JP3533345B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JP3533345B2
JP3533345B2 JP19892599A JP19892599A JP3533345B2 JP 3533345 B2 JP3533345 B2 JP 3533345B2 JP 19892599 A JP19892599 A JP 19892599A JP 19892599 A JP19892599 A JP 19892599A JP 3533345 B2 JP3533345 B2 JP 3533345B2
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
emitting device
semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19892599A
Other languages
Japanese (ja)
Other versions
JP2001024236A (en
Inventor
武志 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP19892599A priority Critical patent/JP3533345B2/en
Publication of JP2001024236A publication Critical patent/JP2001024236A/en
Application granted granted Critical
Publication of JP3533345B2 publication Critical patent/JP3533345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32013Structure relative to the bonding area, e.g. bond pad the layer connector being larger than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発光装置、
特に、高い光取出効率を有し且つ安価で量産性にも優れ
た半導体発光装置に属する。
TECHNICAL FIELD The present invention relates to a semiconductor light emitting device,
In particular, it belongs to a semiconductor light emitting device that has high light extraction efficiency, is inexpensive, and is excellent in mass productivity.

【0002】[0002]

【従来の技術】光透過性物質Aの任意の点から放射され
た光が光透過性物質Aに隣接する光透過性物質Bとの境
界面に達したとき、境界面で光の進路が変わる屈折現象
は公知である。光の屈折の模式図を示す図9において、
光透過性物質Aを進む光が境界面の法線と成す角度を入
射角θ1、光透過性物質Bに進入した光が境界面の法線
と成す角度を屈折角θ2、光透過性物質Aの屈折率を
1、光透過性物質Bの屈折率をn2とすると、屈折の法
則(スネルの法則)に従ってθ1、θ2、n1、n2の関係
は次式で示される。 sinθ1/sinθ2=n2/n1 (1)
2. Description of the Related Art When light emitted from an arbitrary point of a light transmissive material A reaches a boundary surface between the light transmissive material A and a light transmissive material B adjacent to the light transmissive material A, the path of the light changes at the boundary surface. The refraction phenomenon is known. In FIG. 9 showing a schematic diagram of refraction of light,
The angle formed by the light traveling through the light-transmitting substance A with the normal line of the boundary surface is the incident angle θ 1 , and the angle formed by the light entering the light-transmitting substance B with the normal line of the boundary surface is the refraction angle θ 2 , the light transmitting property. n 1 the refractive index of the material a, and the refractive index of the light transmitting material B and n 2, theta 1 according to the law of refraction (Snell's law), the relationship between theta 2, n 1, n 2 is represented by the following formula Be done. sin θ 1 / sin θ 2 = n 2 / n 1 (1)

【0003】n2<n1の場合、入射角θ1が次第に大き
くなると、図10に示すように、ある入射角θ1=θc
屈折角θ2=π/2となり、限界の臨界角となる入射角
θcでは光透過性物質Aから光透過性物質Bに光が伝わ
らず境界面で全反射される。式(1)にθ1=θc、θ2
=π/2を代入すると、臨界角θcは次式で示される。 sinθc=n2/n1 θc=sin-1(n2/n1) (2)
N2<N1, The incident angle θ1Is gradually larger
Then, as shown in FIG.1= Θcso
Refraction angle θ2= Π / 2, which is the critical angle of incidence
θcThen, light is transmitted from the light-transmitting substance A to the light-transmitting substance B.
Instead, it is totally reflected at the boundary surface. Θ in equation (1)1= Θc, Θ2
= Π / 2, the critical angle θcIs given by the following equation.           sin θc= N2/ N1           θc= Sin-1(n2/ N1) (2)

【0004】光透過性物質A内の任意の発光点p(点光
源)より放射される光の放射束Φは、放射光の放射強度
Iと放射光の成す立体角ωによって次式で表される。 Φ=∫Idω (3) ここで、全ての方向に対して放射強度Iが一定であれ
ば、 Φ=I∫dω (3)’ また、放射光の成す立体角ωは、pを頂点とする頂角2
θの円錐の立体角と考えられるので、 ω=2π(1−cosθ) (4) 従って放射束Φは、次式で表される。 Φ=2πI(1−cosθ) (5)
A radiant flux Φ of light emitted from an arbitrary light emitting point p (point light source) in the light-transmitting substance A is expressed by the following equation by the radiant intensity I of the radiated light and the solid angle ω formed by the radiated light. It Φ = ∫Idω (3) Here, if the radiation intensity I is constant in all directions, Φ = I∫dω (3) ′ Further, the solid angle ω formed by the radiated light has p as its apex. Apex angle 2
Since it is considered to be the solid angle of the cone of θ, ω = 2π (1-cosθ) (4) Therefore, the radiant flux Φ is expressed by the following equation. Φ = 2πI (1-cosθ) (5)

【0005】光透過性物質A内で生じる放射束をΦ1
すると、Φ1は発光点pの周囲全体に渡って均一に放射
されるから、θ=πを式(5)に代入して、 Φ1=4πI (6) 一方、光透過性物質AとBの境界面で全反射されずに光
透過性物質Aから光透過性物質Bに伝達される放射束を
Φ2とすると、Φ2は頂角2θcの円錐内の放射束となる
から、θ=θcを式(5)に代入して、 Φ2=2πI(1−cosθc) (7) 従って、光透過性物質A内で発生した放射束Φ1が光透
過性物質Bに伝達されて放射束Φ2となる割合、即ち、
光取出効率ηは、 η=Φ2/Φ1 η=(1−cosθc)/2 (8)
The radiant flux generated in the light transmissive substance A is represented by Φ1When
Then Φ1Radiates uniformly over the entire circumference of the emission point p
Therefore, by substituting θ = π into equation (5),           Φ1= 4πI (6) On the other hand, light is not totally reflected at the interface between the light-transmitting substances A and B
The radiant flux transmitted from the transparent substance A to the light transparent substance B
Φ2Then, Φ2Is the apex angle 2θcIs the radiant flux within the cone of
Therefore, θ = θcSubstituting into equation (5),           Φ2= 2πI (1-cosθc) (7) Therefore, the radiant flux Φ generated in the light transmissive material A1Is translucent
Radiant flux Φ transmitted to transient substance B2The ratio, that is,
The light extraction efficiency η is           η = Φ2/ Φ1           η = (1-cos θc) / 2 (8)

【0006】さて、以上の光学モデルの議論を元に、以
下、従来の技術による半導体発光装置について説明す
る。図11はハーメチックシール構造を備えた従来の半
導体発光装置を示す。この半導体発光装置は、金属製の
ステム(20)と、ステム(20)を貫通し封止ガラス(19)によ
ってステム(20)と電気的に絶縁された状態で前記金属製
ステム(20)に固定された金属製のポスト(21)と、上面及
び下面にそれぞれ第一の電極(5)及び第二の電極(6)を備
え且つ第二の電極(6)を金属製ステム(20)上に導電性接
着剤(7)で接着された半導体発光素子(4)と、半導体発光
素子(4)の第一の電極(5)とポスト(21)とを接続するボン
ディングワイヤ(8)と、上部にガラス窓(23)を備えステ
ム(20)に溶接その他の方法によって接着された金属製の
キャップ(22)とを備えている。ステム(20)とキャップ(2
2)とで封止された半導体発光素子(4)を囲む空間は空気
又は不活性ガス等の封止ガス(24)が充満される。
Based on the above discussion of the optical model, a conventional semiconductor light emitting device will be described below. FIG. 11 shows a conventional semiconductor light emitting device having a hermetic seal structure. This semiconductor light-emitting device, a metal stem (20), the metal stem (20) in a state of penetrating the stem (20) and electrically insulated from the stem (20) by a sealing glass (19). A fixed metal post (21) and a first electrode (5) and a second electrode (6) on the upper and lower surfaces, respectively, and the second electrode (6) on the metal stem (20) A semiconductor light emitting element (4) bonded with a conductive adhesive (7), a bonding wire (8) connecting the first electrode (5) of the semiconductor light emitting element (4) and the post (21), It has a glass window (23) on the top and a metal cap (22) adhered to the stem (20) by welding or other method. Stem (20) and cap (2
The space surrounding the semiconductor light emitting element (4) sealed with 2) is filled with a sealing gas (24) such as air or an inert gas.

【0007】[0007]

【発明が解決しようとする課題】ハーメチックシール構
造型の半導体発光装置の屈折現象を考えると、半導体発
光素子(4)は光透過性物質Aに対応し、封止ガス(24)は
光透過性物質Bに対応する。例えばSiC、GaAs、GaP、Ga
AsP、GaAlAs、InAlGaP、InGaN、GaN等の各種の化合物半
導体が半導体発光素子(4)に一般に用いられるが、これ
らの化合物半導体の多くは対象となる発光波長における
屈折率が3.2〜3.7程度と高くなる。一方、空気等の
封止ガス(24)の屈折率は約1.0であるから、両者の界
面における臨界角θcは極めて小さい。
Considering the refraction phenomenon of the semiconductor light emitting device of the hermetically sealed structure, the semiconductor light emitting element (4) corresponds to the light transmissive substance A, and the sealing gas (24) is light transmissive. Corresponds to substance B. For example, SiC, GaAs, GaP, Ga
Various compound semiconductors such as AsP, GaAlAs, InAlGaP, InGaN, and GaN are generally used for the semiconductor light emitting device (4), but most of these compound semiconductors have a refractive index of 3.2 to 3. It will be as high as 7. On the other hand, since the refractive index of the sealing gas (24) such as air is about 1.0, the critical angle θ c at the interface between the two is extremely small.

【0008】従って、ハーメチックシール構造型の半導
体発光装置では、半導体発光素子(4)の内部で作られた
光の大部分は封止ガス(24)との界面で反射して発光効率
が低下する欠点がある。また、GaAs、GaAsP、GaAlAs等
は結晶の光透過率が低いため、界面で反射された光の大
部分は内部で再吸収され、この結果、光取出効率は極め
て悪い。例えば、GaAsPの屈折率は約3.6であるから、
式(2)より臨界角θ cは約16度となり、式(8)よR
>り光取出効率ηは約2%に過ぎない。
Therefore, a hermetically sealed structure type semiconductor
In body light emitting device, made inside semiconductor light emitting element (4)
Most of the light is reflected at the interface with the sealing gas (24) and the luminous efficiency is improved.
Has the drawback of decreasing. In addition, GaAs, GaAsP, GaAlAs, etc.
Since the light transmittance of the crystal is low, a large amount of light reflected at the interface
The part is re-absorbed internally, resulting in extremely high light extraction efficiency.
Bad. For example, since the refractive index of GaAsP is about 3.6,
From equation (2), the critical angle θ cIs about 16 degrees, and according to equation (8) R
> The light extraction efficiency η is only about 2%.

【0009】ハーメチックシール構造型の半導体発光装
置は、半導体発光装置の開発初期には主流の構造であっ
たが、パッケージが高価で生産性も低い上、屈折率の高
い半導体発光素子(4)の周囲に屈折率の低い封止ガス(2
4)を充填するために、半導体発光素子(4)と封止ガス(2
4)との界面での全反射が大きく、半導体発光装置の光取
出効率が極めて低下する難点があり、現在では限られた
用途でしか用いられない。そこで、従来の半導体発光装
置の光取出効率が低い欠点を改善するために現在まで様
々な検討が行われてきた。
The hermetically sealed semiconductor light emitting device had a mainstream structure in the early stages of development of the semiconductor light emitting device. However, the package is expensive, the productivity is low, and the semiconductor light emitting device (4) having a high refractive index is used. A sealing gas with a low refractive index (2
4) and the sealing gas (2) to fill the semiconductor light emitting device (4).
Since the total reflection at the interface with 4) is large and the light extraction efficiency of the semiconductor light emitting device is extremely low, it is currently used only in limited applications. Therefore, various studies have been conducted to date in order to improve the defect that the conventional semiconductor light emitting device has a low light extraction efficiency.

【0010】[0010]

【表1】 [Table 1]

【0011】図12及び図13は、カー(W.N.Carr)が
論文(Infrared Physics, Vol.6,p.1-19(1966))の中で
提唱し、半導体発光素子(4)の光学的な構造を工夫して
光取出効率を向上した曲面型の半導体発光装置の一例を
示す。カーは、ワイアストラス球(Weierstrass trunca
tion)や切頭楕円等の半球状、切頭円錐、パラボラ等の
各種形状にGaAsの発光素子を形成したときに、その放射
束、放射強度及び放射輝度を計算で示した。カーの計算
結果を示す表1では、通常の六面体の半導体発光素子
(4)の放射束は0.013であるのに対し、ワイアストラ
ス球やパラボラ形状の半導体素子(4)の放射束は約30
倍近くにも達する0.34となるので、曲面型の半導体
発光装置では、非常に高い光取出効率が得られる。
12 and 13 are proposed by Kerr (WNCarr) in a paper (Infrared Physics, Vol.6, p.1-19 (1966)), and the optical structure of the semiconductor light emitting device (4) is shown. An example of a curved surface type semiconductor light emitting device in which the light extraction efficiency is improved by devising the above will be shown. Car, Weierstrass trunca
radiant flux, radiant intensity, and radiance when GaAs light-emitting elements were formed in various shapes such as hemispheres such as rotations, truncated ellipses, truncated cones, and parabolas. Table 1 showing the Kerr calculation results shows that a normal hexahedral semiconductor light emitting device is used.
The radiant flux of (4) is 0.013, whereas the radiant flux of a wire-strass sphere or parabolic semiconductor element (4) is about 30.
Since the value is about 0.34, which is almost doubled, a very high light extraction efficiency can be obtained in the curved semiconductor light emitting device.

【0012】ところで、半導体発光素子(4)を一般に製
造する際に、一定の間隔で多数の発光素子が作り込まれ
た半導体ウエハが格子状に切断され、一度に多数の六面
体形状の微小な発光素子が分離される。この方法は量産
性に優れ、安価な半導体発光素子を製造することができ
る。
By the way, when the semiconductor light emitting device (4) is generally manufactured, a semiconductor wafer in which a large number of light emitting devices are formed at regular intervals is cut into a lattice shape, and a large number of hexahedron-shaped minute light emission is performed at a time. The elements are separated. This method is excellent in mass productivity and can manufacture an inexpensive semiconductor light emitting device.

【0013】しかしながら、曲面型の半導体発光装置を
製造する際に、機械的研磨や化学エッチング等によって
微少な半導体発光素子(4)を特殊な形状に加工しなけれ
ばならないが、半導体発光素子(4)は硬くて脆い性質を
持つものが多く、加工時の機械的衝撃及び歪みによって
半導体結晶中に転位等の結晶欠陥が発生する場合があ
り、半導体発光素子(4)の発光効率が低下する危険があ
る。また、加工時に半導体発光素子(4)の表面が汚染さ
れると、発光効率が低下する問題が生じる。従って、半
導体発光素子(4)に慎重で精密な加工が必要であり、六
面体形状の半導体発光素子(4)のように安価に量産する
ことができない。
However, when manufacturing a curved surface type semiconductor light emitting device, the minute semiconductor light emitting element (4) must be processed into a special shape by mechanical polishing, chemical etching or the like. ) Is often hard and brittle, and crystal defects such as dislocations may occur in the semiconductor crystal due to mechanical shock and strain during processing, and there is a risk that the luminous efficiency of the semiconductor light emitting device (4) will decrease. There is. Further, if the surface of the semiconductor light emitting device (4) is contaminated during processing, there arises a problem that the luminous efficiency is reduced. Therefore, the semiconductor light emitting device (4) requires careful and precise processing, and cannot be mass-produced inexpensively like the hexahedral semiconductor light emitting device (4).

【0014】この様に曲面型の半導体発光装置では、半
導体発光素子(4)の高い光取出効率が得られるが、微少
な半導体発光素子(4)を結晶欠陥や汚染を防ぎつつ特殊
な形状に加工しなければならないため、量産性に劣る問
題があり、安価な半導体発光装置を製造できないため、
光通信用の高出力発光ダイオード装置等極めて限られた
用途でしか用いられない。
As described above, in the curved surface type semiconductor light emitting device, a high light extraction efficiency of the semiconductor light emitting element (4) can be obtained, but the minute semiconductor light emitting element (4) has a special shape while preventing crystal defects and contamination. Since it has to be processed, there is a problem of poor mass productivity, and since an inexpensive semiconductor light emitting device cannot be manufactured,
It can only be used in extremely limited applications such as high power light emitting diode devices for optical communication.

【0015】図14は、例えばニューセ(C.J.Nuese)
等が論文(J.Electrochem.Soc.Vol.116,No.2,p.248(196
9))の中で述べた樹脂封止型の半導体発光装置を示す。
この半導体発光装置は、一対の配線導体(2, 3)と、上面
に第一の電極(5)を備え下面に第二の電極(6)を備え、第
二の電極(6)が導電性接着剤(7)を介して一対の配線導体
(2, 3)の一方(2)の端部に接着された半導体発光素子(4)
と、半導体発光素子(4)の第一の電極(5)と一対の配線導
体(2, 3)の他方(3)の端部とを接続するボンディングワ
イヤ(8)と、半導体発光素子(4)、ボンディングワイヤ
(8)、一対の配線導体(2, 3)の端部とを封止する透明な
半球状の封止樹脂(14)とを備えている。半導体発光素子
(4)の周囲を半球状の透明な封止樹脂(14)で封止して光
取出効率を向上できる。
FIG. 14 shows, for example, CJNuese.
Et al. (J. Electrochem. Soc. Vol. 116, No. 2, p. 248 (196
The resin-encapsulated semiconductor light emitting device described in 9)) is shown.
This semiconductor light emitting device comprises a pair of wiring conductors (2, 3), a first electrode (5) on the upper surface and a second electrode (6) on the lower surface, and the second electrode (6) is conductive. A pair of wiring conductors via adhesive (7)
Semiconductor light-emitting device (4) adhered to one end of (2, 3) (2)
A bonding wire (8) for connecting the first electrode (5) of the semiconductor light emitting element (4) and the other end (3) of the pair of wiring conductors (2, 3), and the semiconductor light emitting element (4) ), Bonding wire
(8), and a transparent hemispherical sealing resin (14) for sealing the ends of the pair of wiring conductors (2, 3). Semiconductor light emitting element
The light extraction efficiency can be improved by sealing the periphery of (4) with a semi-spherical transparent sealing resin (14).

【0016】樹脂封止型の半導体発光装置の光取出効率
を考える場合は、半導体発光素子(4)と封止樹脂(14)と
の界面での全反射と、封止樹脂(14)と外部空気との界面
での全反射とを考慮しなければならない。しかしなが
ら、半導体発光素子(4)の一辺の長さに対し封止樹脂(1
4)の半球の直径が十分に大きければ、封止樹脂(14)に対
して半導体発光素子(4)を点光源と見なすことができ、
半球状の封止樹脂(14)の焦点(中心点)に半導体発光素
子(4)を配置すれば、半導体発光素子(4)から放射され封
止樹脂(14)中を透過する光は、封止樹脂(14)と空気との
界面での臨界角が小さくても、界面に対し垂直に入射す
るので、全反射は起こらない。従って、樹脂封止型の半
導体発光装置の光取出効率は、半導体発光素子(4)と封
止樹脂(14)との界面での全反射のみを考えればよい。
When considering the light extraction efficiency of the resin-sealed semiconductor light emitting device, total reflection at the interface between the semiconductor light emitting element (4) and the sealing resin (14), and the sealing resin (14) and the outside Total reflection at the interface with air must be considered. However, with respect to the length of one side of the semiconductor light emitting element (4), the sealing resin (1
If the diameter of the hemisphere of 4) is sufficiently large, the semiconductor light emitting element (4) can be regarded as a point light source with respect to the sealing resin (14),
If the semiconductor light emitting element (4) is placed at the focal point (center point) of the hemispherical sealing resin (14), the light emitted from the semiconductor light emitting element (4) and transmitted through the sealing resin (14) will be sealed. Even if the critical angle at the interface between the stop resin (14) and air is small, the light is incident perpendicularly to the interface, so total reflection does not occur. Therefore, regarding the light extraction efficiency of the resin-sealed semiconductor light emitting device, only total reflection at the interface between the semiconductor light emitting element (4) and the sealing resin (14) may be considered.

【0017】ここで、図11に示すハーメチックシール
構造の半導体発光装置と同様に、半導体発光素子(4)を
空気中に配置したときの光取出効率をηair、その時の
臨界角を(θc)airとすると、式(8)より、式(9)が
得られる。 ηair={1−cos(θc)air}/2 (9) また、半導体発光素子(4)の周囲を樹脂で封止したとき
の光取出効率をηdome、その時の臨界角を(θc)dome
すると、同様に式(8)より、式(10)が得られる。 ηdome={1−cos(θc)dome}/2 (10) 従って、その比率、即ち半球状封止樹脂(14)によって光
取出効率が何倍になるかの指標は、式(10)を式
(9)により除して、式(11)より表される。 ηdome/ηair={1−cos(θc)dome}/{1−cos(θc)air} (11)
Here, similarly to the semiconductor light emitting device of the hermetically sealed structure shown in FIG. 11, the light extraction efficiency when the semiconductor light emitting element (4) is placed in air is η air , and the critical angle at that time is (θ c ) When air is used, formula (9) is obtained from formula (8). η air = {1-cos (θ c ) air } / 2 (9) Further, the light extraction efficiency when the semiconductor light emitting device (4) is sealed with resin is η dome , and the critical angle at that time is (θ c ) If dome , then equation (10) is obtained from equation (8). η dome = {1-cos (θ c ) dome } / 2 (10) Therefore, the ratio, that is, the index of how many times the light extraction efficiency is increased by the hemispherical sealing resin (14) is expressed by the formula (10). Is divided by Equation (9), and is expressed by Equation (11). η dome / η air = {1 -cos (θ c) dome} / {1-cos (θ c) air} (11)

【0018】図15は、半導体発光素子(4)のGaAsPが約
3.6の屈折率を有する場合に封止樹脂(14)の屈折率
(n)domeに対するηdome/ηair値を式(11)より求
めた計算値を示すグラフである。図15から理解される
ように、樹脂封止型の半導体発光装置では、封止樹脂(1
4)の屈折率が大きい程光取出効率を大きく向上できる。
また、樹脂封止型の半導体発光装置は、製法が簡便で且
つ量産性に優れ安価に製造できるため、現在、一般的に
広く生産されている。しかしながら樹脂封止型の半導体
発光装置では、例えば、封止樹脂(14)の屈折率(n)dome
=1.5の時、ηd ome/ηairは2.3であり、封止樹脂
(14)の屈折率は、種類を問わず僅か1.5程度に過ぎず
低いため、光取出効率を顕著に改善できない。このよう
に、従来の半導体発光装置では、いずれの方式でも量産
性に優れ安価で且つ光取出効率の優れた半導体発光装置
を製造することはできなかった。
FIG. 15 shows that when GaAsP of the semiconductor light emitting device (4) has a refractive index of about 3.6, the refractive index of the sealing resin (14).
(n) It is a graph which shows the calculated value which calculated | required (eta) dome / (eta) air value with respect to dome from Formula (11). As can be understood from FIG. 15, in the resin-sealed semiconductor light emitting device, the sealing resin (1
The larger the refractive index of 4), the greater the light extraction efficiency can be improved.
In addition, the resin-sealed semiconductor light emitting device is generally widely produced at present because of its simple manufacturing method, excellent mass productivity, and low cost. However, in the resin-sealed semiconductor light emitting device, for example, the refractive index (n) dome of the sealing resin (14) is
= 1.5, η d ome / η air is 2.3, the sealing resin
Since the refractive index of (14) is as low as about 1.5 regardless of the type, the light extraction efficiency cannot be significantly improved. As described above, with any of the conventional semiconductor light emitting devices, it has not been possible to manufacture a semiconductor light emitting device that is excellent in mass productivity, inexpensive, and excellent in light extraction efficiency by any method.

【0019】本発明は、光取出効率の優れた半導体発光
装置を提供することを目的とする。また、本発明は量産
性に優れ且つ安価に製造できる半導体発光装置を提供す
ることを目的とする。更に、本発明は、半導体発光素子
の発光部の少なくとも一部を透明な屈折率の高い物質で
封止した半導体発光装置を提供することを目的とする。
It is an object of the present invention to provide a semiconductor light emitting device having excellent light extraction efficiency. Another object of the present invention is to provide a semiconductor light emitting device which is excellent in mass productivity and can be manufactured at low cost. It is another object of the present invention to provide a semiconductor light emitting device in which at least a part of the light emitting portion of the semiconductor light emitting element is sealed with a transparent substance having a high refractive index.

【0020】[0020]

【課題を解決するための手段】本発明による半導体発光
装置は、一対の配線導体(2, 3)と、一対の配線導体(2,
3)の端部にそれぞれ電気的に接続された複数の電極(5,
6)を有する半導体発光素子(4, 4')と、半導体発光素子
(4, 4')の少なくとも一部を被覆する内部光透過層(10)
と、半導体発光素子(4, 4')、配線導体(2, 3)の端部及
び内部光透過層(10)を被覆する外部光透過層(11)とを備
えている。半導体発光素子(4, 4')から照射された光は
内部光透過層(10)及び外部光透過層(11)を経て外部に放
出される。内部光透過層(10)はポリメタロキサンゲルに
より形成され、内部光透過層(10)の屈折率は、1.68
5以上で半導体発光素子(4, 4')の屈折率以下の値であ
る。例えば、内部光透過層(10)は、ZnO、TiO2、Al2O3
Y2O3、BaTiO3、SrTiO3、ZrO2又はZrO2-SiO2系酸化物に
より形成される。ポリメタロキサンゲルは、金属アルコ
キシド又は超微粒子状金属酸化物にゾル・ゲル法を施し
て形成される。
A semiconductor light emitting device according to the present invention comprises a pair of wiring conductors (2, 3) and a pair of wiring conductors (2, 3).
A plurality of electrodes (5,
Semiconductor light emitting device (4, 4 ') having 6), and semiconductor light emitting device
Internal light transmission layer (10) covering at least part of (4, 4 ')
And an external light transmission layer (11) that covers the semiconductor light emitting elements (4, 4 ′), the ends of the wiring conductors (2, 3) and the internal light transmission layer (10). The light emitted from the semiconductor light emitting device (4, 4 ') is emitted to the outside through the internal light transmission layer (10) and the external light transmission layer (11). The internal light transmission layer (10) is formed of polymetalloxane gel, and the internal light transmission layer (10) has a refractive index of 1.68.
It is a value of 5 or more and less than or equal to the refractive index of the semiconductor light emitting device (4, 4 ′). For example, the internal light transmission layer (10) is ZnO, TiO 2 , Al 2 O 3 ,
It is formed of Y 2 O 3 , BaTiO 3 , SrTiO 3 , ZrO 2 or ZrO 2 —SiO 2 based oxide. The polymetalloxane gel is formed by subjecting a metal alkoxide or ultrafine particle metal oxide to a sol-gel method.

【0021】本発明による半導体発光装置の光取出効率
を考える場合は、半導体発光素子(4, 4')と内部光透過
層(10)との界面での全反射と、内部光透過層(10)と外部
光透過層(11)との界面での全反射と、外部光透過層(11)
と外部空気との界面での全反射を考慮しなければならな
い。
When considering the light extraction efficiency of the semiconductor light emitting device according to the present invention, total internal reflection at the interface between the semiconductor light emitting element (4, 4 ') and the internal light transmitting layer (10) and the internal light transmitting layer (10) are considered. ) And the external light transmission layer (11) at the interface, and the external light transmission layer (11)
And total external reflection at the interface with outside air must be considered.

【0022】本発明では、内部光透過層(10)の屈折率は
半導体発光素子(4, 4')の屈折率に略等しい。
In the present invention, the refractive index of the internal light transmitting layer (10) is substantially equal to the refractive index of the semiconductor light emitting device (4, 4 ').

【0023】半導体発光素子(4, 4')の屈折率をn1とし
内部光透過層(10)の屈折率をn2とすれば、半導体発光
素子(4, 4')の屈折率n1と内部光透過層(10)の屈折率n
2が等しい場合、式(1)より半導体発光素子(4, 4')と
内部光透過層(10)との界面における入射角θ1と屈折率
θ2は等しくなり、いかなる角度の入射光に対しても屈
折は起こらないので、半導体発光素子(4, 4')と内部光
透過層(10)とを光学的に一体の構造体として取り扱え
る。従って、半導体発光素子(4, 4')と内部光透過層(1
0)との界面での全反射は考慮しなくてよい。
When the refractive index of the semiconductor light emitting element (4, 4 ') is n 1 and the refractive index of the internal light transmitting layer (10) is n 2 , the refractive index n 1 of the semiconductor light emitting element (4, 4') is And the refractive index n of the internal light transmission layer (10)
When 2 is equal, the incident angle θ 1 and the refractive index θ 2 at the interface between the semiconductor light emitting device (4, 4 ′) and the internal light transmitting layer (10) are equal to each other according to the formula (1), and incident light of any angle is obtained. Since refraction does not occur even with respect to it, the semiconductor light emitting element (4, 4 ′) and the internal light transmitting layer (10) can be handled as an optically integrated structure. Therefore, the semiconductor light emitting device (4, 4 ') and the internal light transmitting layer (1
Total reflection at the interface with (0) need not be considered.

【0024】また、内部光透過層(10)と外部光透過層(1
1)との界面での全反射と、外部光透過層(11)と外部空気
との界面での全反射については、内部光透過層(10)を前
記曲面形の半導体発光装置の半導体発光素子(4)と同じ
く半球状に形成し、且つ外部光透過層(11)を前記樹脂封
止形の半導体発光装置の封止樹脂(14)と同じく半球状に
形成し、且つ内部光透過層(10)の直径に対し外部光透過
層(11)の直径を十分に大きくとり、且つ半球状の外部光
透過層(11)の焦点(中心点)に半球状の内部光透過層(1
0)の焦点が一致するように形成すれば、半導体発光素子
(4, 4')及び内部光透過層(10)は外部光透過層(11)に対
し点光源と見なすことができ、半導体発光素子(4, 4')
から放射され内部光透過層(10)を透過する光は内部光透
過層(10)と外部光透過層(11)との界面に対し垂直に入射
するので、内部光透過層(10)と外部光透過層(11)との屈
折率の差が大きく臨界角が小さい場合でも全反射は起こ
らない。また同様に、外部光透過層(11)と外部空気との
界面での全反射も起こらない。
Further, the inner light transmitting layer (10) and the outer light transmitting layer (1
Regarding the total reflection at the interface with 1) and the total reflection at the interface between the external light transmitting layer (11) and the external air, the internal light transmitting layer (10) is the semiconductor light emitting element of the curved semiconductor light emitting device. (4) is formed in the same hemispherical shape, and the external light transmission layer (11) is formed in the same hemispherical shape as the sealing resin (14) of the resin-encapsulated semiconductor light emitting device, and the internal light transmission layer ( The diameter of the external light transmitting layer (11) is made sufficiently larger than the diameter of 10), and the hemispherical internal light transmitting layer (1) is located at the focal point (center point) of the hemispherical external light transmitting layer (11).
If it is formed so that the focal points of
(4, 4 ') and the internal light transmission layer (10) can be regarded as a point light source for the external light transmission layer (11), and the semiconductor light emitting device (4, 4')
The light emitted from the internal light transmission layer (10) is transmitted perpendicularly to the interface between the internal light transmission layer (10) and the external light transmission layer (11). Total reflection does not occur even when the difference in refractive index from the light transmitting layer (11) is large and the critical angle is small. Similarly, total reflection does not occur at the interface between the external light transmission layer (11) and the external air.

【0025】なお、内部光透過層(10)の屈折率が半導体
発光素子(4, 4')の屈折率よりも小さい場合でも、半導
体発光素子(4, 4')の屈折率に極力近い値に選定すれ
ば、半導体発光素子(4, 4')と内部光透過層(10)との界
面における臨界角は大きくなるので、全反射量を低減す
ることができる。
Even when the refractive index of the internal light transmitting layer (10) is smaller than the refractive index of the semiconductor light emitting element (4, 4 '), the value close to the refractive index of the semiconductor light emitting element (4, 4') is as close as possible. If selected, the critical angle at the interface between the semiconductor light emitting device (4, 4 ′) and the internal light transmitting layer (10) becomes large, so that the total reflection amount can be reduced.

【0026】従って、本発明では、半導体発光素子(4,
4')と内部光透過層(10)との界面での全反射と、内部光
透過層(10)と外部光透過層(11)との界面での全反射と、
外部光透過層(11)と外部空気との界面での全反射とをそ
れぞれ減少して、光取出効率を大きくすることができ
る。
Therefore, in the present invention, the semiconductor light emitting device (4,
4 ') and the total reflection at the interface between the internal light transmission layer (10), and the total reflection at the interface between the internal light transmission layer (10) and the external light transmission layer (11),
It is possible to increase the light extraction efficiency by reducing the total reflection at the interface between the external light transmission layer (11) and the external air.

【0027】本発明による半導体発光装置の実施の形態
では、半導体発光素子(4, 4')の上面に第一の電極(5)が
形成され下面に第二の電極(6)が形成され、第二の電極
(6)は導電性接着剤(7)を介して一対の配線導体(2, 3)の
一方(2)の端部に接着され、第一の電極(5)がボンディン
グワイヤ(8)によって一対の配線導体(2, 3)の他方(3)の
端部に接続される。内部光透過層(10)は、半導体発光素
子(4, 4')の下面を除く側面から上面全体を被覆する
か、半導体発光素子(4, 4')の上面を被覆する。
In the embodiment of the semiconductor light emitting device according to the present invention, the first electrode (5) is formed on the upper surface of the semiconductor light emitting element (4, 4 ′), and the second electrode (6) is formed on the lower surface, Second electrode
(6) is bonded to one end (2) of the pair of wiring conductors (2, 3) via a conductive adhesive (7), and the first electrode (5) is paired with a bonding wire (8). Is connected to the other end (3) of the wiring conductors (2, 3). The internal light transmitting layer (10) covers the entire side surface except the lower surface of the semiconductor light emitting element (4, 4 ′) or the upper surface of the semiconductor light emitting element (4, 4 ′).

【0028】本発明による半導体発光装置の他の実施の
形態では、半導体発光素子(4, 4')は一対の配線導体(2,
3)の一方(2)の端部上に載置され、半導体発光素子(4,
4')の電極(5, 6)はボンディングワイヤ(8, 9)により一
対の配線導体(2, 3)の端部に電気的に接続される。半導
体発光素子(4, 4')は、一対の配線導体(2, 3)の一方(2)
の端部に形成されたカップ部(2a)内に載置される。内部
光透過層(10)はカップ部(2a)内に形成され、半導体発光
素子(4, 4')は内部光透過層(10)の上に接着又は内部光
透過層(10)の中に埋設される。
In another embodiment of the semiconductor light emitting device according to the present invention, the semiconductor light emitting element (4, 4 ′) includes a pair of wiring conductors (2, 4 ′).
3) is mounted on one end (2) of the semiconductor light emitting element (4,
The electrodes (5, 6) of 4 ') are electrically connected to the ends of the pair of wiring conductors (2, 3) by bonding wires (8, 9). The semiconductor light emitting device (4, 4 ') is one of the pair of wiring conductors (2, 3) (2)
It is placed in the cup portion (2a) formed at the end of the. The internal light-transmitting layer (10) is formed in the cup part (2a), and the semiconductor light-emitting element (4, 4 ') is adhered onto the internal light-transmitting layer (10) or in the internal light-transmitting layer (10). Buried.

【0029】本発明による半導体発光装置の他の実施の
形態では、一対の配線導体(2, 3)は絶縁性基板(12)に形
成される。絶縁性基板(12)の一方の主面にカップ部(2a)
が形成され、カップ部(2a)の底面に半導体発光素子(4,
4')が固着され、半導体発光素子(4, 4')の一対の電極
(5, 6)は絶縁性基板(12)の一方の主面に形成された一対
の配線導体(2, 3)に電気的に接続される。半導体発光素
子(4, 4')は、光透過性を有する基体(4a)と、II−IV族
又はIII−V族化合物半導体から成る半導体層(4b〜4e)と
から構成され、基体(4a)は主たる光取出面を構成する一
方の主面(4i)と、半導体層(4b〜4e)が形成される他方の
主面(4j)とを有する。半導体層(4b〜4e)は絶縁性基板(1
2)に対向して配置されて一対の外部電極(5, 6)に接続さ
れ、基体(4a)の一方の主面(4i)は絶縁性基板(12)に対向
する側とは反対側に配置される。内部光透過層(10)は、
半導体発光素子(4, 4')の下面を除く側面から上面全体
を被覆するか、半導体発光素子(4, 4')の上面を被覆す
る。
In another embodiment of the semiconductor light emitting device according to the present invention, the pair of wiring conductors (2, 3) are formed on the insulating substrate (12). Cup part (2a) on one main surface of insulating substrate (12)
Is formed, and the semiconductor light-emitting element (4,
4 ') are fixed and a pair of electrodes of the semiconductor light emitting device (4, 4')
(5, 6) are electrically connected to the pair of wiring conductors (2, 3) formed on one main surface of the insulating substrate (12). The semiconductor light emitting device (4, 4 ') is composed of a light-transmitting substrate (4a) and a semiconductor layer (4b to 4e) made of II-IV group or III-V group compound semiconductor, and the substrate (4a ) Has one main surface (4i) which constitutes a main light extraction surface and the other main surface (4j) on which the semiconductor layers (4b to 4e) are formed. The semiconductor layer (4b-4e) is an insulating substrate (1
2) is connected to a pair of external electrodes (5, 6) facing each other, and one main surface (4i) of the substrate (4a) is on the side opposite to the side facing the insulating substrate (12). Will be placed. The internal light transmission layer (10) is
The semiconductor light emitting element (4, 4 ′) is covered from the side surface except the lower surface to the entire upper surface, or the semiconductor light emitting element (4, 4 ′) is covered from the upper surface.

