JP3938699B2 - 対物レンズおよび対物レンズを備えた走査型顕微鏡 - Google Patents

対物レンズおよび対物レンズを備えた走査型顕微鏡 Download PDF

Info

Publication number
JP3938699B2
JP3938699B2 JP2002076727A JP2002076727A JP3938699B2 JP 3938699 B2 JP3938699 B2 JP 3938699B2 JP 2002076727 A JP2002076727 A JP 2002076727A JP 2002076727 A JP2002076727 A JP 2002076727A JP 3938699 B2 JP3938699 B2 JP 3938699B2
Authority
JP
Japan
Prior art keywords
lens
objective lens
optical
lens group
chromatic aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002076727A
Other languages
English (en)
Other versions
JP2003270540A (ja
Inventor
宏也 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002076727A priority Critical patent/JP3938699B2/ja
Priority to US10/246,432 priority patent/US6710938B2/en
Publication of JP2003270540A publication Critical patent/JP2003270540A/ja
Application granted granted Critical
Publication of JP3938699B2 publication Critical patent/JP3938699B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives

Description

【0001】
【発明の属する技術分野】
本発明は対物レンズおよび該対物レンズを備えた走査型顕微鏡に関する。
【0002】
【従来の技術】
従来の走査型顕微鏡の一つに、光源からの光を光ファイバーで伝送し、その先端面とレンズを一緒に移動させる構成のものがある。(特開2002−40359号公報参照)。
【0003】
【発明が解決しようとする課題】
特開2002−40359号公報に開示された光学系は、単色の諸収差が良好に補正されている。しかしながら、色収差については十分に補正されているとはいえない。
【0004】
本発明は、上記の問題点に鑑みてなされたものであり、その目的とするところは、色収差が十分に補正された対物レンズを提供することにある。また、この対物レンズを備えた走査型顕微鏡を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明による対物レンズは、正の屈折力を有する第1レンズ群と該第1レンズ群よりも標本側に配置された第2レンズ群を備え、前記第1レンズ群はレンズを少なくとも1つ含み、前記第2レンズ群は光学素子を少なくとも1つ含み、下記条件を満足する。
νdLD>νdHD
−0.56≦ψII(i) /ψT≦0.56
ν dHD ≦26
II ψ T ≧0.63
但し、νdLDは前記レンズの硝材のアッベ数、νdHDは前記光学素子の硝材のアッベ数、
ψII(i) は前記第2レンズ群の第1面の屈折力、ψTは前記対物レンズ全系の屈折力、d II は前記第2レンズ群の光学素子の面間隔である。
また、本発明による走査型顕微鏡は、上記の対物レンズとアクチュエーターと光ファイバーを備えたプローブ部と、点光源と光検出器と分光素子を備えた本体部を備えている。
【0006】
【発明の実施の形態】
本発明による対物レンズは、正の屈折力を有する第1レンズ群と該第1レンズ群よりも標本側に配置された第2レンズ群を備え、前記第1レンズ群はレンズを少なくとも1つ含み、前記第2レンズ群は光学素子を少なくとも1つ含み、下記条件を満足する。
νdLD>νdHD (1)
−0.56≦ψII(i) /ψT≦0.56 (2)
但し、νdLDは前記レンズの硝材のアッベ数、νdHDは前記光学素子の硝材のアッベ数、ψII(i)は前記第2レンズ群の第1面の屈折力、ψTは前記対物レンズ全系の屈折力である。この構成により、第1レンズ群がシングルレンズである場合には、第1レンズ群と第2レンズ群のレンズの硝材のアッベ数の差により、色消しが行なわれる。
【0007】
条件(1)は、第1レンズ群と第2レンズ群を構成するレンズにおける、硝材のアッベ数の関係を規定するものである。光学系の色収差を補正するためには、光学系が異なるアッベ数の硝材よりなる複数のレンズまたは光学素子を有することが必要である。このことを、図1乃至6を用いて以下に説明する。
【0008】
図1乃至4は、本発明の色収差補正の原理を説明するものである。ここでは、本発明における代表的な構成である、正の単レンズと平行平面板とを組み合わせた場合についての作用を示す。
図1は、正の単レンズにおける色収差を示す。ここで、長波長の光線の焦点FLは、短波長の光線の焦点FSに比べて、より光源から遠い側に位置する。
図2は、収束光線が平面の境界面から媒質中に入射する場合の色収差を示す。
ここで、FLは、FSに比べて、より光源に近い側に位置する。すなわち、平面に入射する収束光線は、正の短レンズとは逆符号の色収差を発生する。また、ここでは境界面を平面としたが、実際には平面に限らず、凹面でも同様に逆符号の色収差を発生する。また、凸面であっても、所定の条件を満たせば、同様に逆符号の色収差を発生する。
【0009】
このことを図5,6で説明する。図5は、凸面に収束光が入射し、発散する方向の屈折を受ける場合を示す。ここでFLは、FSに比べて、より光源に近い側に位置する。すなわち、正の単レンズとは逆符号の色収差を発生する。次に図6は、凸面に収束光が入射し、より強く収束する方向の屈折を受ける場合を示す。ここでFLは、FSに比べて、より光源から遠い側に位置する。すなわち、正の短レンズと同符号の色収差を発生する。以上のように、凸面であっても、発散する方向の屈折を受ける場合、その光線は正の単レンズとは逆符号の色収差を発生する。したがって、以下の説明において図2に示したと同様の色収差について述べる場合、そこには凹面および図5に示した凸面の作用も、自動的に含まれる。
なお、図2および図5でそれぞれ生じる色収差の量CA1,CA2は、硝材が同じならば、
CA1>CA2
の関係にある。
【0010】
図3および4は、正の単レンズと平行平面板による色収差の補正の考え方を示す。上記の様に、正の単レンズと平面境界面を有する媒質とは逆符号の色収差を発生するので、第1レンズ群1として正の単レンズを、第2レンズ群2として平行平面板を併用すれば、色収差を補正することが出来る。ここでまず、第2レンズ群2の第1面(SII(i) 面)における光線の屈折の様子を図4に詳細に示す。ここで、第1レンズ群1で色収差を生じる結果、
θL<θS
である。
ただし、θLは長波長光線の入射角、θSは短波長光線の入射角、である。
ここで、図3のようにFLとFSが一致する、すなわち色収差が補正されるためには、図4において
θL’>θS
である必要がある。
ただし、θL’は長波長光線の屈折角、θS’は短波長光線の屈折角、である。
そしてそのためには、条件(1)を満足するように、各レンズ群で使用する硝材を選択するのが良い。
上記条件(1)を満足しない場合、第1レンズ群1と第2レンズ群2で発生する色収差を相殺させることが困難になる。
【0011】
条件(2)は、全系の屈折力ψTと第2レンズ群2の第1面の屈折力ψII(i) との関係を規定するものである。まずはその上限値0.56について、説明する。
図2および図5で示したように、球面で生じる色収差CA2は、平面で生じる色収差CA1よりも小さい。これは、図3において、SII(i) 面の屈折力ψII(i) が大きくなると、第2レンズ群2の色収差補正能力が低下し、全系の色収差が増大することを意味する。そして特に条件(2)の値が0.56を超えると、全系の色収差が急増し、これを抑えることが困難になる。
【0012】
一方、ψII(i) が大きな負の屈折力を持った場合、走査に伴って発生する非対称収差、特にコマ収差が問題となる。この点について、図7を用いて説明する。図7は本発明の対物レンズが設けられたユニットの概略構成図である。ここで、3は光ファイバーである。第1レンズ群1と第2レンズ群2とで対物レンズを構成している。第1レンズ群1を構成しているのは、1つの正レンズである。第2レンズ群2を構成しているのは、平行平面板(光学素子)である。4はベースである。
【0013】
第1レンズ群1と光ファイバー3は、図7に符号Cで示された点を中心に首振り運動を(走査)をする。よって、走査に伴い第1レンズ群1の光軸Bは、第2レンズ群2の光軸Aに対して傾きαを持つ。図7に示すように、第2レンズ群2が平行平面板の場合、光軸Aと光軸Bが一致する状態以外では、光軸Bが平行平面板の面に対して垂直にならない。そのため、上記状態以外では、非対称収差が発生する(ただし、第2レンズ群2の外側面2aと内側面2bとがそれぞれC点を曲率中心とする球面を有する場合は例外である。この場合は、傾きαに関係なく非対称収差は全く発生しない)。
発生する非対称収差としてはコマ収差が支配的であり、これはψII(i) が正である
場合よりも負の場合の方が大きい。そして条件式(2)が下限値の−0.56を下回るとコマ収差は急増し、これを抑えることが困難になる。
このように、色収差および走査にともなって発生するコマ収差を所望の範囲内に抑えるには、条件(2)を満足することが望ましい。
【0014】
なお、より良好な結像性能を得るには、条件(2)の代わりに以下の条件(2’)を満足することが好ましい。
−0.40≦ψII(i) /ψT≦0.11 (2’)
【0015】
更に良好な結像性能を得るには、条件(2)の代わりに以下の条件(2”)を満足することが好ましい。
−0.28≦ψII(i) /ψT≦0.11 (2”)
【0016】
また、第1群レンズ1の第1面と第2群レンズ2の第2面の少なくとも一面が非球面であれば、結像性能の点で更に好ましい。
【0017】
また、本発明よる対物レンズでは、下記の条件(3)、(4)を満足するように構成されている。即ち、
νdHD≦26 (3)
dII×ψT≧0.63 (4)
但し、dIIは前記第2レンズ群の光学素子の面間隔である。
【0018】
条件(3)は、第2レンズ群2を構成する光学素子における、硝材のアッベ数を規定するものである。図2において、媒質のアッベ数が小さいほど、発生する色収差CA1は大きくなる。これから明らかなように、本発明の対物レンズにおいて第1レンズ群1で発生する色収差を相殺するには、第2レンズ群2にアッベ数の小さな硝材を用いるのが良い。上記上限値を上回ると色収差が急増し、色収差の発生を抑えることが困難になる。
なお、本発明の対物レンズの用途として、例えば生体標本の観察がある。この場合、対物レンズの開口数としては0.4以上が必要である。また、少なくともF線(486.1nm)〜C線(656.3nm)の波長範囲で、色収差が補正されている必要がある。
上記条件を満足することで、このような光学特性を備えた対物レンズを実現することができる。
【0019】
なお、色収差をより良好に補正するためには、条件(3)の代わりに以下の条件(3’)を満足することが好ましい。
18.9≦νdHD≦20 (3’)
【0020】
条件(4)は、全系の屈折力ψTと、第2レンズ群2の光学素子における面間隔との関係を規定するものである。この点について図8を用いて説明する。
前述のように、本発明の対物レンズでは、第1レンズ群1と第2レンズ群2とで色収差を相殺するようにしている。
図8のように、第1レンズ群1で生じた色収差は、第2レンズ群2の厚みdIIを進むにつれて、徐々に相殺され、FL,FSで焦点を結ぶ。もしも第2レンズ群2の厚みが、より薄いdII'ならば、全系の色収差が残り、焦点はFL'とFS' とに別れる。
これは、第2レンズ群2で生じる色収差が、面間隔dIIに比例することによる。一方、第2レンズ群で発生させるべき色収差の量は、全系の焦点距離に比例する。したがって、全系の屈折力ψTに反比例する。
条件(4)が下限値を下回ると色収差が急増し、これを抑えることが困難になる。
特に、上記の仕様(開口数:0.4以上、波長域:F線(486.1nm)〜C線(656.3nm))を満たす対物レンズを実現する場合、条件(4)を満足するのが好ましい。
【0021】
また、本発明の対物レンズでは、前記第1レンズ群1は2枚接合レンズであって、一方のレンズの硝材のアッベ数をνdLD、他方のレンズの硝材のアッベ数をνdI(2)としたとき、νdLDdI(2)dHDなる条件を満たすように構成されている。上記構成により、より色収差を良好に補正することができる。
【0022】
また、本発明の対物レンズでは、前記第1レンズ群1の第1面の近軸曲率半径をRI(i) 、第2面の近軸曲率半径をRI(ii) としたとき、下記条件を満たすように構成されている。
I(i) /RI(ii) ≦−0.7 (5)
【0023】
条件(5)は、第1レンズ群1の近軸曲率半径であるRI(i) とRI(ii) の関係を
規定するものである。特に、上記の仕様(開口数:0.4以上、波長域:F線(486.1nm)〜C線(656.3nm))を満たす対物レンズを実現する場合、この条件を満足するのが好ましい。
なお、図9に示すように、RI(i) は、光ファイバー3側の面SI(i) の近軸曲率半径である。また、RI(ii) は、第2レンズ群2側の面SI(ii) の近軸曲率半径である。
【0024】
条件(5)について図10を用いて説明する。
条件式(4)の説明で記したように、色収差を良好に補正するためには第2レンズ群2に十分な厚みdIIを持たせることが好ましい。そしてこの第2レンズ群を通して標本面
5に焦点を結ぶためには、RI(i) とRI(ii) がある条件を満たす必要がある。
まず図10(a)のように、第1レンズ群1のSI(i)面の屈折力ψI(i) が、SI(i) 面の屈折力ψI(ii) よりも強すぎる場合、主点HI’は標本面5から離れる。
そのため、焦点は標本面5に結像できず、厚みのある第2レンズ群2の内部に結んでしまう。しかし図10(b)のように、屈折力ψI(i) が屈折力ψI(ii) に比べてさほど強くない場合、主点HI’は標本面5に近づく。そのため、焦点は標本面5上に結ぶことが出来る。図10(b)のように焦点を標本面5上に結ぶための条件を、RI(i) とRI(ii) で表わしたのが式(5)である。この式の上限値を上回ると、色収差を補正した状態で標本面5上に焦点を結ばせるのが困難になる。
【0025】
また、本発明によれば、走査型顕微鏡は、上記対物レンズとアクチュエーターと光ファイバーを備えたプローブ部と、点光源と光検出器と分光素子を備えた本体部とからなり、前記点光源からの照明光が前記分光素子と光ファイバーと対物レンズを介して試料内に一点に集光されるように構成されている。
【0026】
以下、本発明の実施の形態を図示した実施例に基づき説明する。
図11は、本発明に係る対物レンズを用いた対物レンズ走査型顕微鏡の一実施例の概略構成を示している。図中、6は顕微鏡本体である。顕微鏡本体6は、レーザ発振器7と、ビームコリメータレンズ8と、ダイクロイックミラー(分光素子)9と、集光レンズ10,11と、光検出器12と、画像形成回路13と、アクチュエータードライバ14を備えている。15は画像形成回路13に接続されたモニターである。
また、16はプローブである。プローブ16は、光ファイバーとケーブルを内蔵していている。プローブ16の先端部16aには、後述する本発明に係る対物レンズとアクチュエーターが備わっている。プローブ16の基端部16bは、着脱可能のコネクタ17を介して、顕微鏡本体6に接続されている。そして、プローブ16の基端部16bが顕微鏡本体6に接続されたとき、内蔵されている光ファイバーの入射端は集光レンズ10によるレーザビームの集光点に位置するようになっている。
【0027】
上記の対物レンズ走査型顕微鏡を蛍光顕微鏡として用いる場合には、狭い波長範囲の光が照明光として用いられる。この励起光の照射により標本から蛍光が生じるが、蛍光と照明光とでは波長が異なる。この蛍光は、上記対物レンズ、光ファイバー及び分光素子9を介して、光検出器12に集光される。分光素子9は、前記光源から光ファイバーに至る光路と、光ファイバーから光検出器12に至る光路とが交わる位置に配置される。
【0028】
プローブ16の先端部16aの構成を図12に示す。プローブ16の先端には、その一端に光学枠18が取り付けられている。そして、この光学枠18の内側には、光学ユニット19が取り付けられている。また、光学枠18の先端には、先端カバーユニット20が取り付けられている。
プローブ16内には光ファイバー3が挿通され、その先端部は光学ユニット19に固定されている。この光ファイバー3の先端面3aから出射される光は、集光光学系(第1レンズ群)1を介して収束光となる。そして、光学保護部材であるカバーガラス(第2レンズ群)2を透過して標本面5に集光する。カバーガラス2は集光光学系1で発生する色収差を補正する役割を持つ。
標本面5からの蛍光は、カバーガラス2、集光光学系1を経由して光ファイバー3の先端面3aに集光される。光ファイバー3の先端面3aに集光された蛍光は、光ファイバー3の基端面(図示せず)より射出し、集光レンズ10,ダイクロイックミラー9及び集光レンズ11を透過して光検出器12に入射する。光検出器12から出力された画像信号は、画像形成回路13により成形され、モニター15に標本の蛍光像として表示される。
【0029】
先端カバーユニット20は、カバーホルダー22とカバーホルダー22に固定されたカバーガラス2からなる。カバーホルダー22は光学枠18の先端部に固定されている。また、これらの構造によりプローブ16の先端部16aは密閉され、水密性を保っている。
【0030】
図13は、光学ユニット19の詳細を示している。光学ユニット19のベース4は、光学枠18に固定されている。また、このベース4には、2枚一対の平行な薄板23a,23b,23c,23dの後端が固定されている。つまり、平行な板バネを構成する薄板23aおよび23cと、薄板23bおよび23dとは、それぞれ板面が平行になっている。そして、一方の薄板23a(或いは23c)と他方の薄板23b(或いは23d)とは、板面が垂直になるように配置されている。また、各後端部がベース4に固定され、後端部に対して先端側が上下方向および左右方向に弾性的に変形自在になっている。
【0031】
さらに、各薄板23a,23b,23c,23dには、圧電素子24a,24b,24c,24d(図示されていない)が各薄板の先端寄りの位置に装着されている。圧電素子24a,24b,24c,24dは板状であって、それぞれの厚み方向に分極されている。各圧電素子24a,24b,24c,24dを駆動するためのケーブル(図示せず)はプローブ16内に挿通されている。そして、コネクター17を介しアクチュエータードライバー14に接続されている。
【0032】
4枚の薄板23a,23b,23c,23dの先端には、レンズホルダー25が装着されている。このレンズホルダー25には、集光光学系1と光ファイバー3の先端部が固定されている。なお、光ファイバー3の先端部のコアはピンホールとして機能しており、その結果、この光学系は共焦点光学系となっている。
【0033】
そして、アクチュエータードライバー14から圧電素子24a,24b,24c,24dに駆動信号を印加することにより、光を走査させることが出来るようになっている。すなわち、駆動信号を印加すると、薄板23a,23b,23c,23dは、その後端側に対して先端側を板面に垂直方向に曲がるように変形する。これにより、その先端に保持されたレンズホルダー25も、その変形により曲げられた方向に移動する。その結果、レンズホルダー25で保持された光ファイバー3の先端部と集光光学系1とが共に移動し、出射する光を標本に対して走査させる。
この時、光ファイバー3からの射出光束の中心(主光線)と集光光学系1の光軸は、常に一致している。そのため、集光光学系1の設計に際しては、軸上の結像性能のみを考慮すれば良い。
【0034】
圧電素子24a,24b,24c,24dを駆動することにより、集光点26を図12の水平方向(X方向)27と縦方向(Y方向)28に走査させることができる。この時の走査面は、プローブ16の先端部の軸方向に対して略垂直な面となる。このようなプローブ16を使用する場合、カバーガラス2の外側面2aを標本面5に押し当てる。そして、標本の特定深さの2次元面像(走査面)を得る。
【0035】
走査時、集光光学系1と光ファイバー3は、光軸上のある点Cを回転中心とする首振り運動をする(図7)。回転中心Cの位置は、薄板23a,23b,23c,23dの寸法によって決まる。上記首振り動作に伴い、集光光学系1の光軸は傾きαを持つ。
【0036】
以下、本発明に係る上記対物レンズの第1実施例を説明する。
図14はこの実施例の光路図、図15はその軸上色収差図、図16は横のコマ収差図である。
この第1実施例では、第1群レンズ1はシングルレンズ、第2群レンズ2は平行平面板であって、r1からr6までが光学系である。r6とr7の間にあるのは水である。
色消しは、第1群レンズ1のアッベ数と第2群レンズ2のアッベ数との差により行なわれる。色収差は、蛍光像を観察するために、F線(λ=486.13nm)からC線(656.27nm)の範囲で補正されている。第1レンズ群1と光ファイバー3の射出端面3aが一体で動くので、軸上収差のみが補正されている。
顕微鏡として許容できる収差量は、波面収差が0.07λ(RMS)以下である。本第1実施例では、波面収差は0.0225λ(RMS)であるので、十分な結像性能が確保されている。なお、横倍率は0.153、NAは0.5、焦点距離はf=1.0845(mm)である。
【0037】
以下に、本第1実施例の光学データを示す。
r1=∞(ファイバー端面3a)
d1=5.764476
r2=∞(絞り)
d2=0.100000
r3=0.63223(非球面)
d3=0.700000 nd3=1.497 νd3=81.61
r4=-0.70942(非球面)
d4=0.2
r5=∞
d5=0.815524 nd5=1.92286 νd5=18.9
r6=∞
d6=0.02 nd6=1.333 νd6=55.79
r7=∞(走査面)
【0038】
非球面係数
第3面
K =-0.751319
A =-0.324231×10-1 B=-0.274054×100
C=-0.369527×100 D=-0.948859×101
第4面
K =0.660194
A =0.212630×101 B=-0.515319×101
C=0.716956×101 D=0.192504×102
【0039】
図17は、本発明に係る対物レンズの第2実施例の光路図である。
この実施例においても、各光学部材に対し上記第1実施例と同様の符号が用いられている。波面収差は0.0191λ(RMS)である。横倍率は0.153、NAは0.55、焦点距離はf=1.0394(mm)である。
【0040】
以下に、本第2実施例の光学データを示す。
r1=∞(ファイバー端面3a)
d1=5.513453
r2=∞(絞り)
d2=0.100000
r3=0.58572(非球面)
d3=0.700000 nd3=1.497 νd3=81.61
r4=-0.69076(非球面)
d4=0.150000
r5=∞
d5=0.816547 nd5=1.92286 νd5=18.90
r6=∞
d6=0.020000 nd6=1.333 νd6=55.79
r7=∞(走査面)
【0041】
非球面係数
第3面
K=-0.971934
A=0.143551×100 B=-0.169655×100
C=0.197615×101 D=-0.113507×102
第4面
K=0.000000
A=0.223457×101 B=-0.540933×101
C=0.511366×101 D=0.584641×101
【0042】
図18は、本発明に係る対物レンズの第3実施例の光路図である。
この実施例においても、各光学部材に対し上記第1実施例と同様の符号が用いられている。波面収差は0.0365λ(RMS)である。横倍率は0.153、NAは0.5、焦点距離はf=1.0124(mm)である。
【0043】
以下に、本第3実施例の光学データを示す。
r1=∞(ファイバー端面3a)
d1=5.200000
r2=∞(絞り)
d2=0.100000
r3=1.75535(非球面)
d3=0.700000 nd3=1.497 νd3=81.61
r4=-0.41717(非球面)
d4=0.100000
r5=∞
d5=1.200000 nd5=1.80809 νd5=22.80
r6=∞
d6=-0.004799 nd6=1.333 νd6=55.79
r7=∞(走査面)
【0044】
非球面係数
第3面
K=-102.874069
A=0.248378×101 B=-0.196887×102
C=0.838841×102 D=-0.269475×103
第4面
K=-0.412152
A=0.393592×101 B=-0.103352×102
C=0.501692×101 D=0.662751×102
【0045】
図19は、本発明に係る対物レンズの第4実施例の光路図である。
この実施例においても、各光学部材に対し上記第1実施例と同様の符号が用いられており、波面収差は0.0419λ(RMS)である。横倍率は0.153、NAは0.4、焦点距離はf=0.9885(mm)である。
【0046】
以下に、本第4実施例の光学データを示す。
r1=∞(ファイバー端面3a)
d1=4.955571
r2=∞(絞り)
d2=0.100000
r3=35.76587(非球面)
d3=0.800000 nd3=1.497 νd3=81.61
r4=-0.36963(非球面)
d4=0.100000
r5=∞
d5=1.324427 nd5=1.80518 νd5=25.40
r6=∞
d6=0.020000 nd6=1.333 νd6=55.79
r7=∞(走査面)
【0047】
非球面係数
第3面
K=-49005.90164
A=0.317821×100 B=-0.176726×102
C=0.668891×102 D=-0.901447×103
第4面
K=-0.453907
A=0.339286×101 B=-0.946604×101
C=0.137993×102 D=0.998707×102
【0048】
図20は、本発明に係る対物レンズの第5実施例の光路図である。
この実施例においても、各光学部材に対し上記第1実施例と同様の符号が用いられており、波面収差が0.0226λ(RMS)である。横倍率は0.153、NAは0.55、焦点距離はf=1.0946(mm)である。
【0049】
以下に、本第5実施例の光学データを示す。
r1=∞(ファイバー端面3a)
d1=5.823907
r2=∞(絞り)
d2=0.100000
r3=0.52134(非球面)
d3=0.756067 nd3=1.43875 νd3=95.00
r4=-0.60459(非球面)
d4=9.300000
r5=-1.00000
d5=0.700000 nd5=1.92286 νd5=18.90
r6=∞
d6=0.020000 nd6=1.333 νd6=55.79
r7=∞(走査面)
【0050】
非球面係数
第3面
K=-0.798140
A=-0.454231×10-1 B=-0.181297×100
C=0.103139×101 D=-0.577724×101
第4面
K=0.036652
A=0.313281×101 B=-0.712160×101
C=0.120575×102 D=0.523017×101
【0051】
図21は、本発明に係る対物レンズの第6実施例の光路図である。
この実施例においても、各光学部材に対し上記第1実施例と同様の符号が用いられており、波面収差が0.0371λ(RMS)である。横倍率は0.153、NAは0.55、焦点距離はf=1.0882(mm)である。
【0052】
以下に、本第6実施例の光学データを示す。
r1=∞(ファイバー端面3a)
d1=5.409646
r2=0.76289
d2=0.633904 nd2=1.58913 νd2=61.30
r3=-0.53141
d3=0.600000 nd3=1.81474 νd3=37.07
r4=-0.55587(非球面)
d4=0.115439
r5=-10.00000
d5=0.821012 nd5=1.92286 νd5=18.90
r6=∞
d6=0.020000 nd6=1.333 νd6=55.79
r7=∞(走査面)
【0053】
非球面係数
第4面
K=-0.049097
A=0.284393×101 B=-0.804974×101
C=0.166032×102 D=0.870825×101
【0054】
図22は、本発明に係る対物レンズの第7実施例の光路図である。
この実施例においても、各光学部材に対し上記第1実施例と同様の符号が用いられており、波面収差が0.0469λ(RMS)である。横倍率は0.153、NAは0.5、焦点距離はf= 1.0844(mm)である。
【0055】
以下に、本第7実施例の光学データを示す。
r1=∞(ファイバー端面3a)
d1=5.555191
r2=∞(絞り)
d2=0.100000
r3=0.80925(非球面)
d3=0.784202 nd3=1.497 νd3=81.61
r4=-0.76127(非球面)
d4=0.2
r5=2.50000
d5=0.940607 nd5=1.92286 νd5=18.9
r6=∞
d6=0.02 nd6=1.333 νd6=55.79
r7=∞(走査面)
【0056】
非球面係数
第3面
K =-0.838606
A =-0.655063×10-1 B=-0.640416×100
C=-0.209672×101 D=0.932104×100
第4面
K =0.973645
A =0.149933×101 B=-0.451277×101
C=0.142273×102 D=0.192981×101
【0057】
図23は、本発明に係る対物レンズの第8実施例の光路図である。
この実施例においても、各光学部材に対し上記第1実施例と同様の符号が用いられており、波面収差が0.026λ(RMS)である。横倍率は0.153、NAは0.5、焦点距離はf=1.0835(mm)である。
【0058】
以下に、本第8実施例の光学データを示す。
r1=∞(ファイバー端面3a)
d1=5.683586
r2=∞(絞り)
d2=0.100000
r3=0.70163(非球面)
d3=0.700000 nd3=1.497 νd3=81.61
r4=-0.75374(非球面)
d4=0.2
r5=5.00000
d5=0.896413 nd5=1.92286 νd5=18.9
r6=∞
d6=0.02 nd6=1.333 νd6=55.79
r7=∞(走査面)
【0059】
非球面係数
第3面
K =-0.777766
A =-.399211×10-1 B=-0.445097×100
C=-0.169426×101 D=-0.372513×101
第4面
K =0.871673
A =0.174726×101 B=-0.481677×101
C=0.109676×102 D=0.742922×101
【0060】
図24は、本発明に係る対物レンズの第9実施例の光路図である。
この実施例においても、各光学部材に対し上記第1実施例と同様の符号が用いられており、波面収差が0.0228λ(RMS)である。横倍率は0.153、NAは0.5、焦点距離はf=1.0820(mm)である。
【0061】
以下に、本第9実施例の光学データを示す。
r1=∞(ファイバー端面3a)
d1=5.810000
r2=∞(絞り)
d2=0.100000
r3=0.60872(非球面)
d3=0.700000 nd3=1.497 νd3=81.61
r4=-0.63779(非球面)
d4=0.2
r5=-5.00000
d5=0.770000 nd5=1.92286 νd5=18.9
r6=∞
d6=0.02 nd6=1.333 νd6=55.79
r7=∞(走査面)
【0062】
非球面係数
第3面
K =-0.729290
A =-0.239433×10-1 B=-0.308885×100
C=0.150620×101 D=-0.213323×102
第4面
K =0.462668
A =0.274744×101 B=-0.635226×101
C=0.143551×101 D=0.545212×102
【0063】
図25は、本発明に係る対物レンズの第10実施例の光路図である。
この実施例においても、各光学部材に対し上記第1実施例と同様の符号が用いられており、波面収差が0.0225λ(RMS)である。横倍率は0.153、NAは0.5、焦点距離はf=1.0793(mm)である。
【0064】
以下に、本第10実施例の光学データを示す。
r1=∞(ファイバー端面3a)
d1=5.800000
r2=∞(絞り)
d2=0.100000
r3=0.63215 (非球面)
d3=0.700000 nd3=1.497 νd3=81.61
r4=-0.57619(非球面)
d4=0.2
r5=-3.50000
d5=0.780000 nd5=1.92286 νd5=18.9
r6=∞
d6=0.02 nd6=1.333 νd6=55.79
r7=∞(走査面)
【0065】
非球面係数
第3面
K =-0.676982
A =-.385298×10-1 B=-0.286254×100
C=0.227250×101 D=-.300677×102
第4面
K =0.221761
A =0.324830×101 B=-0.736130×101
C=-0.241903×101 D=0.785435×102
【0066】
図26は、本発明に係る対物レンズの第11実施例の光路図である。
この実施例においても、各光学部材に対し上記第1実施例と同様の符号が用いられており、波面収差が0.0394λ(RMS)である。横倍率は0.153、NAは0.5、焦点距離はf=1.0795(mm)である。
【0067】
以下に、本第11実施例の光学データを示す。
r1=∞(ファイバー端面3a)
d1=5.880000
r2=∞(絞り)
d2=0.100000
r3=0.55985 (非球面)
d3=0.700000 nd3=1.497 νd3=81.61
r4=-0.62742 (非球面)
d4=0.2
r5=-2.50000
d5=0.700000 nd5=1.92286 νd5=18.9
r6=∞
d6=0.02 nd6=1.333 νd6=55.79
r7=∞(走査面)
【0068】
非球面係数
第3面
K =-0.718672
A =-0.259057×10-1 B=-0.510535×10-1
C=0.235208×101 D=-0.174945×102
第4面
K =0.276183
A =0.297392×101 B=-0.611059×101
C=-0.347151×10-1 D=0.434561×102
【0069】
図27は、本発明に係る対物レンズの第12実施例の光路図である。
この実施例においても、各光学部材に対し上記第1実施例と同様の符号が用いられており、波面収差が0.0571λ(RMS)である。横倍率は0.153、NAは0.5、焦点距離はf=1.0761(mm)である。
【0070】
以下に、本第12実施例の光学データを示す。
r1=∞(ファイバー端面3a)
d1==5.945074
r2=∞(絞り)
d2=0.100000
r3=0.51787(非球面)
d3=0.700000 nd3=1.497 νd3=81.61
r4=-0.64866(非球面)
d4=0.2
r5=-1.77000
d5=0.634926 nd5=1.92286 νd5=18.9
r6=∞
d6=0.02 nd6=1.333 νd6=55.79
r7=∞(走査面)
【0071】
非球面係数
第3面
K =-0.662927
A =0.58969910-1 B=-0.350177×100
C=0.629612×101 D=-0.282512×102
第4面
K =0.467756
A =0.365760×101 B=-0.883522×101
C=-0.484146×101 D=0.855324 ×102
【0072】
上記各実施例の光学データにおいて、r1,r2,…は各レンズ面の曲率半径、d1,d2,…は各レンズの肉厚または空気間隔、nd1,nd2,…は各レンズのd線での屈折率、νd1,νd2,…は各レンズのアッベ数である。
なお、非球面形状は、光軸方向をZ、光軸に直交する方向にyをとり、円錐係数をK、非球面係数をA,B,C,Dとしたとき、次式で表される。
Figure 0003938699
【0073】
図28は、本発明に係る対物レンズの第13実施例の概略構成を示す断面図である。図28及び後述する図29乃至図31において、図12と実質上同一の部材には同一符号を付してある。また、光学ユニット19に関しては、集光光学系1,カバーガラス2及び光ファイバー3以外は省略されている。
本実施例では、レンズ(第2レンズ群)2の先端に、キヤップ29が取外し可能に被着されている。表面に傷,汚れが着くのを防止するため、キヤップ29には保護ガラス29aが設けられている。このような構成により、この保護ガラス29aが汚れたり傷がついた場合は、キヤップ29ごと外してクリニーングするれば、保護ガラス29aをきれいにすることができる。あるいは、キヤップ29ごと外して交換してもよい。
【0074】
図29は、本発明に係る対物レンズの第14実施例の概略構成を示す断面図である。この実施例でも、光学ユニット19の細部構造を省略して第11実施例と同様に示されている。本実施例では、保護ガラス2Aを第2レンズ群としてのレンズ2に接合した点で、第13実施例とは異なる。
【0075】
図30は、本発明に係る対物レンズの第15実施例の概略構成を示す断面図である。この実施例では、レンズ2の標本側の面を球面状に成形すると共に、光学枠16の先端部もこれに整合するように成形している。この構成により、標本を傷つける危険性がないようにしている。
この場合、標本面5とレンズ2の間は水で満たされ、かつレンズ2の標本側の面における光線高は極めて小さい。よって、レンズ2の球面がもたらす結像性能の劣化は小さい。なお、その種の劣化を特に抑える必要がある場合は、レンズ2の球面上の光線が通る領域18Bを平面に研磨すればよい。
【0076】
図31は、本発明に係る対物レンズの第16実施例の概略構成を示す断面図である。この実施例では、第2レンズ群としてのレンズ2が標本Sに向かって先細となる円錐台状をなし、且つ頂面は平面または凸面をなしている。このような構成により、標本Sが生体である場合に凹んだ個所でも観察できるように構成されている。特に、レンズ2に比較的低分散の硝材を用いる場合、厚みd(図31(b)参照)はより大きくなるので、本実施例には好都合である。
【0077】
以上説明したように、本発明に係る対物レンズは、特許請求の範囲に記載した特徴の他に下記の特徴を有している。
(1)前記第1レンズ群が2枚接合レンズであり、該接合レンズの一方の硝材のアッベ数をνdLD、他方の硝材のアッベ数をνdI(2)とき、条件νdLDdI(2)dHD
を満足する請求項1に記載の対物レンズ。
(2)前記第1レンズ群の光源側のレンズ面の曲率半径をRI(1),標本側のレンズ面の曲率半径をRI(2)としたとき、条件RI(1)/RI(2)≦−0.7を満足する請求項1,2又は上記(1)に記載の対物レンズ。
【0078】
【発明に効果】
上述の如く本発明によれば、高解像化及び視野範囲の広域化を可能にする、対物レンズ走査型顕微鏡に好適に用いられ得る対物レンズを提供することが出来る。
【図面の簡単な説明】
【図1】正の単レンズの色収差を示す図である。
【図2】収束光束が平面の境界面から媒質中に入射する場合の色収差を示す図である。
【図3】本発明による色収差補正の原理を説明するための図である。
【図4】図3の一点鎖線で囲んだ部分の詳細図である。
【図5】凸面に収束光が入射して発散する方向の屈折を受ける場合の色収差を示す図である。
【図6】凸面に収束光が入射して、より強く収束する方向の屈折を受ける場合の色収差を示す図である。
【図7】本発明に係る対物レンズを備えた光学ユニットの概略構成図である。
【図8】第1レンズ群で発生した色収差が第2レンズ群によって如何に相殺されるかを説明するための図である。
【図9】第1レンズ群の近軸曲率半径を説明するための図である。
【図10】条件(5)を説明するための図である。
【図11】本発明に係る対物レンズを用いた対物レンズ走査型顕微鏡の一実施例の概略構成図である。
【図12】図11に示すプローブの先端部の構成を示す断面図である。
【図13】図12の光学ユニット部分を詳細に示す斜視図である。
【図14】本発明に係る対物レンズの第1実施例の光路図である。
【図15】第1実施例における軸上色収差図である。
【図16】第1実施例における横のコマ収差を示す。
【図17】本発明に係る対物レンズの第2実施例の光路図である。
【図18】本発明に係る対物レンズの第3実施例の光路図である。
【図19】本発明に係る対物レンズの第4実施例の光路図である。
【図20】本発明に係る対物レンズの第5実施例の光路図である。
【図21】本発明に係る対物レンズの第6実施例の光路図である。
【図22】本発明に係る対物レンズの第7実施例の光路図である。
【図23】本発明に係る対物レンズの第8実施例の光路図である。
【図24】本発明に係る対物レンズの第9実施例の光路図である。
【図25】本発明に係る対物レンズの第10実施例の光路図である。
【図26】本発明に係る対物レンズの第11実施例の光路図である。
【図27】本発明に係る対物レンズの第12実施例の光路図である。
【図28】本発明に係る対物レンズの第13実施例の概略構成を示す断面図である。
【図29】本発明に係る対物レンズの第14実施例の概略構成を示す断面図である。
【図30】本発明に係る対物レンズの第15実施例の概略構成を示す断面図である。
【図31】(a)は本発明に係る対物レンズの第16実施例の概略構成を示す断面図、(b)は第2群レンズの斜視図である。
【符号の説明】
1 第1レンズ群(集光光学系)
2 第2レンズ群(カバーガラス)
2A, 29a 保護ガラス
3 光ファイバー
3a 光ファイバーの先端面
4 光学ユニットのベース
5 標本面
6 顕微鏡本体
7 レーザー発振器
8 ビームエキスパンダ
9 ダイクロイックミラー
10,11 集光レンズ
12 光検出器
13 画像形成回路
14 アクチュエータードライバー
15 モニター
16 プローブ
16a 対物レンズ及びアクチュエーター
16b プローブの基端部
17 コネクタ
18 光学枠
19 光学ユニット
20 先端カバーユニット
21 光ファイバー
21a 光ファイバーの出射端
22 カバーホルダー
23a,23b,23c,23d 薄板(板バネ)
24a,24b,24c,24d 圧電素子
25 レンズホルダー
26 集光点
27 水平方向(X方向)
28 縦方向(Y方向)
29 キヤップ
S 標本

Claims (2)

  1. 正の屈折力を有する第1レンズ群と該第1レンズ群よりも標本側に配置された第2レンズ群を備え、前記第1レンズ群はレンズを少なくとも1つ含み、前記第2レンズ群は光学素子を少なくとも1つ含み、下記条件を満足する対物レンズ。
    νdLD>νdHD
    −0.56≦ψII(i) /ψT≦0.56
    ν dHD ≦26
    II ψ T ≧0.63
    但し、νdLDは前記レンズの硝材のアッベ数、νdHDは前記光学素子の硝材のアッベ数、ψII(i) は前記第2レンズ群の第1面の屈折力、ψTは前記対物レンズ全系の屈折力、d II は前記第2レンズ群の光学素子の面間隔である。
  2. 請求項1に記載の対物レンズとアクチュエーターと光ファイバーを備えたプローブ部と、光源と光検出器と分光素子を備えた本体部とを備えた走査型顕微鏡。
JP2002076727A 2002-03-19 2002-03-19 対物レンズおよび対物レンズを備えた走査型顕微鏡 Expired - Fee Related JP3938699B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002076727A JP3938699B2 (ja) 2002-03-19 2002-03-19 対物レンズおよび対物レンズを備えた走査型顕微鏡
US10/246,432 US6710938B2 (en) 2002-03-19 2002-09-19 Objective scanning microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002076727A JP3938699B2 (ja) 2002-03-19 2002-03-19 対物レンズおよび対物レンズを備えた走査型顕微鏡

Publications (2)

Publication Number Publication Date
JP2003270540A JP2003270540A (ja) 2003-09-25
JP3938699B2 true JP3938699B2 (ja) 2007-06-27

Family

ID=28035463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002076727A Expired - Fee Related JP3938699B2 (ja) 2002-03-19 2002-03-19 対物レンズおよび対物レンズを備えた走査型顕微鏡

Country Status (2)

Country Link
US (1) US6710938B2 (ja)
JP (1) JP3938699B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005234306A (ja) * 2004-02-20 2005-09-02 Olympus Corp 顕微鏡観察装置
US7338439B2 (en) * 2003-09-05 2008-03-04 Pentax Corporation Condensing optical system, confocal optical system, and scanning confocal endoscope
JP4637511B2 (ja) * 2004-06-23 2011-02-23 則司 大石 走査型立体像取り込み装置
JP4975257B2 (ja) * 2005-02-07 2012-07-11 オリンパス株式会社 光学系
JP2007094079A (ja) * 2005-09-29 2007-04-12 Olympus Corp 光学装置及び走査型顕微鏡
DE102019211360A1 (de) * 2019-07-30 2021-02-04 Carl Zeiss Microscopy Gmbh Tubussystem

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927247A (en) 1988-05-13 1990-05-22 Matsushita Electric Industrial Co., Ltd. Objective lens for optical disk system and optical head using the same
JPH05100161A (ja) 1991-10-11 1993-04-23 Nikon Corp 光デイスク用対物レンズ
US5600494A (en) 1994-12-14 1997-02-04 Asahi Kogaku Kogyo Kabushiki Kaisha Objective lens system of an optical disk device
JP4076047B2 (ja) * 2000-08-11 2008-04-16 フジノン株式会社 光記録媒体用対物レンズおよびこれを用いた光ピックアップ装置

Also Published As

Publication number Publication date
US6710938B2 (en) 2004-03-23
US20030178558A1 (en) 2003-09-25
JP2003270540A (ja) 2003-09-25

Similar Documents

Publication Publication Date Title
JP5148403B2 (ja) 内視鏡用対物光学系
JP3299808B2 (ja) 液浸系顕微鏡対物レンズ
US20060082896A1 (en) Immersion microscope objective lens
JPH1078543A (ja) 光学系
WO2017217291A1 (ja) リレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡
JP2017111260A (ja) 顕微鏡対物レンズ
US20150109681A1 (en) Immersion microscope objective and microscope using the same
JP5993250B2 (ja) 液浸顕微鏡対物レンズ及びそれを用いた顕微鏡
JP3938699B2 (ja) 対物レンズおよび対物レンズを備えた走査型顕微鏡
JP3140841B2 (ja) 内視鏡用対物光学系
JPH10288740A (ja) 長作動距離顕微鏡対物レンズ
JP2002350734A (ja) 液浸系顕微鏡対物レンズ
JPH10221597A (ja) 対物レンズ
JP2008015418A (ja) 接眼レンズ
JP4668392B2 (ja) 光走査光学系および内視鏡
JP7416224B2 (ja) 顕微鏡光学系、顕微鏡装置、および結像レンズ
JP5054178B2 (ja) 顕微鏡対物レンズ
US10884229B2 (en) Immersion microscope objective
JPH11326789A (ja) 接眼レンズ
JP3254786B2 (ja) 顕微鏡対物レンズ
JP2004229963A (ja) 走査型光学系
JP4921802B2 (ja) 対物レンズ及びそれを備えた光学装置
WO2018105710A1 (ja) 観察光学系
JP7214192B2 (ja) 液浸系顕微鏡対物レンズ、結像レンズ及び顕微鏡装置
JP4673027B2 (ja) 接眼レンズ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees