JP5257853B2 - Composite parts for emission color conversion - Google Patents
Composite parts for emission color conversion Download PDFInfo
- Publication number
- JP5257853B2 JP5257853B2 JP2010039636A JP2010039636A JP5257853B2 JP 5257853 B2 JP5257853 B2 JP 5257853B2 JP 2010039636 A JP2010039636 A JP 2010039636A JP 2010039636 A JP2010039636 A JP 2010039636A JP 5257853 B2 JP5257853 B2 JP 5257853B2
- Authority
- JP
- Japan
- Prior art keywords
- color conversion
- glass
- light
- phosphor
- emission color
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Glass Compositions (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Description
本発明は、青色光源、特に青色発光ダイオード(LED)素子からの青色光を白色に転換するための発光色変換用複合部品に関するものである。 The present invention relates to a composite component for light emission color conversion for converting blue light from a blue light source, particularly a blue light emitting diode (LED) element, into white.
白色LEDは、近年、高効率、高信頼性の白色照明光源として注目され、一部が微小電力小型光源として既に使用に供されている。この種のLEDは、青色LED素子を、黄色蛍光体と透明樹脂との混合物で被覆モールドしたものが一般的である。 In recent years, white LEDs have attracted attention as high-efficiency and high-reliability white illumination light sources, and some of them are already in use as small-power small-sized light sources. In general, this type of LED is obtained by coating a blue LED element with a mixture of a yellow phosphor and a transparent resin.
しかしながら、青色光はエネルギーが強いので樹脂を劣化させやすい。それゆえ、このような構造の白色LEDは、長期間使用していると樹脂が変色して色調が変化する。また最近では、高出力LED素子を使用して白色照明光源を開発する動きがあるが、この場合限られた部分に極めて強い青色光が照射されるので樹脂の劣化が著しく、発光色の変化が極めて短期間に起こる。また樹脂モールドされた素子からの熱放散性が悪いため、温度が上昇しやすく、温度上昇に伴って発光色の色調が黄色側へシフトするという問題がある。 However, since blue light has strong energy, it tends to deteriorate the resin. Therefore, when the white LED having such a structure is used for a long period of time, the resin is discolored and the color tone is changed. Recently, there has been a movement to develop a white illumination light source using a high-power LED element. In this case, a very strong blue light is irradiated to a limited part, so that the resin is significantly deteriorated and the emission color changes. It happens in a very short time. Further, since heat dissipation from the resin-molded element is poor, there is a problem that the temperature is likely to rise, and the color tone of the emission color shifts to the yellow side as the temperature rises.
本発明は上記事情に鑑みなされたもので、青色LED素子、特に高出力の青色LED素子を使用しても、高信頼性、長寿命の白色照明光源を得ることが可能な発光色変換用複合部品を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a light emitting color conversion composite capable of obtaining a high-reliability, long-life white illumination light source even when a blue LED element, particularly a high-output blue LED element is used. The purpose is to provide parts.
本発明の発光色変換用複合部品は、青色光源から発せられる青色光の一部を黄色光に変換し、残部の青色光と合成して白色光を得るための発光色変換部材であって、軟化点が500℃より高いガラス中に無機蛍光体が分散してなり、無機蛍光体の含有量が、体積%で0.01〜15%であり、かつ、ガラス粉末と無機蛍光体粉末の混合粉末の焼結体からなる発光色変換部材と、発光色変換部材を支持する支持部材とからなることを特徴とする。 The composite component for light emission color conversion of the present invention is a light emission color conversion member for converting a part of blue light emitted from a blue light source into yellow light and combining it with the remaining blue light to obtain white light, Ri softening point name and inorganic phosphor is dispersed in the glass higher than 500 ° C., the content of the inorganic phosphor is 0.01 to 15% by volume%, and a glass powder and an inorganic phosphor powder Ru and light emitting color conversion member name of a sintered body of mixed powder, characterized in that comprising a support member for supporting the light emitting color conversion member.
また本発明の白色照明光源は、青色光源と発光色変換部材とを有し、青色光源から発せられる青色光の一部を黄色光に変換し、残部の青色光と合成して白色光を得る白色照明光源であって、軟化点が500℃より高いガラス中に無機蛍光体が分散してなり、無機蛍光体の含有量が、体積%で0.01〜15%であり、かつ、ガラス粉末と無機蛍光体粉末の混合粉末の焼結体からなる発光色変換部材と、発光色変換部材を支持する支持部材とからなることを特徴とする発光色変換用複合部品を使用することを特徴とする。 The white illumination light source of the present invention has a blue light source and an emission color conversion member, converts a part of blue light emitted from the blue light source into yellow light, and combines with the remaining blue light to obtain white light. a white illumination light source, Ri is the name dispersed inorganic phosphor higher glass than 500 ° C. softening point, the content of the inorganic phosphor is 0.01 to 15% by volume%, and glasses powder and the Ru light emitting color conversion member name of a sintered body of mixed powder of an inorganic phosphor powder, the use of light emitting color conversion composite part, characterized by comprising a supporting member for supporting the light emitting color conversion member Features.
本発明の発光色変換部材は、化学的に安定で熱伝導率が高いガラスを主成分としているため、高出力の青色光に長期間曝されても変色がなく、また素子の温度上昇が少ないので白色光の変色がない。それゆえ、信頼性の高い白色照明光源を提供することができる。 Since the luminescent color conversion member of the present invention is mainly composed of chemically stable glass with high thermal conductivity, it does not change color even when exposed to high-power blue light for a long period of time, and the temperature rise of the device is small. So there is no discoloration of white light. Therefore, a highly reliable white illumination light source can be provided.
本発明における発光色変換部材は、ガラス中に無機蛍光体が分散した構成を有している。より具体的にはガラス粉末と無機蛍光体粉末との焼結体からなる。 The luminescent color conversion member in the present invention has a configuration in which an inorganic phosphor is dispersed in glass. More specifically, it consists of a sintered body of glass powder and inorganic phosphor powder.
無機蛍光体としては、青色光源から発せられる青色光を黄色系の光、例えば緑黄色(発光ピーク約550nm)に変換可能なものであり、一般的に市中で入手できるものであれば使用できる。無機蛍光体には硫化物、ハロリン酸塩、酸化物などからなるものがある。酸化物蛍光体は、ガラスと混合して高温に加熱しても安定であるが、硫化物、ハロリン酸塩などの蛍光体では焼結時の加熱によりガラスと反応し、発泡や変色などの異常反応を起こしやすい。その程度は、焼結温度が高温であればあるほど著しくなる。従って、無機蛍光体としては、酸化物蛍光体を使用することが好ましい。最も好適な酸化物蛍光体としては、(Y,Gd,Ce)3Al5O12等のY3Al5O12系蛍光体が挙げられる。 As the inorganic phosphor, blue light emitted from a blue light source can be converted into yellowish light, for example, green-yellow (emission peak of about 550 nm), and can be used as long as it is generally available in the market. Some inorganic phosphors include sulfides, halophosphates, oxides, and the like. Oxide phosphors are stable when mixed with glass and heated to high temperatures, but phosphors such as sulfides and halophosphates react with the glass when heated during sintering, and abnormalities such as foaming and discoloration occur. Prone to reaction. The degree becomes more remarkable as the sintering temperature is higher. Therefore, it is preferable to use an oxide phosphor as the inorganic phosphor. The most suitable oxide phosphor includes Y 3 Al 5 O 12 based phosphor such as (Y, Gd, Ce) 3 Al 5 O 12 .
ガラスは、軟化点が500℃を超えるもの、好ましくは600℃を超えるものに限定される。その理由は、軟化点が500℃以下のガラスは蛍光体と反応して焼結体が黒っぽくなり、発光効率が大幅に低下したり、光が透過しなくなる。また化学的耐久力が悪化し易く、湿気の多い環境では使用中に表面が変質して透過率を下げ、効率を低下させる恐れがあるためである。 Glasses are limited to those having a softening point above 500 ° C, preferably above 600 ° C. The reason is that glass having a softening point of 500 ° C. or less reacts with the phosphor to make the sintered body darker, resulting in a significant decrease in light emission efficiency and no light transmission. Moreover, chemical durability tends to deteriorate, and in a humid environment, the surface may be altered during use to reduce the transmittance and reduce the efficiency.
なお熱膨張係数が75×10−7/℃を超えるガラスは、点灯時の温度上昇と消灯時の温度下降の繰り返しによる熱衝撃で焼結体にクラックが入りやすくなり、好ましくない。それゆえ軟化点が500℃以上(特に600℃以上)、且つ熱膨張係数が75×10−7/℃以下(特に20〜70×10−7/℃)のガラスであることが好ましい。 Glass having a thermal expansion coefficient exceeding 75 × 10 −7 / ° C. is not preferable because cracks are easily formed in the sintered body due to thermal shock caused by repeated temperature rise during lighting and temperature drop during extinction. Therefore, a glass having a softening point of 500 ° C. or higher (particularly 600 ° C. or higher) and a thermal expansion coefficient of 75 × 10 −7 / ° C. or lower (particularly 20 to 70 × 10 −7 / ° C.) is preferable.
またガラス組成中にPbOやBi2O3を含有する場合、蛍光体と反応して焼結体の明度を下げ易く、発光効率を低下させるために好ましくない。さらにソラリゼーションの原因となるような酸化物や光の透過を妨げるような着色元素を含有せず、またそのような不純物を含まないことが重要である。例えば組成中にMnO、Fe2O3、CeO2等が含まれていると、紫外線によりガラスを変色させるのでこれらの成分の含有は好ましくない。またアルカリ金属酸化物が含まれていると、部材の接着やモールドに使用される樹脂を劣化させ、接着強度を低下させる。従って、ガラス組成中には、上記した成分を実質的に含有しないことが好ましい。具体的には、PbOやBi2O3は各々3%以下、MnO、Fe2O3、CeO2等は各々1000ppm以下、アルカリ金属酸化物は合量で15%以下に制限することが望ましい。 Further, when PbO or Bi 2 O 3 is contained in the glass composition, it is not preferable because it easily reacts with the phosphor to lower the brightness of the sintered body and lowers the light emission efficiency. Furthermore, it is important not to contain oxides that cause solarization or coloring elements that hinder the transmission of light, and not to contain such impurities. For example, if MnO, Fe 2 O 3 , CeO 2 or the like is included in the composition, the glass is discolored by ultraviolet rays, so the inclusion of these components is not preferable. Moreover, when an alkali metal oxide is contained, resin used for adhesion | attachment of a member or a mold will be deteriorated, and adhesive strength will be reduced. Therefore, it is preferable that the above-mentioned components are not substantially contained in the glass composition. Specifically, it is desirable that PbO and Bi 2 O 3 are limited to 3% or less, MnO, Fe 2 O 3 , CeO 2 and the like are each limited to 1000 ppm or less, and the total amount of alkali metal oxides is limited to 15% or less.
また組成系によって、焼結体の色調が異なったり、蛍光体との反応性に差がでるため、種々の条件を考慮して使用するガラスの組成を選択する必要がある。さらにガラス組成に適した蛍光体の添加量や、部材の厚みを決定することも重要である。本発明における好適なガラスとしてはB2O3−SiO2系ガラス、BaO−B2O3−SiO2系ガラス、 ZnO−B2O3−SiO2系ガラス等が挙げられる。 In addition, since the color tone of the sintered body varies depending on the composition system and the reactivity with the phosphor varies, it is necessary to select a glass composition to be used in consideration of various conditions. Furthermore, it is also important to determine the amount of phosphor added suitable for the glass composition and the thickness of the member. Examples of suitable glass in the present invention include B 2 O 3 —SiO 2 glass, BaO—B 2 O 3 —SiO 2 glass, ZnO—B 2 O 3 —SiO 2 glass, and the like.
本発明における発光色変換部材は、部材の厚みが0.2mm未満であると実用的な機械的強度が得難い。このため機械的強度が要求される用途では、0.2mm以上の厚みを有するようにすることが好ましい。またこの場合、無機蛍光体の含有量は0.01〜15体積%であることが好ましい。蛍光体が0.01体積%未満であると、黄色光が不足して白色光になりにくく、逆に15%を超えると蛍光体に遮蔽されて青色光の光量が少なくなりすぎ、光が黄色にシフトする。場合によっては黄色光自体も遮蔽されて発光効率が著しく低下する。より望ましい蛍光体の含有量は、0.05〜10%、特に0.08〜8体積、さらには0.1〜3体積%である。 The luminescent color conversion member in the present invention is difficult to obtain practical mechanical strength when the thickness of the member is less than 0.2 mm. For this reason, in applications where mechanical strength is required, it is preferable to have a thickness of 0.2 mm or more. In this case, the content of the inorganic phosphor is preferably 0.01 to 15% by volume. If the phosphor is less than 0.01% by volume, the yellow light is insufficient and hardly becomes white light. Conversely, if it exceeds 15%, the phosphor is shielded by the phosphor and the amount of blue light becomes too small, and the light is yellow. Shift to. In some cases, yellow light itself is also shielded, resulting in a significant reduction in luminous efficiency. The more preferable content of the phosphor is 0.05 to 10%, particularly 0.08 to 8 volume, and further 0.1 to 3 volume%.
また本発明における発光色変換部材は、図1に示すような円盤状の変換部材10、図2に示すような円筒キャップ状の変換部材20等、種々の形状に成形して使用することができる。なお図1中、11は無機蛍光体を、12はガラスを示している。 Further, the luminescent color conversion member in the present invention can be used in various shapes such as a disk-like conversion member 10 as shown in FIG. 1 and a cylindrical cap-like conversion member 20 as shown in FIG. . In FIG. 1, 11 indicates an inorganic phosphor, and 12 indicates glass.
以上の構成を有する本発明における発光色変換部材は、ガラス中に蛍光体が分散してなるため、入射した青色光の一部が無機蛍光体によって黄色光に変換され、また残部の青色光が透過、散乱する。この変換された黄色光と、透過、散乱した青色光とが合わさって白色光に近いスペクトルを合成することにより、青色光が白色光に転換される。 In the luminescent color conversion member according to the present invention having the above-described configuration, since the phosphor is dispersed in the glass, a part of the incident blue light is converted into yellow light by the inorganic phosphor, and the remaining blue light is converted. Transmits and scatters. Blue light is converted into white light by combining the converted yellow light and the transmitted and scattered blue light to synthesize a spectrum close to white light.
なお入射した光の散乱が小さい場合、得られる白色光は、強く明るい光となり、散乱が大きい場合は柔らかな光となる。 In addition, when the scattering of the incident light is small, the white light obtained is strong and bright light, and when the scattering is large, the white light is soft.
また部材の厚みが大きくなると明度が低下し、発光効率が低下する。さらに蛍光体の絶対量が多くなり黄色光が増えるため、発光色が黄色側にシフトしやすくなる。一方、部材が薄いと発光効率が高くなるが、蛍光体の絶対量が少なくなり黄色光が減少するため青色側にシフトしやすくなる。このため白色光を効率よく得るためには、蛍光体の量と部材の厚みを調整することが重要である。 Further, as the thickness of the member increases, the brightness decreases and the light emission efficiency decreases. Furthermore, since the absolute amount of the phosphor increases and yellow light increases, the emission color easily shifts to the yellow side. On the other hand, if the member is thin, the light emission efficiency is increased, but the absolute amount of the phosphor is reduced and the yellow light is reduced, so that it tends to shift to the blue side. Therefore, in order to obtain white light efficiently, it is important to adjust the amount of the phosphor and the thickness of the member.
次に、本発明における発光色変換部材を製造する方法を述べる。 Next, a method for producing the luminescent color conversion member in the present invention will be described.
まず上記特徴を有するようなガラス粉末と無機蛍光体粉末を用意する。ここで得られる変換部材の散乱を大きくしたい場合には、粒度の小さいガラス粉末を、散乱を小さくしたい場合には粒度の大きいガラス粉末を使用すればよい。またガラス粉末の好適な粒度範囲は、最大粒子径Dmaxが150μm以下(特に45〜105μm)、且つ平均粒子径D50が2μm以上(特に10〜20μm)である。つまりガラス粉末の最大粒子径が150μmを超えると、焼結体中に粗大ガラス粒子が形成する透明部分が散在することになり、また光を散乱しにくくなるために、均一な散乱体にならず、白色光が青みを帯び易くなる。また平均粒子径D50が2μm未満であると、焼結体が光を過剰に散乱させるために青色光の透過性が著しく低下し、発光効率が低下するばかりでなく、白色光が黄色みを帯び易くなる。 First, a glass powder and an inorganic phosphor powder having the above characteristics are prepared. If it is desired to increase the scattering of the conversion member obtained here, a glass powder having a small particle size may be used, and if it is desired to reduce the scattering, a glass powder having a large particle size may be used. The preferred size range of the glass powder, the maximum particle diameter Dmax is 150μm or less (in particular 45~105Myuemu), and an average particle diameter D 50 is more than 2 [mu] m (in particular 10 to 20 [mu] m). In other words, when the maximum particle size of the glass powder exceeds 150 μm, transparent parts formed by coarse glass particles are scattered in the sintered body, and it becomes difficult to scatter light. , White light tends to be bluish. Also the average particle diameter D 50 is less than 2 [mu] m, significantly reduces the permeability of the blue light to the sintered body is excessively scatter light, not only emission efficiency is lowered, the white light is yellowish It becomes easy to take on.
次に、無機蛍光体粉末とガラス粉末を混合し、発光色変換部材用材料を得る。混合割合は、作製する部材の厚みを勘案して調整すればよい。即ち、部材の厚みが薄い場合は蛍光体粉末の割合を高めに設定し、逆に厚い場合は割合を低めに設定すればよい。 Next, the inorganic phosphor powder and the glass powder are mixed to obtain a light emitting color conversion member material. What is necessary is just to adjust a mixing ratio in consideration of the thickness of the member to produce. That is, when the thickness of the member is thin, the ratio of the phosphor powder is set higher, and conversely, when it is thick, the ratio is set lower.
続いて樹脂バインダーを添加して加圧成型し、所望の形状の予備成型体を作製する。 Subsequently, a resin binder is added and pressure-molded to prepare a preform with a desired shape.
その後、予備成形体を焼成し樹脂バインダーを除去して焼結させ、発光色変換部材を得る。複合部品とする場合は、得られた変換部材を、別に用意した支持部材に取り付ければよい。 Thereafter, the preform is fired, the resin binder is removed and sintered, and a luminescent color conversion member is obtained. What is necessary is just to attach the obtained conversion member to the support member prepared separately, when setting it as a composite part.
本発明の発光色変換用複合部品は、図3に示すように、発光色変換部材30と、これを支持する支持部材40とからなる。支持部材としては種々の形状のものを採用可能であり、例えば図3に示すような円筒形状のものを使用できる。支持部材は、樹脂、セラミック、金属等の異種材料からなる。材料の選択は、機械的強度、膨張等の条件を考慮して適宜選定すればよい。また変換部材の取り付けは、嵌着、接着等の方法で行えばよい。 The composite part for luminescent color conversion of this invention consists of the luminescent color conversion member 30 and the support member 40 which supports this, as shown in FIG. As the support member, members having various shapes can be adopted, and for example, a cylindrical member as shown in FIG. 3 can be used. The support member is made of a different material such as resin, ceramic, or metal. The material may be selected appropriately in consideration of conditions such as mechanical strength and expansion. Moreover, what is necessary is just to perform attachment of a conversion member by methods, such as fitting and adhesion | attachment.
このようにして得られた発光色変換部材を取り付けた発光色変換複合部品は、青色LED素子等の青色光源と組み合わせることにより、白色照明光源として利用できる。 The luminescent color conversion composite part to which the luminescent color conversion member thus obtained is attached can be used as a white illumination light source by combining with a blue light source such as a blue LED element.
以下、実施例に基づき、本発明を説明する。 Hereinafter, the present invention will be described based on examples.
表1〜3は、本実施例で使用するガラス試料(試料A〜M)を示している。 Tables 1 to 3 show glass samples (samples A to M) used in this example.
各試料は次のようにして調製した。まず表に示す割合になるように珪砂、ホウ酸、酸化アルミニウム、酸化ビスマス、酸化亜鉛、炭酸カルシウム、炭酸バリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウムおよび鉛丹を調合した。続いて、これを白金坩堝に入れ、800〜1500℃で1〜3時間溶融してガラス化し、フィルム状に成形した。フィルム状ガラスをボールミルで粉砕した後、150メッシュ(JIS)の篩を通して分級し、最大粒子径105μm、平均粒子径約20μmのガラス粉末試料(通常品)を得た。また試料Hについては、通常粒度品に加えて、最大粒子径150μm、平均粒子径約30μmの粗大品及び最大粒子径10μm、平均粒子径約1.8μmの微細品を用意した。 Each sample was prepared as follows. First, silica sand, boric acid, aluminum oxide, bismuth oxide, zinc oxide, calcium carbonate, barium carbonate, lithium carbonate, sodium carbonate, potassium carbonate, and red lead were prepared so as to have the ratio shown in the table. Subsequently, this was put into a platinum crucible, melted at 800 to 1500 ° C. for 1 to 3 hours to vitrify, and formed into a film. The glass film was pulverized with a ball mill and then classified through a 150 mesh (JIS) sieve to obtain a glass powder sample (ordinary product) having a maximum particle size of 105 μm and an average particle size of about 20 μm. For sample H, in addition to a normal particle size product, a coarse product having a maximum particle size of 150 μm and an average particle size of about 30 μm and a fine product having a maximum particle size of 10 μm and an average particle size of about 1.8 μm were prepared.
このようにして得られたガラス粉末試料について、密度、熱膨張係数及び軟化点を測定した。結果を表に示す。 The glass powder sample thus obtained was measured for density, coefficient of thermal expansion, and softening point. The results are shown in the table.
なお軟化点は、ガラス粉末試料を更にボールミルで粉砕し、最大粒子径45μm、平均粒子径10μmの粒度の粉末試料を作製し、DTAにより求めた。また密度及び熱膨張係数は、溶融ガラスを特性測定用のブロック状試料および円柱状試料に成形し、アニールした後、それぞれアルキメデス法、及びTMAにより求めた。 The softening point was determined by DTA by further grinding a glass powder sample with a ball mill to produce a powder sample having a maximum particle size of 45 μm and an average particle size of 10 μm. The density and thermal expansion coefficient were determined by Archimedes method and TMA, respectively, after forming molten glass into a block sample and a columnar sample for characteristic measurement and annealing.
表4〜7は、上記したガラス粉末試料と、無機蛍光体粉末を焼結させてなる発光色変換部材の実施例を示している。 Tables 4 to 7 show examples of the light emission color conversion member formed by sintering the above glass powder sample and inorganic phosphor powder.
各試料は次のようにして調製した
まず、ガラス粉末試料に、表4〜7に示す割合で蛍光体粉末を添加、混合して混合粉末とした。さらに少量の樹脂バインダーを添加、混合した後、金型で加圧成型して直径1cmのボタン状予備成型体を作製した。なお蛍光体には、(Y,Gd,Ce)3Al5O12(化成オプトニクス株式会社製P46−Y3)を使用した。
Each sample was prepared as follows. First, phosphor powder was added to a glass powder sample at a ratio shown in Tables 4 to 7 and mixed to obtain a mixed powder. Further, a small amount of a resin binder was added and mixed, and then pressure-molded with a mold to prepare a button-shaped preform having a diameter of 1 cm. As the phosphor, (Y, Gd, Ce) 3 Al 5 O 12 (P46-Y3 manufactured by Kasei Optonics Co., Ltd.) was used.
続いて、各ガラスの軟化点から定めた焼結温度(各表に示す)で、予備成型体を焼結させ、直径約8mm、厚さ0.2mm、0.5mm、1.0mm、1.5mm、又は2.0mmの大きさの円盤状焼結体に加工した。 Subsequently, the preform is sintered at a sintering temperature determined from the softening point of each glass (shown in each table), and the diameter is about 8 mm, the thickness is 0.2 mm, 0.5 mm, 1.0 mm, and 1. It processed into the disk shaped sintered compact of a magnitude | size of 5 mm or 2.0 mm.
得られた焼結体試料について、焼結体の色調、透過光の色調と強度を目視にて評価した。なお透過光の色調と強度は、焼結体の背後からLEDの青色光を照射したときの焼結体からの透過光を評価したものであり、色調は白色に近いほど好ましく、また強度が強いほど発光効率がよく好ましい。 About the obtained sintered compact sample, the color tone of the sintered compact, the color tone and intensity of transmitted light were visually evaluated. The color tone and intensity of the transmitted light are evaluated from the transmitted light from the sintered body when the blue light of the LED is irradiated from behind the sintered body, and the color tone is preferably closer to white, and the strength is higher. The better the luminous efficiency, the better.
10、20、30 発光色変換部材
11 無機蛍光体
12 ガラス
40 支持部材
10, 20, 30 Luminescent color conversion member 11 Inorganic phosphor 12 Glass 40 Support member
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010039636A JP5257853B2 (en) | 2010-02-25 | 2010-02-25 | Composite parts for emission color conversion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010039636A JP5257853B2 (en) | 2010-02-25 | 2010-02-25 | Composite parts for emission color conversion |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008136278A Division JP5190680B2 (en) | 2008-05-26 | 2008-05-26 | Luminescent color conversion member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010132922A JP2010132922A (en) | 2010-06-17 |
JP5257853B2 true JP5257853B2 (en) | 2013-08-07 |
Family
ID=42344482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010039636A Expired - Lifetime JP5257853B2 (en) | 2010-02-25 | 2010-02-25 | Composite parts for emission color conversion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5257853B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104676299A (en) * | 2013-11-29 | 2015-06-03 | 广东德豪润达电气股份有限公司 | White light LED light source component and production method thereof |
CN108249772A (en) * | 2018-01-19 | 2018-07-06 | 南昌大学 | Preparation method based on the nanocrystalline luminescent microcrystal glass of rare earth ion doped Yttrium Orthovanadate |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3425225B2 (en) * | 1993-06-18 | 2003-07-14 | 三菱マテリアル株式会社 | High-power infrared laser light detector and manufacturing method thereof |
KR100643442B1 (en) * | 1996-06-26 | 2006-11-10 | 오스람 게젤샤프트 미트 베쉬랭크터 하프퉁 | Light-emitting semiconductor component with luminescence conversion element |
JP3419280B2 (en) * | 1996-11-05 | 2003-06-23 | 日亜化学工業株式会社 | Light emitting device |
JP3533345B2 (en) * | 1999-07-13 | 2004-05-31 | サンケン電気株式会社 | Semiconductor light emitting device |
JP2001058844A (en) * | 1999-08-23 | 2001-03-06 | Nippon Electric Glass Co Ltd | Glass composition for fluorescent character display tube, electrical insulation material and partition material |
JP2002012445A (en) * | 2000-01-18 | 2002-01-15 | Central Glass Co Ltd | Low fusing point glass |
JP2003192378A (en) * | 2001-12-25 | 2003-07-09 | Yamato Denshi Kk | Lead-free low-melting glass for sealing |
JP4158012B2 (en) * | 2002-03-06 | 2008-10-01 | 日本電気硝子株式会社 | Luminescent color conversion member |
-
2010
- 2010-02-25 JP JP2010039636A patent/JP5257853B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2010132922A (en) | 2010-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4158012B2 (en) | Luminescent color conversion member | |
JP5190680B2 (en) | Luminescent color conversion member | |
JP5483795B2 (en) | Luminescent color conversion material and luminescent color conversion member | |
KR102271648B1 (en) | Wavelength conversion member and light emitting device using same | |
JP5257854B2 (en) | Luminescent color conversion member | |
JP6273799B2 (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device | |
JP4873361B2 (en) | Luminescent color conversion member | |
KR102422065B1 (en) | Wavelength conversion member and light emitting device using same | |
WO2011111462A1 (en) | Wavelength conversion member, optical device, and process for production of wavelength conversion member | |
JP2008019421A (en) | Phosphor composite material and phosphor composite member | |
JP2008143978A (en) | Luminescent color converting material | |
JP6365828B2 (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device | |
JP2007311743A (en) | Method of manufacturing emission color conversion member, and emission color conversion member | |
JP2016108216A (en) | Fluorophor dispersion glass | |
JP2012180488A (en) | Production process of wavelength conversion member, wavelength conversion member made by the process and wavelength conversion element | |
JP2011222751A (en) | Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member | |
JP5257853B2 (en) | Composite parts for emission color conversion | |
JP2016084269A (en) | Phosphor-dispersed glass | |
KR102654998B1 (en) | Glass used in wavelength conversion materials, wavelength conversion materials, wavelength conversion members, and light emitting devices | |
JP5257852B2 (en) | Luminescent color conversion member | |
JP2008208380A (en) | Luminescent color-converting member | |
JP5807780B2 (en) | Wavelength converting member and light emitting device using the same | |
JP5368785B2 (en) | Luminescent color conversion member | |
JP5713273B2 (en) | Joining material and member joining method using the same | |
JP2010084069A (en) | Member for converting color of emitted light |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120702 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130401 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160502 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5257853 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130414 |
|
EXPY | Cancellation because of completion of term |