【0030】また、半導体発光素子(4, 4')の発光波長
で励起され半導体発光素子(4, 4')の発光波長と異なる
波長の光を発する蛍光物質(10a)を内部光透過層(10)に
配合することができ、例えば、蛍光物質(10a)は、一対
の配線導体(2, 3)の一方(2)の端部に設けられたカップ
部(2a)の内面に塗布される。
In addition, a fluorescent substance (10a) which is excited by the emission wavelength of the semiconductor light emitting device (4, 4 ') and emits light having a wavelength different from the emission wavelength of the semiconductor light emitting device (4, 4') is used as an internal light transmitting layer ( 10), for example, the fluorescent substance (10a) is applied to the inner surface of the cup portion (2a) provided at the end of one of the pair of wiring conductors (2, 3) (2). .

【0031】外部光透過層(11)は外部雰囲気と接する界
面にフレネル反射防止膜が形成される。内部光透過層(1
0)と外部光透過層(11)との界面にシランカップリング剤
等の無機・有機界面結合剤より成る結合膜が形成され
る。
The external light transmission layer (11) has a Fresnel antireflection film formed on the interface in contact with the external atmosphere. Internal light transmission layer (1
A bonding film made of an inorganic / organic interface binder such as a silane coupling agent is formed at the interface between the (0) and the external light transmission layer (11).

【0032】[0032]

【発明の実施の形態】以下、半導体発光ダイオード装置
に適用した本発明による半導体発光装置の実施の形態を
図1〜図8について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a semiconductor light emitting device according to the present invention applied to a semiconductor light emitting diode device will be described below with reference to FIGS.

【0033】図1に示すように、本発明による半導体発
光装置(1)の第1の実施の形態は、一対の配線導体(2,
3)と、一方の配線導体(2)の平坦な端部に固着された半
導体発光素子(4)とを有する。半導体発光素子(4)は一対
の電極(5, 6)を有し、半導体発光素子(4)の上部に設け
られた電極(5)は第一のボンディングワイヤ(8)により他
方の配線導体(3)に電気的に接続される。半導体発光素
子(4)の底部に設けられた電極(6)は導電性接着剤(7)を
介して一方の配線導体(2)の端部に接着される。導電性
接着剤(7)は金、銀等の微小な金属薄片を混合した一液
性エポキシ樹脂等より成る熱硬化性有機樹脂ペーストで
ある。半導体発光素子(4)、電極(5, 6)及び一方のボン
ディングワイヤ(8)の端部は一方の配線導体(2)の平坦な
端部に略細長の球状に形成された内部光透過層(10)によ
り被覆される。半導体発光素子(4)、配線導体(2, 3)の
端部及び内部光透過層(10)は透明な封止樹脂である外部
光透過層(11)により被覆される。従って、内部光透過層
(10)は、半導体発光素子(4)の発光部の少なくとも一部
を被覆し、半導体発光素子(4)から照射された光は、内
部光透過層(10)及び外部光透過層(11)を経て外部に放出
される。
As shown in FIG. 1, in the first embodiment of the semiconductor light emitting device (1) according to the present invention, a pair of wiring conductors (2,
3) and a semiconductor light emitting element (4) fixed to the flat end of one wiring conductor (2). The semiconductor light emitting element (4) has a pair of electrodes (5, 6), and the electrode (5) provided on the semiconductor light emitting element (4) is connected to the other wiring conductor ( It is electrically connected to 3). The electrode (6) provided on the bottom of the semiconductor light emitting element (4) is adhered to the end of one wiring conductor (2) via a conductive adhesive (7). The conductive adhesive (7) is a thermosetting organic resin paste made of a one-component epoxy resin or the like in which fine metal flakes such as gold and silver are mixed. The semiconductor light emitting element (4), the electrodes (5, 6) and one bonding wire (8) have an end portion formed in a substantially elongated spherical shape at the flat end portion of one wiring conductor (2). Covered by (10). The semiconductor light emitting element (4), the end portions of the wiring conductors (2, 3) and the internal light transmission layer (10) are covered with an external light transmission layer (11) which is a transparent sealing resin. Therefore, the internal light transmission layer
(10) covers at least a part of the light emitting portion of the semiconductor light emitting device (4), the light emitted from the semiconductor light emitting device (4), the internal light transmission layer (10) and the external light transmission layer (11) Is released to the outside.

【0034】図2に示すように、発光ダイオードチップ
等の半導体発光素子(4)は、例えばガリウム砒素燐化合
物半導体から成り、約580〜680nmの橙色から赤色
の発光を示す。ガリウム砒素燐半導体は、周知のエピタ
キシャル成長方法等でSi、GaAs、SiC、GaP等の半導体基
板より成る基体(4a)上に形成されたGaAs(1-X)PX(但
し、0<x≦1。以下、GaAsPと記す)で表される。図
2に示す実施の形態では、発光ダイオードチップ(4)
は、例えば、周知のエピタキシャル成長法又は高圧貼着
によってn形GaAsより成る基体(4a)上にGaAsPから成る
n形半導体領域(4c)が形成される。また、エピタキシャ
ル成長法によってn形半導体領域(4c)上にGaAsPから成
るp形半導体領域(4e)が形成される。
As shown in FIG. 2, a semiconductor light emitting device (4) such as a light emitting diode chip is made of, for example, a gallium arsenide phosphide compound semiconductor and emits orange to red light of about 580 to 680 nm. The gallium arsenide phosphide semiconductor is a GaAs (1-X) P X (where 0 <x ≦ 1 Hereinafter referred to as GaAsP). In the embodiment shown in FIG. 2, the light emitting diode chip (4)
For example, the n-type semiconductor region (4c) made of GaAsP is formed on the substrate (4a) made of n-type GaAs by the well-known epitaxial growth method or high-pressure attachment. Further, the p-type semiconductor region (4e) made of GaAsP is formed on the n-type semiconductor region (4c) by the epitaxial growth method.

【0035】基体(4a)、n形半導体領域(4c)、p形半導
体領域(4e)は半導体層を構成する。p形半導体領域(4e)
上に形成されたアノード電極(外部電極)(5)はp形半
導体領域(4e)に電気的に接続される。基体(4a)上に形成
されたカソード電極(外部電極)(6)は基体(4a)に電気
的に接続される。半導体発光素子(4)は、エピタキシャ
ル成長法によって形成されたSiC、GaAs、GaP、GaAsP、G
aAlAs、InAlGaP、InGaN、GaNなどの化合物半導体層を有
する発光ダイオード(LED)、レーザーダイオード(L
D)、スーパールミネッセンスダイオード(SLD)でもよ
い。
The substrate (4a), n-type semiconductor region (4c) and p-type semiconductor region (4e) form a semiconductor layer. p-type semiconductor region (4e)
The anode electrode (external electrode) (5) formed above is electrically connected to the p-type semiconductor region (4e). The cathode electrode (external electrode) (6) formed on the base body (4a) is electrically connected to the base body (4a). The semiconductor light emitting device (4) consists of SiC, GaAs, GaP, GaAsP, G formed by the epitaxial growth method.
Light emitting diode (LED), laser diode (L) having compound semiconductor layers such as aAlAs, InAlGaP, InGaN, and GaN
D), a super luminescence diode (SLD) may be used.

【0036】半導体発光素子(4)の屈折率n1と内部光透
過層(10)の屈折率n2とが等しい(n1=n2)場合、式
(1)より入射角と屈折角とは等しい(θ1=θ2)の
で、理論的には半導体発光素子(4)と内部光透過層(10)
との界面で屈折は起こらず、半導体発光素子(4)と内部
光透過層(10)とを光学的に一体構造体として取り扱え
る。
[0036] and the refractive index n 2 of the refractive index n 1 and internal light transmitting layer of the semiconductor light emitting element (4) (10) equals (n 1 = n 2) case, the refraction angle of the incident angle from the formula (1) Are the same (θ 1 = θ 2 ), so theoretically the semiconductor light emitting device (4) and the internal light transmission layer (10)
Refraction does not occur at the interface with and, and the semiconductor light emitting element (4) and the internal light transmitting layer (10) can be handled optically as an integrated structure.

【0037】半導体発光素子(4)から照射される光に対
して光透過性を有する内部光透過層(10)の屈折率は半導
体発光素子(4)の屈折率に略等しいか又はそれ以下の値
にある。例えば、内部光透過層(10)の屈折率は、半導体
発光素子(4)の屈折率と外部光透過層(11)の屈折率との
間の値である。内部光透過層(10)の屈折率は1.5〜3.
0にある。表2は内部光透過層(10)の各種材質を示す。
表2に示す酸化物は、単一金属アルコキシドから作成で
き、複酸化物は、複合金属アルコキシドで作成できる。
また、珪素(Si)とジルコニウム(Zr)との複合金属アルコ
キシドから得られるZrO2-SiO2系酸化物等も内部光透過
層(10)として使用できる。
The refractive index of the internal light-transmitting layer (10) having a light-transmitting property with respect to the light emitted from the semiconductor light emitting device (4) is substantially equal to or less than the refractive index of the semiconductor light emitting device (4). In value. For example, the refractive index of the internal light transmitting layer (10) is a value between the refractive index of the semiconductor light emitting element (4) and the refractive index of the external light transmitting layer (11). The refractive index of the internal light transmitting layer (10) is 1.5 to 3.
0. Table 2 shows various materials of the internal light transmission layer (10).
The oxides shown in Table 2 can be made from single metal alkoxides and the double oxides can be made from complex metal alkoxides.
Further, a ZrO 2 —SiO 2 -based oxide obtained from a composite metal alkoxide of silicon (Si) and zirconium (Zr) can also be used as the internal light transmitting layer (10).

【0038】[0038]

【表2】 [Table 2]

【0039】内部光透過層(10)は、半導体発光素子(4)
の下面を除く側面から上面に至る周囲全体を被覆する
か、半導体発光素子(4)の上面を被覆する。内部光透過
層(10)は、金属アルコキシドにゾル・ゲル法を施して形
成されたポリメタロキサンゲル又は超微粒子状金属酸化
物にゾル・ゲル法を施して形成されたポリメタロキサン
ゲル又は低融点ガラスである。内部光透過層(10)を構成
するポリメタロキサンゲルは、有機金属化合物の一つで
ある金属アルコキシドをアルコール等の溶媒に分散さ
せ、水と微量の触媒とを滴下して混合し加水分解縮合反
応を生じさせ、その結果生成した金属酸化物の微小なポ
リマが溶媒に分散した状態となった液状のゾルを対象物
に塗布し、空気中に放置して固化(ゲル化)させた後に
加熱硬化して生成される。屈折率の高いポリメタロキサ
ンゲルが得られる金属アルコキシドは、例えばアルミニ
ウム、チタン、ジルコニウム等の単一金属アルコキシド
又は複数の金属アルコキシドより成る複合金属アルコキ
シド、金属アルコキシドの官能基の一部を修飾して有機
樹脂モノマを導入した無機・有機複合体を用いることが
できる。
The internal light transmitting layer (10) is a semiconductor light emitting device (4).
The entire periphery from the side surface to the upper surface except for the lower surface is covered or the upper surface of the semiconductor light emitting device (4) is covered. The internal light transmitting layer (10) is a polymetalloxane gel formed by subjecting a metal alkoxide to a sol-gel method or a polymetalloxane gel formed by subjecting an ultrafine metal oxide to a sol-gel method or a low It is a melting point glass. The polymetalloxane gel that constitutes the internal light transmission layer (10) is prepared by dispersing a metal alkoxide, which is one of the organometallic compounds, in a solvent such as alcohol, and adding water and a trace amount of the catalyst dropwise and mixing them for hydrolysis and condensation. Apply a liquid sol in which the minute polymer of the metal oxide, which is generated as a result of the reaction, is dispersed in the solvent to the target object, leave it in the air to solidify (gel), and then heat It is generated by curing. A metal alkoxide from which a polymetalloxane gel having a high refractive index can be obtained, for example, a single metal alkoxide of aluminum, titanium, zirconium, or the like, a composite metal alkoxide composed of a plurality of metal alkoxides, or a part of a functional group of the metal alkoxide is modified. An inorganic / organic composite in which an organic resin monomer is introduced can be used.

【0040】また、内部光透過層(10)を構成するポリメ
タロキサンゲルは金属塩化物ガス及び水素、酸素の混合
気体を高温で燃焼させる火炎加水分解法によって生成さ
れた超微粒子状金属酸化物をアルコール等の溶媒に分散
させ、水を滴下して混合することにより生成された液状
のゾルを対象物に塗布し、空気中に放置して固化(ゲル
化)させた後に加熱硬化して生成することも可能であ
る。例えばアルミニウム、チタン、ジルコニウム等の単
一の超微粒子状金属酸化物又は複数の超微粒子状金属酸
化物より成る複合超微粒子状金属酸化物であり、屈折率
の高いポリメタロキサンゲルが得られる超微粒子状金属
酸化物を用いることができる。
The polymetalloxane gel constituting the internal light transmission layer (10) is an ultrafine metal oxide produced by a flame hydrolysis method in which a mixed gas of metal chloride gas, hydrogen and oxygen is burned at high temperature. Is dispersed in a solvent such as alcohol, and the liquid sol produced by dropping and mixing water is applied to the object, left in the air to solidify (gel), and then heat-cured to produce It is also possible to do so. For example, a single ultra-fine particle metal oxide such as aluminum, titanium, zirconium or the like, or a composite ultra-fine particle metal oxide composed of a plurality of ultra-fine particle metal oxides, which can provide a polymetalloxane gel having a high refractive index. A particulate metal oxide can be used.

【0041】また、内部光透過層(10)は低融点ガラスに
よって構成することもできる。低融点ガラスを用いる場
合は、溶剤に溶かした有機バインダに低融点ガラス粉末
を混合し、乾燥固化させた後に空気中で加熱焼成して有
機バインダを燃焼飛散させガラス粉末を溶融させる。
The internal light transmitting layer (10) can also be made of low melting point glass. When low-melting glass is used, the low-melting glass powder is mixed with an organic binder dissolved in a solvent, dried and solidified, and then heated and baked in air to burn and scatter the organic binder to melt the glass powder.

【0042】内部光透過層(10)を形成する材料は、金属
アルコキシド又は超微粒子状金属酸化物より作られたゾ
ル又は溶剤に溶かした有機バインダに混合した低融点ガ
ラス粉末であり、いずれも液状である。内部光透過層(1
0)を形成する材料を総称して光透過液状材料と呼ぶ。従
って、半導体発光素子(4)への被覆方法と一対の配線導
体(2, 3)の形状とを工夫して、光透過液状材料を固化し
て形成される内部光透過層(10)を光学的に有利な所望の
形状に形成することができる。従って、例えば、図12
及び図13に示す従来の半導体発光装置のように、半導
体発光素子(4)自体を光取出効率の高い特殊な曲面形状
に形成しなくても、安価に製造できる六面体形状の半導
体発光素子を使用して同様の効果を得ることができる。
The material forming the internal light transmission layer (10) is a low melting glass powder mixed with a sol made of metal alkoxide or ultrafine metal oxide or an organic binder dissolved in a solvent, both of which are liquid. Is. Internal light transmission layer (1
The material forming 0) is generically called a light transmitting liquid material. Therefore, by devising the method of covering the semiconductor light emitting element (4) and the shape of the pair of wiring conductors (2, 3), the internal light transmitting layer (10) formed by solidifying the light transmitting liquid material is used as an optical layer. It can be formed in a desired shape that is advantageous in terms of its properties. Therefore, for example, in FIG.
Also, unlike the conventional semiconductor light emitting device shown in FIG. 13, a hexahedral semiconductor light emitting element that can be manufactured at low cost is used without forming the semiconductor light emitting element (4) itself into a special curved surface shape with high light extraction efficiency. Then, the same effect can be obtained.

【0043】例えば内部光透過層(10)を半球状に形成す
るとき、一方の配線導体(2)の端部に接着された半導体
発光素子(4)の上に光透過液状材料を滴下するか又は一
対の配線導体(2, 3)全体を倒立させた状態で容器に満た
した光透過液状材料に接触させる(プリディップ法)
等、いずれかの方法によって半導体発光素子(4)の周囲
を光透過液状材料で被覆した後に、一対の配線導体(2,
3)全体を倒立状態(又は正立状態)に設置したまま光透
過液状材料を固化させればよい。この場合、光透過液状
材料の自重と粘度、表面張力などのバランスを適切に制
御すれば、内部光透過層(10)を所望の半球状に形成する
ことができる。
For example, when the internal light transmission layer (10) is formed in a hemispherical shape, a light transmission liquid material is dropped on the semiconductor light emitting element (4) adhered to the end of one wiring conductor (2). Alternatively, the pair of wiring conductors (2, 3) are turned upside down and brought into contact with the light-transmitting liquid material filled in the container (pre-dip method).
Etc., after covering the periphery of the semiconductor light emitting element (4) with a light transmitting liquid material by any method, a pair of wiring conductors (2,
3) The light-transmitting liquid material may be solidified while the whole is installed in an inverted state (or an upright state). In this case, the internal light transmitting layer (10) can be formed in a desired hemispherical shape by appropriately controlling the balance of the light transmitting liquid material such as its own weight, viscosity and surface tension.

【0044】なお、内部光透過層(10)の屈折率は、理論
上半導体発光素子(4)と同じか極力近いことが望ましい
が、半導体発光素子(4)の屈折率と外部光透過層(11)の
屈折率との間の値であれば、半導体発光素子(4)と内部
光透過層(10)との界面での全反射はかなり少なくなるの
で、従来のハーメチックシール構造型及び樹脂封止型の
半導体発光装置よりも光取出効率を改善することが可能
である。
Although it is theoretically desirable that the refractive index of the internal light transmitting layer (10) is the same as or as close as possible to the semiconductor light emitting device (4), the refractive index of the semiconductor light emitting device (4) and the external light transmitting layer (10) are If the value is between the refractive index of 11), the total reflection at the interface between the semiconductor light-emitting device (4) and the internal light-transmitting layer (10) is considerably reduced. It is possible to improve the light extraction efficiency as compared with a static semiconductor light emitting device.

【0045】半導体発光素子(4)の発光波長で励起され
半導体発光素子(4)の発光波長と異なる波長の光を発す
る蛍光物質(10a)を内部光透過層(10)中に含有させても
よい。また、蛍光物質(10a)を一対の配線導体(2, 3)の
一方(2)の端部に設けられたカップ部(2a)の内面に塗布
することもできる。蛍光物質(10a)が内部光透過層(10)
に含有され又はカップ部(2a)の内面に塗布された半導体
発光装置は、半導体発光素子(4)の発光波長と異なる波
長の光を発する半導体発光装置とすることができる。
Even if the internal light transmitting layer (10) contains a fluorescent substance (10a) which is excited by the emission wavelength of the semiconductor light emitting device (4) and emits light having a wavelength different from the emission wavelength of the semiconductor light emitting device (4). Good. Alternatively, the fluorescent substance (10a) can be applied to the inner surface of the cup portion (2a) provided at the end of one of the pair of wiring conductors (2, 3) (2). Fluorescent substance (10a) is the internal light transmission layer (10)
The semiconductor light emitting device contained in or coated on the inner surface of the cup portion (2a) can be a semiconductor light emitting device that emits light having a wavelength different from the emission wavelength of the semiconductor light emitting element (4).

【0046】外部光透過層(11)は、光透過性を有するエ
ポキシ樹脂、シリコーン樹脂、ポリエステル樹脂、アク
リル樹脂等の有機樹脂又は金属アルコキシドの官能基の
一部を修飾して有機樹脂モノマを導入した無機・有機複
合体ポリマより成り、ポッティング、射出成形等の方法
によって形成される。
The external light transmitting layer (11) is a resin having a light transmitting property such as an epoxy resin, a silicone resin, a polyester resin or an acrylic resin, or a functional group of a metal alkoxide modified to introduce an organic resin monomer. It is made of an inorganic / organic composite polymer and is formed by a method such as potting or injection molding.

【0047】なお、内部光透過層(10)と外部光透過層(1
1)との界面に剥離が発生して、界面に形成された薄い空
気層により光の反射が起こり光取出効率が低下する不具
合が生じることがある。内部光透過層(10)の表面にシラ
ンカップリング剤等の無機・有機界面結合剤より成る結
合膜を形成して、内部光透過層(10)と外部光透過層(11)
との界面での剥離を防ぐことができる。シランカップリ
ング剤は無機物と結合する官能基と有機物と反応・結合
する官能基とを持つ有機金属化合物であり、自らを仲立
ちとして有機物と無機物とを結合させる機能を持つ。こ
れをアルコールや水などの適当な溶媒で適量希釈し内部
光透過層(10)の表面に薄く塗布し乾燥させた後に外部光
透過層(11)を形成すれば、シランカップリング剤よりな
る結合膜を介して内部光透過層(10)と外部光透過層(11)
とが強く結合して剥離の発生を防ぐため光取出効率が低
下しない。
The internal light transmission layer (10) and the external light transmission layer (1
In some cases, peeling may occur at the interface with 1) and light may be reflected by the thin air layer formed at the interface, resulting in a decrease in light extraction efficiency. The inner light transmitting layer (10) and the outer light transmitting layer (11) are formed by forming a bonding film made of an inorganic / organic interface binder such as a silane coupling agent on the surface of the inner light transmitting layer (10).
The peeling at the interface with can be prevented. The silane coupling agent is an organometallic compound having a functional group that binds to an inorganic substance and a functional group that reacts and binds to an organic substance, and has a function of binding the organic substance and the inorganic substance by interposing itself. If this is diluted with an appropriate solvent such as alcohol or water and applied thinly on the surface of the internal light-transmitting layer (10) and dried to form the external light-transmitting layer (11), a bond consisting of a silane coupling agent is formed. Internal light transmission layer (10) and external light transmission layer (11) through the film
Since the and are strongly bonded to each other to prevent peeling, the light extraction efficiency does not decrease.

【0048】図3は、本発明による半導体発光装置の第
2の実施の形態を示す。一方の配線導体(2)の端部に形
成されたカップ部(2a)内に内部光透過層(10)が形成さ
れ、半導体発光素子(4')は内部光透過層(10)の上に光透
過性の接着剤(7)を介して接着される。光透過性接着剤
(7)は、一液性エポキシ樹脂等よりなる熱硬化性有機樹
脂に光透過性セラミック粉末を混合したペースト又は金
属アルコキシド又は超微粒子状金属酸化物を出発原料と
した無機系接着剤である。半導体発光素子(4')の上面に
形成された第一の電極(5)はボンディングワイヤ(8)によ
って他方の配線導体(3)の端部に接続され、第二の電極
(6)はボンディングワイヤ(9)によって一方の配線導体
(2)の端部に接着される。ボンディングワイヤ(8, 9)
は、金、銀、アルミニウム、銅等からなる金属細線であ
る。
FIG. 3 shows a second embodiment of the semiconductor light emitting device according to the present invention. An internal light transmission layer (10) is formed in the cup portion (2a) formed at the end of one wiring conductor (2), and the semiconductor light emitting element (4 ') is formed on the internal light transmission layer (10). It is bonded via a light-transmissive adhesive (7). Light-transmissive adhesive
(7) is a paste prepared by mixing a light-transmitting ceramic powder with a thermosetting organic resin such as a one-pack type epoxy resin, or an inorganic adhesive using a metal alkoxide or ultrafine particulate metal oxide as a starting material. The first electrode (5) formed on the upper surface of the semiconductor light emitting device (4 ') is connected to the end of the other wiring conductor (3) by the bonding wire (8), and the second electrode
(6) is one wiring conductor by the bonding wire (9)
It is glued to the end of (2). Bonding Wire (8, 9)
Is a fine metal wire made of gold, silver, aluminum, copper, or the like.

【0049】図4に示すように、発光ダイオードチップ
等の半導体発光素子(4')は例えば窒化ガリウム系化合物
半導体から成り、例えば約440〜470nmの青色光を
発光する。窒化ガリウム系半導体は、周知のエピタキシ
ャル成長法等でSi、GaAs、SiC、GaP等の半導体基板又は
サファイア等のセラミック基板から成る基体(4a)上に形
成されたIn(1-X)GaXN(但し、0<x≦1。以下、InGaN
と記す)で表される。図4に示す実施の形態では、発光
ダイオードチップ(4')は、例えば、周知のエピタキシャ
ル成長法によって光透過性を有するサファイアより成る
基体(4a)上にGaNから成る窒化ガリウム系半導体によっ
てバッファ層(4b)が形成され、GaNから成る窒化ガリウ
ム系半導体によってバッファ層(4b)の上にn形半導体領
域(4c)が形成される。エピタキシャル成長法によって、
InGaNから成る窒化ガリウム系半導体によって活性層(4
d)がn形半導体領域(4c)上に形成される。活性層(4d)上
にp形半導体領域(4e)が形成される。
As shown in FIG. 4, the semiconductor light emitting device (4 ') such as a light emitting diode chip is made of, for example, a gallium nitride compound semiconductor, and emits blue light of, for example, about 440 to 470 nm. The gallium nitride-based semiconductor is an In (1-X) Ga X N (formed by a well-known epitaxial growth method or the like on a substrate (4a) made of a semiconductor substrate such as Si, GaAs, SiC, GaP or a ceramic substrate such as sapphire ( However, 0 <x ≦ 1. Below, InGaN
Is described). In the embodiment shown in FIG. 4, the light emitting diode chip (4 ′) is made of, for example, a well-known epitaxial growth method, and a buffer layer (made of GaN on a substrate (4a) made of sapphire and made of GaN is formed on a substrate (4a) made of sapphire having light transmittance). 4b) is formed, and the n-type semiconductor region (4c) is formed on the buffer layer (4b) by the gallium nitride based semiconductor made of GaN. By the epitaxial growth method,
The active layer (4
d) is formed on the n-type semiconductor region (4c). A p-type semiconductor region (4e) is formed on the active layer (4d).

【0050】バッファ層(4b)、n形半導体領域(4c)、活
性層(4d)及びp形半導体領域(4e)は半導体層を構成す
る。p形半導体領域(4e)上に形成されたアノード電極
(外部電極)(5)はp形半導体領域(4e)に電気的に接続
される。n形半導体領域(4c)上に形成されたカソード電
極(外部電極)(6)は、n形半導体領域(4c)に電気的に
接続される。
The buffer layer (4b), the n-type semiconductor region (4c), the active layer (4d) and the p-type semiconductor region (4e) form a semiconductor layer. An anode electrode (external electrode) (5) formed on the p-type semiconductor region (4e) is electrically connected to the p-type semiconductor region (4e). A cathode electrode (external electrode) (6) formed on the n-type semiconductor region (4c) is electrically connected to the n-type semiconductor region (4c).

【0051】内部光透過層(10)をパラボラ状に形成する
には、一対の配線導体(2, 3)の一方(2)の端部にパラボ
ラ状のカップ部(2a)を設け、カップ部(2a)に光透過液状
材料を注入固化させて内部光透過層(10)を形成させた後
に光透過性接着剤(7)で半導体発光素子(4')を接着させ
光透過性樹脂で封止して外部光透過層(11)を形成する。
この時、光透過性接着剤(7)で接着させた後に、更に光
透過液状材料を注入して固化させ、半導体発光素子(4')
を内部光透過層(10)内に埋設してもよい。
In order to form the internal light transmitting layer (10) in a parabolic shape, a parabolic cup portion (2a) is provided at one end (2) of the pair of wiring conductors (2, 3) and the cup portion is formed. A light-transmitting liquid material is injected and solidified in (2a) to form an internal light-transmitting layer (10), and then the semiconductor light-emitting element (4 ') is bonded with a light-transmitting adhesive (7) and sealed with a light-transmitting resin. Then, the external light transmitting layer (11) is formed.
At this time, after adhering with a light-transmissive adhesive (7), a light-transmissive liquid material is further injected and solidified, and the semiconductor light-emitting element (4 ')
May be embedded in the internal light transmitting layer (10).

【0052】また、内部光透過層(10)を切頭円錐状に形
成するには、一対の配線導体(2, 3)の一方(2)の端部
に、頭部を切った円錐状に成形されたカップ部(2a)を設
け、カップ部(2a)の底部に導電性接着剤(7)又は光透過
性接着剤(7)で半導体発光素子(4')を接着し光透過液状
材料を注入固化させて内部光透過層(10)を形成する。こ
の時、予め光透過液状材料をある程度注入して固化させ
た後に半導体発光素子(4')を接着し、その上から光透過
液状材料を追加して内部光透過層(10)を形成して、内部
光透過層(10)内の半導体発光素子(4')の位置を調整する
ことができる。
Further, in order to form the internal light transmitting layer (10) in the shape of a truncated cone, one end (2) of the pair of wiring conductors (2, 3) is formed into a truncated cone shape. A molded cup portion (2a) is provided, and the semiconductor light emitting device (4 ') is bonded to the bottom of the cup portion (2a) with a conductive adhesive (7) or a light transmissive adhesive (7) to form a light transmissive liquid material. Is injected and solidified to form an internal light transmitting layer (10). At this time, the semiconductor light emitting element (4 ') is adhered after the light transmitting liquid material is injected and solidified to some extent in advance, and the light transmitting liquid material is added thereto to form the internal light transmitting layer (10). The position of the semiconductor light emitting device (4 ′) in the internal light transmission layer (10) can be adjusted.

【0053】なお、外部光透過層(11)が外部雰囲気と接
する界面にフレネル反射防止膜を形成することもでき
る。フレネル反射防止膜を形成すると外部光透過層(11)
と空気との界面に生じるフレネル反射を減少でき、半導
体発光装置(1)の光取出効率を更に改善することができ
る。
A Fresnel antireflection film may be formed on the interface where the external light transmission layer (11) contacts the external atmosphere. When a Fresnel antireflection film is formed, an external light transmission layer (11)
The Fresnel reflection generated at the interface between air and air can be reduced, and the light extraction efficiency of the semiconductor light emitting device (1) can be further improved.

【0054】図5は、絶縁性基板を使用するチップ形発
光ダイオード装置(1)に適用した本発明による第3の実
施の形態を示す。チップ形発光ダイオード装置(1)は、
一方の主面にカップ部(2a)が形成された絶縁性基板(12)
と、絶縁性基板(12)に相互に離間して形成された第一の
配線導体(2)及び第二の配線導体(3)と、第一の配線導体
(2)のカップ部(2a)の底面に光透過性接着剤(7)を介して
固着された発光ダイオードチップ(4')と、発光ダイオー
ドチップ(4')のアノード電極(5)と第二の配線導体(3)と
を電気的に接続する第二のボンディングワイヤ(9)と、
発光ダイオードチップ(4)のカソード電極(6)と第一の配
線導体(2)とを電気的に接続する第一のボンディングワ
イヤ(8)と、カップ部(2a)内に充填され発光ダイオード
チップ(4')、アノード電極(5)、カソード電極(6)、アノ
ード電極(5)及びカソード電極(6)に接続されたボンディ
ングワイヤ(8, 9)の端部を被覆する内部光透過層(10)
と、絶縁性基板(12)の一方の主面に形成され且つ内部光
透過層(10)の外側を被覆する台形状断面の外部光透過層
(11)とを備えている。内部光透過層(10)はカップ部(2a)
から上方に盛り上がって曲面状に形成される。第一の配
線導体(2)及び第二の配線導体(3)の一方の端部は、カッ
プ部(2a)内に配置される。発光ダイオードチップ(4')は
カップ部(2a)の底部(2b)にて第一の配線導体(2)に光透
過性接着剤(7)を介して固着される。第一の配線導体(2)
及び第二の配線導体(3)の各他方の端部は、絶縁性基板
(12)の側面及び他方の主面に延びて配置される。内部光
透過層(10)はカップ部(2a)の上端部(2d)から半球状に突
出する。内部光透過層(10)は更に外部光透過層(11)によ
り封止され、半導体発光素子(2)から照射される光は、
内部光透過層(10)内を通過した後、外部光透過層(11)の
外部に放出される。
FIG. 5 shows a third embodiment of the present invention applied to a chip type light emitting diode device (1) using an insulating substrate. The chip type light emitting diode device (1) is
Insulating substrate (12) with cup (2a) formed on one main surface
A first wiring conductor (2) and a second wiring conductor (3) formed on the insulating substrate (12) so as to be separated from each other, and a first wiring conductor
The light emitting diode chip (4 ') fixed to the bottom surface of the cup portion (2a) of (2) via a light transmissive adhesive (7), the anode electrode (5) of the light emitting diode chip (4') and A second bonding wire (9) for electrically connecting the second wiring conductor (3),
The first bonding wire (8) for electrically connecting the cathode electrode (6) of the light emitting diode chip (4) and the first wiring conductor (2), and the light emitting diode chip filled in the cup portion (2a) (4 '), the anode electrode (5), the cathode electrode (6), the anode electrode (5) and the internal light transmitting layer (9) that covers the ends of the bonding wires (8, 9) connected to the cathode electrode (6) ( Ten)
And an external light transmitting layer having a trapezoidal cross section formed on one main surface of the insulating substrate (12) and covering the outside of the internal light transmitting layer (10).
(11) and are provided. Inner light transmitting layer (10) is cup part (2a)
It swells upward from and is formed into a curved surface. One ends of the first wiring conductor (2) and the second wiring conductor (3) are arranged in the cup portion (2a). The light emitting diode chip (4 ') is fixed to the first wiring conductor (2) at the bottom portion (2b) of the cup portion (2a) via a light transmissive adhesive (7). First wiring conductor (2)
And the other end of each of the second wiring conductors (3) is an insulating substrate.
It is arranged so as to extend to the side surface of (12) and the other main surface. The internal light transmitting layer (10) projects in a hemispherical shape from the upper end portion (2d) of the cup portion (2a). The internal light transmitting layer (10) is further sealed by the external light transmitting layer (11), and the light emitted from the semiconductor light emitting element (2) is
After passing through the internal light transmission layer (10), it is emitted to the outside of the external light transmission layer (11).

【0055】内部光透過層(10)内に蛍光物質(10a)を配
合すると、半導体発光素子(4')から放射された光は内部
光透過層(10)に達し、その一部は内部光透過層(10)内で
異なる波長に波長変換され、波長変換されない半導体発
光素子(2)からの光成分と混合されて外部光透過層(11)
を通して外部に放出される。例えば、約365nm〜40
0nmの発光ピーク波長を有する紫外線を発生するGaN系
発光ダイオードチップ(4')と、励起ピーク波長約360
nm、発光ピーク波長約543nmのGa及びTb(テルビウ
ム)付活のY2SiO5の蛍光物質(10a)とを使用すると、半
値幅約12nmの非常にシャープな発光分布を持つ緑色発
光ダイオード装置(1)が得られる。特定の発光波長を吸
収する光吸収物質(10c)、半導体発光素子(4')の発光を
散乱する光散乱物質(10b)又は内部光透過層(10)のクラ
ックを防止する結合材(10b)を内部光透過層(10)内に配
合してもよい。図5の発光ダイオード装置(1)でも、屈
折率の高い内部光透過層(10)によって光取出効率が改善
される。
When the fluorescent substance (10a) is mixed in the internal light transmitting layer (10), the light emitted from the semiconductor light emitting device (4 ') reaches the internal light transmitting layer (10), and a part of the light is emitted from the internal light transmitting layer (10). The external light transmission layer (11) is converted to a different wavelength in the transmission layer (10) and mixed with a light component from the semiconductor light emitting element (2) which is not wavelength-converted.
Is released to the outside through. For example, about 365 nm to 40
A GaN-based light emitting diode chip (4 ') that emits ultraviolet rays having an emission peak wavelength of 0 nm, and an excitation peak wavelength of about 360
, a green light-emitting diode device having a very sharp emission distribution with a half-value width of about 12 nm when using a fluorescent substance (10a) of Ga and Tb (terbium) activated Y 2 SiO 5 having an emission peak wavelength of about 543 nm ( 1) is obtained. A light-absorbing substance (10c) that absorbs a specific emission wavelength, a light-scattering substance (10b) that scatters light emitted from the semiconductor light-emitting element (4 '), or a binder (10b) that prevents cracks in the internal light-transmitting layer (10). May be incorporated in the internal light transmitting layer (10). Also in the light emitting diode device (1) of FIG. 5, the light extraction efficiency is improved by the internal light transmitting layer (10) having a high refractive index.

【0056】絶縁性基板(12)を備えた半導体発光装置を
製造する場合は、絶縁性基板(12)の一方の主面にカップ
部(2a)を形成した後、絶縁性基板(12)の一方の主面に沿
って互いに反対方向に延びる一対の配線導体(2, 3)を形
成し、その後、カップ部(2a)の底部(2b)にて一対の配線
導体(2, 3)の一方に半導体発光素子(2)を固着する。
In the case of manufacturing a semiconductor light emitting device having an insulating substrate (12), after forming the cup portion (2a) on one main surface of the insulating substrate (12), the insulating substrate (12) is formed. A pair of wiring conductors (2, 3) extending in opposite directions along one main surface is formed, and then one of the pair of wiring conductors (2, 3) is formed at the bottom portion (2b) of the cup portion (2a). The semiconductor light emitting element (2) is fixed to the.

【0057】図6は、バンプ電極(突起形状電極)を有
する発光ダイオードチップを図5に示すチップ形発光ダ
イオード装置(1)に適用した本発明による第4の実施の
形態を示す。発光ダイオードチップ(4)は、図7に示す
ように、図4に示す半導体発光素子(4')が転倒した構造
を有し、アノード電極(5)及びカソード電極(6)はそれぞ
れ配線導体(2, 3)に直接固着されたバンプ電極として形
成される。図8は、バンプ電極を有する発光ダイオード
チップを外部リード型の配線導体(2, 3)に直接固着した
第5の実施の形態を示す。図6及び図8の実施の形態で
は、ボンディングワイヤを省略することができる。
FIG. 6 shows a fourth embodiment according to the present invention in which a light emitting diode chip having bump electrodes (protruding electrodes) is applied to the chip type light emitting diode device (1) shown in FIG. As shown in FIG. 7, the light emitting diode chip (4) has a structure in which the semiconductor light emitting device (4 ′) shown in FIG. 4 is inverted, and the anode electrode (5) and the cathode electrode (6) are respectively formed by wiring conductors ( It is formed as a bump electrode directly fixed to 2, 3). FIG. 8 shows a fifth embodiment in which a light emitting diode chip having bump electrodes is directly fixed to an external lead type wiring conductor (2, 3). In the embodiment of FIGS. 6 and 8, the bonding wire can be omitted.

【0058】内部光透過層(10)は、下記の優れた特性を
備えている。 [1] 内部光透過層(10)によって半導体発光素子(4,
4')から効率よく光を取り出すことができ、光出力の大
きい半導体発光装置(1)を実現できる。 [2] 高価な曲面形の半導体発光素子を用いなくとも安
価な六面体形状の半導体発光素子(4, 4')で大きな光取
出効率が得られるので、光出力の大きい且つ安価な半導
体発光装置(1)を実現できる。 [3] 内部光透過層(10)は光透過液状材料を用いて形成
されるので、光学的に有利な様々な形状の内部光透過層
(10)を実現できる。 [4] 半導体発光素子(4)は内部光透過層(10)と外部光
透過層(11)によって二重に被覆されるので耐環境性能に
優れた半導体発光装置(1)を実現できる。 [5] 内部光透過層(10)の内部又はカップ部(2a)の内面
に半導体発光素子(4)の発光波長で励起される蛍光物質
(10a)を混合又は塗布して、半導体発光素子(4,4')と異
なる波長の光を発する半導体発光装置(1)を実現でき
る。
The internal light transmitting layer (10) has the following excellent characteristics. [1] The semiconductor light emitting device (4,
It is possible to efficiently extract light from 4 ') and realize a semiconductor light emitting device (1) having a large light output. [2] Since a large light extraction efficiency can be obtained with an inexpensive hexahedral semiconductor light emitting element (4, 4 ′) without using an expensive curved semiconductor light emitting element, a semiconductor light emitting device with a large light output and a low cost ( 1) can be realized. [3] Since the internal light-transmitting layer (10) is formed of a light-transmitting liquid material, the internal light-transmitting layer having various optically advantageous shapes is formed.
(10) can be realized. [4] Since the semiconductor light emitting device (4) is doubly covered with the internal light transmitting layer (10) and the external light transmitting layer (11), the semiconductor light emitting device (1) having excellent environmental resistance can be realized. [5] A fluorescent substance that is excited at the emission wavelength of the semiconductor light emitting device (4) inside the internal light transmission layer (10) or on the inner surface of the cup portion (2a)
By mixing or coating (10a), a semiconductor light emitting device (1) that emits light having a wavelength different from that of the semiconductor light emitting element (4, 4 ′) can be realized.

【0059】[0059]

【発明の効果】以上のように、本発明による半導体発光
装置では、半導体発光素子の形状に依存せずに光取出効
率及び信頼性の高い半導体発光装置が得られる。また、
この半導体発光装置は、量産性に優れ安価に製造でき
る。
As described above, in the semiconductor light emitting device according to the present invention, a semiconductor light emitting device having high light extraction efficiency and high reliability can be obtained without depending on the shape of the semiconductor light emitting element. Also,
This semiconductor light emitting device is excellent in mass productivity and can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による半導体発光装置の第1の実施の
形態の断面図
FIG. 1 is a sectional view of a first embodiment of a semiconductor light emitting device according to the present invention.

【図2】 図1に示す半導体発光装置に使用する半導体
発光素子の断面図
FIG. 2 is a sectional view of a semiconductor light emitting element used in the semiconductor light emitting device shown in FIG.

【図3】 本発明による半導体発光装置の第2の実施の
形態の断面図
FIG. 3 is a sectional view of a second embodiment of a semiconductor light emitting device according to the present invention.

【図4】 図3に示す半導体発光装置に使用する半導体
発光素子の断面図
4 is a cross-sectional view of a semiconductor light emitting element used in the semiconductor light emitting device shown in FIG.

【図5】 本発明による半導体発光装置の第3の実施の
形態の断面図
FIG. 5 is a sectional view of a third embodiment of a semiconductor light emitting device according to the present invention.

【図6】 本発明による半導体発光装置の第4の実施の
形態の断面図
FIG. 6 is a sectional view of a semiconductor light emitting device according to a fourth embodiment of the present invention.

【図7】 図6に示す半導体発光装置に使用する半導体
発光素子の断面図
7 is a cross-sectional view of a semiconductor light emitting element used in the semiconductor light emitting device shown in FIG.

【図8】 本発明による半導体発光装置の第5の実施の
形態の断面図
FIG. 8 is a sectional view of a semiconductor light emitting device according to a fifth embodiment of the present invention.

【図9】 光の屈折状態を示す原理図FIG. 9 is a principle diagram showing a refraction state of light.

【図10】 光の臨界角を示す原理図FIG. 10: Principle diagram showing the critical angle of light

【図11】 ハーメチックシール構造を備えた従来の半
導体発光装置の断面図
FIG. 11 is a sectional view of a conventional semiconductor light emitting device having a hermetic seal structure.

【図12】 従来の曲面型の半導体発光装置を示す斜視
FIG. 12 is a perspective view showing a conventional curved semiconductor light emitting device.

【図13】 従来の曲面型の半導体発光装置を示す断面
FIG. 13 is a cross-sectional view showing a conventional curved semiconductor light emitting device.

【図14】 従来の樹脂封止型の半導体発光装置を示す
断面図
FIG. 14 is a cross-sectional view showing a conventional resin-sealed semiconductor light emitting device.

【図15】 屈折率に対するηdome/ηair値を示すグ
ラフ
FIG. 15 is a graph showing η dome / η air value with respect to refractive index.

【符号の説明】[Explanation of symbols]

(1)・・半導体発光装置、 (2, 3)・・配線導体、 (2
a)・・カップ部、 (4,4')・・半導体発光素子、 (4a)
・・基体、 (4b〜4e)・・半導体層、 (5, 6)・・電
極、 (7)・・導電性接着剤又は光透過性接着剤、 (8,
9)・・ボンディングワイヤ、 (10)・・内部光透過
層、 (11)・・外部光透過層、 (12)・・絶縁性基板、
(14)・・封止樹脂、 (19)・・封止ガラス、 (20)・
・金属ステム、 (21)・・金属製ポスト、 (22)・・金
属製キャップ、 (23)・・ガラス窓、(24)・・封止ガ
ス、 (10a)・・蛍光物質、 (10b)・・光散乱物質又は
結合材、 (10c)・・光吸収物質、
(1) ・ ・ Semiconductor light-emitting device, (2, 3) ・ ・ Wiring conductor, (2
a) ・ ・ Cup part, (4,4 ') ・ ・ Semiconductor light emitting device, (4a)
..Substrate, (4b to 4e) .. Semiconductor layer, (5, 6) .. Electrode, (7) .. Conductive adhesive or light transmissive adhesive, (8,
9) ・ ・ Bonding wire, (10) ・ ・ Internal light transmitting layer, (11) ・ ・ External light transmitting layer, (12) ・ ・ Insulating substrate,
(14) ・ ・ Sealing resin, (19) ・ ・ Sealing glass, (20) ・
・ Metal stem, (21) ・ ・ Metal post, (22) ・ ・ Metal cap, (23) ・ ・ Glass window, (24) ・ ・ Sealing gas, (10a) ・ ・ Fluorescent substance, (10b) ..Light-scattering substances or binders, (10c) .. Light-absorbing substances,

フロントページの続き (56)参考文献 特開 昭62−22491(JP,A) 特開 平8−313742(JP,A) 特開 平8−102553(JP,A) 特開 平10−65221(JP,A) 特開 平10−242513(JP,A) 特開 昭50−20683(JP,A) 特開 平11−163417(JP,A) 特開 平5−3371(JP,A) 特開 平6−82600(JP,A) 特開 平1−283883(JP,A) 特開 平7−235696(JP,A) 実開 平4−63162(JP,U) 特公 昭49−47993(JP,B1)Continued front page       (56) References JP-A-62-22491 (JP, A)                 JP-A-8-313742 (JP, A)                 JP-A-8-102553 (JP, A)                 Japanese Patent Laid-Open No. 10-65221 (JP, A)                 JP-A-10-242513 (JP, A)                 JP-A-50-20683 (JP, A)                 JP-A-11-163417 (JP, A)                 JP-A-5-3371 (JP, A)                 JP-A-6-82600 (JP, A)                 JP-A-1-283883 (JP, A)                 JP-A-7-235696 (JP, A)                 Actual Kaihei 4-63162 (JP, U)                 Japanese Patent Publication Sho 49-47993 (JP, B1)

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一対の配線導体と、一対の前記配線導体
にそれぞれ電気的に接続された複数の電極を有する半導
体発光素子と、該半導体発光素子の発光部の少なくとも
一部を被覆する内部光透過層と、前記半導体発光素子、
配線導体の端部及び前記内部光透過層を被覆する外部光
透過層とを備え、前記半導体発光素子から照射された光
が前記内部光透過層及び前記外部光透過層を経て外部に
放出される半導体発光装置において、 前記内部光透過層はポリメタロキサンゲルにより形成さ
れ、 前記内部光透過層の屈折率は、1.685以上で前記半
導体発光素子の屈折率以下の値であることを特徴とする
半導体発光装置。
1. A semiconductor light emitting element having a pair of wiring conductors, a plurality of electrodes electrically connected to the pair of wiring conductors, and an internal light covering at least a part of a light emitting portion of the semiconductor light emitting element. A transparent layer, the semiconductor light emitting device,
An external light transmission layer covering the end of the wiring conductor and the internal light transmission layer is provided, and the light emitted from the semiconductor light emitting element is emitted to the outside through the internal light transmission layer and the external light transmission layer. In the semiconductor light emitting device, the internal light transmissive layer is formed of polymetalloxane gel, and the refractive index of the internal light transmissive layer is 1.685 or more and less than or equal to the refractive index of the semiconductor light emitting element. Semiconductor light emitting device.
【請求項2】 前記内部光透過層は、ZnO、TiO2、Al
2O3、Y2O3、BaTiO3、SrTiO3、ZrO2又はZrO2-SiO2系酸化
物により形成される請求項1に記載の半導体発光装置。
2. The internal light transmission layer is made of ZnO, TiO 2 , Al
The semiconductor light emitting device according to claim 1, which is formed of 2 O 3 , Y 2 O 3 , BaTiO 3 , SrTiO 3 , ZrO 2 or ZrO 2 —SiO 2 based oxide.
【請求項3】 前記ポリメタロキサンゲルは、金属アル
コキシド又は超微粒子状金属酸化物にゾル・ゲル法を施
して形成される請求項1に記載の半導体発光装置。
3. The semiconductor light emitting device according to claim 1, wherein the polymetalloxane gel is formed by subjecting a metal alkoxide or ultrafine particle metal oxide to a sol-gel method.
【請求項4】 前記内部光透過層の屈折率は、前記半導
体発光素子の屈折率に略等しい値にある請求項1に記載
の半導体発光装置。
4. The semiconductor light emitting device according to claim 1, wherein a refractive index of the internal light transmitting layer is substantially equal to a refractive index of the semiconductor light emitting element.
【請求項5】 前記内部光透過層の屈折率は1.685
〜3.0である請求項4に記載の半導体発光装置。
5. The refractive index of the internal light transmitting layer is 1.685.
5. The semiconductor light emitting device according to claim 4, wherein
【請求項6】 前記半導体発光素子は、一対の前記配線
導体の一方の端部に形成されたカップ部内に載置され、
前記内部光透過層は前記カップ部内に形成され、前記半
導体発光素子は前記内部光透過層の上に接着又は内部光
透過層の中に埋設された請求項1に記載の半導体発光装
置。
6. The semiconductor light emitting device is mounted in a cup portion formed at one end of the pair of wiring conductors,
The semiconductor light emitting device according to claim 1, wherein the internal light transmitting layer is formed in the cup portion, and the semiconductor light emitting element is adhered onto the internal light transmitting layer or embedded in the internal light transmitting layer.
【請求項7】 前記半導体発光素子の上面に第一の電極
が形成され下面に第二の電極が形成され、前記第二の電
極は導電性接着剤を介して一対の前記配線導体の一方の
端部に接着され、前記第一の電極が前記ボンディングワ
イヤによって一対の前記配線導体の他方の端部に接続さ
れた請求項1〜6の何れか1項に記載の半導体発光装
置。
7. A first electrode is formed on an upper surface of the semiconductor light emitting element and a second electrode is formed on a lower surface of the semiconductor light emitting element, the second electrode being one of a pair of the wiring conductors via a conductive adhesive. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is bonded to an end portion, and the first electrode is connected to the other end portion of the pair of wiring conductors by the bonding wire.
【請求項8】 前記半導体発光素子の発光波長で励起さ
れ前記半導体発光素子の発光波長と異なる波長の光を発
する蛍光物質を前記内部光透過層に配合し、前記半導体
発光素子は、365〜400nm、440〜470nm及び
580〜680nmの波長を有する光を発生する請求項1
〜7の何れか1項に記載の半導体発光装置。
8. A fluorescent substance that is excited by an emission wavelength of the semiconductor light emitting element and emits light having a wavelength different from the emission wavelength of the semiconductor light emitting element is mixed in the internal light transmitting layer, and the semiconductor light emitting element has a wavelength of 365 to 400 nm. Generating light having wavelengths of 440 to 470 nm and 580 to 680 nm.
The semiconductor light-emitting device according to any one of items 1 to 7.
【請求項9】 前記蛍光物質は、一対の前記配線導体の
一方の端部に設けられた前記カップ部の内面に塗布され
た請求項8に記載の半導体発光装置。
9. The semiconductor light emitting device according to claim 8, wherein the fluorescent substance is applied to an inner surface of the cup portion provided at one end of the pair of wiring conductors.
【請求項10】 前記外部光透過層は外部雰囲気と接す
る界面にフレネル反射防止膜が形成された請求項1〜9
の何れか1項に記載の半導体発光装置。
10. A Fresnel antireflection film is formed on an interface of the external light transmitting layer, which is in contact with an external atmosphere.
The semiconductor light-emitting device according to any one of 1.
【請求項11】 前記内部光透過層と前記外部光透過層
との界面にシランカップリング剤等の無機・有機界面結
合剤より成る結合膜が形成された請求項1〜10の何れ
か1項に記載の半導体発光装置。
11. The bonding film made of an inorganic / organic interfacial binder such as a silane coupling agent is formed at the interface between the inner light transmitting layer and the outer light transmitting layer. The semiconductor light-emitting device according to.
【請求項12】 前記半導体発光素子の底部に形成され
た一対の電極は、絶縁性基板に形成された一対の配線導
体にそれぞれ電気的に接続される請求項1に記載の半導
体発光装置。
12. The semiconductor light emitting device according to claim 1, wherein the pair of electrodes formed on the bottom of the semiconductor light emitting element are electrically connected to the pair of wiring conductors formed on the insulating substrate.
【請求項13】 前記半導体発光素子は、光透過性を有
する基体と、II−IV族又はIII−V族化合物半導体から成
る半導体層とから構成され、前記基体は主たる光取出面
を構成する一方の主面と、前記半導体層が形成される他
方の主面とを有し、前記半導体層は前記絶縁性基板に対
向して配置されて前記一対の外部電極に接続され、前記
基体の一方の主面は前記絶縁性基板に対向する側とは反
対側に配置された請求項12に記載の半導体発光装置。
13. The semiconductor light emitting device comprises a light-transmissive base and a semiconductor layer made of a II-IV group or III-V group compound semiconductor, and the base constitutes a main light extraction surface. A main surface of the substrate, and the other main surface on which the semiconductor layer is formed, the semiconductor layer being arranged to face the insulating substrate and connected to the pair of external electrodes. 13. The semiconductor light emitting device according to claim 12, wherein the main surface is arranged on the side opposite to the side facing the insulating substrate.
【請求項14】 前記外部光透過層は、光透過性を有す
るエポキシ樹脂、シリコーン樹脂、ポリエステル樹脂、
アクリル樹脂等の有機樹脂又は金属アルコキシドの官能
基の一部を修飾して有機樹脂モノマを導入した無機・有
機複合体ポリマより成る請求項1〜13の何れか1項に
記載の半導体発光装置。
14. The external light transmitting layer comprises a light transmitting epoxy resin, a silicone resin, a polyester resin,
14. The semiconductor light emitting device according to claim 1, comprising an organic resin such as an acrylic resin or an inorganic-organic composite polymer in which a functional group of a metal alkoxide is partially modified to introduce an organic resin monomer.
JP19892599A 1999-07-13 1999-07-13 Semiconductor light emitting device Expired - Fee Related JP3533345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19892599A JP3533345B2 (en) 1999-07-13 1999-07-13 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19892599A JP3533345B2 (en) 1999-07-13 1999-07-13 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2001024236A JP2001024236A (en) 2001-01-26
JP3533345B2 true JP3533345B2 (en) 2004-05-31

Family

ID=16399254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19892599A Expired - Fee Related JP3533345B2 (en) 1999-07-13 1999-07-13 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3533345B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417019B1 (en) * 2001-04-04 2002-07-09 Lumileds Lighting, U.S., Llc Phosphor converted light emitting diode
JP2005026302A (en) * 2003-06-30 2005-01-27 Shin Etsu Handotai Co Ltd Luminescent module
WO2005027576A2 (en) * 2003-09-08 2005-03-24 Nanocrystal Lighting Corporation Light efficient packaging configurations for led lamps using high refractive index encapsulants
JP4543712B2 (en) * 2004-03-17 2010-09-15 日亜化学工業株式会社 Method for manufacturing light emitting device
JP2006100787A (en) * 2004-08-31 2006-04-13 Toyoda Gosei Co Ltd Light emitting device and light emitting element
JP2006332638A (en) * 2005-04-28 2006-12-07 Toyoda Gosei Co Ltd Light emitting diode apparatus
JP2006319238A (en) * 2005-05-16 2006-11-24 Koito Mfg Co Ltd Light emitting device and vehicle-mounted lighting fixture
DE102005031523B4 (en) * 2005-06-30 2015-11-05 Schott Ag Semiconductor light source with light conversion medium made of glass ceramic
CN101361202B (en) 2006-01-16 2010-12-08 松下电器产业株式会社 Semiconductor light-emitting device
JP4973011B2 (en) * 2006-05-31 2012-07-11 豊田合成株式会社 LED device
JP2008153553A (en) * 2006-12-19 2008-07-03 Nichia Chem Ind Ltd Light-emitting device and method of manufacturing same
JP5190680B2 (en) * 2008-05-26 2013-04-24 日本電気硝子株式会社 Luminescent color conversion member
JP5257853B2 (en) * 2010-02-25 2013-08-07 日本電気硝子株式会社 Composite parts for emission color conversion
JP5257852B2 (en) * 2010-02-25 2013-08-07 日本電気硝子株式会社 Luminescent color conversion member
JP5257854B2 (en) * 2010-02-25 2013-08-07 日本電気硝子株式会社 Luminescent color conversion member
KR101659357B1 (en) * 2010-05-12 2016-09-23 엘지이노텍 주식회사 Light emitting device
JP5468517B2 (en) * 2010-10-19 2014-04-09 パナソニック株式会社 Semiconductor light emitting device
DE102018111610A1 (en) * 2018-05-15 2019-11-21 Osram Opto Semiconductors Gmbh Optoelectronic lighting device, bonding wire and method for producing an optoelectronic lighting device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947993B1 (en) * 1970-08-03 1974-12-19
JPS5020683A (en) * 1973-06-22 1975-03-05
JPS6222491A (en) * 1985-07-23 1987-01-30 Toshiba Corp Semiconductor light-emitting device
JP2574388B2 (en) * 1988-05-10 1997-01-22 松下電器産業株式会社 Light emitting diode and method of forming electrode thereof
JPH0463162U (en) * 1990-10-02 1992-05-29
JPH053371A (en) * 1991-06-25 1993-01-08 Fuji Electric Co Ltd Method for molding semiconductor laser element with resin
JPH0682600A (en) * 1992-09-03 1994-03-22 Fujitsu Ltd Radiation image conversion panel
JP3137823B2 (en) * 1994-02-25 2001-02-26 シャープ株式会社 Chip component type LED and method of manufacturing the same
JPH08102553A (en) * 1994-09-30 1996-04-16 Rohm Co Ltd Element sealing type light emitting device
JPH08313742A (en) * 1995-05-16 1996-11-29 Oki Electric Ind Co Ltd Resin material for optical transmission line and optical waveguide
JP2927279B2 (en) * 1996-07-29 1999-07-28 日亜化学工業株式会社 Light emitting diode
JP2998696B2 (en) * 1997-05-17 2000-01-11 日亜化学工業株式会社 Light emitting diode
JP3109472B2 (en) * 1997-09-26 2000-11-13 松下電器産業株式会社 Light emitting diode

Also Published As

Publication number Publication date
JP2001024236A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
JP3533345B2 (en) Semiconductor light emitting device
JP3685018B2 (en) Light emitting device and manufacturing method thereof
JP4590905B2 (en) Light emitting element and light emitting device
US9882097B2 (en) Optoelectronic semiconductor chip, optoelectronic semiconductor component, and a method for producing an optoelectronic semiconductor component
US9515240B2 (en) Optical designs for high-efficacy white-light emitting diodes
JP4447806B2 (en) Light emitting device
JP5227252B2 (en) Sealing method for white light-emitting diode converted by phosphor
US8916890B2 (en) Light emitting diodes with light filters
TWI766032B (en) Light-emitting device and method of manufacturing same
KR101163719B1 (en) Light emitting diodes with improved light extraction efficiency
EP2515353A2 (en) Light emitting diode package and lighting device with the same
WO2007018039A1 (en) Semiconductor light-emitting device
JP2003046141A (en) Light emitting device and method of manufacturing the same
US20160260872A1 (en) Substrate for led with total-internal reflection layer surrounding led
JP2004235337A (en) Light emitting diode
JP6665143B2 (en) Light emitting device manufacturing method
JP6680302B2 (en) Light emitting device
JP3230518B2 (en) Semiconductor light emitting device
JP5931006B2 (en) Light emitting device
JP7236016B2 (en) light emitting device
JP2008166311A (en) Semiconductor light-emitting element and semiconductor light-emitting device
JP6825636B2 (en) Light emitting device
JP5749599B2 (en) Light emitting device
JP6274240B2 (en) Light emitting device
JP7545085B2 (en) Light-emitting device

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees