JP4138629B2 - 面発光型半導体素子及びその製造方法 - Google Patents

面発光型半導体素子及びその製造方法 Download PDF

Info

Publication number
JP4138629B2
JP4138629B2 JP2003377246A JP2003377246A JP4138629B2 JP 4138629 B2 JP4138629 B2 JP 4138629B2 JP 2003377246 A JP2003377246 A JP 2003377246A JP 2003377246 A JP2003377246 A JP 2003377246A JP 4138629 B2 JP4138629 B2 JP 4138629B2
Authority
JP
Japan
Prior art keywords
oxidized
layer
semiconductor
active layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003377246A
Other languages
English (en)
Other versions
JP2005142361A (ja
Inventor
瑞仙 江崎
亨彦 西垣
圭児 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003377246A priority Critical patent/JP4138629B2/ja
Priority to US10/978,346 priority patent/US7244629B2/en
Priority to CN200410092250.9A priority patent/CN1614836A/zh
Publication of JP2005142361A publication Critical patent/JP2005142361A/ja
Application granted granted Critical
Publication of JP4138629B2 publication Critical patent/JP4138629B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18355Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a defined polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/1833Position of the structure with more than one structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18338Non-circular shape of the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/18347Mesa comprising active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/1835Non-circular mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3201Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth

Description

本発明は、面発光型半導体素子及びその製造方法に関し、特に、偏波モードを安定して制御可能な面発光型半導体素子及びその製造方法に関する。
半導体レーザや半導体発光ダイオード等の半導体発光素子は、光通信分野をはじめとして、CD(Compact Disc)やDVD(Digital Versatile Disc)等の光ディスクシステム或いはバーコード・リーダ等における光源として広く使用されている。これら光通信をはじめとする各種応用分野で使用する場合、半導体レーザに存在する、「縦モード」、「横モード」、「偏波モード」の3つのモードについて動作モードを単一化することが重要となる。現在、光通信分野で主に用いられる端面発光型半導体レーザは、偏波モードは安定で、変動することがない。これは、端面発光型レーザの場合、共振器が導波路により構成され、導波路端面の反射率がTM波よりTE波の方が大きく、電界ベクトルが半導体基板に平行な方向のTE波で発振することに起因している。縦モードも、分布帰還型構造を取り入れるなどの方策により単一化が実現され、横モードについても狭ストライプ構造にすることで単一化できる。
一方、面発光型半導体レーザの場合、共振器が非常に短いことから縦モードについては、単一モード動作し、横モードについても、アルミニウム(Al)高濃度層の選択酸化やプロトン注入による電流狭窄構造により、活性領域の微小化等をはじめとする技術によって可能となってきている。
しかしながら、偏波モードについては、偏波方向の制御を図ることが難しい。これは、通常の面発光型半導体レーザの製作に用いられてきた(100)面基板の結晶構造やデバイス構造自体の対称性に基づくもので、直線偏波は得られるものの、活性層自体には直交偏波間の利得差はなく、特定の方位の偏波に対して反射鏡の反射率を高くする等の施策も困難なためである。このため、温度や駆動電流等の外部条件の微妙な変化により、簡単に偏波方向のスイッチングが生じやすく、レーザの偏波を直接利用する光磁気記録やコヒーレント通信等で大きな影響をもたらす。また、通常のデータ通信を行う際でも、偏波モードの不安定は、過剰雑音やモード競合の原因となり、エラーの増加や伝送帯域の制限といった問題を引き起こす。このため、偏波モードの制御(安定化)は、面発光型半導体レーザの実際の応用を図る上で、重要な課題の1つとなっている。
偏波制御の重要性が指摘されて以来、この問題を解決するために、従来行われている手法を以下に紹介する。
(1) 金属誘電体回折格子を半導体多層膜反射鏡に組み込む構造
(2) デバイスのメサ形状に非対称性を取り入れた構造
(3) 傾斜基板上に作製する構造
これら3種類の手法のうち、(1)の手法は、半導体多層膜からなる反射鏡の上に金属細線を一定方向に配列させ、特定の方位の偏光に対して、鏡の反射率を高くする方法である。金属配線に対して平行な偏光に対して鏡の反射率が高くなるため、偏波面を安定させるのに一定の効果はあるが、金属配線を光波長以下の幅に形成する必要があるため、製造が難しい。
また、(2)のデバイスのメサ形状に非対称性を取り入れる手法は、例えば、特許文献1に開示されている。図21に表したように、メサMの周辺に応力付加領域24を設置することにより、メサMの中心の活性層に対して応力が非等方(異方)的に印加され、歪が異方的に発生する。その歪の分布は、図21(c)及び(d)に例示した如くである。このような歪に伴って直交偏波間の利得差が生じ、特定方向の偏波のみが優位となり、偏波制御性が高まる。
また、同様に、非特許文献1においても、図22に表したように、円柱状のメサMの両側にT字型の突起形状24を付加している。このことにより、T字細線部分の半導体多層膜反射鏡のAl高濃度層(Al0.9Ga0.1As層)は、選択酸化プロセスにより全て酸化され、体積収縮することに伴い発生する強い応力が、メサMの中心に位置する活性層に異方的な歪を与え、偏波制御性を高めている。
また、非特許文献2においては、図23に挿入して表されたようなダンベル型のメサ構造25とすることで、活性層への電流注入が非対称になることにより偏波制御が図られている。これらの応力(歪)付加領域24や非対称メサ構造25は、上記した(1)と同様に、デバイス加工が複雑化し、素子の生産性、再現性の面、偏波制御性が十分ではないという問題がある。
一方、上記(3)の傾斜基板を用いる手法は、ある方位の偏波に対して、利得を大きくするために(311)A面や(311)B面などの高指数方位の結晶面上に活性層を形成し、利得が結晶方位に依存することを利用したものである。この手法では、強い直交偏波間の消光比が得られ、偏波モードの制御性は優れている。しかしながら、通常の(100)面を利用したものに比べ、良質の結晶成長は難しく、高出力が得られにくいなどの問題点がある。また、傾斜基板における選択酸化方式の面発光型半導体レーザ素子では、結晶面方位による酸化レートの違い(異方性酸化)により、酸化(発光領域)形状に歪みが生じ、ビーム形状の制御が困難である。
面発光型半導体レーザは、偏波モード制御の課題を除けば、端面発光型半導体レーザに比べ、しきい値が低い、消費電力が低い、発光効率が高い、高速変調が可能である、ビーム広がりが小さく光ファイバとの結合が容易である、端面へき開が不要で量産性に優れる等々の多数の利点を有する。さらに、基板上に二次元的に多数のレーザ素子を集積化が可能なため、高速光LAN(Local Area Network)や、光インターコネクト等における光エレクトロニクス分野のキーデバイスとして大きな注目を集めている。従って、上述した現状の課題、偏波制御性を高め、且つ量産性に優れた面発光型半導体レーザ素子の開発が強く望まれている。
特開平11−54838号公報 IEEE Photon. Technol. Lett., Vol.14, no.8, 1034 (2002) IEEE Photon. Technol. Lett., Vol.6, no.1, 40 (1994)
上述したように、面方位(100)面等の通常の基板上に作製した面発光型半導体レーザ素子は、結晶構造の対称性により、活性層は直交偏波間の利得差がなく、偏波方向のスイッチングが容易に発生し、偏波モードを制御することが難しいという問題がある。
本発明は、かかる課題の認識に基づいてなされたものであり、その目的は、面方位(100)面等の通常基板上に作製した場合においても、偏波モードの制御性や量産性が高い高性能な面発光型半導体素子及びその製造方法を提供することにある。
上記課題を解決するために、本発明の実施の形態によれば、基板と、前記基板の主面上に形成された発光領域を有する半導体活性層と、前記半導体活性層を狭持し、前記基板に対して垂直方向の共振器を形成する、前記半導体活性層に対して前記基板と反対側に形成された第1の半導体多層膜反射鏡及び前記半導体活性層に対して前記基板側に形成された第2の半導体多層膜反射鏡と、前記半導体活性層に電流を注入するための一対の電極と、前記半導体活性層の近傍に形成され、Alを含む被酸化層が複数層設けられ、その側面から酸化されることによって形成された電流狭窄部と、少なくとも前記被酸化層の最上層に到達する溝深さの凹部と、前記凹部に囲まれたメサ部と、を備え、前記電流狭窄部は、前記主面に対して平行な第1の方向において前記半導体活性層の近傍に形成され前記複数層の被酸化層のうちの第1の層数の前記被酸化層が酸化されてなる第1の電流狭窄部と、前記主面に対して平行で前記第1の方向とは異なる第2の方向において前記半導体活性層の近傍に形成され前記第1の層数よりも小なる第2の層数の前記被酸化層が酸化されてなる第2の電流狭窄部と、を有することを特徴とする面発光型半導体素子が提供される。
または、本発明の実施の形態の面発光型半導体素子は、基板と、前記基板の主面上に形成された発光領域を有する半導体活性層と、前記半導体活性層を狭持し、前記基板に対して垂直方向の共振器を形成する、前記半導体活性層に対して前記基板と反対側に形成された第1の半導体多層膜反射鏡及び前記半導体活性層に対して前記基板側に形成された第2の半導体多層膜反射鏡と、前記半導体活性層に電流を注入するための一対の電極と、前記半導体活性層の近傍に形成され、Alを含む被酸化層が複数層設けられ、その側面から酸化されることによって形成された電流狭窄部と、少なくとも前記被酸化層の最上層に到達する溝深さの凹部と、前記凹部に囲まれたメサ部と、を備え、前記電流狭窄部は、前記複数層の被酸化層のうちの第1の層数の前記被酸化層が酸化されてなる第1の電流狭窄部と、前記第1の層数よりも小なる第2の層数の前記被酸化層が酸化されてなる第2の電流狭窄部と、を有し、前記凹部のうちで前記第1の電流狭窄部に隣接した第1の部分は、前記第1の層数の前記被酸化層の前記酸化されてなる部分に至る第1の溝深さを有し、前記凹部のうちで前記第2の電流狭窄部に隣接した第2の部分は、前記第1の溝深さよりも浅く、前記第2の層数の前記被酸化層の前記酸化されてなる部分に至る第2の溝深さを有することを特徴とする。
または、本発明の実施の形態の面発光型半導体素子は、基板と、前記基板の主面上に形成された発光領域を有する半導体活性層と、前記半導体活性層を狭持し、前記基板に対して垂直方向の共振器を形成する、前記半導体活性層に対して前記基板と反対側に形成された第1の半導体多層膜反射鏡及び前記半導体活性層に対して前記基板側に形成された第2の半導体多層膜反射鏡と、前記半導体活性層に電流を注入するための一対の電極と、前記半導体活性層の近傍に形成され、Alを含む被酸化層が複数層設けられ、その側面から酸化されることによって形成された電流狭窄部と、少なくとも前記被酸化層の最上層に到達する溝深さの凹部と、前記凹部に囲まれたメサ部と、を備え、前記電流狭窄部は、前記複数層の被酸化層のうちの第1の層数の前記被酸化層が酸化されてなる第1の電流狭窄部と、前記第1の層数よりも小なる第2の層数の前記被酸化層が酸化されてなる第2の電流狭窄部と、を有し、前記被酸化層のうちの酸化された部分に隣接する未酸化の部分は、前記酸化された部分よりも高い濃度のプロトンを含有してなることを特徴とする。
または、本発明の実施の形態の面発光型半導体素子は、基板と、前記基板の主面上に形成された発光領域を有する半導体活性層と、前記半導体活性層を狭持し、前記基板に対して垂直方向の共振器を形成する、前記半導体活性層に対して前記基板と反対側に形成された第1の半導体多層膜反射鏡及び前記半導体活性層に対して前記基板側に形成された第2の半導体多層膜反射鏡と、前記半導体活性層に電流を注入するための一対の電極と、前記半導体活性層の近傍に形成され、Alを含む被酸化層が複数層設けられ、その側面から酸化されることによって形成された電流狭窄部と、少なくとも前記被酸化層の最上層に到達する溝深さの凹部と、前記凹部に囲まれたメサ部と、を備え、前記第1及び第2の半導体多層膜反射鏡の少なくともいずれかは、端面から酸化されることにより形成された酸化領域を有し、前記主面に対して平行な第1の方向における前記端面から酸化された長さが小なる第1の部分と、前記主面に対して平行で前記第1の方向とは異なる第2の方向における前記端面から酸化された長さが大なる第2の部分と、を有し、前記側面からの前記電流狭窄部の長さは、前記第1の部分の前記酸化された長さと前記第2の部分の前記酸化された長さのいずれよりも大なることを特徴とする。
または、本発明の実施の形態の面発光型半導体素子は、基板と、前記基板の主面上に形成された発光領域を有する半導体活性層と、前記半導体活性層を狭持し、前記基板に対して垂直方向の共振器を形成する、前記半導体活性層に対して前記基板と反対側に形成された第1の半導体多層膜反射鏡及び前記半導体活性層に対して前記基板側に形成された第2の半導体多層膜反射鏡と、前記半導体活性層に電流を注入するための一対の電極と、前記半導体活性層の近傍に形成され、Alを含む被酸化層が複数層設けられ、その側面から酸化されることによって形成された電流狭窄部と、少なくとも前記被酸化層の最上層に到達する溝深さの凹部と、前記凹部に囲まれたメサ部と、を備え、前記第1及び第2の半導体多層膜反射鏡の少なくともいずれかは、端面から酸化されることにより形成された酸化領域を有し、前記端面から酸化された長さが小なる第1の部分と、前記端面から酸化された長さが大なる第2の部分と、を有し、前記第1の部分において、酸化領域に隣接する未酸化の領域は、前記酸化領域よりも高い濃度のプロトンを含有してなることを特徴とする。
また、本発明によれば、基板の主面上に、活性層と、Alを含む複数の被酸化層と、を設ける工程と、前記主面上からみて発光領域とすべき部分の周囲に、前記複数の被酸化層のうちの第1の層数の被酸化層の端面が露出するように第1の凹部と、前記複数の被酸化層のうちの前記第1の層数よりも小なる第2の層数の被酸化層の端面が露出するように第2の凹部と、を形成する工程と、前記第1及び第2の凹部において露出している前記被酸化層の端面から酸化を進行させる工程と、を備えたことを特徴とする面発光型半導体素子の製造方法が提供される。
または、本発明によれば、基板の主面上に、活性層と、半導体多層膜反射鏡と、を積層する工程と、前記主面上からみて発光領域とすべき部分を取り囲むように、前記半導体多層膜反射鏡にプロトンが打ちまれた第1の部分と、前記半導体多層膜反射鏡にプロトンが打ち込まれていない第2の部分と、を形成する工程と、前記第1及び第2の部分の端面から、前記半導体多層膜反射鏡を構成する半導体層の少なくともいずれかの酸化を進行させる工程と、を備えたことを特徴とする面発光型半導体素子の製造方法が提供される。
なお、本願明細書において「被酸化層」とは、酸化される層を意味するが、酸化される前の状態も、酸化された後の状態も含むものとする。
本発明によれば、選択酸化方式の面発光型半導体素子において、面方位(100)等の通常基板上に作製した場合も、偏波モードの制御性や量産性が高い高性能の面発光型半導体素子及びその製造方法を提供することができる。
以下、図面を参照しつつ本発明の実施の形態について説明する。
(第1の実施の形態)
図1乃至図4は、本発明の第1の実施の形態にかかる面発光型半導体素子の構造を表す模式図であり、図1はその上面図、図2乃至図4は、それぞれ、図1のA−A線、B―B線、C−C線における断面図である。すなわち、図2は、選択被酸化層上層32のみが選択酸化されている断面図、図3は、選択被酸化層上層32および下層30が選択酸化されている断面図、図4は、メサ部100および配線パス18下の断面図である。
この面発光型半導体レーザは、面方位(100)面の通常方位の基板1の上に、半導体活性層4と、半導体活性層4の上側に形成された第1の半導体多層膜反射鏡6と、半導体活性層4の下側に形成された第2の半導体多層膜反射鏡2とを有する。半導体多層膜反射鏡2及び6は、基板1の主面に対して垂直方向の共振器を形成している。また、半導体活性層4とこれら反射鏡2、6との間には、半導体クラッド層3、5がそれぞれ設けられている。
半導体多層膜反射鏡6、2とクラッド層5、3との間には、それぞれ、アルミニウム(Al)を高濃度に含む上層被酸化層32、下層被酸化層30が設けられている。これら被酸化層32、30は、それぞれメサ部100の側壁から発光領域13に向かって横方向に酸化されることによって形成された酸化領域OXを有する。これら酸化領域OXによって、電流狭窄部が形成されている。電極9及び電極10を介して注入された電流19は、この電流狭窄部によって発光領域13に絞り込まれる。そして、後に詳述するように、本発明においては、A−A方向とB−B方向とで酸化領域OXの層数を変えることにより活性層4に非等方的な応力を印加し、高い偏波制御性を実現している。
第1の半導体多層膜反射鏡6の上には、コンタクト層7が形成され、これを介して、発光領域13に電流を注入するためのコンタクト電極9が形成されている。コンタクト電極9は、発光領域13の上が開口するように形成されている。
基板1の裏面には、電極10が形成され、第2の半導体多層膜反射鏡2を介して、発光領域13に電流が注入される。
図1におけるA−A線の方向には、図2にも表したように、メサ部100の外側にエッチング領域(凹部)12aが形成されている。エッチング領域12aの深さは、第1の半導体多層膜反射鏡6と上層被酸化層32の側面が露出し、下層被酸化層30や第2の半導体多層膜反射鏡2までは至らないように調節されている。一方、図1におけるB−B線の方向には、図3にも表したように、メサ部100の外側にエッチング領域(凹部)12bが形成されている。エッチング領域12bの深さは、上層被酸化層32と第1の半導体多層膜反射鏡6のみならず、下層被酸化層30と第2の半導体多層膜反射鏡2の側面まで露出するように調節されている。
また、これらエッチング領域12a、12bの外側に設けられた周辺部50も、メサ部100と同様の積層構造を有する。そして、メサ部100の表面と周辺部50の表面とは、ほぼ同じ高さに形成されている。
周辺部50の上には、周辺電極9bが形成されている。そしてコンタクト電極9と周辺電極9bとは、配線パス18によって接続されている。また、コンタクト層7の上には、例えばシリコン窒化膜などからなる保護膜8が適宜設けられている。
このような面発光型半導体レーザは、矢印19に示すようにコンタクト電極9から第1の半導体多層膜反射鏡6を介して活性層4に電流を注入することで、発光させることができる。
この面発光型半導体レーザは、コンタクト電極9と周辺電極9bとこれらを結ぶ配線パス18とがほぼ同一レベル(高さ)に形成されていて、平坦化処理を必要としない構造となっている。このため、配線の「段切れ」を防ぐことができるという利点を有する。
また、コンタクト電極9と周辺電極9bとを接続している配線パス18の下層には、第1の半導体多層膜反射鏡6を構成するAl高濃度層6bを酸化させることにより形成された酸化領域OXが設けられているため、横方向の電流は流れることができない。したがってこの面発光型半導体レーザでは、矢印19で表す電流パスによってのみ電流を流すことができ、極めて効率よく電流狭窄することができる。その結果として、低しきい値化、高速応答性、量産性の向上が可能となる。
そして、前述したように、本実施形態においては、酸化領域OXの層数が、A−A方向とB−B方向とで異なる。すなわち、図1乃至図4に表した具体例の場合、A−A方向においては、第1の半導体多層膜反射鏡6と上層被酸化層32のみに酸化領域OXが形成され、一方、B−B方向においては、第1及び第2の半導体多層膜反射鏡6、2と上層被酸化層32と下層被酸化層30のそれぞれに酸化領域OXが形成されている。つまり、酸化領域OXの層数が、A−A方向とB−B方向とで異なる。
選択酸化方式の面発光レーザを作製する際に、AlAs(アルミニウムヒ素)、またはAlを高濃度に含む被酸化層であるAlGaAs(アルミニウムガリウムヒ素)層(III族元素に占めるAlの組成比は、95%以上であることが望ましい)を水蒸気酸化すると、メサ部100の側壁から被酸化層32、30あるいは被酸化層32のみが酸化され、電流狭窄部が形成される。これに伴って、被酸化層32、30の酸化に伴う体積収縮により発生する圧縮応力は、メサ100の中心部の半導体活性層4に対して、B−B方向には大きく作用し、A−A方向には小さく作用する。つまり、活性層4に対して、非等方的に歪みが印加される。酸化層Al(Ga)Oが形成されると、もとのAl(Ga)As層に比べて体積収縮(10%〜13%程度)が生じるため、酸化後、活性層4やメサ構造の中心部に対して、ギガパスカル(GPa)オーダの大きな圧縮応力が印加される。被酸化層32、30の材料としてAlAsを用いた場合、酸化に伴う体積収縮は、12〜13%であるので、被酸化層1層当たり1〜10GPaの圧縮応力F1が発生し、A−A方向(上層のみでF1)と、B−B方向(上下層で2×F1)において、活性層4に印加される圧縮応力は方向により異なる。
また、電流狭搾を効果的に実現するためには、電流ブロック層となる酸化領域OXには、ある程度の厚さが必要であるが、被酸化層が厚く、または層数が多いほど、印加される歪は大きくなる。加えて、その歪は酸化領域OXの先端に集中し、且つ、被酸化層32、30は、活性層4から0.2μm程度の至近距離に設けられるため、活性層4の最も電流の集中する領域に影響を与えることができる。つまり、本実施形態によれば、応力印加の非等方性が大きくなり、偏波制御性を高める効果が大きい。
特許文献1や非特許文献1及び2に開示された方法では、メサの周辺部に応力(歪)付加領域24を有する構造が形成される。これに対して、本実施形態では、応力(歪)付加領域がメサ中心部に設けられ、発光領域の活性層4に対して最近接の構造が実現されている。発光領域の活性層4へ印加される応力は、応力(歪)付加領域からの距離に反比例して減少する。発光領域の活性層4の最近接に応力(歪)付加領域を設けた本実施形態の構造によれば、活性層4の発光領域に対して非常に大きな歪みを与えることができ、偏波制御性を大幅に高くすることが可能となる。
また、基板上に成長した各層に膜応力が存在する場合、メサ形成用のエッチング領域が、A−A線、B−B線の方向に応じて凹部のエッチング体積が異なることより、基板面に対して水平方向に圧縮応力あるいは引張応力が非対称に半導体活性層4に印加され、さらに偏波制御性が高まる。
また、面方位を(100)から傾斜させた傾斜基板上に形成させた場合、選択酸化すると、異方性酸化によって電流狭窄部の形状が非対称化するという問題がある。これに対して、面方位(100)の通常基板上に形成した面発光型半導体レーザ素子の場合には、選択酸化させた時に、対称的な電流狭窄部を形成することができる。
以上説明したように、本実施形態によれば、選択酸化方式の面発光型半導体レーザの作製において、偏波制御性が高まり、高性能な面発光型半導体レーザ素子の量産性が向上する。
次に、本実施形態の面発光型半導体レーザの製造方法について、具体的に説明する。
先ず、洗浄された厚さ400μmの3インチ、面方位(100)面のn型GaAs基板1上に、MOCVD装置を用いてn型の半導体多層膜反射鏡2b、電流狭窄部を形成する被酸化層30、クラッド層3、半導体活性層4、クラッド層5、電流狭窄部を形成する被酸化層32、p型の半導体多層膜反射鏡6b、コンタクト層7を順次成長した。
ここで、半導体活性層4とクラッド層3及び5よりなる共振器の上下に、半導体多層膜反射鏡2及び6を配置したものを基本構造と考え、1.3μm帯のGaInAsN面発光型半導体レーザとして最適の性能が得られるように設計及び製作を行った。
半導体多層膜反射鏡2は、波長1.3μmの光学波長1/4の厚さでn型GaAs層(高屈折率層)とn型AlGa1−yAs(0<y<1)(低屈折率層)が交互に積層された構造とした。本実施例では、Al組成、y=0.94のAl0.94Ga0.06As層を低屈折率層に用いた。また、半導体多層膜反射鏡2のn型ドーパントとして、Si(シリコン)を用い、ドーパント濃度は、2×1018/cmとした。
下部クラッド層3は、n型GaInPとした。
半導体活性層4は、発光ピーク波長が1.3μmとなるように調整したGaIn1−xAs1−y(0≦x≦1、0≦y<1)層と、バリヤ層としてGaAs層を交互に積層した量子井戸構造とした。ここではGaIn1−xAs1−y(0≦x≦1、0≦y<1)層を中心とし、その上下にGaAs層を積層した3層構造とした。量子井戸層であるGaIn1−xAs1−y(0≦x≦1、0≦y<1)層のIn組成は30%〜35%、窒素組成は0.5%〜1.0%とし、厚さは7nmとした。
このGaIn1−xAs1−y(0≦x≦1、0≦y<1)層の格子定数は、n型GaAs基板1よりも大きくなるように組成を制御し、圧縮歪量、約2.5%を内在する組成Ga0.66In0.34As0.990.01とした。このとき、微分利得係数は増大し、無歪の場合に比較して、しきい電流値が一層低減された。
上部クラッド層5は、p型GaInPとした。
半導体多層膜反射鏡6は、波長1.3μmの光学波長1/4の厚さでp型GaAs層(高屈折率層)とp型AlGa1−yAs(0<y<1)(低屈折率層)が交互に積層された構造とした。n型半導体多層膜反射鏡2と同様に、本実施例では、Al組成、y=0.94のAl0.94Ga0.06As層を低屈折率層に用いた。また、半導体多層膜反射鏡6のp型ドーパントとして、C(炭素)を用い、ドーパント濃度は、2×1018/cm(量子井戸層4付近)〜1×1019/cm(コンタクト層7付近)とした。
上層被酸化層32および下層被酸化層30は、クラッド層5の上およびクラッド層3の下にそれぞれ形成され、上下の半導体多層膜反射鏡6、2を構成するAlGaAsよりAl組成比の大きいAlGa1−xAs(x≧0.98)を用いる。本実施例においては、被酸化層として、上下層ともにAlAs層を用いた。
コンタクト層7はp型GaAsとし、p型ドーパントとして、C(炭素)を用い、ドーパント濃度は、2×1019/cmとした。
次に、パターン形成用のエッチングマスクを兼用する保護膜8として、Si膜を形成した。原料ガス、SiH、NH、Nの圧力、流量を調整することで膜応力を制御し、150MPaの引張応力を有する膜として形成した。膜の引張応力の値は、水蒸気酸化プロセスにおいてエッチングマスク膜8とGaAs基板1との間で発生する熱応力(thermal stress)σTを考慮して決定した。水蒸気酸化プロセス温度を400℃に設定した場合、Si膜(EF=160GPa, αF=2.7×10−7/K)と基板のGaAs(αS=6.0×10−6/K)との間では、σT=−150MPaの圧縮応力が発生する。この圧縮応力を緩和するために引張応力を有する膜を形成し、熱耐性を高めている。
次に、フォトリソグラフィとエッチング工程によりエッチングを行い、メサ部100を作製した。メサパターンは、ICP(Inductively Coupled Plasma)プラズマドライエッチング装置により、三塩化ボロン・窒素混合ガスによるエッチング処理を行った。このとき、図1乃至図3に表したようにメサ形成用のエッチング領域12の開口部の幅をA−A線、B−B線方向で変え、開口部の面積によりエッチング速度が変化する通称「マイクロローディング効果」を利用し、開口面積の異なる凹部のエッチング深さが、それぞれ異なるメサ構造を作製した。
また、ガス圧力、アンテナ出力、バイアス出力、基板温度を調整することで、メサ部100の作製を行い、メサ部100の側壁において、A−A線方向のエッチング領域12aでは、被酸化層は、上層32のみが露出し、B−B線方向のエッチング領域12bでは、被酸化層の上層および下層32、30が露出するようにエッチングした。
本実施例においては、メサ形成用のエッチング領域は、A−A線、B−B線の方向において、開口面積は、1:3、エッチング深さは1:2となっており、エッチング体積として、1:6となった。本実施例のように、基板に対して歪みの大きなGaIn1−xAs1−y量子井戸層等の結晶成長を行うと、各層は大きな膜応力を持つ。従って、メサ形成において、エッチング領域12aと12bのエッチング体積が異なることより、基板面に対して水平方向に圧縮応力あるいは引張応力が非対称に半導体活性層4に印加されることになり、偏波制御性をさらに高めることに寄与する。
ここでは、発光領域13の開口径を5μmφの形状とする面発光型半導体レーザの作製を行うため、メサ径45μmφの垂直形状エッチングを行った。
次に、選択酸化工程を実施した。すなわち、水蒸気雰囲気中で400℃の熱処理を行い、上層被酸化層32および下層被酸化層30をそれぞれ横方向に20μmの長さに亘って選択酸化して酸化領域OXを形成し、約5μmφの発光領域13を形成した。
このとき、メサ部100の側壁から発光領域13に向かって横方向に被酸化層32、30が選択酸化され、被酸化層AlAs層32、30は、Al層になるに伴って体積収縮し、被酸化層1層当たり1〜10GPaの圧縮応力F1が発生し、メサ中心部の活性層4に印加される。このとき、A−A線方向の応力は、上層32のみであるのでF1であり、B−B線方向の応力は上層32と下層30であるので(2×F1)となる。つまり、活性層4に印加される圧縮応力は、方向により大きく異なるため、半導体活性層4に直線偏波間の利得差が発生し、偏波制御性が高くなる。
また、この水蒸気酸化工程において、被酸化層32、30と同様に、凹部の側壁から横方向に、第1の半導体多層膜反射鏡6を構成するAl高濃度層が酸化される。これより、コンタクト電極9と周辺電極9bとを接続する配線パス18の下には、第1の半導体多層膜反射鏡6を構成するAl高濃度層の酸化層が形成される。配線パス18の幅を、第1の半導体多層膜反射鏡6を構成するAl高濃度層の側壁からの酸化長の2倍以下に設定することにより、凹部の側壁に露出し、配線パス18下層に位置する第1の半導体多層膜反射鏡6を構成するAl高濃度層が、全て酸化され、メサ領域外へのリーク電流22を阻止できる。
次に、ボンディングパッド17、配線パス18が形成されるべき部分と光取り出し口となるp型半導体多層膜反射鏡6上のエッチングマスク膜8を除去し、p型GaAsコンタクト層7上にp側電極9を形成する。このときボンディングパッド17とp側電極9とをつなぐ配線部9aを同時に形成し、その後、基板裏面にはn側電極10を形成した。
このようにして作製された面発光型半導体レーザは、活性層4の圧縮歪導入の効果により波長1.3μmにおいて低しきい電流密度(1kA/cm)で室温連続発振し、高温でのレーザ諸特性も良好であった。また、偏波制御が可能になり、偏波の変動やスイッチングが発生しなくなった。これに伴って、ノイズも低下し、光ディスクヘッド、通信用素子として利用することが可能になった。
また、傾斜基板を用いた場合に起こる異方性酸化により生じる非酸化領域の歪化や出射ビームパターン形状の非対称化の問題が改善され、所望のビームパターン形状が得られた。この結果、横モードの安定化も図れた。
すなわち、比較のため、偏波制御性を高めるのに有効とされる(100)面方位基板から10°オフ傾斜させた傾斜基板1を用いて作製した場合、異方性酸化による形状の歪みは顕著であり、本実施例と同じ円形のメサ構造では、図5(b)に表したように開口部(発光領域13)の形状はオフしている方向に歪んだ形になり、縦と横で1.1μmの寸法差を生じた。これに対して、面方位(100)面の基板を用いた場合は、図5(a)に表したように、対称な発光領域13が得られ、縦と横の寸法差は、0.1μmに低減されることが確認できた。また、ウェーハ全面にわたる再現性も良好であり、同一ウエーハ上に形成した多数の素子の寸法および形状は均一化され、単一モード発振性、しきい値、光出力等のレーザ特性も均一化され、高性能な面発光半導体レーザ素子の量産性が向上した。
本発明の素子では、コンタクト電極と周辺電極とこれらを結ぶ配線がほぼ同一レベルで形成されていて、平坦化処理を必要としない構造となるため、配線の「段切れ」を防ぐという利点を有する。また、コンタクト電極と周辺電極とを接続する配線パス18の下には、半導体多層膜反射鏡を構成するAl高濃度層の酸化層、あるいは後に説明するようにプロトン注入により形成された高抵抗領域、あるいは空洞が形成されるため、極めて効率よく電流狭窄することができ、低しきい値化、高速応答性、量産性の向上が可能となる。
メサ領域外へのリーク電流を阻止する方法として、本実施形態では、コンタクト電極9と周辺電極9bを繋ぐ配線パス18の下に、第1の半導体多層膜反射鏡6を構成するAl高濃度層の酸化領域OXが形成されることを利用しているが、p側電極9の配線パス18下層にプロトン注入により高抵抗領域を形成することや、配線パス18の下に空洞を形成しても同様の効果が得られ、この方法を用いてもリーク電流の阻止に効果があることを確認した。この場合、水蒸気酸化プロセス後、アイソレーション用のレジストパターンを形成し、SH溶液処理によりp側電極の配線パス18の下のGaAs(コンタクト)層7および上部半導体多層膜反射鏡6がエッチングにより除去し、空洞を形成した。配線パス18の下に空洞を形成することにより、メサ領域100の外へのリーク電流は完全に阻止できた。
また、本実施例では、電流狭窄部形成用の被酸化層32、30として、AlAs層を用いたが、Al組成比の高いAlGa1−xAs(x≧0.95)を用いても同様の効果が得られる。Al組成比を高くすると、水蒸気酸化工程において酸化速度が速く、工程時間を短縮でき、また酸化に伴う応力・歪の発生量も大きいので、素子の量産性や偏波制御性を高める上で好適である。
また、上下の被酸化層32、30が、それぞれ1層である場合を説明したが、複数層とすれば、さらに大きない効果を得ることができる。例えば、被酸化層の上層を1層、下層を2層とすると、上述の具体例よりも半導体活性層4に印加される圧縮応力の非対称性は、更に顕著になるため、偏波制御性を更に高めることができる。
図6乃至図8は、本実施形態の第2の具体例としての面発光型半導体素子の構造を表す模式図であり、図6はその上面図、図7は図6のA−A線断面図、図8は図6のB―B線断面図である。これらの図面については、図1乃至図5に関して前述したものと同様の要素には同一の符号を付して詳細な説明は省略する。
本具体例においては、エッチング領域12を細分化しない構造の正方形状の面発光型半導体レーザ素子が得られている。この構造も、図1乃至図5に関して前述したものと同様の方法で作製でき、同等のレーザ特性、偏波制御性、形状制御性が得られることを確認した。
すなわち、本構造においても、発光領域13を形成するための酸化領域OXが、A−A線方向には上層と下層(32、30)、B−B線方向には、上層(32)のみとなるように非対称に形成されている。こうすることにより、活性層4に印加される圧縮応力20は方向により大きく異なり、半導体活性層4に直線偏波間の利得差が発生し、偏波制御性が高くなる。また、エッチング体積が異なることより、基板面に対して水平方向に圧縮応力あるいは引張応力21が非対称に半導体活性層4に印加されることになり、偏波制御性をさらに高めることに寄与している。また、本具体例の構造では、配線の「段切れ」を抑制するため、メサ形成用のエッチング領域12の表面にポリイミド11を形成し、これを介してボンディングパッド17、配線部9a、コンタクト電極9を形成している。
図9乃至図11は、本実施形態の第3の具体例としての面発光型半導体素子の構造を表す模式図であり、図9はその上面図、図10は図9のA−A線断面図、図118は図9のB―B線断面図である。これらの図面については、図1乃至図8に関して前述したものと同様の要素には同一の符号を付して詳細な説明は省略する。
すなわち、本具体例においては、上層の被酸化層32のみに酸化領域OXを形成した。この場合にも、上述したものと同様の方法で作製でき、良好なレーザ特性、偏波制御性、形状制御性が得られることを確認した。ここでは、被酸化層32として、Al0.98Ga0.02As層を用い、水蒸気選択酸化による酸化領域OXの形成は、420℃の熱処理で行った。420℃においては、半導体多層膜反射鏡のAl高濃度層6b、2bに用いたAl0.94Ga0.06As層の酸化速度は、被酸化層32に用いたAl0.98Ga0.02As層の約1/4である。ここでは、発光領域13の形成のため、被酸化層32の酸化長を20μmに設定しているので、半導体多層膜反射鏡のAl高濃度層6b、2bの横方向の酸化長は、5μmになる。このとき、メサ形成用のエッチング深さが異なることにより、メサ部100中心の活性層4に印加される圧縮応力に非対称性が生まれる。半導体多層膜反射鏡のAl高濃度層6bのAl0.94Ga0.06As層の酸化による体積収縮は、7.5〜8.5%である。エッチング深さの異なる領域12a、12bの側壁において、半導体多層膜反射鏡の酸化されるAl高濃度層の層数の差を10とすると、全体で数十GPaオーダの応力が発生し、また、活性層4に与える応力、歪の大きさが、方向により大きく異なることになる。
半導体多層膜反射鏡6b、2bにおいて1層あたりに生じる応力は、Alを更に高濃度に含む被酸化層32に比べると小さく、またメサ中心の発光領域の活性層からの距離は遠い。しかし、図9乃至図11に表した構造のように、酸化されるAl高濃度層の層数の差が大きければ、総応力は大きくなり、同等の偏波制御性、形状制御性が得られることになる。
(第2の実施の形態)
図12乃至図15は、本発明の第2の実施の形態にかかる面発光型半導体レーザの構成図であり、図12は上面図、図13は図12のA−A線における断面図、図14は図12のB−B線における断面図である。また、図15は、図14に表したメサ中心部分の断面拡大図である。ここでも面発光型半導体レーザについて説明する。
本実施形態の面発光型半導体レーザも、基板1の上に、半導体活性層4と、第1の半導体多層膜反射鏡6と第2の半導体多層膜反射鏡2とが形成されている。第1の半導体多層膜反射鏡6は、半導体活性層4に対して基板1とは反対側に設けられている。また、第2の半導体多層膜反射鏡2は、半導体活性層4に対して基板1側に設けられている。これら半導体多層膜反射鏡6、2は、半導体活性層4を狭持し、基板1に対して垂直方向の共振器を形成する。また、半導体活性層4の上下には、半導体クラッド層3及び半導体クラッド層5が形成されている。
第1の半導体多層膜反射鏡6の上には、コンタクト層7が形成され、これらを介して、発光領域13に電流を注入するためのコンタクト電極9が形成されている。コンタクト電極9は、発光領域13の上が開口するように形成されている。
基板1の裏面には、電極10が形成され、第2の半導体多層膜反射鏡2を介して、発光領域13に電流を注入するようにされている。
第1および第2の半導体多層膜反射鏡6、2、半導体活性層4、半導体クラッド層3及び半導体クラッド層5は、凸部形状のメサ部100を構成している。また、メサ部100の周辺には、メサ形成用のエッチング領域12が設けられている。
第1の半導体多層膜反射鏡6の下、第2の半導体多層膜反射鏡2の上には、Alを高濃度に含む上層被酸化層32および下層被酸化層30が、メサ部100の側壁から発光領域13に向かって横方向に酸化されることによって電流狭窄部が形成されている。電流狭窄部は、発光領域13へ電流を絞り込むためのものである。また、最表面層の被酸化層32には、酸化速度を制御するためのプロトン注入領域15が形成されている。
また、メサ形成用のエッチング領域12の表面にはポリイミド11が形成され、これを介してボンディングパッド17が形成されている。ボンディングパッド17は、配線部9aによってコンタクト電極9と接続されている。
後に詳しく説明するように、本実施形態の面発光型半導体レーザは、プロトン注入領域15を有するので、メサ部100の側壁から発光領域13に向かって被酸化層32を横方向に酸化する際に、被酸化層32のうちでプロトンが注入された部分15において、酸化速度をプロトン濃度に比例して大きく減速することができる。このようなプロトン注入効果を利用して、電流狭窄部を形成するための酸化領域OXが、上層と下層(32、30)あるいは下層(30)のみで非等方的に形成でき、被酸化層の酸化に伴う体積収縮により発生する圧縮応力が、メサ100中心である半導体活性層4の中心部に対して非対称に印加される。これにより、第1実施形態と同様の偏波制御性の高い面発光型半導体レーザ素子の作製が可能となる。
次に、この面発光型半導体レーザの作製方法について具体的に説明する。
先ず、洗浄された厚さ400μmの3インチ、面方位(100)のn型GaAs基板1上に、MOCVD装置を用いてn型の半導体多層膜反射鏡2、電流狭窄部を形成する被酸化層30、半導体クラッド層3、半導体活性層4、半導体クラッド層5、電流狭窄部を形成する被酸化層32、p型の半導体多層膜反射鏡6、コンタクト層7を順次成長する。
ここで半導体活性層4と半導体クラッド層3及び半導体クラッド層5よりなる共振器の上下に半導体多層膜反射鏡2及び6を配置したものを基本構造とし、1.3μm帯のGaInAsN面発光型半導体レーザとして設計及び製作した。
半導体多層膜反射鏡2、は波長1.3μmの光学波長1/4の厚さでn型GaAs層(高屈折率層)とn型AlGa1−yAs(0<y<1)(低屈折率層)が交互に積層された積層構造とした。本実施例では、Al組成、y=0.94のAl0.94Ga0.06As層を低屈折率層に用いた。また、半導体多層膜反射鏡2のn型ドーパントとして、Siを用い、ドーパント濃度は、2×1018/cmとした。
半導体クラッド層3は、n型GaInPとした。
半導体活性層4は、発光ピーク波長が1.3μmとなるように調整されたGaIn1−xAs1−y(0≦x≦1、0≦y<1)層及びバリヤ層としてGaAs層が積層された量子井戸構造とした。ここでは中心にGaIn1−xAs1−y(0≦x≦1、0≦y<1)層を形成し、この上下にバリヤ層としてGaAs層が形成された3層構造とした。GaIn1−xAs1−y(0≦x≦1、0≦y<1)量子井戸層4のIn組成は30〜35%、窒素組成は0.5〜1.0%とし、厚さは7nmとした。GaIn1−xAs1−y(0≦x≦1、0≦y<1)量子井戸層4の格子定数は、n型GaAs基板1よりも大きくなるように組成を制御して、約2.5%の圧縮歪量を内在する組成Ga0.66In0.34As0.990.01とした。このため、微分利得係数は増大し、無歪の場合に比較して、しきい電流値が一層低減された。
半導体クラッド層5は、p型GaInPとした。
半導体多層膜反射鏡6は、波長1.3μmの光学波長1/4の厚さでp型GaAs層(高屈折率層)とp型AlGa1−yAs(0<y<1)(低屈折率層)とが交互に積層された積層構造とした。n型半導体多層膜反射鏡2と同様に、本実施例では、Al組成y=0.94としたAl0.94Ga0.06As層を低屈折率層に用いた。また、半導体多層膜反射鏡6のp型ドーパントとしては、C(炭素)を用い、ドーパント濃度は、2×1018/cm(量子井戸層4付近)〜1×1019/cm(コンタクト層7付近)とした。
上層被酸化層32および下層被酸化層30は、クラッド層5の上およびクラッド層3の下にそれぞれ形成され、上下の半導体多層膜反射鏡6、2を構成するAlGaAsよりAl組成比の大きいAlGa1−xAs(x≧0.98)を用いた。本実施例においては、これら被酸化層32、30の材料として、AlAsを用いた。
コンタクト層7は、p型GaAsとし、p型ドーパントとして、C(炭素)を用い、ドーパント濃度は、2×1019/cmとした。
次に、パターン形成用のエッチングマスク膜8として、Si膜を形成し、プロトン注入領域15のパターンを形成した。ここでは、Si膜8およびレジストをインプラマスクに使用し、選択酸化を制御するためのプロトン注入領域15のパターンを形成した。プロトン注入領域15の形成のために、被酸化層32を構成するAlAs層(表面から深さ2.6μm)のイオン注入領域のプロトン濃度が1×1017/cmになるように、加速電圧:280keV、ドーズ量:4×1013/cmの条件でイオン注入を行った。また、この条件は、表面から深さ2.3μm(被酸化層32よりも表面側)において最大濃度である 1×1018/cmが得られる条件であり、活性層4の下の被酸化層30を構成するAlAs層(表面から深さ3.0μm)には、プロトンはほとんど注入されない。
このプロトンの注入条件においては、プロトン注入領域15に導入されるプロトンの濃度は、半導体層が高抵抗されない濃度であるが、酸化を効果的に阻止できる濃度である。
図16は、AlGaAs層の酸化速度のプロトン濃度に対する依存性を表すグラフ図である。同図から分かるように、プロトン濃度1×1017/cmで、酸化速度は約1/3に低下する。したがって、上層の被酸化層32の酸化速度は大きく減速し、酸化長を約1/3にでき、かつ素子抵抗も高くはならない。
次に、同様のフォトリソグラフィ工程により形成されたエッチングマスク膜8上のメサパターンにより、n型半導体多層膜反射鏡2までエッチングを行い、メサ部を作製する。メサパターンは、ICP(Inductively Coupled Plasma)プラズマドライエッチング装置により、三塩化ボロン・窒素混合ガスによるエッチング処理を行った。このとき、アンテナ出力、バイアス出力、基板温度を調整することで、異方性エッチングが生じる条件とした。ここでは、開口部14をφ5μmの円形とする面発光型半導体レーザの作製を行うため、メサをφ45μmの円柱形状のエッチングを行った。
次に、水蒸気雰囲気中で400℃の熱処理を行い、被酸化層32を横方向に選択酸化し電流狭窄部を形成した。このとき、側面からの酸化長を20μmとし、5μm径の非酸化(発光)領域14を作製した。傾斜基板において、オフ角度方向に生じる形状の歪み(縦と横で0.75μmの寸法差)が、0.1μmに低減されることが示された。
次に、ポリイミド11を用いてメサエッチング部12を埋め込み、次に、ボンディングパッド17を形成した。次に、配線が形成されるべき部分と光取り出し口となるp型半導体多層膜反射鏡6の上の絶縁膜8を除去し、p型GaAsコンタクト層7の上にp側電極9を形成した。このとき、ボンディングパッド17とp側電極9とをつなぐ配線部9aを同時に形成し、その後、基板裏面にはn側電極10を形成した。
このようにして作製された面型半導体レーザは、波長1.3μmで活性層4の圧縮歪導入の効果に加え、配線の下のプロトン注入による高抵抗化により、リーク電流が阻止され、低しきい電流密度、単一モードの室温連続発振が得られ、高温での特性も良好であった。また、偏波制御が可能になり、偏波の変動やスイッチングが発生しなくなった。これに伴って、ノイズも低下し、光ディスクヘッド、通信用素子として利用することが可能になった。
また、前述した実施形態と同様に、異方性酸化により生じる非酸化領域14、出射ビームパターンの寸法および形状が改善され、所望のビームパターン寸法および形状が得られた。
また、被酸化層32に注入するプロトン濃度について、ここでは1×1017/cmの濃度を用いたが、この濃度よりも高濃度あるいは低濃度のプロトンを用いても、同様の効果が得られることは明らかである。高濃度のプロトンを注入する場合、Al高濃度に含有する被酸化層32の酸化速度は大きく低下し、所望の位置で酸化の進行を抑制でき、酸化長や酸化形状の制御性は高くなるため好適である。その一方で、半導体多層膜反射鏡2、6のドーパント濃度よりも、プロトンを高濃度に注入する場合、注入領域は高抵抗化し、電流が流れにくくなる。そこで、選択酸化による電流集中部に電流が流れやすく、絞り込まれるように、プロトン注入領域および上部電極の位置を工夫する必要がある。
また、本実施例では、電流狭窄部形成用の被酸化層32、30として、AlAs層を用いたが、Al組成比の高いAlGa1−xAs(x≧0.95)を用いても同様の効果が得られることは明らかである。Al組成比が高い場合、水蒸気酸化工程において、酸化速度が速く、工程時間を短縮でき、また酸化に伴う応力、歪の発生量も大きいので、素子の量産性、偏波制御性を高める上で好適である。
(第3の実施の形態)
次に、本発明の第3の実施の形態について説明する。
図17乃至図20は、本発明の第3の実施の形態にかかる面発光型半導体レーザの模式図であり、図17はその平面図、図18は図17のA−A線断面図、図19は図17のB−B線断面図、図20は図17のC−C線断面図である。これらの図面については、図1乃至図16に関して前述したものと同様の要素には同一の符号を付して詳細な説明は省略する。
第1の半導体多層膜反射鏡6の下において、Alを高濃度に含む被酸化層32が、メサ部100の側壁から発光領域13に向かって横方向に酸化されることによって電流狭窄部を形成している。電流狭窄部は、発光領域13へ電流を絞り込むためのものである。
また、第1の半導体多層膜反射鏡6には、酸化速度を制御するためのプロトン注入領域15が形成されている。これにより、プロトン注入領域15において第1の半導体多層膜反射鏡6を構成するAl高濃度層6bは、水蒸気酸化に際して、その酸化速度はプロトン濃度に比例して大きく減速する。プロトン注入領域15では、凹部側面からの酸化長は短く、酸化長の長い(プロトン注入されていない)半導体多層膜反射鏡のAl高濃度層6bと比べ、応力は小さく、メサ中心の半導体活性層に与える歪の印加は非等方的(非対称)になる。このことを利用した本発明の素子は、第1及び第2実施形態と同様に偏波制御性が高くなることを特長とし、その作製も容易なことから、高性能な面発光型半導体レーザ素子の量産性も向上する。
次に、この面発光型半導体レーザの作製方法について具体的に説明する。
先ず、洗浄された厚さ400μmの3インチ、面方位(100)のn型GaAs基板1上に、MOCVD装置を用いてn型の半導体多層膜反射鏡2、半導体クラッド層3、半導体活性層4、半導体クラッド層5、電流狭窄部を形成する被酸化層32、p型の半導体多層膜反射鏡6、コンタクト層7を順次成長する。
ここで半導体活性層4と半導体クラッド層3及び半導体クラッド層5よりなる共振器の上下に半導体多層膜反射鏡2及び6を配置したものを基本構造とし、1.3μm帯のGaInAsN面発光型半導体レーザとして最適な特性が得られるように設計及び製作した。
半導体多層膜反射鏡2、は波長1.3μmの光学波長1/4の厚さでn型GaAs層(高屈折率層)とn型AlGa1−yAs(0<y<1)(低屈折率層)が交互に積層された積層構造とした。本実施例では、Al組成y=0.94のAl0.94Ga0.06As層を低屈折率層に用いた。また、半導体多層膜反射鏡2のn型ドーパントとして、Siを用い、ドーパント濃度は、2×1018/cmとした。
半導体クラッド層3は、n型GaInPとした。
半導体活性層4は、発光ピーク波長が1.3μmとなるように調整されたGaIn1−xAs1−y(0≦x≦1、0≦y<1)層及びバリヤ層としてGaAs層が積層された量子井戸構造とした。ここでは中心にGaIn1−xAs1−y(0≦x≦1、0≦y<1)層を形成し、この上下にバリヤ層としてGaAs層が形成された3層構造とした。GaIn1−xAs1−y(0≦x≦1、0≦y<1)量子井戸層4のIn組成は30〜35%、窒素組成は0.5〜1.0%とし、厚さは7nmした。GaIn1−xAs1−y(0≦x≦1、0≦y<1)量子井戸層4の格子定数は、n型GaAs基板1よりも大きくなるように組成を制御して、圧縮歪量、約2.5%を内在する組成Ga0.66In0.34As0.990.01とした。このため、微分利得係数は増大し、無歪の場合に比較して、しきい電流値が一層低減された。
半導体クラッド層5は、p型GaInPとした。半導体多層膜反射鏡6は、波長1.3μmの光学波長1/4の厚さでp型GaAs層(高屈折率層)とp型AlGa1−yAs(0<y<1)(低屈折率層)が交互に積層された積層構造とした。n型半導体多層膜反射鏡2と同様に、本実施例では、Al組成y=0.94のAl0.94Ga0.06As層を低屈折率層に用いた。また、半導体多層膜反射鏡6のp型ドーパントとして、C(炭素)を用い、ドーパント濃度は、2×1018/cm(量子井戸層4付近)〜1×1019/cm(コンタクト層7付近)とした。
上層被酸化層32および下層被酸化層30は、クラッド層5上およびクラッド層3下にそれぞれ形成され、上下の半導体多層膜反射鏡6、2を構成するAlGaAsよりAl組成比の大きいAlGa1−xAs(x≧0.98)を用いる。本実施例においては、AlGa1−xAs(x=0.98)層を用いた。
コンタクト層7は、p型GaAsとし、p型ドーパントとして、C(炭素)を用い、ドーパント濃度は、2×1019/cmとした。
次に、パターン形成用のエッチングマスク膜8として、Si膜を形成した。ここでは、Si膜8およびレジストをインプラマスクに使用し、アイソレーション用パターン15aおよび選択酸化制御用パターン15cを形成した。次に、イオン注入装置により、アイソレーション用パターン部15aには、加速電圧100、200、300keV、ドーズ量それぞれ1×1015/cmを照射して、プロトンを注入し、高抵抗領域15aを形成した。このプロトン注入によって、深さ0.5〜2.5μmの領域に均一にプロトンが分布し、深さ約4μm付近まで高抵抗されている(本実施例では表面から活性層までの深さは、2.8μm)。
また、半導体多層膜のAl高濃度層用プロトン注入領域15cには、加速電圧:200keV、ドーズ量:3×1013/cmの条件でイオン注入を行った。これは、表面から深さ1.5μmで、最大濃度、1×1018/cmとなる条件であり、表面から深さ1〜2μmの部分が、プロトン濃度1×1016/cm以上となる領域となる。また、被酸化層32のAl0.98Ga0.02As層(表面から深さ2.6μm)には、プロトンは注入されない。また、この条件では、注入領域は高抵抗されない濃度である。図16に表したAlGaAs層の酸化速度のプロトン濃度依存性からわかるように、プロトン濃度1×1017/cmで、酸化速度は約1/3に低下する。従って、プロトン注入された半導体多層膜反射鏡のAl高濃度層6bは、水蒸気酸化工程における酸化速度が大きく減速し、酸化長を約1/3にでき、かつ素子抵抗も高くはならない。
次に、同様のフォトリソグラフィ工程により形成されたエッチングマスク膜8上のメサパターンにより、n型半導体多層膜反射鏡2の上部までエッチングを行い、メサ部を作製する。メサパターンは、ICP(Inductively Coupled Plasma)プラズマドライエッチング装置により、三塩化ボロン・窒素混合ガスによるエッチング処理を行った。このとき、アンテナ出力、バイアス出力、基板温度を調整することで、異方性エッチングが生じる条件とした。ここでは、開口部をφ5μmの円形とする面発光型半導体レーザの作製を行うため、メサをφ45μmの円柱形状のエッチングを行った。
次に、水蒸気雰囲気中で420℃の熱処理を行い、被酸化層32を横方向に選択酸化し電流狭窄部を形成した。基板温度420℃では、(プロトン注入なし)半導体多層膜反射鏡のAl高濃度層6bのAl0.94Ga0.06As層の酸化速度は、被酸化層Al0.98Ga0.02As層の約1/4であり、ここでは、電流狭窄部形成のため、被酸化層32の酸化長を20μmに設定しているので、プロトン注入していない部分の半導体多層膜反射鏡のAl高濃度層6bの横方向の酸化長は、5μmになる。これが、プロトン注入領域では、約1/3の1.7μmと短くなり、メサ部100中心の活性層に印加される圧縮応力に非対称性が生まれる。
半導体多層膜反射鏡のAl高濃度層6bのAl0.94Ga0.06As層の酸化による体積収縮は、7.5〜8.5%であり、プロトン注入される半導体多層膜反射鏡の層数を10とすると、全体で数10GPaオーダの応力が発生し、また、活性層に与える応力、歪の大きさが、活性層中心と被酸化層の距離に反比例して減少するため、活性層に印加される圧縮応力は、方向により大きく異なることになる。側面からの酸化長を20μmとし、5μm径の非酸化(発光)領域14を作製したとき、傾斜基板(10°オフ)におけるオフ角度方向に生じる形状の歪み(縦と横で0.75μmの寸法差)は、通常基板(100)においては、0.1μmに低減されることが示された。
次に、ボンディングパッド17およびp型GaAsコンタクト層7の上にp側電極9を形成した。このときボンディングパッド17とp側電極9とをつなぐ配線部9aを同時に形成した。次に、基板裏面にn側電極10を形成して、素子の要部が完成した。
このようにして作製された面型半導体レーザは、波長1.3μmで活性層4の圧縮歪導入の効果に加え、配線下のプロトン注入による高抵抗化により、リーク電流が阻止され、低しきい電流密度、単一モードの室温連続発振が得られ、高温での特性も良好であった。また、偏波制御が可能になり、偏波の変動やスイッチングが発生しなくなった。これに伴って、ノイズも低下し、光ディスクヘッド、通信用素子として利用することが可能になった。
また、本発明の素子では、コンタクト電極と周辺電極とこれらを結ぶ配線がほぼ同一レベルで形成されていて、平坦化処理を必要としない構造となるため、配線の段切れを防ぐという利点を有する。
被酸化層32として、1層の場合を説明したが、複数層である場合も同様な効果を得ることができる。また被酸化層として、クラッド層3下に形成し、半導体多層膜反射鏡2を構成するAlGaAsよりAl組成比の大きいAlGa1−xAs(x≧0.98)を用いてもよい。この場合、表面より深いところに被酸化層が位置するため、プロトン注入の影響を受けにくいという利点を持つ。
また、注入するプロトン濃度についても、ここでは1×1017/cmの濃度を用いたが、この濃度よりも高濃度あるいは低濃度のプロトンを用いても、同様の効果が得られることは明らかである。高濃度のプロトンを注入する場合、Alを高濃度に含有する半導体多層膜反射鏡のAl高濃度層6bの酸化速度は大きく低下し、所望の位置で酸化の進行を抑制でき、酸化長や酸化形状の制御性は高くなるため好適である。その一方で、半導体多層膜反射鏡2、6のドーパント濃度よりも、プロトンを高濃度に注入する場合、注入領域は、高抵抗化し、電流が流れにくくなるため、選択酸化による電流集中部に電流が流れやすく、絞り込まれるように、注入領域および上部電極の位置を工夫する必要がある。
また、本実施例では、電流狭窄部形成用の被酸化層32として、Al0.98Ga0.02As層を用いたが、Al組成比の高いAlAs層や、AlGa1−xAs(x≧0.95)を用いても同様に本発明と同様の効果が得られることは明らかである。
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、上記具体例においては、活性層4として、GaIn1−xAs1−y(0≦x≦1、0≦y<1)を用いて説明したが、それに限らず、InGaAlP系、AlGaAs系やInGaAsP系など、様々な材料を用いることもできる。
クラッド層4及び5、半導体多層膜反射鏡2及び6も、様々な材料を用いることもできる。例えば、半導体多層膜反射鏡2及び6としては、AlGaAs層とGaAs層の積層構造に限らず、Alを含まない屈折率の大きい材料と小さい材料の積層構造も可能である。また、GaInP/GaAs、GaInPAs/GaAs、GaInP/GaInAs、GaInP/GaPAs、GaInP/GaInAs、GaP/GaInAsN等の組合せを用いることができる。
また、上下被酸化層32、30、それぞれ1層であってもよく、少なくともいずれかが複数層であってもよい。例えば、被酸化層の上層を2層、下層を1層とすると、半導体活性層4に印加される圧縮応力の非対称性は、更に顕著になるため、偏波制御性を更に高めることができる。
また、成長方法について、MBE(molecular beam epitaxy)法等を用いることもできる。また、上述の例では、積層構造として3重量子井戸構造の例を示したが、他の量子井戸を用いた構造等を用いることもできる。
また、所望の開口部の形状として、本実施例では、主に円形、正方形を用いて説明を行ったが、長方形、楕円などの形状においても、同様に本発明の効果があることは明らかである。
その他、本発明の実施の形態として上述した面発光型半導体素子及びその製造方法
を基にして、当業者が適宜設計変更して実施しうるすべての面発光型半導体素子及びその製造方法も同様に本発明の範囲に属する。
本発明の第1の実施の形態にかかる面発光型半導体素子の構造を表す上面図である。 図1のA−A線断面図であり、選択被酸化層上層32のみが選択酸化されていることを表す。 図1のB―B線断面図であり、選択被酸化層上層32および下層30が選択酸化されていることを表す。 図1のC−C線断面図であり、メサ部100および配線パス部18の下の構造を表す。 (a)は(100)面基板における非酸化領域の形状を表し、(b)は10°オフ基板における非酸化領域の形状を表す模式図である。 第1実施形態の第2の具体例としての面発光型半導体素子の構造を表す上面図である。 図6のA−A線断面図である。 図6のB―B線断面図である。 第1実施形態の第3の具体例としての面発光型半導体素子の構造を表す上面図である。 図9のA−A線断面図である。 図9のB―B線断面図である。 本発明の第2の実施の形態にかかる面発光型半導体レーザの上面図である。 図12のA−A線における断面図である。 図12のB−B線における断面図である。 図14に表したメサ中心部分の断面拡大図である。 AlGaAs層の酸化速度のプロトン濃度に対する依存性を表すグラフ図である。 本発明の第3の実施の形態にかかる面発光型半導体レーザの平面図である。 図17のA−A線断面図である。 図17のB−B線断面図である。 図17のC−C線断面図である。 メサの周辺部に応力付加領域24を設置した具体例を表す模式図である。 円柱メサ形状にT字型の突起形状24を付加した具体例を表す模式図である。 ダンベル型メサ構造25を表す模式図である。
符号の説明
1・・・n型GaAs基板
2・・・半導体多層反射膜
3・・・クラッド層
4・・・活性層
5・・・クラッド層
6・・・半導体多層反射膜
6b・・半導体多層膜反射鏡のAl高濃度層
7・・・コンタクト層
8・・・パターン形成用エッチングマスク膜(絶縁膜)
9・・・p側電極
9a・・配線部
9b・・周辺電極
10・・・n側電極
11・・・ポリイミド
12a・・・メサエッチング領域、凹部
12b・・メサエッチング領域、凹部(溝深さ:大)
13・・・発光領域
14・・・非酸化領域、開口
15・・・プロトン注入領域
15a・・アイソレーション用プロトン注入領域
15b・・選択酸化制御用プロトン注入領域
15c・・半導体多層膜のAl高濃度層用プロトン注入領域
17・・・ボンディングパッド
18・・・配線パス
19・・・注入電流
21・・・被酸化領域
22・・・リーク電流
23・・・光取り出し口
24・・・応力付加領域
25・・・非対称メサ構造
30、32・・被酸化層
50・・・周辺部
100・・メサ部(凸部)

Claims (7)

  1. 基板と、
    前記基板の主面上に形成された発光領域を有する半導体活性層と、
    前記半導体活性層を狭持し、前記基板に対して垂直方向の共振器を形成する、前記半導体活性層に対して前記基板と反対側に形成された第1の半導体多層膜反射鏡及び前記半導体活性層に対して前記基板側に形成された第2の半導体多層膜反射鏡と、
    前記半導体活性層に電流を注入するための一対の電極と、
    前記半導体活性層の近傍に形成され、Alを含む被酸化層が複数層設けられ、その側面から酸化されることによって形成された電流狭窄部と、
    少なくとも前記被酸化層の最上層に到達する溝深さの凹部と、
    前記凹部に囲まれたメサ部と、
    を備え、
    前記電流狭窄部は、前記主面に対して平行な第1の方向において前記半導体活性層の近傍に形成され前記複数層の被酸化層のうちの第1の層数の前記被酸化層が酸化されてなる第1の電流狭窄部と、前記主面に対して平行で前記第1の方向とは異なる第2の方向において前記半導体活性層の近傍に形成され前記第1の層数よりも小なる第2の層数の前記被酸化層が酸化されてなる第2の電流狭窄部と、を有することを特徴とする面発光型半導体素子。
  2. 基板と、
    前記基板の主面上に形成された発光領域を有する半導体活性層と、
    前記半導体活性層を狭持し、前記基板に対して垂直方向の共振器を形成する、前記半導体活性層に対して前記基板と反対側に形成された第1の半導体多層膜反射鏡及び前記半導体活性層に対して前記基板側に形成された第2の半導体多層膜反射鏡と、
    前記半導体活性層に電流を注入するための一対の電極と、
    前記半導体活性層の近傍に形成され、Alを含む被酸化層が複数層設けられ、その側面から酸化されることによって形成された電流狭窄部と、
    少なくとも前記被酸化層の最上層に到達する溝深さの凹部と、
    前記凹部に囲まれたメサ部と、
    を備え、
    前記電流狭窄部は、前記複数層の被酸化層のうちの第1の層数の前記被酸化層が酸化されてなる第1の電流狭窄部と、前記第1の層数よりも小なる第2の層数の前記被酸化層が酸化されてなる第2の電流狭窄部と、を有し、
    前記凹部のうちで前記第1の電流狭窄部に隣接した第1の部分は、前記第1の層数の前記被酸化層の前記酸化されてなる部分に至る第1の溝深さを有し、
    前記凹部のうちで前記第2の電流狭窄部に隣接した第2の部分は、前記第1の溝深さよりも浅く、前記第2の層数の前記被酸化層の前記酸化されてなる部分に至る第2の溝深さを有することを特徴とする面発光型半導体素子。
  3. 基板と、
    前記基板の主面上に形成された発光領域を有する半導体活性層と、
    前記半導体活性層を狭持し、前記基板に対して垂直方向の共振器を形成する、前記半導体活性層に対して前記基板と反対側に形成された第1の半導体多層膜反射鏡及び前記半導体活性層に対して前記基板側に形成された第2の半導体多層膜反射鏡と、
    前記半導体活性層に電流を注入するための一対の電極と、
    前記半導体活性層の近傍に形成され、Alを含む被酸化層が複数層設けられ、その側面から酸化されることによって形成された電流狭窄部と、
    少なくとも前記被酸化層の最上層に到達する溝深さの凹部と、
    前記凹部に囲まれたメサ部と、
    を備え、
    前記電流狭窄部は、前記複数層の被酸化層のうちの第1の層数の前記被酸化層が酸化されてなる第1の電流狭窄部と、前記第1の層数よりも小なる第2の層数の前記被酸化層が酸化されてなる第2の電流狭窄部と、を有し、
    前記被酸化層のうちの酸化された部分に隣接する未酸化の部分は、前記酸化された部分よりも高い濃度のプロトンを含有してなることを特徴とする面発光型半導体素子。
  4. 基板と、
    前記基板の主面上に形成された発光領域を有する半導体活性層と、
    前記半導体活性層を狭持し、前記基板に対して垂直方向の共振器を形成する、前記半導体活性層に対して前記基板と反対側に形成された第1の半導体多層膜反射鏡及び前記半導体活性層に対して前記基板側に形成された第2の半導体多層膜反射鏡と、
    前記半導体活性層に電流を注入するための一対の電極と、
    前記半導体活性層の近傍に形成され、Alを含む被酸化層が複数層設けられ、その側面から酸化されることによって形成された電流狭窄部と、
    少なくとも前記被酸化層の最上層に到達する溝深さの凹部と、
    前記凹部に囲まれたメサ部と、
    を備え、
    前記第1及び第2の半導体多層膜反射鏡の少なくともいずれかは、端面から酸化されることにより形成された酸化領域を有し、前記主面に対して平行な第1の方向における前記端面から酸化された長さが小なる第1の部分と、前記主面に対して平行で前記第1の方向とは異なる第2の方向における前記端面から酸化された長さが大なる第2の部分と、を有し、
    前記側面からの前記電流狭窄部の長さは、前記第1の部分の前記酸化された長さと前記第2の部分の前記酸化された長さのいずれよりも大なることを特徴とする面発光型半導体素子。
  5. 基板と、
    前記基板の主面上に形成された発光領域を有する半導体活性層と、
    前記半導体活性層を狭持し、前記基板に対して垂直方向の共振器を形成する、前記半導体活性層に対して前記基板と反対側に形成された第1の半導体多層膜反射鏡及び前記半導体活性層に対して前記基板側に形成された第2の半導体多層膜反射鏡と、
    前記半導体活性層に電流を注入するための一対の電極と、
    前記半導体活性層の近傍に形成され、Alを含む被酸化層が複数層設けられ、その側面から酸化されることによって形成された電流狭窄部と、
    少なくとも前記被酸化層の最上層に到達する溝深さの凹部と、
    前記凹部に囲まれたメサ部と、
    を備え、
    前記第1及び第2の半導体多層膜反射鏡の少なくともいずれかは、端面から酸化されることにより形成された酸化領域を有し、前記端面から酸化された長さが小なる第1の部分と、前記端面から酸化された長さが大なる第2の部分と、を有し、
    前記第1の部分において、酸化領域に隣接する未酸化の領域は、前記酸化領域よりも高い濃度のプロトンを含有してなることを特徴とする面発光型半導体素子。
  6. 基板の主面上に、活性層と、Alを含む複数の被酸化層と、を設ける工程と、
    前記主面上からみて発光領域とすべき部分の周囲に、前記複数の被酸化層のうちの第1の層数の被酸化層の端面が露出するように第1の凹部と、前記複数の被酸化層のうちの前記第1の層数よりも小なる第2の層数の被酸化層の端面が露出するように第2の凹部と、を形成する工程と、
    前記第1及び第2の凹部において露出している前記被酸化層の端面から酸化を進行させる工程と、
    を備えたことを特徴とする面発光型半導体素子の製造方法。
  7. 基板の主面上に、活性層と、半導体多層膜反射鏡と、を積層する工程と、
    前記主面上からみて発光領域とすべき部分を取り囲むように、前記半導体多層膜反射鏡にプロトンが打ちまれた第1の部分と、前記半導体多層膜反射鏡にプロトンが打ち込まれていない第2の部分と、を形成する工程と、
    前記第1及び第2の部分の端面から、前記半導体多層膜反射鏡を構成する半導体層の少なくともいずれかの酸化を進行させる工程と、
    を備えたことを特徴とする面発光型半導体素子の製造方法。
JP2003377246A 2003-11-06 2003-11-06 面発光型半導体素子及びその製造方法 Expired - Fee Related JP4138629B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003377246A JP4138629B2 (ja) 2003-11-06 2003-11-06 面発光型半導体素子及びその製造方法
US10/978,346 US7244629B2 (en) 2003-11-06 2004-11-02 Vertical cavity surface emitting laser diode and method for manufacturing the same
CN200410092250.9A CN1614836A (zh) 2003-11-06 2004-11-05 表面发光型半导体元件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003377246A JP4138629B2 (ja) 2003-11-06 2003-11-06 面発光型半導体素子及びその製造方法

Publications (2)

Publication Number Publication Date
JP2005142361A JP2005142361A (ja) 2005-06-02
JP4138629B2 true JP4138629B2 (ja) 2008-08-27

Family

ID=34631366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003377246A Expired - Fee Related JP4138629B2 (ja) 2003-11-06 2003-11-06 面発光型半導体素子及びその製造方法

Country Status (3)

Country Link
US (1) US7244629B2 (ja)
JP (1) JP4138629B2 (ja)
CN (1) CN1614836A (ja)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315234C (zh) * 2004-02-17 2007-05-09 长春理工大学 垂直腔面发射半导体激光器制作中刻蚀环形分布孔法
KR100590775B1 (ko) * 2004-12-08 2006-06-19 한국전자통신연구원 실리콘 발광 소자
JP4568125B2 (ja) * 2005-01-17 2010-10-27 株式会社東芝 面発光型半導体素子
JP4412237B2 (ja) * 2005-06-02 2010-02-10 セイコーエプソン株式会社 光素子及びその製造方法
JPWO2007116659A1 (ja) * 2006-03-23 2009-08-20 日本電気株式会社 面発光レーザ
JP5250999B2 (ja) * 2006-06-08 2013-07-31 ソニー株式会社 面発光型半導体レーザ
JP5087874B2 (ja) * 2006-07-28 2012-12-05 富士ゼロックス株式会社 面発光型半導体レーザおよびその製造方法
CN100456584C (zh) * 2006-08-02 2009-01-28 长春理工大学 大出光孔垂直腔面发射半导体激光器的多芯电注入结构
JP2008042053A (ja) * 2006-08-09 2008-02-21 Sony Corp 半導体発光素子
JP2008117899A (ja) * 2006-11-02 2008-05-22 Furukawa Electric Co Ltd:The 面発光レーザ素子及び面発光レーザアレイ
JP4992503B2 (ja) * 2007-03-27 2012-08-08 ソニー株式会社 面発光型半導体レーザおよびその製造方法
US8084357B2 (en) * 2007-04-11 2011-12-27 United Microelectronics Corp. Method for manufacturing a dual damascene opening comprising a trench opening and a via opening
US20090283310A1 (en) * 2007-04-11 2009-11-19 Wei-Chih Chen Multi cap layer and manufacturing method thereof
US20100260992A1 (en) * 2007-04-11 2010-10-14 Wei-Chih Chen Multi cap layer
JP5092533B2 (ja) * 2007-05-11 2012-12-05 富士ゼロックス株式会社 面発光型半導体レーザ、光学装置、光照射装置、情報処理装置、光送信装置、光空間伝送装置および光伝送システム
US7764852B2 (en) * 2007-07-30 2010-07-27 Hewlett-Packard Development Company, L.P. Microresonantor systems and methods of fabricating the same
JP4973940B2 (ja) * 2007-10-15 2012-07-11 ソニー株式会社 半導体発光素子の製造方法
JP5093480B2 (ja) * 2008-01-09 2012-12-12 ソニー株式会社 面発光型半導体レーザおよびその製造方法
JP5274038B2 (ja) * 2008-02-06 2013-08-28 キヤノン株式会社 垂直共振器型面発光レーザの製造方法とレーザアレイの製造方法
JP4948451B2 (ja) * 2008-03-07 2012-06-06 古河電気工業株式会社 面発光レーザ素子および面発光レーザ素子の製造方法
JP2009238815A (ja) * 2008-03-26 2009-10-15 Fuji Xerox Co Ltd 面発光型半導体レーザおよびその製造方法
JP5408477B2 (ja) * 2008-05-13 2014-02-05 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP5316783B2 (ja) * 2008-05-15 2013-10-16 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP5316784B2 (ja) * 2008-06-11 2013-10-16 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP5326677B2 (ja) * 2009-03-09 2013-10-30 ソニー株式会社 半導体レーザおよびその製造方法
JP5434201B2 (ja) * 2009-03-23 2014-03-05 ソニー株式会社 半導体レーザ
TWI403003B (zh) * 2009-10-02 2013-07-21 Chi Mei Lighting Tech Corp 發光二極體及其製造方法
JP2011151293A (ja) * 2010-01-25 2011-08-04 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
JP2011155087A (ja) 2010-01-26 2011-08-11 Sony Corp 面発光型半導体レーザおよびその製造方法
US8349712B2 (en) * 2011-03-30 2013-01-08 Technische Universitat Berlin Layer assembly
KR101804408B1 (ko) * 2011-09-05 2017-12-04 엘지이노텍 주식회사 발광소자
JP5435008B2 (ja) * 2011-10-24 2014-03-05 富士ゼロックス株式会社 面発光型半導体レーザ
GB201121864D0 (en) * 2011-12-20 2012-02-01 Mled Ltd Improving display contrast
US8731012B2 (en) * 2012-01-24 2014-05-20 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser and its manufacturing method, surface emitting semiconductor laser device, optical transmitter, and information processor
US20140176958A1 (en) 2012-12-21 2014-06-26 Axsun Technologies, Inc. OCT System with Bonded MEMS Tunable Mirror VCSEL Swept Source
FR3005800B1 (fr) * 2013-05-16 2015-05-22 Commissariat Energie Atomique Source optique parametrique sur puce pompee electriquement
JP6299955B2 (ja) * 2013-12-20 2018-03-28 セイコーエプソン株式会社 面発光レーザーおよび原子発振器
JP6323651B2 (ja) * 2013-12-20 2018-05-16 セイコーエプソン株式会社 面発光レーザーおよび原子発振器
JP6323650B2 (ja) * 2013-12-20 2018-05-16 セイコーエプソン株式会社 面発光レーザーおよび原子発振器
JP6274404B2 (ja) * 2013-12-20 2018-02-07 セイコーエプソン株式会社 面発光レーザーおよび原子発振器
US9837792B2 (en) * 2016-03-07 2017-12-05 Epistar Corporation Light-emitting device
JP2019040953A (ja) * 2017-08-23 2019-03-14 住友電気工業株式会社 垂直共振型面発光レーザ、垂直共振型面発光レーザを作製する方法
US10305254B2 (en) * 2017-09-18 2019-05-28 Finisar Corporation VCSEL with elliptical aperture having reduced rin
CN111630735A (zh) * 2018-01-18 2020-09-04 Iqe公司 用于激光器应用的多孔分布式布拉格反射器
US11158995B2 (en) * 2018-06-01 2021-10-26 Visual Photonics Epitaxy Co., Ltd. Laser diode with defect blocking layer
CN109309344B (zh) * 2018-09-18 2023-11-28 厦门乾照半导体科技有限公司 一种集中电流注入的vcsel芯片及其制备方法
CN109638646B (zh) * 2019-03-01 2023-10-31 厦门乾照光电股份有限公司 一种低氧化应力的vcsel芯片及其制备方法
CN110752509B (zh) * 2019-12-23 2020-04-21 常州纵慧芯光半导体科技有限公司 一种具有非对称氧化结构vcsel单元
CN110957635B (zh) * 2020-02-25 2020-09-01 常州纵慧芯光半导体科技有限公司 一种实现偏振控制的vcsel器件及其制备方法
CN112003124B (zh) * 2020-09-02 2021-07-02 北京金太光芯科技有限公司 具备非圆柱形平台的垂直腔面发射激光器及其制备方法
CN112614920B (zh) * 2020-12-28 2022-05-24 厦门市三安光电科技有限公司 发光二极管芯片及其制备方法
CN114582957B (zh) * 2021-11-09 2023-12-22 英诺赛科(苏州)科技有限公司 氮化物基半导体装置以及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189549A (en) * 1990-02-26 1993-02-23 Molecular Displays, Inc. Electrochromic, electroluminescent and electrochemiluminescent displays
US5493577A (en) * 1994-12-21 1996-02-20 Sandia Corporation Efficient semiconductor light-emitting device and method
JP2891164B2 (ja) 1996-03-28 1999-05-17 日本電気株式会社 半導体レーザの製造方法
JP3188658B2 (ja) 1996-09-02 2001-07-16 松下電器産業株式会社 面発光半導体レーザおよびその製造方法
US6014400A (en) * 1996-09-02 2000-01-11 Matsushita Electric Industrial Co., Ltd Surface-emitting laser and a fabrication method thereof
JP3482824B2 (ja) 1997-07-29 2004-01-06 セイコーエプソン株式会社 面発光型半導体レーザおよび面発光型半導体レーザアレイ
JP3924859B2 (ja) * 1997-09-08 2007-06-06 富士通株式会社 半導体レーザ及びその製造方法
JPH11307882A (ja) * 1998-02-17 1999-11-05 Fuji Xerox Co Ltd 面発光型半導体レ―ザ、面発光型半導体レ―ザアレイ、及び面発光型半導体レ―ザの製造方法
JP3800852B2 (ja) * 1999-03-10 2006-07-26 富士ゼロックス株式会社 面発光型半導体レーザ及びその製造方法
JP3459003B2 (ja) 1999-12-02 2003-10-20 日本電気株式会社 半導体装置およびその製造方法
US6658040B1 (en) * 2000-07-28 2003-12-02 Agilent Technologies, Inc. High speed VCSEL
KR100708107B1 (ko) * 2000-12-19 2007-04-16 삼성전자주식회사 전기 광학적 특성이 개선된 반도체 광 방출 장치 및 그제조방법
JP4050028B2 (ja) * 2001-09-28 2008-02-20 株式会社東芝 面発光型半導体発光素子
JP4066654B2 (ja) * 2001-12-19 2008-03-26 富士ゼロックス株式会社 面発光型半導体レーザ装置及びその製造方法

Also Published As

Publication number Publication date
US7244629B2 (en) 2007-07-17
JP2005142361A (ja) 2005-06-02
CN1614836A (zh) 2005-05-11
US20050121678A1 (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4138629B2 (ja) 面発光型半導体素子及びその製造方法
JP4568125B2 (ja) 面発光型半導体素子
JP4184769B2 (ja) 面発光型半導体レーザ及びその製造方法
JP4050028B2 (ja) 面発光型半導体発光素子
JP3783411B2 (ja) 表面発光型半導体レーザ
JP4350774B2 (ja) 面発光レーザ
JP4602701B2 (ja) 面発光レーザ及び光伝送システム
JP5326677B2 (ja) 半導体レーザおよびその製造方法
JP2006140446A (ja) 面発光レーザ素子および面発光レーザアレイおよび面発光レーザ素子の製造方法および面発光レーザモジュールおよび電子写真システムおよび光通信システムおよび光インターコネクションシステム
US7881358B2 (en) Surface emitting laser
JP4141172B2 (ja) 面発光半導体レーザ素子の製造方法および面発光半導体レーザ素子および光伝送システム
JP2007165798A (ja) 半導体レーザ素子
JP2012129243A (ja) 半導体レーザ素子
JP4602692B2 (ja) 面発光レーザ及び光伝送システム
JP2001223433A (ja) 垂直空洞半導体面発光レーザ素子および該レーザ素子を用いた光学システム
JP3876886B2 (ja) 面発光型半導体レーザ装置の製造方法
JP2007103544A (ja) 面発光レーザ及び面発光レーザアレイ及び光伝送システム及びレーザプリンタ書き込みシステム
JP3777332B2 (ja) 面発光型半導体発光素子
JP3546628B2 (ja) 面発光型半導体レーザ装置
JP6120903B2 (ja) 半導体レーザ素子
JPH06188513A (ja) 半導体レーザおよびその製造方法
JP2004103679A (ja) 半導体発光素子および半導体発光素子モジュール
JPH04273492A (ja) 半導体レーザ装置
JP2007243213A (ja) 面発光型半導体発光素子
JPH06252508A (ja) 半導体レーザ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees