JP2007031196A - Phosphor, and light emitting diode - Google Patents

Phosphor, and light emitting diode Download PDF

Info

Publication number
JP2007031196A
JP2007031196A JP2005215833A JP2005215833A JP2007031196A JP 2007031196 A JP2007031196 A JP 2007031196A JP 2005215833 A JP2005215833 A JP 2005215833A JP 2005215833 A JP2005215833 A JP 2005215833A JP 2007031196 A JP2007031196 A JP 2007031196A
Authority
JP
Japan
Prior art keywords
light
crystallized glass
phosphor
emitting diode
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005215833A
Other languages
Japanese (ja)
Other versions
JP4894186B2 (en
Inventor
Setsuhisa Tanabe
勢津久 田部
Shunsuke Fujita
俊輔 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Nippon Electric Glass Co Ltd
Original Assignee
Kyoto University
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Nippon Electric Glass Co Ltd filed Critical Kyoto University
Priority to JP2005215833A priority Critical patent/JP4894186B2/en
Publication of JP2007031196A publication Critical patent/JP2007031196A/en
Application granted granted Critical
Publication of JP4894186B2 publication Critical patent/JP4894186B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/125Silica-free oxide glass compositions containing aluminium as glass former
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/253Silica-free oxide glass compositions containing germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16151Cap comprising an aperture, e.g. for pressure control, encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor which is simple in structure and has excellent heat resistance, light resistance and weatherability, and suppresses the conventional deterioration in the light emitting strength and the shortening of the service life in a device such as a light emitting diode caused by deterioration in resin, and to provide a light emitting diode using the same. <P>SOLUTION: The light emitting diode 20 comprises: a stem 3 provided with a cathode lead terminal 1 and an anode lead terminal 2; a blue light emitting diode chip 4 connected to the anode lead terminal 2; a metal wire 5 connecting the blue light emitting diode chip 4 and the cathode lead terminal 1; a storage vessel 7 fixed so as to airtightly sealing the blue light emitting diode chip together with the stem 3, and in which a window part 6 is formed at the upper part of the blue light emitting diode chip; and a phosphor 8 composed of crystallized glass and fitted to the window part 6 of the storage vessel 7. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蛍光体及びそれを用いた発光ダイオードに関するものである。   The present invention relates to a phosphor and a light emitting diode using the phosphor.

1993年に発表された青色の発光ダイオード(LED:Light Emitting Diode)により光の3原色RGB(R:赤色、G:緑色、B:青色)のLEDが揃い、これらのLEDを並べて用いることによって白色光を得ることが提案されている。しかし、三色のLEDの発光出力が異なるため、各色個別の駆動回路が必要であり、制御性に問題があった。また、各色の発光ダイオードの色劣化速度が異なるため、白色光の長期安定性に問題があった。   The LEDs of the three primary colors RGB (R: red, G: green, B: blue) are aligned by blue light-emitting diodes (LEDs: Light Emitting Diodes) announced in 1993, and these LEDs are used side by side to produce white. It has been proposed to obtain light. However, since the light emission outputs of the three color LEDs are different, a drive circuit for each color is necessary, and there is a problem in controllability. Further, since the color deterioration rates of the light emitting diodes of the respective colors are different, there is a problem in long-term stability of white light.

これを解決するために、青色LEDチップと、青色LEDチップから発せられた青色光線によって黄色発光するYAG蛍光体を組合せたLEDが開発された(例えば、特許文献1:特開2000−208815号公報参照。)。これは、1種類のLEDで白色光が得られるため、低コストで、白色光の長期安定性にも優れる。また、この白色LEDは、従来の照明装置等の光源に比べ、長寿命、高効率、高安定性、低消費電力、高応答速度、環境負荷物質を含まない等の利点を有しているため、現在、ほとんどの携帯電話やデジタルカメラ等の液晶バックライトにはこの形態の白色LEDが使用されている。今後はこの白色LEDは、白熱電球や蛍光灯に替わる次世代の光源として照明用途への応用が期待されている。
特開2000−208815号公報
In order to solve this problem, an LED that combines a blue LED chip and a YAG phosphor that emits yellow light by blue light emitted from the blue LED chip has been developed (for example, Patent Document 1: JP 2000-208815 A). reference.). Since white light is obtained with one type of LED, this is low in cost and excellent in long-term stability of white light. In addition, this white LED has advantages such as long life, high efficiency, high stability, low power consumption, high response speed, and no environmental load substances compared to the light source such as a conventional lighting device. Currently, this type of white LED is used in the liquid crystal backlight of most mobile phones and digital cameras. In the future, this white LED is expected to be applied to illumination as a next-generation light source to replace incandescent bulbs and fluorescent lamps.
JP 2000-208815 A

しかし、特許文献1に記載の白色LEDは、青色の光を発光する発光素子の上に、粉末状の蛍光体と樹脂からなる複合体(コーティング部材)が設けられた構造を有し、発光素子から発せられた青色の励起光を粉末状の蛍光体に当てることによって、蛍光体から発せられた黄色の蛍光と、樹脂を透過した青色の励起光とが混色して、粉末状の蛍光体と樹脂とからなる複合体(コーティング部材)が白色光を発するが、長期使用時に、この樹脂がLEDチップの発熱、あるいはそれから発せられる光によって、徐々に劣化して変色あるいは変形し、これが白色発光ダイオードの発光強度や寿命を低下させる原因となっている。   However, the white LED described in Patent Document 1 has a structure in which a composite (coating member) made of a powdered phosphor and a resin is provided on a light emitting element that emits blue light. When the blue excitation light emitted from the phosphor is applied to the powdered phosphor, the yellow fluorescence emitted from the phosphor and the blue excitation light transmitted through the resin are mixed, and the powdered phosphor A composite (coating member) made of a resin emits white light, but during long-term use, the resin gradually deteriorates and discolors or deforms due to heat generated from the LED chip or light emitted from the LED chip. This is a white light emitting diode. This is a cause of lowering the light emission intensity and life of the product.

また、粉末状の蛍光体と樹脂とからなる複合体(コーティング部材)がLEDチップを覆うように固定されるため、その樹脂の塗布条件によっては粉末状の蛍光体と樹脂とからなる複合体(コーティング部材)の厚みにばらつきが生じやすく、それが発光色の配光性を低下させる原因となっている。また、特許文献1に記載の白色LEDは、蛍光体を固定するための樹脂や、LEDチップ及びコーティング部材全体を保護するための樹脂からなるモールド部材が必要となり、複雑な構造を有する。   In addition, since a composite (coating member) made of powdered phosphor and resin is fixed so as to cover the LED chip, a composite made of powdered phosphor and resin (depending on the application condition of the resin) Variations in the thickness of the coating member) are likely to occur, which causes a reduction in the light distribution of the luminescent color. Further, the white LED described in Patent Document 1 requires a mold member made of a resin for fixing the phosphor and a resin for protecting the LED chip and the entire coating member, and has a complicated structure.

本発明は、構造が簡単で、耐熱性、耐光性及び耐候性に優れ、従来の樹脂の劣化による発光ダイオード等のデバイスの発光強度劣化や短寿命化を抑制できる蛍光体及びそれを用いた発光ダイオードを提供することを目的とする。   The present invention has a simple structure, excellent heat resistance, light resistance, and weather resistance, and a phosphor capable of suppressing deterioration in light emission intensity and shortening of lifetime of a device such as a light emitting diode due to deterioration of a conventional resin, and light emission using the same An object is to provide a diode.

本発明の蛍光体は、可視光線からなる励起光を入射すると、該励起光の色相に対して補色の蛍光を発し、かつ該励起光を一部透過する結晶化ガラスからなり、前記結晶化ガラスは、析出結晶の平均粒子径が15μm以上であることを特徴とする。   The phosphor of the present invention comprises a crystallized glass that emits a complementary color fluorescence with respect to the hue of the excitation light when incident excitation light composed of visible light is incident, and the crystallized glass is partially transparent to the excitation light. Is characterized in that the average particle size of the precipitated crystals is 15 μm or more.

このような構成によれば、可視光線からなる励起光を蛍光体に入射すると、それ自身から白色光を発するので、構造が簡単で、且つ、耐熱性、耐光性及び耐候性に優れ、従来の樹脂の劣化による発光ダイオード等のデバイスの発光強度劣化や短寿命化を抑制できる。すなわち、蛍光体が、それ自身を透過した透過励起光と蛍光との混色により、白色光を発光する。また蛍光体が有機物質である樹脂を含まず、耐熱性、耐光性及び耐候性に優れた結晶化ガラスからなり、これを発光ダイオード等のデバイスに使用した場合、樹脂を使用せずにデバイスを構成できるため、従来の発光ダイオードにおいて見られるようなLEDチップの発熱、あるいはそれから発せられる光による樹脂の着色や変形による劣化がない。その結果、発光ダイオード等のデバイスの発光強度が劣化し難く寿命が長くなる。また、高温の厳しい環境下においても、例えば150℃の高温下で600時間保持しても、発光ダイオードの発光特性が変化し難くなる。また、太陽光等からの紫外線に曝されても、樹脂を含まないため樹脂による着色や劣化がない。また、厳しい長期間の高温高湿環境下(2000時間、温度85℃、湿度85%)においても、発光ダイオードの発光特性が変化し難くなる。   According to such a configuration, when excitation light composed of visible light is incident on the phosphor, white light is emitted from the phosphor itself. Therefore, the structure is simple, and heat resistance, light resistance, and weather resistance are excellent. It is possible to suppress light emission intensity deterioration and shortening of the life of a device such as a light emitting diode due to resin deterioration. That is, the phosphor emits white light due to the mixed color of the transmitted excitation light and the fluorescence transmitted through itself. In addition, the phosphor does not contain resin, which is an organic substance, and is made of crystallized glass with excellent heat resistance, light resistance, and weather resistance. When this is used in a device such as a light emitting diode, the device is used without using a resin. Since it can be configured, there is no deterioration due to coloring or deformation of the resin due to the heat generation of the LED chip as seen in conventional light emitting diodes or the light emitted therefrom. As a result, the light emission intensity of a device such as a light-emitting diode is unlikely to deteriorate and the life is prolonged. Further, even in a severe environment of high temperature, for example, even if it is held at a high temperature of 150 ° C. for 600 hours, the light emission characteristics of the light emitting diode are difficult to change. Further, even when exposed to ultraviolet rays from sunlight or the like, the resin is not contained, and therefore, there is no coloring or deterioration due to the resin. In addition, the light-emitting characteristics of the light-emitting diode hardly change even under a severe long-term high-temperature and high-humidity environment (2000 hours, temperature 85 ° C., humidity 85%).

しかも、結晶化ガラスは、析出結晶の平均粒子径が15μm以上であるため、それを用いた発光ダイオードの発光効率が高い。すなわち、平均粒子径が15μmよりも小さいと、蛍光体から発せられる蛍光強度が低くなるとともに蛍光体を透過する励起光強度も低くなるからである。平均粒子径の好ましい範囲は15.5〜200μm、より好ましい範囲は16〜100μm、さらに好ましい範囲は21〜50μmである。   Moreover, since the crystallized glass has an average particle size of 15 μm or more of precipitated crystals, the light emitting diode using the crystallized glass has high luminous efficiency. That is, when the average particle diameter is smaller than 15 μm, the intensity of the fluorescence emitted from the phosphor is lowered and the intensity of the excitation light transmitted through the phosphor is also lowered. A preferable range of the average particle diameter is 15.5 to 200 μm, a more preferable range is 16 to 100 μm, and a further preferable range is 21 to 50 μm.

また、本発明の蛍光体は、結晶化ガラスからなるため、用途に応じて、任意形状、例えば、板形状、球形状、非球面レンズ形状、ロッド形状、円筒形状、円板形状、ファイバー形状等に容易に成形して使用することが可能となる。   Moreover, since the phosphor of the present invention is made of crystallized glass, it has an arbitrary shape such as a plate shape, a spherical shape, an aspheric lens shape, a rod shape, a cylindrical shape, a disc shape, a fiber shape, etc. Can be easily molded and used.

本発明の蛍光体は、結晶化ガラスが板形状を有していると、従来の白色発光ダイオードにおける粉末状の蛍光体と樹脂からなる複合体の代替材料として使用できる。   When the crystallized glass has a plate shape, the phosphor of the present invention can be used as an alternative material for a composite composed of a powdered phosphor and a resin in a conventional white light emitting diode.

また、本発明の蛍光体は、大面積の板状体であれば、その板状体の下面に青色LEDを複数個設置することによって、発光機能と拡散機能を兼ね備えた大面積面発光デバイスの構成部材として利用することが可能である。   Further, if the phosphor of the present invention is a large-area plate-like body, a plurality of blue LEDs are installed on the lower surface of the plate-like body, thereby providing a large-area surface light-emitting device having both a light-emitting function and a diffusion function. It can be used as a component.

また、本発明の蛍光体は、青色発光ダイオードチップ上に固定せずにカバーガラスとして用いるだけで白色光を発し、シンプルな構造の白色発光ダイオードを構成することも可能である。   Moreover, the phosphor of the present invention emits white light only by being used as a cover glass without being fixed on a blue light emitting diode chip, and a white light emitting diode having a simple structure can be formed.

また、本発明の蛍光体は、板形状を有していると、厚みを一定にすることが容易となり、均質な白色光を得ることができる。また、厚みを変化させるだけで、励起光強度と蛍光強度とのバランスを自由に変化させることができるため、所望の色度あるいは色温度の白色光が得られる。   Further, when the phosphor of the present invention has a plate shape, it becomes easy to make the thickness constant, and uniform white light can be obtained. Further, since the balance between the excitation light intensity and the fluorescence intensity can be freely changed simply by changing the thickness, white light having a desired chromaticity or color temperature can be obtained.

上記した構成において、蛍光体の肉厚が0.1mm〜2mmであると、色温度の高い白色光から低い白色光までの所望の白色光が得られるため好ましい。肉厚が0.1mmよりも薄いと、励起光に対する蛍光強度が小さく、全体として青みが強く白色光が得られ難い。肉厚が2mmよりも厚いと、逆に励起光に対して蛍光強度が強く、黄色味が強く白色が得られにくい。より好ましい肉厚は、0.1〜1mmであり、さらに好ましくは0.3mm〜0.7mmである。   In the above-described configuration, it is preferable that the thickness of the phosphor is 0.1 mm to 2 mm because desired white light from white light having a high color temperature to low white light can be obtained. When the wall thickness is less than 0.1 mm, the fluorescence intensity with respect to the excitation light is small, and the whole is strongly bluish and it is difficult to obtain white light. If the wall thickness is thicker than 2 mm, on the contrary, the fluorescence intensity is strong with respect to the excitation light, and the yellow color is strong and it is difficult to obtain white. More preferable thickness is 0.1-1 mm, More preferably, it is 0.3 mm-0.7 mm.

本発明の蛍光体において、可視光線からなる励起光は、中心波長が430〜490nmの光線であり、蛍光は、中心波長が530〜590nmの光線であると、白色光を得やすい。   In the phosphor of the present invention, the excitation light composed of visible light is light with a central wavelength of 430 to 490 nm, and the fluorescence is easily obtained with white light when the central wavelength is 530 to 590 nm.

また、上記した構成において、結晶化ガラスが、120MPa以上の曲げ強度を有していることが好ましい。このようにすれば蛍光体を大型化しても割れることがなく、また、加工プロセスにおける割れの問題も生じ難い。   In the above configuration, the crystallized glass preferably has a bending strength of 120 MPa or more. In this way, even if the phosphor is increased in size, it does not break, and the problem of cracking in the processing process hardly occurs.

また、上記した構成において、結晶化ガラスが、2.00W/m/K以上の熱伝導率を有していることが好ましい。このようにすれば、蛍光体が放熱性に優れ、励起用青色LEDチップと接した状態で使用する場合、LEDチップからの熱を放出しやすい。   In the above configuration, the crystallized glass preferably has a thermal conductivity of 2.00 W / m / K or more. In this way, the phosphor is excellent in heat dissipation, and when used in contact with the excitation blue LED chip, it is easy to release heat from the LED chip.

本発明の蛍光体は、結晶化ガラスが、Ce3+を含有し、ガーネット結晶を析出してなると、ガーネット結晶中に含まれるCe3+が発光中心となり、青色の励起光を吸収し、黄色の蛍光を発するようになり、青色の励起光の一部が透過し、透過励起光と蛍光の混色により白色光を発する蛍光体となる。しかも、析出結晶の平均粒子径が15μm以上であるため、それを用いた発光ダイオードの発光効率が高い。 Phosphor of the present invention, crystallized glass, containing Ce 3+, when formed by precipitating garnet crystal, Ce 3+ contained in the garnet crystal becomes a luminescent center, absorbs the blue excitation light, yellow fluorescence Thus, a part of the blue excitation light is transmitted, and a phosphor that emits white light by mixing the transmitted excitation light and the fluorescence is obtained. And since the average particle diameter of a precipitation crystal | crystallization is 15 micrometers or more, the light emission efficiency of the light emitting diode using it is high.

また、本発明の蛍光体は、結晶化ガラスが、非晶質ガラスを熱処理することによってガーネット結晶を析出してなると、ガーネット結晶が結晶化ガラスのマトリックスガラス中に泡を巻き込むことなく分散して存在する。そのため、蛍光や透過励起光の一部があらゆる方向に散乱して、蛍光体自身が散乱板の役目も果たし、白色光が広角度に広がる。また、マトリックスガラス中又はマトリックスガラスと析出結晶の界面には、二種以上の異なる材料の複合体中又は異なる材料の界面に見られるような泡がないため、蛍光や透過励起光のうち、析出結晶によって散乱しない蛍光や透過励起光が透過しやすく、そのため発光効率が高くなる。   Further, in the phosphor of the present invention, when the crystallized glass is formed by precipitating garnet crystals by heat-treating the amorphous glass, the garnet crystals are dispersed without entraining bubbles in the matrix glass of the crystallized glass. Exists. Therefore, a part of the fluorescence and transmitted excitation light is scattered in all directions, the phosphor itself also serves as a scattering plate, and white light spreads over a wide angle. In addition, there are no bubbles in the matrix glass or at the interface between the matrix glass and the precipitated crystal, as seen in the composite of two or more different materials or at the interface between different materials. Fluorescence that is not scattered by the crystal or transmitted excitation light is likely to be transmitted, so that the luminous efficiency is increased.

尚、ガーネット結晶とは、一般的にはA12で表される結晶(A=Mg、Mn、Fe、Ca、Y、Gd等:B=Al、Cr、Fe、Ga、Sc等:C=Al、Si、Ga、Ge等)であり、上記したガーネット結晶として、特に、YAG結晶(YAl12結晶)又はYAG結晶固溶体であると、所望の黄色の蛍光を発するため好ましい。YAG結晶固溶体としては、Yの一部をGd、Sc、Ca及びMgからなる群から選択された少なくとも1種の元素で、及び/又はAlの一部をGa、Si、Ge及びScからなる群から選択された少なくとも1種の元素で置換したYAG結晶固溶体であってもよい。 The garnet crystal is generally a crystal represented by A 3 B 2 C 3 O 12 (A = Mg, Mn, Fe, Ca, Y, Gd, etc .: B = Al, Cr, Fe, Ga, Sc, etc .: C = Al, Si, Ga, Ge, etc.) As the above garnet crystal, in particular, a YAG crystal (Y 3 Al 5 O 12 crystal) or a YAG crystal solid solution gives a desired yellow fluorescence. It is preferable because it emits light. As the YAG crystal solid solution, a part of Y is at least one element selected from the group consisting of Gd, Sc, Ca and Mg, and / or a part of Al is a group consisting of Ga, Si, Ge and Sc. YAG crystal solid solution substituted with at least one element selected from

発光中心となるCeは、結晶化ガラス中に0.01〜5モル%含有することが好ましい。Ceの含有量が0.01モル%よりも少ないと、発光中心成分としての役割を果たし難く、蛍光強度が充分でない。また、5モル%よりも多いと、濃度消光により発光効率が低くなるため好ましくない。Ceの好ましい範囲は0.01〜4モル%であり、より好ましくは0.3〜3モル%である。 Ce 2 O 3 serving as an emission center is preferably contained in the crystallized glass in an amount of 0.01 to 5 mol%. When the content of Ce 2 O 3 is less than 0.01 mol%, it is difficult to serve as a luminescent center component, and the fluorescence intensity is not sufficient. On the other hand, if it exceeds 5 mol%, the light emission efficiency is lowered by concentration quenching, which is not preferable. The preferred range of ce 2 O 3 is 0.01 to 4 mol%, more preferably from 0.3 to 3 mol%.

本発明の蛍光体は、例えば、モル%で、SiO+B 10〜60%、Al+GeO+Ga 15〜50%、Y+Gd 5〜30%、LiO 0〜25%、Ce 0.01〜5%含有する結晶化ガラスからなることが好ましい。 The phosphor of the present invention is, for example, mol%, SiO 2 + B 2 O 3 10-60%, Al 2 O 3 + GeO 2 + Ga 2 O 3 15-50%, Y 2 O 3 + Gd 2 O 3 5-30. %, Li 2 O 0 to 25%, and Ce 2 O 3 0.01 to 5%.

また、本発明の蛍光体は、モル%で、SiO 10〜50%、Al 15〜45%、Y 5〜30%、GeO 0〜15%、Gd 0〜20%、LiO 0〜15%、CaO+MgO+Sc 0〜30%、Ce 0.01〜5%含有してなる結晶化ガラスからなることがより好ましい。 The phosphor of the present invention, in mol%, SiO 2 10~50%, Al 2 O 3 15~45%, Y 2 O 3 5~30%, GeO 2 0~15%, Gd 2 O 3 0 ~20%, Li 2 O 0~15% , CaO + MgO + Sc 2 O 3 0~30%, more preferably consisting of Ce 2 O 3 0.01~5% content was formed by crystallized glass.

次に、本発明の結晶化ガラスの組成を限定した理由を次に示す。   Next, the reason why the composition of the crystallized glass of the present invention is limited will be described below.

SiOとBは、ガラスの網目形成酸化物で、母ガラス作成時にともに失透を抑制する成分であり、SiOとBの含有量は合量で10〜60モル%であることが好ましい。SiOとBの合量が10モル%よりも少ないとガラス化せず、60モル%よりも多いと所望の結晶が析出しにくくなる。SiOとBの合量の好ましい範囲は、30〜47モル%である。SiOの含有量は10〜50モル%であることが好ましい。SiOが10モル%よりも少ないとガラス化しにくく、50モル%よりも多いと所望の結晶が析出しにくくなる。 SiO 2 and B 2 O 3 are glass network-forming oxides and are components that suppress devitrification at the time of making the mother glass. The total content of SiO 2 and B 2 O 3 is 10 to 60 mol%. It is preferable that When the total amount of SiO 2 and B 2 O 3 is less than 10 mol%, it does not vitrify, and when it exceeds 60 mol%, desired crystals are difficult to precipitate. A preferable range of the total amount of SiO 2 and B 2 O 3 is 30 to 47 mol%. The content of SiO 2 is preferably 10 to 50 mol%. SiO 2 is less and less likely to vitrification than 10 mol%, a desired crystal becomes difficult to deposit a more than 50 mol%.

AlとGaとGeOも、ガーネット結晶の構成成分であるとともに、化学的耐久性を向上させる成分であり、AlとGaとGeOの含有量は合量で15〜50モル%であることが好ましい。AlとGaとGeOの含有量が合量で15モル%よりも少ないと、ガーネット結晶が析出しにくく、また、化学的耐久性が低下する。また50モル%よりも多いと、ガラス化しにくくなるとともにガーネット結晶が析出しにくくなるため好ましくない。AlとGaとGeOの合量の好ましい範囲は、20〜40モル%である。Alの含有量は15〜45モル%であることが好ましい。Al含有量が15モル%よりも少ないと、ガーネット結晶が析出しにくく、また、化学的耐久性が低下しやすい。また45モル%よりも多いと、ガラス化しにくくなるとともに、異種結晶が析出するため好ましくない。また、GeOはガーネット結晶中に一部固溶し、結晶析出量を増加させる効果を有する。GeOの含有量は0〜15モル%であることが好ましい。 Al 2 O 3 , Ga 2 O 3, and GeO 2 are also constituents of the garnet crystal and are components that improve chemical durability. The contents of Al 2 O 3 , Ga 2 O 3, and GeO 2 are as follows: The total amount is preferably 15 to 50 mol%. If the total content of Al 2 O 3 , Ga 2 O 3 and GeO 2 is less than 15 mol%, garnet crystals are difficult to precipitate and the chemical durability is lowered. On the other hand, if it is more than 50 mol%, it is difficult to vitrify and garnet crystals are difficult to precipitate. The preferable range of the total amount of Al 2 O 3 , Ga 2 O 3 and GeO 2 is 20 to 40 mol%. The content of Al 2 O 3 is preferably 15 to 45 mol%. If the Al 2 O 3 content is less than 15 mol%, garnet crystals are difficult to precipitate, and chemical durability tends to decrease. On the other hand, when it is more than 45 mol%, it is difficult to vitrify and a different crystal is precipitated, which is not preferable. Further, GeO 2 has a partly solid solution in the garnet crystal and has an effect of increasing the amount of crystal precipitation. The GeO 2 content is preferably 0 to 15 mol%.

とGdは、ガーネット結晶の構成成分であるとともに、Ceの均一分散能を向上させ、濃度消光を抑制する成分であり、YとGdの含有量は合量で5〜30モル%であることが好ましい。YとGdの含有量が合量で5モル%よりも少ないと、ガーネット結晶が析出しにくく、30モル%よりも多いと、ガラス化しにくくなるため好ましくない。YとGdの合量の好ましい範囲は、10〜25モル%である。Y含有量は5〜30モル%であることが好ましい。Yの含有量が5モル%よりも少ないと、ガーネット結晶が析出しにくく、30モル%よりも多いと、ガラス化しにくくなると共に、異種結晶が析出するため好ましくない。また、Gdは蛍光波長を長波長化する効果や、母ガラスを作成する際ガラス化範囲を広げる効果も有する。Gdの含有量は0〜20モル%であることが好ましい。Gdが20モル%よりも多い場合はガーネット結晶が析出しにくくなる。 Y 2 O 3 and Gd 2 O 3 are components of garnet crystals, are components that improve the uniform dispersibility of Ce and suppress concentration quenching, and the content of Y 2 O 3 and Gd 2 O 3 Is preferably 5 to 30 mol% in total. If the total content of Y 2 O 3 and Gd 2 O 3 is less than 5 mol%, garnet crystals are difficult to precipitate, and if it is more than 30 mol%, vitrification is difficult, which is not preferable. The preferable range of the total amount of Y 2 O 3 and Gd 2 O 3 is 10 to 25 mol%. The Y 2 O 3 content is preferably 5 to 30 mol%. If the content of Y 2 O 3 is less than 5 mol%, garnet crystals are difficult to precipitate, and if it is more than 30 mol%, vitrification is difficult and different crystals precipitate, which is not preferable. Gd 2 O 3 also has the effect of increasing the fluorescence wavelength and the effect of expanding the vitrification range when creating the mother glass. The content of Gd 2 O 3 is preferably 0 to 20 mol%. Gd 2 O 3 is garnet crystal is hardly deposited when larger than 20 mol%.

LiOは、結晶サイズを粗大化させず、また析出結晶量を減少させずに網目修飾酸化物としてガラスの粘性を調整する成分であり、LiOの含有量は0〜25モル%であることが好ましい。LiOが25モル%よりも多いとガラス成型時に多量の失透が発生しガラス化しにくく、結晶化のための熱処理を行なっても失透が消失せず好ましくない。特にLiOが2モル%よりも多いと、ガーネット結晶が析出しやすくなるため好ましい。LiOの好ましい範囲は、2〜16モル%であり、さらに好ましい範囲は、2.5〜4.8モル%である。またLiOが4モル%よりも少ない場合、及びLiOが4モル%以上であってもSiOとBの合量が40.5モル%以上である場合には、ガラス成形時に全く失透が見られないためより好ましい。尚、LiOが4モル%よりも多く且つSiOとBの合量が40.5モル%よりも少ない場合には、ガラス成形時に少量の失透が見られることがあるが、この失透は結晶化のための熱処理によって消失し、緻密なガーネット結晶が析出するため特に問題はない。 Li 2 O is a component that adjusts the viscosity of the glass as a network modification oxide without coarsening the crystal size and reducing the amount of precipitated crystals, and the content of Li 2 O is 0 to 25 mol%. Preferably there is. When the amount of Li 2 O is more than 25 mol%, a large amount of devitrification is generated at the time of glass molding and it is difficult to vitrify, and devitrification does not disappear even when heat treatment for crystallization is performed. In particular, when Li 2 O is more than 2 mol%, garnet crystals are likely to precipitate, which is preferable. A preferable range of Li 2 O is 2 to 16 mol%, and a more preferable range is 2.5 to 4.8 mol%. Further, when Li 2 O is less than 4 mol%, and Li 2 O is 4 mol% or more, when the total amount of SiO 2 and B 2 O 3 is 40.5 mol% or more, glass It is more preferable because no devitrification is observed at the time of molding. Incidentally, when the total amount of Li 2 O is and more than 4 mole% SiO 2 and B 2 O 3 is less than 40.5 mol%, there may be seen a small amount of devitrification during glass molding This devitrification disappears by heat treatment for crystallization, and a dense garnet crystal is precipitated, so that there is no particular problem.

ZrOとTiOは、発光効率が低下するため、実質的に含有しないほうが良い。 ZrO 2 and TiO 2 should not be substantially contained since the luminous efficiency is lowered.

CaO、MgO、Scはガーネット結晶中に固溶し、Ceの発光波長を調整することができる成分である。CaO、MgO、Scは合量で0〜30モル%含有することが好ましい。30モル%よりも多いと失透する。 CaO, MgO, and Sc 2 O 3 are components that can be dissolved in the garnet crystal and can adjust the emission wavelength of Ce. CaO, MgO, and Sc 2 O 3 are preferably contained in a total amount of 0 to 30 mol%. When it exceeds 30 mol%, it devitrifies.

上記した成分以外にも、NaO、CaO、MgO、KO等を単独又は合量で15モル%まで添加できる。 In addition to the above-described components, Na 2 O, CaO, MgO, K 2 O, or the like can be added alone or in a total amount up to 15 mol%.

また、本発明の発光ダイオードは、上記構成の蛍光体を用いてなるため、可視光線からなる励起光を入射すると、透過励起光と蛍光との混色により白色光を発し、蛍光体が有機物質である樹脂を含まず、耐熱性、耐光性及び耐候性に優れた結晶化ガラスからなり、しかも樹脂を使用せずに固定できるため、従来の発光ダイオードにおいて見られるようなLEDチップの発熱、あるいはそれから発せられる光による樹脂の着色や変形による劣化がない。その結果、発光強度が劣化し難く、白色光の色の長期安定性に優れ、寿命が長くなる。   In addition, since the light emitting diode of the present invention uses the phosphor having the above-described configuration, when excitation light composed of visible light is incident, white light is emitted due to a mixture of transmitted excitation light and fluorescence, and the phosphor is an organic substance. Because it is made of crystallized glass that does not contain a resin, has excellent heat resistance, light resistance, and weather resistance, and can be fixed without using a resin, the heat generation of LED chips as found in conventional light emitting diodes, or There is no deterioration due to coloring or deformation of the resin due to the emitted light. As a result, the emission intensity is hardly deteriorated, the long-term stability of the color of white light is excellent, and the life is extended.

また、本発明の結晶化ガラスは、Ce3+を含有し、ガーネット結晶を析出してなるため、ガーネット結晶中に含まれるCe3+が発光中心となり、青色の励起光を吸収し、黄色の蛍光を発し、青色の励起光の一部が透過し、透過励起光と蛍光の混色により白色光を発する蛍光体となる。 Furthermore, the crystallized glass of the present invention contains Ce 3+, since obtained by precipitating garnet crystal, Ce 3+ contained in the garnet crystal becomes a luminescent center, it absorbs the blue excitation light, yellow fluorescence A phosphor that emits and transmits part of the blue excitation light and emits white light by mixing the transmitted excitation light and fluorescence.

また、本発明の結晶化ガラスは、非晶質ガラスを熱処理することによってガーネット結晶を析出してなり、ガーネット結晶が結晶化ガラスのマトリックスガラス中に泡を巻き込むことなく分散して存在している。そのため、本発明の結晶化ガラスを蛍光体として使用した場合には、蛍光や透過励起光の一部があらゆる方向に散乱して、蛍光体自身が散乱板の役目も果たし、白色光が広角度に広がる。また、マトリックスガラス中又はマトリックスガラスと析出結晶の界面には、二種以上の異なる材料の複合体中又は異なる材料の界面に見られるような泡がないため、蛍光や透過励起光のうち、析出結晶によって散乱しない蛍光や透過励起光が透過しやすく、そのため発光効率が高くなる。   In addition, the crystallized glass of the present invention is formed by precipitating garnet crystals by heat-treating amorphous glass, and the garnet crystals are dispersed without involving bubbles in the crystallized glass matrix glass. . Therefore, when the crystallized glass of the present invention is used as a phosphor, a part of the fluorescence and transmitted excitation light is scattered in all directions, the phosphor itself also serves as a scattering plate, and white light has a wide angle. To spread. In addition, there are no bubbles in the matrix glass or at the interface between the matrix glass and the precipitated crystal, as seen in the composite of two or more different materials or at the interface between different materials. Fluorescence that is not scattered by the crystal or transmitted excitation light is likely to be transmitted, so that the luminous efficiency is increased.

また、本発明の結晶化ガラスは、上記した組成となるように溶融し、ロール成形、鋳込み成形体からの切り出し、スロットダウン成形、オーバーフロー成形、ダウンドロー成形、ダンナー成形、リドロー成形等の一般的なガラス板の成形方法によって任意形状、例えば、板形状、球形状、非球面レンズ形状、ロッド形状、円筒形状、円板形状、ファイバー形状等の結晶性ガラスを作製することができる。次いで、結晶性ガラスを、1150〜1600℃、好ましくは1200〜1500℃で0.5〜20時間熱処理すると、YAG結晶又はYAG結晶固溶体を析出させることができるため好ましい。また、結晶化後に、所望の形状に加工してもよい。   The crystallized glass of the present invention is melted so as to have the above-described composition, and is generally used for roll forming, cutting out from a cast molding, slot down molding, overflow molding, down draw molding, danna molding, redraw molding, etc. Crystal glass having an arbitrary shape, for example, a plate shape, a spherical shape, an aspherical lens shape, a rod shape, a cylindrical shape, a disk shape, a fiber shape, or the like can be produced by a method for forming a glass plate. Next, it is preferable to heat the crystalline glass at 1150 to 1600 ° C., preferably 1200 to 1500 ° C. for 0.5 to 20 hours, because YAG crystals or YAG crystal solid solutions can be precipitated. Moreover, you may process into a desired shape after crystallization.

以上のように本発明の蛍光体によれば、可視光線からなる励起光を入射すると、それ自身から白色光を発し、それを発光ダイオード等のデバイスに用いた場合、樹脂を使用せずにデバイスを構成できるため、耐熱性、耐光性及び耐候性に優れ、従来の樹脂の劣化によるデバイスの発光強度劣化や短寿命化を防止できる。しかも、結晶化ガラスは、析出結晶の平均粒子径が15μm以上であるため、それを用いた発光ダイオードの発光効率が高い。また、用途に応じて、任意形状、例えば、板形状、球形状、非球面レンズ形状、ロッド形状、円筒形状、円板形状、ファイバー形状等に容易に成形して使用することが可能となる。   As described above, according to the phosphor of the present invention, when the excitation light composed of visible light is incident, the device emits white light from itself and is used for a device such as a light emitting diode. Therefore, it is excellent in heat resistance, light resistance and weather resistance, and it is possible to prevent deterioration of the light emission intensity and shortening of the lifetime of the device due to deterioration of the conventional resin. Moreover, since the crystallized glass has an average particle size of 15 μm or more of precipitated crystals, the light emitting diode using the crystallized glass has high luminous efficiency. Further, it can be easily formed into an arbitrary shape, for example, a plate shape, a spherical shape, an aspherical lens shape, a rod shape, a cylindrical shape, a disk shape, a fiber shape, etc. depending on the application.

また、本発明の発光ダイオードによれば、可視光線からなる励起光を入射すると、蛍光体が透過励起光と蛍光との混色による白色光を発する。また蛍光体は、有機物質である樹脂を含まず、耐熱性や、耐光性及び耐候性に優れた結晶化ガラスからなり、しかも樹脂を使用せずに固定できるため、従来の発光ダイオードにみられたようなLEDチップの発熱、あるいはそれから発せられる光による樹脂の着色や劣化が無い。その結果、発光強度が劣化し難く、白色光の色の長期安定性に優れ、寿命が長くなる。   In addition, according to the light emitting diode of the present invention, when excitation light composed of visible light is incident, the phosphor emits white light due to a mixed color of transmitted excitation light and fluorescence. In addition, the phosphor does not contain organic resin, is made of crystallized glass with excellent heat resistance, light resistance and weather resistance, and can be fixed without using resin, so it is found in conventional light emitting diodes. There is no coloration or deterioration of the resin due to the heat generation of the LED chip or the light emitted from it. As a result, the emission intensity is hardly deteriorated, the long-term stability of the color of white light is excellent, and the life is extended.

また、本発明の結晶化ガラスによれば、Ce3+を含有し、ガーネット結晶を析出してなるため、ガーネット結晶中に含まれるCe3+が発光中心となり、青色の励起光を吸収し、黄色の蛍光を発し、青色の励起光の一部が透過し、透過励起光と蛍光の混色により白色光を発する蛍光体となる。しかも、析出結晶の平均粒子径が15μm以上であるため、それを用いた発光ダイオードの発光効率が高い。 Further, according to the crystallized glass of the present invention, Ce 3+ is contained and a garnet crystal is precipitated. Therefore, Ce 3+ contained in the garnet crystal serves as an emission center, absorbs blue excitation light, A fluorescent material that emits fluorescence and transmits a part of blue excitation light and emits white light by a mixture of transmitted excitation light and fluorescence is obtained. And since the average particle diameter of a precipitation crystal | crystallization is 15 micrometers or more, the light emission efficiency of the light emitting diode using it is high.

実施の形態に係る発光ダイオード20は、例えば、図1に示すように、カソードリード端子1とアノードリード端子2とを備えたステム3と、アノードリード端子2に接続された青色発光ダイオードチップ4と、青色発光ダイオードチップ4とカソードリード端子1を接続する金属線5と、ステム3とともに青色発光ダイオードチップを気密封止するように固定され、青色発光ダイオードチップの上方に窓部6が形成された収納容器7と、収納容器7の窓部6に取り付けられた蛍光体8とを具備している。そのため、この窓部6は、カバーガラスとしての機能だけでなく、蛍光体としての機能も果たすことができ、すなわち、青色発光ダイオードチップ4から発せられた青色の励起光9が、蛍光体8に入射され、励起光9の一部が蛍光体8によって吸収されて波長変換され、発光ダイオード20から外部に黄色の蛍光9aとなって発せられる。また、励起光9の一部も蛍光体8を透過し、透過励起光9bとなって発光ダイオード20から外部に発せられる。黄色の蛍光9aと青色の透過励起光9bとが混色して、白色光10となる。   For example, as shown in FIG. 1, the light emitting diode 20 according to the embodiment includes a stem 3 including a cathode lead terminal 1 and an anode lead terminal 2, and a blue light emitting diode chip 4 connected to the anode lead terminal 2. The blue light emitting diode chip 4 and the cathode lead terminal 1 are fixed together with the metal wire 5 and the stem 3 so as to hermetically seal the blue light emitting diode chip, and a window 6 is formed above the blue light emitting diode chip. A storage container 7 and a phosphor 8 attached to the window 6 of the storage container 7 are provided. Therefore, the window portion 6 can function not only as a cover glass but also as a phosphor, that is, blue excitation light 9 emitted from the blue light emitting diode chip 4 is applied to the phosphor 8. Incident light, a part of the excitation light 9 is absorbed by the phosphor 8 and converted in wavelength, and emitted from the light emitting diode 20 to the outside as yellow fluorescent light 9a. A part of the excitation light 9 also passes through the phosphor 8 and is transmitted to the outside from the light emitting diode 20 as transmission excitation light 9b. The yellow fluorescence 9a and the blue transmitted excitation light 9b are mixed to form white light 10.

また、蛍光体8は、金属製の収納容器7に接着剤11によって固定されるが、接着剤11が樹脂製接着剤であっても、励起光9が直接接着剤11に当たらないため、劣化しにくく、たとえ蛍光体8が発熱して接着剤11が変色しても、蛍光9aや透過励起光9bに悪影響を与えることはない。また接着剤11が低融点ガラスからなると、蛍光体8が発熱しても接着剤11が劣化することがないため好ましい。また、ステム3と収納容器7を、樹脂製又は低融点ガラスからなるシール材12で気密封止できるが、特に低融点ガラスからなるシール材12によって気密封止してなると、シール材12の劣化が少なく信頼性が高くなるため好ましい。また、蛍光体8は、0.1〜2mmの肉厚であると、励起光が透過しやすく、色温度の高い白色光から低い白色光までの所望の白色光が得られるため好ましい。肉厚の好ましい範囲は0.2〜1mmである。また、蛍光体8の端部は、欠けにくいように面取りしてあることが好ましい。   The phosphor 8 is fixed to the metal storage container 7 with the adhesive 11. However, even if the adhesive 11 is a resin adhesive, the excitation light 9 does not directly hit the adhesive 11, so that the phosphor 8 is deteriorated. Even if the phosphor 8 generates heat and the adhesive 11 is discolored, the fluorescent light 9a and the transmitted excitation light 9b are not adversely affected. Further, it is preferable that the adhesive 11 is made of low melting point glass because the adhesive 11 does not deteriorate even if the phosphor 8 generates heat. Further, the stem 3 and the storage container 7 can be hermetically sealed with a sealing material 12 made of resin or low melting point glass. However, when the sealing material 12 made of low melting point glass is particularly hermetically sealed, the sealing material 12 is deteriorated. This is preferable because the reliability is low. Further, it is preferable that the phosphor 8 has a thickness of 0.1 to 2 mm because excitation light is easily transmitted and desired white light from white light having a high color temperature to low white light can be obtained. A preferable range of the wall thickness is 0.2 to 1 mm. Moreover, it is preferable that the edge part of the fluorescent substance 8 is chamfered so that it may be hard to chip.

以下、実施例について説明する。   Examples will be described below.

表1は本発明の実施例1〜7を、表2は実施例8〜14を、表3は実施例15〜22を示したものである。また、図1は、本発明の発光ダイオードを示す説明図である。図2は、実施例5の発光スペクトルを示したものである。図3は、実施例5について、肉厚を0.2mm〜1.0mmまで変化させたときの透過光の色度を示す図である。

Figure 2007031196
Figure 2007031196
Figure 2007031196
Table 1 shows Examples 1 to 7, Table 2 shows Examples 8 to 14, and Table 3 shows Examples 15 to 22. Moreover, FIG. 1 is explanatory drawing which shows the light emitting diode of this invention. FIG. 2 shows the emission spectrum of Example 5. FIG. 3 is a diagram illustrating the chromaticity of transmitted light when the thickness is changed from 0.2 mm to 1.0 mm in Example 5.
Figure 2007031196
Figure 2007031196
Figure 2007031196

実施例の結晶化ガラスは以下のようにして作製した。   The crystallized glass of the example was produced as follows.

まず、表1〜3に示した組成となるように調合したガラス原料を白金坩堝に入れ、1650℃にて3時間溶融した後、融液をカーボン板上に流し出すことによって結晶性ガラスを得た。次いでこれらの結晶性ガラスを表1〜3中に示す結晶化温度で0.5〜20時間熱処理することによって実施例1〜22の結晶化ガラスを得た。   First, glass raw materials prepared so as to have the compositions shown in Tables 1 to 3 are put in a platinum crucible, melted at 1650 ° C. for 3 hours, and then the melt is poured onto a carbon plate to obtain crystalline glass. It was. Subsequently, these crystalline glasses were heat-treated at the crystallization temperatures shown in Tables 1 to 3 for 0.5 to 20 hours to obtain the crystallized glasses of Examples 1 to 22.

析出結晶の平均粒子径は、以下のようにして求めた。   The average particle size of the precipitated crystals was determined as follows.

まず、結晶化ガラスの鏡面研磨面をSEM観察して得られた画像データを三谷商事(株)製解析ソフト「WinROOF」を用いて二値化し、個々の結晶粒子毎に断面積を算出し、それらを真円と仮定してそれぞれの直径を求めた。得られた全ての直径からヒストグラムを作成し、度数の最も多い粒子径範囲の中心粒子径を平均粒子径とした。   First, image data obtained by SEM observation of the mirror-polished surface of crystallized glass is binarized using analysis software “WinROOF” manufactured by Mitani Corporation, and the cross-sectional area is calculated for each crystal particle. Each diameter was calculated assuming that they were perfect circles. A histogram was created from all the obtained diameters, and the central particle diameter in the particle diameter range with the highest frequency was taken as the average particle diameter.

析出結晶種は、粉末X線回折法により同定し、表1〜3において、析出結晶としてYAG結晶が析出したものについては“YAG”とし、YAG結晶固溶体が析出したものについては“YAGs.s.”とした。表1〜3からわかるように、実施例1〜7、10〜12ではYAG結晶が析出し、実施例8〜9、13〜22ではYAG結晶固溶体が析出していた。   Precipitated crystal seeds were identified by powder X-ray diffractometry. In Tables 1 to 3, “YAG” was used when YAG crystals were precipitated as precipitated crystals, and “YAGs.s. " As can be seen from Tables 1 to 3, YAG crystals were precipitated in Examples 1 to 7 and 10 to 12, and YAG crystal solid solutions were precipitated in Examples 8 to 9 and 13 to 22.

発光特性については、図2に示すように、中心波長が430〜490nmにある透過励起光および、中心波長が530〜590nmにある、結晶化ガラス蛍光体からの蛍光が観察される場合は“○”とした。   Regarding the emission characteristics, as shown in FIG. 2, when transmission excitation light having a center wavelength of 430 to 490 nm and fluorescence from a crystallized glass phosphor having a center wavelength of 530 to 590 nm are observed, “◯ "

また、図3に示すように、結晶化ガラスの肉厚を0.2〜1.0mmまで変化させ、それを透過して発する光の色度を積分球内で測定し、解析ソフトによって計算したところ、肉厚が薄い場合には、青味がかった白色光(x値及びy値が小さい)を発するが、肉厚が大きくなるにつれて、黄色味がかった白色光(x値及びy値が大きい)を発するようになる。このように、結晶化ガラスの肉厚を変化させることによって所望の白色光が得られることがわかった。   Further, as shown in FIG. 3, the thickness of the crystallized glass was changed from 0.2 to 1.0 mm, and the chromaticity of light emitted through the glass was measured in an integrating sphere and calculated by analysis software. However, when the wall thickness is thin, a bluish white light is emitted (the x value and the y value are small), but as the wall thickness is increased, the yellowish white light (the x value and the y value are large). ). Thus, it was found that desired white light can be obtained by changing the thickness of the crystallized glass.

表1〜3に示すように、実施例1〜22は、いずれも平均粒子径が15μm以上で、Ce3+を含有するYAG結晶又はYAG結晶固溶体を析出し、発光特性に優れていた。 As shown in Tables 1 to 3, Examples 1 to 22 all had an average particle size of 15 μm or more, precipitated a YAG crystal or YAG crystal solid solution containing Ce 3+, and were excellent in light emission characteristics.

また、実施例5について、150℃で600時間熱処理した際、熱処理前の発光強度に対する熱処理後の発光強度が97%以上であり、耐熱性に優れていた。また、実施例13について、温度85℃、湿度85%の環境下で2000時間処理する前の発光強度に対する処理後の発光強度が93%以上であり、耐候性に優れていた。   Further, in Example 5, when the heat treatment was performed at 150 ° C. for 600 hours, the light emission intensity after the heat treatment with respect to the light emission intensity before the heat treatment was 97% or more, and the heat resistance was excellent. Moreover, about Example 13, the light emission intensity after a process with respect to the light emission intensity before processing for 2000 hours in the environment of temperature 85 degreeC and humidity 85% was 93% or more, and was excellent in the weather resistance.

以上説明したように、本発明の蛍光体は、青色LEDと組み合わせることにより、すなわち可視光線からなる励起光を入射すると、それ自身から白色光を発するので、構造が簡単で、且つ、耐熱性、耐光性及び耐候性に優れ、樹脂の劣化による発光ダイオード等のデバイスの発光強度劣化や短寿命化を抑制できるため、照明装置、車載用、表示板、液晶用バックライト等に使用される白色発光ダイオードにおける粉末状の蛍光体と樹脂からなる複合体(コーティング部材)の代替材料として、あるいは発光機能と拡散機能を兼ね備えた大面積面発光デバイスの構成部材として好適である。   As described above, the phosphor of the present invention, when combined with a blue LED, that is, when excitation light made of visible light is incident, emits white light from itself, so that the structure is simple and heat resistant. White light emission used in lighting devices, in-vehicle devices, display panels, liquid crystal backlights, etc., because it has excellent light resistance and weather resistance, and can suppress deterioration in light emission intensity and shortening of life of devices such as light emitting diodes due to resin deterioration It is suitable as a substitute material for a composite (coating member) composed of a powdered phosphor and a resin in a diode, or as a constituent member of a large area surface emitting device having both a light emitting function and a diffusion function.

本発明の発光ダイオードを示す説明図である。It is explanatory drawing which shows the light emitting diode of this invention. 実施例5の透過光スペクトルを示すグラフである。10 is a graph showing a transmitted light spectrum of Example 5. 実施例5について、肉厚を0.2mm〜1.0mmまで変化させたときの透過光の色度を示す図である。It is a figure which shows the chromaticity of the transmitted light when thickness is changed about 0.2 mm-1.0 mm about Example 5. FIG.

符号の説明Explanation of symbols

1 カソードリード端子
2 アノードリード端子
3 ステム
4 青色発光ダイオードチップ
5 金属線
6 窓部
7 収納容器
8 蛍光体
9 励起光
9a 蛍光
9b 透過励起光
10 白色光
11 接着剤
12 シール材
20 発光ダイオード
DESCRIPTION OF SYMBOLS 1 Cathode lead terminal 2 Anode lead terminal 3 Stem 4 Blue light emitting diode chip 5 Metal wire 6 Window part 7 Storage container 8 Phosphor 9 Excitation light 9a Fluorescence 9b Transmission excitation light 10 White light 11 Adhesive 12 Sealing material 20 Light emitting diode

Claims (18)

可視光線からなる励起光を入射すると、該励起光の色相に対して補色の蛍光を発し、かつ該励起光を一部透過する結晶化ガラスからなり、前記結晶化ガラスは、析出結晶の平均粒子径が15μm以上であることを特徴とする蛍光体。 When an excitation light composed of visible light is incident, it is made of crystallized glass that emits a complementary color fluorescence to the hue of the excitation light and partially transmits the excitation light, and the crystallized glass is an average particle of precipitated crystals A phosphor having a diameter of 15 μm or more. 前記結晶化ガラスが板形状を有することを特徴とする請求項1に記載の蛍光体。 The phosphor according to claim 1, wherein the crystallized glass has a plate shape. 肉厚が0.1mm〜2mmであることを特徴とする請求項1又は2に記載の蛍光体。 The phosphor according to claim 1 or 2, wherein the thickness is 0.1 mm to 2 mm. 前記可視光線からなる励起光は、中心波長が430〜490nmの光線であり、前記蛍光は、中心波長が530〜590nmの光線であることを特徴とする請求項1〜3のいずれかに記載の蛍光体。 The excitation light comprising the visible light is light having a central wavelength of 430 to 490 nm, and the fluorescence is light having a central wavelength of 530 to 590 nm. Phosphor. 前記結晶化ガラスは、Ce3+を含有したガーネット結晶を析出してなることを特徴とする請求項1〜4のいずれかに記載の蛍光体。 The phosphor according to any one of claims 1 to 4, wherein the crystallized glass is formed by precipitating a garnet crystal containing Ce 3+ . 前記ガーネット結晶がYAG結晶又はYAG結晶固溶体であることを特徴とする請求項5に記載の蛍光体。 The phosphor according to claim 5, wherein the garnet crystal is a YAG crystal or a YAG crystal solid solution. 前記結晶化ガラスは、Ceを0.01〜5モル%含有することを特徴とする請求項5又は6に記載の蛍光体。 The crystallized glass, phosphor according to claim 5 or 6, characterized in that it contains Ce 2 O 3 0.01 to 5 mol%. 前記結晶化ガラスは、モル%で、SiO+B 10〜60%、Al+GeO+Ga 15〜50%、Y+Gd 5〜30%、LiO 0〜25%、Ce 0.01〜5%含有することを特徴とする請求項1〜7のいずれかに記載の蛍光体。 The crystallized glass is in mol%, SiO 2 + B 2 O 3 10-60%, Al 2 O 3 + GeO 2 + Ga 2 O 3 15-50%, Y 2 O 3 + Gd 2 O 3 5-30%, Li 2 O 0 to 25%, phosphor according to any one of claims 1 to 7, characterized in that it contains Ce 2 O 3 0.01~5%. 前記結晶化ガラスは、モル%で、SiO 10〜50%、Al 15〜45%、Y 5〜30%、GeO 0〜15%、Gd 0〜20%、LiO 0〜15%、CaO+MgO+Sc 0〜30%、Ce 0.01〜5%含有することを特徴とする請求項1〜8のいずれかに記載の蛍光体。 The crystallized glass, in mol%, SiO 2 10~50%, Al 2 O 3 15~45%, Y 2 O 3 5~30%, GeO 2 0~15%, Gd 2 O 3 0~20% , Li 2 O 0~15%, CaO + MgO + Sc 2 O 3 0~30%, phosphor according to claim 1, characterized in that it contains Ce 2 O 3 0.01~5%. 前記結晶化ガラスは、TiO及びZrOを本質的に含有しないことを特徴とする請求項8又は9に記載の蛍光体。 The phosphor according to claim 8 or 9, wherein the crystallized glass contains essentially no TiO 2 or ZrO 2 . 請求項1〜10のいずれかに記載の蛍光体を用いてなることを特徴とする発光ダイオード。 A light-emitting diode comprising the phosphor according to claim 1. カソードリード端子とアノードリード端子とを備えたステムと、アノードリード端子に接続された発光ダイオードチップと、発光ダイオードチップとカソードリード端子を接続する金属線と、ステムとともに発光ダイオードチップを気密封止するように固定され、発光ダイオードチップの上方に窓部が形成された収納容器と、収納容器の窓部に取り付けられた請求項1〜10のいずれかに記載の蛍光体とを具備してなることを特徴とする発光ダイオード。 A stem having a cathode lead terminal and an anode lead terminal, a light emitting diode chip connected to the anode lead terminal, a metal wire connecting the light emitting diode chip and the cathode lead terminal, and the stem together with the stem are hermetically sealed. And the phosphor according to any one of claims 1 to 10 attached to the window of the storage container. The storage container has a window formed above the light emitting diode chip. A light emitting diode characterized by. Ce3+を含有したガーネット結晶を析出し、前記ガーネット結晶の平均粒子径が15μm以上であることを特徴とする結晶化ガラス。 A crystallized glass, wherein a garnet crystal containing Ce 3+ is deposited, and an average particle diameter of the garnet crystal is 15 μm or more. 前記ガーネット結晶がYAG結晶又はYAG結晶固溶体であることを特徴とする請求項13に記載の結晶化ガラス。 The crystallized glass according to claim 13, wherein the garnet crystal is a YAG crystal or a YAG crystal solid solution. Ceを0.01〜5モル%含有することを特徴とする請求項13又は14に記載の結晶化ガラス。 Crystallized glass according to claim 13 or 14 ce 2 O 3, characterized in that it contains 0.01 to 5 mol%. モル%で、SiO+B 10〜60%、Al+GeO+Ga 15〜50%、Y+Gd 5〜30%、LiO 0〜25%、Ce 0.01〜5%含有してなることを特徴とする請求項13〜15のいずれかに記載の結晶化ガラス。 In mol%, SiO 2 + B 2 O 3 10-60%, Al 2 O 3 + GeO 2 + Ga 2 O 3 15-50%, Y 2 O 3 + Gd 2 O 3 5-30%, Li 2 O 0-25% The crystallized glass according to any one of claims 13 to 15, comprising 0.01 to 5% of Ce 2 O 3 . モル%で、SiO 10〜50%、Al 15〜45%、Y 5〜30%、GeO 0〜15%、Gd 0〜20%、LiO 0〜15%、CaO+MgO+Sc 0〜30%、Ce 0.01〜5%含有することを特徴とする請求の範囲13〜16のいずれかに記載の結晶化ガラス。 In mol%, SiO 2 10~50%, Al 2 O 3 15~45%, Y 2 O 3 5~30%, GeO 2 0~15%, Gd 2 O 3 0~20%, Li 2 O 0~ 15%, CaO + MgO + Sc 2 O 3 0~30%, crystallized glass according to any one of claims 13 to 16, characterized in that it contains Ce 2 O 3 0.01~5%. TiO及びZrOを本質的に含有しないことを特徴とする請求項16又は17に記載の結晶化ガラス。 The crystallized glass according to claim 16 or 17, characterized by essentially not containing TiO 2 and ZrO 2 .
JP2005215833A 2005-07-26 2005-07-26 Phosphor and light emitting diode Expired - Fee Related JP4894186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005215833A JP4894186B2 (en) 2005-07-26 2005-07-26 Phosphor and light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005215833A JP4894186B2 (en) 2005-07-26 2005-07-26 Phosphor and light emitting diode

Publications (2)

Publication Number Publication Date
JP2007031196A true JP2007031196A (en) 2007-02-08
JP4894186B2 JP4894186B2 (en) 2012-03-14

Family

ID=37790891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005215833A Expired - Fee Related JP4894186B2 (en) 2005-07-26 2005-07-26 Phosphor and light emitting diode

Country Status (1)

Country Link
JP (1) JP4894186B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231218A (en) * 2007-03-20 2008-10-02 Nippon Electric Glass Co Ltd Phosphor material and white light-emitting diode
WO2008146200A1 (en) 2007-05-25 2008-12-04 Koninklijke Philips Electronics N.V. Illumination device with a wavelength converting element held by a support structure having an aperture
WO2009119668A1 (en) 2008-03-26 2009-10-01 宇部興産株式会社 Transparent phosphor and process for producing the transparent phosphor
JP2010024278A (en) * 2008-07-16 2010-02-04 Stanley Electric Co Ltd Phosphor ceramic plate and light-emitting element using it
JP2010157577A (en) * 2008-12-26 2010-07-15 Sony Corp Luminescent color conversion member
CN102060441A (en) * 2010-11-12 2011-05-18 中国科学院理化技术研究所 Y3Al5O12 fluorescent glass ceramic and preparation method thereof
JP2011519173A (en) * 2008-04-29 2011-06-30 ショット アクチエンゲゼルシャフト (W) Light converter system for LED
JP2011222751A (en) * 2010-04-09 2011-11-04 Nippon Electric Glass Co Ltd Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
CN102263186A (en) * 2010-05-28 2011-11-30 贵州雅光电子科技股份有限公司 High reliable light-emitting diode and manufacturing method thereof
JP2012519147A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP2012519145A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP2012519127A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
WO2012148224A2 (en) * 2011-04-27 2012-11-01 삼성전자 주식회사 Light-emitting-device package and a production method therefor
JP2013516040A (en) * 2009-12-29 2013-05-09 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Field emission white light emitting device
JP2014513437A (en) * 2011-05-06 2014-05-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting diode conversion element and manufacturing method thereof
JP2016138020A (en) * 2015-01-28 2016-08-04 日本電気硝子株式会社 Crystallized glass phosphor and wavelength conversion member prepared therewith
US9443492B2 (en) 2010-12-08 2016-09-13 Schott Ag Display with non-homogenous spectral transmission curve
JP2017107072A (en) * 2015-12-10 2017-06-15 日本電気硝子株式会社 Wavelength conversion member and wavelength conversion element, and light emitting device using the same
JP2019039992A (en) * 2017-08-23 2019-03-14 日本特殊陶業株式会社 Phosphor wheel, wheel device and projector
KR102166060B1 (en) 2019-12-16 2020-10-15 한국세라믹기술원 Glass composition for color converter containing controlled amount and sort of alkali and the manufacturing of the color converter
KR102166026B1 (en) 2019-12-16 2020-10-15 한국세라믹기술원 Glass composition for color converter containing controlled amount and sort of alkali and the manufacturing of the color converter
WO2020246274A1 (en) * 2019-06-03 2020-12-10 Agc株式会社 Glass, chemically tempered glass, and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109052955A (en) * 2018-10-22 2018-12-21 三明学院 Fluorescence ceramics glaze, ceramic and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119941A (en) * 1990-09-06 1992-04-21 Mitsubishi Heavy Ind Ltd Production of crystallized glass
JPH04243999A (en) * 1991-01-30 1992-09-01 Nippon Telegr & Teleph Corp <Ntt> Single crystal optical fiber
JP2002033521A (en) * 2000-07-14 2002-01-31 Showa Denko Kk White light-emitting element and manufacturing method thereof
JP2005320186A (en) * 2004-05-07 2005-11-17 National Institute Of Advanced Industrial & Technology Crystallized glass phosphor
JP2005350672A (en) * 2004-06-10 2005-12-22 General Electric Co <Ge> Composition for scintillator array and method
JP2006117511A (en) * 2004-09-29 2006-05-11 Schott Ag Glass or glass ceramic
JP2007039303A (en) * 2005-06-29 2007-02-15 Nippon Electric Glass Co Ltd Luminescent color-converting member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119941A (en) * 1990-09-06 1992-04-21 Mitsubishi Heavy Ind Ltd Production of crystallized glass
JPH04243999A (en) * 1991-01-30 1992-09-01 Nippon Telegr & Teleph Corp <Ntt> Single crystal optical fiber
JP2002033521A (en) * 2000-07-14 2002-01-31 Showa Denko Kk White light-emitting element and manufacturing method thereof
JP2005320186A (en) * 2004-05-07 2005-11-17 National Institute Of Advanced Industrial & Technology Crystallized glass phosphor
JP2005350672A (en) * 2004-06-10 2005-12-22 General Electric Co <Ge> Composition for scintillator array and method
JP2006117511A (en) * 2004-09-29 2006-05-11 Schott Ag Glass or glass ceramic
JP2007039303A (en) * 2005-06-29 2007-02-15 Nippon Electric Glass Co Ltd Luminescent color-converting member

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231218A (en) * 2007-03-20 2008-10-02 Nippon Electric Glass Co Ltd Phosphor material and white light-emitting diode
JP2010528467A (en) * 2007-05-25 2010-08-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination device comprising a wavelength conversion element held by a support structure having an opening
WO2008146200A1 (en) 2007-05-25 2008-12-04 Koninklijke Philips Electronics N.V. Illumination device with a wavelength converting element held by a support structure having an aperture
US7700967B2 (en) 2007-05-25 2010-04-20 Philips Lumileds Lighting Company Llc Illumination device with a wavelength converting element held by a support structure having an aperture
KR101477474B1 (en) * 2007-05-25 2014-12-30 코닌클리케 필립스 엔.브이. Illumination device with a wavelength converting element held by a support structure having an aperture
WO2009119668A1 (en) 2008-03-26 2009-10-01 宇部興産株式会社 Transparent phosphor and process for producing the transparent phosphor
JP2011519173A (en) * 2008-04-29 2011-06-30 ショット アクチエンゲゼルシャフト (W) Light converter system for LED
JP2010024278A (en) * 2008-07-16 2010-02-04 Stanley Electric Co Ltd Phosphor ceramic plate and light-emitting element using it
JP2010157577A (en) * 2008-12-26 2010-07-15 Sony Corp Luminescent color conversion member
JP2012519147A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP2012519145A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP2012519127A (en) * 2009-06-26 2012-08-23 海洋王照明科技股▲ふん▼有限公司 Luminescent glass element, manufacturing method thereof and light emitting method thereof
JP2013516040A (en) * 2009-12-29 2013-05-09 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Field emission white light emitting device
JP2011222751A (en) * 2010-04-09 2011-11-04 Nippon Electric Glass Co Ltd Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
CN102263186A (en) * 2010-05-28 2011-11-30 贵州雅光电子科技股份有限公司 High reliable light-emitting diode and manufacturing method thereof
CN102060441A (en) * 2010-11-12 2011-05-18 中国科学院理化技术研究所 Y3Al5O12 fluorescent glass ceramic and preparation method thereof
US9443492B2 (en) 2010-12-08 2016-09-13 Schott Ag Display with non-homogenous spectral transmission curve
WO2012148224A2 (en) * 2011-04-27 2012-11-01 삼성전자 주식회사 Light-emitting-device package and a production method therefor
WO2012148224A3 (en) * 2011-04-27 2013-01-10 삼성전자 주식회사 Light-emitting-device package and a production method therefor
JP2014513437A (en) * 2011-05-06 2014-05-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting diode conversion element and manufacturing method thereof
US9590147B2 (en) 2011-05-06 2017-03-07 Osram Opto Semiconductors Gmbh Conversion element for light-emitting diodes and production method
JP2016138020A (en) * 2015-01-28 2016-08-04 日本電気硝子株式会社 Crystallized glass phosphor and wavelength conversion member prepared therewith
JP2017107072A (en) * 2015-12-10 2017-06-15 日本電気硝子株式会社 Wavelength conversion member and wavelength conversion element, and light emitting device using the same
JP2019039992A (en) * 2017-08-23 2019-03-14 日本特殊陶業株式会社 Phosphor wheel, wheel device and projector
WO2020246274A1 (en) * 2019-06-03 2020-12-10 Agc株式会社 Glass, chemically tempered glass, and method for producing same
CN113905992A (en) * 2019-06-03 2022-01-07 Agc株式会社 Glass, chemically strengthened glass, and method for producing same
KR102166060B1 (en) 2019-12-16 2020-10-15 한국세라믹기술원 Glass composition for color converter containing controlled amount and sort of alkali and the manufacturing of the color converter
KR102166026B1 (en) 2019-12-16 2020-10-15 한국세라믹기술원 Glass composition for color converter containing controlled amount and sort of alkali and the manufacturing of the color converter

Also Published As

Publication number Publication date
JP4894186B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4894186B2 (en) Phosphor and light emitting diode
JP5013405B2 (en) Phosphor and light emitting diode
JP2007161944A (en) Phosphor
CN109301057B (en) Wavelength conversion member and light emitting device using the same
JP5757238B2 (en) Phosphor-dispersed glass and method for producing the same
JP6398351B2 (en) Phosphor dispersed glass
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2014234487A (en) Wavelength conversion member and light-emitting device
WO2018003454A1 (en) Wavelength conversion member, and light emitting device using same
JP6311715B2 (en) Phosphor-dispersed glass and method for producing the same
TW201815717A (en) Wavelength conversion member, and light emitting device using same
WO2015093267A1 (en) Wavelength-conversion member and light-emitting device
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP5689243B2 (en) Semiconductor light emitting device sealing material and method for manufacturing semiconductor light emitting device using the same
JP2011222751A (en) Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
JP2014203899A (en) Wavelength conversion material, wavelength conversion member and light-emitting device
JP2018002492A (en) Wavelength conversion member and light-emitting device using the same
JP5713273B2 (en) Joining material and member joining method using the same
JP6830750B2 (en) Wavelength conversion member and light emitting device
JP2018131380A (en) Phosphor-dispersed glass
CN111480098B (en) Wavelength conversion member and light emitting device using same
JP2007039563A (en) Fluorescent substance, light-emitting device and crystallized glass
JP2013089703A (en) Wavelength conversion member and light-emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111026

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4894186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees