JP3940093B2 - タイヤのシミュレーション方法 - Google Patents

タイヤのシミュレーション方法 Download PDF

Info

Publication number
JP3940093B2
JP3940093B2 JP2003124129A JP2003124129A JP3940093B2 JP 3940093 B2 JP3940093 B2 JP 3940093B2 JP 2003124129 A JP2003124129 A JP 2003124129A JP 2003124129 A JP2003124129 A JP 2003124129A JP 3940093 B2 JP3940093 B2 JP 3940093B2
Authority
JP
Japan
Prior art keywords
tire
model
speed
simulation
tire model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003124129A
Other languages
English (en)
Other versions
JP2004322971A (ja
Inventor
和佳 宮本
正貴 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2003124129A priority Critical patent/JP3940093B2/ja
Priority to DE602004007575T priority patent/DE602004007575T2/de
Priority to EP04009551A priority patent/EP1473559B1/en
Priority to US10/832,289 priority patent/US7066018B2/en
Publication of JP2004322971A publication Critical patent/JP2004322971A/ja
Application granted granted Critical
Publication of JP3940093B2 publication Critical patent/JP3940093B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0318Tread patterns irregular patterns with particular pitch sequence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C99/00Subject matter not provided for in other groups of this subclass
    • B60C99/006Computer aided tyre design or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、タイヤ性能、とりわけ走行時の振動特性を精度良く解析するのに役立つタイヤのシミュレーション方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、有限要素法等の数値解析法を用いたコンピューターシミュレーションにより、タイヤを試作しなくてもある程度の性能を予測・解析することが可能となっている。例えばタイヤモデルを路面モデル上で転動走行させる走行シミュレーションを行い、タイヤモデルから、その回転軸に作用する上下力の時刻歴を取得することによってタイヤの振動性能を予測することが可能となる。
【0003】
ところで、タイヤモデルのトレッド面aには、図14に示すように、小さな要素e…が周方向に連続して配される。各要素eには、通常、4ないし6面体のソリッド要素が用いられる。要素の表面は、平面で構成されるため、タイヤモデルのトレッド面aやその内部のベルトモデル(図示省略)は、側面から見れば真円ではなく多角形状となる。
【0004】
このような多角形状のトレッド面ないしベルトモデルを有するタイヤモデルを一定速度で転動させるシミュレーションを行った場合、タイヤモデルの回転軸に作用する上下力の時刻歴を周波数分析すると、図11(B)に示すように、実際のタイヤでは生じないはずのピーク的な振動成分NPが含まれる。この振動成分NPは、前記多角形の頂点etが路面モデルと衝突ないし干渉するたびに発生する周期的な路面からの突き上げ力が重複したものと考えられる。
【0005】
前記振動成分NPの周波数Ftは、トレッドゴム又はベルトといった剛性の大きい要素がタイヤ周方向に並ぶ要素数Nと、シミュレーション時の走行速度Vとタイヤ外径とにより定まるタイヤモデルの1秒当たりの回転数R(回)とに基づいて下記式(1)によりほぼ一義的に定まったものとなる。
Ft=N×R (Hz) …(1)
このようなピークを持った振動ノイズが解析結果に含まれることは好ましくない。
【0006】
タイヤモデルのタイヤ周方向の要素数を増加することにより、タイヤモデルをより真円に近づけることは可能である。しかしながら、この方法では、前記周波数を高周波数領域へと移行させるに止まり、また要素数の増大により計算時間を著しく増加させるおそれがある。
【0007】
本発明は、以上のような問題点に鑑み案出なされたもので、転動シミュレーションを行うに際して、該タイヤモデルの速度を、予め定めた基準速度を中心として増減させることを基本として、タイヤモデルの要素数等に依存したピーク的な振動(ノイズ)を解析結果から減じ、評価しやすいシミュレーション結果を得ることが可能なタイヤのシミュレーション方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明のうち請求項1記載の発明は、数値解析法により変形計算が可能な有限個の要素でタイヤをモデル化したタイヤモデルを、有限個の要素で路面をモデル化した路面モデルの上で走行させるシミュレーションを行ってタイヤ性能を取得するタイヤのシミュレーション方法であって、
前記タイヤモデルの速度を、予め定めた一定の基準速度を中心として増減を繰り返すように変化させて前記シミュレーションを行うステップと、
前記シミュレーションからタイヤモデルの回転軸に作用する上下力を取得するステップと、
この上下力の時刻歴の波形を周波数分析するステップとを含むことを特徴とする。
【0009】
また請求項2記載の発明は、前記速度は、時間の関数として正弦波状又はジグザグ状に増減を繰り返すことを特徴とする請求項1記載のタイヤのシミュレーション方法である。
【0010】
また請求項3記載の発明は、前記速度は、基準速度の±20%の範囲で増減することを特徴とする請求項1又は2に記載のタイヤのシミュレーション方法である。
【0011】
また請求項4記載の発明は、前記周波数分析結果から波形のピーク周波数又はゲイン値の少なくとも一つを計算するステップとをさらに含むことを特徴とする請求項1乃至3のいずれかに記載のタイヤのシミュレーション方法である。
【0012】
【発明の実施の形態】
以下本発明の実施の一形態を図面に基づき説明する。
図1には、本発明のシミュレーション方法を実施するためのコンピュータ装置1が示されている。このコンピュータ装置1は、本体1aと、入力手段としてのキーボード1b、マウス1cと、出力手段としてのディスプレイ装置1dとから構成されている。本体1aには、図示していないが、演算処理装置(CPU)、ROM、作業用メモリー、磁気ディスクなどの大容量記憶装置、CD−ROMやフレキシブルディスクのドライブ1a1、1a2を適宜具えている。そして、前記大容量記憶装置には後述する方法を実行するための処理手順(プログラム)が記憶されている。コンピュータ装置1にはEWSなどが好適である。
【0013】
図2には、本実施形態の処理手順の一例が示される。本実施形態では、先ずタイヤモデル2が設定される(ステップS1)。図3には、タイヤモデル2の一例を3次元上に視覚化して示し、また図4にはタイヤモデル2のタイヤ赤道での部分的な断面を模式的に示す。
【0014】
タイヤモデル2は、解析しようとするタイヤ(実在するか否かは問わない)を有限個の小さな要素2a、2b、2c…に置き換えたものである。各要素は、数値解析が可能に定義される。数値解析が可能とは、例えば有限要素法、有限体積法、差分法又は境界要素法といった数値解析法にて変形計算が可能なことを意味する。具体的には、各要素2a、2b、2c…について、座標系X−Y−Zにおける節点座標値、要素形状、材料特性(例えば密度、弾性率、損失正接又は減衰係数)などが定義される。各要素2a、2b、2c…には、例えば2次元平面としての三角形ないし四角形の膜要素、3次元要素としては、例えば4ないし6面体のソリッド要素が好ましく用いられる。これにより、タイヤモデル2は、前記コンピュータ装置1にて取り扱い可能な数値データを構成する。
【0015】
本実施形態のタイヤモデル2は、大別すると、図4に示すように、タイヤの内部構造を構成するタイヤボディ部2Aと、その外側に配されるトレッドゴム部2Bとを含むものが例示される。タイヤボディ部2Aは、ベルト層5(図5(A)に示す)をモデル化したベルトモデル6(図5(B)に示す)と、前記ベルト層5よりもタイヤ半径方向内側に位置する部分(カーカス、サイドウォール部、ビード部など)をモデル化したボディ本体部7とを含むものが例示される。本実施形態のトレッドゴム部2Bは、前記ベルトモデル6よりもタイヤ半径方向外側部分を形成している。
【0016】
モデル化の対象となるベルト層5は、図5(A)に示すように、リング状をなすベルトプライ5A、5Bの2枚を積層して構成されたものを示す。各ベルトプライ5A、5Bは、図6(A)に示すように、例えばスチールコード等の高弾性のベルトコードc1…をタイヤ赤道に対して20゜程度の小角度で傾けて平行に配列したコード配列体cをトッピングゴムtで被覆して構成される。図5(B)に示したベルトモデル6は、タイヤ軸方向に並ぶ複数個の四辺形の平面要素6a…が一定の角度θでタイヤ周方向に連続して配されることによりリング状にモデル化されている。このため、ベルトモデル6は、タイヤ周方向に並ぶ要素の数をNとするとき、側面視が略N角形状となる。ベルトモデル6のタイヤ周方向の要素の数Nは、特に制限はないが、少なすぎると解析精度が低下しやすく大きすぎても計算時間の増大を招くため好ましくない。このような観点より、好ましくは10〜1000、より好ましくは50〜100程度で定めるのが望ましい。
【0017】
ベルトモデル6の要素6aは、図6(B)に示すように、コード配列体cをモデル化した四辺形の平面膜要素6a1と、コード配列体cを内外から被覆しているトッピングゴムtをモデル化したソリッド要素6a2とからなり、これらを厚さ方向に重ね合わせた複合シェル要素で構成されている。膜要素6a1には、例えばコードc1の配列方向(直線にて示す)とこれと直交する方向とにおいて剛性が異なる直交異方性が定義される。図示していないが、カーカスプライ及び/又はバンドプライといったタイヤの内部を構成する他の繊維複合材についても、前記ベルトプライと同様の要領にてモデル化される。ただし、他の方法でモデル化することも勿論可能である。
【0018】
トレッドゴム部2Bは、例えば3次元のソリッド要素2B1…をタイヤ周方向及び軸方向に配して形成されている。本例のトレッドゴム部2Bは、トレッドパターン(即ち縦溝や横溝といった凹設部)を設けていないものが例示される。ただし、必要に応じて適宜設けることは差し支えない。また本実施形態のトレッドゴム部2Aは、ベルトモデル2よりもタイヤ周方向の分割数を大としてより詳細にモデル化されているが、その側面視における輪郭形状は、図4に示したように、ベルトモデル6の輪郭形状と実質的に相似なN角形状で形成されたものを示す。なお、このようなタイヤモデル2の設定作業の一部ないし全部は、オペレータが介在する場合がある。
【0019】
前記ベルトモデル6は、通常、タイヤモデル2を構成する材料の中で最も剛性が大きいものとして定義される。このため、タイヤモデル2を転動させると、ベルトモデル6の多角形形状の頂点が接地面に位置するたびに振動が生じるのは前述の通りである。トレッドゴム部2Bのゴム硬さを大きく定めたとき、ベルトモデル6に代わって、またはベルトモデル6とともにトレッドゴム部2Bの要素数もノイズ原因として影響を与えることがある。
【0020】
次に本実施形態では、路面モデル3が設定される(ステップS2)。図7に示すように、本実施形態の路面モデル3は単一の平面を構成する1以上の剛表面要素によってモデルされたものを示す。剛表面であるため、外力が作用しても変形しない。また路面モデル3は、必要に応じて凹凸(例えば不規則な段差、窪み、うねり、轍など)を設けても良く、また平面以外にも円筒状表面で形成することもできる。
【0021】
また本実施形態では、各モデル2、7などに各種の境界条件が与えられる(ステップS3)。設定される境界条件としては、例えばタイヤモデル2のリム組み条件、内圧条件、タイヤモデル2の回転軸に作用する垂直荷重、スリップ角、キャンバー角、走行速度V、又はタイヤモデル2と前記路面モデル3との間の摩擦係数の少なくとも一つを含むことができる。
【0022】
ここで、タイヤモデル2の走行速度は、予め定めた基準速度Vaを中心として増減を繰り返すように設定される。従来のタイヤモデルの転動シミュレーションでは、タイヤモデルの走行速度は、評価対象速度で一定に維持される。タイヤモデルの多角形状に起因した振動は、タイヤモデルの走行速度(回転数)とタイヤ周方向の要素数Nとが一定の場合、その周波数は一定になる(前記式(1)参照)。このため、上下力の時刻歴を周波数分析を行うと、ピーク的な振動成分を発生させる。
【0023】
本実施形態では、タイヤモデル2の走行速度を、例えば評価を行おうとする予め定めた基準速度を中心として増減させる。速度が増減変化すると、多角形のベルトプライ、トレッド面の頂点が路面と衝突する際に生じる振動の周波数も、それに比例して増減変化する。つまり、振動の周波数を、広い周波数帯域に分散させることができる。従って、同一周波数の重複を減じ、シミュレーションの振動特性結果に、実際のタイヤでは本来生じ得ないピーク的な振動成分が含まれるのを効果的に防止しうる。
【0024】
例えばあるタイヤの250Hz付近の周波数をの改善を図るべくシミュレーションを行った場合、タイヤモデル2による特有の前記ピークが図12の鎖線のように250Hz付近に現れた場合、実際にどの程度のゲイン値を示すのかが解析できない。これに対して、本実施形態のように、タイヤモデル2による特有の振動を分散させることにより、実線で示すように解析周波数帯でのゲイン値を調べることができ、これに基づき、タイヤの内部構造や材料特性などを改善することができる。そして改善後に再度シミュレーションを行うことにより、250Hz付近のゲイン値が減少したか否かを評価することができる。
【0025】
タイヤモデル2の走行速度は、図8(A)に示すように、時間の関数として予め定めた変化代の範囲で正弦波状に増減を繰り返すものが好ましい。これにより、前記振動の周波数を連続的に変化させ、より効果的な周波数の分散化を図りうる。速度を周期的に増減させる場合、該周期については特に限定はされることなく、任意に定めることができる。走行シミュレーションにおけるタイヤモデルの変形計算は、微小な時間増分Δt(例えば9.0×10-7sec )きざみで行われる。このため、実際のコンピュータ装置1でのシミュレーションにおいては、図8(A)のように連続した正弦波を、前記微小時間Δtきざみでパルス変調した振幅が示す速度が逐次用いられる。つまり、速度の変化は断続的に行われる。本実施形態では、速度の増減は、周波数2.5Hzに設定している。また図8(B)に示すように、タイヤモデル2の走行速度は、ジグザグ状で増減を繰り返すようにも設定しても良い。
【0026】
またタイヤモデル2の走行速度は、基準速度Vaの±20%の範囲で増減することが望ましい。基準速度Vaには、通常、評価を行いたい速度が設定される。また例えば基準速度をVa、増減時の最小速度をVa1、最大速度をVa2とするとき、変化代(Va−Va1)又は(Va2−Va)が、基準速度Vaの3〜20%、より好ましくは5〜20%、さらに好ましくは10〜20%とすることが望ましい。このように、速度の変化代を所定の範囲とした場合には、ほぼ基準速度Vaの実車評価と近い振動特性を得ることが可能であり、より精度の良い振動解析が可能となる。なお前記変化代が大き過ぎると、例えば基準速度Vaでのタイヤモデル2の振動特性に誤差が含まれやすい傾向があり、逆に小さすぎても振動のピーク成分の除去が十分でない傾向がある。本実施形態では、タイヤモデル2の速度として、走行速度を設定したが、本発明では、結果としてタイヤモデル2の速度が増減すれば足りるもので、回転速度が増減するように条件設定しても良く、種々の形態で実施できる。
【0027】
次に本実施形態では、図7に示すように、路面モデル3の上でタイヤモデル2を転動させる転動シミュレーションを行う(ステップS4)。タイヤモデル2を転動させる方法としては、回転軸を回転可能に軸支されたタイヤモデル2に、路面モデル3に接触させるとともに該路面モデル3を移動させて摩擦力を加える方法や、路面モデル3を固定し、その上を回転速度と並進速度とを与えたタイヤモデル2を転動させる方法のいずれでも良い。前者の場合には、路面モデルの移動速度が、設定された範囲で増減し、それに応じてタイヤモデル2の走行速度が増減しうる。
【0028】
本実施形態の転動シミュレーションは、有限要素法により行われる。解析モデルに各種の境界条件を与え、その系全体の力、変位などを有限要素法に基づいて計算する手順は、公知の例にしたがって行うことができる。一例として、要素の形状、要素の材料特性、例えば密度、ヤング率、減衰係数などをもとに、要素の質量マトリックス、剛性マトリックス、減衰マトリックスを作成し、各マトリックスを組み合わせて、シミュレーションされる系全体のマトリックスを作成する。そして、前記境界条件を当てはめて運動方程式を作成し、これを微小な時間増分Δtごとに前記コンピュータ装置1にて逐次計算することにより変形シミュレーションが行える(陽解法)。
【0029】
転動シミュレーションにおいて、タイヤモデル2と路面モデル3とは、接触が常に考慮される。即ち、図9(A)〜(C)に示すように、タイヤモデル2の各要素2a…は、時間増分Δtごとにその位置が計算され、このとき、常に、要素2aと路面モデル3との接触の有無が判断される。接触の有無の判断は、路面モデル3の要素表面に対するタイヤモデル2の節点の位置を計算することで行う。この接触判断では、タイヤモデル2のトレッド面の節点SPが路面モデル3に計算上めり込む位置にあるとき(図9(B))、めり込み量に基づきタイヤモデルに反力が与えられる。反力は、路面モデル3の要素面3Pと垂直方向の反力Faと、要素面3Pと平行な力Fbとが含まれ、節点SPに加えられる。反力Fbには、路面モデル3の要素面とタイヤモデル2との摩擦力を考慮することができる。またタイヤモデル2の節点SPの位置は、路面モデル3の要素表面3Pの位置まで移動させる(図9(C))。このような接触判断により、タイヤモデル2のタイヤ回転軸には、上下力が作用しうる。
【0030】
また本実施形態では、転動シミュレーションから、タイヤ性能に関する情報を取得する。前記情報としては、例えば図10(A)に示すように、タイヤモデル2の回転軸に作用する上下力を時刻歴として取得する(ステップS5)。必要により上下力以外にも、また上下力とともに前後力又は横力などを含ませても良い。また、上下力の時刻歴グラフ(波形)をフーリエ変換し、図11(A)に示すような周波数分析が行われる(ステップS6)。
【0031】
そして、タイヤモデル2の振動性能の評価をより容易化するために、前記周波数分析結果から波形のゲインレベル、ピーク周波数又はゲイン値の少なくとも一つを計算することが好ましい。このようなパラメータを用いて評価等することにより、タイヤの振動特性を定量的に把握できかつ評価するのに役立つ。
【0032】
図13には、本発明の他の実施形態の処理手順を示している。この図においては、ステップS1〜S3においては、前記実施形態と同じであるが、ステップS10において、評価したい振動の周波数帯域αと、タイヤモデル2の基準の速度とを設定する。なおこれらは、ステップS3の境界条件のところで設定することもできる。周波数帯域αは、一定の範囲を持って定めるのが好ましいが、範囲を持たさずに1つの周波数として定めることもできる。
【0033】
次にシミュレーションに先立ち、前記式(1)に基づいてタイヤモデル2に特有のピーク周波数Ftを計算し(スリップS11)、このピーク周波数Ftが前記評価周波数帯域に含まれるか否かを判断する(ステップS12)。なお周波数帯域αが1点の周波数として定められたとき、該周波数とピーク周波数Ftとの差が一定値以下の場合には、ステップS12を真と判断して処理することができる。
【0034】
ステップS12の結果が真(Y)である場合、タイヤモデル2について、前記基準の速度を中心として増減させる最大、最小速度と、その時刻歴変化とを設定し(ステップS13)、前記した方法により、タイヤモデル2の走行速度を増減させて転動シミュレーションを行う(ステップS5)。他方、 ステップS12の結果が偽(N)である場合、タイヤモデル2は、前記基準の速度で一定とした転動シミュレーションが行われる(ステップS15)。
【0035】
この実施形態では、設定された評価周波数と、タイヤモデル2の速度から定めうる回転数とを用いて予めタイヤモデル2に特有のピーク周波数Ftを計算するステップと、このピーク周波数Ftが評価周波数帯域に含まれる(つまり、解析したい周波数帯域αにピーク周波数Ftが表れ解析の障害になる)場合にのみ、タイヤモデル2の走行速度を増減させるステップとを含むとともに、ピーク周波数Ftが評価周波数帯域に含まれないときには、ピーク周波数Ftが解析の障害にならないため、タイヤモデル2の走行速度を一定として転動シミュレーションを行うステップを含む。従って、タイヤモデル2の速度を状況に応じて、一定又は増減させることにより、計算コストを効率化できる利点がある。
【0036】
【実施例】
本発明の効果を確認するために、本発明のシミュレーション方法と従来のシミュレーション方法とを実施して結果を比較した。タイヤモデルは、図3に示したものでサイズが195/65R15のモデルを使用した。このタイヤモデルは、節点数が23705、要素数は32882であり、トレッドパターンは形成されていない。ベルトモデル、トレッドゴム部は、いずれもタイヤ周方向の要素数は60とした。また実施例、比較例ともに同じタイヤモデルを使用した。
【0037】
実施例では、基準速度を60km/Hとし、その±10km/hの範囲で速度を正弦波状に増減させて転動シミュレーションを行った。また比較例では、速度60km/Hの一定速度で転動シミュレーションを行った。路面とタイヤモデルとの間の静摩擦係数及び動摩擦係数はいずれも1.0とした。
【0038】
転動シミュレーションは、タイヤモデルのビード部をリム幅に拘束し、タイヤ内圧(230kPa)を等分布荷重として負荷した後、タイヤ回転軸を回転自在に軸支する条件を与えた。そして、路面モデルにタイヤモデルを縦荷重(4.2kN)で押しつけるとともに、路面モデルを移動させることによって、タイヤモデルを回転させる方法により行った。
【0039】
テストの結果を図10、図11に示す。図10は、タイヤモデルの回転軸に作用する上下力と時間との関係を示し、図11はその周波数分析結果を示すグラフである。いずれも(A)は実施例、(B)は比較例をそれぞれ示す。比較例では、520kHz付近に大きなピークが生じている。これは、タイヤモデルのベルトプライのタイヤ周方向の要素数60と、タイヤの回転数約8.6(回/秒)とで求まる周波数516Hzの振動ノイズ成分が表れたものと考えられる。一方、実施例では、タイヤモデルの多角形状に起因したノイズ成分は、430〜600Hzの範囲で連続的に変化するものとして分散され、比較例のようなピーク的な振動は含まれていないことが確認できる。
【0040】
【発明の効果】
上述したように、本発明では、タイヤモデルが転動するに際して、その速度を、予め定めた一定の基準速度を中心として増減を繰り返すように変化させることにより、タイヤモデルのトレッドゴムやベルトなどのタイヤ周方向の要素数に依存したピーク的な振動が周波数分析結果に含まれるのを防止しうる。従って、精度良く回転するタイヤの振動特性、振動性能評価を行うことができる。
【0041】
また請求項2記載の発明のように、前記速度は、時間の関数として正弦波状又はジグザグ状に増減させるときには、トレッド面などの要素数に依存した振動の周波数を連続的にかつ広い範囲で分散させることができるから、さらに精度良く回転するタイヤの評価が可能となる。
【0042】
また請求項4記載の発明のように、タイヤモデルの回転軸に作用する力を取得するステップと、この力の時刻歴波形を周波数分析するステップと、前記周波数分析結果から波形のゲインレベル、ピーク周波数又はゲイン値の少なくとも一つを計算するステップとをさらに含むときには、タイヤの振動特性を定量的に把握できかつ評価しうる。
【図面の簡単な説明】
【図1】本実施形態で用いるシミュレーション装置の斜視図である。
【図2】本実施形態で用いるシミュレーション方法の処理手順の一例を示すフローチャートである。
【図3】タイヤモデルの一例を示す斜視図である。
【図4】タイヤモデルの一例を示す部分断面図である。
【図5】(A)はベルト層の斜視図、(B)はベルトモデルの斜視図である。
【図6】(A)はベルト層の部分斜視図、(B)はそれをモデル化して示す図である。
【図7】タイヤモデルの転動シミュレーション一例を示す斜視図である。
【図8】(A)、(B)は、タイヤモデルの走行速度と時間との関係を示すグラフである。
【図9】(A)〜(C)は、タイヤモデルと路面モデルとの接触判断を説明する概念図である。
【図10】転動シミュレーションの結果を示す上下力と時間との関係を示すグラフであり、(A)は実施例、(B)は比較例をそれぞれ示す。
【図11】その周波数分析結果を示すグラフであり、(A)は実施例、(B)は比較例をそれぞれ示す。
【図12】シミュレーション結果を周波数分析したグラフの略図である。
【図13】本実施形態で用いるシミュレーション方法の処理手順の他の例を示すフローチャートである。
【図14】路面モデル、タイヤモデルの側面図である。
【符号の説明】
2 タイヤモデル
2A ボディモデル部
2B トレッドパターン部
3 路面モデル
6 ベルトモデル

Claims (4)

  1. 数値解析法により変形計算が可能な有限個の要素でタイヤをモデル化したタイヤモデルを、有限個の要素で路面をモデル化した路面モデルの上で走行させるシミュレーションを行ってタイヤ性能を取得するタイヤのシミュレーション方法であって、
    前記タイヤモデルの速度を、予め定めた一定の基準速度を中心として増減を繰り返すように変化させて前記シミュレーションを行うステップと、
    前記シミュレーションからタイヤモデルの回転軸に作用する上下力を取得するステップと、
    この上下力の時刻歴の波形を周波数分析するステップとを含むことを特徴とするタイヤのシミュレーション方法。
  2. 前記速度は、時間の関数として正弦波状又はジグザグ状に増減を繰り返すことを特徴とする請求項1記載のタイヤのシミュレーション方法。
  3. 前記速度は、基準速度の±20%の範囲で増減することを特徴とする請求項1又は2に記載のタイヤのシミュレーション方法。
  4. 前記周波数分析結果から波形のピーク周波数又はゲイン値の少なくとも一つを計算するステップとをさらに含むことを特徴とする請求項1乃至3のいずれかに記載のタイヤのシミュレーション方法。
JP2003124129A 2003-04-28 2003-04-28 タイヤのシミュレーション方法 Expired - Fee Related JP3940093B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003124129A JP3940093B2 (ja) 2003-04-28 2003-04-28 タイヤのシミュレーション方法
DE602004007575T DE602004007575T2 (de) 2003-04-28 2004-04-22 Verfahren zur Simulation rollender Reifen
EP04009551A EP1473559B1 (en) 2003-04-28 2004-04-22 Method of simulating rolling tires
US10/832,289 US7066018B2 (en) 2003-04-28 2004-04-27 Method of simulating a rolling tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003124129A JP3940093B2 (ja) 2003-04-28 2003-04-28 タイヤのシミュレーション方法

Publications (2)

Publication Number Publication Date
JP2004322971A JP2004322971A (ja) 2004-11-18
JP3940093B2 true JP3940093B2 (ja) 2007-07-04

Family

ID=32985568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003124129A Expired - Fee Related JP3940093B2 (ja) 2003-04-28 2003-04-28 タイヤのシミュレーション方法

Country Status (4)

Country Link
US (1) US7066018B2 (ja)
EP (1) EP1473559B1 (ja)
JP (1) JP3940093B2 (ja)
DE (1) DE602004007575T2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465506B2 (ja) * 2004-10-14 2010-05-19 株式会社神戸製鋼所 タイヤhilシミュレータ
JP4608306B2 (ja) 2004-12-21 2011-01-12 住友ゴム工業株式会社 タイヤのシミュレーション方法
JP4656952B2 (ja) * 2005-01-21 2011-03-23 株式会社ブリヂストン 変動量算出装置
JP4641836B2 (ja) * 2005-03-16 2011-03-02 株式会社豊田中央研究所 タイヤを含めた車両の設計方法
JP4777040B2 (ja) 2005-10-24 2011-09-21 住友ゴム工業株式会社 タイヤの走行シミュレーション方法
JP4747798B2 (ja) * 2005-11-22 2011-08-17 東洋ゴム工業株式会社 タイヤ摩耗試験方法
JP4528293B2 (ja) * 2005-12-13 2010-08-18 住友ゴム工業株式会社 空気入りタイヤのシミュレーション方法
JP4745845B2 (ja) * 2006-02-02 2011-08-10 東洋ゴム工業株式会社 タイヤからの放射騒音シミュレーション方法
US7908128B2 (en) 2006-12-26 2011-03-15 Sumitomo Rubber Industries, Ltd. Method for modeling a tire model and simulation method
JP4792049B2 (ja) * 2008-01-09 2011-10-12 住友ゴム工業株式会社 タイヤのノイズ性能のシミュレーション方法及びタイヤの製造方法
JP4621271B2 (ja) 2008-07-29 2011-01-26 住友ゴム工業株式会社 タイヤのシミュレーション方法
FR2948765B1 (fr) 2009-07-28 2013-10-18 Michelin Soc Tech Procede de prevision d'un effet physique d'interaction entre un pneumatique et un revetement routier
FR2948764B1 (fr) * 2009-07-28 2011-08-26 Michelin Soc Tech Procede de prevision d'un bruit de roulement d'un pneumatique
JP5662971B2 (ja) * 2012-07-11 2015-02-04 住友ゴム工業株式会社 タイヤのシミュレーション方法
JP6393027B2 (ja) * 2013-08-28 2018-09-19 住友ゴム工業株式会社 タイヤのシミュレーション方法
JP6138631B2 (ja) * 2013-08-28 2017-05-31 東洋ゴム工業株式会社 タイヤの振動を予測する装置、方法及びコンピュータプログラム
JP6424543B2 (ja) * 2014-09-26 2018-11-21 横浜ゴム株式会社 タイヤのシミュレーション方法およびタイヤ性能評価方法
FR3087387B1 (fr) * 2018-10-19 2021-10-08 Michelin & Cie Procede de simulation de l'evolution temporelle d'un systeme physique en temps reel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3686107B2 (ja) * 1993-10-06 2005-08-24 株式会社ブリヂストン 空気入りタイヤの設計方法
US5880362A (en) * 1995-09-06 1999-03-09 Engineering Technology Associates, Inc. Method and system for simulating vehicle and roadway interaction
JP3224089B2 (ja) * 1997-03-25 2001-10-29 日立金属株式会社 ホイールのドラム耐久評価方法
JP3431817B2 (ja) 1998-01-19 2003-07-28 住友ゴム工業株式会社 タイヤ性能のシミュレーション方法
US6199026B1 (en) * 1997-11-25 2001-03-06 Sumitomo Rubber Industries, Ltd. Method of and apparatus for simulating rolling tire
ATE381004T1 (de) * 1998-04-07 2007-12-15 Pirelli Verfahren zur bestimmung des strassenverhaltens eines fahrzeugreifens
EP1014074A3 (en) * 1998-12-22 2002-07-31 PIRELLI PNEUMATICI Società per Azioni Method for determining preselected performance characteristics of a tread of a tyre and tyre provided with a tread having optimal characteristics with reference to said performance characteristcs
JP4272317B2 (ja) * 1999-10-25 2009-06-03 株式会社ブリヂストン タイヤ設計方法、タイヤ用加硫金型設計方法、タイヤ用加硫金型製造方法、空気入りタイヤの製造方法、タイヤ設計プログラムを記録した記録媒体
US6725168B2 (en) * 2000-06-14 2004-04-20 Sumitomo Rubber Industries, Ltd. Vehicle/tire performance simulating method
JP3650342B2 (ja) * 2001-05-28 2005-05-18 住友ゴム工業株式会社 タイヤ・ホイール性能のシミュレーション方法及び装置
EP1293917B1 (en) * 2001-09-18 2005-07-27 Sumitomo Rubber Industries Ltd. A method for tire rolling simulation
JP3927080B2 (ja) 2002-06-12 2007-06-06 住友ゴム工業株式会社 タイヤのシミュレーション方法

Also Published As

Publication number Publication date
EP1473559B1 (en) 2007-07-18
US7066018B2 (en) 2006-06-27
EP1473559A2 (en) 2004-11-03
EP1473559A3 (en) 2006-01-25
DE602004007575T2 (de) 2008-04-17
US20040243340A1 (en) 2004-12-02
JP2004322971A (ja) 2004-11-18
DE602004007575D1 (de) 2007-08-30

Similar Documents

Publication Publication Date Title
JP3940093B2 (ja) タイヤのシミュレーション方法
JP3927080B2 (ja) タイヤのシミュレーション方法
CN1702444B (zh) 基于径向跳动和劲度变化来对轮胎进行分类和制造的方法
JP4608306B2 (ja) タイヤのシミュレーション方法
EP1580673B1 (en) Method and apparatus for estimating tire/wheel performance by simulation
JP4469172B2 (ja) タイヤのシミュレーション方法
JP4621271B2 (ja) タイヤのシミュレーション方法
JP6736652B2 (ja) 演算モデル生成システムおよび演算モデル生成方法
JP6276667B2 (ja) ゴム材料の摩耗性能の評価方法及びタイヤの摩耗性能評価方法
JP2003118328A (ja) タイヤの転がり抵抗予測方法
JPH11201875A (ja) タイヤ性能のシミュレーション方法
JPH11153520A (ja) タイヤ性能のシミュレーション方法及びその装置
JP3431817B2 (ja) タイヤ性能のシミュレーション方法
JP3314082B2 (ja) タイヤ有限要素モデルの作成方法
JP4275991B2 (ja) タイヤ性能のシミュレーション方法及びタイヤ設計方法
JP4318971B2 (ja) タイヤ性能のシミュレーション方法及びタイヤ設計方法
JP7487567B2 (ja) タイヤのシミュレーション方法及びタイヤのシミュレーション装置
JP4116337B2 (ja) タイヤ性能のシミュレーション方法及びその装置
JP2002022621A (ja) タイヤ性能のシミュレーション方法
JP3363442B2 (ja) タイヤ性能のシミュレーション方法
JP2021195007A (ja) タイヤのシミュレーション方法
JP6578973B2 (ja) タイヤの振動性能評価方法及びタイヤのシミュレーション装置
JP2015045578A (ja) 摩耗試験機の試験条件決定方法及びタイヤの摩耗性能評価方法。
US8718990B2 (en) Tire second order harmonics with rib shift methodology
JP6805533B2 (ja) タイヤのシミュレーション方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees