WO2014181750A1 - 変倍観察光学系 - Google Patents
変倍観察光学系 Download PDFInfo
- Publication number
- WO2014181750A1 WO2014181750A1 PCT/JP2014/062061 JP2014062061W WO2014181750A1 WO 2014181750 A1 WO2014181750 A1 WO 2014181750A1 JP 2014062061 W JP2014062061 W JP 2014062061W WO 2014181750 A1 WO2014181750 A1 WO 2014181750A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- lens
- object side
- optical system
- observation optical
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/143—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
- G02B15/1431—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive
- G02B15/143103—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive arranged ++-
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B25/00—Eyepieces; Magnifying glasses
- G02B25/001—Eyepieces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
Definitions
- the present invention relates to a variable magnification observation optical system, for example, a variable magnification observation optical system used for a medical loupe, a working loupe, binoculars, a ground telescope, and the like.
- the inverted image formed by the objective system is inverted into an erect image by an inverted erect system such as a prism, and the image is observed with an eyepiece system.
- a so-called Kepler type real image type
- a zoom optical system having a zoom ratio of about 2 times can be easily reduced in size
- a zoom type that performs zooming with a pair of lenses sandwiching the inverted image is generally employed.
- Patent Document 1 proposes a variable magnification optical system in which the most pupil side group in the eyepiece system is composed of a cemented lens for the purpose of correcting axial chromatic aberration.
- the present invention has been made in view of such a situation, and an object of the present invention is to provide a compact variable magnification observation optical system while various aberrations are favorably corrected in the entire field of view from the center to the periphery. is there.
- a variable magnification observation optical system is formed of an objective system, an inverted erecting system that erects an inverted image formed by the objective system, and the inverted erecting system.
- a real-image observation optical system comprising: an eyepiece system that allows the observed erect image to be observed with a pupil;
- the objective system includes, in order from the object side, a first group having positive power, a second group having positive power, and a third group having negative power.
- the eyepiece system includes, in order from the object side, a fourth group having positive power and a fifth group having positive power.
- the inverted erect system is located between the first group and the second group;
- the third group and the fourth group are opposite to each other along the optical axis while the image plane is positioned between the third group and the fourth group. Zooming is done by moving in the direction,
- the fifth group includes, in order from the object side, a negative meniscus lens having a concave surface facing the object side, a negative meniscus lens having a convex surface facing the object side, and a biconvex positive lens. It is arrange
- the zoom observation optical system according to the second invention is characterized in that, in the first invention, both the second group and the third group are constituted by a single lens.
- variable magnification observation optical system is characterized in that, in the first or second aspect of the invention, any of the lens surfaces constituting the fifth group is a spherical surface.
- a variable magnification observation optical system is characterized in that, in any one of the first to third inventions, the following conditional expression (1) is satisfied. 0.2 ⁇ LT5 / few ⁇ 0.3 (1)
- LT5 distance on the optical axis from the pupil side surface of the 5-1 lens to the object side surface of the 5-3 lens
- few focal length of the eyepiece system at the low magnification end
- a variable magnification observation optical system is characterized in that, in any one of the first to fourth inventions, the following conditional expression (2) is satisfied. 0.5 ⁇ f4 / few ⁇ 0.8 (2) However, f4: focal length of the fourth group, few: focal length of the eyepiece system at the low magnification end, It is.
- a zoom observation optical system is characterized in that, in any one of the first to fifth inventions, the following conditional expression (3) is satisfied.
- Ra radius of curvature of the object side surface of the 5-1 lens
- Rb radius of curvature of the pupil side surface of the 5-1 lens
- a variable magnification observation optical system is characterized in that, in any one of the first to sixth inventions, the following conditional expression (4) is satisfied.
- (4) the following conditional expression (4) is satisfied.
- f34w the combined focal length of the third group and the fourth group at the low magnification end
- f34t the combined focal length of the third group and the fourth group at the high magnification end
- variable magnification observation optical system is the optical system according to any one of the first to seventh aspects, wherein the first group, the second group, and the fifth group are fixed in the optical axis direction during zooming. It is characterized by being.
- a zoom observation optical system is characterized in that, in any one of the first to eighth inventions, the fourth group is constituted by a single lens.
- a compact variable magnification observation optical system can be realized while various aberrations are favorably corrected in the entire field of view from the center to the periphery.
- FIG. 6 is an aberration diagram of Example 1.
- FIG. 6 is an aberration diagram of Example 2.
- FIG. 6 is an aberration diagram of Example 3.
- FIG. 6 is an aberration diagram of Example 4.
- variable magnification observation optical system an objective system, an inverted erecting system that erects an inverted image formed by the objective system, and an erect image formed by the inverted erecting system are observed at the pupil.
- a real-image observation optical system including a first group having positive power, a second group having positive power, and a negative power in order from the object side.
- the eyepiece system is composed of a fourth group having positive power and a fifth group having positive power in order from the object side (power: defined by the reciprocal of the focal length). Quantity), the inverted upright system is located between the first group and the second group.
- the third group and the fourth group are aligned along the optical axis while the image plane is positioned between the third group and the fourth group. Zooming is performed by moving in directions opposite to each other.
- the fifth group includes, in order from the object side, a negative meniscus lens having a concave surface directed toward the object side, a negative meniscus lens having a convex surface directed toward the object side, and a biconvex positive lens. It is characterized by being arranged with an air gap.
- a real image observation optical system composed of an objective system, an inverted upright system, and an eyepiece system has an advantage that the diameter of the objective system can be reduced as compared with the virtual image system. Further, by arranging the second group of positive power on the inverted erecting pupil side, the conjugate position of the pupil can be arranged in the inverted erecting system or in the vicinity of the inverted erecting system. As a result, the width of light passing through the inverted erecting system can be narrowed, and the inverted erecting system can be made compact and the entire observation optical system can be reduced in weight and size. By adopting a zoom configuration in which the third group and the fourth group move in opposite directions across the image plane, it becomes possible to perform zooming without causing an increase in the total length.
- the effect of correcting axial chromatic aberration can be obtained by arranging the fifth lens group as a negative positive lens. Further, by arranging a negative meniscus lens (5-2 lens) convex to the object side and a positive biconvex lens (5-3 lens) with an air gap (without joining), spherical aberration is achieved. The effect which corrects etc. favorably is acquired. Furthermore, by arranging a negative meniscus lens (5-1 lens) having a concave surface facing the object side, an effect of favorably correcting not only on-axis but also off-axis aberrations such as field curvature can be obtained. In addition, an effect of suppressing the radial size of the fifth lens group can be obtained by largely bending the light beam on the concave surface of the object side surface of the 5-1 lens.
- both the second group and the third group are composed of a single lens.
- the use of a single lens is effective in reducing weight and preventing an increase in overall length.
- a third lens can be obtained.
- the lens driving load can be reduced by reducing the weight of the group.
- the structural member can be reduced in size and weight, an effect of simplifying the zoom mechanism and preventing an increase in weight can be obtained.
- the lens surfaces constituting the fifth group are preferably all spherical surfaces. By using only a spherical lens as the lens constituting the fifth group, it is possible to reduce the cost of the variable magnification observation optical system.
- Aberration correction is performed by using different ranges on the 5-1 lens for the light beam on the upper axis and the light beam on the peripheral part. In order to correct the aberration in this way, it is necessary to dispose the 5-1 lens and the 5-3 lens at a certain interval.
- the upper limit of conditional expression (1) When the upper limit of conditional expression (1) is exceeded, the length of the fifth group becomes long, and it becomes difficult to downsize the entire optical system.
- the lower limit of conditional expression (1) is exceeded, the distance from the 5-1 lens to the 5-3 lens becomes short, and it is difficult to use a different range for the upper part of the shaft and the peripheral part in the 5-1 lens. become. As a result, it becomes difficult to correct aberrations simultaneously and satisfactorily at the upper part of the shaft and the peripheral part. Therefore, by satisfying conditional expression (1), it is possible to achieve a reduction in size and performance of the observation optical system in a balanced manner.
- conditional expression (2) If the upper limit of conditional expression (2) is exceeded, the relative power of the fourth group decreases, and the amount of movement of the fourth group during zooming increases. Therefore, it is difficult to reduce the size of the optical system. If the lower limit of conditional expression (2) is exceeded, astigmatism, coma, etc. occurring in the fourth group will increase, and it will be difficult to correct them well in the fifth group. Therefore, by satisfying conditional expression (2), it is possible to achieve a reduction in size and performance of the observation optical system in a balanced manner.
- conditional expression (2a) It is more desirable to satisfy the following conditional expression (2a). 0.6 ⁇ f4 / few ⁇ 0.75 (2a)
- This conditional expression (2a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (2). Therefore, the above effect can be further increased preferably by satisfying conditional expression (2a).
- Conditional expression (3) defines a preferable condition range regarding the surface shape of the 5-1 lens. If the upper limit of conditional expression (3) is exceeded, the light passing position passing through the 5-1 lens becomes high, the lens diameter of the fifth group becomes large, and it becomes difficult to achieve a reduction in size and weight. If the lower limit of conditional expression (3) is exceeded, the curvature on the object side becomes strong, and the machining of the surface becomes difficult. Therefore, by satisfying conditional expression (3), it is possible to achieve a well-balanced reduction in weight and size of the observation optical system.
- the surface shape is a notation based on the paraxial curvature.
- conditional expression (3a) It is more desirable to satisfy the following conditional expression (3a). 3.5 ⁇ (Rb + Ra) / (Rb ⁇ Ra) ⁇ 4.6 (3a)
- This conditional expression (3a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (3). Therefore, the above effect can be further increased preferably by satisfying conditional expression (3a).
- f34w the combined focal length of the third group and the fourth group at the low magnification end
- f34t the combined focal length of the third group and the fourth group at the high magnification end
- conditional expression (4) If the upper limit of conditional expression (4) is exceeded, the contribution of the fourth group in zooming decreases, and the contribution ratio of the third group increases accordingly. And it becomes difficult to achieve size reduction because the movement amount of the third group increases. If the lower limit of conditional expression (4) is exceeded, the contribution ratio of the fourth group in zooming increases relatively, and the amount of movement of the fourth group increases, making it difficult to achieve downsizing. Become. Therefore, by satisfying conditional expression (4), it is possible to reduce the size of the observation optical system while maintaining high optical performance.
- conditional expression (4a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (4). Therefore, the above effect can be further increased preferably by satisfying conditional expression (4a).
- the first group, the second group, and the fifth group are fixed in the optical axis direction during zooming.
- the zoom mechanism can be simplified. Therefore, making the first group, the second group, and the fifth group a fixed group has an effect of preventing an increase in the weight of the entire unit. Further, by making the first group and the fifth group facing the outside as fixed groups, it is possible to configure a variable magnification observation optical system advantageous for a waterproof / dustproof structure.
- the fourth group is composed of a single lens.
- the fourth group is movable during zooming, the lens driving load can be reduced because the lens weight of the fourth group can be prevented from increasing by using a single lens.
- the structural member can be reduced in size and weight, an effect of simplifying the zoom mechanism and preventing an increase in weight can be obtained.
- the most object side lens and the most pupil side lens are made of a glass material.
- the lens surface exposed to the outside is often exposed, and frequent attachment / detachment tends to put a burden on the lens on the most object side / most pupil side.
- the lens on the most object side / most pupil side which requires robustness, chemical resistance, waterproofness, etc., be made of a glass material.
- the most object side lens is preferably made of a glass material that satisfies the following conditional expression (5).
- DA1 ⁇ 0.35 (5)
- DA1 The glass material powder is placed in a 0.01 mol / l nitric acid aqueous solution, heated in a boiling water bath, and the acid resistance value (%) calculated as its mass loss (%), It is.
- Conditional expression (5) defines preferable acid resistance as a glass material used for the lens closest to the object side. For example, when considering medical use, acid resistance that is not easily affected by chemical adhesion is required. If the lens closest to the object side is made of a glass material that satisfies the conditional expression (5), it is possible to prevent deterioration of optical characteristics due to adhesion of chemicals and the like. If the upper limit of conditional expression (5) is exceeded, when exposed to an external environment in a bare state, a chemical reaction such as burns may occur and optical characteristics may be deteriorated.
- the numerical values / measurement methods and the values corresponding to the conditional expressions described later are based on data described in the optical glass catalog of HOYA Corporation or the optical glass catalog of Sumita Optical Glass Corporation.
- Hk1 Knoop hardness
- DS1 A face-polished glass sample having a diameter of 43.7 mm (30 cm 2 on both sides) and a thickness of about 5 mm was placed in a well-stirred 50 ° C., 0.01 mol / l Na 5 P 3 O 10 aqueous solution. Weight loss per unit area [mg / (cm 2 ⁇ h)] when immersed for 1 hour, It is.
- Conditional expression (6) defines the preferred Knoop hardness of the most object-side lens
- conditional expression (7) defines the preferred latent resistance of the object-side lens. Since the glass material satisfying the conditional expressions (6) and (7) is excellent in these characteristics, the lens closest to the object side is a glass lens satisfying at least one of these conditional expressions (6) and (7). By comprising, the said subject can be solved.
- the numerical values / measurement methods and the values corresponding to the conditional expressions described later are based on data described in the optical glass catalog of HOYA Corporation or the optical glass catalog of Sumita Optical Glass Corporation.
- variable magnification observation optical system 1 to 4 are lens configuration diagrams corresponding to the variable magnification observation optical system LZ constituting the first to fourth embodiments, respectively, at the low magnification end (W) and the high magnification end (T).
- the lens arrangement is shown in optical section.
- 5 to 8 are optical path diagrams respectively corresponding to the variable magnification observation optical system LZ constituting the first to fourth embodiments. At the low magnification end (W) and the high magnification end (T), FIG. The optical path is shown.
- the variable magnification observation optical system LZ has a positive / negative / positive / positive five-group zoom configuration, and includes an objective system LO composed of the first group Gr1, the second group Gr2, and the third group Gr3, and the fourth group Gr4 and A substantially afocal real-image observation optical system is configured with the eyepiece system LE composed of the fifth group Gr5, and the pupil is an inverted erecting system PR positioned between the first group Gr1 and the second group Gr2. An erect image IM is observed in the EP (FIGS. 1 to 8).
- the third group Gr3 and the fourth group so that the image plane IM is positioned between the third group Gr3 and the fourth group Gr4.
- Gr4 moves in the opposite direction along the optical axis AX, whereby zooming is performed. That is, in zooming from the low magnification end (W) to the high magnification end (T), the third group Gr3 moves to the object side, and the fourth group Gr4 moves to the pupil EP side.
- the arrows m3 and m4 in FIGS. 1 to 4 schematically show the movement of the third group Gr3 and the fourth group Gr4 during zooming from the low magnification end (W) to the high magnification end (T), respectively.
- the inverted upright system PR is composed of, for example, two glass prisms.
- a transparent cover member may be disposed outside the lens closest to the object side and the lens closest to the pupil EP in consideration of scratch resistance, chemical resistance, and the like.
- the lens configuration of each embodiment will be described below. However, all power values are paraxial values.
- the entire lens is composed of a cemented lens of a positive lens and a negative lens in order from the object side.
- the lens unit includes a fourth group Gr4 composed of a single positive power lens and a fifth group Gr5 composed of a 5-1 lens L51, a 5-2 lens L52, and a 5-3 lens L53.
- the 5-1 lens L51 is a negative meniscus lens having a concave surface facing the object side
- the 5-2 lens L52 is a negative meniscus lens having a convex surface facing the object side
- the 5-3 lens L53 is a biconvex lens. They are positive lenses and are arranged with a certain air space between them. All the lenses constituting the variable magnification observation optical system LZ are spherical lenses made of glass.
- a first group Gr1 composed of a cemented lens of a positive lens and a negative lens and having positive power as a whole, an inverted erecting system PR
- a second group Gr2 composed of a biconvex positive lens
- a third group Gr3 composed of a biconcave negative lens
- a fourth group Gr4 composed of a biconvex positive power single lens
- the fifth lens unit Gr5 includes a 5-2 lens L52 and a fifth and third lens L53.
- the 5-1 lens L51 is a negative meniscus lens having a concave surface facing the object side
- the 5-2 lens L52 is a negative meniscus lens having a convex surface facing the object side
- the 5-3 lens L53 is a biconvex lens. They are positive lenses and are arranged with a certain air space between them. All the lenses constituting the variable magnification observation optical system LZ are spherical lenses made of glass.
- Examples 1 to 4 (EX1 to EX4) listed here are numerical examples corresponding to the first to fourth embodiments, respectively, and are optical configuration diagrams showing the first to fourth embodiments.
- FIGGS. 1 to 4 and optical path diagrams (FIGS. 5 to 8) show the lens configurations, optical paths, and the like of the corresponding Examples 1 to 4, respectively.
- the surface number, the paraxial radius of curvature r (mm), the axial distance d (mm), and the refractive index nd with respect to the d line (wavelength 587.56 nm).
- D line Abbe number vd.
- the distance from the lens surface closest to the object side to the pupil plane EP is shown as the total length TL (mm).
- Table 1 shows values corresponding to the conditional expressions of the respective examples, and related data and the like are shown in Table 2 (various data tables).
- All of the data are values on the e-line, f1 to f5: focal lengths of the first group to the fifth group, fw: focal length of the entire system at the low magnification end, ft: focal length of the entire system at the high magnification end, fow: focal length of the objective system at the low magnification end, fot: focal length of the objective system at the high magnification end, few: focal length of the eyepiece system at the low magnification end, fet: focal length of the eyepiece system at the high magnification end, f34w: the combined focal length of the third group and the fourth group at the low magnification end, f34t: the combined focal length of the third group and the fourth group at the high magnification end, fL51: focal length of the 5-1 lens, fL52: focal length of the 5-2 lens, fL53: Focal length of the 5-3rd lens, LT5: distance on the optical axis from the pupil side surface of the 5-1 lens to
- FIGS. 9 to 12 are aberration diagrams corresponding to Examples 1 to 4 (EX1 to EX4), respectively.
- the solid line represents the e-line
- the broken line represents the g-line
- the two-dot chain line represents the spherical aberration (Dpt) with respect to the C-line.
- the broken line represents the astigmatism (Dpt) on the tangential surface and the solid line represents the sagittal surface.
- the solid line represents the distortion (%).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Astronomy & Astrophysics (AREA)
- Lenses (AREA)
- Nonlinear Science (AREA)
Abstract
Description
前記対物系が、物体側より順に、正パワーを有する第1群と、正パワーを有する第2群と、負パワーを有する第3群とからなり、
前記接眼系が、物体側より順に、正パワーを有する第4群と、正パワーを有する第5群とからなり、
前記反転正立系が前記第1群と前記第2群との間に位置し、
低倍率端から高倍率端までのズーミングにおいて、前記第3群と前記第4群との間に像面を位置させつつ、前記第3群と前記第4群とが光軸に沿って互いに反対方向に移動することによってズーミングが行われ、
前記第5群が、物体側より順に、物体側に凹面を向けた負メニスカスレンズと、物体側に凸面を向けた負メニスカスレンズと、両凸の正レンズとからなり、それぞれがレンズ間に空気間隔をあけて配置されていることを特徴とする。
0.2<LT5/few<0.3 …(1)
ただし、前記第5群における前記物体側に凹面を向けた負メニスカスレンズを第5-1レンズとし、前記第5群における前記正レンズを第5-3レンズとすると、
LT5:第5-1レンズの瞳側面から第5-3レンズの物体側面までの光軸上の距離、
few:低倍率端における接眼系の焦点距離、
である。
0.5<f4/few<0.8 …(2)
ただし、
f4:第4群の焦点距離、
few:低倍率端における接眼系の焦点距離、
である。
3<(Rb+Ra)/(Rb-Ra)<5 …(3)
ただし、前記第5群における前記物体側に凹面を向けた負メニスカスレンズを第5-1レンズとすると、
Ra:第5-1レンズの物体側面の曲率半径、
Rb:第5-1レンズの瞳側面の曲率半径、
である。
0.4<f34t/f34w<0.7 …(4)
ただし、
f34w:低倍率端における第3群と第4群との合成焦点距離、
f34t:高倍率端における第3群と第4群との合成焦点距離、
である。
0.2<LT5/few<0.3 …(1)
ただし、前記第5群における前記物体側に凹面を向けた負メニスカスレンズを第5-1レンズとし、前記第5群における前記正レンズを第5-3レンズとすると、
LT5:第5-1レンズの瞳側面から第5-3レンズの物体側面までの光軸上の距離、
few:低倍率端における接眼系の焦点距離、
である。
0.5<f4/few<0.8 …(2)
ただし、
f4:第4群の焦点距離、
few:低倍率端における接眼系の焦点距離、
である。
0.6<f4/few<0.75 …(2a)
この条件式(2a)は、前記条件式(2)が規定している条件範囲のなかでも、前記観点等に基づいた更に好ましい条件範囲を規定している。したがって、好ましくは条件式(2a)を満たすことにより、上記効果をより一層大きくすることができる。
3<(Rb+Ra)/(Rb-Ra)<5 …(3)
ただし、前記第5群における前記物体側に凹面を向けた負メニスカスレンズを第5-1レンズとすると、
Ra:第5-1レンズの物体側面の曲率半径、
Rb:第5-1レンズの瞳側面の曲率半径、
である。
3.5<(Rb+Ra)/(Rb-Ra)<4.6 …(3a)
この条件式(3a)は、前記条件式(3)が規定している条件範囲のなかでも、前記観点等に基づいた更に好ましい条件範囲を規定している。したがって、好ましくは条件式(3a)を満たすことにより、上記効果をより一層大きくすることができる。
0.4<f34t/f34w<0.7 …(4)
ただし、
f34w:低倍率端における第3群と第4群との合成焦点距離、
f34t:高倍率端における第3群と第4群との合成焦点距離、
である。
0.5<f34t/f34w<0.65 …(4a)
この条件式(4a)は、前記条件式(4)が規定している条件範囲のなかでも、前記観点等に基づいた更に好ましい条件範囲を規定している。したがって、好ましくは条件式(4a)を満たすことにより、上記効果をより一層大きくすることができる。
DA1<0.35 …(5)
ただし、
DA1:当該ガラス材料の粉末を0.01mol/lの硝酸水溶液中に入れて、沸騰水浴中で加熱し、その質量減(%)として算出される耐酸性の値(%)、
である。
Hk1>350 …(6)
DS1<0.2 …(7)
ただし、
Hk1:ヌープ硬さ、
DS1:直径43.7mm(両面で30cm2)、厚さ約5mmの対面研磨されたガラス試料を、よく攪拌されている50℃、0.01mol/lのNa5P3O10水溶液中に、1時間浸漬したときの単位面積当たりの質量減[mg/(cm2・h)]、
である。
f1~f5:第1群~第5群の焦点距離、
fw:低倍率端における全系の焦点距離、
ft:高倍率端における全系の焦点距離、
fow:低倍率端における対物系の焦点距離、
fot:高倍率端における対物系の焦点距離、
few:低倍率端における接眼系の焦点距離、
fet:高倍率端における接眼系の焦点距離、
f34w:低倍率端における第3群と第4群との合成焦点距離、
f34t:高倍率端における第3群と第4群との合成焦点距離、
fL51:第5-1レンズの焦点距離、
fL52:第5-2レンズの焦点距離、
fL53:第5-3レンズの焦点距離、
LT5:第5-1レンズの瞳側面から第5-3レンズの物体側面までの光軸上の距離、
Ra:第5-1レンズの物体側面の曲率半径、
Rb:第5-1レンズの瞳側面の曲率半径、
である。
単位:mm
面データ
面番号 r d nd vd
1 24.073 3.096 1.51680 64.20
2 -23.620 0.700 1.68893 31.16
3 -108.803 7.100
4 ∞ 18.134 1.70154 41.15
5 ∞ 0.500
6 ∞ 30.816 1.70154 41.15
7 ∞ 0.100
8 17.282 1.483 1.84666 23.78
9 40.727 D1
10 -15.989 0.800 1.48749 70.45
11 21.643 D2
12(中間像面) ∞ D3
13 200.184 3.296 1.83481 42.72
14 -11.676 D4
15 -7.141 0.895 1.80518 25.46
16 -11.853 1.855
17 63.340 0.700 1.54814 45.82
18 19.061 1.419
19 52.757 3.064 1.83481 42.72
20 -13.526 12.500
21(瞳) ∞
TL=108.990
倍率(倍) 3 5
視度(Dpt) -0.9 -0.9
物体距離(mm) 380 380
撮影範囲(mm) φ90 φ65
D1 8.167 3.770
D2 1.800 9.214
D3 2.781 4.374
D4 8.883 4.273
単位:mm
面データ
面番号 r d nd vd
1 22.578 3.075 1.51680 64.20
2 -24.276 0.700 1.68893 31.16
3 -174.592 7.100
4 ∞ 18.241 1.65844 50.86
5 ∞ 0.200
6 ∞ 32.830 1.65844 50.86
7 ∞ 0.100
8 12.504 1.689 1.84666 23.78
9 23.778 D1
10 -16.094 0.800 1.48749 70.45
11 14.535 D2
12(中間像面) ∞ D3
13 85.181 3.629 1.83481 42.72
14 -12.331 D4
15 -7.314 0.900 1.69865 30.05
16 -12.718 0.900
17 71.781 1.000 1.58144 40.89
18 18.511 1.853
19 51.449 3.498 1.83481 42.72
20 -13.630 12.500
21(瞳) ∞
TL=110.590
倍率(倍) 3 5
視度(Dpt) -0.9 -0.9
物体距離(mm) 380 380
撮影範囲(mm) φ90 φ65
D1 7.210 3.534
D2 1.876 8.409
D3 2.810 4.301
D4 8.778 4.431
単位:mm
面データ
面番号 r d nd vd
1 24.782 2.964 1.51680 64.20
2 -20.464 0.800 1.64769 33.84
3 -105.620 7.100
4 ∞ 19.195 1.65844 50.86
5 ∞ 0.200
6 ∞ 29.292 1.65844 50.86
7 ∞ 0.100
8 24.430 1.716 1.83481 42.72
9 -108.460 D1
10 -14.417 0.800 1.56883 56.04
11 38.637 D2
12(中間像面) ∞ D3
13 121.517 3.437 1.83481 42.72
14 -11.926 D4
15 -7.001 0.817 1.80610 33.27
16 -11.107 2.339
17 506.640 1.257 1.76182 26.61
18 20.574 1.553
19 49.015 3.100 1.83481 42.72
20 -12.517 12.500
21(瞳) ∞
TL=107.990
倍率(倍) 2.5 4
視度(Dpt) -0.9 -0.9
物体距離(mm) 380 380
撮影範囲(mm) φ100 φ80
D1 6.979 3.024
D2 1.807 8.406
D3 2.517 3.998
D4 8.617 4.493
単位:mm
面データ
面番号 r d nd vd
1 24.929 3.063 1.61800 63.40
2 -26.884 0.700 1.80610 33.27
3 -283.570 7.100
4 ∞ 19.195 1.65844 50.86
5 ∞ 0.200
6 ∞ 29.292 1.65844 50.86
7 ∞ 0.100
8 17.235 1.683 1.83481 42.72
9 88.269 D1
10 -15.573 0.700 1.49700 81.61
11 23.035 D2
12(中間像面) ∞ D3
13 59.847 3.551 1.83481 42.72
14 -13.141 D4
15 -7.316 0.800 1.67270 32.17
16 -11.483 1.717
17 199.331 0.800 1.69895 30.05
18 20.008 2.740
19 86.622 2.845 1.83481 42.72
20 -13.081 12.500
21(瞳) ∞
TL=107.990
倍率(倍) 2.5 4
視度(Dpt) -0.9 -0.9
物体距離(mm) 380 380
撮影範囲(mm) φ100 φ80
D1 6.197 2.476
D2 2.374 8.712
D3 2.297 3.908
D4 9.238 4.957
LO 対物系
LE 接眼系
PR 反転正立系
Gr1 第1群
Gr2 第2群
Gr3 第3群
Gr4 第4群
Gr5 第5群
L51 第5-1レンズ(負メニスカスレンズ)
L52 第5-2レンズ(負メニスカスレンズ)
L53 第5-3レンズ(両凸の正レンズ)
IM 像面(正立像)
EP 瞳
AX 光軸
Claims (9)
- 対物系と、前記対物系で形成される倒立像を正立させる反転正立系と、前記反転正立系で形成された正立像が瞳で観察されるようにする接眼系と、を備えた実像式の観察光学系であって、
前記対物系が、物体側より順に、正パワーを有する第1群と、正パワーを有する第2群と、負パワーを有する第3群とからなり、
前記接眼系が、物体側より順に、正パワーを有する第4群と、正パワーを有する第5群とからなり、
前記反転正立系が前記第1群と前記第2群との間に位置し、
低倍率端から高倍率端までのズーミングにおいて、前記第3群と前記第4群との間に像面を位置させつつ、前記第3群と前記第4群とが光軸に沿って互いに反対方向に移動することによってズーミングが行われ、
前記第5群が、物体側より順に、物体側に凹面を向けた負メニスカスレンズと、物体側に凸面を向けた負メニスカスレンズと、両凸の正レンズとからなり、それぞれがレンズ間に空気間隔をあけて配置されていることを特徴とする変倍観察光学系。 - 前記第2群と前記第3群がいずれも単レンズで構成されていることを特徴とする請求項1記載の変倍観察光学系。
- 前記第5群を構成するレンズ面がいずれも球面で構成されていることを特徴とする請求項1又は2記載の変倍観察光学系。
- 以下の条件式(1)を満足することを特徴とする請求項1~3のいずれか1項に記載の変倍観察光学系;
0.2<LT5/few<0.3 …(1)
ただし、前記第5群における前記物体側に凹面を向けた負メニスカスレンズを第5-1レンズとし、前記第5群における前記正レンズを第5-3レンズとすると、
LT5:第5-1レンズの瞳側面から第5-3レンズの物体側面までの光軸上の距離、
few:低倍率端における接眼系の焦点距離、
である。 - 以下の条件式(2)を満足することを特徴とする請求項1~4のいずれか1項に記載の変倍観察光学系;
0.5<f4/few<0.8 …(2)
ただし、
f4:第4群の焦点距離、
few:低倍率端における接眼系の焦点距離、
である。 - 以下の条件式(3)を満足することを特徴とする請求項1~5のいずれか1項に記載の変倍観察光学系;
3<(Rb+Ra)/(Rb-Ra)<5 …(3)
ただし、前記第5群における前記物体側に凹面を向けた負メニスカスレンズを第5-1レンズとすると、
Ra:第5-1レンズの物体側面の曲率半径、
Rb:第5-1レンズの瞳側面の曲率半径、
である。 - 以下の条件式(4)を満足することを特徴とする請求項1~6のいずれか1項に記載の変倍観察光学系;
0.4<f34t/f34w<0.7 …(4)
ただし、
f34w:低倍率端における第3群と第4群との合成焦点距離、
f34t:高倍率端における第3群と第4群との合成焦点距離、
である。 - 前記第1群と前記第2群と前記第5群がズーミングにおいて光軸方向に位置固定であることを特徴とする請求項1~7のいずれか1項に記載の変倍観察光学系。
- 前記第4群が単レンズで構成されていることを特徴とする請求項1~8のいずれか1項に記載の変倍観察光学系。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015515858A JP6187585B2 (ja) | 2013-05-08 | 2014-05-01 | 変倍観察光学系 |
US14/888,173 US9709780B2 (en) | 2013-05-08 | 2014-05-01 | Variable magnification observation optical system |
EP14794811.1A EP2995985B1 (en) | 2013-05-08 | 2014-05-01 | Variable-magnification observation optics |
CN201480025759.3A CN105190402B (zh) | 2013-05-08 | 2014-05-01 | 变倍观察光学系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-098172 | 2013-05-08 | ||
JP2013098172 | 2013-05-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014181750A1 true WO2014181750A1 (ja) | 2014-11-13 |
Family
ID=51867231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/062061 WO2014181750A1 (ja) | 2013-05-08 | 2014-05-01 | 変倍観察光学系 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9709780B2 (ja) |
EP (1) | EP2995985B1 (ja) |
JP (1) | JP6187585B2 (ja) |
CN (1) | CN105190402B (ja) |
WO (1) | WO2014181750A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018105710A1 (ja) * | 2016-12-09 | 2018-06-14 | コニカミノルタ株式会社 | 観察光学系 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2995984B1 (en) * | 2013-05-08 | 2023-04-12 | Konica Minolta, Inc. | Variable-magnification observation optics |
JP6666593B2 (ja) * | 2016-07-15 | 2020-03-18 | コニカミノルタ株式会社 | 観察光学系 |
WO2020215196A1 (zh) * | 2019-04-23 | 2020-10-29 | 北京数字精准医疗科技有限公司 | 一种内窥镜光学系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH055840A (ja) * | 1990-11-30 | 1993-01-14 | Asahi Optical Co Ltd | アフオーカル変倍光学系 |
JP2003315687A (ja) | 2002-04-18 | 2003-11-06 | Pentax Corp | 接眼変倍光学系 |
JP2004139065A (ja) * | 2002-09-25 | 2004-05-13 | Kamakura Koki Kk | 変倍双眼鏡 |
JP2012252241A (ja) * | 2011-06-06 | 2012-12-20 | Konica Minolta Advanced Layers Inc | 観察ズーム光学系 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1537276A (en) * | 1975-12-18 | 1978-12-29 | Pilkington Perkin Elmer Ltd | Lenses |
US6094310A (en) * | 1996-11-08 | 2000-07-25 | Olympus Optical Co., Ltd. | Eyepiece system having wide visual field |
JPH11109446A (ja) * | 1997-09-30 | 1999-04-23 | Fuji Photo Film Co Ltd | 実像式ファインダー |
JP2000105344A (ja) * | 1998-09-30 | 2000-04-11 | Fuji Photo Optical Co Ltd | 表示画像観察装置用接眼レンズ |
US6870669B2 (en) | 2002-09-25 | 2005-03-22 | Kamakura Koki Co., Ltd. | Variable-powered binoculars |
-
2014
- 2014-05-01 WO PCT/JP2014/062061 patent/WO2014181750A1/ja active Application Filing
- 2014-05-01 CN CN201480025759.3A patent/CN105190402B/zh active Active
- 2014-05-01 JP JP2015515858A patent/JP6187585B2/ja active Active
- 2014-05-01 EP EP14794811.1A patent/EP2995985B1/en active Active
- 2014-05-01 US US14/888,173 patent/US9709780B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH055840A (ja) * | 1990-11-30 | 1993-01-14 | Asahi Optical Co Ltd | アフオーカル変倍光学系 |
JP2003315687A (ja) | 2002-04-18 | 2003-11-06 | Pentax Corp | 接眼変倍光学系 |
JP2004139065A (ja) * | 2002-09-25 | 2004-05-13 | Kamakura Koki Kk | 変倍双眼鏡 |
JP2012252241A (ja) * | 2011-06-06 | 2012-12-20 | Konica Minolta Advanced Layers Inc | 観察ズーム光学系 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018105710A1 (ja) * | 2016-12-09 | 2018-06-14 | コニカミノルタ株式会社 | 観察光学系 |
JPWO2018105710A1 (ja) * | 2016-12-09 | 2019-10-24 | コニカミノルタ株式会社 | 観察光学系 |
Also Published As
Publication number | Publication date |
---|---|
CN105190402A (zh) | 2015-12-23 |
US20160170188A1 (en) | 2016-06-16 |
JP6187585B2 (ja) | 2017-08-30 |
EP2995985A1 (en) | 2016-03-16 |
JPWO2014181750A1 (ja) | 2017-02-23 |
CN105190402B (zh) | 2017-08-15 |
EP2995985B1 (en) | 2017-12-27 |
EP2995985A4 (en) | 2016-11-30 |
US9709780B2 (en) | 2017-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6264372B2 (ja) | 変倍観察光学系 | |
JP4496524B2 (ja) | 液浸系顕微鏡対物レンズ | |
JP6187585B2 (ja) | 変倍観察光学系 | |
JP6435783B2 (ja) | 接眼光学系 | |
JP5605309B2 (ja) | 観察ズーム光学系 | |
US20100284068A1 (en) | Telescope optical system | |
JP5632718B2 (ja) | 接眼レンズ、付加レンズを備える接眼レンズ、及び、光学機器 | |
JP7015389B2 (ja) | 観察光学系 | |
JPWO2009044836A1 (ja) | ズーム接眼レンズ系 | |
JPH11174345A (ja) | 広視野接眼レンズ | |
JP5369503B2 (ja) | 顕微鏡用対物レンズ | |
JP5028009B2 (ja) | 観察光学系 | |
JP4799003B2 (ja) | 接眼ズームレンズおよびフィールドスコープ | |
JP5422214B2 (ja) | 接眼レンズ及び光学機器 | |
JP2011002545A (ja) | 接眼ズームレンズ及び光学機器 | |
WO2013146038A1 (ja) | 接眼レンズ及び光学機器 | |
JP2017078725A (ja) | 変倍光学系 | |
JP2006171636A (ja) | 接眼レンズ | |
JP2012108296A (ja) | 接眼光学系、及び、光学装置 | |
JP2004184826A (ja) | 水浸系顕微鏡用対物レンズ | |
WO2020090424A1 (ja) | リレー光学系およびリレー光学系を有する望遠鏡 | |
JP2015079276A (ja) | 接眼ズーム光学系 | |
JP2006098722A (ja) | 接眼レンズ | |
JP2012103382A (ja) | ズームレンズ及び該レンズを備える顕微鏡 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480025759.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14794811 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015515858 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014794811 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14888173 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |