JP2011155125A - Light-emitting device, and illumination apparatus - Google Patents

Light-emitting device, and illumination apparatus Download PDF

Info

Publication number
JP2011155125A
JP2011155125A JP2010015435A JP2010015435A JP2011155125A JP 2011155125 A JP2011155125 A JP 2011155125A JP 2010015435 A JP2010015435 A JP 2010015435A JP 2010015435 A JP2010015435 A JP 2010015435A JP 2011155125 A JP2011155125 A JP 2011155125A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
phosphor
transparent matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010015435A
Other languages
Japanese (ja)
Inventor
Ko Kato
航 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010015435A priority Critical patent/JP2011155125A/en
Publication of JP2011155125A publication Critical patent/JP2011155125A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting device capable of improving the luminous efficiency, and to provide an illumination apparatus. <P>SOLUTION: The light-emitting device includes a light-emitting element 17 emitting a purple light; a base body 15 mounted with the light-emitting element 17; a wavelength conversion layer 19, formed at a predetermined distance from the light-emitting element 17 for converting the wavelength of the light emitted by the light-emitting element 17. The wavelength conversion layer 19 has phosphors 19b, 19c, 19d in a transparent matrix form 19a; a transparent matrix layer 20 is laminated on the light-emitting element side of the wavelength conversion layer 18; and the transparent matrix layer 20 has a center part A having a light enter substantially vertically thereto from the light-emitting element 17, and a circumferential part B in the circumference thereof. A large number of light-scattering particles 20b are dispersed at the center part A of the transparent matrix layer 20, relative to the circumferential part B. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、LED(Light Emitting Diode:発光ダイオード)などの発光素子から発せられる光の波長を変換して、波長が変換された光を含む出力光を出力する波長変換器を搭載した発光装置、および該発光装置を複数具備した照明装置に関する。   The present invention relates to a light-emitting device equipped with a wavelength converter that converts the wavelength of light emitted from a light-emitting element such as an LED (Light Emitting Diode) and outputs output light including the converted light, And a lighting device including a plurality of the light emitting devices.

半導体材料からなる発光素子(以下「LEDチップ」とも言う)は、小型で電力効率が良く鮮やかに発色する。発光素子は、製品寿命が長い、オン・オフ点灯の繰り返しに強い、消費電力が低い、という優れた特徴を有するため、液晶等のバックライト光源および蛍光ランプ等の照明用光源への応用が期待されている。   A light-emitting element made of a semiconductor material (hereinafter also referred to as “LED chip”) is small in size, has high power efficiency, and vividly colors. Light emitting elements have excellent features such as long product life, strong on / off lighting repeatability, and low power consumption, so they are expected to be applied to backlight sources such as liquid crystals and lighting sources such as fluorescent lamps. Has been.

発光素子は、その光の一部を蛍光体で波長変換し、当該波長変換された光と波長変換されない発光素子の光とを混合して放出することにより、発光素子の光とは異なる色を発光する発光装置に応用されている。   The light emitting element converts a part of the light with a phosphor, and mixes and emits the wavelength-converted light and the light of the light emitting element that is not wavelength-converted, thereby producing a color different from that of the light of the light emitting element. It is applied to light emitting devices that emit light.

このような発光装置としては、例えば、青色発光素子上に(Y,Gd)(Al,Ga)12の組成式で表されるYAG系蛍光体等の黄色に発光する蛍光体を配置したものが知られている。 As such a light-emitting device, for example, a phosphor that emits yellow light such as a YAG-based phosphor represented by a composition formula of (Y, Gd) 3 (Al, Ga) 5 O 12 is disposed on a blue light-emitting element. Is known.

この発光装置では、発光素子から発する光が黄色成分の蛍光体に照射されると、黄色に発光する蛍光体は励起されて可視光を発し、この可視光が出力として利用される。ところが、発光素子の明るさを変えると、青色と黄色との光量比が変化するため、白色の色調が変化し、演色性に劣るといった課題があった。   In this light-emitting device, when the light emitted from the light-emitting element is applied to the yellow component phosphor, the phosphor emitting yellow light is excited to emit visible light, and this visible light is used as an output. However, when the brightness of the light emitting element is changed, the light quantity ratio between blue and yellow changes, so that there is a problem that the color tone of white changes and the color rendering property is inferior.

そこで、このような課題を解決するために、発光素子として400nm以下のピークを有する紫色発光素子を用いるとともに、波長変換層には3種類の蛍光体を高分子樹脂中に混ぜ込んだ構造を採用し、紫色光を赤色、緑色、青色の各波長に変換して白色として発光させることが提案されている(特許文献1参照)。これにより、演色性を向上することができる。   Therefore, in order to solve such problems, a purple light emitting element having a peak of 400 nm or less is used as the light emitting element, and a structure in which three types of phosphors are mixed in a polymer resin is adopted for the wavelength conversion layer. However, it has been proposed to convert violet light into red, green, and blue wavelengths to emit white light (see Patent Document 1). Thereby, a color rendering property can be improved.

また、発光素子の光を効率的に蛍光体に照射するため、波長変換層に発光素子の光を散乱させる光散乱粒子を分散せしめる開発も行われている(特許文献2参照)。   In addition, in order to efficiently irradiate the phosphor with the light of the light emitting element, development has been made to disperse light scattering particles that scatter the light of the light emitting element in the wavelength conversion layer (see Patent Document 2).

特開2002−314142号公報JP 2002-314142 A 特開2005−332951号公報Japanese Patent Laid-Open No. 2005-332951

蛍光体で波長変換された光を実用的な照明に用いるためには、発光装置をより高出力にする必要がある。そのためには、発光素子への投入電流を増加させる方法がある。しかし、発光素子は指向性が高いため、発光素子の最も近い位置に存在する蛍光体は、発光素子から離れた位置に存在する蛍光体に比べ、発光素子からの強い光にさらされるため、蛍光体が発熱し、発光素子への投入電流を増加させた場合でも、発光効率が期待する程向上しないという問題があった。   In order to use light that has been wavelength-converted by a phosphor for practical illumination, it is necessary to increase the output of the light emitting device. For this purpose, there is a method of increasing the input current to the light emitting element. However, since the light emitting element has high directivity, the phosphor present at the closest position of the light emitting element is exposed to strong light from the light emitting element as compared to the phosphor present at a position away from the light emitting element, and thus Even when the body generates heat and the input current to the light emitting element is increased, there is a problem that the luminous efficiency is not improved as expected.

本発明は、発光素子への投入電流を増加させた場合に、発光効率を十分に向上できる発光装置および照明装置を提供することを目的とする。   An object of the present invention is to provide a light-emitting device and a lighting device that can sufficiently improve the light-emitting efficiency when an input current to the light-emitting element is increased.

本発明の発光装置は、紫色の光を発する発光素子と、該発光素子が載置された基体と、前記発光素子と所定間隔をおいて形成され、前記発光素子が発する光を波長変換する波長変換層とを具備してなるとともに、該波長変換層が、透明マトリクス中に緑色に発光する蛍光体、青色に発光する蛍光体および赤色に発光する蛍光体を有する発光装置であって、前記波長変換層の前記発光素子側に透明マトリクス層が積層されており、該透明マトリクス層は、前記発光素子から光がほぼ垂直に入射する中央部と、その周囲の外周部とを有しており、前記透明マトリクス層の前記中央部には、前記外周部よりも光散乱粒子が多く分散していることを特徴とする。   The light-emitting device of the present invention includes a light-emitting element that emits purple light, a base on which the light-emitting element is mounted, a wavelength that is formed at a predetermined interval from the light-emitting element and that converts the wavelength of light emitted from the light-emitting element. A light emitting device having a phosphor that emits green light, a phosphor that emits blue light, and a phosphor that emits red light in the transparent matrix, wherein the wavelength conversion layer includes the conversion layer. A transparent matrix layer is laminated on the light emitting element side of the conversion layer, and the transparent matrix layer has a central part where light enters from the light emitting element substantially perpendicularly and an outer peripheral part around the central part. More light scattering particles are dispersed in the central portion of the transparent matrix layer than in the outer peripheral portion.

