WO2018105710A1 - 観察光学系 - Google Patents

観察光学系 Download PDF

Info

Publication number
WO2018105710A1
WO2018105710A1 PCT/JP2017/044099 JP2017044099W WO2018105710A1 WO 2018105710 A1 WO2018105710 A1 WO 2018105710A1 JP 2017044099 W JP2017044099 W JP 2017044099W WO 2018105710 A1 WO2018105710 A1 WO 2018105710A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens
observation
objective
reversal
Prior art date
Application number
PCT/JP2017/044099
Other languages
English (en)
French (fr)
Inventor
広瀬 直樹
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201780075022.6A priority Critical patent/CN110036330B/zh
Priority to JP2018555068A priority patent/JP6898601B2/ja
Priority to US16/463,837 priority patent/US10890754B2/en
Publication of WO2018105710A1 publication Critical patent/WO2018105710A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/002Magnifying glasses

Definitions

  • the present invention relates to an observation optical system that can be used in, for example, a medical loupe, a work loupe, and the like.
  • Kepler type that is, an object image is primarily formed as an erect image through an objective optical system and a reversal optical system, and the image can be observed with an eyepiece optical system.
  • an observation optical system called a Kepler type, that is, an object image is primarily formed as an erect image through an objective optical system and a reversal optical system, and the image can be observed with an eyepiece optical system.
  • Patent Document 1 An observation optical system called a Kepler type, that is, an object image is primarily formed as an erect image through an objective optical system and a reversal optical system, and the image can be observed with an eyepiece optical system.
  • Patent Document 1 has a relatively small number of lenses, but sacrifices miniaturization and weight reduction in order to obtain a wide visual field.
  • the present invention has been made in view of the above background art, and an object thereof is to provide a small and light observation optical system.
  • an observation optical system reflecting one aspect of the present invention is provided in the objective optical system, either inside the objective optical system or immediately after the objective optical system.
  • the value f is the focal length of the objective optical system
  • the value N is the refractive index at the d-line of the inverting optical system
  • the value L is the optical path length of the inverting optical system
  • the value D is an object of the inverting optical system.
  • the value H is the exit pupil radius.
  • the unit of these values f, L, D, and H is mm.
  • FIG. 1A is a cross-sectional view illustrating an observation optical system and the like according to an embodiment and Example 1 according to the present invention
  • FIGS. 1B to 1D are aberration diagrams of the observation optical system according to Example 1.
  • FIG. 2A is a cross-sectional view showing the observation optical system and the like of Example 2
  • FIGS. 2B to 2D are aberration diagrams of the observation optical system of Example 2.
  • FIG. 3A is a cross-sectional view showing the observation optical system and the like of Example 3.
  • FIGS. 3B to 3D are aberration diagrams of the observation optical system of Example 3.
  • FIG. 4A is a cross-sectional view showing the observation optical system and the like of Example 4.
  • FIGS. 4B to 4D are aberration diagrams of the observation optical system of Example 4.
  • observation optical system 10 according to an embodiment of the present invention will be described with reference to FIG. 1A.
  • the observation optical system 10 illustrated in FIG. 1A has the same configuration as an observation optical system 10A of Example 1 described later.
  • the observation optical system 10 is a real-image single focus optical system, and includes an objective optical system LO, a reversal optical system PR, and an eyepiece optical system LE in order from the object side.
  • the observation optical system 10 is fixed to a lens barrel (not shown) and is used for a medical loupe, a work loupe, and the like.
  • the observation optical system 10 When the observation optical system 10 is applied to a magnifying glass, it can be of a glasses type or a head-mounted type so that an operation with both hands is possible.
  • the objective optical system LO is a system that collects a light beam and creates a real image.
  • the objective optical system LO is composed of a first A lens L1A having negative power and a second A lens L2A having positive power in order from the object side.
  • the first A lens L1A and the second A lens L2A are cemented, and these are the cemented lens CS. Thereby, lateral chromatic aberration can be corrected satisfactorily.
  • the cemented lens CS has a positive power as a whole.
  • the first A and second A lenses L1A and L2A are spherical lenses, and are formed of, for example, glass.
  • the inverting optical system PR erects an inverted image formed by the objective optical system LO.
  • a prism or the like is used as the reversal optical system PR.
  • the reversal optical system PR is composed of two glass prisms and is shown in an unfolded state.
  • the reversal optical system PR is disposed immediately after the objective optical system LO, that is, on the pupil EP side of the cemented lens CS.
  • the objective optical system LO may be composed of three or more lenses (see FIG. 2A, etc.).
  • the reversal optical system PR may be arranged inside the objective optical system LO, that is, between lenses constituting the objective optical system LO.
  • the eyepiece optical system LE allows an erect image formed by the reversal optical system PR to be observed by a human eye through the pupil EP.
  • the eyepiece optical system LE is disposed after the intermediate image as viewed from the object side.
  • the eyepiece optical system LE includes a positive lens, a positive lens, and a negative lens in order from the pupil EP side.
  • the eyepiece optical system LE is composed of four lenses. Specifically, in order from the pupil EP side, a first B lens L1B having positive power and a first lens having positive power are provided.
  • the lens includes a 2B lens L2B, a third B lens L3B having negative power, and a fourth B lens L4B having positive power.
  • the object side negative lens (specifically, the third B lens L3B) has a function of ensuring a long eye relief by increasing the ray height inside the eyepiece optical system LE by the diverging action of the object side lens,
  • the curvature of field and coma can be favorably corrected by the two positive lenses on the pupil EP side (specifically, the first B lens L1B and the second B lens L2B).
  • the lens closest to the pupil EP side (specifically, the first B lens L1B) has an aspherical surface. Thereby, it is possible to satisfactorily correct the curvature of field up to the periphery of the visual field range.
  • the first to fourth B lenses L1B to L4B are made of, for example, glass. 2A and the like, the eyepiece optical system LE includes three lenses, specifically, a first B lens L1B having a positive power and a second B lens having a positive power in order from the pupil EP side. You may comprise with L2B and the 3B lens L3B which has negative power.
  • the observation optical system 10 satisfies the following conditional expressions (1) and (2).
  • f is the focal length of the objective optical system LO
  • the value N is the refractive index at the d-line of the reversing optical system PR
  • the value L is the optical path length of the reversing optical system PR
  • the value D is the reversing optical system.
  • the value H is the exit pupil radius.
  • the unit of these values f, L, D, and H is mm.
  • Conditional expression (1) is the focal length of the most object side lens (specifically, the first A lens L1A of the objective optical system LO) (approximately the distance from the most object side lens to the substantially intermediate image). And the ratio of the optical path length in terms of air of the reversal optical system PR.
  • the optical path length of the reversal optical system PR is not excessively extended, and the air space between the lens closest to the object side and the reversal optical system PR is appropriately large.
  • the incident light height of the reversal optical system PR does not become too high, and the reversal optical system PR can be made relatively small.
  • Conditional expression (2) defines the incident light height of the inverting optical system PR with respect to a practical pupil diameter.
  • the observation optical system 10 desirably satisfies the following conditional expressions (3) and (4). 1.64 ⁇ Nd ⁇ 1.85 (3) 20 ⁇ d ⁇ 34 (4)
  • Nd is the refractive index of the glass material used for the reversal optical system PR with respect to the d-line
  • ⁇ d is the Abbe number of the reversal optical system PR.
  • the reversal optical system PR (for example, a prism) uses total reflection in which light rays incident on a low medium from a medium having a high refractive index do not pass through the boundary surface and are reflected entirely.
  • the incident angle of the peripheral ray to the boundary surface becomes small. Therefore, it is necessary to appropriately set the refractive index range so as to satisfy the total reflection condition.
  • the observation optical system 10 satisfies the following conditional expression (5). 4 ⁇ f / f R ⁇ 7.5 (5)
  • the value f is the focal length of the objective optical system LO
  • the value f R is the focal length of the eyepiece optical system LE.
  • the size of the reversal optical system PR occupying about half of the entire observation optical system 10 is a point from the viewpoint of miniaturization and weight reduction. For this reason, it is necessary to keep the height of light rays incident on the reversal optical system PR from the object side low.
  • a relatively large air space is ensured between the lens closest to the object side of the objective optical system LO (specifically, the first A lens L1A of the objective optical system LO) and the reversal optical system PR. By doing so, the incident light height is lowered.
  • the present observation optical system 10 is effective in a loupe or the like that requires long-time mounting and holding.
  • Example 1 The optical specification values of the observation optical system of Example 1 are shown in Table 1 below. [Table 1] Diopter (dpt) -1.0 Object distance (mm) 390 Pupil radius H (mm) 1.75
  • Table 2 below shows data such as lens surfaces of the observation optical system of Example 1.
  • Table 3 shows the aspheric coefficients of the lens surfaces of the observation optical system of Example 1.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 02
  • E for example, 2.5E-02
  • FIG. 1A is a cross-sectional view of the observation optical system 10A of Example 1 and the like.
  • the observation optical system 10A of Example 1 includes an objective optical system LO, a reversal optical system PR, and an eyepiece optical system LE.
  • the reversal optical system PR is provided immediately after the objective optical system LO, that is, on the pupil EP side of the objective optical system LO.
  • the objective optical system LO includes, in order from the object side, a first A lens L1A having negative power and a second A lens L2A having positive power.
  • the first A and second A lenses L1A and L2A are cemented lenses CS.
  • the eyepiece optical system LE has, in order from the pupil EP side, a first B lens L1B having a positive power, a second B lens L2B having a positive power, a third B lens L3B having a negative power, and a positive power. And a fourth B lens L4B.
  • the line indicated by the symbol EP indicates the designed pupil position (the same applies to the following examples).
  • FIGS. 1B to 1D respectively show spherical aberration, astigmatism, and distortion relating to a virtual image observed by the observation optical system 10A shown in FIG. 1A.
  • the horizontal axis represents the diopter
  • ⁇ 1 (diopter) is the reference diopter.
  • the vertical axis represents the entrance pupil diameter
  • the astigmatism diagram and the distortion diagram the vertical axis represents the field of view.
  • the aberration characteristics are shown for the C line, the e line, and the g line (the aberration notation method is the same in the second and subsequent examples).
  • Example 2 The optical specification values of the observation optical system of Example 2 are shown in Table 4 below. [Table 4] Diopter (dpt) -1.0 Object distance (mm) 390 Pupil radius H (mm) 1.75
  • Table 6 shows the aspheric coefficients of the lens surfaces of the observation optical system of Example 2.
  • FIG. 2A is a cross-sectional view of the observation optical system 10B and the like of the second embodiment.
  • the observation optical system 10B of Example 2 includes an objective optical system LO, a reversal optical system PR, and an eyepiece optical system LE.
  • the objective optical system LO includes, in order from the object side, a first A lens L1A having negative power, a second A lens L2A having positive power, and a third A lens L3A having positive power.
  • the first A and second A lenses L1A and L2A are cemented lenses CS.
  • the reversal optical system PR is provided inside the objective optical system LO, specifically, between the second A lens L2A and the third A lens L3A.
  • the eyepiece optical system LE includes, in order from the pupil EP side, a first B lens L1B having a positive power, a second B lens L2B having a positive power, and a third B lens L3B having a negative power.
  • 2B to 2D respectively show spherical aberration, astigmatism, and distortion associated with a virtual image observed by the observation optical system 10B shown in FIG. 2A.
  • Example 3 The optical specification values of the observation optical system of Example 3 are shown in Table 7 below. [Table 7] Diopter (dpt) -1.0 Object distance (mm) 390 Pupil radius H (mm) 2.0
  • Table 9 shows the aspheric coefficients of the lens surfaces of the observation optical system of Example 3.
  • FIG. 3A is a cross-sectional view of the observation optical system 10C of Example 3 and the like.
  • the observation optical system 10C of Example 3 includes an objective optical system LO, a reversal optical system PR, and an eyepiece optical system LE.
  • the objective optical system LO includes, in order from the object side, a first A lens L1A having negative power, a second A lens L2A having positive power, and a third A lens L3A having positive power.
  • the first A and second A lenses L1A and L2A are cemented lenses CS.
  • the reversal optical system PR is provided inside the objective optical system LO, specifically, between the second A lens L2A and the third A lens L3A.
  • the eyepiece optical system LE includes, in order from the pupil EP side, a first B lens L1B having a positive power, a second B lens L2B having a positive power, and a third B lens L3B having a negative power.
  • 3B to 3D respectively show spherical aberration, astigmatism, and distortion regarding the virtual image observed by the observation optical system 10C shown in FIG. 3A.
  • Example 4 The optical specification values of the observation optical system of Example 4 are shown in Table 10 below. [Table 10] Diopter (dpt) -1.0 Object distance (mm) 390 Pupil radius H (mm) 2.0
  • Table 12 below shows the aspheric coefficients of the lens surfaces of the observation optical system of Example 4.
  • FIG. 4A is a cross-sectional view of the observation optical system 10D of Example 4 and the like.
  • the observation optical system 10D of Example 4 includes an objective optical system LO, a reversal optical system PR, and an eyepiece optical system LE.
  • the objective optical system LO includes, in order from the object side, a first A lens L1A having a positive power, a second A lens L2A having a negative power, and a third A lens L3A having a positive power.
  • the first A and second A lenses L1A and L2A are cemented lenses CS.
  • the reversal optical system PR is provided inside the objective optical system LO, specifically, between the second A lens L2A and the third A lens L3A.
  • the eyepiece optical system LE includes, in order from the pupil EP side, a first B lens L1B having a positive power, a second B lens L2B having a positive power, and a third B lens L3B having a negative power.
  • 4B to 4D respectively show spherical aberration, astigmatism, and distortion regarding the virtual image observed by the observation optical system 10D shown in FIG. 4A.
  • Table 13 summarizes the values of Examples 1 to 4 corresponding to the conditional expressions (1) to (5) for reference. [Table 13]
  • observation optical system according to the embodiment has been described above, but the observation optical system according to the present invention is not limited to the above-described example.
  • a cover member having optical transparency may be provided outside the lens closest to the object side and the lens closest to the pupil EP in the observation optical system 10 in consideration of scratch resistance, chemical resistance, and the like. .
  • a lens or the like having substantially no power can be arranged in the objective optical system LO and the eyepiece optical system LE.
  • the lenses except the most object side and pupil EP side lenses are not limited to glass but may be made of resin.
  • a parallel plate F may be provided between the eyepiece optical system LE and the pupil EP.
  • the parallel plate F may be a diopter adjusting lens when the observation optical system 10 is a spectacle type.
  • the parallel plate F may be provided with a wavelength selection coat.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)

Abstract

観察光学系10は、対物光学系LOと、対物光学系LOの内部及び対物光学系LOの直後のいずれか一方に設けられて、倒立像を正立像に反転させる反転光学系PRと、最も瞳EP側に配置され正立像を観察するための接眼光学系LEと、を備え、以下の条件式 1.6<f×N/L<2.5 … (1)、及び |D/H|<3 … (2) を満足する。ここで、値fは対物光学系LOの焦点距離であり、値Nは反転光学系PRのd線における屈折率であり、値Lは反転光学系PRの光路長であり、値Dは反転光学系PRの物体側の入射光線における光軸AXからの最大高さであり、値Hは射出瞳半径である。

Description

観察光学系
 本発明は、例えば医療用ルーペ、作業用ルーペ等に使用可能な観察光学系に関するものである。
 従来よりケプラー式と呼ばれる観察光学系、すなわち対物光学系と反転光学系とを介して物体像を正立像として1次結像させ、その像を接眼光学系にて観察可能にするものが、一般的に実用化されている(例えば、特許文献1参照)。
 しかしながら、特許文献1の観察光学系は、レンズ数が比較的少ないものの、見かけの視野を広くとるために小型化や軽量化を犠牲にしている。
特開平9-218358号公報
 本発明は、上記背景技術に鑑みてなされたものであり、小型で軽量な観察光学系を提供することを目的とする。
 上記した目的をのうち少なくとも一つを実現するために、本発明の一側面を反映した観察光学系は、対物光学系と、対物光学系の内部及び対物光学系の直後のいずれか一方に設けられて、倒立像を正立像に反転させる反転光学系と、最も瞳側に配置され正立像を観察するための接眼光学系と、を備え、以下の条件式を満足する。
 1.6<f×N/L<2.5  …  (1)
 |D/H|<3  …  (2)
ここで、値fは対物光学系の焦点距離であり、値Nは反転光学系のd線における屈折率であり、値Lは反転光学系の光路長であり、値Dは反転光学系の物体側の入射光線における光軸からの最大高さであり、値Hは射出瞳半径である。これらの値f、L、D、Hの単位はmmである。
図1Aは、本発明に係る一実施形態及び実施例1の観察光学系等を説明する断面図であり、図1B~1Dは、実施例1の観察光学系の収差図である。 図2Aは、実施例2の観察光学系等を示す断面図であり、図2B~2Dは、実施例2の観察光学系の収差図である。 図3Aは、実施例3の観察光学系等を示す断面図であり、図3B~3Dは、実施例3の観察光学系の収差図である。 図4Aは、実施例4の観察光学系等を示す断面図であり、図4B~4Dは、実施例4の観察光学系の収差図である。
 以下、図1Aを参照して、本発明の一実施形態である観察光学系10について説明する。なお、図1Aで例示した観察光学系10は、後述する実施例1の観察光学系10Aと同一の構成となっている。
 図1Aに示すように、観察光学系10は、実像式の単焦点光学系であって、物体側から順に、対物光学系LOと、反転光学系PRと、接眼光学系LEとを備える。観察光学系10は、不図示の鏡筒等に固定されており、医療用ルーペ、作業用ルーペ等に用いられる。観察光学系10がルーペに応用される場合、両手での作業が可能なように眼鏡型や頭部装着型のものとすることができる。
 観察光学系10のうち、対物光学系LOは、光束を集光して実像をつくるものである。図1Aの例では、対物光学系LOは、物体側から順に、負のパワーを有する第1AレンズL1Aと、正のパワーを有する第2AレンズL2Aとで構成される。対物光学系LOにおいて、第1AレンズL1Aと第2AレンズL2Aとは接合されており、これらは接合レンズCSとなっている。これにより、倍率色収差を良好に補正することができる。接合レンズCSは、全体として正のパワーを有している。第1A及び第2AレンズL1A,L2Aは、球面レンズであり、例えばガラスで形成されている。
 反転光学系PRは、対物光学系LOで形成される倒立像を正立させるものである。反転光学系PRとしては、例えばプリズム等が用いられる。図1Aの例では、反転光学系PRは、2つのガラスプリズムで構成されており、展開された状態で示されている。反転光学系PRは、対物光学系LOの直後、つまり接合レンズCSの瞳EP側に配置されている。
 なお、対物光学系LOは、3枚以上のレンズで構成されてもよい(図2(A)等参照)。対物光学系LOが3枚以上のレンズで構成される場合において、反転光学系PRは、対物光学系LOの内部、つまり対物光学系LOを構成するレンズ間に配置されていてもよい。
 接眼光学系LEは、反転光学系PRで形成される正立像が瞳EPによって人の眼に観察されるようにするものである。接眼光学系LEは、物体側から見て中間像以降に配置される。接眼光学系LEは、瞳EP側から順に、正レンズ、正レンズ、及び負レンズを含む構成となっている。図1Aの例では、接眼光学系LEは、4枚のレンズで構成されており、具体的には、瞳EP側から順に、正のパワーを有する第1BレンズL1Bと、正のパワーを有する第2BレンズL2Bと、負のパワーを有する第3BレンズL3Bと、正のパワーを有する第4BレンズL4Bとで構成される。このようなレンズ構成により、物体側の負レンズ(具体的には、第3BレンズL3B)の発散作用によって接眼光学系LE内部の光線高を高くして長いアイレリーフを確保する作用を持たせ、瞳EP側の2枚の正レンズ(具体的には、第1BレンズL1B及び第2BレンズL2B)によって像面湾曲とコマ収差とを良好に補正することができる。なお、接眼光学系LEにおいて、最も瞳EP側のレンズ(具体的には、第1BレンズL1B)が非球面を有することが望ましい。これにより、視野範囲の周辺まで像面湾曲を良好に補正することができる。そのため、中心視度と周辺視度との差を小さくすることができ、高倍率化に伴う被写界深度低下の影響を受けにくくすることができる。第1B~第4BレンズL1B~L4Bは、例えばガラスで形成されている。なお、図2A等に示すように、接眼光学系LEは、3枚のレンズ、具体的には、瞳EP側から順に、正のパワーを有する第1BレンズL1B、正のパワーを有する第2BレンズL2B、負のパワーを有する第3BレンズL3Bで構成してもよい。
 観察光学系10は、以下の条件式(1)及び(2)を満足する。
 1.6<f×N/L<2.5  …  (1)
 |D/H|<3  …  (2)
ここで、値fは対物光学系LOの焦点距離であり、値Nは反転光学系PRのd線における屈折率であり、値Lは反転光学系PRの光路長であり、値Dは反転光学系PRの物体側の入射光線における光軸AXからの最大高さであり、値Hは射出瞳半径である。これらの値f、L、D、Hの単位はmmである。
 条件式(1)は、最も物体側のレンズ(具体的には、対物光学系LOの第1AレンズL1A)の焦点距離(近似的には、最も物体側のレンズから略中間像までの距離)と、反転光学系PRの空気換算光路長との比を表している。条件式(1)の値f×N/Lの下限を上回ることで、反転光学系PRの光路長が延びすぎず最も物体側のレンズと反転光学系PRとの間の空気間隔が適度に大きくなり、反転光学系PRの入射光線高が高くなりすぎず反転光学系PRを比較的小さくすることができる。また、対物光学系LOの焦点距離が短くなりすぎず所望の倍率を得るため接眼光学系LEの焦点距離も短くする必要がなく、少ないレンズ枚数で構成された接眼光学系LEでの収差補正が容易となる。一方、条件式(1)の値f×N/Lの上限を下回ることで、対物光学系LOの焦点距離が大きくなりすぎず、観察光学系10全体の小型化及び軽量化を達成できる。条件式(2)は、実用的な瞳径に対する反転光学系PRの入射光線高を規定している。条件式(2)の値|D/H|を満たすことにより、反転光学系PRが大きくならず、観察光学系10全体の小型化及び軽量化を達成できる。
 また、観察光学系10は、上記条件式(1)及び(2)に追加して、以下の条件式(3)及び(4)を満足することが望ましい。
 1.64<Nd<1.85  …  (3)
 20<νd<34  …  (4)
ここで、値Ndは反転光学系PRに使用される硝材のd線に対する屈折率であり、値νdは反転光学系PRのアッベ数である。
 反転光学系PR(例えばプリズム)では、屈折率の高い媒質から低い媒質に入射する光線が境界面を透過せず全て反射する全反射を利用している。ただし、反転光学系PRの小型化を達成しようとすると周辺光線の境界面への入射角が小さくなるため、全反射条件を満足するように屈折率範囲を適切に設定する必要がある。また、全反射角を小さくするためには屈折率を大きくする必要があるが、反転光学系PRの軽量化のためには比重の小さな硝材を選択することが重要となってくる。条件式(3)及び(4)を満足すればこれら2要件を達成することができる。
 また、観察光学系10は、上記条件式(1)及び(2)又は(1)~(4)に追加して、以下の条件式(5)を満足する。
 4<f/f<7.5  …  (5)
ここで、値fは対物光学系LOの焦点距離であり、値fは接眼光学系LEの焦点距離である。
 医療用ルーペや作業用ルーペにおいて、小型及び軽量であることが重要であるため、対物光学系LOと接眼光学系LEとの比率を条件式(5)のように設定することで高い倍率を確保しながら小型化を達成することができる。条件式(5)の値f/fの下限を上回ることで、ルーペ倍率を適度に確保しつつ、小型化及び軽量化を達成することができる。一方、条件(5)の値f/fの上限を下回ることで、小型化及び軽量化を確実に達成することができる。
 以上説明した観察光学系10では、小型化及び軽量化の観点から、観察光学系10全体の約半分を占める反転光学系PRの大きさがポイントとなる。そのため、物体側から反転光学系PRに入射する光線の高さを低く抑えることが必要となる。本観察光学系10においては、対物光学系LOの最も物体側のレンズ(具体的には、対物光学系LOの第1AレンズL1A)と反転光学系PRとの間の空気間隔を比較的大きく確保することで入射光線高を低くしている。なお、空気間隔を取りすぎると中間像の位置と反転光学系PRの射出面との間の距離が近くなり、反転光学系PRの表面についたごみ等が観察者に見えてしまうため好ましくない。本観察光学系10は、長時間の装着や保持が必要となるルーペ等において有効である。
〔実施例〕
 以下、本発明に係る観察光学系の実施例を示す。各実施例に使用する記号は下記の通りである。
R:近軸曲率半径
T:軸上面間隔
Nd:レンズ材料のd線に対する屈折率
νd:レンズ材料のアッベ数
その他、記号「Surf.N」は、面番号を意味し、記号「INF」は、無限大又は∞を意味し、記号「EP」は、瞳を意味する。また、各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。
Figure JPOXMLDOC01-appb-M000001
ただし、
Ai:i次の非球面係数
R:基準曲率半径
K:円錐定数
〔実施例1〕
 実施例1の観察光学系の光学諸元値を以下の表1に示す。
[表1]
視度(dpt)     -1.0
物体距離(mm)   390
瞳半径 H (mm) 1.75
 実施例1の観察光学系のレンズ面等のデータを以下の表2に示す。
[表2]
Surf.N     R(mm)    T(mm)     Nd       νd
 1        22.953    0.850   1.90366   31.36
 2        14.153    3.551   1.65844   50.86
 3     -2680.269   15.723
 4         INF     30.170   1.72825   28.32
 5         INF      0.520
 6         INF     16.130   1.72825   28.32
 7         INF      6.678
 8       -24.890    2.453   1.90366   31.36
 9        -7.838    2.055
10        -5.370    0.550   1.80518   25.46
11       -92.685    0.631
12      -104.785    4.050   1.77250   49.62
13        -9.319    0.615
14*       20.936    3.251   1.62263   58.16
15*      -23.588   13.620
16(EP)     INF
 実施例1の観察光学系のレンズ面の非球面係数を以下の表3に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10-02)をE(たとえば2.5E-02)を用いて表すものとする。
[表3]
第14面
K=-0.003, A4=-1.1800E-04, A6=2.7967E-07, A8=2.8092E-08
第15面
K=0.877, A4=-9.4136E-05, A6=1.6040E-06, A8=-1.8415E-09, 
A10=2.8514E-10
 図1Aは、実施例1の観察光学系10A等の断面図である。実施例1の観察光学系10Aは、対物光学系LOと、反転光学系PRと、接眼光学系LEとを備える。反転光学系PRは、対物光学系LOの直後、つまり対物光学系LOの瞳EP側に設けられている。対物光学系LOは、物体側から順に、負のパワーを有する第1AレンズL1Aと、正のパワーを有する第2AレンズL2Aとで構成されている。第1A及び第2AレンズL1A,L2Aは、接合レンズCSとなっている。接眼光学系LEは、瞳EP側から順に、正のパワーを有する第1BレンズL1Bと、正のパワーを有する第2BレンズL2Bと、負のパワーを有する第3BレンズL3Bと、正のパワーを有する第4BレンズL4Bとで構成されている。なお、符号EPで示す線は、設計上の瞳位置を示すものとなっている(以下の実施例も同様)。
 図1B~1Dは、図1Aに示す観察光学系10Aによって観察される虚像に関する球面収差、非点収差、及び歪曲収差をそれぞれ示す。なお、球面収差図及び非点収差図において横軸は視度を表しており、-1(diopter)を基準視度としている。また、球面収差図において縦軸は入射瞳径を表し、非点収差図及び歪曲収差図において縦軸は視野を表す。球面収差図においては、C線、e線、及びg線について収差特性を示している(収差の表記方法については、実施例2以降も同様)。
〔実施例2〕
 実施例2の観察光学系の光学諸元値を以下の表4に示す。
[表4]
視度(dpt)     -1.0
物体距離(mm)   390
瞳半径 H (mm) 1.75
 実施例2の観察光学系のレンズ面等のデータを以下の表5に示す。
[表5]
Surf.N     R(mm)    T(mm)     n       νd
 1        25.813    1.000   1.85025   30.05
 2        15.493    3.784   1.56883   56.04
 3       -79.427   16.884
 4         INF     29.970   1.69895   30.05
 5         INF      0.520
 6         INF     16.330   1.69895   30.05
 7         INF      1.000
 8        97.431    2.047   1.84666   23.78
 9       -14.304    4.927
10        -5.116    0.400   1.84666   23.78
11      -111.619    1.560
12       -22.672    4.300   1.77250   49.62
13        -7.734    0.500
14*       10.069    3.300   1.77250   49.47
15*      128.996   14.550
16(EP)     INF
 実施例2の観察光学系のレンズ面の非球面係数を以下の表6に示す。
[表6]
第14面
K=0.695, A4=-2.2479E-05, A6=-5.1341E-06, A8=-3.3062E-08, 
A10=-1.8612E-09
第15面
K=1.000, A4=3.0070E-04, A6=-6.7580E-06, A8=-1.1474E-07, 
A10=1.3807E-09
 図2Aは、実施例2の観察光学系10B等の断面図である。実施例2の観察光学系10Bは、対物光学系LOと、反転光学系PRと、接眼光学系LEとを備える。対物光学系LOは、物体側から順に、負のパワーを有する第1AレンズL1Aと、正のパワーを有する第2AレンズL2Aと、正のパワーを有する第3AレンズL3Aとで構成されている。第1A及び第2AレンズL1A,L2Aは、接合レンズCSとなっている。反転光学系PRは、対物光学系LOの内部、具体的には、第2AレンズL2Aと第3AレンズL3Aとの間に設けられている。接眼光学系LEは、瞳EP側から順に、正のパワーを有する第1BレンズL1Bと、正のパワーを有する第2BレンズL2Bと、負のパワーを有する第3BレンズL3Bとで構成されている。
 図2B~2Dは、図2Aに示す観察光学系10Bによって観察される虚像に関する球面収差、非点収差、及び歪曲収差をそれぞれ示す。
〔実施例3〕
 実施例3の観察光学系の光学諸元値を以下の表7に示す。
[表7]
視度(dpt)     -1.0
物体距離(mm)   390
瞳半径 H (mm) 2.0
 実施例3の観察光学系のレンズ面等のデータを以下の表8に示す。
[表8]
Surf.N     R(mm)    T(mm)     n       νd
 1        30.884    0.907   1.90366   31.32
 2        15.535    4.347   1.74330   49.22
 3      -237.507   17.171
 4         INF     31.970   1.75520   27.53
 5         INF      0.520
 6         INF     16.330   1.75520   27.53
 7         INF      0.281
 8        26.393    1.885   1.90366   31.32
 9       -15.837    3.730
10        -5.500    0.400   1.84666   23.78
11        34.930    2.433
12       -24.667    4.400   1.77250   49.62
13        -7.800    0.100
14*        8.165    3.226   1.72903   54.04
15*       25.261   14.974
16(EP)     INF
 実施例3の観察光学系のレンズ面の非球面係数を以下の表9に示す。
[表9]
第14面
K=-0.042, A4=1.3522E-04, A6=-8.8495E-06, A8=2.2849E-08, 
A10=-3.0897E-09
第15面
K=-2.092, A4=5.0981E-04, A6=-1.8507E-05, A8=2.7535E-08, 
A10=3.6181E-10
 図3Aは、実施例3の観察光学系10C等の断面図である。実施例3の観察光学系10Cは、対物光学系LOと、反転光学系PRと、接眼光学系LEとを備える。対物光学系LOは、物体側から順に、負のパワーを有する第1AレンズL1Aと、正のパワーを有する第2AレンズL2Aと、正のパワーを有する第3AレンズL3Aとで構成されている。第1A及び第2AレンズL1A,L2Aは、接合レンズCSとなっている。反転光学系PRは、対物光学系LOの内部、具体的には、第2AレンズL2Aと第3AレンズL3Aとの間に設けられている。接眼光学系LEは、瞳EP側から順に、正のパワーを有する第1BレンズL1Bと、正のパワーを有する第2BレンズL2Bと、負のパワーを有する第3BレンズL3Bとで構成されている。
 図3B~3Dは、図3Aに示す観察光学系10Cによって観察される虚像に関する球面収差、非点収差、及び歪曲収差をそれぞれ示す。
〔実施例4〕
 実施例4の観察光学系の光学諸元値を以下の表10に示す。
[表10]
視度(dpt)     -1.0
物体距離(mm)   390
瞳半径 H (mm) 2.0
 実施例4の観察光学系のレンズ面等のデータを以下の表11に示す。
[表11]
Surf.N     R(mm)    T(mm)     n       νd
 1        46.197    4.110   1.71300   53.94
 2       -23.205    0.986   1.90366   31.32
 3       -62.000   17.310
 4         INF     32.971   1.64769   33.84
 5         INF      0.500
 6         INF     16.330   1.64769   33.84
 7         INF      0.400
 8        48.241    1.512   1.84666   23.78
 9       -22.837    5.783
10        -5.500    0.700   1.78472   25.72
11       128.145    0.905
12       -35.199    4.300   1.77250   49.62
13        -7.800    0.100
14*        9.578    3.091   1.77250   49.47
15*       56.117   14.500
16(EP)     INF
 実施例4の観察光学系のレンズ面の非球面係数を以下の表12に示す。
[表12]
第14面
K=0.717, A4=-1.2428E-04, A6=-1.5998E-05, A8=1.8557E-07, 
A10=-1.1365E-09, A12=-6.0427E-11
第15面
K=-5.000, A4=1.7648E-04, A6=-2.7253E-05, A8=9.1781E-07, 
A10=-1.8888E-08, A12=1.4276E-10
 図4Aは、実施例4の観察光学系10D等の断面図である。実施例4の観察光学系10Dは、対物光学系LOと、反転光学系PRと、接眼光学系LEとを備える。対物光学系LOは、物体側から順に、正のパワーを有する第1AレンズL1Aと、負のパワーを有する第2AレンズL2Aと、正のパワーを有する第3AレンズL3Aとで構成されている。第1A及び第2AレンズL1A,L2Aは、接合レンズCSとなっている。反転光学系PRは、対物光学系LOの内部、具体的には、第2AレンズL2Aと第3AレンズL3Aとの間に設けられている。接眼光学系LEは、瞳EP側から順に、正のパワーを有する第1BレンズL1Bと、正のパワーを有する第2BレンズL2Bと、負のパワーを有する第3BレンズL3Bとで構成されている。
 図4B~4Dは、図4Aに示す観察光学系10Dによって観察される虚像に関する球面収差、非点収差、及び歪曲収差をそれぞれ示す。
 以下の表13は、参考のため、各条件式(1)~(5)に対応する各実施例1~4の値をまとめたものである。
[表13]
Figure JPOXMLDOC01-appb-I000002
 以上、実施形態に係る観察光学系について説明したが、本発明に係る観察光学系は、上記例示のものには限られない。例えば、上記実施形態において、観察光学系10の最も物体側のレンズ及び最も瞳EP側のレンズの外側には、耐傷、耐薬品等を考慮して光透過性を有するカバー部材を設けてもよい。
 また、上記実施形態において、対物光学系LOや接眼光学系LEにおいて、実質的にパワーを有しないレンズ等を配置することができる。
 また、上記実施形態において、最も物体側及び瞳EP側のレンズを除いたレンズは、ガラス製に限らず、樹脂製としてもよい。
 また、上記実施形態において、接眼光学系LEと瞳EPとの間に、平行平板Fを設けてもよい。平行平板Fは、観察光学系10が眼鏡型である場合、視度調整用のレンズとしてもよい。なお、観察光学系10が波長選択を必要とする用途に用いられる場合、平行平板Fに波長選択用のコートが施されていてもよい。

Claims (5)

  1.  対物光学系と、
     前記対物光学系の内部及び前記対物光学系の直後のいずれか一方に設けられて、倒立像を正立像に反転させる反転光学系と
     最も瞳側に配置され前記正立像を観察するための接眼光学系と、
    を備え、
     以下の条件式を満足する、観察光学系。
     1.6<f×N/L<2.5  …  (1)
     |D/H|<3  …  (2)
    ここで、
    f:前記対物光学系の焦点距離
    N:前記反転光学系のd線における屈折率
    L:前記反転光学系の光路長
    D:前記反転光学系の物体側の入射光線における光軸からの最大高さ
    H:射出瞳半径
  2.  接眼光学系は、前記瞳側から順に、正レンズ、正レンズ、及び負レンズを含む、請求項1に記載の観察光学系。
  3.  以下の条件式を満足する、請求項1及び2のいずれか一項に記載の観察光学系。
     1.64<Nd<1.85  …  (3)
     20<νd<34  …  (4)
    ここで、
    Nd:前記反転光学系に使用される硝材のd線に対する屈折率
    νd:前記反転光学系のアッベ数
  4.  前記接眼光学系において、最も瞳側のレンズは非球面を有する、請求項1から3までのいずれか一項に記載の観察光学系。
  5.  以下の条件式を満足する、請求項1から4までのいずれか一項に記載の観察光学系。
     4<f/f<7.5  …  (5)
    ここで、
    f:前記対物光学系の焦点距離
    :前記接眼光学系の焦点距離
PCT/JP2017/044099 2016-12-09 2017-12-07 観察光学系 WO2018105710A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780075022.6A CN110036330B (zh) 2016-12-09 2017-12-07 观察光学系统
JP2018555068A JP6898601B2 (ja) 2016-12-09 2017-12-07 観察光学系
US16/463,837 US10890754B2 (en) 2016-12-09 2017-12-07 Observation optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-239531 2016-12-09
JP2016239531 2016-12-09

Publications (1)

Publication Number Publication Date
WO2018105710A1 true WO2018105710A1 (ja) 2018-06-14

Family

ID=62490964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044099 WO2018105710A1 (ja) 2016-12-09 2017-12-07 観察光学系

Country Status (4)

Country Link
US (1) US10890754B2 (ja)
JP (1) JP6898601B2 (ja)
CN (1) CN110036330B (ja)
WO (1) WO2018105710A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103266A (ja) * 2019-12-25 2021-07-15 富士フイルム株式会社 接眼レンズ、観察光学系、および光学装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252241A (ja) * 2011-06-06 2012-12-20 Konica Minolta Advanced Layers Inc 観察ズーム光学系
WO2013024576A1 (ja) * 2011-08-15 2013-02-21 富士フイルム株式会社 実像式変倍ファインダーおよび撮像装置
WO2014181750A1 (ja) * 2013-05-08 2014-11-13 コニカミノルタ株式会社 変倍観察光学系
WO2014181749A1 (ja) * 2013-05-08 2014-11-13 コニカミノルタ株式会社 変倍観察光学系
JP2016166907A (ja) * 2013-07-11 2016-09-15 株式会社 ニコンビジョン 防振光学系
JP2017219742A (ja) * 2016-06-08 2017-12-14 コニカミノルタ株式会社 観察光学系

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906078A (en) * 1987-08-12 1990-03-06 Olympus Optical Co., Ltd. Variable magnification viewfinder
US5257129A (en) * 1991-01-22 1993-10-26 Olympus Optical Co., Ltd. Real image type variable magnification viewfinder optical system
FR2700623B1 (fr) * 1993-01-18 1996-05-24 Asahi Optical Co Ltd Viseur du type à image réelle.
US5687023A (en) * 1993-02-19 1997-11-11 Nikon Corporation Keplerian zoom finder optical system
US5371626A (en) * 1993-03-09 1994-12-06 Benopcon, Inc. Wide angle binocular system with variable power capability
CN1071459C (zh) * 1994-02-04 2001-09-19 旭光学工业株式会社 实象型的可变光焦度取景器
JP3860231B2 (ja) * 1994-06-07 2006-12-20 オリンパス株式会社 防振光学系
JPH0862495A (ja) * 1994-08-26 1996-03-08 Nikon Corp 画面サイズ変換機能を有する再結像光学系
JPH09218358A (ja) 1995-12-07 1997-08-19 Olympus Optical Co Ltd 接眼レンズ系
US5966244A (en) * 1996-10-03 1999-10-12 Minolta Co., Ltd. Viewfinder optical system
JPH10186228A (ja) * 1996-11-06 1998-07-14 Nikon Corp 防振光学系
US6094310A (en) * 1996-11-08 2000-07-25 Olympus Optical Co., Ltd. Eyepiece system having wide visual field
KR100247283B1 (ko) * 1997-07-09 2000-03-15 유무성 실상식 변배 파인더
US6154314A (en) * 1997-12-26 2000-11-28 Olympus Optical Co., Ltd. Real image mode variable magnification finder
JP3510809B2 (ja) * 1999-01-22 2004-03-29 ペンタックス株式会社 眼視望遠ズームレンズ系
JP2003057537A (ja) * 2001-08-21 2003-02-26 Pentax Corp 像ブレ補正系を備えた観察用光学系
US6870669B2 (en) * 2002-09-25 2005-03-22 Kamakura Koki Co., Ltd. Variable-powered binoculars
JP2005092094A (ja) * 2003-09-19 2005-04-07 Ricoh Co Ltd 実像式観察光学系、実像式観察光学系を用いた鏡胴ユニットおよびカメラ
JP2008203643A (ja) * 2007-02-21 2008-09-04 Sony Corp 実像式変倍ファインダー光学系及び撮像装置
CN105659138B (zh) * 2013-10-22 2018-08-10 株式会社尼康美景 光学设备、望远镜和双筒望远镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252241A (ja) * 2011-06-06 2012-12-20 Konica Minolta Advanced Layers Inc 観察ズーム光学系
WO2013024576A1 (ja) * 2011-08-15 2013-02-21 富士フイルム株式会社 実像式変倍ファインダーおよび撮像装置
WO2014181750A1 (ja) * 2013-05-08 2014-11-13 コニカミノルタ株式会社 変倍観察光学系
WO2014181749A1 (ja) * 2013-05-08 2014-11-13 コニカミノルタ株式会社 変倍観察光学系
JP2016166907A (ja) * 2013-07-11 2016-09-15 株式会社 ニコンビジョン 防振光学系
JP2017219742A (ja) * 2016-06-08 2017-12-14 コニカミノルタ株式会社 観察光学系

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103266A (ja) * 2019-12-25 2021-07-15 富士フイルム株式会社 接眼レンズ、観察光学系、および光学装置
JP7191005B2 (ja) 2019-12-25 2022-12-16 富士フイルム株式会社 接眼レンズ、観察光学系、および光学装置

Also Published As

Publication number Publication date
US10890754B2 (en) 2021-01-12
CN110036330B (zh) 2021-10-29
CN110036330A (zh) 2019-07-19
JPWO2018105710A1 (ja) 2019-10-24
JP6898601B2 (ja) 2021-07-07
US20190331909A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6098838B2 (ja) 接眼光学系および撮像装置
JP5796466B2 (ja) 撮影レンズ及びこの撮影レンズを有する撮像装置
JP2017068164A (ja) 広角光学系及びそれを備えた撮像装置
JP2020008629A (ja) レンズ装置およびそれを有する撮像装置
JP3713250B2 (ja) 接眼変倍光学系
JP6435783B2 (ja) 接眼光学系
JPWO2019163415A1 (ja) 接眼光学系およびヘッドマウントディスプレイ
JP2008008981A (ja) ファインダー光学系とこれを有する光学機器
WO2018105710A1 (ja) 観察光学系
JP2008015418A (ja) 接眼レンズ
JP6666592B2 (ja) 観察光学系
JP5377402B2 (ja) 接眼レンズ及びこの接眼レンズを備える光学機器
JP2019215411A (ja) 接眼光学系、電子ビューファインダー及び撮像装置
JP5554598B2 (ja) ファインダー光学系
JP2010237430A (ja) 一眼レフカメラのファインダ光学系
JP6406930B2 (ja) 接眼レンズ及びそれを有する観察装置、撮像装置
US9229215B2 (en) Ocular lens and optical apparatus
JP6071504B2 (ja) ファインダー光学系および撮像装置
JP2003121760A (ja) 接眼レンズ系
JP3300671B2 (ja) 接眼レンズ系
JP5299028B2 (ja) 一眼レフカメラのファインダ光学系
JP3454296B2 (ja) 接眼レンズ
JP2016051062A (ja) 接眼レンズ及びそれを有する観察装置、撮像装置
JP2006098722A (ja) 接眼レンズ
JP2007121340A (ja) ファインダー用接眼レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018555068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878758

Country of ref document: EP

Kind code of ref document: A1