JPH04119941A - Production of crystallized glass - Google Patents

Production of crystallized glass

Info

Publication number
JPH04119941A
JPH04119941A JP23439790A JP23439790A JPH04119941A JP H04119941 A JPH04119941 A JP H04119941A JP 23439790 A JP23439790 A JP 23439790A JP 23439790 A JP23439790 A JP 23439790A JP H04119941 A JPH04119941 A JP H04119941A
Authority
JP
Japan
Prior art keywords
weight
powder
parts
glass
crystallized glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23439790A
Other languages
Japanese (ja)
Inventor
Yuichiro Murakami
勇一郎 村上
Hiroichi Yamamoto
博一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23439790A priority Critical patent/JPH04119941A/en
Publication of JPH04119941A publication Critical patent/JPH04119941A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a crystallized glass having heat resistance and high hardness by subjecting a crystallized glass components composed essentially of SiO2, Al2O3, and Y2O3, and containing specific metal oxides as nucleating agents to melting and then to slow cooling. CONSTITUTION:Crystallized glass components which has a composition containing, by weight, 5-50% SiO2, 5-70% Al2O3, and 10-70% Y2O3 as essential components and also containing 0.1-30% of one or more additives among MgO, TiO2, ZrO2, La2O3, etc., as nucleating agents are melted and slowly cooled, or a melt prepared by melting is rapidly cooled, and the resulting glass is subjected to heat treatment at 900-1250 deg.C for <=100hr, by which microcrystals can be precipitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高硬度で耐熱性、耐食性に優れた結晶化ガラス
の製造方法に関し、特に耐熱性で耐摩耗性のセラミック
スタイルやセラミックス基板、容器等の製造に有利に適
用が可能である同ガラスの製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing crystallized glass that has high hardness, excellent heat resistance, and corrosion resistance, and particularly relates to a method for producing crystallized glass that is highly hard, heat resistant, and corrosion resistant. The present invention relates to a method for producing the same glass, which can be advantageously applied to the production of the same glass.

〔従来の技術〕[Conventional technology]

従来ガラスは製造法が簡単であるが、数百℃以上の高温
では軟化する等の欠点があった。その中でSjO□、 
AlzOs 、 Y2O−を主成分とするガラスは融点
も約1350℃以上でガラスとしては比較的高温まで使
用できるが、それでも900℃以上では軟化する欠点が
あった。一方、アルミナ等の焼結体はさらに高温まで使
用できるが、1700℃程度の高温で焼結しなければな
らず、価格が高(なるという欠点があった。
Although conventional glass is easy to manufacture, it has the disadvantage of softening at high temperatures of several hundred degrees Celsius or higher. Among them, SjO□,
Glasses whose main components are AlzOs and Y2O- have a melting point of about 1350°C or higher and can be used up to relatively high temperatures, but they still have the drawback of softening at temperatures above 900°C. On the other hand, sintered bodies such as alumina can be used up to even higher temperatures, but they must be sintered at a high temperature of about 1700° C., which has the disadvantage of being expensive.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記技術水準に鑑み、高温でのガラスの軟化の
影響を少なくするため、アルミナ、ガーネット等の微結
晶を大量に析出させることにより、耐熱性を高め数百℃
の比較的高温でも使用できるようにすること、また原料
粉末を微粉末にしこれを均一に前もって混合しておくこ
とにより、高温の融液での均一化熱処理時間を短くして
従来のガラス製造法よりも高温での工程を短縮しながら
、均質で微細な結晶を分散させた結晶化セラミックスを
得る方法を提供しようとするものである。また、微細な
結晶を多く析出させるためには一般的には結晶核を数多
く発生させる必要があり、このため結晶成長の結晶核と
なりやすい物質を添加剤として加えることにより、ガラ
スの結晶化を促進しうる方法を提供しようとするもので
ある。
In view of the above-mentioned technical level, the present invention improves heat resistance by several hundred degrees Celsius by precipitating a large amount of microcrystals of alumina, garnet, etc. in order to reduce the effect of softening of glass at high temperatures.
By making the raw material powder into fine powder and mixing it uniformly in advance, the time required for homogenization heat treatment with high-temperature melt can be shortened, making it possible to use it even at relatively high temperatures. The present invention aims to provide a method for obtaining crystallized ceramics in which homogeneous and fine crystals are dispersed while shortening the process at higher temperatures. In addition, in order to precipitate many fine crystals, it is generally necessary to generate many crystal nuclei, so by adding substances that tend to become crystal nuclei for crystal growth as additives, the crystallization of glass is promoted. This is intended to provide a possible method.

このため、本発明は種々の組成のセラミックスを作製し
、結晶化ガラスを生成させるために必要な今まで未知で
あった高温での固相と液相との共存領域の組成幅をまず
実験的に究明し、つづいてガラス相を結晶化させる条件
を明らかにしたものである。
For this reason, the present invention involves producing ceramics with various compositions and first experimentally determining the compositional range of the coexistence region of the solid phase and liquid phase at high temperatures, which is necessary to produce crystallized glass. The team then clarified the conditions for crystallizing the glass phase.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は重量%でSiO2:5〜50%、A120゜:
5〜70%、Y、0.: 10〜70%を主成分として
含有し、MgO、TiO2,ZrO7等の添加剤のうち
1種以上を0.1〜30%核形成剤として含有する結晶
化ガラス成分を溶融して、徐冷するか、または溶融した
溶液を急冷して得られたガラスを900〜1250℃の
温度で100時間以内の熱処理により微結晶を析出させ
結晶化ガラスを作製する方法である。また、本発明は上
記組成の粉末を均一に前もって混合するため、平均粒径
0.1〜300μmの原料成分微粉末100重量部に、
溶媒として水またはアルコール、ベンゼン、キシレン等
の有機溶媒を20〜150重量部、粉末を均一に分散さ
せるため水溶性アクリル樹脂、ポリエチレングリコール
、ポリエチレンアミン、アニオン系高分子等の有機質成
分を0.1〜10重量部加え、混合してセラミックス粉
末を均一に混合して分散させた後、溶媒を蒸発させた均
質に混合された粉末を得、こf−Lを300〜700℃
の温度に加熱して脱脂した後、高温で溶融して徐冷する
が、または溶融して溶液を急冷して得られたガラスを9
00〜1250℃の温度で100時間以内の熱処理によ
り微結晶を析出する結晶化ガラスの製造方法である。
The present invention has SiO2: 5 to 50% by weight, A120°:
5-70%, Y, 0. : A crystallized glass component containing 10 to 70% as a main component and 0.1 to 30% of one or more of additives such as MgO, TiO2, ZrO7 as a nucleating agent is melted and slowly cooled. Alternatively, the glass obtained by rapidly cooling a molten solution is heat-treated at a temperature of 900 to 1250° C. for up to 100 hours to precipitate microcrystals to produce crystallized glass. In addition, in the present invention, in order to uniformly mix the powder having the above composition in advance, 100 parts by weight of the raw material fine powder having an average particle size of 0.1 to 300 μm,
20 to 150 parts by weight of water or an organic solvent such as alcohol, benzene, or xylene as a solvent, and 0.1 part of an organic component such as water-soluble acrylic resin, polyethylene glycol, polyethylene amine, or anionic polymer to uniformly disperse the powder. After adding ~10 parts by weight and mixing to uniformly mix and disperse the ceramic powder, the solvent was evaporated to obtain a homogeneously mixed powder.
After degreasing by heating to a temperature of
This is a method for producing crystallized glass in which microcrystals are precipitated by heat treatment at a temperature of 00 to 1250°C for up to 100 hours.

〔作用〕[Effect]

Al2O3、Y2L、 Sl[+□を主成分とするガラ
スでNa、に等のアルカリ金属を含有しないガラスは、
通常のアルカリガラスと比較し、軟化温度や融点も高い
という特徴をもつが、耐熱性や硬度等の特性を改善する
ためには、硬度の高いアルミナAl2O3やガーネット
Al5Y30.2等の結晶を多産に析出させる必要があ
る。このため主成分の組成範囲、核形成剤の添加量、原
料微粉末の混合方法を最適化させることにより所期の目
的を達成できた。以下にその作用について説明する。
Glasses whose main components are Al2O3, Y2L, Sl[+□ and which do not contain alkali metals such as Na, etc.
Compared to normal alkali glass, it has a higher softening temperature and melting point, but in order to improve properties such as heat resistance and hardness, it is necessary to produce crystals such as alumina Al2O3 and garnet Al5Y30.2, which have high hardness. It is necessary to precipitate it. Therefore, by optimizing the composition range of the main components, the amount of the nucleating agent added, and the method of mixing the raw material fine powder, the desired objective could be achieved. The effect will be explained below.

(1)主成分として重量%で5ID2:5〜50%、A
12[+3  : 5〜70%、Y、03: 10〜7
0%を含有する。これ以外の組成ではガラスが生成しな
いか、又は高温の固液共存状態で液相の生成量が非常に
少なく焼結体しか生成しないため、1700℃前後の高
温にまで加熱しなければ試料が得られない欠点を有する
。なおこの組成範囲の中でも、アルミナやガーネット等
の結晶を多く析出させるためには、特にS10□濃度は
5〜30%に選ぶことが必要である。
(1) 5ID2: 5-50% by weight as the main component, A
12 [+3: 5-70%, Y, 03: 10-7
Contains 0%. With compositions other than this, either no glass is produced, or the amount of liquid phase produced is very small in the high-temperature solid-liquid coexistence state, and only a sintered body is produced, so the sample cannot be obtained unless heated to a high temperature of around 1700°C. It has disadvantages that cannot be avoided. Note that within this composition range, in order to precipitate a large amount of crystals such as alumina and garnet, it is particularly necessary to select the S10□ concentration from 5 to 30%.

(2)核形成剤としてMgD 、 TlO2、ZrDz
 、 La2O5等の酸化物を1種以上0.1〜30%
添加する。
(2) MgD, TlO2, ZrDz as nucleating agents
, 0.1 to 30% of one or more oxides such as La2O5
Added.

添加量として0.1%以下では結晶化促進効果があまり
なく、また30%以上多量に加えた場合は、結晶促進効
果よりも融点が低くなる方が問題となるので好ましくな
い。また添加剤の種類を多く加えるとそれだけガラスの
融点が低くなるので、核形成剤の種類はできれば1種が
好ましい。なお核形成剤の効果としては、添加剤がガラ
ス中に溶けて多元系の固溶体を生成し、結晶化熱処理に
よりガラスが微視的に分相をおこす傾向を強めることに
より、Al2O3やAl5Y3012等の結晶の析出を
促進させるという作用として働くことが後述の実施例に
て確認された。
If the amount added is less than 0.1%, the effect of promoting crystallization is not so great, and if it is added in an amount of 30% or more, the problem is that the melting point becomes lower than the effect of promoting crystallization, which is not preferable. Furthermore, since the melting point of the glass decreases as more types of additives are added, it is preferable to use only one type of nucleating agent if possible. The effect of the nucleating agent is that the additive dissolves in the glass to form a multi-component solid solution and strengthens the tendency of the glass to undergo microscopic phase separation through crystallization heat treatment. It was confirmed in the Examples described later that it works to promote the precipitation of crystals.

(3)結晶化熱処理は900〜1250℃に加熱し、1
00時間以内保持する。核形成剤を添加しない場合、結
晶化は1000〜1270℃くらいの温度で起こるが、
核形成剤を添加すればさらに低温側で結晶化が可能であ
る。
(3) Crystallization heat treatment is performed by heating to 900-1250℃,
Hold within 00 hours. If no nucleating agent is added, crystallization occurs at a temperature of about 1000-1270°C, but
If a nucleating agent is added, crystallization can be performed at even lower temperatures.

また熱処理時間は100時間以内でよい。これはその温
度に加熱するだけでも結晶化は部分的に進み、また10
0時間以内の熱処理時間で結晶化は完了するので、これ
以上熱処理しても結晶化度は増えない。なお結晶化を進
めるためには、ガラスを再び高温へ加熱する方法以外に
、高温に加熱溶融した融液を電気炉中で冷却速度20℃
/min以下のゆっくりした速度で徐冷しても同様の効
果が得られる。
Further, the heat treatment time may be within 100 hours. This means that even by heating to that temperature, crystallization partially progresses, and 10
Since crystallization is completed within a heat treatment time of 0 hours, the degree of crystallinity does not increase even if heat treatment is performed any further. In addition, in order to promote crystallization, in addition to heating the glass to a high temperature again, it is possible to cool the melt heated to a high temperature in an electric furnace at a cooling rate of 20°C.
A similar effect can be obtained even if the cooling is performed at a slow rate of less than /min.

(4)原料微粉末を均一に混合するための工程は以下の
ような効果を有している。原料粉末の粒径は0.1〜3
00μmとする。これより微細な超微粒子はコスト高で
あり、またこれより大きい粗粒はガラス溶融時に均質に
するため長時間の溶融を要するので不適当である。
(4) The process for uniformly mixing raw material fine powder has the following effects. The particle size of the raw material powder is 0.1-3
00 μm. Ultrafine particles finer than this are expensive, and coarse particles larger than this require a long melting time to make the glass homogeneous during melting, and are therefore unsuitable.

好ましくは粒径サブミクロン程度の粉末を用いることに
より、製造上の溶融時間を短縮することができる。原料
粉末100重量部に溶媒20〜150重量部、有機質0
.1〜10重量部を加える。溶媒量が20以下では混合
物の流動性がよくなく、また150以上加えても混合物
はけん濁液のままであり、それ以上溶媒をさらに追加す
る必要はない。有機質は粉体を主として分散させる効果
をもてばよいので、添加量としては0.1以下では効果
が少なく、また10以上では脱脂時間が長くなり、必要
量以上に加えているという問題点がある。
Preferably, by using a powder with a particle size of about submicron, the melting time during production can be shortened. 100 parts by weight of raw material powder, 20 to 150 parts by weight of solvent, 0 parts by weight of organic matter
.. Add 1 to 10 parts by weight. If the amount of solvent is less than 20, the fluidity of the mixture is poor, and even if more than 150 is added, the mixture remains a suspension, and there is no need to add any more solvent. The organic substance only needs to have the effect of mainly dispersing the powder, so if the amount added is less than 0.1, the effect will be small, and if it is more than 10, the degreasing time will become longer, leading to the problem that more than the necessary amount is added. be.

原料粉体の混合工程は以上のようにするのが好ましい。It is preferable that the raw material powder mixing step be performed as described above.

(5)得られた有機質成分を含む粉末混合物を大気中又
は減圧下で300〜700℃に加熱すれば、有機質成分
は分解し気化するので脱脂されるが、この工程は粉末を
電気炉で加熱し、溶融する工程の一部としてもよく、特
に脱脂工程を設定する必要はない。また粉末を加熱し、
溶融する条件は例えば1300〜1500℃の温度に0
.1〜5時間アルミするつぼ中で加熱すればよい。ガラ
スを生成させるためには高温で液相が現われることが必
要であり、このため加熱温度としては融液が現われる温
度ということで特に限定する必要はない。なお用いた溶
媒が水の場合、有機質成分としては水溶性アクリル樹脂
、アニオン系高分子等がよく、溶媒が有機溶媒であれば
溶媒にとけるポリエチレンイミン等の高分子や界面活性
剤が使用できる。なおコスト的には水に分散させる方が
より安価である。
(5) If the resulting powder mixture containing organic components is heated to 300 to 700°C in the air or under reduced pressure, the organic components will decompose and vaporize, resulting in degreasing, but this step involves heating the powder in an electric furnace. However, it may be a part of the melting process, and there is no need to specifically set a degreasing process. Also, heat the powder,
The melting conditions are, for example, a temperature of 1300 to 1500°C.
.. It can be heated in an aluminum crucible for 1 to 5 hours. In order to produce glass, it is necessary for a liquid phase to appear at a high temperature, and therefore the heating temperature does not need to be particularly limited as it is the temperature at which a melt appears. When the solvent used is water, the organic component is preferably a water-soluble acrylic resin, an anionic polymer, etc., and if the solvent is an organic solvent, a polymer such as polyethyleneimine or a surfactant that is soluble in the solvent can be used. Note that dispersing in water is cheaper in terms of cost.

〔実施例〕〔Example〕

本発明の一実施例として作製した結晶化ガラスの例を以
下に説明する。
An example of crystallized glass produced as an example of the present invention will be described below.

表1に示したように所定の組成の粒径サブミクロンの原
料粉末100重量部に、水5o重量部、アニオン系高分
子2重量部を加え、容器中で20時間混合した粉末と、
溶媒としてエタノール100重量部、ポリエチレンアミ
ン2重量部を加え、20時間混合した粉末を作製した。
As shown in Table 1, 50 parts by weight of water and 2 parts by weight of anionic polymer were added to 100 parts by weight of raw powder with a predetermined composition of submicron particle size, and the powder was mixed in a container for 20 hours.
100 parts by weight of ethanol and 2 parts by weight of polyethyleneamine were added as a solvent and mixed for 20 hours to prepare a powder.

これら粉末は0. I Torrの真空度で500℃で
1時間加熱保持したのち、X線回折により粉末の回折強
度のばらつきを調べた結果、粉末はいずれも均一に混合
されているのが確認された。
These powders are 0. After heating and holding at 500° C. for 1 hour in a vacuum of I Torr, variations in the diffraction intensity of the powder were examined by X-ray diffraction, and it was confirmed that the powders were all mixed uniformly.

この混合粉末をアルミするつぼに入れ、1500t’で
1時間加熱保持した後急冷し、得られたガラスを、11
00℃で2時間熱処理して表2に示すような結晶化ガラ
スを得た。
This mixed powder was placed in an aluminum crucible, heated and held at 1500 t' for 1 hour, and then rapidly cooled.
After heat treatment at 00° C. for 2 hours, crystallized glass as shown in Table 2 was obtained.

なお、別の実施例として試料4を1500℃で1時間加
熱溶融した後、10℃/minの速度で徐冷することに
より白色の結晶化ガラスを同様に得ることができた。
In addition, as another example, white crystallized glass could be similarly obtained by heating and melting sample 4 at 1500° C. for 1 hour and then slowly cooling it at a rate of 10° C./min.

表2に示すように、核形成剤を添加した場合、固液共存
状態が急冷されて得られたガラス相の結晶化開始温度(
試料4.5.6)は無添加の試料(8)と比較して、低
くなっているのが見られたので、MgO、TlO2、Z
rL等の酸化物は結晶化促進に有効であることがわかっ
た。なお従来法により粒径100μm程度の粉末からガ
ラスを合成する場合、均一なガラスを作成するためには
溶融状態で長時間保持する必要があったが、サブミクロ
ン程度の微粉末を均一に前もって分散させておけば、1
500℃で0.1時間程度加熱するだけでも十分に均質
なガラスが得られ、原料微粉末を使用した本発明の効果
が大きいことがわかった。得られたガラスのガラス転移
温度は約900℃であるが、結晶を多量に析出させるこ
とにより結晶化温度は約1000℃にまで高くすること
ができ、耐熱性で硬度の高いセラミックスを電気炉で単
に加熱するだけの簡単な手法で得られることがわかった
。なおガラス中の5in2量であるが、S10゜量が3
0〜50%ではガラス中に結晶質Sin、が析出し、そ
れ以上ではガラス化領域からずれてくることがわかった
。また種々の組成のガラスを、結晶化させた場合、硬度
の高いAl2O2やA15Y30.、の微結晶を析出さ
せるためには、5in2濃度は30%以下にする必要が
あることが判明した。
As shown in Table 2, when a nucleating agent is added, the crystallization initiation temperature (
Sample 4.5.6) was seen to be lower than additive-free sample (8), so MgO, TlO2, Z
It has been found that oxides such as rL are effective in promoting crystallization. When synthesizing glass from powder with a particle size of about 100 μm using the conventional method, it was necessary to hold it in a molten state for a long time in order to create a uniform glass. If you let me, 1
It was found that a sufficiently homogeneous glass could be obtained by heating at 500° C. for about 0.1 hour, indicating that the present invention using fine raw material powder is highly effective. The glass transition temperature of the obtained glass is about 900°C, but by precipitating a large amount of crystals, the crystallization temperature can be raised to about 1000°C. It turns out that it can be obtained by a simple method of simply heating. Note that the amount of S10° is 3 in 2 in the glass.
It was found that at 0 to 50%, crystalline Sin precipitates in the glass, and at more than that, it shifts from the vitrified region. Furthermore, when glasses of various compositions are crystallized, the hardness of Al2O2, A15Y30. It has been found that in order to precipitate microcrystals of , the 5in2 concentration needs to be 30% or less.

〔発明の効果〕 原料として微粉末を用い核形成剤を添加することにより
、耐熱性で高硬度の結晶化ガラスを製造することができ
、高温で使用可能な耐摩耗部材等産業上の利用価値が高
い。本発明の中で特に微粉末を前もって均一に分散させ
ておくことにより結晶化ガラスを製造するた1の、ガラ
ス溶融工程が簡単になるなど製造コスト低減への効果も
あり、さらに本結晶化ガラスは無アルカリであり、通常
のアルカリガラスと比較すると化学的に安定であり、腐
食性雰囲気に対しても耐久性が改善されるので有用であ
る。
[Effects of the invention] By using fine powder as a raw material and adding a nucleating agent, it is possible to produce heat-resistant and highly hard crystallized glass, which has industrial utility value such as wear-resistant parts that can be used at high temperatures. is high. In particular, by uniformly dispersing fine powder in advance, the present invention has the effect of reducing manufacturing costs by simplifying the glass melting process, and furthermore, the present crystallized glass is alkali-free, chemically stable compared to normal alkali glass, and has improved durability even in corrosive atmospheres, making it useful.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、SiO_2:5〜5%、Al_2O_
3:5〜70%、Y_2O_3:10〜70%を主成分
として含有し、MgO、TiO_2、ZrO_2、La
_2O_3等の添加剤のうち1種以上を0.1〜30%
核形成剤として含有する結晶化ガラス成分を溶融して、
徐冷するか、または溶融した溶液を急冷して得られたガ
ラスを900〜1250℃の温度で100時間以内の熱
処理により微結晶を析出させることを特徴とする結晶化
ガラスの製造方法。
(1) In weight%, SiO_2: 5-5%, Al_2O_
3:5 to 70%, Y_2O_3: 10 to 70% as main components, MgO, TiO_2, ZrO_2, La
0.1-30% of one or more additives such as _2O_3
By melting the crystallized glass component contained as a nucleating agent,
1. A method for producing crystallized glass, characterized in that glass obtained by slow cooling or rapid cooling of a molten solution is heat-treated at a temperature of 900 to 1250° C. for up to 100 hours to precipitate microcrystals.
(2)請求項(1)の組成の粉末を均一に前もって混合
するため、平均粒径0.1〜300μmの原料成分微粉
末100重量部に、溶媒として水または有機溶媒を20
〜150重量部、粉末を均一に分散させるため水溶性ア
クリル樹脂、ポリエチレングリコール、ポリエチレンア
ミン、アニオン系高分子等の有機質成分を0.1〜10
重量部加え、混合してセラミックス粉末を均一に混合し
て分散させた後、溶媒を蒸発させた均質に混合された粉
末を得、これを300〜700℃の温度に加熱して脱脂
した後、高温で溶融して徐冷するか、または溶融した溶
液を急冷して得られたガラスを900〜1250℃の温
度で100時間以内の熱処理により微結晶を析出させる
ことを特徴とする結晶化ガラスの製造方法。
(2) In order to uniformly mix the powder having the composition of claim (1) in advance, add 20 parts by weight of water or an organic solvent as a solvent to 100 parts by weight of the raw material fine powder with an average particle size of 0.1 to 300 μm.
~150 parts by weight, and 0.1 to 10 parts by weight of organic components such as water-soluble acrylic resin, polyethylene glycol, polyethylene amine, anionic polymer, etc. to uniformly disperse the powder.
After adding parts by weight and mixing to uniformly mix and disperse the ceramic powder, the solvent was evaporated to obtain a homogeneously mixed powder, which was heated to a temperature of 300 to 700 ° C. to degrease it, and then A crystallized glass characterized by precipitating microcrystals by melting at a high temperature and slowly cooling, or by heat-treating the glass obtained by rapidly cooling a molten solution at a temperature of 900 to 1250°C for within 100 hours. Production method.
JP23439790A 1990-09-06 1990-09-06 Production of crystallized glass Pending JPH04119941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23439790A JPH04119941A (en) 1990-09-06 1990-09-06 Production of crystallized glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23439790A JPH04119941A (en) 1990-09-06 1990-09-06 Production of crystallized glass

Publications (1)

Publication Number Publication Date
JPH04119941A true JPH04119941A (en) 1992-04-21

Family

ID=16970361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23439790A Pending JPH04119941A (en) 1990-09-06 1990-09-06 Production of crystallized glass

Country Status (1)

Country Link
JP (1) JPH04119941A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011786A1 (en) * 2001-08-02 2003-02-13 3M Innovative Properties Company Glass-ceramics
WO2004071990A3 (en) * 2003-02-05 2005-02-03 3M Innovative Properties Co Al2o3-la2o3-y2o3-mgo ceramics, and methods of making the same
EP1642869A1 (en) * 2004-09-29 2006-04-05 Schott AG Y2O3-containing aluminosilicate glass or glass ceramic
JP2007031196A (en) * 2005-07-26 2007-02-08 Kyoto Univ Phosphor, and light emitting diode
US7292766B2 (en) 2003-04-28 2007-11-06 3M Innovative Properties Company Use of glasses containing rare earth oxide, alumina, and zirconia and dopant in optical waveguides
DE102006027307A1 (en) * 2006-06-06 2007-12-13 Schott Ag Sinterglaskeramik and method for producing such
DE102006027306A1 (en) * 2006-06-06 2007-12-13 Schott Ag Process for producing a glass-ceramic with a garnet phase
JP2011184295A (en) * 2003-02-05 2011-09-22 Three M Innovative Properties Co Use of ceramics in dental and orthodontic applications
JP2011195440A (en) * 2010-03-19 2011-10-06 Schott Ag Glass-ceramic as dielectric for use in high-frequency range
CN104529166A (en) * 2014-12-16 2015-04-22 温州大学 Ce: YAG microcrystalline glass and application thereof in white-light LED
JP2016050155A (en) * 2014-09-01 2016-04-11 国立大学法人 東京大学 Glass material and method for producing the same
EP3339262A1 (en) 2016-12-23 2018-06-27 PRECIOSA, a.s. Material for the production of fashion jewellery and jewellery stones with high refractive index and high thermal resistance

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011786A1 (en) * 2001-08-02 2003-02-13 3M Innovative Properties Company Glass-ceramics
WO2004071990A3 (en) * 2003-02-05 2005-02-03 3M Innovative Properties Co Al2o3-la2o3-y2o3-mgo ceramics, and methods of making the same
JP2006514910A (en) * 2003-02-05 2006-05-18 スリーエム イノベイティブ プロパティズ カンパニー Al2O3-La2O3-Y2O3-MgO ceramic and method for producing the same
US7258707B2 (en) * 2003-02-05 2007-08-21 3M Innovative Properties Company AI2O3-La2O3-Y2O3-MgO ceramics, and methods of making the same
JP2011184295A (en) * 2003-02-05 2011-09-22 Three M Innovative Properties Co Use of ceramics in dental and orthodontic applications
US7292766B2 (en) 2003-04-28 2007-11-06 3M Innovative Properties Company Use of glasses containing rare earth oxide, alumina, and zirconia and dopant in optical waveguides
US7799444B2 (en) 2004-09-29 2010-09-21 Schott Ag Conversion material
EP1642869A1 (en) * 2004-09-29 2006-04-05 Schott AG Y2O3-containing aluminosilicate glass or glass ceramic
JP2006117511A (en) * 2004-09-29 2006-05-11 Schott Ag Glass or glass ceramic
DE102004048041B4 (en) * 2004-09-29 2013-03-07 Schott Ag Use of a glass or a glass ceramic for light wave conversion
JP2007031196A (en) * 2005-07-26 2007-02-08 Kyoto Univ Phosphor, and light emitting diode
US7910505B2 (en) 2006-06-06 2011-03-22 Schott Ag Sintered glass ceramic and method for producing the same
US7958746B2 (en) 2006-06-06 2011-06-14 Schott Ag Method for producing a glass ceramic having a garnet phase
DE102006027306A1 (en) * 2006-06-06 2007-12-13 Schott Ag Process for producing a glass-ceramic with a garnet phase
US8039407B2 (en) 2006-06-06 2011-10-18 Schott Ag Sintered glass ceramic and method for producing the same
DE102006027307A1 (en) * 2006-06-06 2007-12-13 Schott Ag Sinterglaskeramik and method for producing such
DE102006027306B4 (en) * 2006-06-06 2013-10-17 Schott Ag Process for the preparation of a glass ceramic with a garnet phase and use of the glass ceramic produced thereafter
DE102006027307B4 (en) * 2006-06-06 2014-08-07 Schott Ag Process for producing a sintered glass ceramic and its use
JP2011195440A (en) * 2010-03-19 2011-10-06 Schott Ag Glass-ceramic as dielectric for use in high-frequency range
JP2016050155A (en) * 2014-09-01 2016-04-11 国立大学法人 東京大学 Glass material and method for producing the same
CN104529166A (en) * 2014-12-16 2015-04-22 温州大学 Ce: YAG microcrystalline glass and application thereof in white-light LED
EP3339262A1 (en) 2016-12-23 2018-06-27 PRECIOSA, a.s. Material for the production of fashion jewellery and jewellery stones with high refractive index and high thermal resistance

Similar Documents

Publication Publication Date Title
TWI408114B (en) Refractory glass ceramics
JP2017535503A (en) High hardness transparent crystalline glass and method for preparing the same
EP2282978A1 (en) Lithium silicate glass ceramic and method for fabrication of dental appliances
JPH04119941A (en) Production of crystallized glass
CN108947253B (en) Containing Y4.67(SiO4)3Yttrium aluminosilicate glass ceramic with O apatite crystal phase and preparation method thereof
JPS63112439A (en) Glass ceramic product
US4097295A (en) Silica-alumina-nitrogen containing glasses for production of glass-ceramics
JP2926966B2 (en) High zirconia hot-melt cast refractories
Zdaniewski Microstructure and Kinetics of Crystallization of MgO‐Al2O3− Si02 Glass‐Ceramics
JPH07247138A (en) Crystallized glass and its production
CN112552032A (en) Synthetic beta-spodumene solid solution, microcrystalline glass prepared from synthetic beta-spodumene solid solution and preparation method of microcrystalline glass
US3301646A (en) Method of making partially stabilized zirconia
Weaver et al. The role of TiO 2 and composition in the devitrification of near-stoichiometric cordierite
JP2759763B2 (en) Cordierite-based crystallized glass and method for producing the same
CN111170642A (en) High-strength high-toughness low-expansion lithium-aluminum-silicon transparent glass ceramic and preparation method thereof
US3181958A (en) Refractory composition
CN115893845A (en) Glass ceramic composition, preparation method and application thereof
JP4220013B2 (en) Composite glass ceramics and method for producing the same
GB2172282A (en) Toughened glass-ceramics
Zhien et al. Preparation and crystallization of ultrafine Li 2 O-Al 2 O 3-SiO 2 powders
JPH02248362A (en) Aluminum titanate ceramics
Mihailova et al. Phase characterization of glass-ceramics with high iron oxide concentrations
JPH04310540A (en) Crystallized glass
JP2000351667A (en) Oxide ceramic
JPS6172654A (en) Preparation of fluorine mica glass ceramics