JP4528948B2 - Phosphor glass material - Google Patents

Phosphor glass material Download PDF

Info

Publication number
JP4528948B2
JP4528948B2 JP2005243824A JP2005243824A JP4528948B2 JP 4528948 B2 JP4528948 B2 JP 4528948B2 JP 2005243824 A JP2005243824 A JP 2005243824A JP 2005243824 A JP2005243824 A JP 2005243824A JP 4528948 B2 JP4528948 B2 JP 4528948B2
Authority
JP
Japan
Prior art keywords
glass
fluorescent
phosphor
glass material
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005243824A
Other languages
Japanese (ja)
Other versions
JP2006249402A (en
Inventor
直之 北村
幸平 福味
準治 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005243824A priority Critical patent/JP4528948B2/en
Publication of JP2006249402A publication Critical patent/JP2006249402A/en
Application granted granted Critical
Publication of JP4528948B2 publication Critical patent/JP4528948B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Glass Compositions (AREA)
  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

本発明は、ディスプレイ、照明、記録素子などとして有用な蛍光体ガラス材料、及びその製造方法に関する。   The present invention relates to a phosphor glass material useful as a display, illumination, recording element, and the like, and a method for producing the same.

従来、固体蛍光体としては、(1)希土類元素や遷移金属元素などの蛍光を示す元素を含
む結晶体や非晶質体、(2)有機色素分子またはこれを含有するポリマー材料、(3)多孔質半導体、半導体微粒子等の蛍光性半導体などが知られている。
Conventionally, as the solid phosphor, (1) a crystalline or amorphous body containing an element exhibiting fluorescence such as rare earth elements or transition metal elements, (2) an organic dye molecule or a polymer material containing the same, (3) Fluorescent semiconductors such as porous semiconductors and semiconductor fine particles are known.

これらの蛍光体では、蛍光を発する元素、分子、粒子などの機能種(蛍光機能種)が蛍光体中に多く含まれるほど蛍光強度が増加するが、濃度が高くなると、機能種がお互いに接近することによって、濃度消光現象により蛍光強度が飽和するという問題がある。斯かる問題を解決するために、蛍光機能種をいかに保持母体に均一に分散させるかが重要な課題となっている。   In these phosphors, the fluorescence intensity increases as more functional species (fluorescent functional species) such as fluorescent elements, molecules, and particles are contained in the phosphor, but the functional species approach each other as the concentration increases. As a result, there is a problem that the fluorescence intensity is saturated due to the concentration quenching phenomenon. In order to solve such a problem, an important issue is how to uniformly disperse the fluorescent functional species in the holding matrix.

また、蛍光体は、使用時にガスや液体などの雰囲気や様々な温度に曝されるため、これらの周辺から及ぼされる化学的・熱的影響や汚染により蛍光機能種の性能が劣化する危険性がある。この様な外的要因による蛍光機能劣化を抑制するためにも、蛍光機能種を保持母体中に封入することは重要な手段である。特に、熱的・化学的に安定なガラスなどの透明無機物質中に均一に蛍光機能種を分散させることは、これらの問題を解決するための有効な手段となることが期待される。   In addition, since phosphors are exposed to atmospheres such as gases and liquids and various temperatures during use, there is a risk that the performance of fluorescent functional species will deteriorate due to chemical and thermal influences and contamination exerted from these areas. is there. In order to suppress the deterioration of the fluorescent function due to such external factors, it is an important means to enclose the fluorescent functional species in the holding matrix. In particular, uniformly dispersing fluorescent functional species in a transparent inorganic material such as thermally and chemically stable glass is expected to be an effective means for solving these problems.

希土類元素や遷移金属元素については、その蛍光機能が原子・イオンに存在するため、化学的耐久性の高い無機結晶やガラスの原料と共に混合し、溶融させることによって、ガラスなどの透明無機物質中に分散させることが可能である。しかしながら、有機蛍光色素や蛍光性半導体は、一般に、熱的・化学的耐久性が低いために、ガラス原料と共に溶融する方法では、蛍光性能が低下して、優れた蛍光性能を有する材料を得ることができない。   Since rare earth elements and transition metal elements have their fluorescent function in atoms and ions, they are mixed with inorganic crystals and glass raw materials with high chemical durability and melted into transparent inorganic substances such as glass. It is possible to disperse. However, since organic fluorescent dyes and fluorescent semiconductors generally have low thermal and chemical durability, the method of melting together with a glass raw material decreases the fluorescent performance and obtains a material having excellent fluorescent performance. I can't.

有機蛍光色素などをガラス母体中に分散させる方法として、ゾル‐ゲル法を用いて乾燥ガラスゲル中に有機蛍光色素を閉じ込める方法が報告されている(例えば、下記非特許文献1参照)。この方法では、ある程度の安定性の向上が期待されるものの、ゾル−ゲル法で得られたガラスゲルにはナノメートルオーダーの細孔があることから、外部からの化学的作用を十分に効果的に防ぐことはできない。ガラスゲルを加熱処理して細孔を消滅させる方法によって透明ガラス化させることは可能であるが、有機蛍光色素は熱に弱いため、蛍光機能を維持したまま透明化させることは困難である。
M.M.E.Severin-Vantilt and E.W.J.L. Oomen, Journal of Non-Crystalline Solids 159(1993)38-48
As a method of dispersing an organic fluorescent dye or the like in a glass matrix, a method of confining the organic fluorescent dye in a dry glass gel using a sol-gel method has been reported (for example, see Non-Patent Document 1 below). Although this method is expected to improve the stability to some extent, the glass gel obtained by the sol-gel method has nanometer-order pores, so that the chemical action from the outside is sufficiently effective. It cannot be prevented. Although it is possible to make the glass gel transparent by virtue of the method of heat-treating the glass gel, it is difficult to make the glass gel transparent while maintaining the fluorescent function because the organic fluorescent dye is weak against heat.
MMESeverin-Vantilt and EWJL Oomen, Journal of Non-Crystalline Solids 159 (1993) 38-48

本発明は、上記した従来技術の問題点に鑑みてなされたものであり、その主な目的は、有機蛍光色素、半導体微粒子等の熱的・化学的耐久性が比較的低い蛍光物質を、その蛍光機能を低下させることなくガラス母体中に安定に分散させることが可能な方法を提供することである。   The present invention has been made in view of the above-mentioned problems of the prior art, and its main purpose is to provide a fluorescent material having relatively low thermal and chemical durability, such as organic fluorescent dyes and semiconductor fine particles. It is an object of the present invention to provide a method capable of stably dispersing in a glass matrix without deteriorating the fluorescence function.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、有機蛍光物
質、半導体微粒子などの蛍光物質を、ナノサイズのガラス微粒子と混合し、高圧で加圧する方法によれば、蛍光物質の性能を低下させることなく、蛍光物質をガラス中に安定に分散させることが可能となり、得られた材料は、優れた蛍光性能を有し、しかも化学的耐久性、耐熱性などが向上して、長期間安定に蛍光性能を発揮し得るものとなることを見出した。更に、この方法で得られた材料を熱処理することによって、ガラス材料の応力歪みが緩和されて、蛍光特性が改善されることを見出し、ここに本発明を完成するに至った。
The present inventor has intensively studied to achieve the above-described object. As a result, fluorescent materials such as organic fluorescent materials and semiconductor fine particles are mixed with nano-sized glass fine particles and pressurized at a high pressure, so that the fluorescent materials can be stabilized in the glass without degrading the performance of the fluorescent materials. The resulting material has excellent fluorescence performance, and improved chemical durability, heat resistance, etc., and can exhibit fluorescence performance stably for a long period of time. I found. Furthermore, it has been found that by heat-treating the material obtained by this method, the stress strain of the glass material is relieved and the fluorescence characteristics are improved, and the present invention has been completed here.

即ち、本発明は、下記の蛍光材料、その製造方法及びその用途を提供するものである。1. 有機蛍光色素及び蛍光性半導体微粒子からなる群から選ばれた少なくとも一種の蛍光物質と最大粒径100nm以下のガラス微粒子との混合物を、1GPa以上の圧力で加圧することを特徴とする蛍光体ガラス材料の製造方法。
2. ガラス微粒子100重量部に対して、蛍光物質を0.0001〜10重量部用いる上記項1に記載の蛍光体ガラス材料の製造方法。
3. 蛍光物質の最大粒径が、ガラス微粒子の最大粒径の4倍以下である上記項1又は2に記載の蛍光体ガラス材料の製造方法。
4. ガラス微粒子が、ケイ酸塩ガラス、ホウケイ酸塩ガラス又はアルミノケイ酸塩ガラスである上記項1〜3のいずれかに記載の蛍光体ガラス材料の製造方法。
5. 上記項1〜4のいずれかの方法によって蛍光体ガラス材料を製造した後、更に、50℃以上の温度で熱処理することを特徴とする蛍光体ガラス材料の製造方法。
6. 上記項1〜5のいずれかの方法によって得られる、有機蛍光色素及び蛍光性半導体微粒子からなる群から選ばれた少なくとも一種の蛍光物質がガラス母体中に分散してなる蛍光体ガラス材料。
7. 上記項6に記載の蛍光体ガラス材料を含む表示素子。
8. 上記項6に記載の蛍光体ガラス材料を含む照明素子。
9. 上記項6に記載の蛍光体ガラス材料を含む記録媒体。
That is, this invention provides the following fluorescent material, its manufacturing method, and its use. 1. A phosphor glass material characterized by pressurizing a mixture of at least one fluorescent substance selected from the group consisting of organic fluorescent dyes and fluorescent semiconductor fine particles and glass fine particles having a maximum particle size of 100 nm or less at a pressure of 1 GPa or more. Manufacturing method.
2. Item 2. The method for producing a phosphor glass material according to Item 1, wherein 0.0001 to 10 parts by weight of the phosphor is used with respect to 100 parts by weight of the glass fine particles.
3. Item 3. The method for producing a phosphor glass material according to Item 1 or 2, wherein the maximum particle size of the phosphor is 4 times or less than the maximum particle size of the glass particles.
4). Item 4. The method for producing a phosphor glass material according to any one of Items 1 to 3, wherein the glass fine particles are silicate glass, borosilicate glass, or aluminosilicate glass.
5). After manufacturing fluorescent substance glass material by the method in any one of said items 1-4, it heat-processes at the temperature of 50 degreeC or more further, The manufacturing method of fluorescent substance glass material characterized by the above-mentioned.
6). A phosphor glass material obtained by dispersing in a glass matrix at least one phosphor selected from the group consisting of organic fluorescent dyes and fluorescent semiconductor fine particles, obtained by the method according to any one of Items 1 to 5.
7). A display element comprising the phosphor glass material according to Item 6.
8). An illumination element comprising the phosphor glass material according to Item 6.
9. A recording medium comprising the phosphor glass material according to Item 6.

本発明では、原料として、有機蛍光色素及び蛍光性半導体微粒子からなる群から選ばれた少なくとも一種の蛍光物質と、ガラス微粒子を用いる。   In the present invention, at least one fluorescent material selected from the group consisting of organic fluorescent dyes and fluorescent semiconductor fine particles and glass fine particles are used as raw materials.

有機蛍光色素の種類については特に限定はなく、蛍光機能を有する有機色素として公知の物質から、目的とする色調などに応じて適宜選択すればよい。   The type of the organic fluorescent dye is not particularly limited, and may be appropriately selected from substances known as organic dyes having a fluorescence function according to the target color tone.

この様な有機蛍光色素の具体例としては、クマリン系色素(クマリン(Coumarin) 2/307/343/C343など)、キサンテン系色素(ローダミン(Rhodamnie)B/6Gなど)、ヘミシアニン系色素(PS、LPS、QS、LQS)、ポリエン系色素、ベンゾキサジン系色素、メロシアニン系色素、ポルフィリン色素、シアニン色素(フラボノイド系アントシアニン色素)、アゾ色素(コンゴーレッド)等を例示できる。有機蛍光色素は、一種単独又は二種以上混合して用いることができる。   Specific examples of such organic fluorescent dyes include coumarin dyes (such as Coumarin 2/307/343 / C343), xanthene dyes (such as Rhodamnie B / 6G), and hemicyanine dyes (PS, LPS, QS, LQS), polyene dyes, benzoxazine dyes, merocyanine dyes, porphyrin dyes, cyanine dyes (flavonoid anthocyanin dyes), azo dyes (Congo red), and the like. An organic fluorescent dye can be used individually by 1 type or in mixture of 2 or more types.

蛍光性半導体微粒子としても、蛍光性能を有する公知の半導体微粒子から適宜選択して用いればよい。この様な半導体微粒子の具体例としては、Si半導体微粒子;Ge半導体微粒子;CdSe、ZnSe等のII-VI族半導体微粒子;InP、GaAs等のIII-V族半導体微粒子にErなどの希土類をドープしたもの等を挙げることができる。半導体微粒子
も一種単独又は二種以上混合して用いることができる。
The fluorescent semiconductor fine particles may be appropriately selected from known semiconductor fine particles having fluorescent performance. Specific examples of such semiconductor fine particles include Si semiconductor fine particles; Ge semiconductor fine particles; II-VI group semiconductor fine particles such as CdSe and ZnSe; and III-V group semiconductor fine particles such as InP and GaAs doped with rare earth such as Er. The thing etc. can be mentioned. Semiconductor fine particles can also be used singly or in combination of two or more.

蛍光物質の粒径については、特に限定的ではないが、蛍光物質の周囲をガラス微粒子で十分に取り囲むためには、蛍光物質の最大粒径は使用するガラス微粒子の最大粒径の4倍程度以下であることが好ましい。通常、最大粒径が400nm程度以下の蛍光物質を用いればよい。また、蛍光物質の最小粒径については特に限定はなく、分子一個の状態であってもよい。   The particle size of the fluorescent material is not particularly limited, but in order to sufficiently surround the periphery of the fluorescent material with glass fine particles, the maximum particle size of the fluorescent material is about 4 times or less than the maximum particle size of the glass fine particles to be used. It is preferable that Usually, a fluorescent material having a maximum particle size of about 400 nm or less may be used. Further, the minimum particle diameter of the fluorescent substance is not particularly limited, and may be in a single molecule state.

ガラス微粒子については、粒径が大きいほどガラス母体における粒子間の空間が大きくなって、ガラス中に保持できる蛍光物質の量が増加するが、その一方で、ガラス粒子間に間隙部が生じて外部に対する遮断効果が不足し、更に、機械的強度も低下する傾向にある。このため、ガラス微粒子としては、最大粒径が100nm程度以下のものを用いる。非球状のガラス微粒子については、最長辺の長さが100nm程度以下であればよい。特に、ガラス粒子の粒径は、50nm程度以下であることが好ましく、20nm程度以下であることがより好ましい。   For glass fine particles, the larger the particle size, the larger the space between the particles in the glass matrix and the amount of fluorescent material that can be held in the glass increases. There is a shortage of the shielding effect against the above, and the mechanical strength tends to decrease. For this reason, glass particles having a maximum particle size of about 100 nm or less are used. For non-spherical glass fine particles, the length of the longest side may be about 100 nm or less. In particular, the particle size of the glass particles is preferably about 50 nm or less, and more preferably about 20 nm or less.

ガラス微粒子の最小径については、特に限定はないが、通常、1nm程度以上の粒径のものを用いればよい。   The minimum diameter of the glass fine particles is not particularly limited, but usually a glass having a particle diameter of about 1 nm or more may be used.

ガラス粒子の種類については特に限定はなく、蛍光体ガラス材料を使用する環境などに応じて、その材質を適宜決めればよい。例えば、ケイ酸塩ガラス、ホウケイ酸塩、アルミノケイ酸塩ガラス、ゲルマン酸塩ガラス、リン酸塩ガラス、ホウ酸塩ガラス、フッ化ジルコニウム系ガラス、フッ化アルミニウム系ガラス等を用いることができる。これらの内で、特に、化学的耐久性、熱的安定性などが高い点で、ケイ酸塩ガラス、ホウケイ酸塩、アルミノケイ酸塩ガラス等が好ましい。これらの内で、ケイ酸塩ガラスについては、二酸化ケイ素を50モル%以上含有するものが好ましい。例えば、気相法によって合成されるフュームドシリカは、粒径10nm程度の純シリカ微粒子であり、好適に用いることができる。   There are no particular limitations on the type of glass particles, and the material may be appropriately determined according to the environment in which the phosphor glass material is used. For example, silicate glass, borosilicate, aluminosilicate glass, germanate glass, phosphate glass, borate glass, zirconium fluoride glass, aluminum fluoride glass, and the like can be used. Of these, silicate glass, borosilicate, aluminosilicate glass, and the like are particularly preferable in terms of high chemical durability, thermal stability, and the like. Among these, about silicate glass, what contains 50 mol% or more of silicon dioxide is preferable. For example, fumed silica synthesized by a vapor phase method is pure silica fine particles having a particle size of about 10 nm and can be suitably used.

蛍光物質とガラス微粒子との混合割合については特に限定的ではなく、目的とする発光量、ガラス材料の物性などに応じて適宜決めればよい。通常、ガラス微粒子100重量部に対して、蛍光物質を10重量部程度以下とすればよい。蛍光物質の量が10重量部を上回る場合には、ガラス微粒子同士の接触部分が減少して、機械的強度、遮蔽効果などが不十分となる場合がある。   The mixing ratio of the fluorescent substance and the glass fine particles is not particularly limited, and may be appropriately determined according to the target light emission amount, the physical properties of the glass material, and the like. Usually, the fluorescent material may be about 10 parts by weight or less with respect to 100 parts by weight of the glass fine particles. When the amount of the fluorescent substance exceeds 10 parts by weight, the contact portion between the glass fine particles is reduced, and the mechanical strength, the shielding effect, and the like may be insufficient.

蛍光物質の使用量の下限値については、使用する発光物質の発光効率、発光強度、ガラス微粒子の種類などに依存するので一概に決めることができないが、発光効率の高い色素については、ガラス微粒子100重量部に対して、0.0001重量部程度の添加量で適度な発光を得ることが可能な場合があるので、これを以上の含有量とすればよい。通常は、ガラス微粒子100重量部に対して、発光物質を0.01重量部程度以上とすることが好ましい。   The lower limit of the amount of the fluorescent substance used cannot be determined unconditionally because it depends on the light emission efficiency, light emission intensity, type of glass fine particles, and the like of the light emitting substance to be used. Since it may be possible to obtain appropriate light emission with an addition amount of about 0.0001 parts by weight relative to parts by weight, this may be the above content. Usually, it is preferable that the luminescent material is about 0.01 parts by weight or more with respect to 100 parts by weight of the glass fine particles.

本発明の製造方法では、まず、上記した発光物質とガラス微粒子からなる混合物を調製する。混合物を調製する方法については、特に限定はなく、例えば、蛍光物質とガラス微粒子をそれぞれ、必要に応じて粉砕して適度な大きさとした後、十分に混合する方法;真空蒸着などの手法によって蛍光物質をガラス微粒子上に分散付着させる方法;蛍光物質を溶解する溶剤中に蛍光物質とガラス微粒子を投入し、十分攪拌した後に、再度乾燥して、蛍光物質をガラス微粒子上に析出させる方法などを採用できる。   In the production method of the present invention, first, a mixture comprising the above-described luminescent material and glass fine particles is prepared. The method for preparing the mixture is not particularly limited. For example, the fluorescent material and the glass fine particles are each pulverized to an appropriate size, if necessary, and then mixed sufficiently; A method of dispersing and adhering a substance on glass fine particles; a method of putting a fluorescent substance and glass fine particles in a solvent that dissolves the fluorescent substance, sufficiently stirring, drying again, and depositing the fluorescent substance on the glass fine particles Can be adopted.

次いで、蛍光物質とガラス微粒子からなる混合物を必要な形状に成形した後、加圧することによって、目的とする蛍光体ガラス材料を得ることができる。圧力については、ガラス微粒子同士の結合を生じさせるために、1GPa程度以上とすることが必要である。特に、ガラス微粒子同士を十分に結合させて、透明性や機械的強度を向上させるためには、2GPa程度以上の圧力で加圧することが好ましい。圧力の上限については特に限定はないが、圧力が過剰になると、形成される複合材料に亀裂などが生じる場合があるので、通常、10GPa程度以下の圧力とすることが好ましい。   Next, a target phosphor glass material can be obtained by forming a mixture of a fluorescent substance and glass fine particles into a required shape and then applying pressure. About a pressure, in order to produce the coupling | bonding of glass microparticles, it is necessary to set it as about 1 GPa or more. In particular, in order to sufficiently bond the glass particles to improve transparency and mechanical strength, it is preferable to pressurize at a pressure of about 2 GPa or more. The upper limit of the pressure is not particularly limited, but if the pressure is excessive, cracks or the like may occur in the formed composite material. Therefore, it is usually preferable to set the pressure to about 10 GPa or less.

加圧方法については特に限定はなく、1GPa以上の圧力で蛍光物質とガラス微粒子の混合物を加圧できる方法であればよい。例えば、ピストンシリンダー型、ブリッジマン型、ベルト型、ダイヤモンドアンビルセルなどの対向型の超高圧発生装置、圧力の等方性が高いマルチアンビル型高圧発生装置、HIPなどのガス圧による加圧装置、レールガンなどの動的高圧発生装置等を用いることができる。   There is no particular limitation on the pressurizing method, and any method can be used as long as the mixture of the fluorescent substance and the glass fine particles can be pressurized with a pressure of 1 GPa or more. For example, opposed ultra-high pressure generators such as piston cylinder type, bridgeman type, belt type, diamond anvil cell, multi-anvil type high pressure generator with high pressure isotropy, pressurizer using gas pressure such as HIP, A dynamic high pressure generator such as a railgun can be used.

加圧時間については、粒子同士が十分に結合して、目的とする機械的強度、透明性などを達成できる時間とすればよい。具体的な時間については、使用するガラス微粒子の種類、加圧方法、圧力などによって異なるが、通常、1分程度以上とすればよく、10分程度以上とすることが好ましい。但し、レールガンなどの動的高圧発生装置等を用いる場合には、一般的に発生圧力が静的圧力発生方法に比べて非常に高いため、1分を下回る時間であっても、充分な強度が得られる場合がある。   The pressurization time may be a time during which the particles can be sufficiently bonded to achieve the target mechanical strength, transparency, and the like. The specific time varies depending on the kind of glass fine particles to be used, the pressurizing method, the pressure, and the like, but is usually about 1 minute or more, and preferably about 10 minutes or more. However, when a dynamic high pressure generator such as a railgun is used, the generated pressure is generally much higher than that of the static pressure generating method, so that sufficient strength can be obtained even when the time is less than 1 minute. May be obtained.

加圧時の温度については特に限定はなく、通常は、常温において1GPa以上という高圧で加圧することによって、充分な強度を有する蛍光体ガラス材料を得ることができる。   The temperature at the time of pressurization is not particularly limited, and usually a phosphor glass material having sufficient strength can be obtained by pressurizing at a high pressure of 1 GPa or more at room temperature.

加圧時の雰囲気についても限定はなく、通常は、大気中で処理を行えばよい。尚、HIP
などのガス圧による加圧装置を用いる場合には、加圧中に気体が入りこんで、透明性を損なう可能性があるので、原料をカプセルに封入することによりガスの侵入を防ぐ等の処置を施すことが好ましい。
There is no limitation on the atmosphere at the time of pressurization, and usually the treatment may be performed in the air. HIP
When using a pressure device such as gas pressure, gas may enter during pressurization and impair transparency, so take measures such as preventing gas from entering by encapsulating the raw material in a capsule. It is preferable to apply.

尚、上記した方法によって得られる蛍光体ガラス材料は、製造時の圧力やその他の条件によって、原料として用いた蛍光物質とは、異なる波長の蛍光を発するものとなる場合がある。このため、使用する蛍光物質の種類、ガラス微粒子の種類、製造条件等に応じて、予め、蛍光波長のシフト傾向を求めておくことにより、目的とする色調の発光を有する蛍光体ガラス材料を容易に得ることができる。   Note that the phosphor glass material obtained by the above-described method may emit fluorescence having a wavelength different from that of the fluorescent material used as a raw material, depending on the pressure during production and other conditions. For this reason, it is easy to obtain a phosphor glass material having light emission of a target color tone by obtaining a shift tendency of the fluorescence wavelength in advance according to the kind of fluorescent substance to be used, the kind of glass fine particles, the production conditions, etc. Can get to.

本発明の蛍光体ガラス材料の製造方法によれば、更に、上記した方法で得た蛍光体ガラス材料に対して熱処理を行うことによって、蛍光性能をより向上させることができる。これは、熱処理を行うことによって、加圧処理によって生じた応力歪みが緩和されて、蛍光物質に加わる応力が低減され、更に、ガラス微粒子が蛍光物質に接近することによる蛍光性能の変化が抑制されることによるものと考えられる。   According to the method for producing a phosphor glass material of the present invention, the fluorescence performance can be further improved by performing a heat treatment on the phosphor glass material obtained by the above-described method. This is because heat distortion reduces stress strain caused by pressure treatment, reduces stress applied to the fluorescent material, and further suppresses changes in fluorescent performance due to the glass particles approaching the fluorescent material. This is thought to be due to

熱処理温度は、上記した応力緩和の目的を達成するためには、通常、50℃程度以上とすればよい。尚、より短時間で十分な応力緩和の効果を得るためには、熱処理温度は、70℃程度以上とすることが好ましく、100℃程度以上とすることがより好ましい。   In order to achieve the above-described purpose of stress relaxation, the heat treatment temperature is usually about 50 ° C. or higher. In order to obtain a sufficient stress relaxation effect in a shorter time, the heat treatment temperature is preferably about 70 ° C. or higher, and more preferably about 100 ° C. or higher.

熱処理温度の上限については、特に限定的ではないが、ガラス材料中に分散させた蛍光物質の種類に応じて、蛍光物質の分解や特性劣化の生じる温度より低い温度とすればよい。例えば、蛍光物質として、ローダミン6Gやクマリン307等の有機色素を用いる場合
には450℃程度が上限となる。
The upper limit of the heat treatment temperature is not particularly limited, but may be a temperature lower than the temperature at which the fluorescent substance is decomposed or the characteristics are deteriorated depending on the type of the fluorescent substance dispersed in the glass material. For example, when an organic dye such as rhodamine 6G or coumarin 307 is used as the fluorescent material, the upper limit is about 450 ° C.

熱処理時の雰囲気についての限定は無く、蛍光物質が完全にガラス内部に遮蔽されているので、空気中などの酸素の存在する雰囲気においても蛍光物質との反応は無い。   There is no limitation on the atmosphere during the heat treatment, and since the fluorescent material is completely shielded inside the glass, there is no reaction with the fluorescent material even in the presence of oxygen such as in the air.

熱処理の際の圧力は、加圧時の応力を緩和するという目的のためには、加圧時の圧力を下回る圧力とすればよく、通常は、大気圧下で熱処理を行えばよい。   The pressure at the time of heat treatment may be a pressure lower than the pressure at the time of pressurization for the purpose of relieving the stress at the time of pressurization, and usually the heat treatment may be performed at atmospheric pressure.

加熱時間についても特に限定は無いが、処理温度が高いほど処理時間を短縮することができる。例えばローダミン6Gの場合は50℃では1時間以上が必要であるが、100℃
以上では10分程度加熱を継続すれば十分である。
Although there is no limitation in particular also about heating time, processing time can be shortened, so that processing temperature is high. For example, in the case of rhodamine 6G, one hour or more is required at 50 ° C, but 100 ° C
Above, it is sufficient to continue heating for about 10 minutes.

尚、熱処理を行う場合にも、熱処理による波長シフトや蛍光強度の変化を求めておくことにより、目的とする色調の発光を有する蛍光体ガラス材料を容易に得ることができる。特に、熱処理を行うと、加圧のみを行う場合と比較して、一般的に、波長シフトや蛍光強度の低下が少なくなるので、より簡単に目的とする蛍光性能を有する蛍光体材料を得ることができる。   Even when heat treatment is performed, a phosphor glass material having light emission of a target color tone can be easily obtained by obtaining a wavelength shift and a change in fluorescence intensity due to the heat treatment. In particular, when heat treatment is performed, compared to the case where only pressurization is performed, in general, wavelength shift and decrease in fluorescence intensity are reduced, so that a phosphor material having the desired fluorescence performance can be obtained more easily. Can do.

本発明の蛍光体ガラス材料の製造方法によれば、高圧での加圧成形を行うことによって蛍光物質をガラスマトリックス中に均一に分散させることが可能であり、有機蛍光色素、蛍光性半導体微粒子等の比較的耐熱性の低い蛍光物質についても、蛍光性能を低下させることなく、ガラス母体中に封入することができる。   According to the method for producing a phosphor glass material of the present invention, it is possible to uniformly disperse a fluorescent substance in a glass matrix by performing pressure molding at a high pressure, such as organic fluorescent dyes, fluorescent semiconductor fine particles, etc. Even a relatively low heat resistance fluorescent material can be encapsulated in a glass matrix without deteriorating the fluorescent performance.

さらに、蛍光物質の特性変化が生じることのない比較的低温において熱処理を行うことにより、蛍光物質への応力やガラス粒子の接近による蛍光性能の変化を抑制して、蛍光性能のより優れた蛍光体ガラス材料を得ることができる。   In addition, by performing heat treatment at a relatively low temperature that does not cause changes in the properties of the fluorescent material, the fluorescent material has better fluorescent performance by suppressing changes in fluorescent performance due to stress on the fluorescent material and the approach of glass particles. A glass material can be obtained.

この様にして得られる蛍光体ガラス材料は、高圧で加圧して得られるために、蛍光物質がガラスマトリックス中に安定に分散し、蛍光物質をガラス微粒子が囲い込んだ状態となっており、例えば、ガラス材料表面が、酸、アルカリ、有機溶媒などの各種化学物質と接触する環境下においても、優れた化学的耐久性を有するものとなる。更に、蛍光物質が酸素と直接接触しないため、高温においても変質することが少なく耐熱性も非常に良好である。さらに、熱処理を行って得られる材料は、より優れた蛍光特性を示すものとなり、熱的安定性も良好となる。このため、本発明方法によって得られる蛍光体ガラス材料は、化学的、熱的耐久性に優れた材料として、長期間安定に優れた蛍光性能を発揮できる。   Since the phosphor glass material obtained in this way is obtained by pressurizing at a high pressure, the phosphor is stably dispersed in the glass matrix, and the phosphor is surrounded by glass particles. The glass material surface has excellent chemical durability even in an environment where the surface of the glass material is in contact with various chemical substances such as acids, alkalis, and organic solvents. Further, since the fluorescent material does not come into direct contact with oxygen, it is hardly deteriorated even at high temperatures and the heat resistance is very good. Furthermore, the material obtained by performing the heat treatment exhibits more excellent fluorescence characteristics and also has good thermal stability. For this reason, the phosphor glass material obtained by the method of the present invention can exhibit excellent fluorescence performance with long-term stability as a material excellent in chemical and thermal durability.

本発明方法によって得られる蛍光体ガラス材料は、この様な優れた特性を利用して、例えば、表示素子、照明素子、記録媒体などとして用いることができる。   The phosphor glass material obtained by the method of the present invention can be used as, for example, a display element, a lighting element, a recording medium, and the like using such excellent characteristics.

これらの各用途における具体的な使用方法は、従来の蛍光物質と同様であり、例えば、表示素子としての用途では、本発明方法によって得られる蛍光体ガラス材料を微粉化して、平面基板上にパターンニングし、紫外線・電子線などを励起源として発光させるタイプの表示素子や、蛍光体を透明性導電膜の狭い電極間内に配置し通電によって発光させる、いわゆる有機エレクトロルミネッセンス(EL)ディスプレイの発光部分等として用いることができる。また、照明素子としての用途では、本発明方法によって得られる蛍光体ガラス材料の粉体を基板面上に塗布し、蛍光管等の放電によって発生する紫外線により励起発光させることによって、照明素子として使用できる。また、記録媒体としての用途では、CD-R、DVD-R等の記録媒体として使用でき、更に、放射線を受けた蛍光材料に熱を加える
と発光する現象を利用して熱蛍光材料として使用することも可能である。
The specific method of use in each of these applications is the same as that of conventional phosphors. For example, in applications as display elements, the phosphor glass material obtained by the method of the present invention is pulverized and patterned on a flat substrate. Light-emitting of a so-called organic electroluminescence (EL) display, which emits light when energized by placing a phosphor between narrow electrodes of a transparent conductive film. It can be used as a part or the like. Also, in use as a lighting element, the phosphor glass material powder obtained by the method of the present invention is coated on a substrate surface and used as a lighting element by exciting and emitting light by ultraviolet rays generated by discharge of a fluorescent tube or the like. it can. In addition, for use as a recording medium, it can be used as a recording medium for CD-R, DVD-R, etc., and it can also be used as a thermoluminescent material by utilizing the phenomenon of emitting light when heat is applied to the fluorescent material that has received radiation It is also possible.

これらの何れの用途においても、本発明方法によって得られる蛍光体ガラス材料を用いることによって、化学的耐久性が向上し、熱的安定性にも優れた性能を発揮することが可能となる。   In any of these applications, by using the phosphor glass material obtained by the method of the present invention, chemical durability can be improved and performance excellent in thermal stability can be exhibited.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
メタノール100ml中に、キサンテン系色素であるローダミン6G(Rhodamine6G)を6m
g投入し、攪拌して溶解させた。得られた溶液中に、粒径10nm以下(平均粒径約7nm)のフュームドシリカ600mgを投入し十分に攪拌した。
Example 1
6 ml of rhodamine 6G, a xanthene dye, in 100 ml of methanol
g was added and dissolved by stirring. In the obtained solution, 600 mg of fumed silica having a particle size of 10 nm or less (average particle size of about 7 nm) was added and sufficiently stirred.

次いで、この液体を約50℃で乾燥させて原料粉体(1重量%Rhodamine6G添加シリカ
粉体)を得た。
Next, this liquid was dried at about 50 ° C. to obtain a raw material powder (1 wt% Rhodamine 6G-added silica powder).

図1の曲線3は、原料粉末の蛍光スペクトル(励起波長:346nm)であり、曲線4は、色素を溶解したメタノール溶液の蛍光スペクトル(励起波長:347nm)である。原料粉末の蛍光スペクトルでは、メタノール溶液とほぼ同一の波長にピーク位置が認められる。この結果から、乾燥して得られた原料粉体では、色素分子はほとんど会合しておらず、色素の粒径は1nm程度以下であると推測される。   Curve 3 in FIG. 1 is a fluorescence spectrum (excitation wavelength: 346 nm) of the raw material powder, and curve 4 is a fluorescence spectrum (excitation wavelength: 347 nm) of a methanol solution in which a dye is dissolved. In the fluorescence spectrum of the raw material powder, a peak position is recognized at substantially the same wavelength as the methanol solution. From this result, in the raw material powder obtained by drying, the dye molecules are hardly associated, and the particle diameter of the dye is estimated to be about 1 nm or less.

次いで、原料粉体を、直径5mmの金型中に入れ、約1tonの圧力で加圧して直径5mm、長さ約8mmの円柱状ペレットに加工した。加工されたペレットを、肉厚1mmの窒化ホウ素製
の試料セルに入れた後、パイロフィライトを圧力媒体として超高圧発生装置を用いて8GPaまで加圧した。昇圧は3時間かけて行い、8GPaで1時間圧力を保持した後に、5時間か
けて大気圧まで減圧した。これら圧縮過程を室温で行って、透明性の赤色のガラス状物体を得た。
Next, the raw material powder was put in a mold having a diameter of 5 mm, and pressed into a cylindrical pellet having a diameter of 5 mm and a length of about 8 mm by pressing with a pressure of about 1 ton. The processed pellets were placed in a boron nitride sample cell having a thickness of 1 mm, and then pressurized to 8 GPa using an ultrahigh pressure generator using pyrophyllite as a pressure medium. The pressure was increased over 3 hours. After maintaining the pressure at 8 GPa for 1 hour, the pressure was reduced to atmospheric pressure over 5 hours. These compression processes were performed at room temperature to obtain a transparent red glassy object.

得られた物体の励起スペクトル(蛍光波長:630nm)と蛍光スペクトル(励起波長:380nm)をそれぞれ図1の曲線1および曲線2として示す。圧縮されて得られた透明性蛍光体ガラス材料では、蛍光帯のピーク位置が乾燥粉末の蛍光スペクトル(図1中の曲線3)と比較して長波長側にシフトしていることが認められる。   The excitation spectrum (fluorescence wavelength: 630 nm) and fluorescence spectrum (excitation wavelength: 380 nm) of the obtained object are shown as curve 1 and curve 2 in FIG. In the transparent phosphor glass material obtained by compression, it is recognized that the peak position of the fluorescent band is shifted to the longer wavelength side as compared with the fluorescence spectrum of the dry powder (curve 3 in FIG. 1).

実施例2
メタノール100ml中に、クマリン系色素であるクマリン(Coumarin)307を5mg 投入し撹拌して溶解させた。その溶液中に粒径10nm以下(平均粒径約7nm)のフュームドシリカ500mgを投入し十分に攪拌した。
Example 2
In 100 ml of methanol, 5 mg of coumarin pigment Coumarin 307 was added and dissolved by stirring. Into the solution, 500 mg of fumed silica having a particle size of 10 nm or less (average particle size of about 7 nm) was added and sufficiently stirred.

次いで、この液体を約50℃で乾燥させて原料粉体(1重量%Coumarin307添加シリカ
粉体)を得た。図2の曲線3は、原料粉末の蛍光スペクトル(励起波長:410nm)であり、曲線4は、色素を溶解したメタノール溶液の蛍光スペクトル(励起波長:411nm)である。原料粉末の蛍光スペクトルでは、メタノール溶液とほぼ同一の波長にピーク位置が認められた。この結果から、乾燥して得られた原料粉体では、色素分子はほとんど会合しておらず、色素の粒径は1nm程度以下であると推測される。
Next, this liquid was dried at about 50 ° C. to obtain a raw material powder (1 wt% Coumarin 307 added silica powder). Curve 3 in FIG. 2 is a fluorescence spectrum (excitation wavelength: 410 nm) of the raw material powder, and curve 4 is a fluorescence spectrum (excitation wavelength: 411 nm) of a methanol solution in which a dye is dissolved. In the fluorescence spectrum of the raw material powder, a peak position was observed at almost the same wavelength as the methanol solution. From this result, in the raw material powder obtained by drying, the dye molecules are hardly associated, and the particle diameter of the dye is estimated to be about 1 nm or less.

次いで、原料粉体を、直径5mmの金型中に入れ、1tonの圧力で加圧して直径5mm、長さ約8mmの円柱状ペレットに加工した。加工されたペレットを、肉厚1mmの窒化ホウ素製の
試料セルに入れた後、パイロフィライトを圧力媒体として超高圧発生装置を用いて8GPa
まで加圧した。昇圧は3時間かけて行い、8GPaで1時間圧力を保持した後に、5時間かけて大気圧まで減圧した。これらの圧縮過程を室温で行い、透明性の褐色のガラス状物体を得た。
Next, the raw material powder was put into a mold having a diameter of 5 mm and pressed into a cylindrical pellet having a diameter of 5 mm and a length of about 8 mm by pressing with a pressure of 1 ton. The processed pellets are placed in a boron nitride sample cell with a thickness of 1 mm, and then 8 GPa using an ultrahigh pressure generator using pyrophyllite as a pressure medium.
Until pressurized. The pressure was increased over 3 hours. After maintaining the pressure at 8 GPa for 1 hour, the pressure was reduced to atmospheric pressure over 5 hours. These compression processes were performed at room temperature to obtain a transparent brown glassy object.

得られた物体の励起スペクトル(蛍光波長:584nm)と蛍光スペクトル(励起波長:515nm)をそれぞれ図2の曲線1および曲線2として示す。圧縮されて得られた透明性蛍光体ガラス材料では、蛍光帯のピーク位置が乾燥粉末の蛍光スペクトル(図2中の曲線3)と比較して長波長側にシフトしていることが認められる。   The excitation spectrum (fluorescence wavelength: 584 nm) and fluorescence spectrum (excitation wavelength: 515 nm) of the obtained object are shown as curve 1 and curve 2 in FIG. In the transparent phosphor glass material obtained by compression, it is recognized that the peak position of the fluorescent band is shifted to the longer wavelength side as compared with the fluorescence spectrum of the dry powder (curve 3 in FIG. 2).

実施例3
メタノール100ml中に、ローダミン6G(Rhodamine6G)を30mg 投入し、撹拌して溶解
させた。得られた溶液中に、粒径10nm以下(平均粒径約7nm)のフュームドシリカを600mg投入し、十分に攪拌した。
Example 3
In 100 ml of methanol, 30 mg of rhodamine 6G (Rhodamine 6G) was added and dissolved by stirring. Into the obtained solution, 600 mg of fumed silica having a particle size of 10 nm or less (average particle size of about 7 nm) was added and sufficiently stirred.

次いで、この溶液を約50℃の温度で乾燥させて原料粉体(5重量%Rhodamine6G添加シリカ粉体)を得た。   Next, this solution was dried at a temperature of about 50 ° C. to obtain a raw material powder (5 wt% Rhodamine 6G added silica powder).

出発原料中のRhodamine6Gの蛍光スペクトルを計測したところ、色素を溶解したメタノ
ールの蛍光スペクトルと殆ど同様であった。この結果から、乾燥して得られた原料粉体では、色素分子はほとんど会合しておらず、色素の粒径は1nm程度以下であると推測される。
When the fluorescence spectrum of Rhodamine 6G in the starting material was measured, it was almost the same as the fluorescence spectrum of methanol in which the dye was dissolved. From this result, in the raw material powder obtained by drying, the dye molecules are hardly associated, and the particle diameter of the dye is estimated to be about 1 nm or less.

次いで、原料粉体を、直径5mmの金型中に入れ、約1tonの圧力で加圧して直径5mm、長さ約8mmの円柱状ペレットに加工した。加工されたペレットを、肉厚1mmの窒化ホウ素製
の試料セルに入れた後、パイロフィライトを圧力媒体として超高圧発生装置を用いて8GPaまで加圧した。昇圧は3時間かけて行い、8GPaで1時間圧力を保持した後に、5時間か
けて大気圧まで減圧した。これらの圧縮過程を室温で行って、わずかに透明性ある濃赤色のガラス状物体を得た。
Next, the raw material powder was put in a mold having a diameter of 5 mm, and pressed into a cylindrical pellet having a diameter of 5 mm and a length of about 8 mm by pressing with a pressure of about 1 ton. The processed pellets were placed in a boron nitride sample cell having a thickness of 1 mm, and then pressurized to 8 GPa using an ultrahigh pressure generator using pyrophyllite as a pressure medium. The pressure was increased over 3 hours. After maintaining the pressure at 8 GPa for 1 hour, the pressure was reduced to atmospheric pressure over 5 hours. These compression processes were performed at room temperature to obtain a slightly transparent dark red glassy object.

得られたガラス材料は、有機蛍光色素であるローダミン6Gが透明性のあるガラス中に封入されたものであり、蛍光性を有する安定なガラス材料である。   The obtained glass material is a stable glass material having fluorescence, in which rhodamine 6G, which is an organic fluorescent dye, is enclosed in a transparent glass.

実施例4
実施例1と同様にして、ローダミン6G(Rhodamine6G)とフュームドシリカを含む原
料粉末を得た。
Example 4
In the same manner as in Example 1, a raw material powder containing rhodamine 6G and fumed silica was obtained.

次いで、原料粉体を、直径5mmの金型中に入れ、約1tonの圧力で加圧して直径5mm、長さ約8mmの円柱状ペレットに加工した。加工されたペレットを、肉厚1mmの窒化ホウ素製
の試料セルに入れた後、パイロフィライトを圧力媒体として超高圧発生装置を用いて2GPaまで加圧した。昇圧は30分かけて行い、2GPaで1時間圧力を保持した後に、1時間かけて大気圧まで減圧した。これらの圧縮過程を室温で行って、透明性の赤色のガラス状物体を得た。
Next, the raw material powder was put in a mold having a diameter of 5 mm, and pressed into a cylindrical pellet having a diameter of 5 mm and a length of about 8 mm by pressing with a pressure of about 1 ton. The processed pellets were placed in a boron nitride sample cell having a thickness of 1 mm, and then pressurized to 2 GPa using an ultrahigh pressure generator using pyrophyllite as a pressure medium. The pressure was increased over 30 minutes, and after maintaining the pressure at 2 GPa for 1 hour, the pressure was reduced to atmospheric pressure over 1 hour. These compression processes were performed at room temperature to obtain a transparent red glassy object.

得られた物体の励起スペクトル(蛍光波長:627nm)と蛍光スペクトル(励起波長:379nm)をそれぞれ図3の曲線1および曲線2として示す。圧縮されて得られた透明性ガラス蛍光体では、蛍光帯のピーク位置が乾燥粉末の蛍光スペクトルと比較して長波長側にシフトしていた。   The excitation spectrum (fluorescence wavelength: 627 nm) and fluorescence spectrum (excitation wavelength: 379 nm) of the obtained object are shown as curve 1 and curve 2 in FIG. 3, respectively. In the transparent glass phosphor obtained by compression, the peak position of the fluorescent band was shifted to the longer wavelength side compared to the fluorescence spectrum of the dry powder.

実施例5
トルエン40ml中に粒径10nm以下(平均粒径約7nm)のフュームドシリカ300mgを投
入し十分に攪拌した。得られた溶液中に、化合物半導体微粒子である粒径3nm以下(平均粒径2.7nm)のCdSeを0.625mg投入し、攪拌して分散させた。
Example 5
In 40 ml of toluene, 300 mg of fumed silica having a particle size of 10 nm or less (average particle size of about 7 nm) was added and sufficiently stirred. 0.625 mg of CdSe having a particle size of 3 nm or less (average particle size of 2.7 nm), which is a compound semiconductor fine particle, was added to the obtained solution and dispersed by stirring.

次いで、この液体を室温で乾燥させて原料粉体(0.21重量%CdSe添加シリカ粉体)を得た。   Next, this liquid was dried at room temperature to obtain a raw material powder (0.21 wt% CdSe-added silica powder).

図4の曲線3は、乾燥させた原料粉末の蛍光スペクトル(励起波長:390nm)であり、曲線4は、半導体を分散したトルエン溶液の蛍光スペクトル(励起波長:390nm)である。原料粉末の蛍光スペクトルでは、トルエン溶液とほぼ同一の波長範囲にピーク位置が認められた。   Curve 3 in FIG. 4 is a fluorescence spectrum (excitation wavelength: 390 nm) of the dried raw material powder, and curve 4 is a fluorescence spectrum (excitation wavelength: 390 nm) of a toluene solution in which a semiconductor is dispersed. In the fluorescence spectrum of the raw material powder, a peak position was recognized in the same wavelength range as that of the toluene solution.

次いで、原料粉体を、直径5mmの金型中に入れ、約1tonの圧力で加圧して直径5mm、長さ約8mmの円柱状ペレットに加工した。加工されたペレットを、肉厚1mmの窒化ホウ素製
の試料セルに入れた後、パイロフィライトを圧力媒体として超高圧発生装置を用いて8GPaまで加圧した。昇圧は3時間かけて行い、8GPaで1時間圧力を保持した後に、5時間か
けて大気圧まで減圧した。これら圧縮過程を室温で行って、褐色透明性のガラス状物体を得た。
Next, the raw material powder was put in a mold having a diameter of 5 mm, and pressed into a cylindrical pellet having a diameter of 5 mm and a length of about 8 mm by pressing with a pressure of about 1 ton. The processed pellets were placed in a boron nitride sample cell having a thickness of 1 mm, and then pressurized to 8 GPa using an ultrahigh pressure generator using pyrophyllite as a pressure medium. The pressure was increased over 3 hours. After maintaining the pressure at 8 GPa for 1 hour, the pressure was reduced to atmospheric pressure over 5 hours. These compression processes were performed at room temperature to obtain a brown transparent glassy object.

得られた物体の励起スペクトル(蛍光波長:480nm)と蛍光スペクトル(励起波長:380nm)をそれぞれ図4の曲線1および曲線2として示す。圧縮されて得られた透明性蛍光体ガラス材料では、蛍光帯のピーク位置は、乾燥粉末やトルエン溶液中での蛍光スペクトル(図4中の曲線3および曲線4)と比較すると、短波長側への若干のシフトが認められる。   The excitation spectrum (fluorescence wavelength: 480 nm) and fluorescence spectrum (excitation wavelength: 380 nm) of the obtained object are shown as curve 1 and curve 2 in FIG. 4, respectively. In the transparent phosphor glass material obtained by compression, the peak position of the fluorescent band is closer to the short wavelength side than the fluorescence spectrum in the dry powder or toluene solution (curve 3 and curve 4 in FIG. 4). A slight shift is recognized.

色素溶出試験
実施例1で得られたローダミン6Gを封入した蛍光体ガラス材料について、下記の方法で色素の溶出試験を行った。
Dye elution test The dye elution test was performed on the phosphor glass material encapsulating rhodamine 6G obtained in Example 1 by the following method.

まず、実施例1で得た蛍光体ガラス材料2mgを秤量し、蛍光測定用の光学セル(1cmx1cmx4cm)に投入した。これに純メタノールを2.6g注入し密封した。投入後84日経過したメタノールの蛍光スペクトルを測定し、色素の溶出量を算出した。   First, 2 mg of the phosphor glass material obtained in Example 1 was weighed and put into an optical cell (1 cm × 1 cm × 4 cm) for fluorescence measurement. 2.6 g of pure methanol was injected into this and sealed. The fluorescence spectrum of methanol was measured 84 days after the addition, and the elution amount of the dye was calculated.

通常の蛍光測定では信号強度が微弱で判別できなかったため、36回の繰返し測定による測定誤差の軽減により僅かに溶出した色素の蛍光スペクトルを観測することができた。   In ordinary fluorescence measurement, the signal intensity was so weak that it could not be discriminated. Therefore, the fluorescence spectrum of the slightly eluted dye could be observed by reducing the measurement error by repeated measurement 36 times.

ローダミン6Gを2x10-3重量%添加したメタノール基準溶液の蛍光スペクトルの強度から、ガラス蛍光体内の色素全量の内、約0.01%以下がメタノール中に溶出したことがわかった。 From the intensity of the fluorescence spectrum of a methanol reference solution to which 2 × 10 −3 wt% of rhodamine 6G was added, it was found that about 0.01% or less of the total amount of dye in the glass phosphor was eluted in methanol.

尚、前記非特許文献1は、ゾル−ゲル法を用いて乾燥ガラスゲル中に色素を封入した結果を示すものであるが、ここで報告されている色素溶出量は少なくとも数%である。従って、本発明方法で得られたガラス蛍光体からの溶出量は、その数百分の1であり、殆ど溶出しないと言って良い。尚、この色素溶出量は表面付近に存在する色素量に相当することから、内部からの溶出は無かったものと考えられる。   In addition, the said nonpatent literature 1 shows the result of having enclosed the pigment | dye in the dry glass gel using the sol-gel method, However, The pigment | dye elution amount reported here is at least several%. Therefore, it can be said that the amount of elution from the glass phosphor obtained by the method of the present invention is one hundredth of that, and hardly elutes. This dye elution amount corresponds to the amount of dye existing in the vicinity of the surface, so it is considered that there was no elution from the inside.

耐熱性試験
実施例1で得られたローダミン6Gを封入した蛍光体ガラス材料10mgを白金皿に乗せて所定温度に暖められた管状炉に入れた。
Heat Resistance Test 10 mg of the phosphor glass material encapsulating rhodamine 6G obtained in Example 1 was placed on a platinum dish and placed in a tubular furnace heated to a predetermined temperature.

6時間後に炉から蛍光体を取り出し室温に戻し、その後蛍光スペクトルを測定した。50℃から50℃おきに温度を上げて同様の加熱処理・蛍光スペクトル測定を繰り返したところ、450℃で6時間の加熱までは蛍光機能が保持された。   After 6 hours, the phosphor was removed from the furnace and returned to room temperature, and then the fluorescence spectrum was measured. When the temperature was increased from 50 ° C. every 50 ° C. and the same heat treatment / fluorescence spectrum measurement was repeated, the fluorescence function was maintained until heating at 450 ° C. for 6 hours.

これに対して、原料粉体は約250℃で酸化による黒化が見られるとともに蛍光機能が消失した。これらの結果から、本発明の蛍光体ガラス材料では、蛍光物質がガラス中に封入されていることによって、外界酸素との反応を抑制でき、このため耐熱性が向上したものと考えられる。   In contrast, the raw material powder was blackened by oxidation at about 250 ° C. and the fluorescence function was lost. From these results, it is considered that in the phosphor glass material of the present invention, the phosphor is encapsulated in the glass, whereby the reaction with external oxygen can be suppressed, and thus the heat resistance is improved.

実施例6
実施例1と同様の方法で圧縮処理によって得た透明性蛍光体ガラス材料を、50℃に予熱しておいた空気雰囲気の電気炉に投入して6時間加熱処理を行った。
Example 6
The transparent phosphor glass material obtained by the compression treatment in the same manner as in Example 1 was put into an electric furnace in an air atmosphere preheated to 50 ° C. and subjected to heat treatment for 6 hours.

図5の曲線1は50℃で熱処理を行った蛍光体ガラス材料の蛍光スペクトル(励起波長約590nm)である。実施例1において圧縮処理によって得た蛍光体ガラス材料の蛍光ス
ペクトルを示す図1の曲線2と比較すると、50℃での熱処理によって、蛍光スペクトルのピーク位置が短波長側へ若干シフトすることが確認できた。
Curve 1 in FIG. 5 is a fluorescence spectrum (excitation wavelength: about 590 nm) of a phosphor glass material that has been heat-treated at 50 ° C. Compared with curve 2 in FIG. 1 showing the fluorescence spectrum of the phosphor glass material obtained by compression treatment in Example 1, it was confirmed that the peak position of the fluorescence spectrum slightly shifted to the short wavelength side by heat treatment at 50 ° C. did it.

上記した50℃での熱処理を行った後、更に、100℃で6時間の熱処理、200℃で6時間の熱処理、300℃で6時間の熱処理、350℃で6時間の熱処理、400℃で6時間の熱処理、450℃で6時間の熱処理を引き続き行った。   After the above heat treatment at 50 ° C., heat treatment at 100 ° C. for 6 hours, heat treatment at 200 ° C. for 6 hours, heat treatment at 300 ° C. for 6 hours, heat treatment at 350 ° C. for 6 hours, and heat treatment at 400 ° C. for 6 hours Heat treatment for 4 hours was continued at 450 ° C. for 6 hours.

図5の曲線2は100℃での熱処理後の蛍光体ガラス材料の蛍光スペクトル(励起波長約560nm)、曲線3はその後200℃で熱処理を行った蛍光体ガラス材料の蛍光スペク
トル(励起波長約530nm)、曲線4はその後300℃で熱処理を行った蛍光体ガラス材
料の蛍光スペクトル(励起波長約530nm)、曲線5はその後350℃で熱処理を行った
蛍光体ガラス材料の蛍光スペクトル(励起波長約530nm)、曲線6はその後400℃で
熱処理を行った蛍光体ガラス材料の蛍光スペクトル(励起波長約530nm)、曲線7はそ
の後450℃で熱処理を行った蛍光体ガラス材料の蛍光スペクトル(励起波長約530nm
)である。
Curve 2 in FIG. 5 is the fluorescence spectrum of the phosphor glass material after heat treatment at 100 ° C. (excitation wavelength: about 560 nm), and curve 3 is the fluorescence spectrum of the phosphor glass material after heat treatment at 200 ° C. (excitation wavelength: about 530 nm). ), Curve 4 is the fluorescence spectrum of the phosphor glass material after heat treatment at 300 ° C. (excitation wavelength: about 530 nm), and curve 5 is the fluorescence spectrum of the phosphor glass material after heat treatment at 350 ° C. (excitation wavelength: about 530 nm). ), Curve 6 is the fluorescence spectrum of the phosphor glass material after heat treatment at 400 ° C. (excitation wavelength: about 530 nm), and curve 7 is the fluorescence spectrum of the phosphor glass material after heat treatment at 450 ° C. (excitation wavelength: about 530 nm).
).

図5の曲線2から明らかなように、100℃で熱処理を行うことによって、蛍光スペクトルのピーク位置の短波長側へのより大きなシフトが生じると共に、蛍光強度の上昇が確認できた。更に、熱処理温350℃までは単調に蛍光強度の増加と短波長側へのシフトが続いた。400℃および450℃の熱処理では蛍光強度が減少する傾向が確認されたが、熱処理を行っていない試料よりも蛍光強度はなお大きかった。   As is apparent from curve 2 in FIG. 5, by performing the heat treatment at 100 ° C., a larger shift of the peak position of the fluorescence spectrum to the short wavelength side occurred, and an increase in fluorescence intensity could be confirmed. Furthermore, up to a heat treatment temperature of 350 ° C., the fluorescence intensity increased monotonously and shifted to the short wavelength side. Although it was confirmed that the heat intensity at 400 ° C. and 450 ° C. decreased the fluorescence intensity, the fluorescence intensity was still larger than the sample not subjected to the heat treatment.

実施例7
メタノール100ml中に、クマリン系色素であるクマリン(Coumarin)47を5mg 投入し撹
拌して溶解させた。その溶液中に粒径10nm以下(平均粒径約7nm)のフュームドシリカ500mgを投入し十分に攪拌した。
Example 7
In 100 ml of methanol, 5 mg of coumarin pigment Coumarin 47 was added and stirred to dissolve. Into the solution, 500 mg of fumed silica having a particle size of 10 nm or less (average particle size of about 7 nm) was added and sufficiently stirred.

次いで、この液体を約50℃で乾燥させて原料粉体(1重量%Coumarin47添加シリカ粉体)を得た。図6の曲線4は、原料粉末の蛍光スペクトルであり、曲線3は、色素を溶解したメタノール溶液の蛍光スペクトルである。原料粉末の蛍光スペクトルでは、メタノール溶液とほぼ同一の波長にピーク位置が認められた。この結果から、乾燥して得られた原料粉体では、色素分子はほとんど会合しておらず、色素の粒径は1nm程度以下であると推測される。   Subsequently, this liquid was dried at about 50 ° C. to obtain a raw material powder (1 wt% Coumarin 47-added silica powder). Curve 4 in FIG. 6 is the fluorescence spectrum of the raw material powder, and curve 3 is the fluorescence spectrum of the methanol solution in which the dye is dissolved. In the fluorescence spectrum of the raw material powder, a peak position was observed at almost the same wavelength as the methanol solution. From this result, in the raw material powder obtained by drying, the dye molecules are hardly associated, and the particle diameter of the dye is estimated to be about 1 nm or less.

次いで、原料粉体を、直径5mmの金型中に入れ、1tonの圧力で加圧して直径5mm、長さ約8mmの円柱状ペレットに加工した。加工されたペレットを、肉厚1mmの窒化ホウ素製の
試料セルに入れた後、パイロフィライトを圧力媒体として超高圧発生装置を用いて8GPa
まで加圧した。昇圧は3時間かけて行い、8GPaで1時間圧力を保持した後に、5時間かけて大気圧まで減圧した。これらの圧縮過程を室温で行い、透明性の褐色のガラス状物体を得た。
Next, the raw material powder was put into a mold having a diameter of 5 mm and pressed into a cylindrical pellet having a diameter of 5 mm and a length of about 8 mm by pressing with a pressure of 1 ton. The processed pellets are placed in a boron nitride sample cell with a thickness of 1 mm, and then 8 GPa using an ultrahigh pressure generator using pyrophyllite as a pressure medium.
Until pressurized. The pressure was increased over 3 hours. After maintaining the pressure at 8 GPa for 1 hour, the pressure was reduced to atmospheric pressure over 5 hours. These compression processes were performed at room temperature to obtain a transparent brown glassy object.

得られた物体の励起スペクトル(蛍光波長470nm)と蛍光スペクトル(励起波長400nm)をそれぞれ図6の曲線1および曲線2として示す。圧縮されて得た透明性蛍光体ガラス材料では、蛍光帯のピーク位置が乾燥粉末の蛍光スペクトル(図6中の曲線4)と比較して長波長側にシフトしていることが認められる。   The excitation spectrum (fluorescence wavelength 470 nm) and fluorescence spectrum (excitation wavelength 400 nm) of the obtained object are shown as curve 1 and curve 2 in FIG. In the transparent phosphor glass material obtained by compression, it is recognized that the peak position of the fluorescent band is shifted to the longer wavelength side as compared with the fluorescence spectrum of the dry powder (curve 4 in FIG. 6).

圧縮後の蛍光体ガラス材料を、100℃に予熱しておいた空気雰囲気の電気炉に投入し
6時間加熱処理を施した。
The phosphor glass material after compression was put into an electric furnace in an air atmosphere preheated to 100 ° C. and subjected to heat treatment for 6 hours.

図7の曲線1は熱処理を施していない蛍光体ガラス材料の蛍光スペクトル(励起波長400nm)であり、曲線2は、熱処理後の蛍光体ガラス材料の蛍光スペクトル(励起波長400nm)である。両曲線の比較から明らかなように、熱処理後の蛍光体ガラスでは、蛍光強度が上昇するとともに短波長へのピーク位置のシフトが認められる。   Curve 1 in FIG. 7 is the fluorescence spectrum (excitation wavelength 400 nm) of the phosphor glass material that has not been heat-treated, and curve 2 is the fluorescence spectrum (excitation wavelength 400 nm) of the phosphor glass material after the heat treatment. As is clear from the comparison of the two curves, in the phosphor glass after the heat treatment, the fluorescence intensity increases and the peak position shifts to a short wavelength.

100℃で熱処理を行った後、更に、200℃で6時間の熱処理、300℃で6時間の熱処理、400℃で6時間の熱処理を引き続き行った。   After heat treatment at 100 ° C., heat treatment was further performed at 200 ° C. for 6 hours, 300 ° C. for 6 hours, and 400 ° C. for 6 hours.

図7の曲線3は200℃での熱処理後の蛍光体ガラスの蛍光スペクトル(励起波長400
nm)、曲線4はその後300℃で熱処理を行った蛍光体ガラスの蛍光スペクトル(励起波長390nm)、曲線5はその後400℃で熱処理を行った蛍光体ガラスの蛍光スペクト
ル(励起波長360nm)である。
Curve 3 in FIG. 7 shows the fluorescence spectrum of the phosphor glass after heat treatment at 200 ° C. (excitation wavelength 400).
nm), curve 4 is the fluorescence spectrum (excitation wavelength 390 nm) of the phosphor glass after heat treatment at 300 ° C., and curve 5 is the fluorescence spectrum (excitation wavelength 360 nm) of the phosphor glass after heat treatment at 400 ° C. .

図7から明らかなように、200℃までの熱処理では単調に蛍光強度の増加と短波長シフトが続いた。300℃および400℃の熱処理では蛍光強度が減少し、熱処理を施していない試料よりも蛍光強度が小さくなった。この結果から、蛍光物質の蛍光性能に対して熱処理の影響が生じたことが推測されるが、Coumarin47の乾燥粉末の蛍光スペクトルに近い短波長側へのシフトが認められたので、蛍光体ガラス材料に対する応力緩和の効果は生じていると考えられる。   As is clear from FIG. 7, the heat intensity up to 200 ° C. was followed by a monotonous increase in fluorescence intensity and a short wavelength shift. The heat intensity at 300 ° C. and 400 ° C. decreased the fluorescence intensity, and the fluorescence intensity was lower than that of the sample not subjected to heat treatment. From this result, it is surmised that the effect of heat treatment has occurred on the fluorescence performance of the fluorescent material, but since a shift to the short wavelength side close to the fluorescence spectrum of the dried powder of Coumarin 47 was observed, phosphor glass material It is considered that the effect of stress relaxation on is produced.

実施例8
実施例5と同様の方法で得たガラス蛍光体について、200℃に予熱しておいた空気雰囲気の電気炉に投入して6時間加熱処理を行った。
Example 8
About the glass fluorescent substance obtained by the method similar to Example 5, it put into the electric furnace of the air atmosphere pre-heated at 200 degreeC, and heat-processed for 6 hours.

図8の曲線1は熱処理を施していない蛍光体ガラス材料の蛍光スペクトル(励起波長380nm)であり、曲線2は、200℃での熱処理後の蛍光体ガラス材料の蛍光スペクトル
(励起波長455nm)である。両曲線の比較から明らかなように、熱処理後の蛍光体ガラ
ス材料では、蛍光強度が上昇するとともに、CdSeの乾燥粉末のピーク位置に近い長波長側へのピーク位置のシフトが認められた。
Curve 1 in FIG. 8 is a fluorescence spectrum (excitation wavelength 380 nm) of the phosphor glass material not subjected to heat treatment, and curve 2 is a fluorescence spectrum (excitation wavelength 455 nm) of the phosphor glass material after heat treatment at 200 ° C. is there. As is clear from the comparison between the two curves, in the phosphor glass material after the heat treatment, the fluorescence intensity increased, and a shift of the peak position toward the long wavelength side close to the peak position of the dry powder of CdSe was observed.

200℃で熱処理を行った後、更に、300℃で6時間の熱処理、400℃で6時間の熱処理を引き続き行った。   After heat treatment at 200 ° C., heat treatment was further performed at 300 ° C. for 6 hours and then at 400 ° C. for 6 hours.

図8の曲線3は300℃での熱処理後の蛍光体ガラスの蛍光スペクトル(励起波長450
nm)、曲線4はその後400℃で熱処理を行った蛍光体ガラスの蛍光スペクトルである(励起波長450nm)。
Curve 3 in FIG. 8 shows the fluorescence spectrum of the phosphor glass after heat treatment at 300 ° C. (excitation wavelength 450).
nm), curve 4 is the fluorescence spectrum of the phosphor glass that was subsequently heat treated at 400 ° C. (excitation wavelength 450 nm).

図8から明らかなように、300℃及び400℃の熱処理では、200℃での熱処理品にくらべて短波長側へのピーク位置のシフトが認められたが、熱処理を施していない蛍光体ガラスと比較すると、CdSeの乾燥粉末のピーク位置に近い長波長側へシフトした状態であった。また、熱処理温度の上昇と共に蛍光強度の増加が認められた。   As is clear from FIG. 8, in the heat treatment at 300 ° C. and 400 ° C., a shift of the peak position toward the short wavelength side was observed as compared with the heat-treated product at 200 ° C. In comparison, it was in a state shifted to the long wavelength side close to the peak position of the dry powder of CdSe. In addition, an increase in fluorescence intensity was observed with an increase in the heat treatment temperature.

実施例1で得られた蛍光体ガラス材料及びその原料についての蛍光スペクトル及び励起スペクトルを示す図面。The drawing which shows the fluorescence spectrum and excitation spectrum about the fluorescent substance glass material obtained in Example 1, and its raw material. 実施例2で得られた蛍光体ガラス材料及びその原料についての蛍光スペクトル及び励起スペクトルを示す図面。The drawing which shows the fluorescence spectrum and excitation spectrum about the fluorescent substance glass material obtained in Example 2, and its raw material. 実施例4で得られた蛍光体ガラス材料についての蛍光スペクトル及び励起スペクトルを示す図面。The figure which shows the fluorescence spectrum about the fluorescent substance glass material obtained in Example 4, and an excitation spectrum. 実施例5で得られた蛍光体ガラス材料及びその原料についての蛍光スペクトル及び励起スペクトルを示す図面。The drawing which shows the fluorescence spectrum and excitation spectrum about the fluorescent substance glass material obtained in Example 5, and its raw material. 実施例6で得られた各種熱処理温度の蛍光体ガラス材料について、蛍光スペクトルを示す図面。The drawing which shows a fluorescence spectrum about the fluorescent substance glass material of various heat processing temperature obtained in Example 6. FIG. 実施例7における加圧成形後の蛍光体ガラス材料及びその原料についての蛍光スペクトル及び励起スペクトルを示す図面。Drawing which shows the fluorescence spectrum and excitation spectrum about the fluorescent substance glass material after pressure molding in Example 7, and its raw material. 実施例7で得られた各種熱処理温度の蛍光体ガラス材料について、蛍光スペクトルを示す図面。The drawing which shows a fluorescence spectrum about the fluorescent substance glass material of various heat processing temperature obtained in Example 7. FIG. 実施例8で得られた各種熱処理温度の蛍光体ガラス材料について、蛍光スペクトルを示す図面。The drawing which shows a fluorescence spectrum about the fluorescent substance glass material of various heat processing temperature obtained in Example 8. FIG.

Claims (8)

有機蛍光色素及び蛍光性半導体微粒子からなる群から選ばれた少なくとも一種の蛍光物質と最大粒径100nm以下のガラス微粒子との混合物を、1GPa以上の圧力で加圧することによって蛍光体ガラス材料を製造した後、更に、50℃以上の温度で熱処理することを特徴とする蛍光体ガラス材料の製造方法。 A phosphor glass material was manufactured by pressing a mixture of at least one fluorescent substance selected from the group consisting of organic fluorescent dyes and fluorescent semiconductor fine particles and glass fine particles having a maximum particle size of 100 nm or less at a pressure of 1 GPa or more . Then, the manufacturing method of the phosphor glass material characterized by further heat-processing at the temperature of 50 degreeC or more . ガラス微粒子100重量部に対して、蛍光物質を0.0001〜10重量部用いる請求項1に記載の蛍光体ガラス材料の製造方法。 The manufacturing method of the fluorescent substance glass material of Claim 1 which uses 0.0001-10 weight part of fluorescent substances with respect to 100 weight part of glass fine particles. 蛍光物質の最大粒径が、ガラス微粒子の最大粒径の4倍以下である請求項1又は2に記載の蛍光体ガラス材料の製造方法。 The method for producing a phosphor glass material according to claim 1 or 2, wherein the maximum particle size of the fluorescent material is 4 times or less than the maximum particle size of the glass fine particles. ガラス微粒子が、ケイ酸塩ガラス、ホウケイ酸塩ガラス又はアルミノケイ酸塩ガラスである請求項1〜3のいずれかに記載の蛍光体ガラス材料の製造方法。 The method for producing a phosphor glass material according to any one of claims 1 to 3, wherein the glass fine particles are silicate glass, borosilicate glass, or aluminosilicate glass. 請求項1〜のいずれかの方法によって得られる、有機蛍光色素及び蛍光性半導体微粒子からなる群から選ばれた少なくとも一種の蛍光物質がガラス母体中に分散してなる蛍光体ガラス材料。 Obtained by the method of any of claims 1-4, phosphor glass material at least one kind of fluorescent material selected from the group consisting of organic fluorescent dyes and fluorescent semiconductor fine particles are dispersed in a glass matrix. 請求項に記載の蛍光体ガラス材料を含む表示素子。 A display element comprising the phosphor glass material according to claim 5 . 請求項に記載の蛍光体ガラス材料を含む照明素子。 An illumination element comprising the phosphor glass material according to claim 5 . 請求項に記載の蛍光体ガラス材料を含む記録媒体。 A recording medium comprising the phosphor glass material according to claim 5 .
JP2005243824A 2004-10-29 2005-08-25 Phosphor glass material Expired - Fee Related JP4528948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005243824A JP4528948B2 (en) 2004-10-29 2005-08-25 Phosphor glass material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004315019 2004-10-29
JP2005031290 2005-02-08
JP2005243824A JP4528948B2 (en) 2004-10-29 2005-08-25 Phosphor glass material

Publications (2)

Publication Number Publication Date
JP2006249402A JP2006249402A (en) 2006-09-21
JP4528948B2 true JP4528948B2 (en) 2010-08-25

Family

ID=37090214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005243824A Expired - Fee Related JP4528948B2 (en) 2004-10-29 2005-08-25 Phosphor glass material

Country Status (1)

Country Link
JP (1) JP4528948B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843392B2 (en) * 2006-07-03 2011-12-21 株式会社次世代Pdp開発センター Method for manufacturing plasma display panel
CN101652249A (en) 2007-04-06 2010-02-17 旭硝子株式会社 Wavelength conversion film, film for agricultural use, structure, and composition for forming coating film
JPWO2008143189A1 (en) * 2007-05-18 2010-08-05 旭硝子株式会社 Glass fine particle aggregate and method for producing the same
JP2012087162A (en) * 2010-10-15 2012-05-10 Nippon Electric Glass Co Ltd Wavelength conversion member and light source comprising using the same
KR20180075434A (en) * 2015-10-27 2018-07-04 니폰 덴키 가라스 가부시키가이샤 Production method for wavelength conversion members

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124729A (en) * 1987-12-28 1990-05-14 Tosoh Corp Manufacture of homogenous quartz glass lump
JPH08134355A (en) * 1994-11-10 1996-05-28 Mitsuboshi Belting Ltd Precursor composition for producing hybrid glass and production of hybrid glass
JP2002211935A (en) * 2001-01-16 2002-07-31 National Institute Of Advanced Industrial & Technology Ultrafine particle-dispersed glass and display element using the same
JP2003201138A (en) * 2001-10-30 2003-07-15 Nippon Sheet Glass Co Ltd Method of manufacturing silica glass
JP2003258308A (en) * 2002-03-06 2003-09-12 Nippon Electric Glass Co Ltd Emission color converting member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124729A (en) * 1987-12-28 1990-05-14 Tosoh Corp Manufacture of homogenous quartz glass lump
JPH08134355A (en) * 1994-11-10 1996-05-28 Mitsuboshi Belting Ltd Precursor composition for producing hybrid glass and production of hybrid glass
JP2002211935A (en) * 2001-01-16 2002-07-31 National Institute Of Advanced Industrial & Technology Ultrafine particle-dispersed glass and display element using the same
JP2003201138A (en) * 2001-10-30 2003-07-15 Nippon Sheet Glass Co Ltd Method of manufacturing silica glass
JP2003258308A (en) * 2002-03-06 2003-09-12 Nippon Electric Glass Co Ltd Emission color converting member

Also Published As

Publication number Publication date
JP2006249402A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4961526B2 (en) Visible light emitting material using surface modification of silica fine particles and method for producing the same
Jia et al. Phosphorescent dynamics in SrAl2O4: Eu2+, Dy3+ single crystal fibers
Bol et al. Luminescence quantum efficiency of nanocrystalline ZnS: Mn2+. 2. Enhancement by UV irradiation
Liu et al. Effect of gallium ion content on thermal stability and reliability of YAG: Ce phosphor films for white LEDs
JP4528948B2 (en) Phosphor glass material
JP5749792B2 (en) Quantum dot / glass composite light emitting material and method for producing the same
Lita et al. Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites
Guo et al. Aggregation-induced emission enhancement of carbon quantum dots and applications in light emitting devices
Le et al. Highly Elastic and> 200% Reversibly Stretchable Down‐Conversion White Light‐Emitting Diodes Based on Quantum Dot Gel Emitters
Ye et al. CsPbBr3 nanocrystals embedded glass enables highly stable and efficient light-emitting diodes
Tong et al. One‐pot synthesis of CsPbX3 (X= Cl, Br, I)@ zeolite: a potential material for wide‐color‐gamut backlit displays and upconversion emission
Yang et al. High thermal stability phosphor: Red-emitting LiBaPO4: Sm3+
KR20190098126A (en) Nitride light emitting material and light emitting device comprising the same
CN114716996B (en) Preparation method of mesoporous alumina domain-limited narrow-band green light carbon dot composite fluorescent powder and application of mesoporous alumina domain-limited narrow-band green light carbon dot composite fluorescent powder in liquid crystal backlight source
CN106833631B (en) Carbon nano-dot compound and preparation method thereof, fluorescent powder and light source material
EP2664660A1 (en) Beta-type sialon and production method therefor and light-emitting device
Zhao et al. A multi-color carbon quantum dots based on the coordinated effect of quantum size and surface defects with green synthesis
US20210367114A1 (en) Light emitting diode
CN110982519A (en) Carbon nano-dot composite fluorescent powder and preparation method and application thereof
Costa et al. Pressure-induced changes on the optical properties and microstructure of silica-gel matrices doped with rhodamine 6G
US11355676B2 (en) Light emitting diode
Zhao et al. Temperature dependence of photoluminescence in CdS nanocrystals prepared by the sol-gel method
CN114958355A (en) Novel ultraviolet stress luminescent material and preparation method thereof
Yin et al. Silicon-coated CdZnSeS/ZnS quantum dots contribute to great performance white light-emitting diodes
Wang et al. The luminescent properties and crystal structure of Sr (1.5‐x)‐(1.5 y) Mg0. 5SiO4: xEu2+, yCe3+ blue phosphor synthesized by co‐precipitation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees