JP4447806B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP4447806B2
JP4447806B2 JP2001293673A JP2001293673A JP4447806B2 JP 4447806 B2 JP4447806 B2 JP 4447806B2 JP 2001293673 A JP2001293673 A JP 2001293673A JP 2001293673 A JP2001293673 A JP 2001293673A JP 4447806 B2 JP4447806 B2 JP 4447806B2
Authority
JP
Japan
Prior art keywords
light emitting
light
type electrode
bonding pad
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001293673A
Other languages
Japanese (ja)
Other versions
JP2003101074A (en
Inventor
宗弘 加藤
光範 原田
宮脇  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2001293673A priority Critical patent/JP4447806B2/en
Publication of JP2003101074A publication Critical patent/JP2003101074A/en
Application granted granted Critical
Publication of JP4447806B2 publication Critical patent/JP4447806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device that is durable, does not have color shading, and emits white light, and to provide a method for manufacturing a light-emitting device. SOLUTION: An LED chip 1, that is formed by a process for forming semiconductor luminous layers 13 and 14 on a light-transmitting substrate 11, and a process for forming a p-type electrode 14 and an n-type electrode 16 on the semiconductor luminous layers by a reflecting material, and a retaining board 21 having a phosphor layer 22 where a phosphor is dispersed in high concentration to an inorganic binder are adhered, which is subjected to flip-chip bonding to a substrate 4, where connection wires 5 and 6 are formed and then is sealed by a light-transmitting resin.

Description

【0001】
【発明の属する技術分野】
本発明は発光装置に関し、特に半導体発光素子を組み込んだ発光装置に関する。詳しくは発光ダイオード(以下、LEDという。)などの半導体発光素子と蛍光材料とを組合わせて、蛍光材料による放出光を利用して白色発光などを行う発光装置に関するものである。
【0002】
【従来の技術】
LEDなどの半導体発光素子と蛍光体を組合わせた発光装置は、長寿命な発光装置として広く用いられはじめており、例えば液晶のバックライト光源として白色発光LEDが使われるなど、様々な用途が期待されている。
【0003】
図7は、従来の白色発光のLED発光装置の一例を示す断面図であり、プリント基板等の上にLED発光装置を載置する所謂、面実装型のLED発光装置の例を示す。LED発光装置90は図7(A)に示すように、GaN系化合物半導体等からなる青色発光LEDチップ91と、LEDチップ91を搭載する凹部92を中央に備えた基部93と、凹部92内に充填された透光性樹脂94とからなる。また、透光性樹脂94には、LEDチップ91から放射された光の一部を吸収して黄色系の光を放出する蛍光体95が分散混入されている。また、基部93の外周面および凹部92内面には一対の外部接続電極96、96が設けられ、凹部92内においてLEDチップ91と金属ワイヤーで電気的に接続されている。
このLED発光装置90においては、LEDチップ91から放射された光の一部が透光性樹脂94内に分散している蛍光体95に吸収され、蛍光体95は黄色系の光を放出する。これによりLEDチップ91の青色光と蛍光体95の黄色系の光が同時に発光装置90から照射され、白色系の発光色を得ることが可能になる。なお、LEDチップとしては一般に、紫外域から青色領域の光を発光する窒化ガリウム系化合物半導体等が使用され、透光性樹脂としてはエポキシ樹脂が用いられる。
【0004】
また、透光性樹脂94内に蛍光体を分散させた場合には、蛍光体の分布むらが生じやすいため色むらが発生することがある。そこで、図7(B)に示したように、蛍光体95を含まない透光性樹脂94’にてLEDチップ91を封止し、その上に蛍光体95を含有する樹脂層97を均一な厚みとなるように形成することにより、色むらを生じにくくしたものも提案されている。
このような青色発光LEDと蛍光物質とにより青色LEDからの発光を色変換させて白色発光を可能とした発光装置としては、例えば特開平5−152609号、特開平7−99345号、特開平11−31845号、特開2000−156528号公報などがある。
【0005】
【発明が解決しようとする課題】
上記した従来の技術では、LEDチップ91からの放射光が蛍光体95に到達するまでの間には透光性樹脂94内を通過しなければならない。しかしながら、透光性樹脂94として一般的にエポキシ樹脂が使用されているため、LEDチップから放射された紫外線光等によって透光性樹脂94が劣化し、透過率が経時的に低下する黄変現象などを生じる。そのため、特にLEDチップ91として紫外線領域の光を発光する材料を用い、且つ、かかる光路内にエポキシ樹脂を用いた発光装置においては、白色発光出力が低下し、耐久性に優れた発光装置を得ることが難しいという問題点があった。
【0006】
また、LEDチップ91を載置している凹部92内に、透光性樹脂を用いることなく蛍光体を塗付等によりに配設し、それらを透光性樹脂にて封止した発光装置も提案されている。しかし、かかる場合においては蛍光体にてLEDチップを埋め込むような構成となるため、蛍光体の厚み調整が困難で色調・明るさの調整が難しく、また、演色性に優れた発光装置を再現性よく得ることが難しいという問題点がある。
【0007】
本発明は以上の点に鑑み、明るさ・色の均一性に優れ、且つ、耐久性に優れた発光装置を得ることができる発光装置およびその製造方法を提供することを主たる目的とする。
【0008】
【課題を解決するための手段】
上記目的は、本発明の一の観点によれば、透光性の基板上に半導体発光層を設けた発光素子と、該発光素子の放射光を吸収して異なる波長の光を放出する波長変換部材と、これらを一体化して封止する透光性材料とを備えた発光装置において、上記発光素子は、発光層表面側にp型電極およびn型電極が反射性材料により形成されると共に、その各表面にはp型電極マウント用ボンディングパッドおよびn型電極マウント用ボンディングパッドが、発光層を形成した基板表面からp型電極マウント用ボンディングパッド最表面までの距離とn型電極マウント用ボンディングパッド最表面までの距離が略同一となるように形成され、該マウント用ボンディングパッドを介して外部接続用電極にワイヤーを用いることなく電気的に接続されており、上記波長変換材部材は、上記基板の発光層と反対側の表面に密接して設けられ、かつ、上記発光素子と同等以上の大きさとされている、ことを特徴とする発光装置、により達成される。
【0009】
この発明では、発光層から放射された光の殆どが透光性樹脂に入射することなく波長変換部材に到達し、波長変換された光を外部に照射する。よって、透光性樹脂が発光層からの光により劣化されることがなくなり、長期間の使用によっても発光出力の低下を抑えた発光装置を得ることができ、これにより上記した目的は達成される。
【0010】
また、本発明の他の観点の発明によれば、透光性の基板上に半導体発光層を設けた発光素子と、該発光素子の放射光を吸収して異なる波長の光を放出する波長変換部材と、これらを一体化して封止する透光性材料とを備えた発光装置の製造方法であって、上記基板上に半導体発光層を形成する工程と、半導体発光層の上に反射性材料によりp型電極およびn型電極を形成する工程と、それらの各表面にp型電極マウント用ボンディングパッドおよびn型電極マウント用ボンディングパッドを、発光層を形成した基板表面からp型電極マウント用ボンディングパッド最表面までの距離とn型電極マウント用ボンディングパッド最表面までの距離が略同一になるように形成する工程と、を順に行う発光素子チップ作製工程と、透光性の保持板の少なくとも一方の表面上に無機系バインダー中に蛍光材料を分散させた塗付液を用いて蛍光体膜を形成する工程と、伸縮シート上に蛍光体膜を設けた保持板を載置した後に切断し、その後に該伸縮シートを伸ばして波長変換部材を分割する工程とを有する波長変換部材作製工程と、発光装置の外部接続用の一対の電極に発光素子チップ作製工程を終えた上記p型電極マウント用ボンディングパッドおよびn型電極マウント用ボンディングパッドを夫々電気的に接続する工程と、発光素子の基板の発光層と反対側表面に波長変換部材作製工程を終えた波長変換部材を載置する工程と、を有する発光素子配設工程と、発光素子配設工程の後に、発光素子、波長変換部材および外部接続用電極を透光性材料にて封止する工程とを、備えていることを特徴とする発光装置の製造方法、により上記した目的は達成される。
【0011】
この発明によれば、均一な厚みに制御された波長変換部材を容易に得ることができ、色むらの生じにくい発光装置を再現性よく製造することができ、上記した目的を達成することができ得る。
【0012】
【発明の実施の形態】
以下、この発明の好適な実施形態を図1乃至図6を参照しながら、詳細に説明する。図1及び図2は本発明による発光装置の第1の実施形態を示す。なお、この実施形態は所謂面実装型もしくはチップ部品タイプと称されるLED発光装置に適用したものである。
【0013】
面実装型LED発光装置10は、略直方体形状をなしており、図示しないプリント配線基板上に実装してプリント配線基板の法線方向に向かって光線Lを照射するものである。絶縁性の基体4の表面側中央部には凹部2が形成され、凹部2の中央部にはLEDチップ1が取り付けられており、周辺には反射枠3が形成されている。また、凹部2内には透光性封止材料8が充填されている。基体4の裏面側には第一接続用電極および第二接続用電極が配設され、各々の他方の端部は凹部2内部にまで回り込むように形成され、LEDチップ1の電極と電気的に接続している。
【0014】
LEDチップ1は、蛍光材料を励起可能な半導体発光素子であり、青色および/または紫外光を放射するものが好ましい。このような半導体発光素子としては、例えばGaN,InGaN,InGaAlN,AlGaN等の窒化ガリウム系化合物、ダイヤモンド等を発光層として形成させたものを用いることができる。
例えば図2に示したLEDチップ1は、紫外線光を透過するサファイアなどの基板11の面上にMOCVD法(有機金属化学気相法)によりn型半導体層12(n−GaN)を形成した後、その上にp型半導体層13(p−GaN)を形成してpn接合を形成している。また、n型半導体層12の上には、n型オーミック電極16およびn電極マウント用ボンディングパッド18が形成され、p型半導体層13の上には、p型オーミック電極14およびp電極マウント用ボンディングパッド17が形成されている。なお、符号15は絶縁膜である。
【0015】
波長変換部材7は、LEDチップ1から放射された光により励起されて発光する蛍光体等の蛍光材料を含有する部材からなり、LEDチップ1の発光面の大きさと同等以上、好適にはLEDチップ1の基板11より大きな大きさにて蛍光材料がLEDチップ1側に位置するようにして上記基板11に密接して設けられている。波長変換部材7は、発光装置10が照射する照射光を透過可能なガラスなどの保持板21上に蛍光体層22を塗付形成したものであり、蛍光体層22は光劣化する樹脂成分を含まないよう無機系バインダーを用いて塗布されている。
蛍光体層22に含まれる蛍光材料は、励起光源であるLEDチップから放射される光や、LED発光装置の用途等に応じた所望の発光色に応じて種々の公知の蛍光材料から適宜選択することができる。具体的な蛍光材料としては、セリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体、セリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体にプラセオジウムをドープした蛍光体、赤色に変換するLa蛍光体、緑色に変換する3Ba0・8Al蛍光体および青色に変換するSr10(PO12蛍光体およびこれらを混合した混合蛍光体などがある。
【0016】
透光性封止材料8は、凹部2内に充填され、LEDチップ1および波長変換部材7を封止する。また、凹部2上に図示しない半球状等のレンズを形成してもよい。透光性封止材料8としては、LEDチップ1などを一体化するパッケージを成形しやすく、LEDチップと外部とを電気的に絶縁でき、透過率が高い材料が好ましい。更に好ましくはLEDチップ1等との密着性に優れると共に耐熱性などの信頼性に優れる材料が良い。具体的な材料例としては、エポキシ樹脂、ポリカーボネート樹脂、アクリル樹脂、シリコーン樹脂などが挙げられるが、用途に応じて種々の材料の中から適宜選択でき、複数の材料層の積層構造としても良い。
【0017】
ここで、本実施形態のLED発光装置10の製造方法について図2および図3を用いて簡単に説明する。
【0018】
まず、LEDチップ1の作製工程について説明する。紫外線光を透過するサファイアなどの基板11を洗浄した後、MOCVD法(有機金属化学気相法)により図示しないバッファー層およびn型半導体層12(n−GaN)を成長し、その上にp型半導体層13(p−GaN)をエピタキシャル成長して半導体発光層を形成する。
【0019】
このようにして発光層を設けた図示しないデバイスウエハを液相エッチングまたは気相エッチングによってn型半導体層12の一部を露出させ、その後、p型半導体層13上にNi,Au,Pt,Phなどの金属で形成したp型オーミック電極14を設ける。このp型オーミック電極14は紫外線光などの発光層から放射された光に対する反射率が高い材料を使い、p型半導体層13の全表面を覆うように形成することが好ましい。
p型オーミック電極14としては、例えば、p型半導体層13側から順に白金(Pt)10オングストローム、銀(Ag)3000オングストローム、チタン(Ti)1000オングストローム、白金(Pt)1000オングストローム、金(Au)1000オングストロームを順に蒸着して形成した積層電極を用いている。白金および銀は半導体層とのオーミックコンタクトを取るとともに発光光に対する反射率を高めるために形成し、最表面の金層は酸化しない表面層とし、また後に積層するボンディングパッドとの接触性を良好にするために積層している。なお、最表面の金層と接触する白金層は金層の拡散を予防するために形成し、それと接するチタン層はその白金層の拡散を予防するために用いている。
【0020】
p型オーミック電極14を形成した後にSiNx、SiO、Alなどの紫外線領域で透明な絶縁膜15をp型半導体層13の端面およびp型電極用マウント用ボンディングパッド17を除くp型オーミック電極14表面を覆うようにして形成する。このような絶縁膜15は、デバイスウエハ全体の上に電子線蒸着法やスパッタ法、化学的気相成膜法などを用いて形成し、その一部を除去することにより得ることができる。絶縁膜を形成することでp−nのショートを予防することができるが、適宜の距離を隔ててp型オーミック電極14およびn型オーミック電極16を設けた場合には、絶縁膜15を省略することもでき得る。
【0021】
絶縁膜15を形成した後に、紫外線波長において高い反射率のAg,Alなどで形成したn型オーミック電極16を露出させたn型半導体層12上に形成する。このn型オーミック電極16は紫外線光などのLEDチップ発光光の反射率が高い材料を使うことが好ましい。
n型オーミック電極16としては、例えば、n型半導体層12側から順にチタン(Ti)20オングストロームおよびアルミニウム(Al)3000オングストロームを順に蒸着して形成した積層電極を用いている。このような金属材料はn型オーミック電極16とのオーミックコンタクトを取るとともに発光光に対する反射率を高めるために形成している。
【0022】
続いてp型電極マウント用ボンディングパッド17およびn型電極用マウントボンディングパッド18をTi,Ni,Auなどの金属材料で形成する。なお、n型電極マウント用ボンディングパッド18の厚みをp型電極マウント用ボンディングパッド17よりも厚くして、基板11の表面からの距離が等しくなるように調整している。
p型電極マウント用ボンディングパッド17は、例えば、p型半導体層13側から順に金(Au)1000オングストローム、白金(Pt)1000オングストローム、金(Au)2000オングストロームを順に蒸着して形成した積層電極を用いている。最初に形成する金層はp型オーミック電極14との接続性を良好に保つために用い、最表面の金層はLEDチップ1と第一接続用電極5とのAu−Sn共晶電極19を用いた接続性が良好になるために積層している。なお、最表面の金層と接触する白金層は最表面の金層が共晶化された場合の、その拡散を予防するために形成している。
【0023】
n型電極マウント用ボンディングパッド18は、例えば、n型半導体層12側から順にチタン(Ti)1000オングストローム。金(Au)1000オングストローム、白金(Pt)1000オングストローム、金(Au)2000オングストロームを順に蒸着して形成した積層電極を用いている。チタン層はn型オーミック電極16との接続性を良好にするために形成している。最初に形成する金層は、基板11表面からp型電極マウント用ボンディングパッド17表面までの距離と、基板11表面からn型電極マウント用ボンディングパッド18表面までの距離をほぼ等しくするための厚み調整層として形成している。また、最表面の金層はLEDチップ1と第二接続用電極6とのAu−Sn共晶電極19を用いた接続性が良好になるために積層し、最表面の金層と接触する白金層は最表面の金層が共晶化された場合の、その拡散を予防するために形成している点はp型電極マウント用ボンディングパッド17と同一である。よって、この白金層および金層については、n型電極マウント用ボンディングパッド18およびp型電極マウント用ボンディングパッド17の双方を同時に形成することができる。なお、これらの電極材料として反射率の高い材料を用いるのは、基体側に向かって放射された光を反射させて基板11側から取出す光の量を増大させるためである。また、本明細書において高反射率材料とは、発光層から放射された光の主ピーク波長に対し、50%よりも高い反射率を示す材料をいい、狭義には70%以上の反射率を示すものをいう。例えば約400nmの波長に対し、上記したp型電極およびn型電極はいずれも70〜80%程度の反射率を示すが、金電極の場合には50%未満の反射率である。
【0024】
一方、凹部2内の第一接続用電極5および第二接続用電極6のp型電極マウント用ボンディングパッド17およびn型電極マウント用ボンディングパッド18に対向する位置には、Au−Snなどからなる共晶電極19を形成しておく。
【0025】
次に、LEDチップ1を基板11側が上面となるようにして、第一接続用電極5とp型電極マウント用ボンディングパッド17を、第二接続用電極6とn型電極マウント用ボンディングパッド18を、夫々共晶電極19を介して接続し、電気的、機械的接触特性を改善するために約300℃にて加熱処理して、LEDチップ1を凹部2内に所謂、フリップチップ方式にて設置する。
【0026】
続いて波長変換部材作製工程について説明する。図3は波長変換部材の作製工程を工程順に概略を示すものである。21は保持板、22は蛍光体層、23は熱伸縮シートである。まず、保持板21を用意し洗浄する(図3(A))。保持板21としてはガラス等の発光装置10の照射光を透過可能な材料を用い、その厚みは50〜100μm程度とする。これより厚いと発光装置が大型化し、これより薄いと以後の作業においてハンドリング作業が困難になるからである。また、保持板21は紫外線光の透過率の低い材料を用いることが好ましい。LEDチップ1から放射された光は、蛍光体層22を通過した後に保持板21を通過して、透光性封止材料8に到達する。したがって、透光性封止材料8を劣化させるおそれのある蛍光体層22を通り抜けた紫外線をできる限り遮断する特性を備えることが好ましいからである。また、保持板21に着色を施したものを用いることもでき得る。着色した保持板21を用いることで、発光装置の色バランスを調整可能だからである。例えば励起光源であるLEDチップ1の発光が紫外線光で、蛍光体層22が所謂三波長蛍光体の場合において、赤色発光用の蛍光体による発光ピークが青色発光用および緑色発光用蛍光体による発光ピークに比べて弱い場合には、青色および緑色の領域における光を吸収する着色を施したものを用いて、白色の色調を調整することができ得る。
【0027】
次に蛍光体層22を形成する(図3(B))。蛍光体層22は、蛍光体をシラノールや水ガラスを主成分とする無機系バインダー中に高濃度に分散させた混合液をスピンコート法やブレードコート法もしくはスクリーン印刷法などの方法で塗膜を作製することにより形成可能である。このとき、蛍光体の充填密度を高めるため無機系バインダー1に対して重量比で蛍光体を3〜5の割合で混合する。単に混合したのみでは粘度が高過ぎて均一に塗付することが難しいので、酢酸nブチル等の粘度調整剤を混合液に加えて粘度を低くして適宜調整すると好適である。塗付後150℃にて熱処理を行って硬化させる。このとき、粘度調整材は熱処理によって揮発する材料を用いると良い。
蛍光体は平均粒径が3〜20μmのものを用い、蛍光体層22の厚みは、30〜100μm、好適には平均粒径8〜15μmの蛍光体を用いて40〜50μmの蛍光体層とすると明るさと効率のバランスに優れた発光装置が得られる。蛍光体粒子が小さいと充填密度を高めることができるが、変換効率が好ましくなく、大き過ぎると均一性が悪くなり易いからである。また、厚みが薄いとやはり変換効率が悪くなり、厚くなると明るさが低下してくる傾向があるからである。
【0028】
次に蛍光体層22側を熱伸縮シート23上に張り付け、保持板21をスクライブ法やダイシング法にて所定の大きさに切断し(図3(C))、熱伸縮シート23を引張って複数の波長変換部材7を作製する(図3(D))。各波長変換部材7の大きさは、LEDチップ1の辺の長さと同一もしくはそれ以上の長さを備え、LEDチップ1から放射された光の全量が入射するようにするのが好ましい。好適にはLEDチップ1の辺の長さの1.2〜3倍、より好ましくは2倍の大きさとする。
【0029】
続いて図2に示したように蛍光体層22がLEDチップ1の基板11上に位置するようにして波長変換部材7をLEDチップ1上に配設する。両者の接続には無機接着剤を用いて接合する。その後、凹部2内にエポキシ樹脂などの透光性封止材料8を充填して硬化させる。
【0030】
面実装型LED発光装置10は、以上のように構成されており、LEDチップ1から放射された光はLED発光層を成長したサファイア基板11を通過した後、直接に波長変換部材に入射する。
本実施形態によれば、LEDチップ1から放射された光の大部分は主光放射方向Lに向かって進行し、その光はエポキシ樹脂等の光劣化を生じ易い材料を通過することなく蛍光体に到達する。よって、従来例にて説明したLED発光装置90に比べて、光劣化発生の問題が生じにくくなる。また、均一な波長変換機能を有する波長変換部材7を比較的容易に得ることができる。更に、波長変換部材を有機材料層を介することなくLEDチップ上に密接して載置可能であるから、従来の蛍光材料含有層を通過して光を取出す場合に比べて、厚みによる色むらの影響を受け難くなり色むらが生じにくくなる。
【0031】
第2の実施形態について、図4および要部断面図である図5を用いて説明する。
【0032】
第2の実施形態の発光装置30は、砲弾型のレンズを備えたLEDランプ形状の発光装置としている。発光装置30は、一対のリードフレーム31と、一方のリードフレーム32の一端に設けた凹部33内に載置したLEDチップ1および波長変換部材7と、リードフレーム31,32とLEDチップとを電気的に接続している金属ワイヤー34と、これらを覆う砲弾型のレンズ35とから構成され、LEDチップ1から放射された発光が波長変換部材7を通過する間に波長変換され、この光が主照射方向Lに向かって照射するものとされている。
【0033】
リードフレーム31,32は、導電性および熱伝導性に優れた金属材料により形成され、一方のリードフレーム32の一端には凹部33が形成されている。凹部33は略すり鉢形状をなしており、平坦部33aと平坦部33a周囲の反射枠部33bを備え、主照射方向Lに向かって光を反射するようにしている。
【0034】
レンズ35は、透光性の材料により形成され、LEDチップ1および波長変換部材7等を封止すると共に、砲弾型に形成されレンズ作用を奏するようになされている。レンズ35に用いられる透光性材料としては、例えばエポキシ樹脂、ポリカーボネート樹脂、アクリル樹脂、シリコーン樹脂などが挙げられるが、用途に応じて種々の材料の中から適宜選択でき、複数の材料層の積層構造としても良い。
【0035】
LEDチップ1および波長変換部材7は、先の実施形態と同様な点は同一の符号を付し詳細な説明を省略するが、LEDチップ1の基板と波長変換部材7の蛍光体層22とを密接して積層させている。
【0036】
さらに、本実施形態においては、図5に示したようにLEDチップ1をサブマウント36に搭載した後に、これらをリードフレーム32の凹部33内に載置する構成としている。サブマウント36は、例えば熱伝導性に優れると共にLEDチップ1の半導体材料と熱膨張係数の近似した材料を用い、その表面にLEDチップ1のp型電極マウント用ボンディングパッド17およびn型電極マウント用ボンディングパッド18と夫々が接続する第一接続用電極37および第二接続用電極38を有している。本実施形態ではシリコン(Si)からなるサブマウントとし、その表面に絶縁層39を介して第一接続用電極37を設けたものとし、第二接続用電極38はシリコン材料と導通するように形成している。
【0037】
ここで、本実施形態のLED発光装置30の製造方法について簡単に説明する。まず、p型電極用マウント用ボンディングパッド17およびn型電極用マウント用ボンディングパッド18を作製するまでのLEDチップ1の作製工程および波長変換部材作製工程を、先の実施形態と同一の工程にて実施する。ただし、発光層を形成した基板11表面からp型電極マウント用ボンディングパッド17最表面までの距離とn型電極マウント用ボンディングパッド18最表面までの距離が略同一であるが、p型電極マウント用ボンディングパッド17までの距離の方が絶縁層39の厚み分、短くなるように形成されている。次に、作製したLEDチップ1と波長変換部材7とを、蛍光体層22がLEDチップ1の基板11上に位置するようにして波長変換部材7をLEDチップ1上に接合して一体化する。
また、シリコンウエハ表面には、開口部を有する所定形状とした絶縁層39を形成する。その後、絶縁層39上および開口しているシリコン上に金蒸着等の適宜手段により、第一接続用電極37および第二接続用電極38をそれぞれ形成し、パターニングする。その後、第一接続用電極37および第二接続用電極38上にAu−Snなどからなる共晶電極19を形成し、波長変換部材とほぼ同一の大きさに切断してサブマウント36を用意する。
【0038】
続いて、一体化したLEDチップ1のp型電極マウント用ボンディングパッド17,n型電極マウント用ボンディングパッド18とサブマウント36の第一接続用電極37,第二接続用電極38をそれぞれ共晶電極19を介して接続し、電気的、機械的接触特性を改善するために約300℃にて加熱処理して、一体化したLEDチップ1をサブマウント36上に所謂、フリップチップ方式にて搭載する。
【0039】
その後、LEDチップ1および波長変換部材7が搭載されているサブマウント36を凹部33の平坦部33aに導電性接着剤等を用いて固定し、サブマウント36に作製されている第二接続用電極38とリードフレーム31とを、ワイヤーボンディングにて接続する。最後にトランスファーモールド法によってエポキシ樹脂からなるレンズ35にてこれらを被覆する。
【0040】
LED発光装置30は、以上のように構成されており、LEDチップ1から放射された光はLED発光層を成長したサファイア基板11を通過した後、直接に波長変換部材に入射する。
LEDチップとしてピーク波長380nmの紫外線を発光する半導体発光素子を用いて、この実施形態の発光装置30を作製して寿命特性を調べたところ、従来の発光装置においては透光性樹脂の黄変により500時間未満で黄変が観測され発光出力が低下していたが、連続通電試験において1150時間後においても初期の発光出力に比べて約98%という高い出力を維持していた。
【0041】
本実施形態によれば、LEDチップ1から放射された光の大部分は主光放射方向に対して進行し、その光はエポキシ樹脂等の光劣化を生じ易い材料を通過することなく蛍光体に到達する。よって、従来例にて説明したLED発光装置90に比べて、光劣化発生の問題が生じにくくなる。また、均一な波長変換機能を有する波長変換部材7を比較的容易に得ることができる。更に、有機材料層を介することなくLEDチップ上に密接して載置可能であるから、従来の蛍光材料含有層を通過して光を取出す場合に比べて、厚みによる色むらの影響を受け難くなり色むらが生じにくくなる。また、平坦なサブマウント36上にLEDチップ1等を搭載した後に、凹部33内に載置するものとしているので、取付作業が容易になる。
【0042】
尚、上記した実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲はこれらの態様に限られるものではない。例えば図6に示すように、LEDチップ1の端面から漏れる光も確実に波長変換されるようにLEDチップ1の端面に蛍光体41を無機系バインダーに高配合させた塗付液を塗付する等の手段により蛍光体層42を設けるようにしても良い。この場合には、LEDチップ1端面から放射された光も波長変換されるものとなり、その光の分、明るい発光装置を得ることができ得る。
【0043】
更に、砲弾型のレンズ形状としたが他の形状のレンズとした場合、面実装型LED発光装置の凹部内にサブマウント上に搭載したLEDチップを配設した場合等の、種々の変更も当然に本発明に包含される。
【0044】
【発明の効果】
以上述べたように、本発明によれば波長変換部材がLEDチップの基板と密接状態にて接合されているので、LEDチップが発光する光の殆ど大部分が透光性樹脂に入射することなく波長変換部材に到達する。したがって、透光性樹脂の経時的な光劣化が抑制されるから、発光寿命特性の優れた波長変換発光装置を得ることができる。
また、均一な厚みの波長変換部材を作製し、それをLEDチップの基板面と接合するようにして作製しているので、LEDチップと波長変換部材を密接して設けることができ、金属ワイヤーや透光性樹脂が両者の間に介在することなく取り付けることができる。したがって、透光性樹脂の経時的な光劣化を抑制して、発光寿命特性の優れた波長変換発光装置を製造することができる。特に蛍光体として特性の異なる赤色蛍光体、緑色蛍光体、青色蛍光体をブレンドしてなる混合蛍光体を用いる場合には、蛍光体層の短時間乾燥化によって蛍光体分布を均一にすることもでき、色むらの生じにくい発光装置を再現性よく製造することができ得る、といった顕著な効果を奏する。
【図面の簡単な説明】
【図1】本発明による第一の実施形態の面実装型LED発光装置の概略断面図である。
【図2】図1の面実装型LED発光装置の要部を拡大して示す断面図である。
【図3】本発明による波長変換部材の製造工程を順に説明する概略断面図である。
【図4】本発明による第二の実施形態のLED発光装置を示す説明図である。
【図5】図4の面実装型LED発光装置の要部を拡大して示す断面図である。
【図6】本発明による他の実施形態の発光装置の要部を拡大して示す断面図である。
【図7】従来の面実装型LED発光装置を示す概略断面図である。
【符号の説明】
1 LEDチップ
2 凹部
3 反射枠
4 基体
5 第一接続用電極
6 第二接続用電極
7 波長変換部材
8 透光性封止材料
10,30 発光装置
11 基板
12 n型半導体層
13 p型半導体層
14 p型オーミック電極
15 絶縁膜
16 n型オーミック電極
17 p電極マウント用ボンディングパッド
18 n電極マウント用ボンディングパッド
19 共晶電極
21 保持板
22 蛍光体層
23 熱伸縮シート
31,32 リードフレーム
33 凹部
34 金属ワイヤー
35 レンズ
36 サブマウント
37 第一接続用電極
38 第二接続用電極
39 絶縁層
41 蛍光体
90 面実装型LED発光装置
91 LEDチップ
92 凹部
93 基部
94 透光性樹脂
95 蛍光体
96 電極
97 蛍光体含有樹脂層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting device, and particularly to a light emitting device incorporating a semiconductor light emitting element. Specifically, the present invention relates to a light-emitting device that combines a semiconductor light-emitting element such as a light-emitting diode (hereinafter referred to as an LED) and a fluorescent material to emit white light using light emitted from the fluorescent material.
[0002]
[Prior art]
Light-emitting devices that combine phosphors and semiconductor light-emitting elements such as LEDs have begun to be widely used as long-lived light-emitting devices. For example, white light-emitting LEDs are used as a backlight light source for liquid crystals, and various applications are expected. ing.
[0003]
FIG. 7 is a cross-sectional view showing an example of a conventional white light emitting LED light emitting device, and shows an example of a so-called surface mount type LED light emitting device in which the LED light emitting device is mounted on a printed circuit board or the like. As shown in FIG. 7A, the LED light emitting device 90 includes a blue light emitting LED chip 91 made of a GaN-based compound semiconductor or the like, a base 93 having a concave portion 92 for mounting the LED chip 91 in the center, and a concave portion 92. It consists of a translucent resin 94 filled. The translucent resin 94 is dispersed and mixed with a phosphor 95 that absorbs part of the light emitted from the LED chip 91 and emits yellow light. Further, a pair of external connection electrodes 96 are provided on the outer peripheral surface of the base portion 93 and the inner surface of the recess 92, and are electrically connected to the LED chip 91 with a metal wire in the recess 92.
In the LED light emitting device 90, a part of the light emitted from the LED chip 91 is absorbed by the phosphor 95 dispersed in the translucent resin 94, and the phosphor 95 emits yellow light. As a result, the blue light of the LED chip 91 and the yellow light of the phosphor 95 are simultaneously irradiated from the light emitting device 90, and a white light emission color can be obtained. In general, a gallium nitride compound semiconductor that emits light in the ultraviolet region to a blue region is used as the LED chip, and an epoxy resin is used as the translucent resin.
[0004]
In addition, when the phosphor is dispersed in the translucent resin 94, uneven distribution of the phosphor is likely to occur, and thus uneven color may occur. Therefore, as shown in FIG. 7B, the LED chip 91 is sealed with a translucent resin 94 ′ not including the phosphor 95, and a resin layer 97 containing the phosphor 95 is uniformly formed thereon. Proposals have been made to make color unevenness less likely to occur by forming the film to have a thickness.
Examples of light emitting devices that enable white light emission by color-converting the light emitted from the blue LED with such a blue light emitting LED and a fluorescent material include, for example, Japanese Patent Laid-Open Nos. 5-152609, 7-99345, and 11 -31845, JP-A 2000-156528, and the like.
[0005]
[Problems to be solved by the invention]
In the above-described conventional technology, the emitted light from the LED chip 91 must pass through the translucent resin 94 before reaching the phosphor 95. However, since epoxy resin is generally used as the translucent resin 94, the translucent resin 94 deteriorates due to ultraviolet light or the like emitted from the LED chip, and the yellowing phenomenon in which the transmittance decreases with time. And so on. Therefore, in particular, in a light-emitting device using a material that emits light in the ultraviolet region as the LED chip 91 and using an epoxy resin in the optical path, a white light-emitting output is reduced and a light-emitting device with excellent durability is obtained. There was a problem that it was difficult.
[0006]
Also, there is a light emitting device in which phosphors are disposed in the concave portion 92 on which the LED chip 91 is placed without applying a translucent resin by coating or the like and sealed with the translucent resin. Proposed. However, in such a case, since the LED chip is embedded in the phosphor, it is difficult to adjust the thickness of the phosphor, it is difficult to adjust the color tone and brightness, and the light emitting device with excellent color rendering is reproducible. There is a problem that it is difficult to get well.
[0007]
In view of the above, it is a main object of the present invention to provide a light-emitting device that can provide a light-emitting device that is excellent in brightness and color uniformity and has excellent durability, and a method for manufacturing the same.
[0008]
[Means for Solving the Problems]
According to one aspect of the present invention, the above object is achieved by a light-emitting element in which a semiconductor light-emitting layer is provided on a light-transmitting substrate, and wavelength conversion that emits light having different wavelengths by absorbing light emitted from the light-emitting element. In a light emitting device including a member and a translucent material that integrates and seals the members, the light emitting element has a p-type electrode and an n-type electrode formed of a reflective material on the light emitting layer surface side, Each surface has a p-type electrode mounting bonding pad and an n-type electrode mounting bonding pad, and the distance from the substrate surface on which the light emitting layer is formed to the outermost surface of the p-type electrode mounting bonding pad and the n-type electrode mounting bonding pad. It is formed so that the distance to the outermost surface is substantially the same, and is electrically connected to the external connection electrode through the mounting bonding pad without using a wire. The wavelength conversion material member is achieved by a light-emitting device, wherein the light-emitting device is provided in close contact with the surface of the substrate opposite to the light-emitting layer and has a size equal to or greater than that of the light-emitting element. The
[0009]
In the present invention, most of the light emitted from the light emitting layer reaches the wavelength conversion member without entering the translucent resin, and the wavelength-converted light is irradiated to the outside. Therefore, the light-transmitting resin is not deteriorated by light from the light-emitting layer, and a light-emitting device that suppresses a decrease in light-emission output even after long-term use can be obtained, thereby achieving the above-described object. .
[0010]
According to another aspect of the present invention, a light emitting device having a semiconductor light emitting layer provided on a translucent substrate, and wavelength conversion for absorbing light emitted from the light emitting device and emitting light of different wavelengths. A method of manufacturing a light-emitting device comprising a member and a light-transmitting material that integrates and seals the members, the step of forming a semiconductor light-emitting layer on the substrate, and a reflective material on the semiconductor light-emitting layer Forming a p-type electrode and an n-type electrode, bonding a p-type electrode mounting bonding pad and an n-type electrode mounting bonding pad on each surface thereof, and bonding the p-type electrode mounting from the substrate surface on which the light emitting layer is formed. A step of forming the light emitting element chip in order so that the distance to the outermost surface of the pad and the distance to the outermost surface of the bonding pad for n-type electrode mounting are substantially the same, and a small number of translucent holding plates After placing the holding plate with the phosphor film on the stretchable sheet, and the step of forming the phosphor film using the coating liquid in which the fluorescent material is dispersed in the inorganic binder on at least one surface The above-mentioned p-type which finished the light-emitting element chip preparation step for a wavelength conversion member preparation step having a step of cutting and then extending the stretchable sheet to divide the wavelength conversion member, and a pair of electrodes for external connection of the light-emitting device The step of electrically connecting the electrode mounting bonding pad and the n-type electrode mounting bonding pad, and the wavelength conversion member that has undergone the wavelength conversion member preparation step are placed on the surface of the light emitting element opposite to the light emitting layer. And a step of sealing the light emitting element, the wavelength conversion member, and the external connection electrode with a translucent material after the light emitting element arranging step. Special Above object is achieved with a method of manufacturing a light emitting device which, by.
[0011]
According to the present invention, it is possible to easily obtain a wavelength conversion member controlled to have a uniform thickness, to manufacture a light-emitting device that is less likely to cause color unevenness, and to achieve the above-described object. obtain.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 6. 1 and 2 show a first embodiment of a light emitting device according to the present invention. This embodiment is applied to an LED light emitting device called a so-called surface mount type or chip component type.
[0013]
The surface-mounted LED light-emitting device 10 has a substantially rectangular parallelepiped shape, is mounted on a printed wiring board (not shown), and irradiates the light beam L in the normal direction of the printed wiring board. A concave portion 2 is formed in the central portion on the surface side of the insulating base 4, the LED chip 1 is attached to the central portion of the concave portion 2, and a reflection frame 3 is formed in the periphery. The recess 2 is filled with a translucent sealing material 8. A first connection electrode and a second connection electrode are disposed on the back surface side of the base 4, and the other end of each is formed so as to extend into the recess 2, and is electrically connected to the electrode of the LED chip 1. Connected.
[0014]
The LED chip 1 is a semiconductor light emitting element that can excite a fluorescent material, and preferably emits blue and / or ultraviolet light. As such a semiconductor light emitting device, for example, a gallium nitride compound such as GaN, InGaN, InGaAlN, AlGaN, or the like formed with diamond as a light emitting layer can be used.
For example, the LED chip 1 shown in FIG. 2 has an n-type semiconductor layer 12 (n-GaN) formed on the surface of a substrate 11 such as sapphire that transmits ultraviolet light by MOCVD (metal organic chemical vapor deposition). A p-type semiconductor layer 13 (p-GaN) is formed thereon to form a pn junction. An n-type ohmic electrode 16 and an n-electrode mounting bonding pad 18 are formed on the n-type semiconductor layer 12. A p-type ohmic electrode 14 and a p-electrode mounting bonding are formed on the p-type semiconductor layer 13. A pad 17 is formed. Reference numeral 15 denotes an insulating film.
[0015]
The wavelength conversion member 7 is made of a member containing a fluorescent material such as a phosphor that is excited by the light emitted from the LED chip 1 and emits light. The wavelength conversion member 7 is equal to or larger than the size of the light emitting surface of the LED chip 1, and preferably the LED chip. A fluorescent material having a size larger than that of one substrate 11 is provided in close contact with the substrate 11 so as to be positioned on the LED chip 1 side. The wavelength conversion member 7 is formed by applying a phosphor layer 22 on a holding plate 21 such as glass that can transmit the irradiation light emitted from the light emitting device 10. It is applied using an inorganic binder so as not to contain it.
The fluorescent material contained in the phosphor layer 22 is appropriately selected from various known fluorescent materials according to the light emitted from the LED chip that is the excitation light source and the desired emission color according to the use of the LED light-emitting device. be able to. Specific fluorescent materials include yttrium / aluminum / garnet phosphors activated with cerium, phosphors doped with praseodymium to yttrium / aluminum / garnet phosphors activated with cerium, and La converted to red. 2 O 2 Phosphor, 3Ba0 · 8Al that converts to green 2 O 3 Sr that converts to phosphor and blue 10 (PO 4 ) 6 C 12 There are phosphors and mixed phosphors obtained by mixing these.
[0016]
The translucent sealing material 8 is filled in the recess 2 and seals the LED chip 1 and the wavelength conversion member 7. Further, a hemispherical lens (not shown) may be formed on the recess 2. The translucent sealing material 8 is preferably a material that can easily form a package for integrating the LED chip 1 and the like, can electrically insulate the LED chip from the outside, and has a high transmittance. More preferably, a material having excellent adhesion to the LED chip 1 and the like and excellent reliability such as heat resistance is preferable. Specific examples of the material include an epoxy resin, a polycarbonate resin, an acrylic resin, a silicone resin, and the like, but can be appropriately selected from various materials depending on the application, and may have a laminated structure of a plurality of material layers.
[0017]
Here, the manufacturing method of the LED light-emitting device 10 of this embodiment is demonstrated easily using FIG. 2 and FIG.
[0018]
First, the manufacturing process of the LED chip 1 will be described. After cleaning the substrate 11 such as sapphire that transmits ultraviolet light, a buffer layer (not shown) and an n-type semiconductor layer 12 (n-GaN) are grown by MOCVD (metal organic chemical vapor deposition), and p-type is formed thereon. A semiconductor light emitting layer is formed by epitaxial growth of the semiconductor layer 13 (p-GaN).
[0019]
The device wafer (not shown) provided with the light emitting layer in this way is exposed by a part of the n-type semiconductor layer 12 by liquid phase etching or gas phase etching, and then Ni, Au, Pt, Ph on the p-type semiconductor layer 13. A p-type ohmic electrode 14 made of a metal such as is provided. The p-type ohmic electrode 14 is preferably formed so as to cover the entire surface of the p-type semiconductor layer 13 using a material having a high reflectance with respect to light emitted from a light emitting layer such as ultraviolet light.
Examples of the p-type ohmic electrode 14 include platinum (Pt) 10 angstrom, silver (Ag) 3000 angstrom, titanium (Ti) 1000 angstrom, platinum (Pt) 1000 angstrom, gold (Au) in order from the p-type semiconductor layer 13 side. A laminated electrode formed by sequentially depositing 1000 Å is used. Platinum and silver are formed to make ohmic contact with the semiconductor layer and increase the reflectivity to the emitted light, and the gold layer on the outermost surface is a surface layer that does not oxidize, and has good contact with the bonding pads to be laminated later To be stacked. The platinum layer in contact with the outermost gold layer is formed to prevent the gold layer from diffusing, and the titanium layer in contact with it is used to prevent the platinum layer from diffusing.
[0020]
After forming the p-type ohmic electrode 14, SiNx, SiO 2 , Al 2 O 3 An insulating film 15 transparent in the ultraviolet region is formed so as to cover the end face of the p-type semiconductor layer 13 and the surface of the p-type ohmic electrode 14 excluding the p-type electrode mounting bonding pad 17. Such an insulating film 15 can be obtained by forming an insulating film 15 on the entire device wafer using an electron beam evaporation method, a sputtering method, a chemical vapor deposition method, or the like, and removing a part thereof. By forming the insulating film, a pn short circuit can be prevented. However, when the p-type ohmic electrode 14 and the n-type ohmic electrode 16 are provided at an appropriate distance, the insulating film 15 is omitted. It can also be done.
[0021]
After the insulating film 15 is formed, the n-type ohmic electrode 16 formed of Ag, Al or the like having high reflectivity at the ultraviolet wavelength is formed on the exposed n-type semiconductor layer 12. The n-type ohmic electrode 16 is preferably made of a material having a high reflectance of LED chip emission light such as ultraviolet light.
As the n-type ohmic electrode 16, for example, a stacked electrode formed by sequentially depositing titanium (Ti) 20 Å and aluminum (Al) 3000 Å in order from the n-type semiconductor layer 12 side is used. Such a metal material is formed in order to make an ohmic contact with the n-type ohmic electrode 16 and to increase the reflectance with respect to the emitted light.
[0022]
Subsequently, the p-type electrode mounting bonding pad 17 and the n-type electrode mounting bonding pad 18 are formed of a metal material such as Ti, Ni, or Au. The n-type electrode mounting bonding pad 18 is made thicker than the p-type electrode mounting bonding pad 17 so that the distances from the surface of the substrate 11 are equal.
The p-type electrode mounting bonding pad 17 is, for example, a stacked electrode formed by sequentially depositing gold (Au) 1000 angstrom, platinum (Pt) 1000 angstrom, and gold (Au) 2000 angstrom from the p-type semiconductor layer 13 side. Used. The gold layer to be formed first is used for maintaining good connectivity with the p-type ohmic electrode 14, and the gold layer on the outermost surface is the Au—Sn eutectic electrode 19 between the LED chip 1 and the first connection electrode 5. Lamination is performed to improve the used connectivity. The platinum layer in contact with the outermost gold layer is formed to prevent diffusion when the outermost gold layer is eutectic.
[0023]
The n-type electrode mounting bonding pad 18 is, for example, titanium (Ti) 1000 angstroms in order from the n-type semiconductor layer 12 side. A stacked electrode formed by sequentially depositing gold (Au) 1000 angstrom, platinum (Pt) 1000 angstrom, and gold (Au) 2000 angstrom is used. The titanium layer is formed in order to improve the connectivity with the n-type ohmic electrode 16. The thickness of the gold layer to be formed first is adjusted so that the distance from the surface of the substrate 11 to the surface of the p-type electrode mounting bonding pad 17 is substantially equal to the distance from the surface of the substrate 11 to the surface of the bonding pad 18 for n-type electrode mounting. It is formed as a layer. In addition, the gold layer on the outermost surface is laminated in order to improve the connectivity using the Au—Sn eutectic electrode 19 between the LED chip 1 and the second connection electrode 6, and platinum in contact with the gold layer on the outermost surface This layer is the same as the p-type electrode mount bonding pad 17 in that it is formed to prevent diffusion when the outermost gold layer is eutectic. Therefore, both the n-type electrode mounting bonding pad 18 and the p-type electrode mounting bonding pad 17 can be simultaneously formed for the platinum layer and the gold layer. The reason why the materials having high reflectivity are used as these electrode materials is to increase the amount of light extracted from the substrate 11 side by reflecting the light emitted toward the substrate side. In the present specification, the high reflectance material refers to a material that exhibits a reflectance higher than 50% with respect to the main peak wavelength of light emitted from the light emitting layer, and in a narrow sense, a reflectance of 70% or more. Say what you indicate. For example, for the wavelength of about 400 nm, the p-type electrode and the n-type electrode described above each show a reflectance of about 70 to 80%, but in the case of a gold electrode, the reflectance is less than 50%.
[0024]
On the other hand, the first connection electrode 5 and the second connection electrode 6 in the recess 2 are made of Au-Sn or the like at positions facing the p-type electrode mounting bonding pad 17 and the n-type electrode mounting bonding pad 18. The eutectic electrode 19 is formed.
[0025]
Next, with the LED chip 1 facing the substrate 11 side, the first connection electrode 5 and the p-type electrode mounting bonding pad 17 are connected, and the second connection electrode 6 and the n-type electrode mounting bonding pad 18 are connected. In order to improve the electrical and mechanical contact characteristics, the LED chip 1 is placed in the recess 2 by the so-called flip chip method. To do.
[0026]
Then, the wavelength conversion member preparation process is demonstrated. FIG. 3 shows an outline of the steps for producing the wavelength conversion member in the order of steps. 21 is a holding plate, 22 is a phosphor layer, and 23 is a heat stretchable sheet. First, the holding plate 21 is prepared and cleaned (FIG. 3A). The holding plate 21 is made of a material that can transmit the irradiation light of the light emitting device 10 such as glass and has a thickness of about 50 to 100 μm. If it is thicker than this, the light emitting device becomes larger, and if it is thinner than this, handling work becomes difficult in the subsequent work. The holding plate 21 is preferably made of a material having low ultraviolet light transmittance. The light emitted from the LED chip 1 passes through the phosphor layer 22 and then passes through the holding plate 21 and reaches the translucent sealing material 8. Therefore, it is preferable to have a characteristic of blocking as much as possible the ultraviolet rays that have passed through the phosphor layer 22 that may deteriorate the translucent sealing material 8. Further, it is also possible to use a colored support plate 21. This is because the color balance of the light emitting device can be adjusted by using the colored holding plate 21. For example, when the LED chip 1 as an excitation light source emits ultraviolet light and the phosphor layer 22 is a so-called three-wavelength phosphor, the emission peak of the red light emitting phosphor is emitted by the blue light emitting phosphor and the green light emitting phosphor. In the case where it is weaker than the peak, it is possible to adjust the color tone of white using a color that absorbs light in the blue and green regions.
[0027]
Next, the phosphor layer 22 is formed (FIG. 3B). The phosphor layer 22 is formed by coating a mixed solution in which a phosphor is dispersed at a high concentration in an inorganic binder mainly composed of silanol or water glass by a spin coating method, a blade coating method or a screen printing method. It can be formed by manufacturing. At this time, in order to increase the packing density of the phosphor, the phosphor is mixed in a weight ratio of 3 to 5 with respect to the inorganic binder 1. Since the viscosity is too high to apply uniformly by simply mixing, it is preferable to add a viscosity modifier such as n-butyl acetate to the mixed solution to lower the viscosity and adjust appropriately. After application, it is cured by heat treatment at 150 ° C. At this time, as the viscosity adjusting material, a material that volatilizes by heat treatment may be used.
The phosphor has an average particle diameter of 3 to 20 μm, and the phosphor layer 22 has a thickness of 30 to 100 μm, preferably a phosphor layer having an average particle diameter of 8 to 15 μm and a phosphor layer of 40 to 50 μm Then, a light emitting device having an excellent balance between brightness and efficiency can be obtained. If the phosphor particles are small, the packing density can be increased, but the conversion efficiency is not preferable, and if it is too large, the uniformity tends to deteriorate. In addition, if the thickness is small, the conversion efficiency is deteriorated, and if it is thick, the brightness tends to decrease.
[0028]
Next, the phosphor layer 22 side is attached on the heat stretchable sheet 23, the holding plate 21 is cut into a predetermined size by a scribing method or a dicing method (FIG. 3C), and the heat stretchable sheet 23 is pulled to make a plurality of pieces. The wavelength conversion member 7 is prepared (FIG. 3D). The size of each wavelength conversion member 7 is preferably equal to or longer than the length of the side of the LED chip 1 so that the total amount of light emitted from the LED chip 1 is incident thereon. The size is preferably 1.2 to 3 times, more preferably twice the length of the side of the LED chip 1.
[0029]
Subsequently, as shown in FIG. 2, the wavelength conversion member 7 is disposed on the LED chip 1 so that the phosphor layer 22 is positioned on the substrate 11 of the LED chip 1. The two are joined using an inorganic adhesive. Thereafter, the recess 2 is filled with a translucent sealing material 8 such as an epoxy resin and cured.
[0030]
The surface-mount LED light emitting device 10 is configured as described above, and the light emitted from the LED chip 1 passes through the sapphire substrate 11 on which the LED light emitting layer is grown and then directly enters the wavelength conversion member.
According to the present embodiment, most of the light emitted from the LED chip 1 travels in the main light emission direction L, and the light does not pass through a material that easily causes photodegradation such as an epoxy resin. To reach. Therefore, compared with the LED light emitting device 90 described in the conventional example, the problem of light deterioration is less likely to occur. Moreover, the wavelength conversion member 7 which has a uniform wavelength conversion function can be obtained comparatively easily. Furthermore, since the wavelength conversion member can be placed closely on the LED chip without going through the organic material layer, the color unevenness due to the thickness is reduced as compared with the case where light is extracted through the conventional fluorescent material-containing layer. It becomes difficult to be affected and uneven color.
[0031]
A second embodiment will be described with reference to FIG. 4 and FIG.
[0032]
The light emitting device 30 according to the second embodiment is an LED lamp-shaped light emitting device including a bullet-type lens. The light emitting device 30 electrically connects a pair of lead frames 31, the LED chip 1 and the wavelength conversion member 7 placed in a recess 33 provided at one end of one lead frame 32, and the lead frames 31, 32 and the LED chip. Are connected to each other, and a bullet-shaped lens 35 covering them, and the light emitted from the LED chip 1 is wavelength-converted while passing through the wavelength conversion member 7, and this light is mainly used. Irradiation is performed in the irradiation direction L.
[0033]
The lead frames 31 and 32 are formed of a metal material having excellent conductivity and thermal conductivity, and a recess 33 is formed at one end of one lead frame 32. The concave portion 33 has a substantially mortar shape, and includes a flat portion 33a and a reflection frame portion 33b around the flat portion 33a, and reflects light toward the main irradiation direction L.
[0034]
The lens 35 is formed of a translucent material, seals the LED chip 1 and the wavelength conversion member 7 and the like, and is formed in a cannonball shape so as to exhibit a lens action. Examples of the translucent material used for the lens 35 include an epoxy resin, a polycarbonate resin, an acrylic resin, a silicone resin, and the like, and can be appropriately selected from various materials depending on the application. It is good also as a structure.
[0035]
Although the LED chip 1 and the wavelength conversion member 7 attach the same code | symbol to the point similar to previous embodiment, and abbreviate | omit detailed description, the board | substrate of the LED chip 1 and the fluorescent substance layer 22 of the wavelength conversion member 7 are attached. They are stacked closely.
[0036]
Further, in the present embodiment, as shown in FIG. 5, after the LED chip 1 is mounted on the submount 36, these are mounted in the recess 33 of the lead frame 32. For example, the submount 36 is excellent in thermal conductivity and uses a material having a thermal expansion coefficient approximate to that of the semiconductor material of the LED chip 1, and the p-type electrode mounting bonding pad 17 and the n-type electrode mounting of the LED chip 1 on the surface thereof. A first connection electrode 37 and a second connection electrode 38 are connected to the bonding pad 18 respectively. In this embodiment, a submount made of silicon (Si) is used, and a first connection electrode 37 is provided on the surface of the submount via an insulating layer 39. The second connection electrode 38 is formed so as to be electrically connected to a silicon material. is doing.
[0037]
Here, the manufacturing method of the LED light-emitting device 30 of this embodiment is demonstrated easily. First, the manufacturing process of the LED chip 1 and the wavelength conversion member manufacturing process until the bonding pad 17 for mounting the p-type electrode and the bonding pad 18 for mounting the n-type electrode are manufactured in the same process as the previous embodiment. carry out. However, the distance from the surface of the substrate 11 on which the light emitting layer is formed to the outermost surface of the bonding pad 17 for p-type electrode mounting is substantially the same as the distance from the outermost surface of the bonding pad 18 for n-type electrode mounting. The distance to the bonding pad 17 is formed to be shorter by the thickness of the insulating layer 39. Next, the fabricated LED chip 1 and the wavelength conversion member 7 are integrated by joining the wavelength conversion member 7 onto the LED chip 1 so that the phosphor layer 22 is positioned on the substrate 11 of the LED chip 1. .
An insulating layer 39 having a predetermined shape having an opening is formed on the surface of the silicon wafer. Thereafter, the first connection electrode 37 and the second connection electrode 38 are respectively formed on the insulating layer 39 and the open silicon by appropriate means such as gold vapor deposition and patterned. After that, the eutectic electrode 19 made of Au—Sn or the like is formed on the first connection electrode 37 and the second connection electrode 38, and is cut into almost the same size as the wavelength conversion member to prepare the submount 36. .
[0038]
Subsequently, the p-type electrode mounting bonding pad 17 and the n-type electrode mounting bonding pad 18 of the integrated LED chip 1 and the first connection electrode 37 and the second connection electrode 38 of the submount 36 are respectively formed as eutectic electrodes. In order to improve electrical and mechanical contact characteristics, the integrated LED chip 1 is mounted on the submount 36 by a so-called flip chip method. .
[0039]
Thereafter, the submount 36 on which the LED chip 1 and the wavelength conversion member 7 are mounted is fixed to the flat portion 33a of the recess 33 using a conductive adhesive or the like, and the second connection electrode formed on the submount 36 38 and the lead frame 31 are connected by wire bonding. Finally, these are covered with a lens 35 made of an epoxy resin by a transfer molding method.
[0040]
The LED light emitting device 30 is configured as described above, and the light emitted from the LED chip 1 passes through the sapphire substrate 11 on which the LED light emitting layer is grown and then directly enters the wavelength conversion member.
Using a semiconductor light emitting device that emits ultraviolet light having a peak wavelength of 380 nm as an LED chip, the light emitting device 30 of this embodiment was fabricated and the life characteristics were examined. In the conventional light emitting device, the translucent resin was yellowed. Although yellowing was observed in less than 500 hours and the light emission output was reduced, the high output of about 98% was maintained compared to the initial light emission output even after 1150 hours in the continuous energization test.
[0041]
According to this embodiment, most of the light radiated from the LED chip 1 travels in the main light radiation direction, and the light passes through the phosphor, without passing through a material that easily causes photodegradation such as epoxy resin. To reach. Therefore, compared with the LED light emitting device 90 described in the conventional example, the problem of light deterioration is less likely to occur. Moreover, the wavelength conversion member 7 which has a uniform wavelength conversion function can be obtained comparatively easily. Furthermore, since it can be placed closely on the LED chip without going through an organic material layer, it is less susceptible to color unevenness due to thickness compared to the case where light is extracted through a conventional fluorescent material-containing layer. Color unevenness is less likely to occur. In addition, since the LED chip 1 and the like are mounted on the flat submount 36 and then mounted in the recess 33, the mounting operation is facilitated.
[0042]
The above-described embodiments are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is not limited to these aspects. For example, as shown in FIG. 6, a coating liquid in which phosphor 41 is highly blended with an inorganic binder is applied to the end face of LED chip 1 so that the wavelength of light leaking from the end face of LED chip 1 is reliably converted. The phosphor layer 42 may be provided by such means. In this case, the light emitted from the end face of the LED chip 1 is also wavelength-converted, and a bright light-emitting device can be obtained for that light.
[0043]
Furthermore, various modifications such as a case where a bullet-shaped lens shape is used but a lens of another shape is used, and an LED chip mounted on a submount is disposed in a concave portion of a surface-mounted LED light-emitting device are naturally also included. Are encompassed by the present invention.
[0044]
【The invention's effect】
As described above, according to the present invention, the wavelength conversion member is bonded in close contact with the substrate of the LED chip, so that most of the light emitted from the LED chip does not enter the translucent resin. Reach the wavelength conversion member. Therefore, the light deterioration with time of the translucent resin is suppressed, so that a wavelength conversion light emitting device having excellent light emission lifetime characteristics can be obtained.
In addition, since the wavelength conversion member having a uniform thickness is manufactured and bonded to the substrate surface of the LED chip, the LED chip and the wavelength conversion member can be provided in close contact with each other, such as a metal wire or The translucent resin can be attached without interposing between them. Therefore, it is possible to manufacture a wavelength conversion light emitting device with excellent light emission lifetime characteristics by suppressing the light deterioration of the translucent resin over time. In particular, when using a mixed phosphor made by blending red, green, and blue phosphors with different characteristics, the phosphor distribution can be made uniform by drying the phosphor layer for a short time. The light-emitting device can be manufactured with good reproducibility, which is less likely to cause color unevenness.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a surface-mount LED light emitting device according to a first embodiment of the present invention.
2 is an enlarged cross-sectional view showing a main part of the surface-mounted LED light-emitting device of FIG. 1;
FIG. 3 is a schematic cross-sectional view for sequentially explaining the steps for producing the wavelength conversion member according to the present invention.
FIG. 4 is an explanatory view showing an LED light emitting device according to a second embodiment of the present invention.
5 is an enlarged cross-sectional view showing a main part of the surface-mounted LED light-emitting device of FIG. 4;
FIG. 6 is an enlarged cross-sectional view showing a main part of a light emitting device according to another embodiment of the present invention.
FIG. 7 is a schematic cross-sectional view showing a conventional surface-mounted LED light-emitting device.
[Explanation of symbols]
1 LED chip
2 recess
3 Reflection frame
4 Base
5 First connection electrode
6 Second connection electrode
7 Wavelength conversion member
8 Translucent sealing material
10, 30 Light emitting device
11 Substrate
12 n-type semiconductor layer
13 p-type semiconductor layer
14 p-type ohmic electrode
15 Insulating film
16 n-type ohmic electrode
17 Bonding pad for p-electrode mounting
18 n-electrode mounting bonding pads
19 Eutectic electrode
21 Holding plate
22 Phosphor layer
23 Thermal stretch sheet
31, 32 Lead frame
33 recess
34 Metal wire
35 lenses
36 Submount
37 First connection electrode
38 Second connection electrode
39 Insulating layer
41 phosphor
90 Surface-mount LED light-emitting device
91 LED chip
92 recess
93 Base
94 Translucent resin
95 phosphor
96 electrodes
97 Phosphor-containing resin layer

Claims (3)

透光性の基板上に半導体発光層を設けた発光素子と、
該発光素子の放射光を吸収して異なる波長の光を放出する第一の蛍光体層を含む波長変換部材と、
これらを一体化して封止する透光性材料とを備えた発光装置において、
上記発光素子は、発光層表面側にp型電極およびn型電極が反射性材料により形成されると共に、
その各表面にはp型電極マウント用ボンディングパッドおよびn型電極マウント用ボンディングパッドが、発光層を形成した基板表面からp型電極マウント用ボンディングパッド最表面までの距離とn型電極マウント用ボンディングパッド最表面までの距離が同一となるように形成され、該マウント用ボンディングパッドを介して外部接続用電極にワイヤーを用いることなく電気的に接続されており、
上記波長変換材部材は、上記基板の発光層と反対側の表面に密接して設けられ、かつ、上記発光素子と同等以上の大きさとされていて、
更に、上記発光素子の発光層端面には、第二の蛍光体層が設けられていることを特徴とする発光装置。
A light-emitting element in which a semiconductor light-emitting layer is provided over a light-transmitting substrate;
A wavelength conversion member including a first phosphor layer that absorbs the emitted light of the light emitting element and emits light of different wavelengths;
In a light emitting device including a translucent material that integrally seals these,
In the light emitting element, a p-type electrode and an n-type electrode are formed of a reflective material on the light emitting layer surface side,
Each surface has a p-type electrode mounting bonding pad and an n-type electrode mounting bonding pad, and the distance from the substrate surface on which the light emitting layer is formed to the outermost surface of the p-type electrode mounting bonding pad and the n-type electrode mounting bonding pad. is formed so that the distance to the outermost surface is the same, are electrically connected without using a wire electrode for external connection through the bonding pad the mount,
The wavelength converting material member is provided in close contact with the surface of the substrate opposite to the light emitting layer, and has a size equal to or larger than the light emitting element ,
Furthermore, a second phosphor layer is provided on an end surface of the light emitting layer of the light emitting element .
上記発光素子が、該素子の上記マウント用ボンディングパッドとサブマウント上に設けられた電極が接続するように、発光層側がサブマウントと対向するようにしてサブマウント表面に搭載されており、該サブマウントを介して発光素子に給電するための電極が接続されている、ことを特徴とする請求項1に記載の発光装置。  The light emitting element is mounted on the surface of the submount so that the light emitting layer side faces the submount so that the mounting bonding pad of the element and the electrode provided on the submount are connected. The light-emitting device according to claim 1, wherein an electrode for supplying power to the light-emitting element through the mount is connected. 透光性の基板上に半導体発光層を設けた発光素子と、
該発光素子の放射光を吸収して異なる波長の光を放出する第一の蛍光体層を含む波長変換部材と、
これらを一体化して封止する透光性材料とを備えた発光装置の製造方法であって、
上記基板上に半導体発光層を形成する工程と、
半導体発光層の上に反射性材料によりp型電極およびn型電極を形成する工程と、
それらの各表面にp型電極マウント用ボンディングパッドおよびn型電極マウント用ボンディングパッドを、発光層を形成した基板表面からp型電極マウント用ボンディングパッド最表面までの距離とn型電極マウント用ボンディングパッド最表面までの距離が同一になるように形成する工程と、
を順に行う発光素子チップ作製工程と、
透光性の保持板の少なくとも一方の表面上に無機系バインダー中に蛍光材料を分散させた塗付液を用いて第一の蛍光体層を形成する工程と、
伸縮シート上に第一の蛍光体層を設けた保持板を載置した後に切断し、その後に該伸縮シートを伸ばして波長変換部材を分割する工程と
を有する波長変換部材作製工程と、
発光装置の外部接続用の一対の電極に発光素子チップ作製工程を終えた上記p型電極マウント用ボンディングパッドおよびn型電極マウント用ボンディングパッドを夫々電気的に接続する工程と、
発光素子の基板の発光層と反対側表面に波長変換部材作製工程を終えた波長変換部材を載置する工程と、
を有する発光素子配設工程と、
更に、上記発光素子の発光層端面に、第二の蛍光体層を設ける工程と、
発光素子配設工程の後に、発光素子、波長変換部材および外部接続用電極を透光性材料にて封止する工程とを、備えていることを特徴とする発光装置の製造方法。
A light-emitting element in which a semiconductor light-emitting layer is provided over a light-transmitting substrate;
A wavelength conversion member including a first phosphor layer that absorbs the emitted light of the light emitting element and emits light of different wavelengths;
A method of manufacturing a light emitting device comprising a translucent material that integrally seals these,
Forming a semiconductor light emitting layer on the substrate;
Forming a p-type electrode and an n-type electrode on the semiconductor light emitting layer with a reflective material;
A p-type electrode mounting bonding pad and an n-type electrode mounting bonding pad are formed on each surface, and the distance from the substrate surface on which the light emitting layer is formed to the p-type electrode mounting bonding pad and the n-type electrode mounting bonding pad. forming as the distance to the outermost surface is the same,
The light emitting element chip manufacturing process for sequentially performing,
Forming a first phosphor layer using a coating liquid in which a fluorescent material is dispersed in an inorganic binder on at least one surface of a translucent holding plate;
Cutting after placing the holding plate provided with the first phosphor layer on the stretchable sheet, and then stretching the stretchable sheet and dividing the wavelength conversion member,
Electrically connecting the p-type electrode mounting bonding pad and the n-type electrode mounting bonding pad, which have completed the light emitting element chip manufacturing process, to a pair of electrodes for external connection of the light emitting device;
A step of placing the wavelength conversion member that has completed the wavelength conversion member preparation step on the surface opposite to the light emitting layer of the substrate of the light emitting element;
A light emitting element disposing step having:
A step of providing a second phosphor layer on the light emitting layer end face of the light emitting element;
And a step of sealing the light emitting element, the wavelength conversion member, and the external connection electrode with a translucent material after the light emitting element arranging step.
JP2001293673A 2001-09-26 2001-09-26 Light emitting device Expired - Fee Related JP4447806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001293673A JP4447806B2 (en) 2001-09-26 2001-09-26 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293673A JP4447806B2 (en) 2001-09-26 2001-09-26 Light emitting device

Publications (2)

Publication Number Publication Date
JP2003101074A JP2003101074A (en) 2003-04-04
JP4447806B2 true JP4447806B2 (en) 2010-04-07

Family

ID=19115418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293673A Expired - Fee Related JP4447806B2 (en) 2001-09-26 2001-09-26 Light emitting device

Country Status (1)

Country Link
JP (1) JP4447806B2 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193393A (en) * 2002-12-12 2004-07-08 Matsushita Electric Ind Co Ltd Compound light emitting element
JP2005072129A (en) * 2003-08-21 2005-03-17 Nec Lighting Ltd Visible light emitting device, its manufacturing method, and display
DE10351349A1 (en) 2003-10-31 2005-06-16 Osram Opto Semiconductors Gmbh Production of a luminescent diode chip applies a radiation decoupling surface and a semiconductor body with an epitaxial-grown sequence of semiconductor layers with an active zone
DE10351397A1 (en) * 2003-10-31 2005-06-16 Osram Opto Semiconductors Gmbh LED chip
JP4580633B2 (en) * 2003-11-14 2010-11-17 スタンレー電気株式会社 Semiconductor device and manufacturing method thereof
US7518163B2 (en) * 2003-12-17 2009-04-14 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device and negative electrode thereof
JP2005203765A (en) * 2003-12-17 2005-07-28 Showa Denko Kk Semiconductor light emitting element of gallium nitride compound and its negative electrode
JP4622253B2 (en) * 2004-01-22 2011-02-02 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
DE202005002110U1 (en) * 2004-02-19 2005-05-04 Hong-Yuan Technology Co., Ltd., Yonghe Light-emitting device
JP2005259972A (en) * 2004-03-11 2005-09-22 Stanley Electric Co Ltd Surface-mounting led
US7553683B2 (en) * 2004-06-09 2009-06-30 Philips Lumiled Lighting Co., Llc Method of forming pre-fabricated wavelength converting elements for semiconductor light emitting devices
CN1820378A (en) * 2004-07-12 2006-08-16 罗姆股份有限公司 Semiconductor light-emitting device
US7419839B2 (en) * 2004-11-12 2008-09-02 Philips Lumileds Lighting Company, Llc Bonding an optical element to a light emitting device
JP2007048864A (en) * 2005-08-09 2007-02-22 Nippon Electric Glass Co Ltd Phosphor composite material
JP2007095807A (en) 2005-09-27 2007-04-12 Sanyo Electric Co Ltd Manufacturing method of light emitting device
JP4777757B2 (en) * 2005-12-01 2011-09-21 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2007258486A (en) * 2006-03-23 2007-10-04 Toyota Central Res & Dev Lab Inc White light emitting diode
DE102006024165A1 (en) * 2006-05-23 2007-11-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Optoelectronic semiconductor chip with a wavelength conversion substance and optoelectronic semiconductor component with such a semiconductor chip and method for producing the optoelectronic semiconductor chip
JP4854716B2 (en) * 2008-08-25 2012-01-18 シャープ株式会社 LED device, mobile phone device using the same, digital camera, and LCD display device
JP5505864B2 (en) * 2010-03-30 2014-05-28 日本電気硝子株式会社 Manufacturing method of semiconductor light emitting device
KR101253586B1 (en) * 2010-08-25 2013-04-11 삼성전자주식회사 Phosphor film, method of manufacturing the same, method of coating phosphor layer on an LED chip, method of manufacturing LED package and LED package manufactured thereof
WO2012026757A2 (en) 2010-08-25 2012-03-01 삼성엘이디 주식회사 Phosphor film, method for manufacturing same, method for depositing a phosphor layer, method for manufacturing a light-emitting device package, and light-emitting device package
KR101171361B1 (en) 2010-11-05 2012-08-10 서울옵토디바이스주식회사 A light emitting diode assembly and method for fabricating the same
WO2012144030A1 (en) * 2011-04-20 2012-10-26 株式会社エルム Light emitting device and method for manufacturing same
CN111509103A (en) * 2011-06-01 2020-08-07 亮锐控股有限公司 Light emitting device bonded to a support substrate
WO2013047876A1 (en) * 2011-09-30 2013-04-04 富士フイルム株式会社 Light-emitting device
JP2013077679A (en) * 2011-09-30 2013-04-25 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
CN103187486A (en) * 2011-12-27 2013-07-03 展晶科技(深圳)有限公司 Manufacturing methods of package structure of light emitting diode and fluorescent thin films of package structure
JP6079209B2 (en) * 2012-12-19 2017-02-15 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6187277B2 (en) 2014-01-21 2017-08-30 豊田合成株式会社 Light emitting device and manufacturing method thereof
JP6152801B2 (en) * 2014-01-21 2017-06-28 豊田合成株式会社 Light emitting device and manufacturing method thereof
JP6387954B2 (en) * 2015-12-24 2018-09-12 日亜化学工業株式会社 Method for manufacturing light emitting device using wavelength conversion member
US10431721B2 (en) 2016-02-02 2019-10-01 Citizen Electronics Co., Ltd. Light-emitting device and method for manufacturing same
JP6692682B2 (en) * 2016-04-21 2020-05-13 スタンレー電気株式会社 Surface emitting laser device and manufacturing method thereof
JP2018155968A (en) 2017-03-17 2018-10-04 日亜化学工業株式会社 Method for manufacturing light-transmitting member and method for manufacturing light-emitting device
JP7296001B2 (en) * 2018-10-17 2023-06-21 日機装株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP7146562B2 (en) * 2018-10-17 2022-10-04 日機装株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
DE102020124258A1 (en) * 2020-09-17 2022-03-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung OPTOELECTRONIC SEMICONDUCTOR COMPONENT AND METHOD FOR MANUFACTURING AT LEAST ONE OPTOELECTRONIC SEMICONDUCTOR COMPONENT
JP7236016B2 (en) * 2021-01-12 2023-03-09 日亜化学工業株式会社 light emitting device

Also Published As

Publication number Publication date
JP2003101074A (en) 2003-04-04

Similar Documents

Publication Publication Date Title
JP4447806B2 (en) Light emitting device
US10043955B2 (en) Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
JP4254266B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
US9882097B2 (en) Optoelectronic semiconductor chip, optoelectronic semiconductor component, and a method for producing an optoelectronic semiconductor component
JP3655267B2 (en) Semiconductor light emitting device
JP4289027B2 (en) Light emitting device
JP5186800B2 (en) Nitride semiconductor light emitting device, light emitting device including the same, and method for manufacturing nitride semiconductor light emitting device
JP5535196B2 (en) Semiconductor light emitting device having separated wavelength converting material and method for forming the same
JP4622253B2 (en) Light emitting device and manufacturing method thereof
JP3685018B2 (en) Light emitting device and manufacturing method thereof
KR101662010B1 (en) Light Emitting Device
JP4773755B2 (en) Chip-type semiconductor light emitting device
TWI543399B (en) Semiconductor light emitting device
JP2007242856A (en) Chip-type semiconductor light emitting device
TWI404228B (en) Semiconductor light emitting device and method
US20050093008A1 (en) Light emitting element and light emitting device
JP2011243977A (en) Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
KR20080025687A (en) White semiconductor light emitting element and manufacturing method thereof
JP2009088299A (en) Light-emitting element and light-emitting device provided with the element
KR20100080423A (en) Light emitting device package and method of fabricating thereof
WO2003107441A9 (en) Saturated phosphor solid state emitter
JP6665143B2 (en) Light emitting device manufacturing method
JP6680302B2 (en) Light emitting device
JP2004207519A (en) Light emitting device
JP7236016B2 (en) light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees