JP4131916B2 - 燃料電池発電装置の運転方法 - Google Patents

燃料電池発電装置の運転方法 Download PDF

Info

Publication number
JP4131916B2
JP4131916B2 JP2002130373A JP2002130373A JP4131916B2 JP 4131916 B2 JP4131916 B2 JP 4131916B2 JP 2002130373 A JP2002130373 A JP 2002130373A JP 2002130373 A JP2002130373 A JP 2002130373A JP 4131916 B2 JP4131916 B2 JP 4131916B2
Authority
JP
Japan
Prior art keywords
methanol
aqueous solution
container
concentration
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002130373A
Other languages
English (en)
Other versions
JP2003022830A (ja
Inventor
尚 山内
雅弘 高下
師浩 富松
征人 秋田
義彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002130373A priority Critical patent/JP4131916B2/ja
Publication of JP2003022830A publication Critical patent/JP2003022830A/ja
Application granted granted Critical
Publication of JP4131916B2 publication Critical patent/JP4131916B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池発電装置の運転方法に関するものである。
【0002】
【従来の技術】
情報化社会を支える携帯用電子機器の電源として、また大気汚染や地球温暖化に対処するための電気自動車及び電力貯蔵システムのキーエレメントとして、高性能二次電池及び燃料電池の期待が非常に高まりつつある。特に電気自動車への応用としては、水素、酸素を燃料として用いるPEM(PEFC、固体電解質燃料電池)が有力視されてきた。水素、酸素というクリーンなエネルギーを用いることにより高出力が得られる点と燃料を補充することにより出力が回復するという2点で、電気自動車に適していると考えられている。しかし、燃料電池は大きな負荷電流変化に対して出力が低下するという欠点があるので、急加速時の発電が困難である。一方、リチウムイオン二次電池のみで走行する電気自動車もすでに実現されているが、安全性の問題及び電解質を補充しても出力が回復できない等の観点からリチウムイオン二次電池単独での電気自動車への応用も難しいと考えられている。そこで、リチウムイオン二次電池と燃料電池の両方の特徴を生かしたハイブリッド電池(組電池)が、電気自動車への応用上重要になってきている。さらに、PEMに用いる燃料容積を小さくするという課題を解決するため、圧縮水素(250atm)、液体水素、水素吸蔵合金などを燃料として用いる方法も検討されている。その様な状況の中、メタノールから直接プロトンを取り出すことにより発電を行う直接型メタノール燃料電池(DMFC)は、PEMと比較して出力が小さくなるという欠点があるものの、この観点から注目されてきている。さらに、その燃料容積が少なくて済むという特徴により、直接型メタノール燃料電池は携帯電子機器への応用も考えられ、多方面への応用の期待が高まりつつある。
【0003】
図1に標準的な直接型メタノール燃料電池の概略構成を示す。直接型メタノール燃料電池の起電部は、アノード集電体1及びアノード触媒層2を含むアノード極と、カソード集電体3及びカソード触媒層4を含むカソード極と、前記アノード極及び前記カソード極の間に配置される電解質膜5とを含む。アノード流路板6は、アノード集電体1側に配置されている。図2に示すように、アノード流路板6には、メタノール供給口7とメタノール排出口8とを有するアノード流路9が形成されている。メタノール水溶液が収容されているメタノール水溶液容器10は、ポンプ11を介してメタノール供給口7に接続されている。一方、カソード流路板12は、カソード集電体3側に配置されている。カソード流路板12には、酸化剤供給口13及び酸化剤排出口14を有するカソード流路15が形成されている。空気のような酸化剤を供給する酸化剤供給手段16は、酸化剤供給口13に接続されている。
【0004】
電解質膜5には、例えば、高プロトン伝導性をもつナフィオン膜が用いられる。一方、アノード触媒層2に用いられる触媒には、例えば、被毒の少ないPtRuが用いられ、また、カソード触媒層4に用いられる触媒としては、例えば、Ptが用いられる。
【0005】
このような直接型メタノール燃料電池においては、アノード触媒層2にメタノール水溶液を供給し、触媒反応によってプロトンを発生させ、発生したプロトンが電解質膜5を通り抜け、カソード触媒層4に供給された酸素と触媒上で反応するという原理で発電が行われる。
【0006】
直接型メタノール燃料電池の出力を向上させるためには、高負荷電流まで高起電力を維持させる必要がある。高負荷電流を得るためには、アノード触媒層に供給する単位時間当たりのメタノール量を増やす必要がある。しかしながら、ナフィオン膜はメタノール水溶液も透過するため、アノード触媒層中で反応に使われなかったメタノール水溶液がカソード触媒層に到達し、カソード触媒層中でアノード触媒層と同様の反応を起こすことにより逆起電力を生じてしまう。これがクロスオーバー過電圧であり、直接型メタノール燃料電池の起電力を減少させるという問題を引き起こす。このクロスオーバー過電圧はメタノール濃度が高い程深刻であり、5Mを超えるメタノール水溶液をアノード触媒層に供給すると、出力は著しく低下する。さらに、ナフィオン膜のような電解質膜の劣化を抑制するという観点からも、メタノール水溶液の濃度を5M以下にすることが好ましい。よって、直接型メタノール燃料電池を動作させるためには、燃料であるメタノール水溶液の濃度を5M以下にすることが好ましい。
【0007】
ところで、クロスオーバー過電圧を下げる方法として、アノード触媒層に供給するメタノールをすべてアノード触媒層中で消費し、カソード触媒層へ透過させない方法が考えられる。このためには、アノード触媒層中での触媒活性を向上させるか、もしくは触媒担持量を増やすなどの方法が挙げられるが、現状の触媒では実現不可能である。また、アノード触媒層中で使われなかったメタノール水溶液を透過させない様な電解質膜の開発も行われているが、実際にはプロトン伝導性が悪くなる電解質膜が多く、かえって出力を低下させる場合が多い。よって、クロスオーバー過電圧を下げるには、燃料として用いるメタノール水溶液の濃度を低下させることが好ましい。しかしながら、低濃度の燃料を用いると、燃料容器を大きくする必要があるため、直接型メタノール燃料電池の特徴を十分に生かせなくなる。
【0008】
前述した図1に示すように、通常の直接型メタノール燃料電池は、ポンプ11によってアノード流路板6にメタノール水溶液を供給する構造になっている。前述した図2に示すように、ポンプ11から供給されたメタノール水溶液はアノード流路板6のメタノール供給口(inlet)7を通して流路板6の溝の部分(アノード流路9)を流れる。流路板6の凸部分は、アノードカーボンペーパーのようなアノード集電体1と接しており、アノード流路9を流れるメタノール水溶液がアノード集電体1に浸み込むことにより、アノード触媒層2にメタノール水溶液が供給される。
【0009】
しかしながら、アノード流路板6を流れるすべてのメタノール水溶液がアノード集電体1に浸み込むことはほとんどなく、一部は流路板6のメタノール排出口(outlet)8から排出される。このため、容器10中のメタノール水溶液の利用効率は、一般には低い。この効率を高めるために、流路板の構造を改良するなどの試みもなされているが、利用効率を大きく高めるまでには至っていないのが現状である。また、アノード流路板6のメタノール排出口(outlet)8から排出されたメタノール水溶液を容器10に戻す仕組みを作製することが考えられるが、アノード触媒層2中でメタノールと水は1対1で消費されるため、アノード流路板6から排出されたメタノール水溶液を容器10内に戻すと、容器10内のメタノール水溶液の濃度が次第に薄くなって行く。そのため、電池内部でメタノール不足を生じ、起電力が急激に減少するという問題を生じる。
【0010】
上記の様に、5M以下の濃度のメタノール水溶液を燃料として用いることが望ましいが、薄いメタノール水溶液を燃料として用いると、容器の容積を大きくする必要があるばかりか、電池内部での反応に対してメタノール不足を生じやすくなるので、メタノール水溶液容器からメタノール水溶液を早く送液する必要が出てくる。この様な運転を行えば、クロスオーバー過電圧を下げられるため、電池としての出力は高くなるものの、メタノールを供給するためのポンプ出力も大きくなるために、発電装置全体での出力は逆に低減してしまうという問題が生じる。
【0011】
以上説明したように、燃料供給という観点からは、濃いメタノール水溶液を小さい流速で送ることが望ましいが、出力の観点からは、薄いメタノール水溶液を大きい流速で送る方が望ましいという相反する状況が生じる。よって、燃料容積を小さくし、かつ高出力を得るためには、最適な濃度のメタノール水溶液を最適な流速で送液する必要が出てくる。最適なメタノール水溶液濃度と流速は、電池起電部の構造にも依存するため、実験的に系統的に調べることは非常に困難であり、十分な理解がいまだなされていない。また、シミュレーションを用いて最適化を行えば、この問題を早急に解決することが可能となるが、直接型メタノール燃料電池の出力に対して十分な説明を与える理論の提案がいまだなされていない。
【0012】
【発明が解決しようとする課題】
本発明は、容器中のアルコール含有水溶液の初期アルコール濃度を高濃度にした際の出力を向上することが可能な燃料電池発電装置の運転方法を提供することを目的とする。
【0022】
【課題を解決するための手段】
本発明に係る燃料電池発電装置の運転方法は、厚さLが40μm以上、150μm以下のアノード触媒層を含むアノード極と、カソード極と、前記アノード極及び前記カソード極の間に配置される電解質膜とを備える起電部単位を少なくとも一つ備える起電部と、
アルコール含有水溶液を収容する容器と、
前記アノード極に前記アルコール含有水溶液を供給するためのアノード流路と、
前記アノード流路に供給された前記アルコール含有水溶液のうち余剰分を前記容器に回収するアルコール含有水溶液回収機構と、
前記容器内のアルコール含有水溶液のアルコール濃度よりも高濃度のアルコール含有水溶液を収容するアルコール補充容器を具備する燃料電池発電装置の運転方法であって、
前記容器内のアルコール含有水溶液のアルコール濃度を2M以上、5M以下に初期設定して運転を開始し、外部回路に流れる電気量と、前記容器のアルコール濃度及び前記容器からのアルコール含有水溶液供給量J m (mL/min)との関係から求められる前記容器内の前記アルコール含有水溶液のアルコール濃度を0.5M以上、2M未満とするように前記アルコール補充容器から前記容器に前記高濃度のアルコール含有水溶液を補充するとともに、J m (mL/min)を下記数6の条件を満足するように制御することを特徴とするものである。
【0023】
【数6】
Figure 0004131916
【0024】
但し、前記Lは前記アノード触媒層の厚さ(μm)で、前記Sは前記アノード触媒層の反応面積(cm)で、前記Nは前記起電部中の前記起電部単位数を示す。
【0025】
本発明に係る燃料電池発電装置の運転方法において、アルコール含有水溶液としては、例えば、メタノール水溶液のようなメタノール含有水溶液を挙げることができる。
【0026】
【発明の実施の形態】
直接型メタノール燃料電池に供給するメタノール水溶液の濃度及びその流速を最適化するために、本発明者はシミュレータの作成を行い、系統的に出力特性を調べることにより前述した(3)式を導出した。
【0027】
起電部におけるメタノール伝導、プロトン伝導、酸化剤の伝導に関しては、すでに幾つかの方程式が提案されており(例えば、J.Power Source, 65, No.1-2, 159 (1997) 、Discussions of the Farady Society, No.21 (1956) 、J.Electrochem. Soc., 39, No.9, 2477 (1992) )、本発明を考案する上でも、これらの式を用いた。即ち、電極の触媒反応は、下記数7に示すButler-Volmer方程式によって記述した。
【0028】
【数7】
Figure 0004131916
【0029】
但し、前記αは、触媒反応に関与する電子数を表すので、カソード触媒層においては2、アノード電極では3の値を用いた。また、実効的な触媒表面積aと交換電流i0の積に関しては、通常用いられる様に、カソード触媒層では10-5(70℃)、アノード触媒層では6.25exp(8420(1/333−1/T))を用いた。但し、触媒の活性は温度に対して強い依存性をもつが、電池の動作温度として一般的に考えられている70℃を想定し、本発明の計算をすべて行った。また、(φH+−φe-)は電子とプロトンのポテンシャルの差を表す。
【0030】
【数8−1】
Figure 0004131916
【0031】
【数8−2】
Figure 0004131916
【0032】
但し、前記iは、zにおけるプロトンの運ぶ電流密度を示し、前記Cmは、zにおけるメタノール濃度を示す。また、前記γC(z)は、プロトン1個に水和するメタノール分子の数であり、文献(J.Electrochem Soc., 147, No.2, 466 (2000) )に従い、γ=25cm3/molを用いた。さらに、ナフィオン膜中でのメタノールの拡散係数Dm(cm2/sec)には4.9×10-6exp{2436(1/333−1/T)}を用い、電極中でのナフィオン含有率εとしては、カーボンブラック担持の触媒層を想定し、0.5の値を用いた。さらに、Fはファラデイ定数であり、96485C/molとした。また、酸素の伝導としては、下記数9に示すような、対流項を伴うNernst-Planck方程式により記述した。
【0033】
【数9】
Figure 0004131916
【0034】
但し、kφ=7.18×10-16cm2、水の粘度μ=3.56×10-4kg/m/sec、ナフィオン膜中での固定電荷の濃度C=1.2×10-3mol/cm3、ナフィオン膜中に溶解した酸素の拡散係数(cm2/sec)DO2=3.1×10−3exp(−2768/T)を用いた。
【0035】
前述した数7〜数9の方程式を自己無撞着に計算することにより、直接型メタノール燃料電池の起電部におけるメタノール濃度、酸素濃度の空間依存性が計算可能となる。また、メタノール水溶液容器から起電部に供給されるメタノール水溶液の濃度及び送液する流速は、メタノールの伝導方程式の境界条件として表現される。前述した図1に示す構造の直接型メタノール燃料電池において、アノード触媒層2の厚さを100μmとし、電解質膜5としてDupont社製の商品名がナフィオン117で、膜厚が200μmのものを用い、カソード触媒層4の厚さを100μmとし、2Mのメタノール水溶液を流速1.3mL/minで送液した時のメタノール濃度の空間依存性を計算した結果を図3に示す。但し、図3における横軸はメタノール水溶液の移動距離(cm)で、縦軸は移動地点におけるメタノール水溶液濃度(M)を示す。
【0036】
図3から明らかなように、カソード触媒層中に平均0.25M程度のメタノール水溶液が透過していることが見出される。このカソード触媒層中に透過したメタノールによってクロスオーバー過電圧が生じるが、メタノール濃度とクロスオーバー過電圧との関係を正確に記述する式が明らかになっていなかったため、直接型メタノール燃料電池の出力特性を正確に議論することができなかった。そこで、本発明における関係式(1)〜(3)を導出するために、アノード触媒層に供給するメタノール水溶液の濃度を変化させた時の電流電圧特性の変化を測定し、その実験結果に基づき、クロスオーバー過電圧とカソード触媒層中に透過したメタノールの濃度との関係を与える式を導出した。測定結果を図4に示す。但し、図4においては、横軸が燃料電池の電流密度(A/cm2)で、縦軸が電池電圧(V)である。
【0037】
図4から明らかなように、アノード触媒層に供給するメタノール濃度が高くなるにつれてクロスオーバー過電圧が大きくなり、著しい電圧降下が見られることがわかる。次に、この現象の理論的考察について説明する。まず、カソード触媒層中に入ったメタノールは、プロトンと反応するべきPt表面積を実効的に小さくするという結果をもたらす。さらに、Pt上においてメタノールは酸素と4電子反応を起こし、プロトンを発生する。そのため局所的に電流を発生し、逆起電力を生じる。前者の効果は以下の様にして表現される。カソード触媒上でのプロトンの消滅は下記数10により与えられる。
【0038】
【数10】
Figure 0004131916
【0039】
このため、メタノールがカソード触媒層中に入ることにより変化したプロトンに対する実効的な触媒表面積a´は、下記数11により表現される。
【0040】
【数11】
Figure 0004131916
【0041】
さらに、(a/a´)が、カソード触媒層電極中の平均のメタノール濃度<Cm1/nに比例することは、Freundlichの式として知られている。よって、クロスオーバー過電圧ζxは、下記数12に示すような濃度依存性を持つと考えられる。
【0042】
【数12】
Figure 0004131916
【0043】
さらに、クロスオーバーにより発生したプロトンの電流によって生じる電圧降下分は、メタノールと酸素の直接反応の反応速度に比例すると考えられるので、<Cm>の1次に比例する濃度依存性をもつ。この項を上記数12の方程式に付け加えることにより、下記数13に示すクロスオーバー過電圧の表式を得る。
【0044】
【数13】
Figure 0004131916
【0045】
但し、クロスオーバーにより局所的に流れるプロトンの電流密度は、α<Cm>/σc H+/Lcにより与えられるので、カソード触媒層中に流れ込むメタノールフラックスより大きくなる時は下記数14により係数αを定める必要がある。しかし、一般にはメタノールフラックスの方が小さくなるため、α、β、γの値は未知である。
【0046】
【数14】
Figure 0004131916
【0047】
そこで、前述した図4に示す電流電圧特性より、これらの係数を決定し、以下の数15に示す式を得た。
【0048】
【数15】
Figure 0004131916
【0049】
よって、上式に基づき、直接メタノール型燃料電池の出力特性を系統的に計算することが可能となった。
【0050】
次に、図4で測定を行った燃料電池に関して、供給するメタノール水溶液の濃度と流速を変化させた時の出力密度の変化を計算した結果を図5に示す。ここで、図4で測定を行った燃料電池とは、前述した図1に示す構造を有するもので、起電部単位の積層数Nが1で、アノード触媒層2の厚さが100μmのものである。ところで、図5において、縦軸は出力密度を表す。出力密度は電流密度と電圧の積の最大値によって定義され、この値に電池の断面積を乗じた値が電池の出力を与える。また、横軸はメタノール水溶液容器から供給するメタノール水溶液の濃度である。さらに、各曲線は、アノード触媒層の単位面積当たりに送るメタノール水溶液の流速が異なる場合の出力密度変化を示す。
【0051】
図5から明らかなように、流速を固定すると、出力密度はメタノール水溶液濃度に対して最大値を持ち、流速が大きくなるにつれて最大値をとるメタノール水溶液濃度は低濃度側にシフトしていくことが分かる。即ち、メタノール水溶液容器から供給するメタノール水溶液濃度が増大する程アノード触媒層中に入るメタノールが増大するため限界負荷電流が増大し、出力も増大する。しかしながら、アノード触媒層中へ供給するメタノールがある量以上に増大すると、カソード触媒層へ透過するメタノールも増大していくために、クロスオーバー過電圧も増大し、逆に出力は低下していく。よって、出力密度は供給するメタノール水溶液濃度に対して最大値をとることになる。また、メタノール水溶液の流速を大きくするにつれて、最大出力密度が単調に増大し、0.052cm/minにおいて飽和することが見出される。このことは、アノード触媒層中をメタノールが拡散できる最大速度がアノード触媒層厚によって決まるために、出力が飽和すると説明される。即ち、0.052cm/min以上の流速でメタノール水溶液を供給しても出力は増大せず、逆に、ポンプ出力の増大による電池装置全体としての出力低下をもたらすだけである。
【0052】
さらに、アノード触媒層に供給するメタノール水溶液濃度として望ましい5M以下の範囲で示した図を図6に示す。
【0053】
図6において、0.052cm/min以下の流速でメタノール水溶液を送液する電池装置が、出力的観点から望ましい電池装置である。上記の様に、上限の流速(0.052cm/min)は出力が飽和するメタノール流速より決まり、下限の流速(0.0015cm/min)は5Mのメタノール水溶液を送液した時に燃料不足を起こさないための流速である。また、最適な流速はアノード触媒層厚によって変化するので、アノード触媒層の厚さを40μmとした時の計算も同様に行った。この計算結果を図7に示す。
【0054】
図7から明らかなように、アノード触媒層厚を40μmと薄くすると、出力が最大となるメタノール濃度は低濃度側にシフトし、0.5Mのメタノール濃度で最大出力密度が得られることがわかる。急速なメタノール不足を回避するために、出力密度が最大となるメタノール濃度が0.5M以上になるアノード触媒厚を設定することが好ましい。これらの結果から、アノード触媒層の厚さは、40μm以上にすることが好ましい。図6、図7に示した、アノード触媒層の単位面積当たりに送液するメタノール水溶液の流速(cm/min)の範囲では、送液するメタノール水溶液のメタノール濃度が2〜5Mの範囲で、出力密度が図示されるように変化する。下記数16で規定される範囲内(N=1、S=1cm)とは、図6では斜線で囲んだ0.0065cm/min以上、0.052cm/min以下の範囲、一方、図7では斜線で囲んだ0.01625cm/min以上、0.13cm/min以下の範囲である。
【0055】
【数16】
Figure 0004131916
【0056】
これは、カソード触媒層中で起こるクロスオーバー現象が反応律速の状態にあるからである。そして、流速(cm/min)を0.65/L以下、つまり図6では0.0065cm/min以下、図7では0.01625cm/min以下にすると、送液するメタノール水溶液のメタノール濃度が2M以下の範囲では、アノード触媒層中でメタノール不足を起こすため、出力密度が低下していくことがわかる
【0059】
さらに、前述した図1に示す構成の電池装置においては、アノード流路板6から排出されたメタノール水溶液を別経路に回収したが、参考例および本発明に係る直接型メタノール燃料電池発電装置においては、アノード流路から排出されたメタノール水溶液を、メタノール水溶液容器に回収する。参考例に係る直接型メタノール燃料電池発電装置の要部の概略構成を図8に示す。図8においては、前述した図1において説明したのと同様な部材について同符号を付して説明を省略する。メタノール水溶液回収機構としてのメタノール水溶液回収管17は、アノード流路9のメタノール排出口8とメタノール水溶液容器10との間に接続されている。
【0060】
図8に示すような構成を有する直接型メタノール燃料電池発電装置によれば、アノード流路9から排出されるメタノール水溶液をメタノール水溶液容器10に回収する分、メタノール水溶液容器10の体積を小さくすることができるという利点を持つものの、容器10中のメタノール水溶液濃度が段々薄くなるため、起電部中でメタノール不足を生じ、急激な出力低下を招く可能性がある。そこで、上記に議論するように、メタノール水溶液容器中のメタノール水溶液の濃度に応じてメタノール水溶液を供給する流速を変化させれば、メタノール水溶液濃度が小さくなったとしても出力密度を回復させることが可能となる。そのメタノール水溶液供給量mの範囲は、下記数18における式(2)、(3)で与えられる。
【0061】
【数18】
Figure 0004131916
【0062】
但し、前記(2)式における前記Lは直接型メタノール燃料電池のアノード触媒層の厚さ(μm)で、前記(3)式における前記Sは前記アノード触媒層の反応面積(cm)で、前記Nは前記起電部単位の積層数で、前記Jmは前記メタノール水溶液容器からのメタノール水溶液供給量(mL/min)を示す。ここで、メタノール水溶液容器に接続されているポンプの数が1個である場合、メタノール水溶液供給量Jm(mL/min)は、ポンプの単位時間(分)当りの送液量と等しい。また、メタノール水溶液容器に接続されているポンプの数が2個以上である場合、メタノール水溶液供給量Jm(mL/min)は、各ポンプの単位時間(分)当りの送液量を合計したものと等しい。
【0063】
さらに、メタノール水溶液に最初に入れるメタノール水溶液濃度(初期濃度)C0 m(M)を下記数19の式(1)で規定される範囲内に設定し、メタノール水溶液容器中のメタノール水溶液濃度が下がるにつれてメタノール水溶液供給量mを前述した数18の(3)式に規定する範囲内で増加させれば、補器の出力を最小限に抑えられるだけでなく、メタノール水溶液容器の容積も最小にすることが可能となる。
【0064】
【数19】
Figure 0004131916
【0065】
なお、アノード触媒層は、導電性のカーボンブラック担体に触媒を担持させる方法(担持法)で作製されることが好ましい。担持法で作製されたアノード触媒層を用いることによって、メタノール水溶液の拡散速度を向上することができるため、燃料電池の出力をより向上することができると共に、長時間駆動が可能になる。また、燃料電池発電装置の製造コストを低く抑えることができる。
【0066】
アノード触媒層Lの厚さは、40〜150μmの範囲内にすることが好ましい。
【0067】
アノード触媒層の多孔度(ナフィオン含有率ε)は、0.4〜0.7の範囲内にすることが好ましい。多孔度を前記範囲内にすることによって、高いメタノール水溶液拡散速度を得ることができる。
【0068】
また、例えば無担持法により厚さ20μm以下のアノード触媒層を作製し、メタノール水溶液の濃度を1M以下にし、かつメタノール水溶液を供給する流速を前述した数18の式(3)で規定される上限値、つまり{(5.2/L)×S}(mL/min)よりも速くすると、前述した図6及び図7から明らかなように、出力密度を高くすることが可能であるものの、補器の出力が大きくなるため、一定量のメタノールから得られる出力密度としては小さくなる。そのうえ、メタノール水溶液濃度が低いため、メタノール水溶液容器の体積を大きくせざるおえない。そこで、本願発明のように、メタノール水溶液容器内に最初から高濃度のメタノール水溶液を収容し、アノード触媒層の厚さを厚くし、かつメタノール水溶液の供給速度を容器中のメタノール水溶液濃度を考慮しながらゆっくりと流すことによって、メタノール水溶液容器の小型化並びに補器の出力の低減を達成しつつ、出力密度を増加させることができる。
【0073】
【実施例】
以下、図面を参照して本発明の実施例を詳細に説明する。
【0074】
参考例の直接型メタノール燃料電池発電装置を前述した図8及び図9〜図12を参照して説明する。
【0075】
図9は、参考例の直接型メタノール燃料電池発電装置の構成を概略的に示した図で、図10は、図9の直接型メタノール燃料電池発電装置のアノード電極を示す斜視図で、図11は、直接型メタノール燃料電池の起電部を直列に積層した状態を示す模式図で、図12は、参考例の直接型メタノール燃料電池発電装置の運転を実施するための手順の一例を示すフローチャートである。
【0076】
燃料電池起電部は、1つの燃料電池起電部単位21から構成されている。燃料電池起電部単位21は、例えば前述した図8に示すように、アノード流路板6、アノード集電体1、アノード触媒層2、電解質膜5、カソード触媒層4、カソード集電体3及びカソード流路板13を備える。アルコール水溶液の一例であるメタノール水溶液が収容されているメタノール水溶液容器10は、送液ポンプ11を介してアノード流路板6のメタノール供給口7に接続されている。また、アノード流路板6のメタノール排出口8は、メタノール水溶液容器10に接続されている。空気のような酸化剤を供給するための酸化剤供給手段16は、送風ファン22を介してカソード流路板12の酸化剤供給口13に接続されている。さらに、燃料電池起電部を加熱するためのヒータ(図示しない)は、アノード流路板6及びカソード流路板13の双方に装着されている。送液ポンプ11、送風ファン22及びヒータを含む補器を直接型メタノール燃料電池の出力で駆動させるため、補器の電源23は、直接型メタノール燃料電池に直結されている。
【0077】
負荷電流を運転時間に対応させて経時変化として記録したものから評価されるメタノール水溶液容器10内のメタノール水溶液の濃度に応じて、メタノール水溶液容器10からのメタノール水溶液供給量Jm(mL/min)を制御する流量制御手段は、メタノール流量制御装置24と、電流経時変化記録評価装置26とを備える。メタノール流量制御装置24は、送液ポンプ11に接続されている。外部回路25は、燃料電池起電部に接続されている。電流経時変化記録評価装置26は、メタノール流量制御装置24及び外部回路25に接続されている。
【0078】
このような流量制御手段によると、直接型メタノール燃料電池21から外部回路25に出力される電流の経時変化を電流経時変化記録評価装置26で記録し、そのデータから評価されるメタノール水溶液容器10中のメタノール水溶液濃度に応じて送液ポンプ11の送液量を、メタノール流量制御装置24で制御することができる。つまり、ここでは、送液ポンプ11の各時間毎に供給する送液量を、メタノール水溶液容器10からのメタノール水溶液供給量Jm(mL/min)とみなしている。また、送液ポンプを複数備える場合、メタノール水溶液供給量Jm(mL/min)は、各ポンプの単位時間(分)当りの送液量を合計したものと等しい。
【0079】
この図9に示す発電装置においては、下記数21の(1)〜(3)に示す条件を満足する。
【0080】
【数21】
Figure 0004131916
【0081】
但し、前記(1)式における前記C0 mはメタノール水溶液容器10に最初に収容するメタノール水溶液の濃度(初期濃度)(M)である。また、前記(2)式における前記Lはアノード触媒層2の厚さ(μm)である。一方、前記(3)式における前記Sは、アノード触媒層2の反応面積(cm)であり、図10の場合には斜線で示す領域である。また、前記Nは起電部(発電部)単位の積層数を示し、図9に示す発電装置の場合、1である。なお、図9のように起電部単位21の積層数が1である場合、アノード流路9を流れるメタノール水溶液の流量は、メタノール水溶液容器10からのメタノール水溶液供給量Jm(mL/min)とほぼ等しい。
【0082】
この図9に示す発電装置においては、燃料電池起電部単位を複数備えることが可能である。図11に、複数の燃料電池起電部単位21を直列に積層した例を示す。この場合、図11の矢印27のメタノール流路に示すように、メタノール水溶液は、個々の燃料電池起電部単位21に供給され、また、個々の燃料電池起電部21から排出されたメタノール水溶液は、一つの経路にまとめられてメタノール水溶液容器10に回収される(並列送液法)。この場合、各起電部単位21のアノード流路9のメタノール水溶液流量は、メタノール水溶液供給量Jm(mL/min)を、起電部単位の積層数で割ったものにほぼ等しくなる。
【0083】
一方、図1の燃料電池起電部単位21に別の燃料電池起電部単位を積層し、燃料電池起電部単位21のアノード流路板6のメタノール排出口8と別の燃料電池起電部単位のアノード流路板6のメタノール供給口7とを接続することにより、積層された起電部単位に、分岐しない1本のメタノール流路でメタノールを送液することも可能である(直列送液法)。この場合、アノード流路9を流れるメタノール水溶液の流量は、メタノール水溶液供給量Jm(mL/min)とほぼ等しくなる。
【0084】
また、送液ポンプを複数備え、それぞれのポンプは、いくつかの起電部に直列に送液を行い、それらの経路を並列に束ねる方法も可能である。この場合、メタノール水溶液供給量Jm(mL/min)は、各ポンプの単位時間(分)当りの送液量を合計したものと等しい。
【0085】
なお、単一の直接型メタノール燃料電池では、起電力が0.6V以下になるため、例えば、最大起電力が4.2Vのリチウムイオン二次電池のような非水電解質二次電池を充電するためには、10個以上の直接型メタノール燃料電池を直列に積層する必要がある。
【0086】
参考例の直接型メタノール燃料電池発電装置は、携帯用の充電器として利用することが可能であり、さまざまな電子機器を充電するために利用することができるため、工業的に価値の高いものである。
【0087】
次いで、直接型メタノール燃料電池から得られる負荷電流の経時変化からメタノール水溶液容器のメタノール水溶液濃度を評価する手段について説明する。簡単には、外部回路に時刻tにおいて流れ出る電流をI(t)とすると、メタノール水溶液容器のメタノール水溶液濃度Cm(t)は、下記数22の式で与えられる。
【0088】
【数22】
Figure 0004131916
【0089】
数22の式は、アノード触媒層中での反応がメタノール分子と水分子を一対一で消費することに基づいている。但し、C0 mはメタノール水溶液容器に最初に入っているメタノール水溶液濃度(初期濃度)(M)、Vmはメタノールのモル体積、Vwは水のモル体積、Vはメタノール水溶液容器の体積、t’は経時後の時刻を示す。
【0090】
より正確なメタノール濃度を知りたい時には、外部回路に流れ出る電気量とメタノール水溶液容器のメタノール濃度を測定し、その関係を実験的に導くことも可能であり、それを装置に記憶させておけば、装置内部から流れ出る電流の経時変化を記録評価することにより送液するメタノール水溶液の流速を正確に変化させることが可能となる。さらに、外部回路に流れ出る電気量とメタノール水溶液容器のメタノール濃度の関係を装置内部に記憶させておけば、どの時点でメタノール水溶液容器のメタノール水溶液を交換する必要があるかも分かり、市販されている二次電池と同様バッテリー切れのサインを出すことも可能となり、工業上有利である。
【0091】
なお、メタノール水溶液容器内のメタノール水溶液濃度を検出する方法としては、さまざまな方法が考えられる。例えば、メタノールセンサーなどのメタノール水溶液濃度を感知する装置を補器として電池装置内の回路に接続する方法が考えられるが、メタノールセンサーがいまだ開発されていない点とコスト的に高くなる点などを考慮すると、適当とは考えにくい。また、メタノール水溶液濃度の違いで電気抵抗が変化することを利用して、容器内部の濃度を測定する方法も考えられるが、回路的に複雑になる点、消費電力が大きい点などを考慮すると適当とは思えない。さらに、容器内部に浮きなどを浮かし、容器内部の液面の位置を感知し、メタノール水溶液内部のメタノール濃度を評価する方法も考えられるが、容器の容積が小さくなるにつれて、測定が困難になっていくと考えられる。そこで、本発明に係る直接型メタノール燃料電池発電装置においては、電池から得られた総電気量からメタノール水溶液容器のメタノール水溶液濃度を評価する手段を採用した。
【0092】
参考例の直接型メタノール燃料電池発電装置の運転方法の一例を図12を参照して説明する。
【0093】
開始の時点では、フローチャート中のパラメータQは0に設定されている。ループは時間Δtの間隔で実行される。電流経時変化記録評価装置26では、直接型メタノール燃料電池21から外部回路25に流れ出る電流I(t)を経時変化として測定した後、Q=Q+I(t)Δtで表わされる過程、つまり、電気量Qを求めるために電流を時間について積分し、得られた計算結果Qを用いてメタノール水溶液容器10中のメタノール濃度Cが評価される。計算結果Qを用いてのメタノール濃度Cの評価は、例えば、前述した数22の式を用いて行うことができる。前述した図6、図7に示すように、メタノール水溶液容器10中のメタノール水溶液の濃度が2Mより低くなると、メタノール水溶液を供給する流速を大きくした方が高い出力密度を得られやすくなる。フローチャート中のCAは、2Mのメタノール濃度に設定されており、メタノール水溶液容器10中のメタノール濃度CがCAと等しいか、もしくは超えている間は、送液ポンプ11の出力を変化させずに発電を続行する、つまり第1の発電工程が行われる。逆に、CA よりメタノール水溶液容器10中のメタノール濃度Cが下がった場合は、送液ポンプ11の出力をメタノール水溶液供給量mが前述した(3)式に規定される範囲内を満たすように連続的にもしくは断続的に増加させつつ、発電を続行する、つまり第2の発電工程が行われる。しかしながら、メタノール水溶液容器10中のメタノール濃度CがCBより下がった場合には、バッテリー切れとなり、メタノール水溶液容器10を交換するように命令を与える。ところで、前述した図6、図7に示すように、メタノール水溶液容器10中のメタノール濃度Cを0.5M未満にすると、メタノール水溶液供給量mを増加させても高い出力密度を得ることが困難である。よって、メタノール濃度CBは0.5Mに設定することが好ましい。
【0094】
なお、直接型メタノール燃料電池発電装置による発電を中断する場合には、中断した時のパラメータQの値を記憶させておくことが好ましい。発電を再開した際、中断した時のパラメータQを初期値とすることによって、メタノール水溶液容器10中のメタノール濃度Cをより正確に算出することができる。
【0095】
次いで、本発明に係る直接型メタノール燃料電池発電装置について図13〜図15を参照して説明する。
【0096】
図13は、本発明に係る直接型メタノール燃料電池発電装置の一実施形態の構成を概略的に示した図で、図14は、図13の直接型メタノール燃料電池発電装置における起電部を示す模式図で、図15は、本発明に係る直接型メタノール燃料電池発電装置を実施するための手順の一例を示すフローチャートである。なお、図13〜図14においては、前述した図8〜図9と同様な部材について同符号を付して説明を省略する。
【0097】
本発明に係る直接型メタノール燃料電池発電装置は、負荷電流の経時変化から評価されるメタノール水溶液容器(第1のメタノール水溶液容器)10内のメタノール水溶液の濃度に応じて、メタノール水溶液容器10にメタノール水溶液を補充するメタノール補充手段をさらに備える。このようなメタノール補充手段は、第2のメタノール水溶液容器27(メタノール補充用容器)と、第2の送液ポンプ28とを備える。メタノール流量制御装置24及び電流経時変化記録評価装置26は、流量制御手段及びメタノール補充手段において共用される。第2のメタノール水溶液容器27は、第2の送液ポンプ28を介して第1のメタノール水溶液容器10に接続されている。また、第2のメタノール水溶液容器27内のメタノール水溶液濃度は、前記初期濃度C0mよりも高いことが望ましい。送液ポンプ28は、メタノール流量制御装置24に接続されている。
【0098】
このようなメタノール補充手段によれば、直接型メタノール燃料電池21から外部回路25に出力される負荷電流の経時変化を電流経時変化記録評価装置26に記録し、この記録された負荷電流の経時変化から第1のメタノール水溶液容器10のメタノール濃度を評価する。メタノール流量制御装置24では、評価されたメタノール濃度に応じて第2の送液ポンプに命令を送り、第2のメタノール水溶液容器27から第1のメタノール水溶液容器10に送液が行われる。
【0099】
前述した図6、図7に示したように、第1のメタノール水溶液容器10中のメタノール水溶液の濃度が0.5Mより低くなると出力は急激に低下する。よって、第1のメタノール水溶液容器10中のメタノール水溶液の濃度が0.5M未満になった場合、メタノール水溶液を残した状態でメタノール水溶液容器を交換する必要が生じる。そこで、第2のメタノール水溶液容器27から濃いメタノール水溶液を第1のメタノール水溶液容器10に送液して第1のメタノール水溶液容器10中のメタノール濃度を0.5M以上にすることによって、第1のメタノール水溶液容器10中のメタノール水溶液を再利用して第2の発電工程を続行することが可能になり、容器10中のメタノール水溶液を使いきることができる。また、第2のメタノール水溶液容器27は、補充専用であるため、第2のメタノール水溶液容器27中のメタノール水溶液をすべて使いきった時点で、第2のメタノール水溶液容器27を交換することが可能となる。さらに、第2のメタノール水溶液容器27から第1のメタノール水溶液容器10にメタノール水溶液を補充することによって、第1のメタノール水溶液容器中のメタノール濃度を初期の状態に戻して出力を回復させ、再び第1の発電工程を行うことも可能である。
【0100】
従って、本発明に係る直接型メタノール燃料電池発電装置によると、メタノール水溶液容器を交換する時期の判断が容易になるだけでなく、工業的には使用済みメタノール水溶液容器を回収する上でも便利となる。また、以上の議論からも分かる様に、第2のメタノール水溶液容器には濃いメタノール水溶液を収容するために、第1のメタノール水溶液容器の容積と比較して容積を小さくすることが可能である。よって、直接型メタノール燃料電池の燃料容器の容積を最小限度に抑えることができる。また、第1のメタノール水溶液容器10中のメタノール濃度が0.5M未満になるまでは第2のメタノール水溶液容器27からの送液を行わないので、送液ポンプ28による出力によって装置全体の出力が大幅に低下するのを回避することができ、長時間駆動が可能になる。
【0101】
本発明に係る直接型メタノール燃料電池発電装置の運転方法の一例を図15を参照して説明する。
【0102】
開始時点では、パラメータQとNは、0に設定されている。I(t)の測定過程からメタノール濃度CとCBの比較過程までは、前述した図12で説明したのと同様にして行う。電気量Qから評価される第1のメタノール水溶液容器10中のメタノール濃度CがCBを下回った時点で、メタノール流量制御装置24から送液ポンプ28に信号を送って送液ポンプ28を作動させ、第2のメタノール水溶液容器27から第1のメタノール水溶液容器10にメタノール水溶液の送液を行う。送液を行うメタノール水溶液容器の量は常に同じ量にすることが好ましく、第1のメタノール水溶液容器10中のメタノール濃度を初期の状態に回復させるのに必要な量の送液を行う。この送液により高出力を維持することができる。
【0103】
送液後は初期の状態に戻るので、パラメータQを0にリセットする必要がある。この過程を繰り返し、送液回数Ncが、第2のメタノール水溶液容器27中のメタノール水溶液を使い切る送液回数Nを超えた時点でバッテリー切れとし、第2のメタノール水溶液容器27を交換する様に命令を与える。
【0104】
なお、直接型メタノール燃料電池発電装置による発電を中断する場合には、中断した時のパラメータQ、Nの値を記憶させておくことが好ましい。発電を再開した際、中断した時のパラメータQ、Nを初期値とすることによって、メタノール水溶液容器10中のメタノール濃度Cをより正確に算出することができる。
【0105】
本発明に係る組電池の一例を図16を参照して説明する。
【0106】
図16は、本発明に係る組電池の一例の概略構成を示す概要図である。なお、図16においては、前述した図9、図13と同様な部材について同符号を付して説明を省略する。
【0107】
この組電池は、直接型メタノール燃料電池と非水電解質二次電池(例えば、リチウムイオン二次電池)との組電池である。直接型メタノール燃料電池の部分は、起電部単位の積層数を10以上にすること以外は、前述した本発明に係る直接型メタノール燃料電池発電装置と同様な構成を有する。直接型メタノール燃料電池とリチウムイオン二次電池29とは、並列に接続されている。また、直接型メタノール燃料電池とリチウムイオン二次電池29の間にはコンバータ30が介在されており、直接型メタノール燃料電池の電圧が常に4.2Vになる様に設定されている。また、リチウムイオン二次電池29には、この二次電池29を駆動電源とする外部機器(外部回路)31が接続されている。リチウムイオン二次電池29を放電させて外部機器31を駆動する際には、コンバータ30とリチウムイオン二次電池29の間のスイッチ32は開いた状態になっている。しかし、外部機器31を駆動していない時には、リチウムイオン二次電池を充電できるように常にスイッチ32が入っている。リチウムイオン二次電池は充電時間が長くかかるため、電気自動車へ応用された場合を想定すると、半日近くの時間が必要になると予想される。また、外部電源のない場所においてリチウムイオン二次電池を充電することができないという欠点もある。従って、リチウムイオン二次電池に直接型メタノール燃料電池を接続することによって、リチウムイオン二次電池を放電させていない時は常に充電することができるため、充電時間を短縮することができるばかりか、メタノール水溶液を補充するだけで充電が可能であるために外部電源を必要としない点でも有利である。さらに、リチウムイオン二次電池を過放電すると、再び充電を行っても元の容量が得られないという欠点を持っており、組電池にすることで、過放電になる前に充電を行うことが可能になり、過放電による容量低下を避けることも可能である。上記の様に、リチウムイオン二次電池との組電池が最も効果的となるが、キャパシターやニッケル水素二次電池との組電池も原理的に可能である。
【0108】
(実施例1)
<直接型メタノール燃料電池の起電部の作製>
公知のプロセス(R. Ramakumar et al. J. Power Sources 69 (1997) 75)により、アノード用触媒(Pt:Ru=1:1)担持カーボンブラックとカソード用触媒(Pt)担持カーボンブラックを作製した。触媒担持量は,カーボン100に対して重量比でアノードは30、カソードは15とした。
【0109】
前記プロセスにおいて作製したアノード用触媒担持カーボンブラックにパーフルオロカーボンスルホン酸溶液(Dupont社 Nafion溶液 SE-20092)とイオン交換水を添加し、前記触媒担持カーボンブラックを分散させてペーストを調製した。アノード集電体としての撥水処理済カーボンペーパーTGPH-120(E-TEK社製)の上にペーストを550μm塗布し、乾燥させ、アノード触媒層を形成することによりアノード電極を得た。
【0110】
前記プロセスにおいて作製したカソード用触媒担持カーボンブラックにパーフルオロカーボンスルホン酸溶液(Dupont社 Nafion溶液 SE-20092)とイオン交換水を加え、前記触媒担持カーボンブラックを分散させてペーストを調製した。カソード集電体としての撥水処理済カーボンペーパーTGPH-090(E-TEK社製)の上にペーストを225μm塗布した後、乾燥させ、カソード触媒層を形成することにより、カソード電極を得た。
【0111】
アノード電極のアノード触媒層とカソード電極のカソード触媒層の間に、電解質膜としての市販のパーフルオロカーボンスルホン酸膜(Dupont社 Nafion117)を配置し、これらにホットプレス(125℃、5分間、50kg/cm2)を施すことにより、アノード電極、電解質膜及びカソード電極を接合し、起電部を得た。起電部中のアノード触媒層の反応面積Sは、10cm2であった。また、起電部を切断し、断面積を電子顕微鏡で観察したところ、アノード触媒層の厚さLは105μmで、カソード触媒層の厚さは50μmであった。また、この電子顕微鏡観察により、アノード電極と電解質膜とカソード電極との接合状態が良好であることを確認することができた。
【0112】
<直接型メタノール燃料電池の作製>
作製した起電部をカーボン製のセパレータに装着し、ネジで締め付けることにより密閉した。セパレータにはシリコンラバーヒーターが装着されており、市販の温度コントローラーを用いて、ホルダー内部が常時70℃になる様に温度制御した。
【0113】
ところで、アノード電極側に位置するセパレータには、前述した図2に示すような形状のアノード流路9が形成されている。アノード流路9のメタノール供給口7に供給チューブを接続すると共に、アノード流路9のメタノール排出口8に排出チューブを接続した。容器10(容積10mL)にアルコール水溶液の一例としてメタノール水溶液を収容し、市販の送液ポンプ11を用いて送液し、供給チューブ及び供給口7を通してアノード流路9に供給した。アノード集電体であるアノードカーボンペーパーに浸み込まなかったメタノール水溶液をメタノール排出口8を通して排出チューブから排出した。
【0114】
一方、カソード電極側に位置するセパレータにも、アノード流路と同様な形状のカソード流路15が形成されている。カソード流路15の酸化剤供給口13に供給チューブを接続すると共に、カソード流路15の酸化剤排出口14に排出チューブを接続した。市販のエアーポンプを用いて空気を送気し、供給チューブ及び供給口13を通してカソード流路15に供給した。空気の流量は,市販のマスフローコントローラーを用いて調整した。
【0115】
送液は0.01μL/minから6mL/minまでの範囲で調整可能であり、送気は20mL/minから5L/minの範囲で調整可能であることを確認した。また、負荷には市販の電子負荷機を用いた。さらに、電圧検出手段には、市販のデジタルマルチメーターを用いた。このようにして前述した図8及び図9に示す構造を有する直接型メタノール燃料電池発電装置を得た。
【0116】
得られた燃料電池発電装置では、前述した(3)式で規定されるメタノール水溶液の流量Jm(mL/min)の設定許容範囲が、0.062≦Jm≦0.50になる。
【0117】
<電流電圧特性の測定>
前記メタノール水溶液容器10中のメタノール水溶液として、メタノール濃度C0 mが5M、4M、3M、2M、1M、0.5Mのものを用意し、それぞれのメタノール水溶液を流量Jmが0.05mL/min、0.1mL/min、0.2mL/min、0.4mL/minで送液を行った時に、一定の負荷電流1.5Aに対する電圧値を測定した。実験結果を図17に示す。図17の横軸は、容器10中のメタノール水溶液の初期濃度C0 m(M)であり、縦軸は電池電圧(V)である。
【0118】
流量Jmが0.05mL/minで送液を行った場合には、メタノール水溶液の濃度C0 mが約3.2M以下で電圧値が0となった。しかし、0.2mL/minまで送液流量Jmを増やせば、メタノール濃度C0 mが2.6M以下のメタノール水溶液容器を用いても電圧が取れ、すべての濃度において電圧が上昇する結果が得られた。さらに、0.4mL/minまで流量Jmを増やしたが、ほとんど変化せず、0.2mL/minの流量Jmでほぼ飽和することが分かった。流量Jmが低い方が補器の出力を小さくすることができるため、この場合の最適流量Jmは、0.2mL/minである。
【0119】
従って、メタノール水溶液容器10に最初に入れるメタノール水溶液のメタノール濃度C0 mを2〜5Mにし、カソード触媒層2の厚さLを40μm以上にし、かつメタノール水溶液の供給流量Jmを前述した(3)式で規制される範囲内の値(この場合、0.2mL/minという低流量)に設定することによって、0.25〜0.35Vという十分な電圧を得ることができる。また、最初のメタノール濃度C0 mを2〜5Mと高濃度にしているため、メタノール水溶液容器10の容積を小さくすることができる。さらに、高電圧が得られる供給流量Jmを前述した(3)式で規制される範囲内(例えば、0.2mL/min)に設定することができるため、補器の出力を抑えることが可能であり、一定量のメタノールから得られる出力密度を高くすることができる。
【0120】
(実施例2)
実施例1の直接型メタノール燃料電池発電装置において、初期濃度C0 mが2Mのメタノール水溶液を流量Jmを0.2mL/minにしてアノード触媒層に供給し、空気を500mL/minの流量でカソード触媒層に供給した際の電流電圧特性(例1)と、初期濃度C0 mが1Mのメタノール水溶液を流量Jmを0.2mL/minにしてアノード触媒層に供給し、空気を500mL/minの流量でカソード触媒層に供給した際の電流電圧特性(例2)を測定し、測定結果を図18に示す。
【0121】
図18から、前述した(1)〜(3)の関係式を満足する例1の燃料電池発電装置では、出力密度53mW/cm2が得られるのに対し、初期濃度C0 mが前記(1)式より低くなっている例2の燃料電池発電装置では、出力密度45mW/cm2と例1に比べて低くなることがわかる。
【0122】
さらに、例1及び例2の燃料電池発電装置において、メタノール水溶液の送液流量Jmを0.8mL/minに変更し、その結果を図19に示す。
【0123】
図19から明らかなように、初期濃度C0 mが2Mである例1の燃料電池発電装置では、出力密度63mW/cm2が得られ、また、初期濃度C0 mが1Mである例2の燃料電池発電装置では、出力密度81mW/cm2が得られた。流量を4倍にすることにより、2Mのメタノール水溶液を用いた場合は急激な出力上昇は見られなかったのに対して、1Mのメタノール水溶液を用いた場合には、倍近くまで出力密度が上昇し、2Mのメタノール水溶液を用いた場合よりも出力密度が大きくなる結果が得られた。しかしながら、送液流量Jmが0.8mL/minと前述した(3)式で規制される範囲よりも大きくなると、補器の出力が増大するため、一定量のメタノールから得られる出力密度としては低くなる。
【0124】
(実施例3)
実施例1の直接型メタノール燃料電池発電装置において、濃度C0 mが2Mのメタノール水溶液を流量Jmを0.2mL/minにしてアノード触媒層に供給し、空気を500mL/minの流量でカソード触媒層に供給し、1.5Aの負荷電流を流しながら電圧の変化を測定した。測定結果を図20に示す。但し、図20の横軸は経過時間(h)である。右側の縦軸は、前述した数22の式より見積もれる容器10中のメタノール水溶液の濃度Cm(t)(M)であり、左側の縦軸が電池電圧(V)である。電圧は、50分電流を流した時点までは、ほぼ0.37Vで一定であったが、その直後電圧が急激に減少した。前述した数22の式より見積もれるメタノール水溶液容器の濃度Cm(t)は1.2Mであった。前述した図18に示した1Mのメタノール水溶液を用いた場合(例2)の電流電圧特性から、メタノール燃料不足を起こしていると仮定した。そこで、メタノール送液流量Jmを2倍の0.4mL/minにすると、再び1.5Aの負荷電流を取ることが可能になり、約0.45Vまで電圧が回復し、さらに30分負荷電流を流しつづけることができた。
【0125】
測定後、メタノール水溶液容器中のメタノール水溶液のメタノール濃度をガスクロマトグラフィーで測定したところ0.6Mになっていた。また、容器中のメタノール水溶液の残量は、約9mLであった。
【0126】
(実施例4)
実施例3の実験が終了した時点で、燃料電池発電装置のメタノール水溶液容器10に第2のメタノール水溶液容器27を送液ポンプ28を介して接続し、前述した図13及び図14に示す構成を持つ本発明に係る直接型メタノール燃料電池発電装置直接型メタノール燃料電池発電装置に変更した。
【0127】
容積が10mLの第2のメタノール水溶液容器27に15Mのメタノール水溶液5mLを収容し、第2のメタノール水溶液容器27から1mLのメタノール水溶液を第1のメタノール水溶液容器10に注いだ。このことにより、第1のメタノール水溶液容器10中には、約2Mのメタノール水溶液が10mL入っていることになる。第1のメタノール水溶液容器10中のメタノール水溶液を流量Jmを0.2mL/minにしてアノード触媒層に供給し、空気を500mL/minの流量でカソード触媒層に供給し、1.5Aの負荷電流を流しながら電圧の変化を測定したところ、ほぼ0.37Vの一定電圧を得られた。そこで、1.5Aの負荷電流を1時間20分流した時点で、第2のメタノール水溶液容器27から第1のメタノール水溶液容器10に1mLメタノール水溶液を補充し、再び1.5Aの負荷電流を流した。この作業を5回繰り返すことにより、6時間40分連続駆動を行うことができた。その後、第1のメタノール水溶液容器10中のメタノール濃度をガスクロマトグラフィーで測定したところ、約0.7Mになっており、また、9mL残っていることが確認できた。一方、第2のメタノール水溶液容器27中には、ほとんどメタノール水溶液は残っていなかった。
【0128】
従って、第1のメタノール水溶液容器10内のメタノール水溶液を交換することなく、長時間に亘って高い出力密度を得ることができた。また、第2のメタノール水溶液容器のメタノール濃度が15Mと高濃度であるため、第2のメタノール水溶液容器の容積を小さくすることができた。
【0129】
(実施例5)
アノード触媒層の厚さLを50μmにすること以外は、前述した実施例1と同様にして直接型メタノール燃料電池発電装置(例3)を得た。得られた燃料電池発電装置では、前述した(3)式で規定されるメタノール水溶液の流量Jm(mL/min)の設定許容範囲が、0.13≦Jm≦1.0になる。
【0130】
また、アノード触媒層の厚さLを75μmにすること以外は、前述した実施例1と同様にして直接型メタノール燃料電池発電装置(例4)を得た。得られた燃料電池発電装置では、前述した(3)式で規定されるメタノール水溶液の流量Jm(mL/min)の設定許容範囲が、0.087≦Jm≦0.69になる。
【0131】
さらに、アノード触媒層の厚さLを100μmにすること以外は、前述した実施例1と同様にして直接型メタノール燃料電池発電装置(例5)を得た。得られた燃料電池発電装置では、前述した(3)式で規定されるメタノール水溶液の流量Jm(mL/min)の設定許容範囲が、0.065≦Jm≦0.52になる。
【0132】
例3の直接型メタノール燃料電池発電装置について、メタノール水溶液を流量Jmを0.4mL/minにしてアノード触媒層に供給し、空気を500mL/minの流量でカソード触媒層に供給し、3Aの負荷電流を流した際の電圧を測定した。測定結果を図21に示す。図21の横軸は、メタノール水溶液容器に最初に入れるメタノール水溶液の濃度C0 m(M)で、縦軸は電池電圧(V)である。なお、初期濃度C0 mは、0.5〜5Mの範囲内で変化させ、各濃度について電圧の測定を行った。
【0133】
例4の直接型メタノール燃料電池発電装置については、流量Jmを0.3mL/minにし、また、例5の直接型メタノール燃料電池発電装置については、流量Jmを0.2mL/minにすること以外は、前述した例3で説明したのと同様にして3Aの負荷電流を流した際の電圧を測定し、測定結果を図21に併記する。
【0134】
図21から、アノード触媒層の厚さLを40μm以上にすることによって、0.5〜5Mの広範囲の初期濃度C0 mに亘って直接型メタノール燃料電池を駆動できることがわかる。また、前述した図17に示した実験結果と同様に、メタノール初期濃度C0 mが薄くなる程、電圧が高くなる結果が得られた。さらに、アノード触媒層の厚さLが薄くなる程、低濃度まで電圧を取ることが可能であり、50μmのアノード触媒層厚の場合(例3)には、ほぼ0.5Mが限界となることが確認された。しかしながら、アノード触媒層厚を50μmにした場合には、クロスオーバー現象の影響が大きくなるため、流量Jmを0.4mL/minと速くすると、初期濃度C0 mが4Mを超える領域で電圧が取れず、燃料電池を駆動させるためには前述した(3)式で規制される範囲内において流量Jmを0.4mL/minより遅くする必要があることがわかった。クロスオーバー現象の影響をより少なくする観点から、初期濃度C0 mは、2〜4Mの範囲内にすることが好ましい。
【0135】
なお、直接型メタノール燃料電池の限界負荷電流は、アノード触媒層厚とメタノール水溶液容器から送るメタノール水溶液の濃度と流量で決めることができる。よって、電解質膜、カソード触媒層中の触媒や構造、酸化剤流量によって電池の出力密度が変化したとしても、本発明に係る直接型メタノール燃料電池発電装置において規定される関係式(1)〜(3)を適用することが可能である。
【0147】
【発明の効果】
以上詳述したように本発明によれば、アルコール含有水溶液容器の体積を小さくすることができ、かつ高出力が得られる燃料電池発電装置の運転方法を提供することができる。
【図面の簡単な説明】
【図1】 標準的な直接型メタノール燃料電池発電装置を示す模式図。
【図2】 図1の直接型メタノール燃料電池発電装置における流路板としてのセパレータを示す模式図。
【図3】 直接型メタノール燃料電池の起電部における空間的なメタノール分布を計算した結果を示す特性図。
【図4】 直接型メタノール燃料電池の電流電圧特性を、メタノール水溶液容器中のメタノール濃度を1M、2M、5M、10Mと変えて測定を行った実験結果を示す特性図。
【図5】 直接型メタノール燃料電池の出力密度の、メタノール水溶液容器中のメタノール濃度、また送液流量に対する依存性を計算した結果を示す特性図。
【図6】 図5の計算結果を5M以下のメタノール濃度範囲で拡大した特性図。
【図7】 アノード触媒層の厚さを40μmとした場合に、メタノール水溶液容器中のメタノール濃度、また送液流量に対する出力密度の変化を計算した結果を示す特性図。
【図8】 参考例の直接型メタノール燃料電池発電装置の要部を示す模式図。
【図9】 参考例の直接型メタノール燃料電池発電装置の構成の一例を示す回路図。
【図10】 図8の直接型メタノール燃料電池発電装置のアノード電極を示す斜視図。
【図11】 図8の直接型メタノール燃料電池発電装置の起電部を積層して直列に接続した際のメタノール水溶液の送液方法の一例を示す概略図。
【図12】 参考例の直接型メタノール燃料電池発電装置の運転方法の一例を表す流れ図。
【図13】 本発明に係る直接型メタノール燃料電池発電装置の構成の一例を示す回路図。
【図14】 図13の直接型メタノール燃料電池発電装置の要部を示す模式図。
【図15】 本発明に係る直接型メタノール燃料電池発電装置の運転方法の一実施形態を表す流れ図。
【図16】 本発明に係る組電池の構成の一例を示す回路図。
【図17】 実施例1における測定結果を示す特性図。
【図18】 実施例2における測定結果を示す特性図。
【図19】 実施例2における別の測定結果を示す特性図。
【図20】 実施例3における測定結果を示す特性図。
【図21】 実施例5における測定結果を示す特性図。
【符号の説明】
1…アノード集電体、
2…アノード触媒層、
3…カソード集電体、
4…カソード触媒層、
5…電解質膜、
6…アノード流路板、
7…メタノール供給口、
8…メタノール排出口、
9…アノード流路、
10…メタノール水溶液容器、
11…送液ポンプ、
12…カソード流路板、
15…カソード流路、
16…酸化剤供給手段、
21…燃料電池起電部単位、
23…補器の電源、
24…メタノール流量制御装置、
26…電流経時変化記録装置。

Claims (1)

  1. 厚さLが40μm以上、150μm以下のアノード触媒層を含むアノード極と、カソード極と、前記アノード極及び前記カソード極の間に配置される電解質膜とを備える起電部単位を少なくとも一つ備える起電部と、
    アルコール含有水溶液を収容する容器と、
    前記アノード極に前記アルコール含有水溶液を供給するためのアノード流路と、
    前記アノード流路に供給された前記アルコール含有水溶液のうち余剰分を前記容器に回収するアルコール含有水溶液回収機構と、
    前記容器内のアルコール含有水溶液のアルコール濃度よりも高濃度のアルコール含有水溶液を収容するアルコール補充容器を具備する燃料電池発電装置の運転方法であって、
    前記容器内のアルコール含有水溶液のアルコール濃度を2M以上、5M以下に初期設定して運転を開始し、外部回路に流れる電気量と、前記容器のアルコール濃度及び前記容器からのアルコール含有水溶液供給量J m (mL/min)との関係から求められる前記容器内の前記アルコール含有水溶液のアルコール濃度を0.5M以上、2M未満とするように前記アルコール補充容器から前記容器に前記高濃度のアルコール含有水溶液を補充するとともに、J m (mL/min)を下記数2の条件を満足するように制御することを特徴とする燃料電池発電装置の運転方法。
    Figure 0004131916
    但し、前記Lは前記アノード触媒層の厚さ(μm)で、前記Sは前記アノード触媒層の反応面積(cm )で、前記Nは前記起電部中の前記起電部単位の数を示す。
JP2002130373A 2001-05-02 2002-05-02 燃料電池発電装置の運転方法 Expired - Fee Related JP4131916B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002130373A JP4131916B2 (ja) 2001-05-02 2002-05-02 燃料電池発電装置の運転方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-135169 2001-05-02
JP2001135169 2001-05-02
JP2002130373A JP4131916B2 (ja) 2001-05-02 2002-05-02 燃料電池発電装置の運転方法

Publications (2)

Publication Number Publication Date
JP2003022830A JP2003022830A (ja) 2003-01-24
JP4131916B2 true JP4131916B2 (ja) 2008-08-13

Family

ID=26614638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002130373A Expired - Fee Related JP4131916B2 (ja) 2001-05-02 2002-05-02 燃料電池発電装置の運転方法

Country Status (1)

Country Link
JP (1) JP4131916B2 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752181B2 (ja) * 2003-03-31 2011-08-17 株式会社Gsユアサ 直接メタノール形燃料電池及びその運転方法
JP4529373B2 (ja) 2003-04-28 2010-08-25 ソニー株式会社 燃料電池および燃料電池の運転方法
JP4680530B2 (ja) * 2003-06-09 2011-05-11 パナソニック株式会社 燃料電池システム
JP4473526B2 (ja) 2003-06-30 2010-06-02 パナソニック株式会社 燃料電池の運転方法とそのシステム
JP4697380B2 (ja) * 2003-07-07 2011-06-08 ソニー株式会社 燃料電池装置及び燃料電池の燃料供給方法
JP4665381B2 (ja) * 2003-07-07 2011-04-06 ソニー株式会社 燃料電池システム及び電気機器
JP4781619B2 (ja) * 2003-07-18 2011-09-28 パナソニック株式会社 電源装置
US7687167B2 (en) 2003-07-18 2010-03-30 Panasonic Corporation Power supply unit
JP4969018B2 (ja) * 2003-07-18 2012-07-04 パナソニック株式会社 電源装置
JP2005100886A (ja) * 2003-09-26 2005-04-14 Matsushita Electric Ind Co Ltd 燃料電池システム、及び燃料電池への燃料供給方法
US7651804B2 (en) * 2003-11-06 2010-01-26 Nec Corporation Fuel cartridge for fuel cell and fuel cell with the fuel cartridge
CN100454638C (zh) * 2003-12-12 2009-01-21 日本电气株式会社 燃料电池、燃料盒以及燃料电池系统
JP4843906B2 (ja) * 2004-04-12 2011-12-21 セイコーエプソン株式会社 燃料電池システムおよび機器
JP4713092B2 (ja) * 2004-04-27 2011-06-29 パナソニック株式会社 燃料電池システム
DE602005004061T2 (de) 2004-04-27 2008-12-11 Matsushita Electric Industrial Co., Ltd., Kadoma Brennstoffzelleneinheit
EP1758188A4 (en) * 2004-05-14 2009-11-11 Toshiba Kk FUEL CELL
JP4710245B2 (ja) 2004-05-14 2011-06-29 ソニー株式会社 電気化学エネルギー生成装置の駆動方法
JP4924786B2 (ja) 2004-09-06 2012-04-25 ソニー株式会社 燃料電池発電装置の運転方法及び燃料電池発電装置
JP2006244920A (ja) * 2005-03-04 2006-09-14 Fujitsu Ltd 固体電解質組成物および高分子型燃料電池
JP2006351270A (ja) * 2005-06-14 2006-12-28 Nissan Motor Co Ltd 燃料電池
KR100722109B1 (ko) * 2005-09-28 2007-05-25 삼성에스디아이 주식회사 연료전지 시스템과 그 제어장치 및 제어방법
US20070087234A1 (en) * 2005-10-18 2007-04-19 Chao-Yang Wang Dual-pump anode system with circulating liquid for direct oxidation fuel cells
JP5098154B2 (ja) 2005-11-04 2012-12-12 ソニー株式会社 電気化学エネルギー生成装置及びその運転方法
JP5260836B2 (ja) * 2006-02-15 2013-08-14 パナソニック株式会社 燃料電池システム
JP2007299647A (ja) * 2006-04-28 2007-11-15 Toshiba Corp 燃料電池および燃料電池の制御方法
TW200917559A (en) * 2007-10-15 2009-04-16 Nan Ya Printed Circuit Board Corp Fuel cell system
DE102007062165A1 (de) * 2007-12-21 2009-06-25 Sabik Informationssysteme Gmbh Verfahren und Vorrichtung zum Betrieb einer Brennstoffzelle
JP5268832B2 (ja) * 2009-08-31 2013-08-21 株式会社日立製作所 有機系燃料を用いた燃料電池
JP5370430B2 (ja) * 2011-07-29 2013-12-18 株式会社リコー 燃料電池、燃料電池集合体、電源、電子機器及び燃料電池の製造方法

Also Published As

Publication number Publication date
JP2003022830A (ja) 2003-01-24

Similar Documents

Publication Publication Date Title
JP4131916B2 (ja) 燃料電池発電装置の運転方法
US6878473B2 (en) Fuel cell power generating apparatus, and operating method and combined battery of fuel cell power generating apparatus
JP3748417B2 (ja) 直接型液体燃料燃料電池発電装置およびその制御方法
CN101689658B (zh) 燃料电池系统
JP2009129647A (ja) 燃料電池システム
JP2008282659A (ja) 燃料電池システム
JP2017204407A (ja) 燃料電池システム及びその制御方法
JPWO2007110969A1 (ja) 燃料電池のクロスオーバー損失の測定方法および測定装置
JP2009032418A (ja) 燃料電池の運転方法
JP2008282682A (ja) 燃料電池システム
JP3909286B2 (ja) 直接型メタノール燃料電池発電装置の運転方法および直接型メタノール燃料電池発電装置
US7476456B2 (en) Submarine boat
JP5254022B2 (ja) 動的に制御可能な直接酸化型燃料電池システムおよびその方法
JP2013258038A (ja) 燃料電池システム及びその制御方法
JP2004281072A (ja) 燃料電池発電装置
JP5725423B2 (ja) 燃料電池システム
JP2011192458A (ja) 燃料電池システム、移動体、および燃料電池システムの制御方法
US7939210B2 (en) Electric automobile
JP4810872B2 (ja) 燃料電池システム
JP7331825B2 (ja) 燃料電池システム
JP6308140B2 (ja) 燃料電池システムにおける陽イオン不純物量の推定方法及び陽イオン不純物量の推定装置
JP2012129081A (ja) 燃料電池システムの運転方法
JP2004071183A (ja) 燃料電池における燃料残量告知装置、燃料残量告知方法、および燃料補充方法
JP4204526B2 (ja) 燃料電池システム
US20050014055A1 (en) System and method for fuel mixing in a fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061012

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees