WO2014132542A1 - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
WO2014132542A1
WO2014132542A1 PCT/JP2013/084851 JP2013084851W WO2014132542A1 WO 2014132542 A1 WO2014132542 A1 WO 2014132542A1 JP 2013084851 W JP2013084851 W JP 2013084851W WO 2014132542 A1 WO2014132542 A1 WO 2014132542A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflective film
phosphor
refractive index
light emitting
Prior art date
Application number
PCT/JP2013/084851
Other languages
French (fr)
Japanese (ja)
Inventor
学道 重光
宏之 花戸
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014132542A1 publication Critical patent/WO2014132542A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a light emitting element. More specifically, the present invention relates to a light emitting element that can emit white light adjusted to a desired chromaticity with high light extraction efficiency.
  • White light emitting devices using semiconductor light emitting devices are expected to be applied to the next generation of general lighting and bulbs such as liquid crystal backlights, and tube markets such as fluorescent tubes and cold cathode tubes.
  • a white light emitting element is obtained by coating a light emitting diode chip with a resin containing phosphor, etc., and light from a phosphor excited by light from the light emitting diode chip and light from the light emitting diode chip. To obtain white light.
  • Patent Document 1 discloses a structure that improves the accuracy of chromaticity by using a plurality of LED chips and making the combination of chromaticity of each LED chip a predetermined combination. However, in this structure, when a module is used, chromaticity variation occurs due to variations in the amount of phosphor of each LED chip.
  • Patent Documents 2 to 4 disclose techniques for color matching in a separate process in a modularized state.
  • Patent Document 2 the phosphor layer for chromaticity adjustment containing the second phosphor provided in the outer layer in the light emitting direction than the phosphor-containing resin layer containing the first phosphor.
  • a configuration formed in a dot shape is disclosed, and it is disclosed that the color is finely adjusted by the phosphor layer for chromaticity adjustment.
  • Patent Document 3 discloses a light-emitting element containing a phosphor and having a light scattering portion formed on at least a part of the surface of a sealing resin portion covering a light-emitting diode chip, and the light scattering portion is disposed therein. Thus, it is disclosed that the efficiency of quantum conversion by a phosphor is improved.
  • Patent Document 4 has an LED element and a sealing material containing a phosphor in a transparent resin, and the sealing material is disposed in the periphery of the LED element, and the surface of the sealing material An LED light source having a transparent thin film with a refractive index different from the refractive index of the encapsulant is disclosed.
  • Patent Document 2 since the technique disclosed in Patent Document 2 requires a process of forming the chromaticity adjusting phosphor layer in a dot shape, it is difficult to accurately configure the chromaticity adjusting phosphor layer. Therefore, there is a problem that it is difficult to finely adjust the color in practice.
  • Patent Documents 3 and 4 can be used to easily and accurately construct the phosphor layer.
  • the refractive index of the transparent thin film is smaller than the refractive index of the resin, or that the transparent thin film is a multilayer film.
  • the refractive index of a transparent thin film is smaller than the refractive index of resin, the light emission from resin to air becomes favorable.
  • the refractive index of a general resin is 1.4 to 1.8, and a substance having a refractive index smaller than this range is very rare, the combination of a transparent thin film and a resin is also practical. There is no combination. Therefore, there is a problem that it is difficult to give wavelength dependency to the transmission characteristics of light passing through the transparent thin film.
  • the transparent thin film is a multilayer film
  • the control of the film thickness is complicated and that the number of manufacturing steps increases, resulting in a decrease in productivity.
  • the present invention has been made in view of the above-described problems, and has an object of being able to finely adjust chromaticity while maintaining light utilization efficiency with a simple structure and having desired chromaticity characteristics.
  • An object of the present invention is to provide a light emitting device capable of emitting white light and a method for manufacturing the same.
  • a light-emitting element includes an LED element and a phosphor that absorbs part of light emitted from the LED element and emits light by wavelength conversion.
  • the reflective film is formed on the surface of the resin part. Therefore, the transmission characteristic of the outgoing light emitted from the reflective film has a wavelength dependency, and the refractive index of the reflective film is larger than the refractive index of the resin portion.
  • the light-emitting element according to one embodiment of the present invention has an effect that white light having desired chromaticity characteristics can be obtained efficiently and at low cost.
  • FIG. 1 is a schematic sectional view of a light emitting device according to a first embodiment of the present invention.
  • FIG. 6 is a chromaticity diagram illustrating variation in chromaticity depending on the presence or absence of a reflective film in the light emitting device according to the present invention.
  • It is a schematic sectional structure figure of the light emitting element concerning the 2nd Embodiment of this invention.
  • It is a schematic diagram which shows the outline of the process of the manufacturing method of the light emitting element concerning this invention.
  • It is a figure which shows the result of having measured the wavelength dependence of the light emitting element in the Example of this invention.
  • the light-emitting element includes an LED element, a phosphor that absorbs part of the light emitted from the LED element, converts the wavelength, and emits light, and a resin that contains the phosphor and seals the LED element. And a reflective film that contains an inorganic oxide and is formed on the surface of the resin part, and the reflective film is formed on the surface of the resin part, whereby the reflective film The wavelength dependence of the transmission characteristics of the outgoing light emitted from the outside to the outside occurs, and the refractive index of the reflective film is larger than the refractive index of the resin portion.
  • FIG. 1 is a schematic sectional view of a light emitting device 100 according to the first embodiment.
  • the light emitting element 100 includes an LED element 1, a phosphor-containing resin layer 2 (also referred to as “resin portion” in the present specification), a reflective film 3, and a substrate 4.
  • the light emitting element 100 has the resin portion formed on the outer peripheral portion of the LED element 1.
  • the said fluorescent substance containing resin layer (resin part) 2 contains the fluorescent substance which absorbs a part of light emission from the said LED element 1, changes wavelength, and light-emits.
  • the “outer peripheral part” means that the LED element 1 is outside in the light emission direction as viewed from the LED element 1.
  • the LED element 1 is mounted on the mounting surface 6 of the substrate 5 with a silicone-based resin paste or the like.
  • the substrate 5 is preferably made of a material having a high reflective effect on the mounting surface, and for example, a ceramic substrate is preferably used.
  • a front surface electrode (not shown) for wire bonding is mounted on the mounting surface 6, and a back surface electrode (not shown) for connecting to an external circuit on the back surface (the surface on which the LED element 1 is not mounted). ), And a through hole (not shown) for conducting the front surface electrode and the back surface electrode is provided inside.
  • the LED element 1 may be any element that can emit blue light (wavelength of 435 nm or more and 480 nm or less).
  • a nitride-based compound semiconductor such as InGaN can be used.
  • the LED element 1 is mounted (die bonding) on the mounting surface 6 of the substrate 5 and is electrically connected to the surface electrode of the substrate 5 by a wire (not shown) made of, for example, gold. As a result, power is supplied to the LED element 1 from the back electrode of the substrate 5.
  • the number of the LED elements 1 may be one or plural. When the number of the LED elements 1 is plural, the LED elements 1 may be disposed at a predetermined position that satisfies a predetermined light emission amount, for example, at equal intervals.
  • the phosphor-containing resin layer (resin portion) 2 is formed so as to cover the LED element 1 and seals the LED element 1.
  • the phosphor-containing resin layer (resin portion) 2 is made of a resin containing a phosphor.
  • the resin is preferably a silicone resin because of its excellent translucency, and an epoxy resin, an acrylic resin, or the like can also be used. Silicone resins are particularly preferable because they are excellent in heat resistance.
  • the phosphor absorbs part of the light emitted from the LED element 1 (blue light), converts the wavelength, and emits yellow light.
  • Examples of such phosphors include CaAlSiN 3 : Eu, (Si ⁇ Al) 6 (O ⁇ N) 8 : Eu, BOSE (Ba, O, Sr, Si, Eu), SOSE (Sr, Ba, Si, O, Eu), YAG (Ce activated yttrium aluminum garnet), ⁇ sialon ((Ca), Si, Al, O, N, Eu), ⁇ sialon (Si, Al, O, N, Eu), etc. It can be used suitably.
  • the phosphor-containing resin layer (resin portion) 2 in the present invention includes a reflective film 3 on the surface.
  • the reflection film 3 is formed on the surface of the phosphor-containing resin layer (resin portion) 2 so that the transmission characteristics of the emitted light emitted from the reflection film 3 to the outside (in this specification, “light transmission” It is also referred to as “characteristic”.). “Transmission characteristics of emitted light” refers to the characteristics of the reflective film 3 such as what wavelength the reflective film 3 easily emits to the outside and what wavelength light easily reflects.
  • “To produce wavelength dependency in the transmission characteristics of outgoing light” means that the reflectance of light having a wavelength in a specific range is stronger than the reflectance of light having a wavelength in other ranges.
  • the “outside” refers to the outside of the light emitting element 1. That is, it refers to a region outside the reflective film 3 in the light emission direction.
  • the reflective film 3 Since the reflective film 3 has a refractive index larger than that of the phosphor-containing resin layer (resin portion) 2, the reflectance of short wavelength light (for example, blue light) can be reduced with a relatively thin film thickness. The difference between the reflectance of long-wavelength light (for example, yellow light) can be increased, that is, the thickness can be increased to several percent while the film thickness accuracy is improved. .
  • the refractive index of the reflective film 3 is also referred to as “refractive index n ′”, and the refractive index of the phosphor-containing resin layer (resin portion) 2 is also referred to as “refractive index n”.
  • the wavelength dependence of the light transmission characteristics of the reflective film 3 is an interference involving the refractive index of the reflective film 3, the refractive index of the phosphor-containing resin layer (resin portion) 2, and the film thickness of the reflective film 3. Therefore, by adjusting the film thickness of the reflective film 3, the wavelength dependence of the light transmission characteristics can be controlled, and white light having a desired chromaticity characteristic can be obtained.
  • Example 1 TiO 2 having a refractive index n ′ of 2.5 and a silicone resin having a refractive index n of the resin portion of 1.41 are used.
  • the thickness of the reflective film 3 is 10 nm and 15 nm, the result shows that the reflectance is higher as the light has a shorter wavelength and the reflectance is lower as the light has a longer wavelength. That is, for example, the reflectance of blue light is higher than the reflectance of yellow light.
  • the refractive index of the reflective film 3 is set to be the same as that of the phosphor-containing resin layer (resin portion) 2 as in Example 1.
  • the reflective film 3 having a refractive index larger than that of the reflective film 3 and having a thickness of 10 nm or 15 nm, for example, may be formed on the surface of the phosphor-containing resin layer (resin portion) 2.
  • the blue light transmitted through the reflective film 3 and emitted from the light emitting element 100 is reduced, and the blue light is wavelength-converted by the phosphor existing in the phosphor-containing resin layer 2.
  • the ratio of yellow light in the emitted light increases, the light emitted from the light emitting element 100 has chromaticity shifted to the yellow side as compared with the case where the reflective film 3 is not provided.
  • the chromaticity of the emitted light in which the emitted light is blue lighter than the prescribed chromaticity as white light can be optimized and the emission of the blue light can be suppressed, the quality of the light emitting element 100 can be improved.
  • the blue light retinopathy can be reduced.
  • Example 1 when the thickness of the reflective film 3 is 80 nm, the reflectance of blue light is significantly lower than the reflectance of yellow light. In this way, by designing the reflective film 3 so that the reflectance of light having a long wavelength is high, for example, a reflective film in which the reflectance of green light to red light is higher than that of blue light is formed. Yes.
  • the chromaticity of the light emitted from the light emitting element 100 to the outside can be adjusted from the yellow side to the blue side (direction in which the chromaticity decreases).
  • the adjustment of chromaticity in this case is realized not by the wavelength conversion efficiency by the phosphor but by the loss of the long wavelength component.
  • the refractive index of the reflective film 3 is changed to the phosphor-containing resin layer (resin portion) 2 as in Example 1.
  • the reflective film 3 may be formed on the surface of the phosphor-containing resin layer (resin portion) 2, for example, with a refractive index greater than the refractive index of the phosphor-containing resin layer (resin portion) 2.
  • Patent Document 4 discloses an LED light source in which the refractive index of the transparent thin film is smaller than the refractive index of the transparent resin in the sealing material. Patent Document 4 discloses that the wavelength dependence of light transmission characteristics is confirmed, that is, the reflectance depends on the wavelength, but the film thickness disclosed in Patent Document 4 is about 300 nm. It is a thick film. For this reason, the technique disclosed in Patent Document 4 has a problem that the accuracy of film thickness control by film formation deteriorates.
  • Patent Document 4 since the difference in reflectance with respect to the confirmed wavelength is about 1%, there is a problem that the range of chromaticity that can be adjusted is small. Furthermore, since the refractive index of the resin is generally 1.4 to 1.8, and a substance having a refractive index smaller than this refractive index is very rare, the combination of the transparent thin film and the transparent resin However, there is no practical combination. Therefore, it is difficult to give wavelength dependency to the transmission characteristics of light passing through the transparent thin film.
  • the refractive index of the reflective film 3 is larger than the refractive index of the phosphor-containing resin layer (resin portion) 2, for example, even if the film thickness is several tens of nanometers, short wavelength light
  • the difference between the reflectance of (for example, blue light) and the reflectance of long-wavelength light (for example, yellow light) can be made significantly larger than about 1%.
  • the film thickness of the reflective film 3 is not limited to the film thickness used in the above embodiment. As described above, since the refractive index of the reflective film 3 is larger than the refractive index of the phosphor-containing resin layer (resin portion) 2 in the present invention, the film thickness can be made relatively thin. That is, it is not a thick film of about 300 nm like the film disclosed in Patent Document 4, but can be a relatively thin film.
  • the thickness of the reflective film 3 is not particularly limited, but is preferably 10 nm or more. Moreover, as an upper limit, it is preferable that it is 80 nm or less.
  • the reflectance of visible light having a wavelength of 435 nm or more and 480 nm or less is higher than the reflectance of visible light having a wavelength of 500 nm or more and 700 nm or less, more specifically, blue light (wavelength 435 nm or more and 480 nm or less) reflectivity of green light (wavelength of 500 nm or more and 560 nm or less), yellow green light (wavelength of 560 nm or more and 580 nm or less), yellow light (wavelength of 580 nm or more and 595 nm or less), orange light (wavelength of 595 nm or more and 605 nm or less) and
  • the configuration may be higher than the reflectance of red light (wavelength 605 nm or more and 700 nm or less).
  • the reflective film 3 may have a configuration in which the reflectance of visible light having a wavelength of 500 nm to 700 nm is higher than the reflectance of visible light having a wavelength of 435 nm to 480 nm.
  • the wavelength dependence of such light transmission characteristics of the reflective film 3, that is, the wavelength dependence of the reflectance can be adjusted by appropriately controlling the film thickness of the reflective film 3 in consideration of the influence of the interference described above. it can.
  • the relationship between the thickness of the reflective film 3, the wavelength of light incident on the reflective film 3, and the reflectance of the light of the reflective film 3 can be determined by a conventionally known matrix method.
  • the refractive index of the reflective film 3 is larger than the refractive index of the phosphor-containing resin layer (resin portion) 2.
  • the difference between the refractive index of the reflective film 3 and the refractive index of the phosphor-containing resin layer (resin portion) 2 is preferably 1 or more.
  • the reflective film 3 that is a single layer film is used. By using the wavelength dependence of the reflective film 3, the chromaticity of the emitted light can be optimized.
  • the refractive index of the transparent thin film is smaller than the refractive index of the transparent resin in the sealing material. In this case, although light emission from the sealing resin to the air is good, as described above, it is difficult to give wavelength dependency to the transmission characteristics of light passing through the transparent thin film.
  • FIG. 2 is a chromaticity diagram for explaining variation in chromaticity depending on the presence or absence of the reflective film 3 in the light emitting element 100 shown in FIG.
  • a plurality of LED elements 1 are provided inside the phosphor-containing resin layer (resin portion) 2 for the light-emitting element 100 that includes the phosphor-containing resin layer (resin portion) 2 and is not formed with the reflective film 3.
  • the chromaticity can be measured by a conventionally known method using a commonly used chromaticity meter.
  • the light before the formation of the reflective film 3 varies in chromaticity due to variations in the dispersion state of the phosphors dispersed in the phosphor-containing resin layer (resin part) 2. Is widespread.
  • the phosphor-containing resin layer (resin portion) 2 By forming the reflective film 3 having a controlled film thickness on the surface, blue light is reflected more strongly than green light to red light.
  • the surface of the phosphor-containing resin layer (resin portion) 2 refers to an outer surface in the light emitting direction among the surfaces of the phosphor-containing resin layer (resin portion) 2.
  • the reflected blue light returns to the phosphor-containing resin layer (resin portion) 2, undergoes wavelength conversion by the phosphor, and is emitted toward the reflection film 3. If the emitted light is yellow light, the light passes through the reflective film 3 and is emitted to the outside of the light emitting element 100.
  • the chromaticity is adjusted by forming the reflective film 3, the variation in chromaticity corresponding to the region shown in FIG. 2A is canceled out, and (b) of FIG. ),
  • the chromaticity of light emitted from the light emitting element 100 to the outside can be adjusted from the blue side to the yellow side (direction in which the chromaticity increases).
  • the number of wavelength conversions can be increased by the reflective film 3
  • the amount of the phosphor present in the phosphor-containing resin layer (resin portion) 2 can be reduced, and the cost can be reduced. Play.
  • the reflective film 3 contains an inorganic oxide.
  • the inorganic oxide is preferably, for example, titanium oxide or zinc oxide. Titanium oxide or zinc oxide is an inexpensive material having a refractive index one or more larger than that of a silicone resin preferable as a resin contained in the phosphor-containing resin layer (resin portion) 2, and is formed by a simple process. This is preferable because it is possible.
  • the titanium oxide is not particularly limited, but is preferably one or more compounds selected from the group consisting of TiO 2 , TiO, and Ti 3 O 5 .
  • the effect that the weather resistance of the light emitting element 100 can be improved by the reflective film 3 containing an inorganic oxide is also exhibited.
  • the inorganic oxide when titanium oxide or zinc oxide is used as the inorganic oxide, and a silicone resin is used as the resin contained in the phosphor-containing resin layer (resin portion) 2, relatively strong —Ti—O—Si— And the like, the adhesion between the silicone resin and the inorganic oxide is increased, and the adhesion between the reflective film 3 and the phosphor-containing resin layer (resin portion) 2 can be improved. Play.
  • the light emitting device 100 having good adhesion between the reflective film 3 and the phosphor-containing resin layer (resin portion) 2 and excellent weather resistance.
  • the reflective film 3 contains an inorganic oxide
  • the reflective film 3 can be a dielectric film having a photocatalytic action.
  • the light emitting device 100 according to the present invention can exhibit effects such as an antifouling effect, an antifogging effect, an antibacterial effect, an air purification effect, and a water purification effect.
  • the light emitting device 100 exhibits antifouling and antifogging effects, so that the intensity and brightness of light emitted from the light emitting device 100 can be kept constant, and the light emitting device 100 can be used. The period can be lengthened.
  • the light emitting device 100 according to the present invention has an antibacterial effect, an air purification effect, and a water purification effect, and thus has a more useful effect on the effect of stably emitting white light having a desired chromaticity. Will be added. Therefore, the commercial value of the light emitting device 100 according to the present invention can be further improved.
  • the preferred content of the inorganic oxide in the reflective film 3 varies depending on the physical properties of the inorganic oxide contained in the reflective film 3, the amount of wavelength component to be adjusted, the wavelength of light incident on the reflective film 3, and the like. I can't say that.
  • the reflective film 3 may be made of the above inorganic oxide.
  • the reflective film 3 in the present invention is preferably produced using a vapor deposition method.
  • a vapor deposition method By using the vapor deposition method, it is easy to precisely adjust the thickness of the reflective film 3.
  • the film can be easily formed.
  • a reflective film having a desired film thickness can be formed with high accuracy by a simple film formation method, and the chromaticity can be adjusted according to the film thickness. it can.
  • the vapor deposition method is also referred to as vapor deposition, and refers to a technique for growing a thin film on the surface of a material by making the material in a gas (vapor phase) state.
  • the vapor deposition method is not particularly limited, and any of physical vapor deposition (Physical Vapor Deposition; PVD) and chemical vapor deposition (Chemical Vapor Deposition; CVD) can be used.
  • PVD Physical Vapor Deposition
  • CVD chemical vapor deposition
  • Physical vapor deposition is not particularly limited, and sputtering, vacuum vapor deposition, molecular beam epitaxy, ion plating, laser deposition, and the like can be used. Among these, sputtering can be particularly preferably used because simple and highly accurate film formation can be performed.
  • the chemical vapor deposition is not particularly limited, and thermal CVD method, photo CVD method, plasma CVD method, atmospheric pressure CVD (AP-CVD), low pressure CVD (LP-CVD), metal organic chemical vapor deposition method, etc. Can be used. Chemical vapor deposition can be preferably used because it has a high film forming speed, can increase the treatment area, and can evenly form a film even on an uneven surface.
  • concentration of the fluorescent substance in the said fluorescent substance containing resin layer (resin part) 2 is not specifically limited, For example, the density
  • the vicinity region of the LED element 1 refers to the inner surface of the reflective film 3 from any point on the outer surface of the LED element 1 ( When a straight line is drawn to the surface of the reflective film 3 up to the surface containing the phosphor-containing resin layer (resin portion 2), any one of the outer surfaces of the LED element 1 is on the straight line.
  • the distance to the point is a region formed by a point shorter than the distance to the inner surface of the reflective film 3.
  • the “region in the vicinity of the reflective film 3” is a line drawn from any point on the inner surface of the reflective film 3 to any point on the outer surface of the LED element 1.
  • the distance to any point on the inner surface of the reflective film 3 is a region formed by a point shorter than the distance to any point on the outer surface of the LED element 1.
  • the “outer surface” refers to an outer surface in the light emission direction as viewed from the LED element 1.
  • a part of the light a emitted from the LED element 1 is reflected by the reflective film 3 and separated into emitted light c and reflected light b.
  • the reflected light b reflected is scattered by the phosphor present in the phosphor-containing resin layer (resin portion) 2 (wavelength conversion is also performed).
  • the wavelength-converted light d is immediately emitted to the outside of the light emitting element 100, or part of the light is reflected by the reflective film 3 and undergoes further wavelength conversion by the phosphor. Then, the outgoing light c having the wavelength ⁇ and the light d having the wavelength ⁇ ′ are mixed, and white light having a desired chromaticity can be obtained.
  • the phosphor-containing resin layer (resin portion) 2 and the reflective film 3 are formed in a hemispherical shape on the mounting surface 5 of the substrate 4.
  • the form of the light emitting element is not limited to this.
  • a light-emitting element that takes a form different from that of the first embodiment will be described.
  • FIG. 3 is a schematic cross-sectional structure diagram of a light emitting device 101 according to the second embodiment of the present invention.
  • the reflection frame 6 is disposed on the mounting surface 5 of the substrate 4.
  • the reflection frame 6 is used for efficiently irradiating the reflection film 3 with light emitted from the LED element 1 or the phosphor, and one having a high surface reflectance such as resin, ceramic, or metal material is used.
  • the light beam emitted from the LED element 1 in the lateral direction can be emitted in the direction of the reflective film 3 by being reflected by the reflection frame 6.
  • the reflection frame 6 may be formed on the mounting surface 5 as a separate body from the substrate 4 or may be integrally formed with the substrate 4.
  • a phosphor-containing resin layer (resin part) 2 is formed on the outer periphery of the LED element 1.
  • a reflective film 3 is formed across the surface of the phosphor-containing resin layer (resin portion) 2 and the reflective frame 6.
  • the reflective film 3 is formed on the surface of the phosphor-containing resin layer (resin portion) 2, thereby causing wavelength dependence in the transmission characteristics of the emitted light emitted from the reflective film 3 to the outside.
  • a part of the light a emitted from the LED element 1 is reflected by the reflective film 3 and separated into reflected light b and emitted light c.
  • the reflected light b is wavelength-converted by the phosphor existing in the phosphor-containing resin layer (resin portion) 2 and is emitted from the light emitting element 101 as the emitted light d.
  • the light a is partly wavelength-converted by a phosphor after being emitted, and is emitted from the light emitting element 101 as emitted light d ′.
  • the light-emitting element 101 is different from the light-emitting element 100 according to the first embodiment in the shapes of the phosphor-containing resin layer (resin portion) 2 and the reflective film 3, but the reflective film 3 depends on the wavelength of light transmission characteristics as described above. Therefore, according to the chromaticity characteristics when there is no reflective film 3, by selecting the reflective film 3 that produces an appropriate wavelength dependence, the light mixed with the outgoing light c, d, d ' White light having desired chromaticity characteristics can be obtained.
  • concentration of the fluorescent substance in the said fluorescent substance containing resin layer (resin part) 2 is not specifically limited,
  • region of the said LED element 1 is a vicinity area
  • a method for manufacturing a light emitting device includes: a resin portion containing a phosphor that absorbs a part of light emitted from an LED device and converts the wavelength to emit light; A first step of sealing and sealing the LED element; a second step of measuring chromaticity characteristics of light emitted from the LED element through the resin portion; and the measured color According to the degree characteristics, the surface of the resin part is formed with a reflection film that contains an inorganic oxide, has a refractive index larger than the refractive index of the resin part, and has a wavelength dependency in light transmission characteristics. 3 steps.
  • the light emitting device 100 according to the first embodiment and the light emitting device 101 according to the second embodiment described above can be manufactured by the method.
  • FIG. 4 is a schematic diagram showing a schematic diagram of the steps of the method for producing a light emitting device according to the present invention.
  • 4A shows a method for manufacturing the light emitting device 100 according to the first embodiment
  • FIG. 4B shows a method for manufacturing the light emitting device manufacturing method 101 according to the second embodiment. .
  • the LED element 1 is mounted on the mounting surface 5 of the substrate 4, and (a), (2) and (b) in FIG. Wire bonding is performed using the wire 7 and a conventionally known wire bonding machine 8 as shown in (2).
  • the phosphor-containing resin layer (resin portion) 2 is placed on the mounting surface 5 so as to cover the LED element 1 using a dispenser (not shown).
  • the LED element 1 is sealed, and the phosphor-containing resin layer (resin portion) 2 is covered and molded by the mold 9.
  • the phosphor-containing resin layer (resin portion) 2 is applied to the recess formed by the mounting surface 5 and the reflection frame 6 using the dispenser 10 so as to cover the LED element 1. It inject
  • the chromaticity characteristics of light emitted from the LED element 1 through the phosphor-containing resin layer (resin portion) 2 are measured. Then, based on the measurement result, select the reflective film 3 that produces the wavelength dependency necessary to obtain the desired measurement result, the reflective film 3 on the surface of the phosphor-containing resin layer (resin part) 2, It forms and forms using a vapor-phase film-forming method (for example, sputtering, CVD).
  • a vapor-phase film-forming method for example, sputtering, CVD.
  • the phosphor-containing resin layer 2 is cured by irradiating with UV or the like, so that the light emitting element 100 or the light emitting element is obtained. 101 can be manufactured.
  • the light emitting element having a higher concentration in the vicinity of the LED element 1 than the concentration in the vicinity of the reflective film 3 is formed by the phosphor-containing resin layer (resin portion) 2.
  • the element 1 After the element 1 is sealed, it can be manufactured by adding a step of precipitating the phosphor contained in the phosphor-containing resin layer (resin portion) 2.
  • a silicone resin having a refractive index n of the phosphor-containing resin layer (resin part) of 1.41 For light-emitting elements having film thicknesses of 10 nm, 15 nm, and 80 nm, calculation was performed by a matrix method in which the incident angle of light was zero and the refractive index and phase film thickness were taken into consideration. In this calculation, the wavelength dependence of the refractive index (the chromatic dispersion of the material) and light absorption by the medium are not taken into consideration.
  • Fig. 5 shows the calculation results.
  • dielectric film refers to a reflective film
  • resin refers to a phosphor-containing resin layer (resin portion).
  • the horizontal axis represents the wavelength of light, and the vertical axis represents the reflectance of the reflective film.
  • the light-emitting element having a reflective film with a film thickness of 10 nm and 15 nm has a wavelength dependency such that the shorter wavelength light has higher reflectance and the longer wavelength light has lower reflectance. .
  • the reflectance with respect to light having a wavelength of 450 nm shows a minimum value, and thereafter, the reflectance increases as the wavelength increases.
  • the reflective film containing the inorganic oxide has a refractive index larger than that of the phosphor-containing resin layer (resin portion), and then the reflective film is adjusted to adjust the reflection film thickness. It shows that the wavelength dependence of the rate can be controlled.
  • the light emitting element in which the refractive index n ′ of the reflective film is smaller than the refractive index n of the resin portion did not show the wavelength dependency of the reflectance.
  • the light-emitting elements 100 and 101 include the LED element 1 and a phosphor that absorbs part of the light emitted from the LED element 1 and converts the wavelength to emit light, and seals the LED element.
  • the thickness of the reflective film 3 is made relatively thin, and in the visible light region.
  • the difference between the reflectance of short wavelength light (for example, blue light) and the reflectance of long wavelength light (for example, yellow light) can be increased.
  • the wavelength dependence of the transmission characteristic of the emitted light can be controlled, and white light having a desired chromaticity characteristic can be obtained.
  • the light emitting elements 100 and 101 with small variations in chromaticity. Moreover, according to the said structure, since the frequency
  • the reflective film 3 in the first aspect is preferably a single-layer film manufactured using a vapor deposition method.
  • the reflective film 3 having a desired film thickness can be formed with high accuracy by an easy film forming method, and the chromaticity can be adjusted according to the film thickness. Moreover, according to the said structure, the light emitting elements 100 and 101 can be obtained efficiently and at low cost.
  • the vapor deposition method is preferably sputtering or chemical vapor deposition.
  • the film thickness can be controlled with high accuracy regardless of the unevenness of the resin portion.
  • the inorganic oxide is preferably a titanium oxide or zinc oxide
  • the resin contained in the resin portion is preferably a silicone resin.
  • the refractive index of the reflecting film 3 can be made 1 or more larger than the refractive index of the resin part (phosphor containing resin layer 2), and it is manufactured by a simple process using an inexpensive material.
  • the adhesion between the reflective film 3 and the resin portion (phosphor-containing resin layer 2) can be improved. .
  • the reflective film 3 since the reflective film 3 has a photocatalytic action, it exhibits an antifouling effect, an antifogging effect, an antibacterial effect, an air purification effect, a water purification effect, and the like.
  • the light emitting element 100 that can emit white light having desired chromaticity characteristics, has excellent reflection film adhesion, and exhibits various useful effects. There is an effect.
  • the titanium oxide is preferably one or more compounds selected from the group consisting of TiO 2 , TiO, and Ti 3 O 5. .
  • the difference between the refractive index of the reflective film 3 and the refractive index of the resin portion (phosphor-containing resin layer 2) is preferably 1 or more.
  • the chromaticity adjustment of the emitted light is performed using the reflective film 3 that is a single layer film, based on the fact that the reflective film 3 causes the wavelength dependence of the transmission characteristics of the emitted light. There is an effect that can be easily performed.
  • the reflective film 3 preferably has a thickness of 10 nm to 80 nm.
  • the difference between the reflectance of short-wavelength light and the reflectance of long-wavelength light can be increased in a visible light range with a relatively thin film thickness.
  • the manufacturing method of the light emitting elements 100 and 101 according to the aspect 8 of the present invention includes a resin part (phosphor-containing resin) containing a phosphor that absorbs part of the light emitted from the LED element 1 and converts the wavelength to emit light.
  • the layer 2) is formed so as to cover the LED element 1 mounted on the mounting surface 5 of the substrate 4, and the LED element 1 is sealed.
  • On the surface of the resin part (phosphor-containing resin layer 2) according to the second step of measuring the chromaticity characteristics of light emitted through the body-containing resin layer 2) and the measured chromaticity characteristics.
  • it contains an inorganic oxide, has a refractive index greater than the refractive index of the resin part, and is formed on the surface of the resin part.
  • a reflective film having a desired film thickness can be formed by a simple process according to the measured chromaticity characteristics.
  • the reflective film 3 that causes the wavelength dependency of the light transmission characteristics is formed, variation in chromaticity of light emitted from the light emitting elements 100 and 101 can be effectively suppressed, and desired chromaticity characteristics can be suppressed.
  • the light-emitting elements 100 and 101 capable of emitting white light having the above can be manufactured.
  • the light emitting elements 100 and 101 with improved quality can be manufactured.
  • the present invention can be suitably used in the field related to a light emitting element combined with a phosphor. Further, it can be widely used in the fields of various electric devices such as a mobile phone including a light emitting element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

A light emitting element (100) is provided with: an LED element (1); a resin section, which contains phosphor, and which seals the LED element, said phosphor absorbing a part of light emitted from the LED element, performing wavelength conversion, and emitting the light; and a reflecting film (3), which contains an inorganic oxide, and which is formed on the surface of the resin section. The reflecting film has wavelength dependence in light transmission characteristics, and a refractive index of the reflecting film is larger than that of the resin section. As a result, the light emitting element capable of efficiently outputting white light having desired chromatic characteristics is provided.

Description

発光素子Light emitting element
 本発明は、発光素子に関する。より具体的には、高い光取り出し効率で、所望の色度に調整された白色光を出射可能な発光素子に関する。 The present invention relates to a light emitting element. More specifically, the present invention relates to a light emitting element that can emit white light adjusted to a desired chromaticity with high light extraction efficiency.
 半導体発光素子を用いた白色発光素子は、次世代の一般照明や液晶バックライトなどの電球、蛍光管および冷陰極管のような管球市場への応用が期待されている。このような白色発光素子は、蛍光体を含有する樹脂等により発光ダイオードチップを被覆したものであり、発光ダイオードチップからの光と、発光ダイオードチップからの光により励起された蛍光体からの光とによって白色光を得るものである。 White light emitting devices using semiconductor light emitting devices are expected to be applied to the next generation of general lighting and bulbs such as liquid crystal backlights, and tube markets such as fluorescent tubes and cold cathode tubes. Such a white light emitting element is obtained by coating a light emitting diode chip with a resin containing phosphor, etc., and light from a phosphor excited by light from the light emitting diode chip and light from the light emitting diode chip. To obtain white light.
 近年、白色発光素子に用いられる青色発光ダイオードや蛍光体などの技術開発による個々の白色発光素子の性能向上に伴い、蛍光灯や冷陰極管などの発光効率を凌ぐ白色発光素子が商品化されつつある。 In recent years, with the improvement in performance of individual white light-emitting elements due to the development of technologies such as blue light-emitting diodes and phosphors used in white light-emitting elements, white light-emitting elements that surpass luminous efficiency such as fluorescent lamps and cold cathode tubes are being commercialized. is there.
 しかしながら、これらの白色発光素子は、蛍光灯や冷陰極管などの色度のばらつきと比較すると、未だ色度のばらつきが大きいため、蛍光灯や冷陰極管程度まで色度のばらつきを低減することが要求されている。そこで、色度のばらつきを低減させるための構造が種々提案されている(特許文献1~4)。 However, these white light emitting elements still have large chromaticity variations compared to chromaticity variations such as fluorescent lamps and cold cathode fluorescent lamps. Is required. Therefore, various structures for reducing variations in chromaticity have been proposed (Patent Documents 1 to 4).
 特許文献1には、複数のLEDチップを用い、各LEDチップの色度の組合せを所定の組合せにすることによって色度の精度を向上させる構造が開示されている。しかしながら、当該構造では、モジュール状態にした場合に、各LEDチップの蛍光体量のばらつきなどによって、色度のばらつきを生じてしまう。 Patent Document 1 discloses a structure that improves the accuracy of chromaticity by using a plurality of LED chips and making the combination of chromaticity of each LED chip a predetermined combination. However, in this structure, when a module is used, chromaticity variation occurs due to variations in the amount of phosphor of each LED chip.
 そのため、特許文献2~4には、モジュール化された状態で別工程にて調色する技術が開示されている。 Therefore, Patent Documents 2 to 4 disclose techniques for color matching in a separate process in a modularized state.
 特許文献2には、第1の蛍光体を含有する蛍光体含有樹脂層よりも光出射方向に向かって外層に設けられた、第2の蛍光体を含有する上記色度調整用蛍光体層がドット状に形成されている構成が開示されており、上記色度調整用蛍光体層によって色を微調整することが開示されている。 In Patent Document 2, the phosphor layer for chromaticity adjustment containing the second phosphor provided in the outer layer in the light emitting direction than the phosphor-containing resin layer containing the first phosphor. A configuration formed in a dot shape is disclosed, and it is disclosed that the color is finely adjusted by the phosphor layer for chromaticity adjustment.
 特許文献3には、蛍光体を含有し、発光ダイオードチップを被覆する封止樹脂部の表面の少なくとも一部に光散乱部を形成した発光素子が開示されており、上記光散乱部を配置することによって蛍光体による量子変換の効率を向上させることが開示されている。 Patent Document 3 discloses a light-emitting element containing a phosphor and having a light scattering portion formed on at least a part of the surface of a sealing resin portion covering a light-emitting diode chip, and the light scattering portion is disposed therein. Thus, it is disclosed that the efficiency of quantum conversion by a phosphor is improved.
 特許文献4には、LED素子と、透明樹脂内に蛍光体を含む封止材とを有し、当該封止材が上記LED素子の周辺部に配置され、上記封止材の表面に、上記封止材の屈折率とは異なる屈折率を備える透明薄膜を有するLED光源が開示されている。 Patent Document 4 has an LED element and a sealing material containing a phosphor in a transparent resin, and the sealing material is disposed in the periphery of the LED element, and the surface of the sealing material An LED light source having a transparent thin film with a refractive index different from the refractive index of the encapsulant is disclosed.
日本国公開特許公報「特開2011-3594号公報(2011年1月6日公開)」Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2011-3594 (January 6, 2011)” 日本国公開特許公報「特開2010-186968号公報(2010年8月26日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2010-186968 (Released on August 26, 2010)” 日本国公開特許公報「特開2009-130301号公報(2009年6月11日公開)」Japanese Patent Publication “JP 2009-130301 A” (published on June 11, 2009) 日本国公開特許公報「特開2010-16029号公報(2010年1月21日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2010-16029 (published on Jan. 21, 2010)”
 しかしながら、特許文献2に開示の技術は、上記色度調整用蛍光体層をドット状に形成するプロセスを要するため、上記色度調整用蛍光体層を精度良く構成することが困難である。そのため、実際上、色の微調整を行うことは困難であるという問題がある。 However, since the technique disclosed in Patent Document 2 requires a process of forming the chromaticity adjusting phosphor layer in a dot shape, it is difficult to accurately configure the chromaticity adjusting phosphor layer. Therefore, there is a problem that it is difficult to finely adjust the color in practice.
 一方、蛍光体層を簡単に、かつ、精度良く構成できる方法としては、特許文献3および4に開示された方法がある。 On the other hand, methods disclosed in Patent Documents 3 and 4 can be used to easily and accurately construct the phosphor layer.
 しかしながら、特許文献3に開示の方法では、蛍光体から放射された蛍光が、光散乱部および他の蛍光体によって散乱され、多重散乱による損失となってしまう割合が多くなるため、光の取り出し効率が低下してしまうという問題がある。 However, in the method disclosed in Patent Document 3, the ratio of the fluorescence emitted from the phosphor being scattered by the light scattering portion and other phosphors, resulting in a loss due to multiple scattering, increases the light extraction efficiency. There is a problem that will decrease.
 また、特許文献4に開示の方法において、透明薄膜の屈折率が樹脂の屈折率より小さいこと、または透明薄膜が多層膜であることが開示されている。透明薄膜の屈折率が樹脂の屈折率よりも小さい場合、樹脂から空気への光出射が良好となる。 In the method disclosed in Patent Document 4, it is disclosed that the refractive index of the transparent thin film is smaller than the refractive index of the resin, or that the transparent thin film is a multilayer film. When the refractive index of a transparent thin film is smaller than the refractive index of resin, the light emission from resin to air becomes favorable.
 しかし、一般的な樹脂の屈折率は1.4~1.8であり、この範囲よりも小さい屈折率を有する物質は極めて稀であるため、透明薄膜と樹脂との組合せについても、実用的な組み合わせは存在しない。そのため、透明薄膜を通過する光の透過特性に波長依存性を与えることが困難であるという問題がある。 However, since the refractive index of a general resin is 1.4 to 1.8, and a substance having a refractive index smaller than this range is very rare, the combination of a transparent thin film and a resin is also practical. There is no combination. Therefore, there is a problem that it is difficult to give wavelength dependency to the transmission characteristics of light passing through the transparent thin film.
 また、透明薄膜が多層膜である場合、膜厚の制御が複雑であるという問題、および製造の工程数が増加するため、生産性が低下するという問題がある。 In addition, when the transparent thin film is a multilayer film, there are problems that the control of the film thickness is complicated and that the number of manufacturing steps increases, resulting in a decrease in productivity.
 本発明は上記の問題点に鑑みなされたものであり、その目的は、簡単な構造で、光利用効率を維持したまま、色度の微調整を行うことができ、所望の色度特性を有する白色光を出射可能な発光素子およびその製造方法を提供することにある。 The present invention has been made in view of the above-described problems, and has an object of being able to finely adjust chromaticity while maintaining light utilization efficiency with a simple structure and having desired chromaticity characteristics. An object of the present invention is to provide a light emitting device capable of emitting white light and a method for manufacturing the same.
 上記の課題を解決するために、本発明の一態様に係る発光素子は、LED素子と、当該LED素子からの発光の一部を吸収し、波長変換して発光する蛍光体を含有し、上記LED素子を封止する樹脂部と、無機酸化物を含有し、上記樹脂部の表面上に形成されている反射膜と、を備え、上記反射膜は、上記樹脂部の表面上に形成されていることによって、上記反射膜から外部に出射される出射光の透過特性に波長依存性を生じ、上記反射膜の屈折率が、上記樹脂部の屈折率よりも大きいことを特徴としている。 In order to solve the above-described problems, a light-emitting element according to one embodiment of the present invention includes an LED element and a phosphor that absorbs part of light emitted from the LED element and emits light by wavelength conversion. A resin part that seals the LED element; and a reflective film that contains an inorganic oxide and is formed on the surface of the resin part. The reflective film is formed on the surface of the resin part. Therefore, the transmission characteristic of the outgoing light emitted from the reflective film has a wavelength dependency, and the refractive index of the reflective film is larger than the refractive index of the resin portion.
 本発明の一態様にかかる発光素子は、所望の色度特性を有する白色光を、効率よく、低コストで得ることができるという効果を奏する。 The light-emitting element according to one embodiment of the present invention has an effect that white light having desired chromaticity characteristics can be obtained efficiently and at low cost.
本発明の第1の実施形態にかかる発光素子の概略断面構造図である。1 is a schematic sectional view of a light emitting device according to a first embodiment of the present invention. 本発明にかかる発光素子における、反射膜の有無による色度のばらつきを説明する色度図である。FIG. 6 is a chromaticity diagram illustrating variation in chromaticity depending on the presence or absence of a reflective film in the light emitting device according to the present invention. 本発明の第2の実施形態にかかる発光素子の概略断面構造図である。It is a schematic sectional structure figure of the light emitting element concerning the 2nd Embodiment of this invention. 本発明にかかる発光素子の製造方法の工程の概略を示す模式図である。It is a schematic diagram which shows the outline of the process of the manufacturing method of the light emitting element concerning this invention. 本発明の実施例における発光素子の波長依存性を測定した結果を示す図である。It is a figure which shows the result of having measured the wavelength dependence of the light emitting element in the Example of this invention. 本発明の比較例における発光素子の波長依存性を測定した結果を示す図である。It is a figure which shows the result of having measured the wavelength dependence of the light emitting element in the comparative example of this invention.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、同一の機能および作用を示す部材については同じ符号を付している。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意味する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected about the member which shows the same function and an effect | action. Unless otherwise specified, “A to B” representing a numerical range means “A or more (including A and greater than A) and B or less (including B and less than B)”.
 本発明にかかる発光素子は、LED素子と、当該LED素子からの発光の一部を吸収し、波長変換して発光する蛍光体と、当該蛍光体を含有し、上記LED素子を封止する樹脂部と、無機酸化物を含有し、上記樹脂部の表面上に形成されている反射膜と、を備え、上記反射膜は、上記樹脂部の表面上に形成されていることによって、上記反射膜から外部に出射される出射光の透過特性に波長依存性を生じ、上記反射膜の屈折率が、上記樹脂部の屈折率よりも大きい。 The light-emitting element according to the present invention includes an LED element, a phosphor that absorbs part of the light emitted from the LED element, converts the wavelength, and emits light, and a resin that contains the phosphor and seals the LED element. And a reflective film that contains an inorganic oxide and is formed on the surface of the resin part, and the reflective film is formed on the surface of the resin part, whereby the reflective film The wavelength dependence of the transmission characteristics of the outgoing light emitted from the outside to the outside occurs, and the refractive index of the reflective film is larger than the refractive index of the resin portion.
 <第1の実施形態>
 (本発明にかかる発光素子)
 本発明にかかる発光素子の第1の実施形態について、図1に基づいて説明する。図1は、第1の実施形態にかかる発光素子100の概略断面構造図である。
<First Embodiment>
(Light-emitting device according to the present invention)
A light emitting device according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic sectional view of a light emitting device 100 according to the first embodiment.
 図1に示すように、発光素子100は、LED素子1、蛍光体含有樹脂層2(本明細書中にて「樹脂部」ともいう)、反射膜3、基板4を備えている。 As shown in FIG. 1, the light emitting element 100 includes an LED element 1, a phosphor-containing resin layer 2 (also referred to as “resin portion” in the present specification), a reflective film 3, and a substrate 4.
 すなわち、第1の実施形態では、本発明にかかる発光素子100は、樹脂部がLED素子1の外周部に形成されている。そして、上記蛍光体含有樹脂層(樹脂部)2は、上記LED素子1からの発光の一部を吸収し、波長変換して発光する蛍光体を含有している。なお、上記「外周部」とは、LED素子1から見て光の出射方向に外側であることを意味する。 That is, in the first embodiment, the light emitting element 100 according to the present invention has the resin portion formed on the outer peripheral portion of the LED element 1. And the said fluorescent substance containing resin layer (resin part) 2 contains the fluorescent substance which absorbs a part of light emission from the said LED element 1, changes wavelength, and light-emits. The “outer peripheral part” means that the LED element 1 is outside in the light emission direction as viewed from the LED element 1.
 LED素子1は、シリコーン系の樹脂ペースト等によって基板5の実装面6に実装されている。基板5は、実装面の反射作用が高い材質のものが好ましく、例えばセラミック基板などが好適に用いられる。 The LED element 1 is mounted on the mounting surface 6 of the substrate 5 with a silicone-based resin paste or the like. The substrate 5 is preferably made of a material having a high reflective effect on the mounting surface, and for example, a ceramic substrate is preferably used.
 基板5には、実装面6にワイヤボンディング用の表面電極(図示せず)、裏面(LED素子1が実装されていない側の面)に外部の回路と接続するための裏面電極(図示せず)、内部に表面電極と裏面電極とを導通するスルーホール(図示せず)が備えられている。 On the substrate 5, a front surface electrode (not shown) for wire bonding is mounted on the mounting surface 6, and a back surface electrode (not shown) for connecting to an external circuit on the back surface (the surface on which the LED element 1 is not mounted). ), And a through hole (not shown) for conducting the front surface electrode and the back surface electrode is provided inside.
 LED素子1は、青色光(波長435nm以上480nm以下)を発光可能な素子であればよい。例えば、InGaNなどの窒化物系化合物半導体等を用いることができる。 The LED element 1 may be any element that can emit blue light (wavelength of 435 nm or more and 480 nm or less). For example, a nitride-based compound semiconductor such as InGaN can be used.
 LED素子1は、基板5の実装面6に搭載(ダイボンディング)されており、例えば金からなる図示しないワイヤによって基板5の表面電極と電気的に接続されている。これにより、基板5の裏面電極からLED素子1に電力が供給される。 The LED element 1 is mounted (die bonding) on the mounting surface 6 of the substrate 5 and is electrically connected to the surface electrode of the substrate 5 by a wire (not shown) made of, for example, gold. As a result, power is supplied to the LED element 1 from the back electrode of the substrate 5.
 LED素子1の数は1個であってもよいし、複数個であってもよい。LED素子1の数が複数個である場合、LED素子1は、所定の発光量を満たすような所定の位置に、例えば等間隔で配置されていればよい。 The number of the LED elements 1 may be one or plural. When the number of the LED elements 1 is plural, the LED elements 1 may be disposed at a predetermined position that satisfies a predetermined light emission amount, for example, at equal intervals.
 蛍光体含有樹脂層(樹脂部)2は、LED素子1を覆うように形成されており、LED素子1を封止している。蛍光体含有樹脂層(樹脂部)2は、蛍光体を含有する樹脂からなっている。当該樹脂は、透光性に優れるためシリコーン樹脂であることが好ましく、エポキシ樹脂やアクリル系樹脂等を用いることもできる。シリコーン樹脂は、耐熱性にも優れるため、特に好ましい。 The phosphor-containing resin layer (resin portion) 2 is formed so as to cover the LED element 1 and seals the LED element 1. The phosphor-containing resin layer (resin portion) 2 is made of a resin containing a phosphor. The resin is preferably a silicone resin because of its excellent translucency, and an epoxy resin, an acrylic resin, or the like can also be used. Silicone resins are particularly preferable because they are excellent in heat resistance.
 上記蛍光体は、LED素子1からの発光(青色光)の一部を吸収し、波長変換して黄色光を発光するものである。そのような蛍光体としては例えば、CaAlSiN:Eu、(Si・Al)(O・N):Eu、BOSE(Ba、O、Sr、Si、Eu)、SOSE(Sr、Ba、Si、O、Eu)や、YAG(Ce賦活イットリウム・アルミニウム・ガーネット)、αサイアロン((Ca)、Si、Al、O、N、Eu)、βサイアロン(Si、Al、O、N、Eu)などを好適に用いることができる。 The phosphor absorbs part of the light emitted from the LED element 1 (blue light), converts the wavelength, and emits yellow light. Examples of such phosphors include CaAlSiN 3 : Eu, (Si · Al) 6 (O · N) 8 : Eu, BOSE (Ba, O, Sr, Si, Eu), SOSE (Sr, Ba, Si, O, Eu), YAG (Ce activated yttrium aluminum garnet), α sialon ((Ca), Si, Al, O, N, Eu), β sialon (Si, Al, O, N, Eu), etc. It can be used suitably.
 (反射膜による色度の調整について)
 本発明における蛍光体含有樹脂層(樹脂部)2は、反射膜3を表面に備える。反射膜3は、上記蛍光体含有樹脂層(樹脂部)2の表面上に形成されることによって、反射膜3から外部に出射される出射光の透過特性(本明細書中にて「光透過特性」ともいう。)に波長依存性を生じる。「出射光の透過特性」とは、反射膜3がどのような波長の光を外部へ出射しやすく、どのような波長の光を反射しやすいかという、反射膜3の特性を表す。「出射光の透過特性に波長依存性を生じる」とは、特定の範囲の波長を有する光の反射率が、それ以外の範囲の波長を有する光の反射率よりも強くなることを意味する。なお、上記「外部」とは、発光素子1の外部をいう。すなわち、反射膜3よりも光の出射方向に外側の領域をいう。
(Regarding adjustment of chromaticity by reflecting film)
The phosphor-containing resin layer (resin portion) 2 in the present invention includes a reflective film 3 on the surface. The reflection film 3 is formed on the surface of the phosphor-containing resin layer (resin portion) 2 so that the transmission characteristics of the emitted light emitted from the reflection film 3 to the outside (in this specification, “light transmission” It is also referred to as “characteristic”.). “Transmission characteristics of emitted light” refers to the characteristics of the reflective film 3 such as what wavelength the reflective film 3 easily emits to the outside and what wavelength light easily reflects. “To produce wavelength dependency in the transmission characteristics of outgoing light” means that the reflectance of light having a wavelength in a specific range is stronger than the reflectance of light having a wavelength in other ranges. The “outside” refers to the outside of the light emitting element 1. That is, it refers to a region outside the reflective film 3 in the light emission direction.
 反射膜3は、屈折率が、蛍光体含有樹脂層(樹脂部)2の屈折率よりも大きいため、膜厚を比較的薄くした上で、短波長の光(例えば青色光)の反射率と、長波長の光(例えば黄色光)の反射率との差を大きくすること、すなわち、製膜による膜厚の精度を向上させた上で、当該差を数%程度にまで大きくすることができる。なお、本明細書中において、反射膜3の屈折率を「屈折率n´」、蛍光体含有樹脂層(樹脂部)2の屈折率を「屈折率n」とも称する。 Since the reflective film 3 has a refractive index larger than that of the phosphor-containing resin layer (resin portion) 2, the reflectance of short wavelength light (for example, blue light) can be reduced with a relatively thin film thickness. The difference between the reflectance of long-wavelength light (for example, yellow light) can be increased, that is, the thickness can be increased to several percent while the film thickness accuracy is improved. . In the present specification, the refractive index of the reflective film 3 is also referred to as “refractive index n ′”, and the refractive index of the phosphor-containing resin layer (resin portion) 2 is also referred to as “refractive index n”.
 そして、反射膜3の光透過特性の波長依存性は、反射膜3の屈折率と、蛍光体含有樹脂層(樹脂部)2の屈折率と、反射膜3の膜厚と、が関与する干渉の影響を受けるため、反射膜3の膜厚を調整することによって、上記光透過特性の波長依存性を制御し、所望の色度特性を有する白色光を得ることができる。 The wavelength dependence of the light transmission characteristics of the reflective film 3 is an interference involving the refractive index of the reflective film 3, the refractive index of the phosphor-containing resin layer (resin portion) 2, and the film thickness of the reflective film 3. Therefore, by adjusting the film thickness of the reflective film 3, the wavelength dependence of the light transmission characteristics can be controlled, and white light having a desired chromaticity characteristic can be obtained.
 例えば、後述する実施例1では、屈折率n´が2.5であるTiO、樹脂部の屈折率nが1.41であるシリコーン樹脂を用いている。このとき、反射膜3の膜厚が10nm、15nmである場合は、短波長の光ほど反射率が高く、長波長の光ほど反射率が低いという結果を示している。つまり、例えば青色光の反射率が、黄色光の反射率よりも高くなっている。 For example, in Example 1 described later, TiO 2 having a refractive index n ′ of 2.5 and a silicone resin having a refractive index n of the resin portion of 1.41 are used. At this time, when the thickness of the reflective film 3 is 10 nm and 15 nm, the result shows that the reflectance is higher as the light has a shorter wavelength and the reflectance is lower as the light has a longer wavelength. That is, for example, the reflectance of blue light is higher than the reflectance of yellow light.
 よって、反射膜3が形成されていない場合に、LED素子1から発光される青色光と、当該LED素子1からの発光の一部を吸収し、波長変換して発光された蛍光体からの黄色光とが混合された光が、白色光として所望の色度よりも青色がかっている場合は、実施例1のように、反射膜3の屈折率を蛍光体含有樹脂層(樹脂部)2の屈折率よりも大きくし、かつ、例えば、反射膜3の膜厚を10nmまたは15nmとした反射膜3を、蛍光体含有樹脂層(樹脂部)2の表面上に形成すればよい。 Therefore, when the reflecting film 3 is not formed, the blue light emitted from the LED element 1 and a part of the light emitted from the LED element 1 are absorbed, and the yellow from the phosphor emitted by wavelength conversion is absorbed. When the light mixed with the light is more blue than the desired chromaticity as white light, the refractive index of the reflective film 3 is set to be the same as that of the phosphor-containing resin layer (resin portion) 2 as in Example 1. The reflective film 3 having a refractive index larger than that of the reflective film 3 and having a thickness of 10 nm or 15 nm, for example, may be formed on the surface of the phosphor-containing resin layer (resin portion) 2.
 これによって、反射膜3を透過して発光素子100から出射される青色光が減少し、当該青色光は、蛍光体含有樹脂層2中に存在する蛍光体によって波長変換される。その結果、出射光中の黄色光の割合が増加するため、発光素子100から出射される光は、反射膜3がない場合と比較して黄色側にシフトした色度となる。 As a result, the blue light transmitted through the reflective film 3 and emitted from the light emitting element 100 is reduced, and the blue light is wavelength-converted by the phosphor existing in the phosphor-containing resin layer 2. As a result, since the ratio of yellow light in the emitted light increases, the light emitted from the light emitting element 100 has chromaticity shifted to the yellow side as compared with the case where the reflective film 3 is not provided.
 よって、出射光が白色光として規定の色度よりも青色がかっている出射光の色度を適正化し、青色光の出射を抑えることができるため、発光素子100の品質を向上させることができるとともに、青色光網膜障害を低減することができるという効果を奏する。 Therefore, since the chromaticity of the emitted light in which the emitted light is blue lighter than the prescribed chromaticity as white light can be optimized and the emission of the blue light can be suppressed, the quality of the light emitting element 100 can be improved. The blue light retinopathy can be reduced.
 一方、後述する実施例1において、反射膜3の膜厚が80nmの場合は、青色光の反射率が、黄色光の反射率よりも大幅に低くなっている。このように、反射膜3を、長波長を有する光の反射率が高くなるように設計することによって、例えば、緑色光~赤色光の反射率が青色光の反射率よりも高い反射膜を形成しうる。 On the other hand, in Example 1 described later, when the thickness of the reflective film 3 is 80 nm, the reflectance of blue light is significantly lower than the reflectance of yellow light. In this way, by designing the reflective film 3 so that the reflectance of light having a long wavelength is high, for example, a reflective film in which the reflectance of green light to red light is higher than that of blue light is formed. Yes.
 これによって、発光素子100から外部に出射される光の色度を、黄色側から青色側(色度が小さくなる方向)に調整することができる。この場合の色度の調整は、蛍光体による波長変換効率ではなく、長波長成分の損失によって実現される。 Thereby, the chromaticity of the light emitted from the light emitting element 100 to the outside can be adjusted from the yellow side to the blue side (direction in which the chromaticity decreases). The adjustment of chromaticity in this case is realized not by the wavelength conversion efficiency by the phosphor but by the loss of the long wavelength component.
 よって、上述の混合された光が、白色光として所望の色度よりも黄色がかっている場合は、実施例1のように、反射膜3の屈折率を蛍光体含有樹脂層(樹脂部)2の屈折率よりも大きくし、かつ、例えば、反射膜3の膜厚を80nmとした反射膜3を、蛍光体含有樹脂層(樹脂部)2の表面上に形成すればよい。 Therefore, when the above mixed light is more yellow than the desired chromaticity as white light, the refractive index of the reflective film 3 is changed to the phosphor-containing resin layer (resin portion) 2 as in Example 1. The reflective film 3 may be formed on the surface of the phosphor-containing resin layer (resin portion) 2, for example, with a refractive index greater than the refractive index of the phosphor-containing resin layer (resin portion) 2.
 これによって、反射膜3を透過して発光素子100から出射される黄色光が減少する。その結果、出射光中の青色光の割合が増加するため、発光素子100から出射される光は、反射膜3がない場合と比較して青色側にシフトした色度となる。 Thereby, yellow light transmitted through the reflective film 3 and emitted from the light emitting element 100 is reduced. As a result, since the proportion of blue light in the emitted light increases, the light emitted from the light emitting element 100 has a chromaticity shifted to the blue side as compared with the case where the reflective film 3 is not provided.
 ここで、特許文献4において、透明薄膜の屈折率が、封止材内の透明樹脂の屈折率よりも小さいLED光源が開示されている。特許文献4において、光透過特性の波長依存性が確認されたこと、すなわち反射率が波長に依存していることが開示されているが、特許文献4で開示されている膜厚は300nm程度の厚い膜である。そのため、特許文献4に開示の技術では、製膜による膜厚制御の精度が悪化するという問題がある。 Here, Patent Document 4 discloses an LED light source in which the refractive index of the transparent thin film is smaller than the refractive index of the transparent resin in the sealing material. Patent Document 4 discloses that the wavelength dependence of light transmission characteristics is confirmed, that is, the reflectance depends on the wavelength, but the film thickness disclosed in Patent Document 4 is about 300 nm. It is a thick film. For this reason, the technique disclosed in Patent Document 4 has a problem that the accuracy of film thickness control by film formation deteriorates.
 また、特許文献4では、確認されている波長に対する反射率の差は1%程度であるため、調整できる色度の範囲が小さいという問題がある。さらに、樹脂の屈折率は、一般的に1.4~1.8であり、この屈折率よりも小さな屈折率を有する物質は極めて稀であるため、上記透明薄膜と上記透明樹脂との組み合わせについても、実用的な組み合わせは存在しない。そのため、透明薄膜を通過する光の透過特性に波長依存性を与えることが困難である。 In Patent Document 4, since the difference in reflectance with respect to the confirmed wavelength is about 1%, there is a problem that the range of chromaticity that can be adjusted is small. Furthermore, since the refractive index of the resin is generally 1.4 to 1.8, and a substance having a refractive index smaller than this refractive index is very rare, the combination of the transparent thin film and the transparent resin However, there is no practical combination. Therefore, it is difficult to give wavelength dependency to the transmission characteristics of light passing through the transparent thin film.
 一方、上述のように、反射膜3は、屈折率が、蛍光体含有樹脂層(樹脂部)2の屈折率よりも大きいため、例えば膜厚が数十nmであっても、短波長の光(例えば青色光)の反射率と、長波長の光(例えば黄色光)の反射率との差を上記1%程度よりも大幅に大きくすることができる。 On the other hand, as described above, since the refractive index of the reflective film 3 is larger than the refractive index of the phosphor-containing resin layer (resin portion) 2, for example, even if the film thickness is several tens of nanometers, short wavelength light The difference between the reflectance of (for example, blue light) and the reflectance of long-wavelength light (for example, yellow light) can be made significantly larger than about 1%.
 ただし、反射膜3の膜厚は上記実施例で用いた膜厚に限定されるものではない。上述のように、本発明では反射膜3の屈折率が、蛍光体含有樹脂層(樹脂部)2の屈折率よりも大きいため、膜厚を比較的薄くすることができる。すなわち、特許文献4に開示された膜のような、300nm程度の厚い膜ではなく、比較的薄い膜とすることができる。反射膜3の膜厚としては、特に限定されるものではないが、10nm以上であることが好ましい。また、上限値としては、80nm以下であることが好ましい。 However, the film thickness of the reflective film 3 is not limited to the film thickness used in the above embodiment. As described above, since the refractive index of the reflective film 3 is larger than the refractive index of the phosphor-containing resin layer (resin portion) 2 in the present invention, the film thickness can be made relatively thin. That is, it is not a thick film of about 300 nm like the film disclosed in Patent Document 4, but can be a relatively thin film. The thickness of the reflective film 3 is not particularly limited, but is preferably 10 nm or more. Moreover, as an upper limit, it is preferable that it is 80 nm or less.
 本発明における反射膜3は、435nm以上480nm以下の波長を有する可視光の反射率が、500nm以上700nm以下の波長を有する可視光の反射率よりも高く、より具体的には、青色光(波長435nm以上480nm以下)の反射率が、緑色光(波長500nm以上560nm以下)、黄緑光(波長560nm以上580nm以下)、黄色光(波長580nm以上595nm以下)、橙色光(波長595nm以上605nm以下)および赤色光(波長605nm以上700nm以下)の反射率よりも高い構成であってもよい。 In the reflective film 3 of the present invention, the reflectance of visible light having a wavelength of 435 nm or more and 480 nm or less is higher than the reflectance of visible light having a wavelength of 500 nm or more and 700 nm or less, more specifically, blue light (wavelength 435 nm or more and 480 nm or less) reflectivity of green light (wavelength of 500 nm or more and 560 nm or less), yellow green light (wavelength of 560 nm or more and 580 nm or less), yellow light (wavelength of 580 nm or more and 595 nm or less), orange light (wavelength of 595 nm or more and 605 nm or less) and The configuration may be higher than the reflectance of red light (wavelength 605 nm or more and 700 nm or less).
 また、反射膜3は、500nm以上700nm以下の波長を有する可視光の反射率が、435nm以上480nm以下の波長を有する可視光の反射率よりも高い構成であってもよい。 Further, the reflective film 3 may have a configuration in which the reflectance of visible light having a wavelength of 500 nm to 700 nm is higher than the reflectance of visible light having a wavelength of 435 nm to 480 nm.
 反射膜3のこのような光透過特性の波長依存性、すなわち反射率の波長依存性は、上述の干渉の影響を考慮しつつ、反射膜3の膜厚を適宜制御することによって調整することができる。反射膜3の膜厚、反射膜3に入射する光の波長、および反射膜3の当該光の反射率の関係は、従来公知のマトリクス法によって決定することができる。 The wavelength dependence of such light transmission characteristics of the reflective film 3, that is, the wavelength dependence of the reflectance can be adjusted by appropriately controlling the film thickness of the reflective film 3 in consideration of the influence of the interference described above. it can. The relationship between the thickness of the reflective film 3, the wavelength of light incident on the reflective film 3, and the reflectance of the light of the reflective film 3 can be determined by a conventionally known matrix method.
 上述のように、反射膜3の屈折率は、蛍光体含有樹脂層(樹脂部)2の屈折率よりも大きい。このとき、反射膜3の屈折率と、蛍光体含有樹脂層(樹脂部)2の屈折率との差は1以上であることが好ましい。 As described above, the refractive index of the reflective film 3 is larger than the refractive index of the phosphor-containing resin layer (resin portion) 2. At this time, the difference between the refractive index of the reflective film 3 and the refractive index of the phosphor-containing resin layer (resin portion) 2 is preferably 1 or more.
 後述する実施例に示すように、反射膜3の屈折率と、蛍光体含有樹脂層(樹脂部)2の屈折率との差が1程度あれば、単層膜である反射膜3を用い、反射膜3の波長依存性を利用することによって、出射光の色度を適正化することができる。 If the difference between the refractive index of the reflective film 3 and the refractive index of the phosphor-containing resin layer (resin part) 2 is about 1 as shown in the examples described later, the reflective film 3 that is a single layer film is used. By using the wavelength dependence of the reflective film 3, the chromaticity of the emitted light can be optimized.
 一方、特許文献4に開示のLED光源では、透明薄膜の屈折率が、封止材内の透明樹脂の屈折率よりも小さくなっている。この場合、封止樹脂から空気への光出射が良好となるものの、上述のように、透明薄膜を通過する光の透過特性に波長依存性を与えることは困難である。 On the other hand, in the LED light source disclosed in Patent Document 4, the refractive index of the transparent thin film is smaller than the refractive index of the transparent resin in the sealing material. In this case, although light emission from the sealing resin to the air is good, as described above, it is difficult to give wavelength dependency to the transmission characteristics of light passing through the transparent thin film.
 図2は、図1に示す発光素子100における、反射膜3の有無による色度のばらつきを説明する色度図である。ここで、蛍光体含有樹脂層(樹脂部)2を備え、反射膜3が形成されていない状態の発光素子100につき、蛍光体含有樹脂層(樹脂部)2の内部に複数のLED素子1が封止されている場合に、全てのLED素子1の出射光の色度を測定した結果が図2の(a)に示されているとする。なお、色度は、一般に用いられている色度計を用いて、従来公知の方法により測定を行うことができる。 FIG. 2 is a chromaticity diagram for explaining variation in chromaticity depending on the presence or absence of the reflective film 3 in the light emitting element 100 shown in FIG. Here, a plurality of LED elements 1 are provided inside the phosphor-containing resin layer (resin portion) 2 for the light-emitting element 100 that includes the phosphor-containing resin layer (resin portion) 2 and is not formed with the reflective film 3. Assume that the result of measuring the chromaticity of the emitted light of all the LED elements 1 when sealed is shown in FIG. The chromaticity can be measured by a conventionally known method using a commonly used chromaticity meter.
 図2の(a)に示すように、反射膜3を形成する前の光は、蛍光体含有樹脂層(樹脂部)2中に分散された蛍光体の分散状態のばらつきにより、色度のばらつきが広範囲に渡っている。 As shown in FIG. 2A, the light before the formation of the reflective film 3 varies in chromaticity due to variations in the dispersion state of the phosphors dispersed in the phosphor-containing resin layer (resin part) 2. Is widespread.
 ここで、例えば発光素子100の出射光の色度をx方向、y方向ともに増加させたい場合は、黄色方向に色度を変化させる必要があるため、蛍光体含有樹脂層(樹脂部)2の表面に、膜厚を制御した反射膜3を形成することによって、青色光が緑色光~赤色光よりも強く反射される。なお、本明細書において蛍光体含有樹脂層(樹脂部)2の表面とは、蛍光体含有樹脂層(樹脂部)2が有する面のうち、光の出射方向に向かって外側の面をいう。 Here, for example, when it is desired to increase the chromaticity of the emitted light of the light emitting element 100 in both the x direction and the y direction, it is necessary to change the chromaticity in the yellow direction, so that the phosphor-containing resin layer (resin portion) 2 By forming the reflective film 3 having a controlled film thickness on the surface, blue light is reflected more strongly than green light to red light. In the present specification, the surface of the phosphor-containing resin layer (resin portion) 2 refers to an outer surface in the light emitting direction among the surfaces of the phosphor-containing resin layer (resin portion) 2.
 反射された青色光は、蛍光体含有樹脂層(樹脂部)2に戻り、当該蛍光体によって波長変換を受け、反射膜3に向けて出射される。当該出射された光が黄色光となっていれば、当該光は反射膜3を透過して発光素子100の外部へ出射される。 The reflected blue light returns to the phosphor-containing resin layer (resin portion) 2, undergoes wavelength conversion by the phosphor, and is emitted toward the reflection film 3. If the emitted light is yellow light, the light passes through the reflective film 3 and is emitted to the outside of the light emitting element 100.
 一方、上記波長変換を受け、反射膜3に向けて出射された光がなお青色にシフトしている場合は、当該光に含有されている青色光が反射膜3によって反射され、再び上記蛍光体による波長変換を受ける。波長変換回数を増やし、このような動作を繰り返すことによって、少ない蛍光体量であっても光の損失を生じさせることなく、最終的には目的の色度の光を得ることができる。 On the other hand, when the light that has been subjected to the wavelength conversion and is emitted toward the reflective film 3 is still shifted to blue, the blue light contained in the light is reflected by the reflective film 3 and again the phosphor. Undergoes wavelength conversion. By repeating the above operation by increasing the number of wavelength conversions, it is possible to finally obtain light of the desired chromaticity without causing light loss even with a small amount of phosphor.
 このように、反射膜3が形成されていることによって色度が調整されるため、図2の(a)中に示す領域の部分に相当する色度のばらつきが打ち消され、図2の(b)に示すように、発光素子100から外部に出射される光の色度を、青色側から黄色側(色度が大きくなる方向)に調整することができる。 As described above, since the chromaticity is adjusted by forming the reflective film 3, the variation in chromaticity corresponding to the region shown in FIG. 2A is canceled out, and (b) of FIG. ), The chromaticity of light emitted from the light emitting element 100 to the outside can be adjusted from the blue side to the yellow side (direction in which the chromaticity increases).
 さらに、反射膜3によって波長変換回数が増加することができるため、蛍光体含有樹脂層(樹脂部)2に存在する蛍光体量を低減させることができ、コストを低減することができるという効果を奏する。 Furthermore, since the number of wavelength conversions can be increased by the reflective film 3, the amount of the phosphor present in the phosphor-containing resin layer (resin portion) 2 can be reduced, and the cost can be reduced. Play.
 反射膜3は、無機酸化物を含有する。無機酸化物としては、例えばチタンの酸化物または酸化亜鉛であることが好ましい。チタンの酸化物または酸化亜鉛は、蛍光体含有樹脂層(樹脂部)2に含有される樹脂として好ましいシリコーン樹脂より屈折率が1以上大きく、かつ、安価な材料であり、簡単なプロセスにより製膜できるため好ましい。また、上記チタンの酸化物としては、特に限定されるものではないが、TiO、TiO、およびTiからなる群より選ばれる1以上の化合物であることが好ましい。 The reflective film 3 contains an inorganic oxide. The inorganic oxide is preferably, for example, titanium oxide or zinc oxide. Titanium oxide or zinc oxide is an inexpensive material having a refractive index one or more larger than that of a silicone resin preferable as a resin contained in the phosphor-containing resin layer (resin portion) 2, and is formed by a simple process. This is preferable because it is possible. The titanium oxide is not particularly limited, but is preferably one or more compounds selected from the group consisting of TiO 2 , TiO, and Ti 3 O 5 .
 反射膜3が無機酸化物を含有することにより、発光素子100の耐候性を向上させることができるという効果も奏される。 The effect that the weather resistance of the light emitting element 100 can be improved by the reflective film 3 containing an inorganic oxide is also exhibited.
 中でも、例えば無機酸化物としてチタンの酸化物または酸化亜鉛を用い、蛍光体含有樹脂層(樹脂部)2に含有される樹脂としてシリコーン樹脂を用いた場合、比較的強い-Ti-O-Si-等の結合が形成されるため、シリコーン樹脂と上記無機酸化物との密着性が高くなり、反射膜3と蛍光体含有樹脂層(樹脂部)2との密着性を向上させることができるという効果を奏する。 In particular, for example, when titanium oxide or zinc oxide is used as the inorganic oxide, and a silicone resin is used as the resin contained in the phosphor-containing resin layer (resin portion) 2, relatively strong —Ti—O—Si— And the like, the adhesion between the silicone resin and the inorganic oxide is increased, and the adhesion between the reflective film 3 and the phosphor-containing resin layer (resin portion) 2 can be improved. Play.
 これにより、反射膜3と蛍光体含有樹脂層(樹脂部)2との密着性が良好で、耐候性に優れた発光素子100を提供することができる。 Thereby, it is possible to provide the light emitting device 100 having good adhesion between the reflective film 3 and the phosphor-containing resin layer (resin portion) 2 and excellent weather resistance.
 反射膜3が無機酸化物を含有することにより、反射膜3を、光触媒作用を有する誘電体膜とすることができる。このことによって、本発明にかかる発光素子100は、防汚効果、防曇効果、抗菌効果、空気清浄化効果および水浄化効果等の効果を奏することができる。 When the reflective film 3 contains an inorganic oxide, the reflective film 3 can be a dielectric film having a photocatalytic action. Thus, the light emitting device 100 according to the present invention can exhibit effects such as an antifouling effect, an antifogging effect, an antibacterial effect, an air purification effect, and a water purification effect.
 本発明にかかる発光素子100が、防汚効果、防曇効果を奏することによって、当該発光素子100から出射される光の強度や明るさを一定に保つことができる他、発光素子100の使用可能期間を長くすることができる。 The light emitting device 100 according to the present invention exhibits antifouling and antifogging effects, so that the intensity and brightness of light emitted from the light emitting device 100 can be kept constant, and the light emitting device 100 can be used. The period can be lengthened.
 また、本発明にかかる発光素子100が抗菌効果、空気清浄化効果、水浄化効果を奏することによって、所望の色度を有する白色光を安定的に出射するという効果に対してさらに有用な効果が付加されることになる。よって、本発明にかかる発光素子100の商品価値をより向上させることができる。 In addition, the light emitting device 100 according to the present invention has an antibacterial effect, an air purification effect, and a water purification effect, and thus has a more useful effect on the effect of stably emitting white light having a desired chromaticity. Will be added. Therefore, the commercial value of the light emitting device 100 according to the present invention can be further improved.
 反射膜3における上記無機酸化物の好適な含有率は、反射膜3に含有される無機酸化物の物性、調整したい波長成分の量、反射膜3に入射する光の波長等によって異なるため、一概には言えない。なお、反射膜3は上記無機酸化物からなるものであってもよい。 The preferred content of the inorganic oxide in the reflective film 3 varies depending on the physical properties of the inorganic oxide contained in the reflective film 3, the amount of wavelength component to be adjusted, the wavelength of light incident on the reflective film 3, and the like. I can't say that. The reflective film 3 may be made of the above inorganic oxide.
 本発明における反射膜3は、気相製膜法を用いて作製されることが好ましい。上記気相製膜法を用いることによって、上記反射膜3の膜厚を精密に調整することが容易になるという効果を奏する。また、蛍光体含有樹脂層(樹脂部)2の形状に凹凸があったとしても容易に製膜することができるという効果を奏する。 The reflective film 3 in the present invention is preferably produced using a vapor deposition method. By using the vapor deposition method, it is easy to precisely adjust the thickness of the reflective film 3. In addition, even if the shape of the phosphor-containing resin layer (resin portion) 2 is uneven, the film can be easily formed.
 すなわち、気相製膜法を用いることによって、簡易な製膜法により、所望の膜厚を有する反射膜を高精度に製膜することができ、膜厚に応じて色度を調整することができる。気相製膜法とは、気相成長とも言い、材料を気体(気相)状態にして、素材の表面に薄膜を成長させる技術を言う。 That is, by using the vapor deposition method, a reflective film having a desired film thickness can be formed with high accuracy by a simple film formation method, and the chromaticity can be adjusted according to the film thickness. it can. The vapor deposition method is also referred to as vapor deposition, and refers to a technique for growing a thin film on the surface of a material by making the material in a gas (vapor phase) state.
 上記気相製膜法としては、特に限定されるものではなく、物理蒸着(Physical Vapor Deposition;PVD)、化学蒸着(Chemical Vapor Deposition;CVD)のいずれでも用いることができる。 The vapor deposition method is not particularly limited, and any of physical vapor deposition (Physical Vapor Deposition; PVD) and chemical vapor deposition (Chemical Vapor Deposition; CVD) can be used.
 物理蒸着としては、特に限定されるものではなく、スパッタリング、真空蒸着法、分子線エピタキシー法、イオンプレーティング法、レーザー堆積法等を用いることができる。中でも、簡易かつ高精度な製膜を行うことができるため、スパッタリングを特に好ましく用いることができる。 Physical vapor deposition is not particularly limited, and sputtering, vacuum vapor deposition, molecular beam epitaxy, ion plating, laser deposition, and the like can be used. Among these, sputtering can be particularly preferably used because simple and highly accurate film formation can be performed.
 化学蒸着としては、特に限定されるものではなく、熱CVD法、光CVD法、プラズマCVD法,常圧CVD(AP-CVD)、減圧CVD(LP-CVD)、有機金属化学気相成長法等を用いることができる。化学蒸着は、製膜速度が速く、処理面積を大きくすることができ、凹凸のある表面でもまんべんなく製膜することができるため、好ましく用いることができる。 The chemical vapor deposition is not particularly limited, and thermal CVD method, photo CVD method, plasma CVD method, atmospheric pressure CVD (AP-CVD), low pressure CVD (LP-CVD), metal organic chemical vapor deposition method, etc. Can be used. Chemical vapor deposition can be preferably used because it has a high film forming speed, can increase the treatment area, and can evenly form a film even on an uneven surface.
 (蛍光体の濃度について)
 上記蛍光体含有樹脂層(樹脂部)2における蛍光体の濃度は、特に限定されず、均一であってもよいし、例えば、上記LED素子1の近傍領域における濃度が上記反射膜3の近傍領域における濃度よりも高くてもよい。
(About phosphor concentration)
The density | concentration of the fluorescent substance in the said fluorescent substance containing resin layer (resin part) 2 is not specifically limited, For example, the density | concentration in the vicinity area | region of the said LED element 1 is a vicinity area | region of the said reflecting film 3 It may be higher than the concentration in.
 本明細書中の第1の実施形態および後述する第2の実施形態において、「LED素子1の近傍領域」とは、LED素子1の外表面のいずれかの地点から反射膜3の内表面(反射膜3の面のうち、上記蛍光体含有樹脂層(樹脂部)2と接している面)まで直線を引いたときに、当該直線上にあり、上記LED素子1の外表面のいずれかの地点までの距離の方が、反射膜3の内表面までの距離よりも短い点によって作られる領域である。 In the first embodiment of the present specification and the second embodiment to be described later, “the vicinity region of the LED element 1” refers to the inner surface of the reflective film 3 from any point on the outer surface of the LED element 1 ( When a straight line is drawn to the surface of the reflective film 3 up to the surface containing the phosphor-containing resin layer (resin portion 2), any one of the outer surfaces of the LED element 1 is on the straight line. The distance to the point is a region formed by a point shorter than the distance to the inner surface of the reflective film 3.
 また、「反射膜3の近傍領域」とは、反射膜3の内表面上のいずれかの地点から、LED素子1の外表面のいずれかの地点まで直線を引いたときに、当該直線上にあり、上記反射膜3の内表面上のいずれかの地点までの距離の方が、LED素子1の外表面のいずれかの地点までの距離よりも短い点によって作られる領域である。なお、上記「外表面」とは、上記LED素子1からみて光の出射方向に外側の表面をいう。 The “region in the vicinity of the reflective film 3” is a line drawn from any point on the inner surface of the reflective film 3 to any point on the outer surface of the LED element 1. In addition, the distance to any point on the inner surface of the reflective film 3 is a region formed by a point shorter than the distance to any point on the outer surface of the LED element 1. The “outer surface” refers to an outer surface in the light emission direction as viewed from the LED element 1.
 図1において、LED素子1から出射された光aは、反射膜3において一部が反射され、出射光cと反射光bとに分離される。反射された反射光bは、蛍光体含有樹脂層(樹脂部)2に存在する蛍光体によって散乱される(波長変換も行われる)。 In FIG. 1, a part of the light a emitted from the LED element 1 is reflected by the reflective film 3 and separated into emitted light c and reflected light b. The reflected light b reflected is scattered by the phosphor present in the phosphor-containing resin layer (resin portion) 2 (wavelength conversion is also performed).
 波長変換された光dが、速やかに発光素子100の外部に出射される、あるいは、反射膜3によって一部が反射され、蛍光体によるさらなる波長変換を受ける。そして、波長λの出射光cと、波長λ’の光dとが混合され、所望の色度を有する白色光を得ることができる。 The wavelength-converted light d is immediately emitted to the outside of the light emitting element 100, or part of the light is reflected by the reflective film 3 and undergoes further wavelength conversion by the phosphor. Then, the outgoing light c having the wavelength λ and the light d having the wavelength λ ′ are mixed, and white light having a desired chromaticity can be obtained.
 <第2の実施形態>
 (他の形態の本発明にかかる発光素子)
 第1の実施形態では、図1に示すように、発光素子100において、蛍光体含有樹脂層(樹脂部)2、反射膜3は、基板4の実装面5上に半球状に形成されている。しかし、発光素子の形態はこれに限られるものではない。第2の実施形態では、第1の実施形態とは異なる形態を取る発光素子について説明する。
<Second Embodiment>
(Light Emitting Element According to Another Form of the Present Invention)
In the first embodiment, as shown in FIG. 1, in the light emitting element 100, the phosphor-containing resin layer (resin portion) 2 and the reflective film 3 are formed in a hemispherical shape on the mounting surface 5 of the substrate 4. . However, the form of the light emitting element is not limited to this. In the second embodiment, a light-emitting element that takes a form different from that of the first embodiment will be described.
 図3は、本発明の第2の実施形態にかかる発光素子101の概略断面構造図である。発光素子101では、基板4の実装面5の上に反射枠6が配置されている。 FIG. 3 is a schematic cross-sectional structure diagram of a light emitting device 101 according to the second embodiment of the present invention. In the light emitting element 101, the reflection frame 6 is disposed on the mounting surface 5 of the substrate 4.
 反射枠6は、LED素子1または蛍光体からの発光を効率的に反射膜3に照射させるためのものであり、樹脂、セラミック、金属材料など表面の反射率が高いものが用いられる。例えば、LED素子1から横方向に出射した光線を反射枠6によって反射することにより、反射膜3の方向に出射することができる。反射枠6は、基板4と別体として実装面5上に形成されていてもよいし、基板4と一体成型されていてもよい。 The reflection frame 6 is used for efficiently irradiating the reflection film 3 with light emitted from the LED element 1 or the phosphor, and one having a high surface reflectance such as resin, ceramic, or metal material is used. For example, the light beam emitted from the LED element 1 in the lateral direction can be emitted in the direction of the reflective film 3 by being reflected by the reflection frame 6. The reflection frame 6 may be formed on the mounting surface 5 as a separate body from the substrate 4 or may be integrally formed with the substrate 4.
 発光素子101では、蛍光体含有樹脂層(樹脂部)2がLED素子1の外周部に形成されている。そして、蛍光体含有樹脂層(樹脂部)2の表面と、反射枠6とに跨って、反射膜3が形成されている。上記反射膜3は、上記蛍光体含有樹脂層(樹脂部)2の表面上に形成されることによって、上記反射膜3から外部に出射される出射光の透過特性に波長依存性を生じる。 In the light emitting element 101, a phosphor-containing resin layer (resin part) 2 is formed on the outer periphery of the LED element 1. A reflective film 3 is formed across the surface of the phosphor-containing resin layer (resin portion) 2 and the reflective frame 6. The reflective film 3 is formed on the surface of the phosphor-containing resin layer (resin portion) 2, thereby causing wavelength dependence in the transmission characteristics of the emitted light emitted from the reflective film 3 to the outside.
 図3に示すように、LED素子1から出射された光aは、一部が反射膜3によって反射されて反射光bと出射光cとに分離される。反射光bは蛍光体含有樹脂層(樹脂部)2に存在する蛍光体によって波長変換され、出射光dとなって発光素子101から出射される。また、光aは、出射後、一部が蛍光体によって波長変換され、出射光d’となって発光素子101から出射される。 As shown in FIG. 3, a part of the light a emitted from the LED element 1 is reflected by the reflective film 3 and separated into reflected light b and emitted light c. The reflected light b is wavelength-converted by the phosphor existing in the phosphor-containing resin layer (resin portion) 2 and is emitted from the light emitting element 101 as the emitted light d. The light a is partly wavelength-converted by a phosphor after being emitted, and is emitted from the light emitting element 101 as emitted light d ′.
 発光素子101は、蛍光体含有樹脂層(樹脂部)2および反射膜3の形状が第1の実施形態にかかる発光素子100と異なるが、反射膜3は上述のように光透過特性に波長依存性を生じるため、反射膜3がない場合の色度特性に応じて、適切な波長依存性を生じる反射膜3を選択することにより、出射光c、d、d’が混合された光を、所望の色度特性を有する白色光とすることができる。 The light-emitting element 101 is different from the light-emitting element 100 according to the first embodiment in the shapes of the phosphor-containing resin layer (resin portion) 2 and the reflective film 3, but the reflective film 3 depends on the wavelength of light transmission characteristics as described above. Therefore, according to the chromaticity characteristics when there is no reflective film 3, by selecting the reflective film 3 that produces an appropriate wavelength dependence, the light mixed with the outgoing light c, d, d ' White light having desired chromaticity characteristics can be obtained.
 上記蛍光体含有樹脂層(樹脂部)2における蛍光体の濃度は、特に限定されず、均一であってもよいし、例えば、上記LED素子1の近傍領域における濃度が上記反射膜3の近傍領域における濃度よりも高くてもよい。 The density | concentration of the fluorescent substance in the said fluorescent substance containing resin layer (resin part) 2 is not specifically limited, For example, the density | concentration in the vicinity area | region of the said LED element 1 is a vicinity area | region of the said reflecting film 3 It may be higher than the concentration in.
 <第3の実施形態>
 (本発明にかかる発光素子の製造方法)
 本発明にかかる発光素子の製造方法は、LED素子からの発光の一部を吸収し、波長変換して発光する蛍光体を含有する樹脂部を、基板の実装面に搭載された上記LED素子を覆うように形成し、上記LED素子を封止する第1の工程と、上記LED素子から上記樹脂部を介して出射される光の色度特性を測定する第2の工程と、測定した上記色度特性に応じて、上記樹脂部の表面に、無機酸化物を含有し、屈折率が上記樹脂部の屈折率よりも大きく、かつ、光透過特性に波長依存性を生じる反射膜を形成する第3の工程と、を包含する。
<Third Embodiment>
(Method for Manufacturing Light-Emitting Element According to the Present Invention)
A method for manufacturing a light emitting device according to the present invention includes: a resin portion containing a phosphor that absorbs a part of light emitted from an LED device and converts the wavelength to emit light; A first step of sealing and sealing the LED element; a second step of measuring chromaticity characteristics of light emitted from the LED element through the resin portion; and the measured color According to the degree characteristics, the surface of the resin part is formed with a reflection film that contains an inorganic oxide, has a refractive index larger than the refractive index of the resin part, and has a wavelength dependency in light transmission characteristics. 3 steps.
 当該方法によって、上述した第1の実施形態にかかる発光素子100および第2の実施形態にかかる発光素子101を製造することができる。 The light emitting device 100 according to the first embodiment and the light emitting device 101 according to the second embodiment described above can be manufactured by the method.
 図4は、本発明にかかる発光素子の製造方法の工程の概略図を示す模式図である。図4の(a)は、第1の実施形態にかかる発光素子100の製造方法を示し、図4の(b)は、第2の実施形態にかかる発光素子の製造方法101の製造方法を示す。 FIG. 4 is a schematic diagram showing a schematic diagram of the steps of the method for producing a light emitting device according to the present invention. 4A shows a method for manufacturing the light emitting device 100 according to the first embodiment, and FIG. 4B shows a method for manufacturing the light emitting device manufacturing method 101 according to the second embodiment. .
 まず、図4の(a)(1)、(b)(1)に示すように、LED素子1を基板4の実装面5に搭載し、図4の(a)(2)、(b)(2)に示すようにワイヤ7および従来公知のワイヤボンディングマシーン8を用いてワイヤボンディングする。 First, as shown in FIGS. 4 (a), (1), (b) and (1), the LED element 1 is mounted on the mounting surface 5 of the substrate 4, and (a), (2) and (b) in FIG. Wire bonding is performed using the wire 7 and a conventionally known wire bonding machine 8 as shown in (2).
 続いて、図4の(a)(3)に示すように、ディスペンサー(図示しない)を用いて、蛍光体含有樹脂層(樹脂部)2を、LED素子1を覆うように、実装面5上に塗布して、LED素子1を封止し、モールド9によって、蛍光体含有樹脂層(樹脂部)2を被覆して成形する。 Subsequently, as shown in FIGS. 4A and 3, the phosphor-containing resin layer (resin portion) 2 is placed on the mounting surface 5 so as to cover the LED element 1 using a dispenser (not shown). The LED element 1 is sealed, and the phosphor-containing resin layer (resin portion) 2 is covered and molded by the mold 9.
 図4の(b)(3)では、LED素子1を覆うように、実装面5と反射枠6とで形成された凹部に、ディスペンサー10を用いて蛍光体含有樹脂層(樹脂部)2を注入し、LED素子1を封止し、蛍光体含有樹脂層(樹脂部)2を形成する。 4 (b) and (3), the phosphor-containing resin layer (resin portion) 2 is applied to the recess formed by the mounting surface 5 and the reflection frame 6 using the dispenser 10 so as to cover the LED element 1. It inject | pours, the LED element 1 is sealed and the fluorescent substance containing resin layer (resin part) 2 is formed.
 次に、LED素子1から蛍光体含有樹脂層(樹脂部)2を介して出射される光の色度特性を測定する。そして、測定結果に基づいて、所望の測定結果を得るために必要な波長依存性を生じる反射膜3を選択し、当該反射膜3を蛍光体含有樹脂層(樹脂部)2の表面上に、気相製膜法(例えば、スパッタリング、CVD)を用いて製膜し、形成する。 Next, the chromaticity characteristics of light emitted from the LED element 1 through the phosphor-containing resin layer (resin portion) 2 are measured. Then, based on the measurement result, select the reflective film 3 that produces the wavelength dependency necessary to obtain the desired measurement result, the reflective film 3 on the surface of the phosphor-containing resin layer (resin part) 2, It forms and forms using a vapor-phase film-forming method (for example, sputtering, CVD).
 最後に、図4の(a)(4)および(b)(4)において矢印で示すように、蛍光体含有樹脂層2にUVを照射すること等によって硬化させて、発光素子100または発光素子101を製造することができる。 Finally, as indicated by arrows in FIGS. 4A, 4B, and 4B, the phosphor-containing resin layer 2 is cured by irradiating with UV or the like, so that the light emitting element 100 or the light emitting element is obtained. 101 can be manufactured.
 上記LED素子1の近傍領域における濃度が上記反射膜3の近傍領域における濃度よりも高い発光素子は、図4に示した上述の工程の他に、蛍光体含有樹脂層(樹脂部)2によってLED素子1を封止した後、蛍光体含有樹脂層(樹脂部)2に含有される蛍光体を沈降させるという工程を加えることによって製造することができる。 In addition to the above-described steps shown in FIG. 4, the light emitting element having a higher concentration in the vicinity of the LED element 1 than the concentration in the vicinity of the reflective film 3 is formed by the phosphor-containing resin layer (resin portion) 2. After the element 1 is sealed, it can be manufactured by adding a step of precipitating the phosphor contained in the phosphor-containing resin layer (resin portion) 2.
 発光素子における反射膜として屈折率n´が2.5であるTiOからなる反射膜、蛍光体含有樹脂層(樹脂部)の屈折率nが1.41であるシリコーン樹脂であり、反射膜の膜厚が10nm、15nm、80nmである発光素子に関して、光の入射角度をゼロとし、屈折率、位相膜厚を考慮したマトリクス法による計算を行った。この計算において、屈折率の波長依存性(材料の色分散)、媒質による光の吸収は考慮していない。 A reflective film made of TiO 2 having a refractive index n ′ of 2.5 as a reflective film in the light emitting element, a silicone resin having a refractive index n of the phosphor-containing resin layer (resin part) of 1.41, For light-emitting elements having film thicknesses of 10 nm, 15 nm, and 80 nm, calculation was performed by a matrix method in which the incident angle of light was zero and the refractive index and phase film thickness were taken into consideration. In this calculation, the wavelength dependence of the refractive index (the chromatic dispersion of the material) and light absorption by the medium are not taken into consideration.
 図5に、計算結果を示す。図5において、「誘電体膜」とは反射膜のことであり、「樹脂」とは蛍光体含有樹脂層(樹脂部)を意味する。横軸は光の波長、縦軸は反射膜の反射率を示す。 Fig. 5 shows the calculation results. In FIG. 5, “dielectric film” refers to a reflective film, and “resin” refers to a phosphor-containing resin layer (resin portion). The horizontal axis represents the wavelength of light, and the vertical axis represents the reflectance of the reflective film.
 図5から分かるように、膜厚が10nm、15nmである反射膜を有する発光素子は、短波長の光ほど反射率が高く、長波長の光ほど反射率が低いという波長依存性を示している。 As can be seen from FIG. 5, the light-emitting element having a reflective film with a film thickness of 10 nm and 15 nm has a wavelength dependency such that the shorter wavelength light has higher reflectance and the longer wavelength light has lower reflectance. .
 一方、反射膜の膜厚が80nmの場合は、波長が450nmの光に対する反射率が最小値を示し、その後波長が長くなるほど反射率が高くなるという波長依存性を示している。 On the other hand, when the thickness of the reflective film is 80 nm, the reflectance with respect to light having a wavelength of 450 nm shows a minimum value, and thereafter, the reflectance increases as the wavelength increases.
 この結果は、無機酸化物を含有する反射膜の屈折率を蛍光体含有樹脂層(樹脂部)の屈折率よりも大きくした上で、反射膜の膜厚を調整することによって、発光素子の反射率の波長依存性を制御することができることを示している。 This result shows that the reflective film containing the inorganic oxide has a refractive index larger than that of the phosphor-containing resin layer (resin portion), and then the reflective film is adjusted to adjust the reflection film thickness. It shows that the wavelength dependence of the rate can be controlled.
 したがって、当該波長依存性を利用し、発光素子からの出射を抑制したい光に応じて、反射膜の屈折率および膜厚を調整することによって、所望の色度を有する白色光を出射可能な発光素子を実現することができる。 Therefore, by utilizing the wavelength dependency, light emission capable of emitting white light having a desired chromaticity by adjusting the refractive index and film thickness of the reflective film according to the light to be suppressed from being emitted from the light emitting element. An element can be realized.
 〔比較例1〕
 発光素子における反射膜の屈折率n´が1.2、蛍光体含有樹脂層(樹脂部)の屈折率nが1.41であり、反射膜の膜厚が20nm、50nm、100nmである発光素子に関して、実施例1と同様に、光の入射角度をゼロとし、屈折率、位相膜厚を考慮したマトリクス法による計算を行った。この計算において、屈折率の波長依存性(材料の色分散)、媒質による光の吸収は考慮していない。図6に、計算結果を示す。
[Comparative Example 1]
The light-emitting element in which the refractive index n ′ of the reflective film in the light-emitting element is 1.2, the refractive index n of the phosphor-containing resin layer (resin part) is 1.41, and the film thickness of the reflective film is 20 nm, 50 nm, and 100 nm. In the same manner as in Example 1, the calculation was performed by a matrix method in which the incident angle of light was set to zero and the refractive index and the phase film thickness were taken into consideration. In this calculation, the wavelength dependence of the refractive index (the chromatic dispersion of the material) and light absorption by the medium are not taken into consideration. FIG. 6 shows the calculation results.
 図6からわかるように、反射膜の屈折率n´が樹脂部の屈折率nよりも小さい発光素子は、反射率の波長依存性を示さなかった。 As can be seen from FIG. 6, the light emitting element in which the refractive index n ′ of the reflective film is smaller than the refractive index n of the resin portion did not show the wavelength dependency of the reflectance.
 〔まとめ〕
 本発明の態様1にかかる発光素子100,101は、LED素子1と、当該LED素子1からの発光の一部を吸収し、波長変換して発光する蛍光体を含有し、上記LED素子を封止する樹脂部(蛍光体含有樹脂層2)と、無機酸化物を含有し、上記樹脂部の表面上に形成されている反射膜3と、を備え、上記反射膜3が、上記樹脂部2の表面上に形成されていることによって、上記反射膜3から外部に出射される出射光の透過特性に波長依存性を生じ、上記反射膜3の屈折率が、上記樹脂部(蛍光体含有樹脂層2)の屈折率よりも大きい。
[Summary]
The light-emitting elements 100 and 101 according to the first aspect of the present invention include the LED element 1 and a phosphor that absorbs part of the light emitted from the LED element 1 and converts the wavelength to emit light, and seals the LED element. A resin part (phosphor-containing resin layer 2) to be stopped, and a reflective film 3 containing an inorganic oxide and formed on the surface of the resin part, and the reflective film 3 is the resin part 2 Is formed on the surface of the reflective film 3, the wavelength dependence of the transmission characteristics of the outgoing light emitted from the reflective film 3 to the outside occurs, and the refractive index of the reflective film 3 is the resin part (phosphor-containing resin). Greater than the refractive index of layer 2).
 上記構成によれば、反射膜3の屈折率が、樹脂部(蛍光体含有樹脂層2)の屈折率よりも大きいため、反射膜3の膜厚を比較的薄くした上で、可視光域において、短波長の光(例えば青色光)の反射率と、長波長の光(例えば黄色光)の反射率との差を大きくすることができる。 According to the above configuration, since the refractive index of the reflective film 3 is larger than the refractive index of the resin portion (phosphor-containing resin layer 2), the thickness of the reflective film 3 is made relatively thin, and in the visible light region. The difference between the reflectance of short wavelength light (for example, blue light) and the reflectance of long wavelength light (for example, yellow light) can be increased.
 さらに、反射膜3の膜厚を調整することによって、上記出射光の透過特性の波長依存性を制御し、所望の色度特性を有する白色光を得ることができる。 Furthermore, by adjusting the film thickness of the reflective film 3, the wavelength dependence of the transmission characteristic of the emitted light can be controlled, and white light having a desired chromaticity characteristic can be obtained.
 したがって、色度のばらつきの小さい発光素子100,101を実現することができるという効果を奏する。また、上記構成によれば、蛍光体による波長変換回数を増加させることができるため、樹脂部(蛍光体含有樹脂層2)に存在する蛍光体量を減らすことができ、材料コストを低減することができるという効果を奏する。さらに、青色光の出射を抑制することにより、青色光網膜障害を低減することができるという効果を奏する。加えて、反射膜3が無機酸化物を含有するため、発光素子100,101の耐候性を向上させることができるという効果も奏する。 Therefore, it is possible to realize the light emitting elements 100 and 101 with small variations in chromaticity. Moreover, according to the said structure, since the frequency | count of wavelength conversion by a fluorescent substance can be increased, the fluorescent substance amount which exists in a resin part (phosphor containing resin layer 2) can be reduced, and material cost is reduced. There is an effect that can be. Furthermore, by suppressing the emission of blue light, there is an effect that blue light retinal damage can be reduced. In addition, since the reflection film 3 contains an inorganic oxide, the weather resistance of the light emitting elements 100 and 101 can be improved.
 本発明の態様2にかかる発光素子100,101は、上記態様1において、反射膜3が、気相製膜法を用いて作製される単層膜であることが好ましい。 In the light-emitting elements 100 and 101 according to the second aspect of the present invention, the reflective film 3 in the first aspect is preferably a single-layer film manufactured using a vapor deposition method.
 上記構成によれば、容易な製膜法により、所望の膜厚を有する反射膜3を高精度に製膜することができ、膜厚に応じて色度を調整することができる。また、上記構成によれば、効率よく、低コストで発光素子100,101を得ることができる。 According to the above configuration, the reflective film 3 having a desired film thickness can be formed with high accuracy by an easy film forming method, and the chromaticity can be adjusted according to the film thickness. Moreover, according to the said structure, the light emitting elements 100 and 101 can be obtained efficiently and at low cost.
 したがって、高精度に製膜された反射膜3を有する発光素子100,101を効率よく提供することができるという効果を奏する。 Therefore, it is possible to efficiently provide the light emitting elements 100 and 101 having the reflective film 3 formed with high accuracy.
 本発明の態様3にかかる発光素子100,101は、上記態様1または2において、気相製膜法がスパッタリングまたは化学蒸着であることが好ましい。 In the light-emitting elements 100 and 101 according to the third aspect of the present invention, in the first or second aspect, the vapor deposition method is preferably sputtering or chemical vapor deposition.
 上記構成によれば、樹脂部の凹凸に関わらず、膜厚を高精度に制御することができる。 According to the above configuration, the film thickness can be controlled with high accuracy regardless of the unevenness of the resin portion.
 したがって、より高精度に製膜された反射膜3を有する発光素子100,101を効率よく提供することができるという効果を奏する。 Therefore, it is possible to efficiently provide the light-emitting elements 100 and 101 having the reflective film 3 formed with higher accuracy.
 本発明の態様4にかかる発光素子100,101は、上記態様3において、上記無機酸化物がチタンの酸化物または酸化亜鉛であり、上記樹脂部に含有される樹脂がシリコーン樹脂であることが好ましい。 In the light-emitting elements 100 and 101 according to the fourth aspect of the present invention, in the third aspect, the inorganic oxide is preferably a titanium oxide or zinc oxide, and the resin contained in the resin portion is preferably a silicone resin. .
 上記構成によれば、反射膜3の屈折率を、樹脂部(蛍光体含有樹脂層2)の屈折率より1以上大きくすることができ、かつ、安価な材料を用いて、簡単なプロセスにより製膜することができる。 According to the said structure, the refractive index of the reflecting film 3 can be made 1 or more larger than the refractive index of the resin part (phosphor containing resin layer 2), and it is manufactured by a simple process using an inexpensive material. Can be membrane.
 また、上記構成によれば、比較的強い-Ti-O-Si-等の結合が形成されるため、反射膜3と樹脂部(蛍光体含有樹脂層2)との密着性を高めることができる。 Further, according to the above configuration, since a relatively strong bond such as —Ti—O—Si— is formed, the adhesion between the reflective film 3 and the resin portion (phosphor-containing resin layer 2) can be improved. .
 さらに、上記構成によれば、反射膜3に光触媒作用があるため、防汚効果、防曇効果、抗菌効果、空気清浄化効果および水浄化効果等を奏する。 Furthermore, according to the above configuration, since the reflective film 3 has a photocatalytic action, it exhibits an antifouling effect, an antifogging effect, an antibacterial effect, an air purification effect, a water purification effect, and the like.
 したがって、上記構成によれば、所望の色度特性を有する白色光を出射可能であるとともに、反射膜の密着性に優れ、かつ、有用な種々の効果を奏する発光素子100を提供することができるという効果を奏する。 Therefore, according to the above configuration, it is possible to provide the light emitting element 100 that can emit white light having desired chromaticity characteristics, has excellent reflection film adhesion, and exhibits various useful effects. There is an effect.
 本発明の態様5にかかる発光素子100,101は、上記態様4において、チタンの酸化物が、TiO、TiO、およびTiからなる群より選ばれる1以上の化合物であることが好ましい。 In the light-emitting elements 100 and 101 according to the fifth aspect of the present invention, in the fourth aspect, the titanium oxide is preferably one or more compounds selected from the group consisting of TiO 2 , TiO, and Ti 3 O 5. .
 上記構成によれば、樹脂部(蛍光体含有樹脂層2)に含有される樹脂としてシリコーン樹脂を用いた場合、比較的強い-Ti-O-Si-の結合が形成されるため、反射膜3と樹脂部(蛍光体含有樹脂層2)との密着性を高めることができ、反射膜3が簡単に剥がれないという効果を奏する。 According to the above configuration, when a silicone resin is used as the resin contained in the resin portion (phosphor-containing resin layer 2), a relatively strong —Ti—O—Si— bond is formed. And the resin part (phosphor-containing resin layer 2) can be improved, and the reflective film 3 is not easily peeled off.
 本発明の態様6にかかる発光素子100,101は、上記反射膜3の屈折率と、上記樹脂部(蛍光体含有樹脂層2)の屈折率との差が1以上であることが好ましい。 In the light-emitting elements 100 and 101 according to the sixth aspect of the present invention, the difference between the refractive index of the reflective film 3 and the refractive index of the resin portion (phosphor-containing resin layer 2) is preferably 1 or more.
 上記構成によれば、上記実施例に示すように、単層膜である反射膜3を用いて、反射膜3が出射光の透過特性に波長依存性を生じることに基づく出射光の色度調整を容易に行うことができるという効果を奏する。 According to the above configuration, as shown in the above-described embodiment, the chromaticity adjustment of the emitted light is performed using the reflective film 3 that is a single layer film, based on the fact that the reflective film 3 causes the wavelength dependence of the transmission characteristics of the emitted light. There is an effect that can be easily performed.
 本発明の態様7にかかる発光素子100,101は、上記反射膜3の膜厚が10nm以上80nm以下であることが好ましい。 In the light-emitting elements 100 and 101 according to the aspect 7 of the present invention, the reflective film 3 preferably has a thickness of 10 nm to 80 nm.
 上記構成によれば、比較的薄い膜厚で、可視光域において、短波長の光の反射率と、長波長の光の反射率との差を大きくすることができる。 According to the above configuration, the difference between the reflectance of short-wavelength light and the reflectance of long-wavelength light can be increased in a visible light range with a relatively thin film thickness.
 したがって、膜厚の精度を向上させることができるとともに、調整可能な色度の幅を大きくすることができるという効果を奏する。 Therefore, it is possible to improve the film thickness accuracy and increase the width of the adjustable chromaticity.
 本発明の態様8にかかる発光素子100,101の製造方法は、LED素子1からの発光の一部を吸収し、波長変換して発光する蛍光体を含有している樹脂部(蛍光体含有樹脂層2)を、基板4の実装面5に搭載された上記LED素子1を覆うように形成し、上記LED素子1を封止する第1の工程と、上記LED素子1から上記樹脂部(蛍光体含有樹脂層2)を介して出射される光の色度特性を測定する第2の工程と、測定した上記色度特性に応じて、上記樹脂部(蛍光体含有樹脂層2)の表面に、無機酸化物を含有し、屈折率が上記樹脂部の屈折率よりも大きく、かつ、上記樹脂部の表面上に形成されることによって、外部へ出射される出射光の透過特性に波長依存性を生じる反射膜3を形成する第3の工程と、を包含する。 The manufacturing method of the light emitting elements 100 and 101 according to the aspect 8 of the present invention includes a resin part (phosphor-containing resin) containing a phosphor that absorbs part of the light emitted from the LED element 1 and converts the wavelength to emit light. The layer 2) is formed so as to cover the LED element 1 mounted on the mounting surface 5 of the substrate 4, and the LED element 1 is sealed. On the surface of the resin part (phosphor-containing resin layer 2) according to the second step of measuring the chromaticity characteristics of light emitted through the body-containing resin layer 2) and the measured chromaticity characteristics. In addition, it contains an inorganic oxide, has a refractive index greater than the refractive index of the resin part, and is formed on the surface of the resin part. A third step of forming the reflective film 3 to generate
 上記構成によれば、測定した色度特性に応じて、所望する膜厚の反射膜を簡単なプロセスで形成することができる。これにより、光透過特性に波長依存性を生じる反射膜3を形成するため、発光素子100,101から出射される光の色度のばらつきを効果的に抑制することができ、所望の色度特性を有する白色光を出射可能な発光素子100,101を製造することができるという効果を奏する。また、上記構成によれば、品質が向上した発光素子100,101を製造することができる。 According to the above configuration, a reflective film having a desired film thickness can be formed by a simple process according to the measured chromaticity characteristics. Thereby, since the reflective film 3 that causes the wavelength dependency of the light transmission characteristics is formed, variation in chromaticity of light emitted from the light emitting elements 100 and 101 can be effectively suppressed, and desired chromaticity characteristics can be suppressed. The light-emitting elements 100 and 101 capable of emitting white light having the above can be manufactured. Moreover, according to the said structure, the light emitting elements 100 and 101 with improved quality can be manufactured.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、蛍光体と組み合わせた発光素子に関する分野に好適に用いることができる。また、発光素子を備える携帯電話などの各種電気機器等の分野に広く用いることができる。 The present invention can be suitably used in the field related to a light emitting element combined with a phosphor. Further, it can be widely used in the fields of various electric devices such as a mobile phone including a light emitting element.
 1  LED素子
 2  蛍光体含有樹脂層(樹脂部)
 3  反射膜
 4  基板
 5  実装面
 6  反射枠
 7  ワイヤ
 100、101 発光素子
1 LED element 2 Phosphor-containing resin layer (resin part)
DESCRIPTION OF SYMBOLS 3 Reflective film 4 Board | substrate 5 Mounting surface 6 Reflective frame 7 Wire 100, 101 Light emitting element

Claims (6)

  1.  LED素子と、
     当該LED素子からの発光の一部を吸収し、波長変換して発光する蛍光体を含有し、上記LED素子を封止する樹脂部と、
     無機酸化物を含有し、上記樹脂部の表面上に形成されている反射膜と、を備え、
     上記反射膜は、上記樹脂部の表面上に形成されていることによって、上記反射膜から外部に出射される出射光の透過特性に波長依存性を生じ、
     上記反射膜の屈折率が、上記樹脂部の屈折率よりも大きいことを特徴とする、発光素子。
    An LED element;
    A resin part that absorbs part of the light emitted from the LED element, contains a phosphor that emits light after wavelength conversion, and seals the LED element;
    A reflection film containing an inorganic oxide and formed on the surface of the resin part,
    The reflection film is formed on the surface of the resin portion, thereby causing wavelength dependency in the transmission characteristics of the emitted light emitted from the reflection film to the outside.
    The light emitting element characterized by the refractive index of the said reflecting film being larger than the refractive index of the said resin part.
  2.  上記反射膜が、気相製膜法を用いて作製される単層膜であることを特徴とする請求項1に記載の発光素子。 2. The light-emitting element according to claim 1, wherein the reflective film is a single-layer film produced using a vapor deposition method.
  3.  上記気相製膜法が、スパッタリングまたは化学蒸着であることを特徴とする請求項2に記載の発光素子。 The light emitting device according to claim 2, wherein the vapor deposition method is sputtering or chemical vapor deposition.
  4.  上記無機酸化物がチタンの酸化物または酸化亜鉛であり、上記樹脂部に含有される樹脂がシリコーン樹脂であることを特徴とする請求項1から3の何れか1項に記載の発光素子。 The light-emitting element according to any one of claims 1 to 3, wherein the inorganic oxide is titanium oxide or zinc oxide, and the resin contained in the resin portion is a silicone resin.
  5.  上記チタンの酸化物が、TiO、TiO、およびTiからなる群より選ばれる1以上の化合物であることを特徴とする、請求項4に記載の発光素子。 5. The light emitting device according to claim 4, wherein the titanium oxide is one or more compounds selected from the group consisting of TiO 2 , TiO, and Ti 3 O 5 .
  6.  上記反射膜の屈折率と、上記樹脂部の屈折率との差が1以上であることを特徴とする、請求項1から5の何れか1項に記載の発光素子。 The light emitting device according to any one of claims 1 to 5, wherein a difference between a refractive index of the reflective film and a refractive index of the resin portion is 1 or more.
PCT/JP2013/084851 2013-02-26 2013-12-26 Light emitting element WO2014132542A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-036335 2013-02-26
JP2013036335 2013-02-26

Publications (1)

Publication Number Publication Date
WO2014132542A1 true WO2014132542A1 (en) 2014-09-04

Family

ID=51427827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084851 WO2014132542A1 (en) 2013-02-26 2013-12-26 Light emitting element

Country Status (1)

Country Link
WO (1) WO2014132542A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018982A (en) * 2016-07-28 2018-02-01 富士フイルム株式会社 Light source and illuminating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266174A (en) * 2006-03-28 2007-10-11 Kyocera Corp Light emitting device
JP2011107508A (en) * 2009-11-19 2011-06-02 Showa Denko Kk Phosphor filter, method of manufacturing the same, and lamp
JP5261742B1 (en) * 2012-08-13 2013-08-14 株式会社昭和真空 Method for manufacturing light emitting device and method for adjusting chromaticity of light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266174A (en) * 2006-03-28 2007-10-11 Kyocera Corp Light emitting device
JP2011107508A (en) * 2009-11-19 2011-06-02 Showa Denko Kk Phosphor filter, method of manufacturing the same, and lamp
JP5261742B1 (en) * 2012-08-13 2013-08-14 株式会社昭和真空 Method for manufacturing light emitting device and method for adjusting chromaticity of light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018982A (en) * 2016-07-28 2018-02-01 富士フイルム株式会社 Light source and illuminating device

Similar Documents

Publication Publication Date Title
JP5676599B2 (en) LED package having scattering particle region
US9972751B2 (en) Method for manufacturing wavelength conversion member
KR101654514B1 (en) Led assembly
CN106796976B (en) Light emitting device
US9698317B2 (en) Light emitting device having UV light emitting diode for generating human-friendly light and lighting apparatus including the same
JP6371201B2 (en) Light emitting module and light emitting device using the same
EP2482348B1 (en) Wavelength conversion particle, wavelength conversion member using same, and light emitting device
CN107665940B (en) Light emitting device and method for manufacturing the same
TWI794311B (en) Light-emitting module and integrated light-emitting module
JP2009510744A (en) Radiation emission optoelectronic device
JP2011071404A (en) Light-emitting device and illumination apparatus
JP2010016029A (en) Led light source
KR100901369B1 (en) White light emitting diode chip and manufacturing method therof
JP2016009761A (en) Light emitting module
JP2010287680A (en) Light-emitting device
JPWO2012053386A1 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE
JP2010225960A (en) Light emitting device and illumination apparatus
JP7108171B2 (en) light emitting device
JP2011155125A (en) Light-emitting device, and illumination apparatus
JP2013501374A (en) High power LED device architecture and manufacturing method using dielectric coating
JP5195415B2 (en) Semiconductor light emitting device
KR102648863B1 (en) Light emitting diode package
JP2010199273A (en) Light-emitting device and lighting device
WO2014132542A1 (en) Light emitting element
JP6743630B2 (en) Light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP