JP3980302B2 - 固体撮像装置およびその駆動方法 - Google Patents

固体撮像装置およびその駆動方法 Download PDF

Info

Publication number
JP3980302B2
JP3980302B2 JP2001249909A JP2001249909A JP3980302B2 JP 3980302 B2 JP3980302 B2 JP 3980302B2 JP 2001249909 A JP2001249909 A JP 2001249909A JP 2001249909 A JP2001249909 A JP 2001249909A JP 3980302 B2 JP3980302 B2 JP 3980302B2
Authority
JP
Japan
Prior art keywords
horizontal
charge transfer
solid
state imaging
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001249909A
Other languages
English (en)
Other versions
JP2003060989A (ja
Inventor
哲生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2001249909A priority Critical patent/JP3980302B2/ja
Priority to US10/219,274 priority patent/US7184083B2/en
Publication of JP2003060989A publication Critical patent/JP2003060989A/ja
Application granted granted Critical
Publication of JP3980302B2 publication Critical patent/JP3980302B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14868CCD or CID colour imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CCD(電荷結合素子)によって構成された電荷転送素子およびその駆動方法、ならびに、この電荷転送素子を備えた固体撮像装置に関する。
【0002】
【従来の技術】
例えば、半導体基板に形成されたp型不純物添加領域の表面に線状ないし帯状にn型チャネルを形成し、このn型チャネルを平面視上横切る複数本の電極(転送電極)を半導体基板上に配置することによって、CCDを構成することができる。
【0003】
このCCDでは、個々の転送電極に印加する電圧値を制御することにより、n型チャネルのポテンシャルプロファイルを制御することができる。n型チャネル内に電荷が分布しているときに個々の転送電極に印加する電圧値を制御することによって、n型チャネル内の電荷を所望の転送電極下に移動させることができる。すなわち、n型チャネル内の電荷を所望方向に転送することができる。このためCCDは、種々の装置において電荷転送素子として利用される。
【0004】
電荷転送素子によって電荷を所望方向に高速に、かつ低転送損失の下に転送するためには、電荷の捕縛準位となり得るエネルギー準位がn型チャネルに形成されるのを抑制することが望まれる。例えば半導体表面の結晶性が乱れていると、電荷が本来は存在し得ないエネルギー帯(禁制帯)の中に、電荷が存在し得るエネルギー準位が生じることがある。このようなエネルギー準位は、上述した捕縛準位となる。
【0005】
捕縛準位の形成を避けるために、CCD型の電荷転送素子では、一般に、埋込みチャネル構造が採用される。n型チャネル上に電気的絶縁層が形成され、その上に転送電極が形成される。埋込みチャネルでは、この埋込みチャネルの電位(導電帯の電位)がその上の転送電極の電位よりも常に高くなるように、n型チャネルでのn型不純物の濃度、n型チャネルの周囲のp型不純物添加領域でのp型不純物の濃度、および電気的絶縁層の厚さが選定される。
【0006】
ここで、本明細書においてn型チャネルや電極についていう「電位」、「電圧」とは、n型チャネルの周囲に形成されているp型不純物添加領域の電位を基準にしたときの電位、電圧を意味する。
【0007】
n型の埋込チャネルを備えた電荷転送素子に負の高電圧を印加すると、n型チャネル表面に正孔反転層が形成されて、転送電極に印加する電圧ではn型チャネルの電位を制御することができなくなることがある。このため、n型の埋込チャネルを備えた電荷転送素子は、一般に、正電圧パルス列によって駆動される。
【0008】
特に、2相駆動型のCCDによって構成された電荷転送素子は全て、正電圧パルス列によって駆動される。2相駆動型のCCDでは、チャネル内での電荷の移動方向を規定するために、チャネルに不純物濃度が高い領域(蓄積領域)と低い領域(バリア領域)とが交互に繰り返し形成される。
【0009】
また、電荷転送装置を正電圧パルス列で駆動する場合には、ゲート保護回路の形成も容易になるという利点が得られる。ゲート保護回路は、転送電極を含んで構成されるゲートを静電気破壊から保護する。
【0010】
例えば、1個のMOS型電界効果トランジスタのゲートおよびソースを接地し、ドレインをバスラインに接続することによって、ゲート保護回路を構成することができる。電荷転送素子を正電圧パルス列で駆動する場合には、ゲート保護回路を構成するMOS型電界効果トランジスタのゲートおよびソースの接地が、これらゲートおよびソースと、n型チャネル周囲のp型不純物添加領域とを接続するだけで達成される。
【0011】
例外的に、転送電極の一部が光電変換素子からの電荷の読出しを制御する読出しゲートのゲート電極として利用されるタイプの垂直電荷転送素子(VCCD)を備えたCCD型の固体撮像装置では、負電圧パルス列によって垂直電荷転送素子が駆動される。
【0012】
この固体撮像装置はエリア・イメージセンサとして利用されるものであり、半導体基板の一表面に多数個の光電変換素子が複数行、複数列に亘って行列状に配置される。垂直電荷転送素子(VCCD)は、例えば1つの光電変換素子列に1つずつ、この光電変換素子列に沿って配設される。垂直電荷転送素子それぞれの出力端には、正電圧パルス列によって駆動される水平電荷転送素子(HCCD)が電気的に接続され、水平電荷転送素子の出力端には、電荷検出回路が電気的に接続される。
【0013】
光電変換素子に蓄積された電荷を垂直電荷転送素子へ読み出す際には、正電位(例えば15V)の読出しパルスが、垂直電荷転送素子を構成している所定の転送電極に印加される。垂直電荷転送素子に読み出した電荷を水平電荷転送素子に向けて転送する際には、一旦読み出した電荷が光電変換素子へ逆流することや、不所望の光電変換素子から電荷が読み出されることを防止するために、負電圧パルス列によって垂直電荷転送素子が駆動される。この負電圧パルス列のローレベルでの電位は例えば−7Vであり、ハイレベルでの電位は例えば0Vである。
【0014】
垂直電荷転送素子の転送電極を利用して読出しゲートを構成することにより、読出しゲート電極を別途も受ける場合に比べて、光電変換素子の集積度を容易に高めることができる。解像度の高いエリア・イメージセンサを得ることが容易になる。
【0015】
その一方で、上記のタイプの垂直電荷転送素子にゲート保護回路を接続する場合には、正電圧パルス列で駆動させる電荷転送素子にゲート保護回路を接続する場合に比べて、ゲート保護回路自体の作製が煩雑となる。
【0016】
すなわち、ゲート保護回路を構成するMOS型電界効果トランジスタのゲートおよびソースを接地するために、n型チャネル周囲のp型不純物添加領域とは別に第2のp型不純物添加領域を形成することが必要となると共に、ここに負のバイアス電圧を印加することが必要となる。
【0017】
それでも尚、エリア・イメージセンサの解像度の向上を優先させる場合には、負電圧パルス列で駆動させる垂直電荷転送素子が利用される。
【0018】
【発明が解決しようとする課題】
垂直電荷転送素子から水平電荷転送素子へ電荷を転送するためには、水平電荷転送素子において電荷を受け取る領域でのチャネル電位を、垂直電荷転送素子のチャネル電位よりも高くすることが必要である。
【0019】
例えば、負電圧パルス列で駆動される垂直電荷転送素子にハイレベル(0V)の電圧を印加したときのチャネル電位は8〜9V程度となるので、水平電荷転送素子において電荷を受け取る領域でのチャネル電位は例えば10数Vとすることが必要である。
【0020】
このため水平電荷転送素子は、ハイレベルでの電位が例えば3〜5Vで、ローレベルでの電位が例えば0Vの正電圧パルス列によって駆動される。垂直電荷転送素子から電荷を受け取る時には、水平電荷転送素子の所定の転送電極にハイレベルの電圧が印加される。
【0021】
同様に、水平電荷転送素子から電荷検出回路へ電荷を転送するためには、電荷検出回路の電位を水平電荷転送素子のチャネル電位よりも高くすることが必要である。
【0022】
例えば、電荷検出回路は、アウトプットゲートを介して水平電荷転送素子の出力端に電気的に接続されるフローティングディフュージョン領域(以下、「FD領域」と略記する。)と、このFD領域をソース領域とするリセットトランジスタと、FD領域に接続されたソースフォロア回路とを用いて構成される。
【0023】
リセットトランジスタのゲートを開閉することによって、FD領域の電位が基準電位に設定され、基準電位に設定されたFD領域に、アウトプットゲートを介して水平電荷転送素子から電荷が転送される。
【0024】
水平電荷転送素子からFD領域へ電荷を送り出す際には、水平電荷転送素子の出力端の転送電極にローレベルの電圧が印加され、その下のチャネル電位が例えば7〜8Vとなる。FD領域の基準電位は、水平電荷転送素子から電荷を受け取ることができ、かつ、電荷検出回路の出力ダイナミックレンジを十分に確保することができるように、電荷を出力する際の水平電荷転送素子出力端でのチャネル電位(例えば7〜8V)よりも十分高い値、例えば12〜15Vに設定される。
【0025】
FD領域の電位を基準電位に設定するための電圧が、一般に、ソースフォロア回路の入力として利用される。したがって、ソースフォロア回路の電源電圧も、例えば12〜15Vとなる。
【0026】
ソースフォロア回路は、この電源電圧を利用して、水平電荷転送素子から電荷が転送されたことに伴うFD領域の電位の変化量に応じた信号電圧を生成し、この信号電圧を増幅して出力する。
【0027】
ソースフォロア回路には、外部の負荷に対して十分に大きな電流容量を確保するために、比較的大きな電流を流す。例えば、水平電荷転送素子から電荷検出回路への電荷の転送レート(信号データレート)が20MHz程度であれば、一般的には、8mA程度の電流が流される。これを消費電力に換算すると、96mW程度になる。
【0028】
例えば携帯電話等の小型モバイル機器に組み込まれる固体撮像装置は、低消費電力であることが望まれる。固体撮像装置の電荷検出回路だけで約100mWもの電力を消費することは、好ましくない。
【0029】
本発明の目的は、消費電力を低減させることが容易な固体撮像装置を提供することである。
【0030】
本発明の他の目的は、消費電力を低減させることが容易な固体撮像装置子の駆動方法を提供することである。
【0032】
【課題を解決するための手段】
本発明の観点によれば、半導体基板と、前記半導体基板の一表面に形成され、各々が、入射光量に応じた量の電荷を蓄積することができ、複数行、複数列に亘って行列状に配置された多数個の光電変換素子と、前記光電変換素子から電荷を供給され、該光電変換素子の列方向に電荷を転送する垂直電荷転送素子と、前記垂直電荷転送素子から電荷を供給され、複数相の電圧パルス列によって駆動されて前記光電変換素子の行方向に電荷を転送することができる水平電荷転送素子であって、(a) 前記半導体基板の一表面上に電気的絶縁膜を介して一列に配置され、複数のグループに分かれてグループ毎に共通結線された複数本の水平転送電極と、(b) 前記半導体基板の一表面に形成されて前記水平転送電極の各々を平面視上横切るn型の水平電荷転送チャネルとを有する水平電荷転送素子と、前記水平電荷転送素子の出力端に電気的に接続され、該水平電荷転送素子から出力された電荷を検出して電気信号を生成することができる電荷検出回路と、前記複数相の電圧パルス列を生成する駆動回路であって、個々の相でのローレベルの電位が負である複数相の電圧パルス列を生成する駆動回路と
を具備し、前記水平電荷転送チャネルの導電型を支配する不純物の濃度が、前記水平転送電極に前記電圧パルス列のローレベルの電位を印加したときに、該水平電荷転送チャネルの表面に正孔反転層が形成される濃度に設定されている固体撮像装置が提供される。
【0034】
本発明の他の観点によれば、半導体基板と、前記半導体基板の一表面に形成され、各々が、入射光量に応じた量の電荷を蓄積することができ、複数行、複数列に亘って行列状に配置された多数個の光電変換素子と、前記光電変換素子から電荷を供給され、該光電変換素子の列方向に電荷を転送する垂直電荷転送素子と、前記垂直電荷転送素子から電荷を供給され、複数相の電圧パルス列によって駆動されて前記光電変換素子の行方向に電荷を転送することができる水平電荷転送素子であって、(a) 前記半導体基板の一表面上に電気的絶縁膜を介して一列に配置され、複数のグループに分かれてグループ毎に共通結線された複数本の水平転送電極と、(b) 前記半導体基板の一表面に形成されて前記水平転送電極の各々を平面視上横切るn型の水平電荷転送チャネルであって、該水平電荷転送チャネルの導電型を支配する不純物の濃度が所定の濃度に設定されたn型の水平電荷転送チャネルとを有する水平電荷転送素子と、前記水平電荷転送素子の出力端に電気的に接続され、該水平電荷転送素子から出力された電荷を検出して電気信号を生成することができる電荷検出回路とを具備した固体撮像装置の駆動方法であって、互いに異なる位相を有し、個々の相でのローレベルの電位が、該ローレベルの電位を前記水平転送電極に印加したときに前記水平電荷転送チャネルの表面に正孔反転層を形成するような負電位である複数相の負電圧パルス列を生成するパルス列生成工程と、前記複数相の負電圧パルス列を前記複数本の水平転送電極に供給する工程であって、個々の負電圧パルス列を別々のグループの水平転送電極に供給するパルス列供給工程とを含む固体撮像装置の駆動方法が提供される。
【0035】
出力端に電荷検出回路が電気的に接続される電荷転送素子を負電位パルス列によって駆動させることにより、この電荷転送素子から電荷検出回路へ電荷を送り出す際の電荷転送素子出力端でのチャネル電位を、正電圧パルス列によって電荷転送素子を駆動させる場合に比べて、低くすることができる。
【0036】
これに伴って、電荷検出回路で電荷の検出に使用する基準電位を低減させることができる。電荷検出回路がソースフォロア回路を有している場合には、その入力電圧を低減させることもできる。その結果として、電荷検出回路の消費電力を低減させることができる。
【0037】
【発明の実施の形態】
図1は、第1の実施例による固体撮像装置を概略的に示す。同図に示す固体撮像装置100は、エリア・イメージセンサとして利用される固体撮像素子1と、固体撮像素子1の駆動に必要なパルス信号(電圧パルス)を生成する第1および第2駆動回路80、90とを備える。
【0038】
固体撮像素子1は半導体基板5を有し、この半導体基板5の一表面に、多数個の光電変換素子10が複数行、複数列に亘って行列状に配置される。個々の光電変換素子10は、例えば埋込型のフォトダイオードによって構成される。光電変換素子10の総数は少ないものでも数十万個程度であり、多いものでは600万個を超える。
【0039】
1つの光電変換素子列に1つずつ、この光電変換素子列に沿って垂直電荷転送素子20が配置される。個々の垂直電荷転送素子20はCCDによって構成され、半導体基板5に形成されたn型の垂直電荷転送チャネル21と、半導体基板5上に電気的絶縁膜(図示せず。)を介して配置された多数本の転送電極とを有する。
【0040】
図示の例では、第1垂直転送電極23と第2垂直転送電極24とが1つの光電変換素子行に1本ずつ配置され、最も下流の第2垂直転送電極24の下流側に更に3本の補助転送電極25、26、27が配置されている。
【0041】
なお、本明細書においては、光電変換素子から後述する電荷検出回路への電荷の移動を1つの流れとみなして、個々の部材等の相対的な位置を、必要に応じて「何々の上流」、「何々の下流」等と称して特定するものとする。
【0042】
第2垂直転送電極24の各々は、光電変換素子10から垂直電荷転送素子20への電荷の読出しを制御する読出しゲート30も構成する。図1においては、読出しゲート30の位置を判りやすくするために、個々の読出しゲート30にハッチングを付してある。
【0043】
3本おきに配置されている転送電極同士が配線WL11、WL12、WL13またはWL14によって共通結線され、第2駆動回路90から負電圧パルス列φV1、φV2、φV3またはφV4の供給を受ける。各負電圧パルス列φV1〜φV4の電位のローレベルは例えば−7Vであり、ハイレベルは0Vである。
【0044】
光電変換素子10から垂直電荷転送素子20へ電荷を読み出す際には、負電圧パルス列φV1またはφV4に読出しパルスが重畳される。読出しパルスの電位は、例えば15Vである。
【0045】
各垂直電荷転送素子20は負電圧パルス列φV1〜φV4によって駆動されて、水平電荷転送素子40へ向けて電荷を転送する。
【0046】
水平電荷転送素子40はCCDによって構成され、各垂直電荷転送素子20の出力端に電気的に接続可能に配置される。この水平電荷転送素子40は、半導体基板5に形成された水平電荷転送チャネル41と、半導体基板5上に電気的絶縁膜(図示せず)を介して配置された多数本の水平転送電極とを有する。
【0047】
図示の例では、下流から上流に向かって、第2水平転送電極44と第1水平転送電極43とがこの順番で交互に繰り返し配置されている。1つの垂直電荷転送素子20に4本の水平転送電極43、44が対応する。
【0048】
1つの垂直電荷転送素子20に対応する上流側の2本の水平転送電極43、44は、配線WL1 によって共通結線され、第1駆動回路80からパッドP1を介して負電圧パルス列φH1の供給を受ける。1つの垂直電荷転送素子20に対応する下流側の2本の水平転送電極43、44は、配線WL2 によって共通結線され、第1駆動回路80からパッドP2を介して負電圧パルス列φH2の供給を受ける。
【0049】
水平電荷転送素子40は負電圧パルス列φH1〜φH2によって駆動されて、各垂直電荷転送素子20から受け取った電荷を電荷検出回路50へ向けて転送する。
【0050】
電荷検出回路50は、水平電荷転送素子40の出力端に接続されたアウトプットゲート52と、アウトプットゲート52に隣接して半導体基板5に形成されたフローティングディフュージョン(FD)領域54と、このFD領域54に電気的に接続された2段のソースフォロア回路(フローティングディフュージョンアンプ(以下、「FDA」と略記する。))56と、FD領域52をソース領域とするリセットトランジスタ58とを有する。
【0051】
アウトプットゲート52は、直流電圧VOGの供給を受けて、水平電荷転送素子40からFD領域52への電荷転送を行う。
【0052】
FDA56は、FD領域54内の電荷を検出して信号電圧を生成し、この信号電圧を増幅して出力する。このFDA56は、半導体基板5に形成されている。
【0053】
リセットトランジスタ58は、駆動信号φRSによって駆動されて、FD領域54の電位を、ドレイン領域59に供給されている電圧、例えば電源電圧VDDの電位に設定する。このとき、FDA56によって検出された後の電荷、あるいは、FDA56によって検出する必要のない電荷が、FD領域54からドレイン領域59へ掃き出される。ドレイン領域59へ掃き出された電荷は電源電圧VDDに吸収される。
【0054】
図1においては図示されていないが、光電変換素子10以外の領域を平面視上覆う光遮蔽膜が配置されて、無用の光電変換が行われるのを防止する。単板式の固体撮像素子では、個々の光電変換素子10の上方に所定色の色フィルタが1つずつ配置される。必要に応じて、個々の光電変換素子10の上方にマクロレンズが1つずつ配置される。
【0055】
図示の固体撮像装置100では、前述したように、負電圧パルス列φH1〜φH2によって水平電荷転送素子40を駆動する。各負電圧パルス列φH1〜φH2でのローレベルの電位は例えば−3Vであり、ハイレベルの電位は0Vである。負電圧パルス列φH1と負電圧パルス列φH2とは互いに逆の位相を有する。
【0056】
図2は、上述した負電圧パルス列φH1およびφH2の波形を概略的に示す。この負電圧パルス列φH1、φH2によって駆動される水平電荷転送素子40では、水平電荷転送チャネル41における不純物濃度が、正電圧パルス列で駆動される水平電荷転送素子の水平電荷転送チャネルに比べて、低い値に設定される。
【0057】
図3は、水平電荷転送素子40から電荷検出回路50にかけての断面の概略とポテンシャルプロファイルとを示す。ただし、FDA56については等価回路図で示す。同図に示した構成部材のうち、既に図1に示した部材については図1で用いた参照符号と同じ参照符号を付して、その説明を省略する。
【0058】
図3に示すように、半導体基板5は、n型半導体基板5aと、その一表面に形成されたp型不純物添加領域5bとを有する2層構造をなす。
【0059】
水平電荷転送チャネル41は、p型不純物添加領域5bにn型不純物添加領域41aとn- 型不純物添加領域41bとを出力端側からこの順番で交互に繰り返し配置した構成を有する。
【0060】
p型不純物添加領域5bにおけるp型不純物の濃度は、例えば1015/cm3 〜1017/cm3 である。n型不純物添加領域41aにおけるn型不純物の濃度は例えば1016/cm3 〜1018/cm3 であり、n- 型不純物添加領域41bにおけるn型不純物の濃度は例えば1015/cm3 〜1017/cm3 である。n型不純物添加領域41aおよびn- 型不純物添加領域41bの厚さ(深さ)は、共に、例えば0.3〜0.8μmである。
【0061】
第1水平転送電極43および第2水平転送電極44は、半導体基板5の表面に形成されたシリコン酸化膜、シリコン窒化膜、シリコン酸化膜とシリコン窒化膜との積層膜等の電気的絶縁膜7の上に配置される。n型不純物添加領域41aの上方に第2水平転送電極44が配置され、n- 型不純物添加領域41bの上方に第1水平転送電極43が配置される。
【0062】
アウトプットゲート52は、p型不純物添加領域5bに形成されたn型不純物添加領域52aと、その上に電気的絶縁膜7を介して配置されたゲート電極52bとを有する。
【0063】
FD領域54は、p型不純物添加領域5bに形成されたn+ 型不純物添加領域によって構成される。n+ 型不純物添加領域におけるn型不純物の濃度は、n型不純物添加領域におけるn型不純物の濃度よりも高い。
【0064】
FDA56は、例えば4個のトランジスタQ1〜Q4を用いて構成され、1個のトランジスタQ1のゲートとFD領域54とが接続される。FDA56は電源電圧VDDの供給を受け、FD領域54に転送された電荷の量に応じた電気信号(信号電圧)を生成し、出力する。図示のように、トランジスタQ1以外の3個のトランジスタQ2〜Q4としてディプリーション型のトランジスタを用いることにより、これらのトランジスタQ2〜Q4を定電流源として利用することができる。
【0065】
FD領域54と共にリセットトランジスタ58を構成するドレイン領域59も、FD領域54と同様に、p型不純物添加領域5bに形成されたn+ 型不純物添加領域によって構成される。これらの領域の間にはチャネル領域58aが形成され、その上に電気的絶縁膜7を介してゲート電極58bが配置される。
【0066】
なお、各電極の表面には、例えばシリコン酸化物によって構成された電気的絶縁膜IFが形成される。
【0067】
図3中の実線PP1は、上述した水平電荷転送素子40において負電圧パルス列φH1がハイレベル(0V)、負電圧パルス列φH2がローレベル(−3V)であるのときのポテンシャルプロファイルを示す。
【0068】
実線PP1で示したように、負電圧パルス列φH1がハイレベルのとき、この負電圧パルス列φH1が供給される第1水平転送電極43下のn- 型不純物添加領域41bの電位は4.2V程度、第2水平転送電極44下のn型不純物添加領域41bの電位は5.7V程度となる。第2水平転送電極44下のn型不純物添加領域41bが、電荷蓄積領域として機能する。
【0069】
一方、負電圧パルス列φH2がローレベルのとき、この負電圧パルス列φH2が供給される第1水平転送電極43下のn- 型不純物添加領域41bの電位は1.5V程度、第2水平転送電極44下のn型不純物添加領域41bの電位は3.0V程度となる。
【0070】
水平電荷転送素子40からFD領域54へ電荷を送り出すためには、まず、最下流のn型不純物添加領域41bを電荷蓄積領域として機能させて、ここに一旦電荷を分布させる。このとき、駆動信号φH1はローレベル(−3V)にあり、駆動信号φH2はハイレベル(0V)にある。
【0071】
次いで、駆動信号φH1がハイレベル(0V)になり、駆動信号φH2がローレベル(−3V)になって、水平電荷転送チャネル41のポテンシャルプロファイルが図3に実線PP1で示したポテンシャルプロファイルとなる。最下流のn型不純物添加領域41bに分布していた電荷がアウトプットゲート52を介してFD領域54へ転送される。
【0072】
水平電荷転送素子40からFD領域54へ電荷を送り出す際には、水平電荷転送素子40の出力端でのチャネル電位が3.0V程度となる。アウトプットゲート52のチャネル電位(n型不純物添加領域52aの電位)を4.0V程度にすれば、水平電荷転送素子40からFD領域54へ電荷を転送することができる。
【0073】
アウトプットゲート52のチャネル電位が4.0V程度であればFD領域54へ電荷を転送することができるので、ドレイン領域59へ供給する電源電圧VDDを6V程度にすることによってFD領域54の基準電位を6V程度にすれば、電荷検出回路50での出力ダイナミックレンジを十分に確保することができる。FDA56の閾値電圧(トランジスタQ1の閾値電圧)を従来と同じ0Vにしたとしても、FDA56への入力電圧は、6Vの電源電圧VDDでよい。
【0074】
これに対し、水平電荷転送素子を正電圧パルス列で駆動する場合には、FD領域54の基準電位を更に高くすることが必要である。
【0075】
図3中の一点鎖線PP2は、水平電荷転送素子40の駆動に使用する2相のパルス列が共に正電圧パルス列である場合のポテンシャルプロファイルを示す。
【0076】
図示の例では、正電圧パルス列φH11がハイレベル(例えば3V)、正電圧パルス列φH12がローレベル(例えば0V)になっている。n型不純物添加領域41aおよびn- 型不純物添加領域41bそれぞれでのn型不純物の濃度、これらの領域の厚さ(深さ)、およびp型不純物添加領域5bにおけるp型不純物の濃度は、いずれも、図3中に実線で示したポテンシャルプロファイルが得られるときの濃度範囲内および厚さ(深さ)範囲内にある。
【0077】
ただし、後に図4(A)および図4(B)を用いて説明するように、実線PP1で示すポテンシャルプロファイルが得られる水平電荷転送素子と、一点鎖線PP2で示すポテンシャルプロファイルが得られる水平電荷転送素子とでは、チャネル電位−電極電圧特性が互いに異なる。
【0078】
この場合、水平電荷転送素子40からFD領域54へ電荷を送り出す際に、水平電荷転送素子40の出力端でのチャネル電位が8.5V程度となる。水平電荷転送素子40からFD領域54へ電荷を転送するためには、アウトプットゲート52のチャネル電位(n型不純物添加領域52aの電位)を10.0V程度とすることが必要になる。
【0079】
アウトプットゲート52のチャネル電位が10.0V程度でFD領域54へ電荷が転送されるので、FD領域54の基準電位は、ドレイン領域59へ供給する電源電圧VDDを12V程度以上にすることによって12V程度以上にすることが望まれる。FDA56への入力電圧も、12V程度以上の電源電圧VDDとなる。
【0080】
FDA56への入力電圧(電源電圧VDD)が12V程度以上となることから、水平電荷転送素子40を上述の正電圧パルス列で駆動させたときの電荷検出回路50の消費電力は、水平電荷転送素子40を前述の負電圧パルス列で駆動させたときの2倍程度となる。
【0081】
換言すれば、前述の負電圧パルス列で水平電荷転送素子40を駆動させることにより、電荷検出回路50の消費電力を1/2程度に低減させることができる。
【0082】
固体撮像素子1の生産性を高めるうえからは、垂直電荷転送チャネル21(図1参照)と水平電荷転送チャネル41中のn型不純物添加領域41aとを一工程で形成することが望まれる。垂直電荷転送チャネル21でのn型不純物の濃度と、負電圧パルス列φH1、φH2で駆動される水平電荷転送素子40中のn型不純物添加領域41aでのn型不純物の濃度とが、ほぼ同じ値になる。
【0083】
この場合、垂直電荷転送素子20を駆動させるために第2駆動回路90(図1参照)で生成する負電圧パルス列φV1〜φV4の各々は、ローレベルの電位が−4.5〜5V程度でハイレベルの電位が0Vである負電圧パルス列とすることが好ましい。
【0084】
図4(A)は、図3中に実線PP1で示したポテンシャルプロファイルが得られる水平電荷転送素子40でのチャネル電位と第1〜第2水平転送電極43、4に印加する電圧との関係をグラフ化したものである。同図中の一点鎖線がn型不純物添加領域41aの電位を示し、実線がn- 型不純物添加領域41bの電位を示す。図4(A)においては、第1〜第2水平転送電極43、4に印加する電圧を「電極電圧」と表記している。
【0085】
電極電圧が−4.5V程度よりも小さくなると、n型不純物添加領域41aの表面およびその近傍に正孔反転層が形成されて表面電位が0(ゼロ)レベルになり、n型不純物添加領域41aの電位が1.5V程度に固定される。同様に、電極電圧が−3V程度よりも小さくなると、n- 型不純物添加領域41bの表面およびその近傍に正孔反転層が形成されて表面電位が0(ゼロ)レベルになり、n- 型不純物添加領域41bの電位が1.5V程度に固定される。
【0086】
本明細書においては、チャネルの表面およびその近傍に正孔反転層が形成されてその表面電位が0(ゼロ)レベルになるときの転送電極の電位を「ピンニング電位」という。
【0087】
垂直電荷転送チャネル21と水平電荷転送チャネル41中のn型不純物添加領域41aとを一工程で形成した場合には、垂直電荷転送チャネル21でのn型不純物の濃度とn型不純物添加領域41aでのn型不純物の濃度とがほぼ同じ値になることから、垂直電荷転送チャネル21のピンニング電位も−4.5V程度となる。
【0088】
電荷転送素子を負電圧パルス列で駆動する場合、この負電圧パルス列でのローレベルの電位は、ピンニング電位またはその近傍、すなわち、ピンニング電位から概ね±2Vの範囲内の電位とすることが好ましい。
【0089】
図4(B)に、参考のため、図3中に一点鎖線PP2で示したポテンシャルプロファイルが得られる水平電荷転送素子40でのチャネル電位と第1〜第2水平転送電極43、4に印加する電圧との関係をグラフ化して示す。同図中の一点鎖線がn型不純物添加領域41aの電位を示し、実線がn- 型不純物添加領域41bの電位を示す。図4(B)においても、第1〜第2水平転送電極43、4に印加する電圧を「電極電圧」と表記している。
【0090】
図4(B)に示した例では、n型不純物添加領域41aのピンニング電位が−7V程度、n- 型不純物添加領域41bのピンニング電位が−5.5V程度となっている。
【0091】
次に、第2の実施例による固体撮像装置について説明する。
【0092】
図5は、第2の実施例による固体撮像装置200を概略的に示すブロック図である。図示の固体撮像装置200での第2駆動回路90は、図1に示した第2駆動回路90と機能的に同じものであるが、固体撮像装置200での固体撮像素子の構成および第1駆動回路の構成は、それぞれ、図1に示した固体撮像素子1または第1駆動回路80とは異なる。
【0093】
すなわち、固体撮像装置200を構成している固体撮像素子101では、水平電荷転送チャネルの構成が図1に示した水平電荷転送チャネル41の構成と異なる。この点については、後に図7を参照しつつ詳述する。
【0094】
また、固体撮像装置200を構成している第1駆動回路180は、第1パルス信号発生回路185と、第1〜第2キャパシタ(コンデンサ)C1〜C2、および第1〜第2バイアス抵抗R1〜R2を含む。
【0095】
第1パル信号発生回路185は、図1に示した第1駆動回路80が生成する負電圧パルス列φH1、φH2の波形を反転させた波形を有する2相の正電圧パルス列XH21、XH22を生成する。これらの正電圧パルス列XH21、XH22は、互いに逆の位相を有し、ハイレベルの電位は例えば3V、ローレベルの電位は例えば0Vである。
【0096】
正電圧パルス列XH21は第1キャパシタC1へ供給され、正電圧パルス列XH22は第2キャパシタC2に供給される。第1〜第2キャパシタC1〜C2の各々は、水平電荷転送素子を構成している全ての水平転送電極が有する接地容量(総量)に比べて十分に大きな容量を有する。
【0097】
第1〜第2キャパシタC1〜C2は、固体撮像素子101を構成している半導体基板に形成することも可能であるが、これら第1〜第2キャパシタC1〜C2は比較的大型となる。生産効率を勘案すると、図5に示すように、固体撮像素子101の外部に第1〜第2キャパシタC1〜C2を設けることが好ましい。例えば、固体撮像素子101をパッケージングし、そのときの接続ピンに第1〜第2キャパシタC1〜C2を付随させることができる。
【0098】
第1〜第2バイアス抵抗R1〜R2は、負の直流電源195から負のバイアス電圧、例えば−4Vのバイアス電圧VB1の供給を受ける。第1バイアス抵抗R1の一端は、第1キャパシタC1よりも水平電荷転送素子に近い側において、第1キャパシタC1と水平電荷転送素子とを結ぶ配線WL21に電気的に接続される。第2バイアス抵抗R2の一端は、第2キャパシタC2よりも水平電荷転送素子に近い側において、第2キャパシタC2と水平電荷転送素子とを結ぶ配線WL22に電気的に接続される。
【0099】
結果として、正電圧パルス列XH21、XH22に負のオフセット電圧が重畳される。正電圧パルス列XH21、XH22は、負電圧パルス列φH21、φH22となって、水平電荷転送素子に供給される。
【0100】
図6は、負電圧パルス列φH21の波形を示す。負電圧パルス列φH21でのハイレベルの電位は例えば−2.5V、ローレベルの電位は例えば−5.5Vであり、そのデューティ比は約50%である。負電圧パルス列φH22は、負電圧パルス列φH21とは逆の位相を有し、ハイレベルの電位、ローレベルの電位およびデューティ比は、それぞれ負電圧パルス列φH21での値と同じ値である。
【0101】
図7は、図5に示した固体撮像素子101を構成している水平電荷転送素子140から電荷検出回路50にかけての断面の概略とポテンシャルプロファイルとを示す。ただし,FDA56については等価回路図で示す。同図に示した構成部材のうち、図3または図5に示した部材と共通する部材については図3または図5で用いた参照符号と同じ参照符号を付して、その説明を省略する。
【0102】
固体撮像素子101を構成している水平電荷転送素子140の水平電荷転送チャネル141は、n型不純物添加領域141aとn- 型不純物添加領域141bとを有する。n型不純物添加領域141aでのn型不純物の濃度は、図3に示したn型不純物添加領域41aでのn型不純物の濃度よりも高い。同様に、n- 型不純物添加領域141bでのn型不純物の濃度は、図3に示したn- 型不純物添加領域41bでのn型不純物の濃度よりも高い。これらの不純物添加領域でのn型不純物の濃度は、図3において一点鎖線PP2で示したポテンシャルプロファイルが得られる濃度に相当する。
【0103】
図7中の実線PP10は、負電圧パルス列φH21がハイレベル(−2.5V)で、負電圧パルス列φH22がローレベル(−5.5V)であるときのポテンシャルプロファイルを示す。図示のように、水平電荷転送素子140からFD領域54へ電荷を送り出す際の水平電荷転送素子140の出力端でのチャネル電位は、3.5V程度となる。アウトプットゲート52のチャネル電位(n型不純物添加領域52aの電位)を4.0V程度にすれば、水平電荷転送素子140からFD領域54へ電荷を転送することができる。
【0104】
ドレイン領域59へ供給する電源電圧VDDを6V程度にすることによってFD領域54の基準電位を6V程度にしたとしても、水平電荷転送素子140からアウトプットゲート52を介して電荷を受け取ることができる。また、電荷検出回路50の出力ダイナミックレンジを十分に確保することができる。FDA56の閾値電圧(トランジスタQ1の閾値電圧)を従来と同じ0Vにしたとしても、FDA56への入力電圧は、6V程度の電源電圧VDDでよい。
【0105】
固体撮像装置200においても、図1に示した固体撮像装置100と同様に、水平電荷転送素子140を正電圧パルス列で駆動させたときに比べて、電荷検出回路50の消費電力を1/2程度に低減させることができる。
【0106】
次に、第3の実施例による固体撮像装置について、図8〜図10を参照しつつ説明する。
【0107】
図8は、第3の実施例による固体撮像装置300を概略的に示すブロック図である。
【0108】
図9は、図8に示した第1駆動回路280によって生成される負電圧パルス列φH31の波形を示す。
【0109】
図10は、図8に示した固体撮像素子101を構成している水平電荷転送素子140から電荷検出回路50にかけての断面を概略的に示す。ただし、FDA56については等価回路図で示す。
【0110】
図8または図9に示した構成部材のうち、図5または図7に示した部材と共通する部材については図5または図7で用いた参照符号と同じ参照符号を付して、その説明を省略する。
【0111】
固体撮像装置300は、図5に示した第1駆動回路180とは異なる構成の第1駆動回路280(図8参照)を備える。この第1駆動回路280は、(i) 第1バイアス抵抗R1に並列に第1整流素子D1が配置され、(ii)第2バイアス抵抗R2に並列に第2整流素子D2が配置され、(iii) 図5に示した負の直流電源195に代えて負の直流電源295が配置されて、第1〜第2バイアス抵抗R1〜R2および第1〜第2整流素子D1〜D2に−5.5Vの負のバイアス電圧VB2を供給する、という点で、図5に示した第1駆動回路180と異なる。第1〜第2整流素子D1〜D2は、固体撮像素子101側を負極としたときに順方向電流が流れる向きで配置される。
【0112】
この第1駆動回路280は、図9に示したように、ハイレベルでの電位が−2.5Vよりも僅かに低い−(2.5+α)Vで、ローレベルでの電位が−5.5Vよりも僅かに低い−(5.5+α)Vの負電圧パルス列φH31を生成する。また、負電圧パルス列φH31とは逆の位相の負電圧パルス列φH32を生成する。
【0113】
図示の固体撮像装置300は、第2駆動回路290が、第2パルス信号発生回路292から供給される4相の正電圧パルス列XV1〜XV4と負の直流電源295から供給される負のバイアス電圧VB2とを用いて、垂直電荷転送素子20(図1参照)の駆動に使用する4相の負電圧パルス列φV1〜φV4を生成する、という点でも、第2の実施例による固体撮像装置200と異なる。
【0114】
第2パルス信号発生回路292が生成する正電圧パルス列XV1〜XV4は、図1に示した第2駆動回路90が生成する負電圧パルス列φV1〜φV4の波形を反転させた波形を有する。これらの正電圧パルス列Xv1〜Xv4でのハイレベルの電位は例えば7V、ローレベルの電位は例えば0Vである。
【0115】
これらの点を除けば、固体撮像装置300の構成は第2の実施例による固体撮像装置200の構成と同様である。
【0116】
この固体撮像装置300においても、図1に示した固体撮像装置100と同様に、水平電荷転送素子140を正電圧パルス列で駆動させたときに比べて、電荷検出回路50の消費電力を低減させることができる。
【0117】
また、固体撮像装置300では、上述のように、第1駆動回路280が第1〜第2整流素子D1〜D2を有している。このため、負の直流電源295で生成する負のバイアス電圧VB2の電位を調整することにより、負電圧パルス列φH31、φH32の振幅を所定の振幅に保持しつつ、そのローレベルの電位を任意に設定することができる。
【0118】
負のバイアス電圧VB2の電位を上記のように−5.5Vとした場合には、図8に示したように、このバイアス電圧VB2を、垂直電荷転送素子20の駆動に使用する負電圧パルス列φV1〜φV4でのローレベルの電位を生成するための電源として利用することができる。供給電圧の値で分類した電源の数を、水平電荷転送素子を正電圧パルス列で駆動させる従来の固体撮像装置での数から増やすことなく、水平電荷転送素子を負電圧パルス列で駆動させる固体撮像装置を構成することが可能である。
【0119】
次に、第4の実施例による固体撮像装置について、図11〜図13を参照しつつ説明する。
【0120】
図11は、第4の実施例による固体撮像装置400を概略的に示すブロック図である。
【0121】
図12は、図11に示した第1駆動回路380によって生成される負電圧パルス列φH41の波形を示す。
【0122】
図13は、図11に示した固体撮像素子101を構成している水平電荷転送素子140から電荷検出回路50にかけての断面を概略的に示す。ただし、FDA56については等価回路図で示す。
【0123】
図11または図13に示した構成部材のうち、図8または図10に示した部材と共通する部材については図8または図10で用いた参照符号と同じ参照符号を付して、その説明を省略する。
【0124】
固体撮像装置400は、図8に示した第1駆動回路280とは異なる構成の第1駆動回路380(図11参照)を備える。この第1駆動回路380は、(i) 第1〜第2バイアス抵抗R1〜R2および第1〜第2整流素子D1〜D2が、負のバイアス電圧VB2の供給を受けることなく接地され、(ii)第1〜第2整流素子D1〜D2が、固体撮像素子101側を正極としたときに順方向電流が流れる向きで配置される、という点で、図8に示した第1駆動回路280と異なる。
【0125】
第1〜第2バイアス抵抗R1〜R2および第1〜第2整流素子D1〜D2には、接地電位の直流バイアス電圧が供給される。
【0126】
第1駆動回路380は、図11に示したように、ハイレベルでの電位が0Vよりも僅かに高い電位(0+α)Vで、ローレベルでの電位が−3Vよりも僅かに高い電位(−3+α)Vである負電圧パルス列φH41を生成する。また、負電圧パルス列φH41とは逆の位相の負電圧パルス列φH42を生成する。
【0127】
これらの点を除けば、固体撮像装置400の構成は第3の実施例による固体撮像装置300の構成と同様である。
【0128】
この固体撮像装置400においても、図1に示した固体撮像装置100と同様に、水平電荷転送素子140を正電圧パルス列で駆動させたときに比べて、電荷検出回路50の消費電力を低減させることができる。
【0129】
また、上記の向きで第1〜第2整流素子D1〜D2を配置することにより、負電圧パルス列φH41、φH42でのハイレベルの電位を、直流バイアス電圧の電位(本実施例の場合には接地電位)で規定することができる。
【0130】
次に、第5の実施例による固体撮像装置について説明する。
【0131】
図14は、第5の実施例による固体撮像装置500を概略的に示す。同図に示すように、この固体撮像装置500はリニア・イメージセンサとして使用することができる固体撮像装置であり、固体撮像素子401と、第1駆動回路480とを有する。
【0132】
固体撮像素子401は、半導体基板405と、半導体基板405の一表面に一列配置された多数個の光電変換素子410と、個々の光電変換素子410に1個ずつ配置された読出しゲート430と、これらの読出しゲート430に電気的に接続可能な1つの電荷転送素子440と、電荷転送素子440の出力端に電気的に接続可能な電荷検出回路450と、各光電変換素子410に電気的に接続可能な1つの横型オーバーフロードレイン460とを備える。
【0133】
半導体基板405は、例えば、図3に示した半導体基板5と同様の構成を有する。
【0134】
個々の光電変換素子410は、例えば埋込型のフォトダイオードによって構成される。図14には12個の光電変換素子410しか示されていないが、光電変換素子410の実際の数は、例えば数百〜数万である。
【0135】
個々の読出しゲート430は、例えば、半導体基板405に形成されたp型不純物添加領域(図示せず)の一領域と、その上に電気的絶縁膜(図示せず)を介して配置された読出しゲート電極とを有する。図示の例では、1本のゲート電極435中の所定の領域が、個々の読出しゲート430でのゲート電極として利用される。ゲート電極435に供給される駆動信号φRによって、各読出しゲートの動作が制御される。図14においては、読出しゲート430の場所を判りやすくするために、各読出しゲート430にハッチングを付してある。
【0136】
電荷転送素子440は、2相駆動型のCCDによって構成される。電荷転送素子440の構成は、例えば図3に示した水平電荷転送素子40、または図7に示した水平電荷転送素子140の構成と同様である。n型不純物添加領域とn- 型不純物添加領域とが交互に繰り返し配置された水平電荷転送チャネル441と、その上に電気的絶縁膜を介して配置された多数本の水平転送電極445とを有する。
【0137】
多数本の水平転送電極445が2つのグループに分けられ、グループ毎に供給結線される。一方のグループの水平転送電極は配線WL31によってパッドP1に接続され、他方のグループの水平転送電極は配線WL32によってパッドP2に接続される。図14では、個々の水平転送電極の描画を省略し、多数本の水平転送電極全体の輪郭形状を概略的に示している。
【0138】
電荷検出回路450は、例えば図3に示した電荷検出回路50と同様の構成を有する。
【0139】
横型オーバーフロードレイン460は、光電変換素子列から所定の間隔をあけて半導体基板405に形成されたドレイン領域462と、個々の光電変換素子410に1つずつ、この光電変換素子410に隣接して半導体基405に形成されたチャネル領域(図示せず)と、これらのチャネル領域を平面視上覆いつつ光電変換素子列方向に延在する掃出しゲート電極464とを有する。掃出しゲート電極464と半導体基板405との間には、図示を省略した電気的絶縁膜が介在する。
【0140】
横型オーバーフロードレイン460は、掃出しゲート電極464に供給される駆動信号φOFDに従って、各光電変換素子410からドレイン領域462への電荷の転送(掃き出し)を制御する。
【0141】
第1駆動回路480は、電荷転送素子440の構成に応じて、図1に示した第1駆動回路80、図5に示した第1駆動回路180、図8に示した第1駆動回路280、または図11に示した第1駆動回路380と同様の構成を有する。
【0142】
いずれにしても、第1駆動回路480は、電荷転送素子440の駆動に使用される2相の負電圧パルス列を生成し、その一方は配線WL41を介してパッドP1に供給し、他方は配線WL42を介してパッドP2に供給する。
【0143】
電荷転送素子440が負電圧パルス列によって駆動されるので、図1に示した固体撮像装置100で低消費電力化が図れる理由と同様の理由から、電荷転送素子440を正電圧パルス列で駆動させたときに比べて、電荷検出回路450の消費電力を低減させることができる。
【0144】
以上、実施例による固体撮像装置とその駆動方法について説明したが、本発明は上述した実施例に限定されるものではない。
【0145】
例えば、出力端に電荷検出回路が接続される電荷転送素子は、2相駆動型のCCDによって構成された電荷転送素子に限定されるものではない。3相駆動型、4相駆動型等、種々の駆動タイプのCCDによって構成することができる。この電荷転送素子を負電圧パルス列によって駆動させることにより、電荷検出回路での消費電力を低減させることができる。
【0146】
3相以上の駆動信号(電圧パルス列)によって駆動される電荷転送素子での電荷転送チャネルは、全体に亘ってほぼ均一な不純物濃度を有する。出力端に電荷検出回路が接続される電荷転送素子については、その電荷転送チャネルでの不純物濃度および不純物濃度分布を、当該電荷転送素子の駆動相数や、当該電荷転送素子を備えた固体撮像素子の用途等に応じて、適宜選定可能である。転送電極に印加する電圧の値とその下のチャネル電位との関係についても、図4(A)に示した関係に限定されるものではなく、適宜選定可能である。
【0147】
さらには、出力端に電荷検出回路が接続される電荷転送素子を駆動させる負電圧パルス列の振幅も、電荷転送チャネルでの不純物濃度および不純物濃度分布、当該電荷転送素子の駆動相数、当該電荷転送素子を備えた固体撮像素子の用途等に応じて、適宜選定可能である。
【0148】
電荷検出回路の構成も、実施例で示した構成に限定されるものではない。
【0149】
電荷転送素子と、この電荷転送素子の出力端に接続される電荷検出回路とは、1つの半導体基板に形成することが好ましいが、必要に応じて、別々の半導体基板に形成することも可能である。電荷転送素子や電荷検出回路には、必要に応じて、保護回路を接続させることができる。
【0150】
出力端に電荷検出回路が接続される電荷転送素子を備えた固体撮像素子は、フルカラー撮像用および白黒撮像用を問わず、エリア・イメージセンサ用の素子であってもよし、リニア・イメージセンサ用の素子であってもよい。さらには、オートフォーカスカメラ等の測距システムで使用される小型のリニア・センサであってもよい。
【0151】
エリアまたはリニア・イメージセンサ用の固体撮像素子では、電荷検出回路からの出力信号が、再生画像のデータを生成するための元データとして利用される。測距システムでは1対の固体撮像素子が所定の間隔をあけて配置され、これらの固体撮像素子(電荷検出回路)から出力される信号同士が比較されて、測距データが生成される。
【0152】
固体撮像素子での各部材の配置は、当該固体撮像素子の用途や、当該固体撮像素子に求められる性能等に応じて種々選定可能である。
【0153】
なお、電荷転送素子を遅延素子として用いることも可能である。例えば図14に示した構成から光電変換素子410、読出しゲート430、電荷検出回路450、および横型オーバーフロードレイン460を除くことにより、遅延素子を得ることができる。
【0154】
遅延素子(電荷転送素子)が有する電荷転送段の数を調整することにより、遅延時間を調整することができる。2相駆動型CCDによって構成された電荷転送素子での1電荷転送段は、4本の転送電極と、これらの転送電極の下の4つの不純物添加領域とによって構成される。遅延素子を負電圧パルス列によって駆動させることにより、その出力端に接続された回路の消費電力を低減させることができる。
【0155】
その他、種々の変更、改良、組み合わせ等が可能であることは当業者に自明であろう。
【0156】
【発明の効果】
以上説明したように、本発明によれば、電荷検出回路の消費電力を低減させることが可能な固体撮像装置が提供される。例えば携帯電話等の小型モバイル機器に組み込んだ場合でも、長時間に亘って動作させることが容易な固体撮像装置を提供しやすくなる。
【図面の簡単な説明】
【図1】第1の実施例による固体撮像装置を示す概略図である。
【図2】図1に示した固体撮像装置を構成している水平電荷転送素子の駆動に使用する2相の負電圧パルス列φH1およびφH2を概略的に示す波形図である。
【図3】図1に示した固体撮像装置での水平電荷転送素子から電荷検出回路にかけての断面とポテンシャルプロファイルとを概略的に示す図である。
【図4】図4(A)は、図3に示した水平電荷転送素子でのチャネル電位と第1〜第2水平転送電極に印加する電圧との関係を示すグラフであり、図4(B)は、正電圧パルス列で駆動される水平電荷転送素子でのチャネル電位と第1〜第2水平転送電極に印加する電圧との関係を示すグラフである。
【図5】第2の実施例による固体撮像装置を概略的に示すブロック図である。
【図6】図5に示した第1駆動回路によって生成される2相の負電圧パルス列の一方を示す波形図である。
【図7】図5に示した固体撮像装置での水平電荷転送素子から電荷検出回路にかけての断面とポテンシャルプロファイルとを概略的に示す図である。
【図8】第3の実施例による固体撮像装置を概略的に示すブロック図である。
【図9】図8に示した第1駆動回路によって生成される2相の負電圧パルス列の一方を示す波形図である。
【図10】図8に示した固体撮像装置での水平電荷転送素子から電荷検出回路にかけての断面とポテンシャルプロファイルとを概略的に示す図である。
【図11】第4の実施例による固体撮像装置を概略的に示すブロック図である。
【図12】図11に示した第1駆動回路によって生成される2相の負電圧パルス列の一方を示す波形図である。
【図13】図11に示した固体撮像素子での水平電荷転送素子から電荷検出回路にかけての断面とポテンシャルプロファイルとを概略的に示す図である。
【図14】第1の実施例による固体撮像装置を示す概略図である。
【符号の説明】
1、101…固体撮像素子、 5…半導体基板、 10、410…光電変換素子、 20…垂直電荷転送素子、 21…垂直電荷転送チャネル、 30…読出しゲート、 40、140…水平電荷転送素子、 41、141…水平電荷転送チャネル、 43…第1水平転送電極、 44…第2水平転送電極、 50、450…電荷検出回路、 52…アウトプットゲート、 54…フローティングディフュージョン領域、 56…ソースフォロア回路(フローティングディフュージョンアンプ)、 58…リセットトランジスタ、 80、180、280、380、480…第1駆動回路、 90、290…第2駆動回路、 100、200、300、400、500…固体撮像装置、 185…第1パルス信号発生回路、 195、295…負の直流電源、 292…第2パルス信号発生回路、 440…電荷転送素子、 C1…第1キャパシタ、 C2…第2キャパシタ、 R1…第1バイアス抵抗、 R2…第2バイアス抵抗、 D1…第1整流素子、D2…第2整流素子。

Claims (13)

  1. 半導体基板と、
    前記半導体基板の一表面に形成され、各々が、入射光量に応じた量の電荷を蓄積することができ、複数行、複数列に亘って行列状に配置された多数個の光電変換素子と、
    前記光電変換素子から電荷を供給され、該光電変換素子の列方向に電荷を転送する垂直電荷転送素子と、
    前記垂直電荷転送素子から電荷を供給され、複数相の電圧パルス列によって駆動されて前記光電変換素子の行方向に電荷を転送することができる水平電荷転送素子であって、(a) 前記半導体基板の一表面上に電気的絶縁膜を介して一列に配置され、複数のグループに分かれてグループ毎に共通結線された複数本の水平転送電極と、(b) 前記半導体基板の一表面に形成されて前記水平転送電極の各々を平面視上横切るn型の水平電荷転送チャネルとを有する水平電荷転送素子と、
    前記水平電荷転送素子の出力端に電気的に接続され、該水平電荷転送素子から出力された電荷を検出して電気信号を生成することができる電荷検出回路と、
    前記複数相の電圧パルス列を生成する駆動回路であって、個々の相でのローレベルの電位が負である複数相の電圧パルス列を生成する駆動回路と
    を具備し
    前記水平電荷転送チャネルの導電型を支配する不純物の濃度が、前記水平転送電極に前記電圧パルス列のローレベルの電位を印加したときに、該水平電荷転送チャネルの表面に正孔反転層が形成される濃度に設定されている固体撮像装置。
  2. 記駆動回路が、
    前記グループ分けされた水平転送電極の1グループに1個ずつ配置され、対応する水平転送電極の全てに一端が電気的に接続されたキャパシタと、
    1個または複数個のバイアス抵抗であって、全体として前記複数本の水平転送電極の全てに電気的に接続され、バイアス電圧の供給を受けることができる1個または複数個のバイアス抵抗と
    を含む請求項に記載の固体撮像装置。
  3. 記駆動回路が、さらに、前記バイアス抵抗の1つにつき1つずつ並列に接続された整流素子を含む請求項に記載の固体撮像装置。
  4. さらに、前記バイアス抵抗に前記バイアス電圧を供給する直流電源を備えた請求項または請求項に記載の固体撮像装置。
  5. さらに、前記バイアス抵抗および前記整流素子に電気的に接続され、該バイアス抵抗および該整流素子に前記バイアス電圧としての負の直流電圧を供給する直流電源を備え、
    前記整流素子が、前記直流電源側から前記水平転送電極側へ順方向電流が流れる向きで配置された請求項に記載の固体撮像装置。
  6. さらに、前記バイアス抵抗および前記整流素子に電気的に接続され、該バイアス抵抗および該整流素子に前記バイアス電圧としての負の直流電圧、0Vの直流電圧、または前記負電圧パルス列の振幅よりも小さな値の正の直流電圧を発生させる直流電源を備え、
    前記整流素子が、前記水平転送電極側から前記直流電源側へ順方向電流が流れる向きで配置された請求項に記載の固体撮像装置。
  7. 記駆動回路が、前記電圧パルス列の波形を反転させた波形を有する正電圧パルス列によって構成される複数相の正電圧パルス列を生成する第1パルス信号発生回路を含む請求項〜請求項のいずれか1項に記載の固体撮像装置。
  8. 前記電荷検出回路が、前記水平電荷転送素子の出力端にアウトプットゲートを介して電気的に接続されるフローティングディフュージョン領域と、該フローティングディフュージョン領域をソース領域とするリセットトランジスタと、前記フローティングディフュージョン領域に電気的に接続されたソースフォロア回路とを有する請求項〜請求項のいずれか1項に記載の固体撮像装置。
  9. 半導体基板と、前記半導体基板の一表面に形成され、各々が、入射光量に応じた量の電荷を蓄積することができ、複数行、複数列に亘って行列状に配置された多数個の光電変換素子と、前記光電変換素子から電荷を供給され、該光電変換素子の列方向に電荷を転送する垂直電荷転送素子と、前記垂直電荷転送素子から電荷を供給され、複数相の電圧パルス列によって駆動されて前記光電変換素子の行方向に電荷を転送することができる水平電荷転送素子であって、(a) 前記半導体基板の一表面上に電気的絶縁膜を介して一列に配置され、複数のグループに分かれてグループ毎に共通結線された複数本の水平転送電極と、(b) 前記半導体基板の一表面に形成されて前記水平転送電極の各々を平面視上横切るn型の水平電荷転送チャネルであって、該水平電荷転送チャネルの導電型を支配する不純物の濃度が所定の濃度に設定されたn型の水平電荷転送チャネルとを有する水平電荷転送素子と、前記水平電荷転送素子の出力端に電気的に接続され、該水平電荷転送素子から出力された電荷を検出して電気信号を生成することができる電荷検出回路とを具備した固体撮像装置の駆動方法であって、
    互いに異なる位相を有し、個々の相でのローレベルの電位が、該ローレベルの電位を前記水平転送電極に印加したときに前記水平電荷転送チャネルの表面に正孔反転層を形成するような負電位である複数相の負電圧パルス列を生成するパルス列生成工程と、
    前記複数相の負電圧パルス列を前記複数本の水平転送電極に供給する工程であって、個々の負電圧パルス列を別々のグループの水平転送電極に供給するパルス列供給工程と
    を含む固体撮像装置の駆動方法。
  10. 前記パルス列供給工程で、前記複数相の負電圧パルス列の各々を、対応する水平転送電極の各々にキャパシタを介して供給すると共に、前記水平転送電極の各々にバイアス抵抗を介して直流のバイアス電圧を供給する請求項に記載の固体撮像装置の駆動方法。
  11. 前記バイアス電圧を、前記バイアス抵抗と、該バイアス抵抗に並列に接続された整流素子とを介して前記水平転送電極の各々に供給する請求項10に記載の固体撮像装置の駆動方法。
  12. 前記整流素子を、前記水平転送電極側を負極としたときに順方向電流が流れる向きに配置し、該整流素子および前記バイアス抵抗に前記バイアス電圧としての負の直流電圧を供給する請求項11に記載の固体撮像装置の駆動方法。
  13. 前記整流素子を、前記水平転送電極側を正極としたときに順方向電流が流れる向きに配置し、該整流素子および前記バイアス抵抗に前記バイアス電圧としての負の直流電圧、0Vの直流電圧、または前記負電圧パルス列の振幅よりも小さな値の正の直流電圧を供給する請求項11に記載の固体撮像装置の駆動方法。
JP2001249909A 2001-08-21 2001-08-21 固体撮像装置およびその駆動方法 Expired - Fee Related JP3980302B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001249909A JP3980302B2 (ja) 2001-08-21 2001-08-21 固体撮像装置およびその駆動方法
US10/219,274 US7184083B2 (en) 2001-08-21 2002-08-16 Solid state image pickup apparatus of low power consumption and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001249909A JP3980302B2 (ja) 2001-08-21 2001-08-21 固体撮像装置およびその駆動方法

Publications (2)

Publication Number Publication Date
JP2003060989A JP2003060989A (ja) 2003-02-28
JP3980302B2 true JP3980302B2 (ja) 2007-09-26

Family

ID=19078828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001249909A Expired - Fee Related JP3980302B2 (ja) 2001-08-21 2001-08-21 固体撮像装置およびその駆動方法

Country Status (2)

Country Link
US (1) US7184083B2 (ja)
JP (1) JP3980302B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340475A (ja) * 2004-05-26 2005-12-08 Sony Corp 固体撮像装置
JP2006121457A (ja) * 2004-10-22 2006-05-11 Sanyo Electric Co Ltd 電荷転送素子の制御装置
JP2006269969A (ja) * 2005-03-25 2006-10-05 Fuji Photo Film Co Ltd 電荷結合素子
JP2006352723A (ja) * 2005-06-20 2006-12-28 Eastman Kodak Co 撮像装置、撮像システムおよび同期方法
JP2007324305A (ja) * 2006-05-31 2007-12-13 Fujifilm Corp 半導体素子、半導体素子の製造方法
JP5356726B2 (ja) * 2008-05-15 2013-12-04 浜松ホトニクス株式会社 距離センサ及び距離画像センサ
US9967501B2 (en) 2014-10-08 2018-05-08 Panasonic Intellectual Property Management Co., Ltd. Imaging device
JP6782431B2 (ja) 2016-01-22 2020-11-11 パナソニックIpマネジメント株式会社 撮像装置
CN112788225B (zh) * 2016-01-29 2023-01-20 松下知识产权经营株式会社 摄像装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838081A (ja) * 1981-08-29 1983-03-05 Sony Corp 固体撮像装置
US5189498A (en) * 1989-11-06 1993-02-23 Mitsubishi Denki Kabushiki Kaisha Charge coupled device
JPH03169027A (ja) 1989-11-29 1991-07-22 Hitachi Ltd 電荷転送装置の駆動方法および集積回路
KR920017285A (ko) * 1991-02-13 1992-09-26 문정환 피닝전압이 낮은 고체 촬상소자의 구조
JPH04335573A (ja) * 1991-05-10 1992-11-24 Sony Corp Ccd固体撮像素子
JP3224804B2 (ja) 1991-10-07 2001-11-05 株式会社日立製作所 Ccd型固体撮像素子
JP3224805B2 (ja) 1991-10-07 2001-11-05 株式会社日立製作所 Ccd型固体撮像素子
JP3313125B2 (ja) 1991-10-07 2002-08-12 株式会社日立製作所 Ccd型固体撮像素子
JP3635681B2 (ja) * 1994-07-15 2005-04-06 ソニー株式会社 バイアス回路の調整方法、電荷転送装置、及び電荷検出装置とその調整方法
JP3598648B2 (ja) * 1996-04-02 2004-12-08 ソニー株式会社 電荷転送素子及び電荷転送素子の駆動方法
JP2812310B2 (ja) * 1996-07-30 1998-10-22 日本電気株式会社 固体撮像装置及びその製造方法
US6111279A (en) * 1997-09-24 2000-08-29 Nec Corporation CCD type solid state image pick-up device
JP3703293B2 (ja) * 1998-03-26 2005-10-05 シャープ株式会社 Ccd固体撮像素子
JP2000101922A (ja) 1998-09-18 2000-04-07 Sony Corp 電荷転送装置
JP2000261726A (ja) 1999-03-10 2000-09-22 Matsushita Electronics Industry Corp 電荷転送装置の駆動方法

Also Published As

Publication number Publication date
US7184083B2 (en) 2007-02-27
JP2003060989A (ja) 2003-02-28
US20030038890A1 (en) 2003-02-27

Similar Documents

Publication Publication Date Title
US7456880B2 (en) Photoelectric conversion element having a plurality of semiconductor regions and including conductive layers provided on each isolation element region
US10498995B2 (en) Solid state imaging apparatus including photodetecting section
JP3635681B2 (ja) バイアス回路の調整方法、電荷転送装置、及び電荷検出装置とその調整方法
JP3689866B2 (ja) Cmd及びcmd搭載ccd装置
JPH09246514A (ja) 増幅型固体撮像装置
US9210345B2 (en) Shared readout low noise global shutter image sensor method
US6445414B1 (en) Solid-state image pickup device having vertical overflow drain and resistive gate charge transfer device and method of controlling thereof
JP3980302B2 (ja) 固体撮像装置およびその駆動方法
JPH0590554A (ja) 固体撮像素子
JP3718103B2 (ja) 固体撮像装置とその駆動方法、およびこれを用いたカメラ
US7291861B2 (en) Solid-state imaging device, method for driving the same, method for manufacturing the same, camera, and method for driving the same
JPH0775020A (ja) 電荷結合装置
WO2010079562A1 (ja) 固体撮像装置
JPH0638111A (ja) 二次元電荷結合撮像素子の駆動方法
JP3397151B2 (ja) 固体撮像素子の駆動方法
JPS61188965A (ja) 固体撮像装置
US20090303370A1 (en) Solid state image sensor
JP4069475B2 (ja) 電荷検出装置並びにこれを搭載した電荷転送装置および固体撮像装置
JP4645764B2 (ja) 固体撮像装置
JP4207268B2 (ja) 電荷検出装置並びにこれを搭載した電荷転送装置および固体撮像装置
KR20010050863A (ko) 전하전송장치, 이를 사용한 고체촬상장치 및 그 제어방법
JP3342976B2 (ja) 電荷結合素子と固体撮像装置
JP2560984B2 (ja) 電荷転送型固体撮像装置の撮像部とその駆動方法
JPH10229183A (ja) 固体撮像素子
JPH11146279A (ja) Ccd撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees