown in FIG. For this reason, in the semiconductor light emitting device 1 shown in FIGS. 22A and 22B, the thickness of the fluorescent portion located around the upper surface of the semiconductor light emitting element 4 is increased, and the thickness of the fluorescent portion located around the side surface is increased. Becomes smaller. 20 and FIG. 22, since the cavity has a vertically long shape, the light emitted from the semiconductor light emitting element is transmitted to the side surface of the cavity (the boundary between the fluorescent part and the sealing member). By reflecting on the surface, the light distribution of the light emitted from the cavity portion can be increased on the upper surface. In the modification of the cavity structure shown in FIG. 21, the side surface of the cavity (the boundary surface between the fluorescent portion and the sealing member) is not perpendicular to the bottom surface. It is possible to prevent total reflection at the boundary surface between the fluorescent part and the sealing member) and improve extraction of light emitted from the cavity part.
 蛍光部構造の変形例として、例えば図19(b)、図20(b)、図21(b)及び図22(b)に示すように、積層構造を有する蛍光部16を形成してもよい。すなわち、蛍光部6は単層体であったが、蛍光部16は積層体となる。このような積層体である蛍光部16を用いる場合、少なくとも1種、あるいは複数種の蛍光体を含有する層を複数層積層したものを蛍光部16とすることができる。ここで、当該蛍光体は、各層中に均一に、あるいは連続した濃度分布を持って含有される。このような蛍光部16を用いることにより、蛍光部16から出射する一次光は、半導体発光素子4から放射される光を、各層中の蛍光体が波長変換した光の合成光となる。従って、各層の組み合わせにより、蛍光部16から出射する一次光の色度等を適宜変更することが可能になる。 As a modification of the fluorescent part structure, for example, as shown in FIGS. 19B, 20B, 21B and 22B, a fluorescent part 16 having a laminated structure may be formed. . That is, the fluorescent part 6 is a single layer, but the fluorescent part 16 is a laminate. When the fluorescent part 16 which is such a laminated body is used, a fluorescent part 16 can be obtained by laminating a plurality of layers containing at least one kind or plural kinds of phosphors. Here, the phosphor is contained in each layer uniformly or with a continuous concentration distribution. By using such a fluorescent part 16, the primary light emitted from the fluorescent part 16 becomes the combined light of the light emitted from the semiconductor light emitting element 4 and the wavelength of the fluorescent substance in each layer. Therefore, the chromaticity of the primary light emitted from the fluorescent part 16 can be appropriately changed by combining the layers.
 蛍光部16の具体的な構造としては、図19(b)、図20(b)、図21(b)及び図22(b)に示すように、例えば半導体発光素子4から放射される光を赤色領域に波長変換する赤色蛍光体を含有する赤色蛍光体含有層16rと、半導体発光素子4から放射される光を緑色領域に波長変換する緑色蛍光体を含有する緑色蛍光体含有層16gと、半導体発光素子4から放射される光を青色領域に波長変換する青色蛍光体を含有する青色蛍光体含有層16bとを、半導体発光素子4を覆うように順次積層した構造が挙げられる。蛍光体含有層の積層順序は限定されるものではないが、半導体発光素子4を覆うように赤色蛍光体含有層16rが設けられ、赤色蛍光体含有層16rを覆うように緑色蛍光体含有層16gが設けられ、緑色蛍光体含有層16gを覆うように青色蛍光体含有層16bが設けられ、青色蛍光体含有層16bがキャビティの表面に接触するような積層順序が好ましい。このような順序で積層する理由としては、蛍光体による変換後の波長が短波長である蛍光体含有層が半導体発光素子4側に配置されると、党外変換後の波長の光が、より表面側(すなわち、キャビティ側)の蛍光体含有層の蛍光体の励起に寄与して発光効率が低下してしまうことがあるからである。従って、上記のような積層構造とすることにより、良好な発光効率を維持しつつ所望の白色光を得ることができる。なお、蛍光部16の具体的な構造はこれらに限定されるものではなく、任意の波長領域に波長変換する蛍光体を含有する層を用いて蛍光部16を構成してもよい。 As a specific structure of the fluorescent part 16, as shown in FIGS. 19B, 20B, 21B, and 22B, for example, light emitted from the semiconductor light emitting element 4 is used. A red phosphor-containing layer 16r containing a red phosphor that converts the wavelength into the red region, a green phosphor-containing layer 16g that contains a green phosphor that converts the wavelength of the light emitted from the semiconductor light emitting element 4 into the green region, A structure in which a blue phosphor-containing layer 16b containing a blue phosphor that converts the wavelength of light emitted from the semiconductor light-emitting element 4 into a blue region is sequentially laminated so as to cover the semiconductor light-emitting element 4 is exemplified. The order of stacking the phosphor-containing layers is not limited, but a red phosphor-containing layer 16r is provided so as to cover the semiconductor light emitting element 4, and a green phosphor-containing layer 16g is provided so as to cover the red phosphor-containing layer 16r. Is preferably provided, and a blue phosphor-containing layer 16b is provided so as to cover the green phosphor-containing layer 16g, and the blue phosphor-containing layer 16b is in contact with the surface of the cavity. The reason for stacking in this order is that when the phosphor-containing layer whose wavelength after conversion by the phosphor is a short wavelength is arranged on the semiconductor light emitting element 4 side, the light of the wavelength after party conversion is more This is because the phosphor efficiency of the phosphor-containing layer on the surface side (that is, the cavity side) may contribute to excitation of the phosphor, resulting in a decrease in luminous efficiency. Therefore, by using the laminated structure as described above, desired white light can be obtained while maintaining good luminous efficiency. The specific structure of the fluorescent part 16 is not limited to these, and the fluorescent part 16 may be configured using a layer containing a phosphor that converts the wavelength into an arbitrary wavelength region.
 蛍光部16の膜厚(蛍光体含有層を積層体とする場合には積層体全体の膜厚)は、通常20μm以上、好ましくは50μm以上、さらに好ましくは75μm以上である。また通常3000μm以下、好ましくは2000μm以下、さらに好ましくは1500μm以下である。これにより、半導体発光素子4から放射される光を効率よく波長変換することが可能となる。 The film thickness of the fluorescent part 16 (when the phosphor-containing layer is a laminate, the film thickness of the entire laminate) is usually 20 μm or more, preferably 50 μm or more, and more preferably 75 μm or more. Moreover, it is 3000 micrometers or less normally, Preferably it is 2000 micrometers or less, More preferably, it is 1500 micrometers or less. Thereby, the wavelength of light emitted from the semiconductor light emitting element 4 can be efficiently converted.
 また、各蛍光部16の個々の大きさは、本発明の目的及び効果を損なわない限り特に制限はなく、通常半導体発光素子4の大きさに応じて適宜選択されるが、中でも投影面積が5mm以下であることが好ましく、より好ましくは1mm以下、さらに好ましくは0.25mm以下である。上記値以下とすることにより、半導体発光装置1内に半導体発光素子4を高集積化することが可能となり、大光束が得られるものとすることができる。なお、本発明でいう蛍光部16の投影面積とは、各蛍光部16を、半導体発光装置1の光取り出し面側から投影した形状の面積をいうこととする。また、蛍光部16中に複数の半導体発光素子4を含む場合は、その数に応じて蛍光部16の寸法を大きくすることが好ましい。 In addition, the individual size of each fluorescent portion 16 is not particularly limited as long as the object and effect of the present invention are not impaired, and is usually selected as appropriate according to the size of the semiconductor light emitting element 4, and among them, the projected area is 5 mm. is preferably 2 or less, more preferably 1 mm 2 or less, more preferably 0.25 mm 2 or less. By setting it to the above value or less, the semiconductor light emitting element 4 can be highly integrated in the semiconductor light emitting device 1 and a large luminous flux can be obtained. In addition, the projection area of the fluorescent part 16 referred to in the present invention means an area of a shape in which each fluorescent part 16 is projected from the light extraction surface side of the semiconductor light emitting device 1. In addition, when the plurality of semiconductor light emitting elements 4 are included in the fluorescent portion 16, it is preferable to increase the size of the fluorescent portion 16 according to the number.
 ここで、蛍光部16は、蛍光部6と同様に、半導体発光素子4及び配線基板2を封止するための封止部材3、及び半導体発光素子4から発せられる光の少なくとも一部、もしくは全部を吸収し、任意の波長に波長変換する無機または有機の蛍光体を含有するものとすることができる。また、蛍光部16は必要に応じチキソ剤や屈折率調整剤、光拡散剤等を含有していてもよい。 Here, similarly to the fluorescent part 6, the fluorescent part 16 is a sealing member 3 for sealing the semiconductor light emitting element 4 and the wiring substrate 2, and at least a part or all of the light emitted from the semiconductor light emitting element 4. And an inorganic or organic phosphor that converts the wavelength to an arbitrary wavelength. Further, the fluorescent part 16 may contain a thixotropic agent, a refractive index adjusting agent, a light diffusing agent, or the like as necessary.
 また、各蛍光部16間の距離は、各蛍光部6間の距離と同様に、隣接する半導体発光素子間で、相互に出射する光を吸収すること等を低減する程度離れていることが好ましい。これにより光取り出し効率が向上することが期待される。具体的には、各蛍光部間の隙間は、50μm以上、好ましくは100μm以上、さらに好ましくは200μm以上であることが好ましく、集積化の観点からは1.5mm以下であることが好ましい。 Moreover, it is preferable that the distance between each fluorescence part 16 is separated so that absorption of the light mutually emitted between adjacent semiconductor light emitting elements may be reduced like the distance between each fluorescence part 6. . This is expected to improve the light extraction efficiency. Specifically, the gap between the fluorescent portions is 50 μm or more, preferably 100 μm or more, more preferably 200 μm or more, and preferably 1.5 mm or less from the viewpoint of integration.
 上述した実施例及び変形例においては、半導体発光素子4が蛍光体を含有する蛍光部によって被覆されていたが、このような構造に限定されることはなく、他の構造であってもよい。例えば図23に示すように、半導体発光素子4が蛍光体を含有しない被覆部材50によって被覆され、当該被覆部材50を覆うように蛍光部6が設けられてもよい。 In the above-described embodiments and modifications, the semiconductor light emitting element 4 is covered with the fluorescent part containing the phosphor, but the present invention is not limited to such a structure, and other structures may be used. For example, as shown in FIG. 23, the semiconductor light emitting element 4 may be covered with a covering member 50 that does not contain a phosphor, and the fluorescent portion 6 may be provided so as to cover the covering member 50.
 被覆部材50は、半導体発光素子4から発される光が透過できる材料からなり、一般には、上述した蛍光部から蛍光体を取り除いた材料からなる。より具体的には、被覆部材50は、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、及びフッ素樹脂等の透光性樹脂であってよい。 The covering member 50 is made of a material that can transmit light emitted from the semiconductor light emitting element 4, and is generally made of a material obtained by removing the phosphor from the fluorescent portion described above. More specifically, the covering member 50 may be a translucent resin such as an acrylic resin, an epoxy resin, a silicone resin, a urethane resin, and a fluororesin.
 このような被覆部材50によって半導体発光素子4を被覆することにより、蛍光部6が半導体発光素子4において発生する熱の影響を受けることがなくなり、半導体発光装置1自体の発光特性及び信頼性の向上を図ることができる。なお、図23においては、被覆部材50上に蛍光部6を形成したが、蛍光部6に代えて赤色蛍光体含有層16r、緑色蛍光体含有層16g、及び青色蛍光体含有層16bからなる蛍光部16を形成してもよい。 By covering the semiconductor light emitting element 4 with such a covering member 50, the fluorescent portion 6 is not affected by the heat generated in the semiconductor light emitting element 4, and the light emission characteristics and reliability of the semiconductor light emitting device 1 itself are improved. Can be achieved. In FIG. 23, the fluorescent part 6 is formed on the covering member 50. However, instead of the fluorescent part 6, the fluorescent part 6 includes a red fluorescent substance containing layer 16r, a green fluorescent substance containing layer 16g, and a blue fluorescent substance containing layer 16b. The portion 16 may be formed.
 また、図23における半導体発光装置1においては、半導体発光素子4が被覆部材50によって覆われ、更に被覆部材50が蛍光部6によって覆われていたが、このような積層構造に限定されることなく、被覆部材50と蛍光部6又は蛍光部16と形成位置を入れ替えてもよい。すなわち、半導体発光素子4が蛍光部6又は蛍光部16によって覆われ、更に蛍光部6又は蛍光部16が被覆部材50によって覆われてもよい。 In the semiconductor light emitting device 1 in FIG. 23, the semiconductor light emitting element 4 is covered with the covering member 50, and the covering member 50 is further covered with the fluorescent portion 6. However, the present invention is not limited to such a laminated structure. The formation positions of the covering member 50 and the fluorescent part 6 or the fluorescent part 16 may be interchanged. That is, the semiconductor light emitting element 4 may be covered with the fluorescent part 6 or the fluorescent part 16, and the fluorescent part 6 or the fluorescent part 16 may be further covered with the covering member 50.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2010年4月21日出願の日本特許出願(特願2010-097768)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on April 21, 2010 (Japanese Patent Application No. 2010-097768), the contents of which are incorporated herein by reference.
 本発明の半導体発光装置は、出射光における色むらが抑制され、出射光の色度、彩度、輝度を様々かつ容易に調整可能であることから、例えば照明ランプや薄型照明などといった種々の照明装置用の光源、及び液晶ディスプレイなどの画像表示装置用の光源(バックライト及びフロントライトなど)などとして利用することができる。 Since the semiconductor light emitting device of the present invention suppresses uneven color in the emitted light and can adjust the chromaticity, saturation, and luminance of the emitted light in various and easy ways, for example, various illuminations such as an illumination lamp and a thin illumination It can be used as a light source for a device and a light source (backlight, front light, etc.) for an image display device such as a liquid crystal display.
 1 半導体発光装置
 2 配線基板
 3 封止部材
 4 半導体発光素子
 5,15,25,35,45 キャビティ
 6,16 蛍光部
 7 コーティング層
DESCRIPTION OF SYMBOLS 1 Semiconductor light-emitting device 2 Wiring board 3 Sealing member 4 Semiconductor light-emitting element 5,15,25,35,45 Cavity 6,16 Fluorescence part 7 Coating layer

Claims (16)

  1.  配線基板と、
     前記配線基板に装着され、所定波長範囲の発光特性を有する複数の半導体発光素子と、
     所定の光透過特性を有すると共に、第1の面及び該第1の面とは反対側の第2の面を有して板状に形成され、前記第1の面における前記半導体発光素子に対応する位置に凹設されたキャビティを複数有する封止部材と、
     複数の前記キャビティのそれぞれに充填され、前記半導体発光素子が発する光の少なくとも一部を波長変換する蛍光体を含有した蛍光部と、を備え、
     前記半導体発光素子が装着された前記配線基板の一面に前記封止部材の前記第1の面が接合されることにより、複数の前記半導体発光素子のそれぞれが、該半導体発光素子に対応する前記キャビティにおいて前記蛍光部で覆われている
     半導体発光装置。
    A wiring board;
    A plurality of semiconductor light emitting elements mounted on the wiring board and having light emission characteristics in a predetermined wavelength range;
    Corresponding to the semiconductor light emitting element in the first surface, having a predetermined light transmission characteristic, and having a first surface and a second surface opposite to the first surface. A sealing member having a plurality of cavities recessed in a position to be
    A fluorescent part that is filled in each of the plurality of cavities and contains a phosphor that converts the wavelength of at least part of the light emitted from the semiconductor light emitting element, and
    The first surface of the sealing member is bonded to one surface of the wiring substrate on which the semiconductor light emitting element is mounted, so that each of the plurality of semiconductor light emitting elements corresponds to the cavity corresponding to the semiconductor light emitting element. A semiconductor light-emitting device covered with the fluorescent part.
  2.  前記半導体発光素子が装着された前記配線基板の一面と前記封止部材の前記第1の面とが接合することにより、前記キャビティ内に前記半導体発光素子及び前記蛍光部が密封されている
     請求項1に記載の半導体発光装置。
    The semiconductor light emitting element and the fluorescent part are sealed in the cavity by bonding one surface of the wiring board on which the semiconductor light emitting element is mounted and the first surface of the sealing member. 2. The semiconductor light emitting device according to 1.
  3.  JISK7129B法によって23℃で測定した前記配線基板及び前記封止部材の水蒸気透過度は、10g/m・day以下である
     請求項2に記載の半導体発光装置。
    The semiconductor light-emitting device according to claim 2, wherein water vapor permeability of the wiring board and the sealing member measured at 23 ° C. by a JIS K7129B method is 10 g / m 2 · day or less.
  4.  JISK7129B法によって23℃で測定した前記配線基板及び前記封止部材の水蒸気透過係数は、10g・mm/m・day以下である
     請求項2に記載の半導体発光装置。
    The semiconductor light-emitting device according to claim 2, wherein a water vapor transmission coefficient of the wiring board and the sealing member measured at 23 ° C. by a JISK7129B method is 10 g · mm / m 2 · day or less.
  5.  JISK7126B(1987)法によって23℃で測定した前記配線基板及び前記封止部材の酸素透過度は、1000cm/m・day・atm以下である
     請求項2乃至4のいずれか1項に記載の半導体発光装置。
    5. The oxygen permeability of the wiring board and the sealing member measured at 23 ° C. by a JIS K 7126 B (1987) method is 1000 cm 3 / m 2 · day · atm or less. 5. Semiconductor light emitting device.
  6.  JISK7126B(1987)法によって23℃で測定した前記配線基板及び前記封止部材の酸素透過係数は、1000cm・mm/m・day・atm以下である
     請求項2乃至4のいずれか1項に記載の半導体発光装置。
    5. The oxygen transmission coefficient of the wiring board and the sealing member measured at 23 ° C. by the JIS K 7126 B (1987) method is 1000 cm 3 · mm / m 2 · day · atm or less. 5. The semiconductor light-emitting device as described.
  7.  前記封止部材は、ガラス、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、フッ素樹脂、シリコーン樹脂、石英、及びセラミックからなる群から選ばれる1又は2以上の材料からなる
     請求項2乃至6のいずれか1項に記載の半導体発光装置。
    The said sealing member consists of 1 or 2 or more materials chosen from the group which consists of glass, an acrylic resin, an epoxy resin, a urethane resin, a fluororesin, a silicone resin, quartz, and a ceramic. The semiconductor light emitting device according to item.
  8.  前記蛍光体は、前記半導体発光素子から発せられた光を前記所定波長範囲とは異なる波長範囲の光に変換するものであって、
     前記封止部材は、前記蛍光体によって波長変換された光に対し、前記半導体発光素子から発せられた光よりも高い透過性を有すると共に、前記半導体発光素子から発せられて前記キャビティから前記封止部材へ向かう光に対し、前記蛍光体によって波長変換されて前記キャビティから前記封止部材へ向かう光よりも高い反射率を有する
     請求項1乃至7のいずれか1項に記載の半導体発光装置。
    The phosphor converts light emitted from the semiconductor light emitting element into light having a wavelength range different from the predetermined wavelength range,
    The sealing member has higher transparency than the light emitted from the semiconductor light emitting element with respect to the light wavelength-converted by the phosphor, and is emitted from the semiconductor light emitting element and sealed from the cavity. 8. The semiconductor light-emitting device according to claim 1, wherein the light toward the member has a higher reflectance than the light that is wavelength-converted by the phosphor and travels from the cavity toward the sealing member.
  9.  複数の前記キャビティのうちの一部の前記キャビティに充填された蛍光部に含有される蛍光体は、複数の前記キャビティのうちの残部の前記キャビティに充填された蛍光部に含有される蛍光体が有する波長変換特性と異なる波長変換特性を有する
     請求項1乃至8のいずれか1項に記載の半導体発光装置。
    The fluorescent substance contained in the fluorescent part filled in a part of the cavities among the plurality of cavities is the fluorescent substance contained in the fluorescent part filled in the remaining part of the cavities. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device has wavelength conversion characteristics different from the wavelength conversion characteristics of the semiconductor light emitting apparatus.
  10.  前記蛍光体として、前記半導体発光素子から発せられた光を赤色領域に波長変換する第1蛍光体と、前記半導体発光素子から発せられた光を緑色領域に波長変換する第2蛍光体と、前記半導体発光素子から発せられた光を青色領域に波長変換する第3蛍光体とが用いられ、
     複数の前記キャビティは、前記第1蛍光体を含有した蛍光部を充填する第1キャビティと、前記第2蛍光体を含有した蛍光部を充填する第2キャビティと、前記第3蛍光体を含有した蛍光部を充填する第3キャビティとからなる
     請求項1乃至9のいずれか1項に記載の半導体発光装置。
    As the phosphor, a first phosphor that converts the wavelength of light emitted from the semiconductor light emitting device into a red region, a second phosphor that converts the wavelength of light emitted from the semiconductor light emitting device into a green region, and A third phosphor that converts the wavelength of the light emitted from the semiconductor light emitting element into a blue region;
    The plurality of cavities contain a first cavity that fills the fluorescent part containing the first phosphor, a second cavity that fills the fluorescent part containing the second phosphor, and the third phosphor. The semiconductor light-emitting device according to claim 1, further comprising a third cavity that fills the fluorescent portion.
  11.  前記蛍光部は、互いに異なる波長変換特性を備える2以上の蛍光体が積層された積層構造を有する
     請求項1乃至9のいずれか1項に記載の半導体発光装置。
    The semiconductor light emitting device according to claim 1, wherein the fluorescent portion has a stacked structure in which two or more phosphors having different wavelength conversion characteristics are stacked.
  12.  前記配線基板を介して前記半導体発光素子のそれぞれに流れる電流を制御することにより、前記封止部材の前記第2の面から放射される光の色度が可変である
     請求項9乃至11のいずれか1項に記載の半導体発光装置。
    The chromaticity of light emitted from the second surface of the sealing member is variable by controlling a current flowing through each of the semiconductor light emitting elements via the wiring board. 2. A semiconductor light emitting device according to claim 1.
  13.  前記半導体発光素子は、360~480nmの波長範囲の光を発する
     請求項1乃至12のいずれか1項に記載の半導体発光装置。
    The semiconductor light emitting device according to any one of claims 1 to 12, wherein the semiconductor light emitting element emits light in a wavelength range of 360 to 480 nm.
  14.  請求項1乃至13のいずれか1項に記載の半導体発光装置を有する
     照明装置。
    An illumination device comprising the semiconductor light emitting device according to claim 1.
  15.  所定波長範囲の発光特性を有する複数の半導体発光素子を配線基板に装着する工程と、
     所定の光透過特性を有すると共に、第1の面及び該第1の面とは反対側の第2の面を有して板状に形成された封止部材の前記第1の面に、前記半導体発光素子に対応する位置にキャビティを複数凹設する工程と、
     前記半導体発光素子が発する光の少なくとも一部を波長変換する蛍光体を含有した蛍光部を複数の前記キャビティのそれぞれに充填する工程と、
     前記配線基板に装着された複数の前記半導体発光素子のそれぞれが、対応する前記キャビティ内に位置すると共に、前記キャビティ内に充填されている前記蛍光部で覆われるように、前記封止部材の前記第1の面を前記配線基板に接合する工程とを備える
     半導体発光装置の製造方法。
    Mounting a plurality of semiconductor light emitting elements having light emission characteristics in a predetermined wavelength range on a wiring board;
    The first surface of the sealing member having a predetermined light transmission characteristic and having a first surface and a second surface opposite to the first surface and formed in a plate shape, A step of recessing a plurality of cavities at a position corresponding to the semiconductor light emitting element;
    Filling each of the plurality of cavities with a fluorescent portion containing a phosphor that converts the wavelength of at least part of the light emitted from the semiconductor light emitting device;
    Each of the plurality of semiconductor light emitting elements mounted on the wiring board is located in the corresponding cavity and is covered with the fluorescent portion filled in the cavity. Bonding the first surface to the wiring substrate. A method for manufacturing a semiconductor light emitting device.
  16.  前記キャビティに前記蛍光体を含有した蛍光部を充填する工程は、
     前記キャビティが露出すると共に当該キャビティの周囲が被覆されるように被覆材で前記封止部材の前記第1の面をマスキングする工程と、
     前記被覆材の上から前記蛍光部を塗布する工程と、
     前記蛍光部を塗布した後に、前記被覆材を前記封止部材の前記第1の面から除去する工程とからなる
     請求項15に記載の半導体発光装置の製造方法。
    The step of filling the cavity with the fluorescent part containing the phosphor,
    Masking the first surface of the sealing member with a covering material so that the cavity is exposed and the periphery of the cavity is covered;
    Applying the fluorescent part from above the covering material;
    The method for manufacturing a semiconductor light-emitting device according to claim 15, further comprising: removing the covering material from the first surface of the sealing member after applying the fluorescent portion.
PCT/JP2011/059750 2010-04-21 2011-04-20 Semiconductor light emitting device and production method for semiconductor light emitting device WO2011132716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-097768 2010-04-21
JP2010097768 2010-04-21

Publications (1)

Publication Number Publication Date
WO2011132716A1 true WO2011132716A1 (en) 2011-10-27

Family

ID=44834233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059750 WO2011132716A1 (en) 2010-04-21 2011-04-20 Semiconductor light emitting device and production method for semiconductor light emitting device

Country Status (2)

Country Link
JP (1) JP2011243963A (en)
WO (1) WO2011132716A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281534A (en) * 2018-01-05 2018-07-13 福建天电光电有限公司 A kind of emitting semiconductor structure and its preparation process that can send out a variety of coloured light
WO2018233815A1 (en) * 2017-06-20 2018-12-27 Osram Opto Semiconductors Gmbh Light arrangement, filament and method for operating a light arrangement
CN113471179A (en) * 2021-06-11 2021-10-01 五邑大学 Color temperature adjustable COB LED light source and manufacturing method thereof
CN114424415A (en) * 2019-09-27 2022-04-29 三菱电机株式会社 Optical semiconductor device and method for manufacturing the same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10036099B2 (en) 2008-08-07 2018-07-31 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
JP2013161967A (en) * 2012-02-06 2013-08-19 Koito Mfg Co Ltd Semiconductor light-emitting device
CN104247052B (en) 2012-03-06 2017-05-03 天空公司 Light emitting diodes with low refractive index material layers to reduce light guiding effects
US10145026B2 (en) 2012-06-04 2018-12-04 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of semipolar gallium nitride boules
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
US8999737B2 (en) 2013-08-27 2015-04-07 Glo Ab Method of making molded LED package
TW201517323A (en) 2013-08-27 2015-05-01 Glo Ab Molded LED package and method of making same
US9142745B2 (en) 2013-08-27 2015-09-22 Glo Ab Packaged LED device with castellations
US9410664B2 (en) 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source
US9419189B1 (en) 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
TWI509844B (en) * 2014-09-19 2015-11-21 Unity Opto Technology Co Ltd Applied to the backlight of the LED light-emitting structure
JP6451579B2 (en) 2015-09-30 2019-01-16 日亜化学工業株式会社 Light emitting device
TWI599078B (en) * 2016-08-05 2017-09-11 行家光電股份有限公司 Moisture-resistant chip scale packaging light emitting device
JP2019016632A (en) * 2017-07-04 2019-01-31 日亜化学工業株式会社 Light-emitting device
JP6891797B2 (en) * 2017-12-21 2021-06-18 日亜化学工業株式会社 Display device
JP7293717B2 (en) * 2019-02-26 2023-06-20 凸版印刷株式会社 Display device
KR20210131367A (en) * 2019-02-26 2021-11-02 도판 인사츠 가부시키가이샤 Wavelength selective filter, manufacturing method of wavelength selective filter, and display device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046133A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Light emitting device and method of manufacturing the same
JP2006093372A (en) * 2004-09-24 2006-04-06 Nichia Chem Ind Ltd Semiconductor device
JP2006108719A (en) * 2006-01-16 2006-04-20 Matsushita Electric Ind Co Ltd Light emitting element
JP2007113043A (en) * 2005-10-19 2007-05-10 Konica Minolta Holdings Inc Gas barrier thin film-stacked body, gas barrier resin base material, and organic electroluminescence device using the same
JP2007258053A (en) * 2006-03-24 2007-10-04 Konica Minolta Holdings Inc Manufacturing method of organic electroluminescent panel
JP2008060166A (en) * 2006-08-29 2008-03-13 Nichia Chem Ind Ltd Semiconductor device, and its manufacturing method
JP2008060129A (en) * 2006-08-29 2008-03-13 Nec Lighting Ltd Full-color light-emitting diode
JP2008091459A (en) * 2006-09-29 2008-04-17 Rohm Co Ltd Led illumination apparatus and manufacturing method thereof
JP2008198701A (en) * 2007-02-09 2008-08-28 Sharp Corp Semiconductor device and electronic apparatus
JP2008235680A (en) * 2007-03-22 2008-10-02 Toshiba Lighting & Technology Corp Light-emitting apparatus
JP2008266572A (en) * 2007-01-17 2008-11-06 Mitsubishi Chemicals Corp Resin composition, method for producing the same, and copolymer
JP2008283155A (en) * 2007-05-14 2008-11-20 Sharp Corp Light emitting device, lighting device, and liquid crystal display device
WO2009014219A1 (en) * 2007-07-26 2009-01-29 Panasonic Electric Works Co., Ltd. Led illumination device
JP2009060094A (en) * 2007-08-08 2009-03-19 Toshiba Lighting & Technology Corp Illuminator
JP2010192347A (en) * 2009-02-20 2010-09-02 Hitachi Ltd Light source module, and lighting device using the same, liquid crystal display device, and image display device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046133A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Light emitting device and method of manufacturing the same
JP2006093372A (en) * 2004-09-24 2006-04-06 Nichia Chem Ind Ltd Semiconductor device
JP2007113043A (en) * 2005-10-19 2007-05-10 Konica Minolta Holdings Inc Gas barrier thin film-stacked body, gas barrier resin base material, and organic electroluminescence device using the same
JP2006108719A (en) * 2006-01-16 2006-04-20 Matsushita Electric Ind Co Ltd Light emitting element
JP2007258053A (en) * 2006-03-24 2007-10-04 Konica Minolta Holdings Inc Manufacturing method of organic electroluminescent panel
JP2008060129A (en) * 2006-08-29 2008-03-13 Nec Lighting Ltd Full-color light-emitting diode
JP2008060166A (en) * 2006-08-29 2008-03-13 Nichia Chem Ind Ltd Semiconductor device, and its manufacturing method
JP2008091459A (en) * 2006-09-29 2008-04-17 Rohm Co Ltd Led illumination apparatus and manufacturing method thereof
JP2008266572A (en) * 2007-01-17 2008-11-06 Mitsubishi Chemicals Corp Resin composition, method for producing the same, and copolymer
JP2008198701A (en) * 2007-02-09 2008-08-28 Sharp Corp Semiconductor device and electronic apparatus
JP2008235680A (en) * 2007-03-22 2008-10-02 Toshiba Lighting & Technology Corp Light-emitting apparatus
JP2008283155A (en) * 2007-05-14 2008-11-20 Sharp Corp Light emitting device, lighting device, and liquid crystal display device
WO2009014219A1 (en) * 2007-07-26 2009-01-29 Panasonic Electric Works Co., Ltd. Led illumination device
JP2009060094A (en) * 2007-08-08 2009-03-19 Toshiba Lighting & Technology Corp Illuminator
JP2010192347A (en) * 2009-02-20 2010-09-02 Hitachi Ltd Light source module, and lighting device using the same, liquid crystal display device, and image display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018233815A1 (en) * 2017-06-20 2018-12-27 Osram Opto Semiconductors Gmbh Light arrangement, filament and method for operating a light arrangement
CN108281534A (en) * 2018-01-05 2018-07-13 福建天电光电有限公司 A kind of emitting semiconductor structure and its preparation process that can send out a variety of coloured light
CN114424415A (en) * 2019-09-27 2022-04-29 三菱电机株式会社 Optical semiconductor device and method for manufacturing the same
CN114424415B (en) * 2019-09-27 2023-09-19 三菱电机株式会社 Method for manufacturing optical semiconductor device
CN113471179A (en) * 2021-06-11 2021-10-01 五邑大学 Color temperature adjustable COB LED light source and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011243963A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
WO2011132716A1 (en) Semiconductor light emitting device and production method for semiconductor light emitting device
US10879435B2 (en) Light emitting diodes, components and related methods
JP5105132B1 (en) Semiconductor light emitting device, semiconductor light emitting system, and lighting fixture
JP5443959B2 (en) Lighting device
JP5810301B2 (en) Lighting device
JP5181505B2 (en) Light emitting device
US20130257266A1 (en) Light emitting device
JP2012521086A (en) Lighting device using remote luminescent material
JP2008218486A (en) Light emitting device
JP2011159832A (en) Semiconductor light emitting device
US9761769B2 (en) Assembly that emits electromagnetic radiation and method of producing an assembly that emits electromagnetic radiation
JP2009065137A (en) Light-emitting device
JP5082427B2 (en) Light emitting device
JP2007288138A (en) Light emitting device
JP2008218998A (en) Light emitting device
JP2018129492A (en) Light-emitting device, and illuminating device
JP2007116116A (en) Light emitting device
JP2010153561A (en) Light emitting device
JP2008244469A (en) Light-emitting device
JP2013012778A (en) Lighting apparatus
JP2011159770A (en) White-light emitting semiconductor device
JP2011159769A (en) Semiconductor light emitting device
JP6798772B2 (en) Lighting device
JP2019117729A (en) Illuminating device and illuminating module
WO2020246395A1 (en) Fluorescent material, wavelength conversion member, and lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11772049

Country of ref document: EP

Kind code of ref document: A1