このような発光装置では、波長変換層の発光素子側に透明マトリクス層が積層されており、透明マトリクス層は、発光素子から光がほぼ垂直に入射する中央部と、その周囲の外周部とを有しており、透明マトリクス層の中央部に、外周部よりも光散乱粒子が多く分散しているため、発光素子への投入電流を増加させた場合、透明マトリクス層の中央部には発光素子からの強い光が入射するが、光散乱粒子により散乱され、光散乱層の中央部に積層された波長変換層の中央部における蛍光体への発光素子からの直接的な入射が抑制され、波長変換層の中央部における蛍光体自体の発熱を抑制でき、発光素子からの光(以下、励起光ということがある)が強くなっても蛍光体の効率低下を抑制することができ、白色光の発光効率を向上することができる。   In such a light-emitting device, a transparent matrix layer is laminated on the light-emitting element side of the wavelength conversion layer, and the transparent matrix layer has a central portion where light enters from the light-emitting element substantially perpendicularly and an outer peripheral portion around the central portion. Since the light scattering particles are more dispersed in the central part of the transparent matrix layer than in the outer peripheral part, the light emitting element is present in the central part of the transparent matrix layer when the input current to the light emitting element is increased. Intense light from the light is incident, but is scattered by the light scattering particles, and direct incidence from the light emitting element to the phosphor in the central portion of the wavelength conversion layer laminated on the central portion of the light scattering layer is suppressed, and the wavelength Heat generation of the phosphor itself in the central portion of the conversion layer can be suppressed, and even if the light from the light emitting element (hereinafter sometimes referred to as excitation light) becomes strong, a decrease in the efficiency of the phosphor can be suppressed. To improve luminous efficiency Kill.

また、本発明の発光装置は、前記透明マトリクス層の前記外周部には前記光散乱粒子が存在しないことを特徴とする。このような発光装置は、透明マトリクス層の外周部に積層された波長変換層の外周部における蛍光体に発光素子から直接的に光が入射し、また、透明マトリクス層の中央部の光散乱粒子により散乱された光が、波長変換層の外周部に入射し、発光装置全体としての発光効率を向上することができる。   The light-emitting device of the present invention is characterized in that the light scattering particles are not present on the outer peripheral portion of the transparent matrix layer. In such a light emitting device, light is directly incident on the phosphor in the outer peripheral portion of the wavelength conversion layer laminated on the outer peripheral portion of the transparent matrix layer, and light scattering particles in the central portion of the transparent matrix layer. The light scattered by the light enters the outer peripheral portion of the wavelength conversion layer, and the light emission efficiency of the entire light emitting device can be improved.

本発明の照明装置は、上記の発光装置を複数具備してなることを特徴とする。このような照明装置では、発光素子への投入電流を増加させた場合に、発光効率を向上することができる発光装置を複数具備するため、演色性を向上できる。   An illumination device according to the present invention includes a plurality of the light-emitting devices described above. Such an illumination device includes a plurality of light emitting devices capable of improving the light emission efficiency when the input current to the light emitting element is increased, so that the color rendering can be improved.

本発明の発光装置では、波長変換層の中央部における蛍光体の発熱を抑制でき、発光素子からの光が強くなっても蛍光体の効率低下を抑制することができ、白色光の発光効率を向上することができる。本発明の照明装置は、白色光の発光効率が高い発光装置を複数具備するため、演色性を向上できる。   In the light emitting device of the present invention, the heat generation of the phosphor in the central portion of the wavelength conversion layer can be suppressed, and even if the light from the light emitting element becomes strong, the decrease in the efficiency of the phosphor can be suppressed, and the luminous efficiency of white light can be reduced. Can be improved. Since the lighting device of the present invention includes a plurality of light emitting devices with high white light emission efficiency, color rendering can be improved.

(a)は発光装置の構造を示す概略断面図であり、(b)は(a)の平面図である。(A) is a schematic sectional drawing which shows the structure of a light-emitting device, (b) is a top view of (a). 波長変換器を示すもので、(a)は透明マトリクス層の中央部に光散乱粒子が存在する波長変換器を示す説明図であり、(b)は透明マトリクス層を有しない比較例の波長変換器を示す説明図である。1 shows a wavelength converter, (a) is an explanatory view showing a wavelength converter in which light scattering particles are present in the center of a transparent matrix layer, and (b) is a wavelength conversion of a comparative example having no transparent matrix layer. It is explanatory drawing which shows a container. 発光素子の出力(放射束)と、波長変換器からの発光強度との関係を示すグラフであり、(a)は透明マトリクス層の光散乱粒子を含有する中央部の面積を変化させた場合であり、(b)は透明マトリクス層の中央部の光散乱粒子の種類を変えた場合である。It is a graph which shows the relationship between the output (radiant flux) of a light emitting element, and the emitted light intensity from a wavelength converter, (a) is a case where the area of the center part containing the light-scattering particle | grains of a transparent matrix layer is changed. Yes, (b) shows the case where the type of light scattering particles in the center of the transparent matrix layer is changed. 発光素子の出力(放射束)と、波長変換器からの発光強度との関係を示すグラフであり、(a)は透明マトリクス層の中央部の光散乱粒子の粒径を変えた場合であり、(b)は透明マトリクス層の中央部の光散乱粒子の含有量を変えた場合である。It is a graph showing the relationship between the output (radiant flux) of the light emitting element and the emission intensity from the wavelength converter, (a) is a case where the particle size of the light scattering particles in the center of the transparent matrix layer is changed, (B) is a case where content of the light-scattering particle | grains of the center part of a transparent matrix layer is changed.

図1は、発光装置11の一実施形態を示す概略断面図である。図1によれば、発光装置11は、下面に電極13が形成された基板(基体)15と、基板15上に設けられている発光素子17と、発光素子17の上方に所定間隔を置いて配置された波長変換層19と、波長変換層19の発光素子17側に積層された透明マトリクス層20と、光を反射する反射部材21とを備えている。尚、符号22はワイヤ、符号16は接着剤、符号25は樹脂層である。   FIG. 1 is a schematic cross-sectional view showing an embodiment of the light emitting device 11. According to FIG. 1, the light emitting device 11 includes a substrate (base body) 15 having an electrode 13 formed on the lower surface, a light emitting element 17 provided on the substrate 15, and a predetermined interval above the light emitting element 17. The wavelength conversion layer 19 is disposed, the transparent matrix layer 20 stacked on the light emitting element 17 side of the wavelength conversion layer 19, and a reflection member 21 that reflects light. Reference numeral 22 denotes a wire, reference numeral 16 denotes an adhesive, and reference numeral 25 denotes a resin layer.

波長変換層19は、透明マトリクス中に緑色に発光する蛍光体、青色に発光する蛍光体および赤色に発光する蛍光体を有している。青色に発光する蛍光体(以下、青色発光蛍光体ということがある)は、波長が430nmから490nmの蛍光(青色)を発する蛍光体であり、緑色に発光する蛍光体(以下、緑色発光蛍光体ということがある)は波長が520nmから570nmの蛍光(緑色)を発する蛍光体であり、赤色に発光する蛍光体(以下、赤色発光蛍光体ということがある)は、波長が600nmから650nmの蛍光(赤色)を発する蛍光体である。   The wavelength conversion layer 19 has a phosphor that emits green light, a phosphor that emits blue light, and a phosphor that emits red light in a transparent matrix. A phosphor that emits blue light (hereinafter also referred to as a blue light-emitting phosphor) is a phosphor that emits fluorescence (blue) having a wavelength of 430 nm to 490 nm, and a phosphor that emits green light (hereinafter referred to as a green light-emitting phosphor). Is a phosphor that emits fluorescence (green) with a wavelength of 520 nm to 570 nm, and a phosphor that emits red light (hereinafter sometimes referred to as a red-emitting phosphor) has a wavelength of 600 nm to 650 nm. It is a phosphor that emits (red).

波長変換層19は、蛍光体を均一に分散および担持し、かつ蛍光体の光劣化を抑制することができるため、高分子樹脂やガラス材料などの透明マトリクス中に蛍光体を分散して形成されている。高分子樹脂膜、ゾルゲルガラス薄膜などのガラス材料としては、透明性が高く、かつ加熱や光によって容易に変色しない耐久性を有するものが望ましい。   Since the wavelength conversion layer 19 can uniformly disperse and carry the phosphor and can suppress light deterioration of the phosphor, the wavelength conversion layer 19 is formed by dispersing the phosphor in a transparent matrix such as a polymer resin or a glass material. ing. As a glass material such as a polymer resin film or a sol-gel glass thin film, a material having high transparency and durability that is not easily discolored by heating or light is desirable.

波長変換層19は、図2(a)に示すように、透明マトリクス中19aに、赤色発光蛍光体19b、青色発光蛍光体19cおよび緑色発光蛍光体19dを分散してなるものであり、これらの蛍光体19b、19c、19dについては後述する。   As shown in FIG. 2A, the wavelength conversion layer 19 is formed by dispersing a red light emitting phosphor 19b, a blue light emitting phosphor 19c, and a green light emitting phosphor 19d in a transparent matrix 19a. The phosphors 19b, 19c, and 19d will be described later.

高分子樹脂膜としては、材料は特に限定されるものではなく、例えば、エポキシ樹脂、シリコーン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、アクリル系、ポリカーボネート、ポリエーテルスルホン、酢酸セルロース、ポリアリレート、さらにこれら材料の誘導体が用いられる。特に、350nm以上の波長域において高い光透過性を有していることが好ましい。このような透明性に加え、耐熱性の観点から、シリコーン樹脂がより好適に用いられる。   The material of the polymer resin film is not particularly limited. For example, epoxy resin, silicone resin, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, acrylic, polycarbonate, polyethersulfone, cellulose acetate, polyarylate In addition, derivatives of these materials are used. In particular, it is preferable to have high light transmittance in a wavelength region of 350 nm or more. In addition to such transparency, a silicone resin is more preferably used from the viewpoint of heat resistance.

ガラス材料としては、シリカ、チタニア、ジルコニア、さらにそれらのコンポジット系を例示できる。高分子樹脂膜と比較して、光、特に紫外線に対する耐久性が高く、さらに熱に対する耐久性が高いことから、製品の長寿命化を実現できる。また、ガラス材料は、安定性を向上させることができることから、信頼性の高い発光装置を実現できる。   Examples of the glass material include silica, titania, zirconia, and composite materials thereof. Compared to a polymer resin film, it has a high durability against light, particularly ultraviolet rays, and further has a high durability against heat, so that the product life can be extended. In addition, since the glass material can improve stability, a highly reliable light-emitting device can be realized.

波長変換層19は、ゾルゲルガラス膜などのガラス材料または高分子樹脂膜を用いて、塗布法により形成することができる。一般的な塗布法であれば限定されないが、ディスペンサーによる塗布が好ましい。例えば、液状で未硬化の樹脂、ガラス材料、または溶剤で可塑性を持たせた樹脂およびガラス材料に、蛍光体を混合することにより製造することができる。未硬化の樹脂としては、例えばシリコーン樹脂が使用できる。これらの樹脂は2液を混合して硬化させるタイプのものであっても1液で硬化するタイプのものであっても良く、2液を混合して硬化させるタイプの場合、両液にそれぞれ蛍光体を混練してもよく、あるいはどちらか一方の液に蛍光体を混練しても構わない。また、溶剤で可塑性を持たせた樹脂としては例えばアクリル樹脂を使用することができる。   The wavelength conversion layer 19 can be formed by a coating method using a glass material such as a sol-gel glass film or a polymer resin film. Although it will not be limited if it is a general coating method, the application | coating by a dispenser is preferable. For example, it can be produced by mixing a phosphor with a liquid uncured resin, a glass material, or a resin and a glass material plasticized with a solvent. As the uncured resin, for example, a silicone resin can be used. These resins may be of a type that is cured by mixing two liquids, or a type that is cured by one liquid. The body may be kneaded, or the phosphor may be kneaded in either one of the liquids. In addition, as a resin made plastic with a solvent, for example, an acrylic resin can be used.

波長変換層19は、未硬化状態でディスペンサー等の塗布法を使用するなどして、フィルム状に成形したり、所定の型に流し込んで固めたりすることで得られる。樹脂およびガラス材料を硬化させる方法としては、熱エネルギーや光エネルギーを使う方法がある他、溶剤を揮発させる方法がある。   The wavelength conversion layer 19 is obtained by forming into a film shape by using a coating method such as a dispenser in an uncured state, or pouring into a predetermined mold and hardening. As a method of curing the resin and the glass material, there are a method of using heat energy and light energy, and a method of volatilizing the solvent.

波長変換層19の発光素子側には、透明マトリクス層20が積層されて、波長変換器が構成されており、透明マトリクス層20は透明マトリクス20aを主成分とするもので、発光素子17から光がほぼ垂直に入射する中央部Aと、その周囲の外周部Bとを有しており、透明マトリクス層20の中央部Aには、外周部Bよりも光散乱粒子20bが多く分散している。   A transparent matrix layer 20 is laminated on the light emitting element side of the wavelength conversion layer 19 to constitute a wavelength converter, and the transparent matrix layer 20 is mainly composed of the transparent matrix 20a. Has a central part A that is incident substantially perpendicularly and an outer peripheral part B around the central part A, and more light scattering particles 20b are dispersed in the central part A of the transparent matrix layer 20 than in the outer peripheral part B. .

すなわち、図1(a)を平面視した時に、図1(b)に示すように、波長変換層19の表面は円形状をしており、その中央部に発光素子17が位置している。発光素子17は、図1(a)を平面視した時には、上面が矩形状をなしており、その上面から所定間隔をおいて透明マトリクス層20が形成されている。発光素子17の上面と透明マトリクス層20の下面との間隔は0.1〜5mmとされ、発光素子17の上面と透明マトリクス層20の下面はほぼ平行であり、透明マトリクス層20の中央部Aには発光素子17から光がほぼ垂直に入射することになる。   That is, when FIG. 1A is viewed in plan, as shown in FIG. 1B, the surface of the wavelength conversion layer 19 has a circular shape, and the light emitting element 17 is located at the center thereof. The light emitting element 17 has a rectangular upper surface when the plan view of FIG. 1A is formed, and a transparent matrix layer 20 is formed at a predetermined interval from the upper surface. The distance between the upper surface of the light emitting element 17 and the lower surface of the transparent matrix layer 20 is 0.1 to 5 mm. The upper surface of the light emitting element 17 and the lower surface of the transparent matrix layer 20 are substantially parallel. In this case, light is incident from the light emitting element 17 almost vertically.

図2(a)では、透明マトリクス層20の外周部Bには、光散乱粒子20bを含有していない。透明マトリクス層20の透明マトリクス20aは、波長変換層19の透明マトリクス19aと同様の材料を使用できる。   In FIG. 2A, the outer peripheral portion B of the transparent matrix layer 20 does not contain the light scattering particles 20b. The transparent matrix 20 a of the transparent matrix layer 20 can use the same material as the transparent matrix 19 a of the wavelength conversion layer 19.

透明マトリクス層20の外周部Bに積層された波長変換層19の外周部における蛍光体19に発光素子17から直接的に光が入射し、また、透明マトリクス層20の中央部Aの光散乱粒子20bにより散乱された光が、波長変換層19の外周部における蛍光体19に入射し、発光装置全体としての発光効率を向上することができる。   Light directly enters the phosphor 19 in the outer peripheral portion of the wavelength conversion layer 19 stacked on the outer peripheral portion B of the transparent matrix layer 20 from the light emitting element 17, and light scattering particles in the central portion A of the transparent matrix layer 20. The light scattered by 20b is incident on the phosphor 19 in the outer peripheral portion of the wavelength conversion layer 19, and the luminous efficiency of the entire light emitting device can be improved.

なお、透明マトリクス層20の外周部Bにも光散乱粒子20bを含有しても良いが、中央部Aよりも光散乱粒子20bの含有率が少なくする必要がある。   Although the light scattering particles 20b may also be included in the outer peripheral portion B of the transparent matrix layer 20, the content of the light scattering particles 20b needs to be smaller than that in the central portion A.

光散乱粒子20bは発光素子17の真上付近(透明マトリクス層20の中央部A)に存在しており、中央部Aの直径は、発光素子17の上面の面積よりも少し広い範囲、すなわち、図1(a)を平面視した時に、円形状の中央部A内に発光素子17が入るような大きさとされている。中央部Aの直径は1〜4mmが好ましい。透明マトリクス層20を平面視した時に中央部Aを円形状としたが、多角形状としても良い。この場合、中央部Aの直径とは最大径をいう。発光素子17の上面の形状は四角形であり、一辺の長さが1mm以下とされている。   The light scattering particles 20b are present in the vicinity immediately above the light emitting element 17 (the central part A of the transparent matrix layer 20), and the diameter of the central part A is slightly wider than the area of the upper surface of the light emitting element 17, that is, When the plan view of FIG. 1A is taken, the size is such that the light emitting element 17 enters the circular central portion A. The diameter of the central portion A is preferably 1 to 4 mm. Although the central portion A is circular when the transparent matrix layer 20 is viewed in plan, it may be polygonal. In this case, the diameter of the central portion A refers to the maximum diameter. The shape of the upper surface of the light emitting element 17 is a quadrangle, and the length of one side is 1 mm or less.

光散乱粒子20bは、励起光を吸収することなく、より反射もしくは透過する材料組成が好ましく、シリカ、アルミナ、アクリル系樹脂およびメタクリル酸系樹脂のいずれかからなることが望ましい。特に、理由は明確ではないがシリカがよい。   The light scattering particles 20b preferably have a material composition that reflects or transmits light without absorbing excitation light, and is preferably made of silica, alumina, acrylic resin, or methacrylic acid resin. In particular, silica is preferable although the reason is not clear.

光散乱粒子20bの平均粒径は0.1〜10μmの範囲であればよく、0.3〜1μm
が最もよい。光散乱粒子20bの平均粒径が0.1μmよりも小さいと、励起光の散乱効果が小さくなる傾向があり、白色光強度の上昇度合いが小さくなる。また、光散乱粒子20bの平均粒径が10μmより大きいと、光散乱粒子20bによる励起光の阻害効果の影響が大きくなり、白色光強度の上昇度合いが小さくなる。
The average particle diameter of the light scattering particles 20b may be in the range of 0.1 to 10 μm, and 0.3 to 1 μm.
Is the best. When the average particle diameter of the light scattering particles 20b is smaller than 0.1 μm, the scattering effect of the excitation light tends to be small, and the increase degree of the white light intensity is small. On the other hand, when the average particle diameter of the light scattering particles 20b is larger than 10 μm, the influence of the inhibition effect of the excitation light by the light scattering particles 20b increases, and the degree of increase in the white light intensity decreases.

光散乱粒子20bの含有量は、全量中0.1〜80質量%の範囲であればよく、特に5
〜50質量%が最もよい。0.1質量%よりも小さいと、励起光の散乱効果が小さく、白色光強度の上昇度合いが小さくなる。また、80質量%よりも大きくなると励起光の阻害効果の影響が大きくなり、白色光強度の上昇度合いが小さくなる。
The content of the light scattering particles 20b may be in the range of 0.1 to 80% by mass, particularly 5
˜50 mass% is the best. If it is less than 0.1% by mass, the scattering effect of excitation light is small, and the degree of increase in white light intensity is small. On the other hand, if it exceeds 80% by mass, the influence of the inhibitory effect on the excitation light increases, and the degree of increase in the white light intensity decreases.

本形態の発光装置では、波長変換層19の発光素子側に透明マトリクス層20が積層されており、透明マトリクス層20は、発光素子17から光がほぼ垂直に入射する中央部Aと、その周囲の外周部Bとを有しており、透明マトリクス層20の中央部Aに、外周部Bよりも光散乱粒子20bが多く分散しているため、発光素子17への投入電流を増加させた場合、透明マトリクス層20の中央部Aでは発光素子17からの強い光が入射するが、光散乱粒子20bにより散乱され、透明マトリクス層20の中央部Aに積層された波長変換層19の中央部における蛍光体19に対する、発光素子17からの直接的な入射が抑制され、波長変換層19の中央部における蛍光体19自体の発熱を抑制でき、発光素子17からの光が強くなっても蛍光体19の効率低下を抑制することができ、白色光の発光効率を向上することができる。   In the light emitting device of this embodiment, the transparent matrix layer 20 is laminated on the light emitting element side of the wavelength conversion layer 19, and the transparent matrix layer 20 includes a central portion A where light from the light emitting element 17 is incident substantially perpendicularly and its periphery. When the input current to the light emitting element 17 is increased because the light scattering particles 20b are more dispersed in the central part A of the transparent matrix layer 20 than in the outer peripheral part B. In the central portion A of the transparent matrix layer 20, strong light from the light emitting element 17 is incident, but is scattered by the light scattering particles 20 b and in the central portion of the wavelength conversion layer 19 stacked on the central portion A of the transparent matrix layer 20. Direct incidence from the light emitting element 17 to the phosphor 19 is suppressed, heat generation of the phosphor 19 itself in the central portion of the wavelength conversion layer 19 can be suppressed, and even if the light from the light emitting element 17 becomes strong, the phosphor It is possible to suppress the efficiency reduction of 9, it is possible to improve the luminous efficiency of white light.

電極13を形成する導体は、発光素子17を電気的に接続するための導電路としての機能を有し、基体15の下面から上面に引き出され、ワイヤ22にて発光素子17と電気的に接続されている。導体としては、例えば、W、Mo、CuまたはAg等の金属粉末を含むメタライズ層を用いることができる。導体は、基板15がセラミックスからなる場合、その上面に配線導体がタングステン(W)またはモリブデン(Mo)−マンガン(Mn)等から成る金属ペーストを高温で熱処理して形成され、基板15が樹脂から成る場合、銅(Cu)または鉄(Fe)−ニッケル(Ni)合金等から成るリード端子がモールド成型されて基板15の内部に設置固定される。   The conductor forming the electrode 13 has a function as a conductive path for electrically connecting the light emitting element 17, is drawn from the lower surface of the base body 15 to the upper surface, and is electrically connected to the light emitting element 17 by the wire 22. Has been. As the conductor, for example, a metallized layer containing metal powder such as W, Mo, Cu, or Ag can be used. When the substrate 15 is made of ceramic, the conductor is formed on the upper surface of the wiring conductor by heat-treating a metal paste made of tungsten (W) or molybdenum (Mo) -manganese (Mn) or the like at a high temperature. In this case, a lead terminal made of copper (Cu) or iron (Fe) -nickel (Ni) alloy or the like is molded and fixed inside the substrate 15.

基板15は熱伝導性が高く、かつ全反射率の大きいことが求められるため、例えばアルミナ、窒化アルミニウム等のセラミック材料の他に、金属酸化物微粒子を分散させた高分子樹脂が好適に用いられる。   Since the substrate 15 is required to have high thermal conductivity and high total reflectance, for example, a polymer resin in which metal oxide fine particles are dispersed is suitably used in addition to a ceramic material such as alumina or aluminum nitride. .

発光素子17は、蛍光体の励起を効率的に行なうことができるため、中心波長が370〜420nmの光を発する半導体材料を備えた発光素子を用いている。これにより、出力光の強度を高め、より発光効率の高い発光装置を得ることが可能となる。   The light-emitting element 17 uses a light-emitting element including a semiconductor material that emits light having a center wavelength of 370 to 420 nm because phosphors can be excited efficiently. As a result, it is possible to increase the intensity of the output light and obtain a light emitting device with higher luminous efficiency.

発光素子17は、上記中心波長を発するものが好ましいが、発光素子基板表面に、半導体材料からなる発光層を備える構造(図示せず)を有していることが、高い量子効率を有する点で好ましい。このような半導体材料として、ZnSeまたは窒化物半導体(GaN等)等種々の半導体を挙げることができるが、発光波長が上記波長範囲であれば、特に半導体材料の種類は限定されない。これらの半導体材料を有機金属気相成長法(MOCVD法)や分子線エピタシャル成長法等の結晶成長法により、発光素子基板上に半導体材料からなる発光層を有する積層構造を形成すれば良い。発光素子基板は、結晶性の良い窒化物半導体を量産性よく形成させるために、例えば窒化物半導体からなる発光層を表面に形成する場合、サファイア、スピネル、SiC、Si、ZnO、ZrB、GaNまたは石英等の材料が好適に用いられる。 The light emitting element 17 preferably emits the center wavelength. However, the light emitting element substrate has a structure (not shown) including a light emitting layer made of a semiconductor material on the surface of the light emitting element substrate in that it has high quantum efficiency. preferable. Examples of such semiconductor materials include various semiconductors such as ZnSe and nitride semiconductors (GaN and the like), but the type of the semiconductor material is not particularly limited as long as the emission wavelength is in the above wavelength range. A stacked structure including a light-emitting layer made of a semiconductor material may be formed over a light-emitting element substrate using a crystal growth method such as a metal organic chemical vapor deposition method (MOCVD method) or a molecular beam epitaxial growth method. In order to form a nitride semiconductor with good crystallinity with high productivity, for example, when a light emitting layer made of a nitride semiconductor is formed on the surface of the light emitting element substrate, sapphire, spinel, SiC, Si, ZnO, ZrB 2 , GaN Alternatively, a material such as quartz is preferably used.

発光素子から放出される光は、50mW以上、特に、200〜1000mWであることが望ましい。   The light emitted from the light emitting element is preferably 50 mW or more, particularly 200 to 1000 mW.

発光素子17と波長変換層19の側面には、必要に応じて、光を反射する反射部材21を設け、側面に逃げる光を前方に反射し、出力光の強度を高めることができる。反射部材21の材料としては、例えばアルミニウム(Al)、ニッケル(Ni)、銀(Ag)、クロム(Cr)、チタン(Ti)、銅(Cu)、金(Au)、鉄(Fe)またはこれらの積
層構造物や合金、さらにアルミナセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂を用いることができる。
If necessary, a reflection member 21 that reflects light is provided on the side surfaces of the light emitting element 17 and the wavelength conversion layer 19, and the light escaping to the side surface is reflected forward to increase the intensity of the output light. Examples of the material of the reflecting member 21 include aluminum (Al), nickel (Ni), silver (Ag), chromium (Cr), titanium (Ti), copper (Cu), gold (Au), iron (Fe), and these. These laminated structures and alloys, ceramics such as alumina ceramics, or resins such as epoxy resins can be used.

本実施形態の発光装置は、図1に示すように、波長変換器を発光素子17上に設置することにより得られる。波長変換器を発光素子17上に設置する方法としては硬化したシート状の波長変換器を発光素子17上に設置することが可能である。   The light emitting device of this embodiment can be obtained by installing a wavelength converter on the light emitting element 17 as shown in FIG. As a method of installing the wavelength converter on the light emitting element 17, it is possible to install a cured sheet-like wavelength converter on the light emitting element 17.

本発明の照明装置は、図1に示すような発光装置を、例えば、基板に複数配置し、これらの発光装置を電気的に接続して構成される。また、基板15の表面に複数の発光素子17、波長変換層19、反射部材21を形成し、複数の発光装置を形成し、これらの発光装置を電気的に接続して照明装置を形成しても良い。   The lighting device of the present invention is configured by arranging a plurality of light emitting devices as shown in FIG. 1 on a substrate, for example, and electrically connecting these light emitting devices. Further, a plurality of light emitting elements 17, a wavelength conversion layer 19, and a reflecting member 21 are formed on the surface of the substrate 15 to form a plurality of light emitting devices, and these light emitting devices are electrically connected to form an illumination device. Also good.

(赤色発光蛍光体19bの説明)
赤色発光蛍光体19bは、平均粒径D50が15〜45μmの蛍光体からなるもので、平均粒径は、レーザー回折散乱法により測定することができる。また、赤色発光蛍光体19bの量子効率は35〜45%とされている。
(Description of the red light emitting phosphor 19b)
The red light emitting phosphor 19b is made of a phosphor having an average particle diameter D50 of 15 to 45 μm, and the average particle diameter can be measured by a laser diffraction scattering method. The red light emitting phosphor 19b has a quantum efficiency of 35 to 45%.

赤色発光蛍光体19bは、アルカリ土類金属珪酸塩からなるもので、例えば、M(MはBa、またはBaとSr、あるいはBaとCa)、Eu、Mg、MnおよびSiを必須成分として含有する蛍光体である。そして、Si 1モルに対するEuのモル比が0.14以下であり、Si 1モルに対するMnのモル比が0.07以下のものである。 The red light-emitting phosphor 19b is made of an alkaline earth metal silicate. For example, M 1 (M 1 is Ba, Ba and Sr, or Ba and Ca), Eu, Mg, Mn, and Si are essential components. It is a phosphor containing. And the molar ratio of Eu with respect to 1 mol of Si is 0.14 or less, and the molar ratio of Mn with respect to 1 mol of Si is 0.07 or less.

赤色発光蛍光体19bは、例えば、M 3−aEuMg1−bMnSiの化学組成(但し、aは0<a≦0.264、bは0<b≦0.132、cは1.905≦c≦2.025を満足する値である)を有する。この化学組成で表される蛍光体は、化学量論組成に近く、励起光を赤色に変換することのできる結晶が再現よく形成されるとともに、結晶相の制御を容易に行うことができ、さらに赤色以外の変換光の発生を抑制することができる。 Red-emitting phosphor 19b is, for example, M 1 3-a Eu a Mg 1-b Mn b chemical composition of Si c O 8 (provided that, a 0 <a ≦ 0.264, b is 0 <b ≦ 0. 132 and c are values satisfying 1.905 ≦ c ≦ 2.025). The phosphor represented by this chemical composition is close to the stoichiometric composition, so that crystals capable of converting excitation light into red can be formed with good reproducibility, and the crystal phase can be easily controlled. Generation of converted light other than red can be suppressed.

Euのモル比aは、M 3−aEuMg1−bMnSi中で0<a≦0.264を満たせばよい。しかし、発光中心イオンEu2+のモル比aが小さすぎると、量子効率が小さくなる傾向がある。一方、多すぎても、濃度消光と呼ばれる現象によりやはり量子効率が小さくなる傾向がある。下限としては0.06≦aが好ましい。特には、aは、0.1≦a≦0.2の範囲にあることが望ましい。 Molar ratio a of Eu is in M 1 3-a Eu a Mg 1-b Mn b Si c O 8 0 < should satisfy a ≦ 0.264. However, if the molar ratio a of the luminescent center ion Eu 2+ is too small, the quantum efficiency tends to be small. On the other hand, if the amount is too large, the quantum efficiency tends to decrease due to a phenomenon called concentration quenching. The lower limit is preferably 0.06 ≦ a. In particular, a is preferably in the range of 0.1 ≦ a ≦ 0.2.

Mnのモル比は0<b≦0.132を満たせばよい。しかし蛍光体は励起光源の照射を受けて励起したEu2+のエネルギーがMn2+に移動し、Mn2+が赤発光しているものと考えられているため、Mnの組成によりエネルギー移動の程度が異なる。それゆえ高い赤色の量子効率を得るには、0.01≦b≦0.1であることが好ましい。さらに、bは、0.075≦b≦0.1を満足することが望ましい。また、cは、1.905≦c≦2.025を満足すればよい。 The molar ratio of Mn should satisfy 0 <b ≦ 0.132. However phosphor energy Eu 2+ excited by irradiation of the excitation light source is moved to Mn 2+, because the Mn 2+ is believed to have red light emission, the degree of energy transfer varies depending on the composition of the Mn . Therefore, in order to obtain high red quantum efficiency, it is preferable that 0.01 ≦ b ≦ 0.1. Further, b preferably satisfies 0.075 ≦ b ≦ 0.1. Further, c may satisfy 1.905 ≦ c ≦ 2.025.

尚、赤色発光蛍光体19bは、M 3−x−yEuMgMnSiの化学組成(但し、xは0<x≦0.2、yは0<y≦0.1、zは1.905≦z≦2.025を満足する値である)で表される場合もある。 The red light-emitting phosphor 19b has a chemical composition of M 13 -xy Eu x MgMn y Si z O 8 (where x is 0 <x ≦ 0.2, y is 0 <y ≦ 0.1, z is a value satisfying 1.905 ≦ z ≦ 2.025).

(緑色発光蛍光体19dの説明)
緑色発光蛍光体19dは、平均粒径D50が15〜45μmの蛍光体からなるもので、平均粒径は、レーザー回折散乱法により測定することができる。また、緑色発光蛍光体19dの量子効率は40〜50%とされている。
(Description of green light emitting phosphor 19d)
The green light emitting phosphor 19d is made of a phosphor having an average particle diameter D50 of 15 to 45 μm, and the average particle diameter can be measured by a laser diffraction scattering method. The quantum efficiency of the green light emitting phosphor 19d is 40 to 50%.

本発明の緑色発光蛍光体19dは、アルカリ土類金属珪酸塩からなるもので、例えば、M(MはSr、BaおよびCaから選ばれる少なくとも1種)、EuおよびSiを含有する蛍光体である。この緑色発光蛍光体19dは(M,Eu)SiO4で表される
結晶を主結晶とし、緑色発光蛍光体19dのX線吸収端近傍構造スペクトル(X-ray Absorption Near Edge Structure:XANES)による2価のEuイオンおよび3価のEuイオンの合量に対する2価のEuイオンの濃度が90%以上である。
The green light-emitting phosphor 19d of the present invention is made of an alkaline earth metal silicate, for example, a phosphor containing M 2 (M 2 is at least one selected from Sr, Ba and Ca), Eu and Si. It is. The green light emitting phosphor 19d has a crystal represented by (M 2 , Eu) 2 SiO 4 as a main crystal, and the X-ray absorption near edge structure (XANES) of the green light emitting phosphor 19d. The concentration of the divalent Eu ion with respect to the total amount of the divalent Eu ion and the trivalent Eu ion is 90% or more.

さらに、蛍光体は、Si 1モルに対するMのモル比と、Si 1モルに対するEuのモル比の合計((M+Eu)/Si)が2未満である。 Furthermore, the phosphor has a molar ratio of M 2 for Si 1 mol, the sum of the molar ratio of Eu for Si 1 mole ((M 2 + Eu) / Si) is less than 2.

ここで言うモル比の合計(M+Eu)/Siの値は蛍光体中のSr2−x−yBaEuSiO結晶の構成元素組成から求められる値ではなく、緑色発光蛍光体19d全体の構成元素組成から求められる値を指す。 The value of the total molar ratio (M 2 + Eu) / Si referred to here is not a value obtained from the constituent element composition of the Sr 2 -xy Ba x Eu y SiO 4 crystal in the phosphor, but the green light emitting phosphor 19d. The value obtained from the total constituent element composition.

蛍光を発する理想的な(M,Eu)SiO4結晶、例えば、Sr2−x−yBa
EuSiO結晶では、化学量論比がモル比の合計(Sr+Ba+Eu)/Si=2となるため、蛍光体の組成もモル比の合計(Sr+Ba+Eu)/Si=2とすることが望ましいように思われるが、理由については現在のところ不明であるが、むしろモル比の合計(Sr+Ba+Eu)/Si=2ではなく、蛍光体のモル比の合計(Sr+Ba+Eu)/Siの値を化学量論比からはずれたモル比の合計(Sr+Ba+Eu)/Si<2、特には1.94以下、さらには1.78〜1.94の範囲とすることで量子効率の高い蛍光体が得られることが明らかとなった。特には、1.89〜1.91であることが望ましい。
Ideal fluoresce (M 2, Eu) 2 SiO 4 crystal, for example, Sr 2-x-y Ba x
In Eu y SiO 4 crystal, the stoichiometric ratio is the sum of the molar ratios (Sr + Ba + Eu) / Si = 2, so that the phosphor composition is preferably the sum of the molar ratios (Sr + Ba + Eu) / Si = 2. It seems that the reason is currently unknown, but rather than the total molar ratio (Sr + Ba + Eu) / Si = 2, the total phosphor molar ratio (Sr + Ba + Eu) / Si is calculated from the stoichiometric ratio. It is clear that a phosphor with high quantum efficiency can be obtained by setting the total of the deviated molar ratios (Sr + Ba + Eu) / Si <2, in particular 1.94 or less, and further in the range of 1.78 to 1.94. It was. In particular, it is desirably 1.89 to 1.91.

また、xの値は0〜1の範囲で任意に選ぶことが可能であり、x=0の場合黄色、x=1の場合緑色の蛍光体とすることができ、黄色乃至緑色(以下、黄緑色ということもある)を発することができる。ここで、x≦1とすることにより、耐水性を向上できる。   Further, the value of x can be arbitrarily selected within the range of 0 to 1. When x = 0, it can be yellow, and when x = 1, it can be a green phosphor. Yellow to green (hereinafter, yellow) (It may be green). Here, water resistance can be improved by setting x ≦ 1.

(青色発光蛍光体19cの説明)
青色発光蛍光体19cは、平均粒径D50が2〜10μmの蛍光体からなるもので、平均粒径は、レーザー回折散乱法により測定することができる。また、青色発光蛍光体19cの量子効率は35〜45%とされている。
(Description of blue light emitting phosphor 19c)
Blue-emitting phosphor 19c is intended to mean particle diameter D 50 is made of a phosphor 2 to 10 [mu] m, average particle size can be measured by a laser diffraction scattering method. Further, the blue light emitting phosphor 19c has a quantum efficiency of 35 to 45%.

青色発光蛍光体19cは、(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu、(
Sr,Ca,Ba,Mg)10(PO46Cl17:Eu、Sr10(PO46Cl12:Eu、10(Sr,Ca,Ba,Eu)・6PO4・Cl2、(Sr,Ca,Ba,Mg)5(P
43(Cl,Br):Eu、等が用いられる。なお、青色発光蛍光体19cは、〔(M,Mg)10(PO46Cl2:Eu、〕(MはCa,SrおよびBaから選択される少な
くとも1種)で表されるハロりん酸塩からなるものが好適に用いられる。
The blue light emitting phosphor 19c includes (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, (
Sr, Ca, Ba, Mg) 10 (PO 4) 6 Cl 17: Eu, Sr 10 (PO 4) 6 Cl 12: Eu, 10 (Sr, Ca, Ba, Eu) · 6PO 4 · Cl 2, (Sr , Ca, Ba, Mg) 5 (P
O 4 ) 3 (Cl, Br): Eu, etc. are used. The blue light emitting phosphor 19c is a halophosphoric acid represented by [(M, Mg) 10 (PO 4 ) 6 Cl 2 : Eu,] (M is at least one selected from Ca, Sr and Ba). What consists of a salt is used suitably.

(実施例1〜3、比較例1)
先ず、図1の発光装置11を作製した。基板(基体)15としてアルミナ基板を用い、基板15上に設けられている発光素子17として、サファイア基板に窒化物半導体をエピ形成したものを用い、反射部材21としてアルミナを用いた。
(Examples 1 to 3, Comparative Example 1)
First, the light emitting device 11 of FIG. 1 was manufactured. An alumina substrate was used as the substrate (base) 15, a light emitting element 17 provided on the substrate 15 was obtained by epi-forming a nitride semiconductor on a sapphire substrate, and alumina was used as the reflecting member 21.

先ず、波長変換層19を作製した。この波長変換層19は、透明マトリクス19a中に、赤色発光蛍光体19b、緑色発光蛍光体19dおよび青色発光蛍光体19cを分散して構成されている。   First, the wavelength conversion layer 19 was produced. The wavelength conversion layer 19 is configured by dispersing a red light emitting phosphor 19b, a green light emitting phosphor 19d, and a blue light emitting phosphor 19c in a transparent matrix 19a.

波長変換層19は、透明マトリクス19aを構成する材料(東レ・ダウコーニング:CY52−502)1g中に、平均粒径が10μmの赤色発光蛍光体19bを0.339g、平均粒径が10μmの緑色発光蛍光体19dを0.301g、平均粒径が1μmの青色発光蛍光体19cを0.278g添加し、攪拌脱泡器で混合して蛍光体ペーストを作製した。作製した蛍光体ペーストをガラス板に塗布し、150℃で2分間加熱し、シリコーン樹脂を固化させ、発光素子側の直径が5mm、厚み0.6mmの波長変換層19を形成した。   The wavelength conversion layer 19 is 0.339 g of a red light emitting phosphor 19b having an average particle diameter of 10 μm and green having an average particle diameter of 10 μm in 1 g of a material (Toray Dow Corning: CY52-502) constituting the transparent matrix 19a. 0.301 g of the light emitting phosphor 19d and 0.278 g of the blue light emitting phosphor 19c having an average particle diameter of 1 μm were added and mixed with a stirring deaerator to prepare a phosphor paste. The prepared phosphor paste was applied to a glass plate and heated at 150 ° C. for 2 minutes to solidify the silicone resin, thereby forming the wavelength conversion layer 19 having a light emitting element side diameter of 5 mm and a thickness of 0.6 mm.

赤色発光蛍光体としては、M 3−aEuMg1−bMnSiの化学組成において、a=0.2、b=0.075、c=1.905で表されるものを用いた。 Examples of red emitting phosphor, in the chemical composition of M 1 3-a Eu a Mg 1-b Mn b Si c O 8, a = 0.2, b = 0.075, expressed by c = 1.905 A thing was used.

緑色発光蛍光体としては、Sr2−x−yBaEuSiOの化学組成を有し、x=0.536、y=0.05、(Sr+Ba+Eu)/Si=1.90で表されるものを用いた。 The green light-emitting phosphor has a chemical composition of Sr2 -xy Ba x Eu y SiO 4 and is represented by x = 0.536, y = 0.05, (Sr + Ba + Eu) /Si=1.90. I used something.

青色発光蛍光体としては、(Sr,Ca,Ba,Mg)10(PO46Cl2:Euで表
されるものを用いた。
As the blue light-emitting phosphor, a material represented by (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu was used.

透明マトリクス層20は、透明マトリクス20aを構成する材料(東レ・ダウコーニング:CY52−502)中に、光散乱粒子20bとして平均粒径0.3μmのシリカ(SiO:(扶桑化学:SP−03F))を添加し、作製したシリカペーストをガラス板に塗布し、150℃で2分間加熱し、厚み0.1mmにしてシリコーン樹脂を固化させ、直径3mmで打ち抜き、シリカ含有層(中央部A:シリカ含有濃度20質量%)とした。この打ち抜いたシリカ含有層(中央部A)に、さらにシリコーン樹脂を塗布し、厚み0.1mmで固化し、直径3mmのシリカ含有層(中央部A)が中央にくるように直径5mmで打ち抜き、光散乱粒子20bを含有する中央部Aと、光散乱粒子20bを含有しない外周部Bとからなる、直径5mm、厚さ0.1mmの透明マトリクス層20を形成した。 Transparent matrix layer 20, the material constituting the transparent matrix 20a (Dow Corning: CY52-502) during, an average particle diameter of 0.3μm as the light scattering particles 20b silica (SiO 2 :( Fuso Chemical: SP-03F )) Was added, and the produced silica paste was applied to a glass plate, heated at 150 ° C. for 2 minutes, solidified to a thickness of 0.1 mm, solidified with a silicone resin, punched out with a diameter of 3 mm, and a silica-containing layer (center A: The silica-containing concentration was 20% by mass). A silicone resin is further applied to the punched silica-containing layer (central part A), solidified at a thickness of 0.1 mm, and punched out at a diameter of 5 mm so that the silica-containing layer (central part A) with a diameter of 3 mm comes to the center. A transparent matrix layer 20 having a diameter of 5 mm and a thickness of 0.1 mm, comprising a central part A containing the light scattering particles 20b and an outer peripheral part B not containing the light scattering particles 20b, was formed.

波長変換層19の上に透明マトリクス層20を積層し、透明マトリクス層20が、図1のように、発光素子17を被覆する樹脂層25上となるように配置し、発光装置を作製した。発光素子17の上面と透明マトリクス層20の下面とはほぼ平行であり、発光素子17は、図1(b)に示すように、透明マトリクス層20の中央部A内に位置していた。発光素子17の上面と透明マトリクス層20の下面との距離は2mmであった。   A transparent matrix layer 20 was laminated on the wavelength conversion layer 19, and the transparent matrix layer 20 was disposed so as to be on the resin layer 25 covering the light emitting element 17 as shown in FIG. The upper surface of the light emitting element 17 and the lower surface of the transparent matrix layer 20 are substantially parallel, and the light emitting element 17 is located in the central portion A of the transparent matrix layer 20 as shown in FIG. The distance between the upper surface of the light emitting element 17 and the lower surface of the transparent matrix layer 20 was 2 mm.

得られた発光装置からの光を蛍光分光光度計(日本分光社製)で測定し、発光素子出力と発光強度(青+緑+赤色蛍光体の発光強度の積分値)を図3(a)に実施例1として記載した。発光強度は、比較例1の47.3mWのときの発光強度を1としたときの相対強度として記載した。   The light from the obtained light emitting device was measured with a fluorescence spectrophotometer (manufactured by JASCO Corp.), and the light emitting element output and light emission intensity (integrated value of light emission intensity of blue + green + red phosphor) were shown in FIG. As Example 1. The light emission intensity is described as the relative intensity when the light emission intensity at 47.3 mW in Comparative Example 1 is 1.

比較例1として、透明マトリクス層の無い場合(図2(b))を作製した。透明マトリクス層の中央部Aの直径を変化させ、光散乱粒子20bの組成、光散乱粒子20bの平均粒径、透明マトリクス層中における光散乱粒子の含有量(濃度)を、表1に示すように設定し、発光装置を作製し、評価し、実施例2、3とした。   As Comparative Example 1, a case without a transparent matrix layer (FIG. 2B) was produced. Table 1 shows the composition of the light scattering particles 20b, the average particle diameter of the light scattering particles 20b, and the content (concentration) of the light scattering particles in the transparent matrix layer by changing the diameter of the central portion A of the transparent matrix layer. The light emitting device was manufactured and evaluated, and Examples 2 and 3 were obtained.

波長変換器の厚み(波長変換層19と透明マトリクス層20の合計)は0.7mmで同じであり、波長変換層19内に存在する各蛍光体量も同一になるように調整した。   The thickness of the wavelength converter (the total of the wavelength conversion layer 19 and the transparent matrix layer 20) was the same at 0.7 mm, and the amount of each phosphor present in the wavelength conversion layer 19 was adjusted to be the same.

Figure 2011155125
Figure 2011155125

図3(a)から、比較例1(図2(b))は、放射束(発光素子の出力)の低い領域で発光強度がある程高いものの、放射束の増加に対する発光強度の伸びは小さいことが判る。これに対して、発光素子の上付近に光散乱粒子20bが存在する透明マトリクス層20を形成した実施例1〜3(図2(a))では、放射束の増加に対する発光強度の伸びが、比較例1よりも大きいことがわかる。
(実施例4〜6)
光散乱粒子20bとして、シリカ(SiO)に代えて、表2に示すように、アルミナ(Al)、メタクリル酸メチル(メタクリル酸系樹脂)、ポリスチレン系(アクリル系樹脂)を用いる以外は、上記実施例1と同様にして、発光装置を作製し、評価し、結果を図3(b)に記載した。
From FIG. 3A, in Comparative Example 1 (FIG. 2B), although the emission intensity is higher in the region where the radiant flux (output of the light emitting element) is lower, the increase in the emission intensity with respect to the increase in the radiant flux is small. I understand that. On the other hand, in Examples 1 to 3 (FIG. 2A) in which the transparent matrix layer 20 in which the light scattering particles 20b exist in the vicinity of the light emitting element is formed, the increase in emission intensity with respect to the increase in radiant flux is as follows: It turns out that it is larger than the comparative example 1.
(Examples 4 to 6)
As light scattering particles 20b, instead of silica (SiO 2 ), as shown in Table 2, alumina (Al 2 O 3 ), methyl methacrylate (methacrylic acid resin), polystyrene (acrylic resin) is used. Were produced and evaluated in the same manner as in Example 1 above, and the results are shown in FIG.

Figure 2011155125
Figure 2011155125

図3(b)から、透明マトリクス層20の光散乱粒子20bにシリカ、アルミナ、メタクリル酸系樹脂、アクリル系樹脂を用いた本発明の実施例4〜6は、比較例1に比べ、発光強度は全て高くなることが確認できた。このことから、実施例1、4〜6は比較例1よりも放射束の増加に対する発光強度の伸びが大きいことがわかる。
(実施例7〜9)
光散乱粒子20bとして、シリカを用い、平均粒径を表3に示すように変化させる以外は、上記実施例1と同様にして、実施例7〜9の発光装置を作製し、評価し、結果を図4(a)に記載した。
From FIG. 3 (b), Examples 4 to 6 of the present invention using silica, alumina, methacrylic acid resin, and acrylic resin for the light scattering particles 20 b of the transparent matrix layer 20, compared with Comparative Example 1, emitted light intensity. Were all confirmed to be higher. From this, it can be seen that Examples 1, 4 to 6 have a larger increase in emission intensity with respect to an increase in radiant flux than Comparative Example 1.
(Examples 7 to 9)
Except that silica is used as the light scattering particle 20b and the average particle diameter is changed as shown in Table 3, the light emitting devices of Examples 7 to 9 are produced and evaluated in the same manner as in Example 1, and the results are shown. Is shown in FIG.

Figure 2011155125
Figure 2011155125

図4(a)から、光散乱粒子20bに、平均粒径0.1〜10μmのシリカを用いた本発明の実施例1、7〜9は、比較例1と比較して発光強度が上昇していることがわかる。このことから、実施例1、7〜9は比較例1よりも放射束の増加に対する発光強度の伸びが大きいことがわかる。シリカの粒径は0.3μm(実施例1)が最も良いことがわかる

(実施例10、11)
光散乱粒子20bとして、平均粒径0.3μmのシリカを用い、透明マトリクス層20の厚みを0.1mmとし、透明マトリクス層20の中央部Aにおける光散乱粒子20bの濃度(含有量)を、表4に示すように変化させる以外は、上記実施例1と同様にして、実施例10、11の発光装置を作製し、評価し、結果を図4(b)に記載した。
4A, Examples 1 and 7 to 9 of the present invention in which silica having an average particle diameter of 0.1 to 10 μm was used for the light scattering particles 20b, the emission intensity increased as compared with Comparative Example 1. You can see that From this, it can be seen that Examples 1 and 7 to 9 have a larger increase in emission intensity with respect to an increase in radiant flux than Comparative Example 1. It can be seen that the silica particle size is best at 0.3 μm (Example 1).
(Examples 10 and 11)
Silica having an average particle size of 0.3 μm is used as the light scattering particles 20b, the thickness of the transparent matrix layer 20 is 0.1 mm, and the concentration (content) of the light scattering particles 20b in the central portion A of the transparent matrix layer 20 is Except for the changes shown in Table 4, the light emitting devices of Examples 10 and 11 were prepared and evaluated in the same manner as in Example 1, and the results are shown in FIG.

Figure 2011155125
Figure 2011155125

図4(b)から、透明マトリクス層20における光散乱粒子20bの濃度が5〜50質量%の本発明の実施例1、10、11は、全て比較例1(光散乱層のない場合)と比較して発光強度が上昇していることがわかる。このことから、実施例1、10、11は比較例1よりも放射束の増加に対する発光強度の伸びが大きいことがわかる。光散乱粒子の濃度は20質量%が最も良いことがわかる。   From FIG. 4 (b), Examples 1, 10, and 11 of the present invention in which the concentration of the light scattering particles 20b in the transparent matrix layer 20 is 5 to 50% by mass are all compared with Comparative Example 1 (in the case where there is no light scattering layer). It can be seen that the emission intensity is increased. From this, it can be seen that Examples 1, 10, and 11 show a larger increase in emission intensity with respect to an increase in radiant flux than Comparative Example 1. It can be seen that the concentration of the light scattering particles is best at 20% by mass.

11・・・発光装置
13・・・電極
15・・・基板
17・・・発光素子
19・・・波長変換層
19a・・・透明マトリクス
19b・・・赤色発光蛍光体
19c・・・青色発光蛍光体
19a・・・緑色発光蛍光体
20・・・透明マトリクス層
20a・・・透明マトリクス
20b・・・光散乱粒子
21・・・反射部材
A・・・中央部
B・・・外周部
DESCRIPTION OF SYMBOLS 11 ... Light-emitting device 13 ... Electrode 15 ... Board | substrate 17 ... Light-emitting element 19 ... Wavelength conversion layer 19a ... Transparent matrix 19b ... Red light emission fluorescent substance 19c ... Blue light emission fluorescence Body 19a ... Green light emitting phosphor 20 ... Transparent matrix layer 20a ... Transparent matrix 20b ... Light scattering particles 21 ... Reflection member A ... Center part B ... Outer peripheral part

Claims (3)

紫色の光を発する発光素子と、該発光素子が載置された基体と、前記発光素子と所定間隔をおいて形成され、前記発光素子が発する光を波長変換する波長変換層とを具備してなるとともに、該波長変換層が、透明マトリクス中に緑色に発光する蛍光体、青色に発光する蛍光体および赤色に発光する蛍光体を有する発光装置であって、前記波長変換層の前記発光素子側に透明マトリクス層が積層されており、該透明マトリクス層は、前記発光素子から光がほぼ垂直に入射する中央部と、その周囲の外周部とを有しており、前記透明マトリクス層の前記中央部には、前記外周部よりも光散乱粒子が多く分散していることを特徴とする発光装置。   A light emitting element that emits purple light; a base on which the light emitting element is mounted; and a wavelength conversion layer that is formed at a predetermined interval from the light emitting element and converts the wavelength of light emitted from the light emitting element. The wavelength conversion layer is a light emitting device having a phosphor that emits green light, a phosphor that emits blue light, and a phosphor that emits red light in a transparent matrix, the light emitting device side of the wavelength conversion layer A transparent matrix layer is laminated on the transparent matrix layer, and the transparent matrix layer has a central portion where light from the light emitting element is incident substantially perpendicularly and an outer peripheral portion around the central portion, and the central portion of the transparent matrix layer The light emitting device is characterized in that more light scattering particles are dispersed in the part than in the outer peripheral part. 前記透明マトリクス層の前記外周部には前記光散乱粒子が存在しないことを特徴とする請求項1に記載の発光装置   The light emitting device according to claim 1, wherein the light scattering particles are not present on the outer peripheral portion of the transparent matrix layer. 請求項1または2に記載の発光装置を複数具備してなることを特徴とする照明装置。   A lighting device comprising a plurality of the light-emitting devices according to claim 1.
JP2010015435A 2010-01-27 2010-01-27 Light-emitting device, and illumination apparatus Pending JP2011155125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015435A JP2011155125A (en) 2010-01-27 2010-01-27 Light-emitting device, and illumination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015435A JP2011155125A (en) 2010-01-27 2010-01-27 Light-emitting device, and illumination apparatus

Publications (1)

Publication Number Publication Date
JP2011155125A true JP2011155125A (en) 2011-08-11

Family

ID=44540888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015435A Pending JP2011155125A (en) 2010-01-27 2010-01-27 Light-emitting device, and illumination apparatus

Country Status (1)

Country Link
JP (1) JP2011155125A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183269A (en) * 2013-03-21 2014-09-29 Stanley Electric Co Ltd Wavelength converter
WO2015174127A1 (en) * 2014-05-16 2015-11-19 日本電気硝子株式会社 Light emitting device and method for manufacturing same
GB2553614A (en) * 2016-05-31 2018-03-14 Canon Kk Wavelength conversion element, light source apparatus and image projection apparatus
KR20180062842A (en) * 2016-12-01 2018-06-11 연세대학교 산학협력단 Light emitting device package and method of manufacturing the same
JP2019090856A (en) * 2017-11-10 2019-06-13 パナソニックIpマネジメント株式会社 Wavelength conversion device, light source device, illumination device, and projection-type picture display device
JPWO2018159268A1 (en) * 2017-03-02 2019-12-19 パナソニックIpマネジメント株式会社 Wavelength conversion member, light source and lighting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067204A (en) * 2005-08-31 2007-03-15 Toshiba Lighting & Technology Corp Light-emitting diode device
JP2007180339A (en) * 2005-12-28 2007-07-12 Nichia Chem Ind Ltd Light emitting device and its process for fabrication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067204A (en) * 2005-08-31 2007-03-15 Toshiba Lighting & Technology Corp Light-emitting diode device
JP2007180339A (en) * 2005-12-28 2007-07-12 Nichia Chem Ind Ltd Light emitting device and its process for fabrication

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183269A (en) * 2013-03-21 2014-09-29 Stanley Electric Co Ltd Wavelength converter
WO2015174127A1 (en) * 2014-05-16 2015-11-19 日本電気硝子株式会社 Light emitting device and method for manufacturing same
JP2015220330A (en) * 2014-05-16 2015-12-07 日本電気硝子株式会社 Light emission device and manufacturing method for the same
GB2553614A (en) * 2016-05-31 2018-03-14 Canon Kk Wavelength conversion element, light source apparatus and image projection apparatus
GB2553614B (en) * 2016-05-31 2020-02-19 Canon Kk Wavelength conversion element, light source apparatus and image projection apparatus
US10775686B2 (en) 2016-05-31 2020-09-15 Canon Kabushiki Kaisha Wavelength conversion element, light source apparatus and image projection apparatus
KR20180062842A (en) * 2016-12-01 2018-06-11 연세대학교 산학협력단 Light emitting device package and method of manufacturing the same
KR101963008B1 (en) * 2016-12-01 2019-03-27 연세대학교 산학협력단 Light emitting device package and method of manufacturing the same
JPWO2018159268A1 (en) * 2017-03-02 2019-12-19 パナソニックIpマネジメント株式会社 Wavelength conversion member, light source and lighting device
JP2019090856A (en) * 2017-11-10 2019-06-13 パナソニックIpマネジメント株式会社 Wavelength conversion device, light source device, illumination device, and projection-type picture display device

Similar Documents

Publication Publication Date Title
JP2011071404A (en) Light-emitting device and illumination apparatus
JP5676599B2 (en) LED package having scattering particle region
JP2017531324A (en) Light emitting device
JP5230594B2 (en) Phosphor, its manufacturing method, wavelength converter, light emitting device, and lighting device
JP2007273498A (en) Wavelength converter and light emitting device
JP5810301B2 (en) Lighting device
TWI418611B (en) Phosphor and light emitting device
JPWO2007018039A1 (en) Semiconductor light emitting device
JP2010225960A (en) Light emitting device and illumination apparatus
TW200947757A (en) Lighting device
JP5137850B2 (en) Phosphor and wavelength converter, light emitting device, and illumination device using the same
JP2011155125A (en) Light-emitting device, and illumination apparatus
JP2010006850A (en) Wavelength converter, light emitter, and illuminating device
WO2013027847A1 (en) Reflective substrate for led light emitting elements, and led package
JP2014082527A (en) Light-emitting module
JP4949793B2 (en) Phosphor, wavelength converter and light emitting device
JP2010199273A (en) Light-emitting device and lighting device
JP2009280793A (en) Fluorescent substance, wavelength converter, light emitter and lighting installation
JP5004616B2 (en) Phosphor, method for manufacturing the same, wavelength converter and light emitting device
JP6068473B2 (en) Wavelength converting particle, wavelength converting member, and light emitting device
JP2009203264A (en) Fluorescent substance, wavelength converter and light emitting device, and illuminating device
JP5036454B2 (en) Phosphor particles, wavelength converter and light emitting device
JP2008208202A (en) Phosphor, wavelength converter and light emitting device
JP2010199629A (en) Semiconductor light emitting device
JP2009238887A (en) Wavelength converter and light-emitting device, and lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730