JP3851836B2 - 波長多重伝送システム及び波長多重伝送装置 - Google Patents

波長多重伝送システム及び波長多重伝送装置 Download PDF

Info

Publication number
JP3851836B2
JP3851836B2 JP2002117766A JP2002117766A JP3851836B2 JP 3851836 B2 JP3851836 B2 JP 3851836B2 JP 2002117766 A JP2002117766 A JP 2002117766A JP 2002117766 A JP2002117766 A JP 2002117766A JP 3851836 B2 JP3851836 B2 JP 3851836B2
Authority
JP
Japan
Prior art keywords
wavelength
pilot signal
unit
signal
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002117766A
Other languages
English (en)
Other versions
JP2003318833A (ja
Inventor
貴子 高梨
太 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002117766A priority Critical patent/JP3851836B2/ja
Priority to US10/288,022 priority patent/US7505685B2/en
Priority to DE60239022T priority patent/DE60239022D1/de
Priority to EP07118054A priority patent/EP1873950B1/en
Priority to DE60238901T priority patent/DE60238901D1/de
Priority to EP02258055A priority patent/EP1355440B1/en
Publication of JP2003318833A publication Critical patent/JP2003318833A/ja
Application granted granted Critical
Publication of JP3851836B2 publication Critical patent/JP3851836B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/072Monitoring an optical transmission system using a supervisory signal using an overhead signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/074Monitoring an optical transmission system using a supervisory signal using a superposed, over-modulated signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/075Monitoring an optical transmission system using a supervisory signal using a pilot tone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/08Shut-down or eye-safety
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02216Power control, e.g. to keep the total optical power constant by gain equalization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、波長多重伝送システム及び波長多重伝送装置に関する。
【0002】
【従来の技術】
図27は既存の波長多重(WDM:Wavelength Division Multiplex)伝送システムの一例を示すブロック図で、この図27に示すWDM伝送システム100は、ATM(Asynchronous Transfer Mode)網やSONET(Synchronous Optical NETwork),SDH(Synchronous Digital Hierarchy)網,イーサネット(登録商標)等の所要のネットワークと接続された端局装置200,00と、端局装置200,00間で光伝送路〔SMF(Single Mode Fiber)等の光ファイバ〕500,600上を双方向に伝送されるWDM信号をそれぞれ増幅中継する光中継器300とをそなえて構成されている。なお、光中継器(ILA)300は、WDM信号の伝送距離に応じて適宜の数だけ設けられる。
【0003】
また、端局装置(以下、単に「端局」という)200(400)には、例えば、トランスポンダ(送受信装置)201(401),波長多重部(WDMカプラ)202(402),EDFA(Erbium Doped Fiber Amplifier)等の光増幅器203(403),204(404)等が設けられ、光中継器(以下、中継局ともいう)300には、EDFA等の中継光増幅器301,302が設けられている。
【0004】
上述のごとく構成されたWDM伝送システム100では、上述したATM網やSONET,SDH網,イーサネット等の所要のネットワークからの伝送信号が端局200(400)のトランスポンダ201(401)にて所定波長の光信号に変換され、WDMカプラ202(402)にてWDM信号に波長多重されたのち、光増幅器203(403)にて所望の光信号レベル(パワー)に波長一括増幅されて、光伝送路500(600)へ送出される。
【0005】
このようにして光伝送路500(600)上へ送出されたWDM信号は、光中継器300の光増幅器301(302)にて、所望の光信号レベルに波長一括増幅されて損失補償されて、対向する端局400(200)で受信される。受信側の端局400(200)では、光伝送路500(600)から受信されたWDM信号を光増幅器404(204)にて、再び波長一括増幅して損失補償を行なった上で、波長分離部405(205)にて各波長の光信号に分離し、それぞれをトランスポンダ401(201)にて電気信号に変換したのち、ATM網やSONET,SDH網,イーサネット等の所要のネットワークへの伝送信号として送出する。
【0006】
さて、このようなWDM伝送システム100では、周知のように、光伝送路500(600)の伝送帯域において波長依存性の伝送損失差が存在するため、端局200(400)や中継局300において、送信又は受信WDM信号のスペクトラムを監視し、各波長(チャンネル)の光信号の送信レベルを個々に調整(プリエンファシス制御)して、WDM信号に生じるチルトを補償することが一般的に行なわれている。
【0007】
このため、例えば図28に示すように、端局200(400)では、光増幅器208(408)及び204(404)の出力をそれぞれ光カプラ203(403)及び209(409)で分岐してスペクトラムアナライザ(SAU:Spectrum Analyzer Unit)210(410)に入力することで、送信又は受信WDM信号のスペクトル監視を行ない、同様に、中継局300では、図29に示すように、光増幅器301及び302の出力をそれぞれ光カプラ304及び305で分岐してSAU306に入力することで、送信又は受信WDM信号のスペクトル監視が行なえるようになっている。
【0008】
そして、かかる監視の結果に応じて、必要な監視制御情報(プリエンファシス設定情報等)が後述するSAU210(410),306のCPU706により生成され、この監視制御情報が、端局200(400)ではOSC部219(419)、中継局300ではOSC部307(又は310)にて、予めOSCとして割り当てられている波長の光信号に載せられて光カプラ220(420),308にて光伝送路500又は600上を伝送するWDM信号の一部(OSCチャンネル信号)として挿入されるのである。
【0009】
なお、図28に示す端局200(400)おいて、206(406)は、トランスポンダ201(401)からの送信光信号の送信レベルを調整する光可変減衰器、207(407)はこの光可変減衰器206(406)による送信レベル調整済みの光信号を受光して電気信号に変換し、SAU210(410)の後述する光学回路212(412)と、OSC部219(419)とにそれぞれ入力するフォトダイオード(PD)、221(421)は光伝送路600から受信されるWDM信号をOSC部219(419)に分岐する光カプラをそれぞれ表す。
【0010】
また、図29に示す中継局300において、303(309)は光伝送路500(600)から受信されるWDM信号をOSCチャンネル信号の受信のためにOSC部310(309)に分岐する光カプラ、311はOSCチャンネル信号を光伝送路600への送信WDM信号に挿入するための光カプラをそれぞれ表す。
【0011】
さて、ここで、上述した端局200(400)におけるSAU210(410)及び中継局300におけるSAU306は、具体的には、それぞれ、図28及び図29中に示すように、例えば、スイッチ701,PDアレイ703を用いた光学回路702,アナログ増幅器704,AD(Analog to Digital)変換器705,CPU706,バイアス回路707及びDA(Digital to Analog)変換器708等をそなえて構成される。
【0012】
このような構成により、SAU210(410),306では、CPU706からの指示に応じてスイッチ701が切り替えられることにより、光伝送路500への送信WDM信号及び光伝送路600への送信WDM信号のうちのいずれかが光学回路702への入力WDM信号として選択されて、当該入力WDM信号がPDアレイ703にて各波長の光信号毎に電気信号に変換されることになる。なお、この際、PDアレイ703のバイアスが必要に応じてCPU706によりDA変換器708を通じて調整される。
【0013】
そして、このようにして得られた各波長の電気信号が、アナログ増幅器704にて所望のレベルに増幅されたのち、AD変換器705にてディジタル信号に変換されてCPU706に入力されることで、CPU706にて入力WDM信号、即ち、光伝送路500又は600への送信WDM信号のスペクトルが波長毎に解析されて、必要な監視制御情報が生成されるのである。
【0014】
【発明が解決しようとする課題】
しかしがなら、上述したSAU210(410),306では、非常に高価な光学回路702(PDアレイ703)を用いているため、端局200(400)や中継局300の装置コストを大幅に増大させる要因となっている。
また、WDM伝送装置〔端局200(400)や中継局300〕は、複数の光を波長多重して伝送するため、或る波長の回線トラフィックが増大すると、その波長(チャンネル)へのアクセスが輻輳し伝送効率が劣化してしまうため、WDM伝送装置のような伝送容量の大きな装置においても回線トラフィックが増大するとその効果を活用できなくなる。
【0015】
そこで、かかる場合には、WDM伝送装置に接続される装置は、WDM回線の接続に際して、アクセスの均等化を図って伝送容量を有効に利用できるようにする必要がある。しかし、図28や図29に示す構成から分かるように、WDM伝送装置自体は信号を光のまま送受信あるいは中継する装置であるため、どのチャンネルにどれだけのトラフィックがあるのかが把握できない。
【0016】
本発明は、上記のような課題に鑑み創案されたもので、WDM信号のスペクトル監視を高価な光学回路を用いることなく可能とするとともに、WDM信号の未使用波長(アイドル波長)を容易に識別できるようにしてトラフィックに応じた波長資源の有効活用を可能とした、波長多重伝送システム及び波長多重伝送装置を提供することを目的とする。
【0017】
【課題を解決するための手段】
上記の目的を達成するために、本発明の波長多重伝送システムは、波長多重光信号を送信する送信側の波長多重伝送装置が、(1)前記波長多重光信号に波長多重される光信号を用いて送信すべき送信データの有無を識別する送信データ有無識別手段と、(2)この送信データ有無識別手段により該光信号を用いて送信すべき該送信データが無いと識別されると、当該光信号の波長に固有のパイロット信号データを該光信号にて送信するパイロット信号送信手段とをそなえるとともに、該波長多重光信号を受信する受信側の波長多重伝送装置が、(3)受信した該波長多重光信号から該パイロット信号データを検出するパイロット信号検出手段と、(4)このパイロット信号検出手段で検出されたパイロット信号データ成分振幅情報に基づいて該波長多重光信号の各波長のスペクトルを測定するスペクトル測定手段とをそなえて構成されたことを特徴としている。
ここで、上記の波長多重伝送システムは、前記受信側の波長多重伝送装置が、前記パイロット信号検出手段で検出された該パイロット信号データに基づいて該波長多重光信号の各波長の光信号の使用/未使用状態を判別する使用波長判別手段をそなえていてもよい。
【0018】
また、本発明の波長多重伝送装置は、(1)波長多重光信号に波長多重される光信号を用いて送信すべき送信データの有無を識別する送信データ有無識別手段と、(2)この送信データ有無識別手段により該光信号を用いて送信すべき該送信データが無いと識別されると、当該光信号の波長に固有のパイロット信号データであって、受信側で当該パイロット信号データ成分の振幅情報に基づいて該波長多重光信号の各波長のスペクトルを測定するためのデータを該光信号にて送信するパイロット信号送信手段とをそなえたことを特徴としている。
【0019】
ここで、上記のパイロット信号送信手段は、上記送信データをオーバヘッド部とペイロード部とを有するフレーム信号の該ペイロードに格納して該フレーム信号を組み立てるフレーム組立部をそなえ、このフレーム組立部が、上記の送信データ有無識別手段により該光信号を用いて送信すべき該送信データが無いと識別されると、少なくとも該オーバヘッド部及び該ペイロード部のいずれかに該パイロット信号データを格納するパイロット信号付加部をそなえて構成されていてもよい。
【0020】
また、本発明の波長多重伝送装置は、(1)受信した該波長多重光信号から、送信データが無い波長の光信号にて送信されてくる当該波長に固有のパイロット信号データを検出するパイロット信号検出手段と、(2)このパイロット信号検出手段で検出された該パイロット信号データ成分振幅情報に基づいて該波長多重光信号の各波長のスペクトルを測定するスペクトル測定手段とをそなえたことを特徴としている。
ここで、上記の波長多重伝送装置は、前記パイロット信号検出手段で検出された該パイロット信号データに基づいて該波長多重光信号の各波長の光信号の使用/未使用状態を判別する使用波長判別手段をそなえていてもよい。
【0021】
ここで、上記のパイロット信号検出手段は、各波長の光信号を受光してその光パワーに応じた電気信号を出力する光電変換部と、この光電変換部からの電気信号のうち、送信データが無い未使用波長の光信号にて送信されてくる当該未使用波長に固有のパイロット信号データ成分を通過させるパイロット信号検出用フィルタ部とをそなえるとともに、前記スペクトル測定手段が、上記パイロット信号検出用フィルタ部を通過する該パイロット信号データ成分の振幅情報に基づいて該波長多重光信号の各波長のスペクトルを測定するように構成されることが好ましい。
【0022】
さらに、本発明の波長多重伝送装置は、波長多重光信号に波長多重される光信号を用いて送信すべき送信データの有無を識別する送信データ有無識別手段と、この送信データ有無識別手段により該光信号を用いて送信すべき該送信データが無いと識別されると、当該光信号の波長に固有のパイロット信号データを該光信号にて他の波長多重伝送装置へ送信するパイロット信号送信手段とを有する送信手段と、該他の波長多重伝送装置から受信した波長多重光信号からパイロット信号データを検出するパイロット信号検出手段と、該パイロット信号検出手段で検出されたパイロット信号データ成分振幅情報に基づいて該波長多重光信号各波長のスペクトルを測定するスペクトル測定手段とを有する受信部と、この受信部の該パイロット信号検出手段で該パイロット信号データが検出されると、当該パイロット信号データに対応する波長の光信号についての該パイロット信号送信手段による該パイロット信号データの送信を停止するパイロット信号送信停止手段とをそなえたことを特徴としている。
ここで、上記の波長多重伝送装置は、前記パイロット信号検出手段で検出された該パイロット信号データに基づいて該波長多重光信号の各波長の光信号の使用/未使用状態を判別する使用波長判別手段をそなえていてもよい。
【0024】
ここで、上記のパイロット信号検出用フィルタ部は、該光電変換部からの電気信号のうち該パイロット信号データ成分よりも高い周波数成分を遮断するローパスフィルタと、上記波長多重光信号の波長帯域を複数の波長帯域に分割したときの分割波長帯域に対応して設けられ、それぞれ、上記ローパスフィルタの出力のうち該分割波長帯域に含まれる波長に対応する該パイロット信号データ成分を通過させる複数の可変波長帯域のバンドパスフィルタとをそなえて構成してもよい。
【0025】
また、上記のスペクトル測定手段は、初期動作時において同じ波長のパイロット信号データ成分についての該バンドパスフィルタの出力がそれぞれ同じとなる誤差補正係数を算出する誤差補正係数算出部と、運用時において該誤差補正係数算出部で算出された該誤差補正係数に基づいて該可変波長帯域のバンドパスフィルタの各出力について誤差補正処理を行なう誤差補正部とをそなえていてもよい。
【0026】
さらに、上記のスペクトル測定手段は、該振幅情報を波長別に保持する保持回路と、この保持回路に保持された、各波長の光信号が未使用状態のときの各振幅情報に基づいて各波長の光信号品質を計算する光信号品質計算部とをそなえていてもよい。
【0027】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
(A)WDM伝送システム全体の説明
図1は本発明の一実施形態としてのWDM伝送システムに使用される端局装置の構成を示すブロック図、図2は同WDM伝送システムに使用される中継局の構成を示すブロック図で、端局装置(以下、単に「端局」という)1は、図27に示す端局装置200又は400に相当するものであり、中継局3は同じく図27に示す中継局300に相当するものであり、本実施形態においても、それぞれ、光伝送路500,600を介して相互に接続されている。
【0028】
そして、図1に示すように、本実施形態の端局1は、トランスポンダ(送受信部)11,WDM信号の各波長の光信号毎に設けられた光可変減衰器12,波長多重部(光合波カプラ)13,光増幅器14,20,モニタ光分岐カプラ15,21,OSC光挿入カプラ16,SAU17,OSC部18,OSC光分岐カプラ19,波長分離部(光分波カプラ)22などをそなえて構成されている。
【0029】
ここで、トランスポンダ11は、ギガビットイーサネット(イーサネットは登録商標)やSONET/SDH,ATMなどの所要のネットワークからの信号を所定波長の光信号に変換してWDM伝送システムへ送信する一方、WDM伝送システムからのWDM信号の各波長の光信号を上記ネットワークへの信号に変換する機能を装備するもので、本実施形態では、その送信部に着目すると、図1中に示すように、例えば、終端部111,データフレーム組立・パイロット信号挿入部112,光源(LD:Laser Diode)113,光スイッチ114,光変調・ポートスイッチング部115等をそなえて構成されている。
【0030】
上記の終端部111は、上記ネットワークからの信号フレームを一旦終端するものであり、データフレーム組立・パイロット信号挿入部112は、終端部111からの信号データ〔WDM信号に波長多重して送信すべき送信(ユーザ)データ〕を所定の送信信号フレーム(フレーム構成については後述)に格納するものであるが、本実施形態では、送信ユーザデータが無い場合には固定パターンデータ(パイロット信号データ)を格納するようになっている。
【0031】
これにより、WDM伝送システムにおいて、例えば、ギガビットイーサネットやATM網等のバースト的な通信が行なわれるネットワークからの送信ユーザデータを光伝送する場合に、その送信ユーザデータの無い未使用波長の光信号にはパイロット信号データが載ることになり、WDM信号の受信側においてこのパイロット信号データを検出すれば、そのパイロット信号データを検出した波長が未使用(アイドル)状態であることを識別することができる。そして、上記パイロット信号データを各波長に固有のデータにしておけば、WDM信号の受信側では、WDM信号の各波長の使用/未使用(波長使用状況)を識別することが可能となる。
【0032】
さて次に、上記光源113は、それぞれ、WDM信号に波長多重されるべき所定波長の光を発生するものであり、光スイッチ114は、この光源113からの光出力を停止しうるものであり、変調・ポートスイッチング部115は、光源113からの光をデータフレーム組立・パイロット信号挿入部112の出力で変調して上記送信信号フレームを有する送信光信号を生成する送信部としての機能と、光分波カプラ22で分波されてくる各波長の光信号を電気信号に変換・終端して所要の信号受信処理を行なう受信部としての機能と、送信/受信光信号の出力先(ポート)を切り替える機能とを兼備するものである。なお、かかるポート切り替えは、後述するようにOSC部18からの指示(下流側での波長使用状況)に従って行なわれる。
【0033】
また、上記の光可変減衰器12は、それぞれ、上記の変調・ポートスイッチング部115から出力される各波長の光信号の減衰度を個々に調整して当該光信号の光送信レベルを調整するためのものであり、光合波カプラ1は、これらの光可変減衰器12からの光送信レベル調整済みの各光信号を合波(波長多重)して送信WDM信号を生成するものである。
【0034】
さらに、光増幅器14は、後段のモニタ光分岐カプラ15及びOSC光挿入カプラ16での光分岐による損失分を補償すべく、上記光合波カプラ1からの送信WDM信号を一括増幅するものであり、例えば、EDFAがよく用いられる。また、モニタ光分岐カプラ15は、光増幅器14の出力を分岐して、一方をスペクトル監視のためにSAU17へ入力するものであり、OSC光挿入カプラ16は、予めOSCチャンネルとして設定されている波長の光信号(監視制御情報)をOSC部18から受信して上記光増幅器14の出力(モニタ光分岐カプラ15の他方の出力)に合波するものである。
【0035】
また、OSC光分岐カプラ19は、下流側から受信されるWDM信号をOSC部18に分岐するもので、これにより、OSC部18にて受信WDM信号からOSCの監視制御情報(前記の使用波長状況も含まれる)が抽出されて、前述した変調・ポートスイッチング部115に対する指示や、当該監視制御情報(使用波長情報)とSAU17でのスペクトル監視(測定)結果とに基づいた下流側に対する使用波長の調停制御(使用波長情報をOSCによりOSC光挿入カプラ16を通じて下流側へ送信する)等が行なえるようになっている。
【0036】
さらに、光増幅器20は、OSC光分岐カプラ19及びモニタ光分岐カプラ21での光分岐による損失分を補償すべく、OSC光分岐カプラ19からの受信WDM信号を一括増幅するためのものであり、モニタ光分岐カプラ21は、この光増幅器20の出力を分岐して一方をスペクトル監視のためにSAU17へ入力するものであり、光分波カプラ22は、このモニタ光分岐カプラ21からの他方の受信WDM信号を各波長の光信号に分波(波長分離)するためのものである。なお、分離後の各波長の光信号は、変調・ポートスイッチング部115へ出力される。
【0037】
そして、上記のSAU17は、上記のモニタ光分岐カプラ15又は21から分岐されてくる送信/受信WDM信号のスペクトルを監視するものであるが、本実施形態では、従来のように高価な光学回路(PDアレイ)を用いることなく、同等の機能を実現できるように構成されている。即ち、本SAU17は、その要部に着目すると、図1中に示すように、例えば、スイッチ51,PD52,増幅器53,レベルピーク(ピーク/ボトム)ホールド回路55,AD変換器56,CPU57,DA変換器58をそなえて構成されている。
【0038】
ここで、上記のスイッチ51は、上記のモニタ光分岐カプラ15及び21からそれぞれ分岐されてくるWDM信号のいずれか一方をCPU57からの指示に従って選択的に出力するものであり、PD(光電変換部)52は、このスイッチ51から入力されるWDM信号を受光してその受光パワーに応じた電気信号を出力するものであり、増幅器53は、このPD52の出力を所定のレベルに増幅するためのものである。
【0039】
また、フィルタ54は、上記増幅器53の出力のうち前述したパイロット信号データ(以下、単に「パイロット信号」という)の成分よりも高い周波数成分(主にASE光による直流成分)を遮断してパイロット信号成分(主に交流成分)を通過させるローパスフィルタであり、ピーク/ボトムホールド回路55は、このフィルタ54の出力のピーク値及びボトム値を保持するためのものであり、AD変換器56は、このピーク/ボトムホールド回路55で保持されたパイロット信号成分のピーク値及びボトム値(振幅情報)をそれぞれディジタル信号に変換するものである。
【0040】
つまり、上記のPD52,フィルタ54及びピーク/ボトムホールド回路55は、受信したWDM信号からパイロット信号を検出するパイロット信号検出手段としての機能を果たしていることになる。
そして、CPU57は、上述のごとく得られたパイロット信号成分(このパイロット信号成分は複数波長分の信号成分が合成されたものである)の振幅情報に基づいて入力WDM信号のスペクトル(OSNR)を測定するものである。なお、本CPU57は、かかる測定により、パイロット信号成分の検出の有無による使用/未使用波長の状況を識別することができる。また、かかる識別結果がOSC部18に通知されることで、前述した使用波長情報をOSCにより下流側へ通知することが可能となり、その結果、WDM伝送システム内の全ノードにおいて、パイロット信号をモニタする必要がなくなる。
【0041】
つまり、CPU57は、上記のパイロット信号検出手段でのパイロット信号成分の検出結果に基づいて各波長の光信号の使用/未使用状態を判別する使用波長判別手段としての機能と、その判別結果を予め監視制御情報の送受のために割り当てられているOSCを用いて他のWDM伝送装置へ通知する使用波長通知手段(監視制御情報送信部)としての機能とを兼ね備えているのである。
【0042】
次に、図2に示すように、本実施形態の中継局3は、双方向通信のために対称な構成を有しており、例えば図2の紙面右方向を送信(下流)方向、その逆を受信(上流)方向と考えると、送信系として、OSC光分岐カプラ31,光増幅器32,モニタ光分岐カプラ33,OSC光挿入カプラ34等をそなえるとともに、受信系として、OSC光分岐カプラ37,光増幅器38,モニタ光分岐カプラ39,OSC光挿入カプラ40等をそなえ、且つ、監視制御系として、SAU35(35a,35b),OSC部36a,36b等をそなえて構成されている。
【0043】
ここで、上記の送信系(受信系)において、OSC光分岐カプラ31(37)は、光伝送路500(600)から受信されるWDM信号を分岐して一方をOSC部36b(36a)へ、他方を光増幅器32(38)へ出力するものであり、光増幅器32(38)は、後段のモニタ光分岐カプラ33(39)及びOSC光挿入カプラ34(40)での損失分を補償すべくOSC光分岐カプラ31(37)からのWDM信号を一括増幅するもので、この場合も、例えばEDFAが適用される。
【0044】
また、モニタ光分岐カプラ33(39)は、この光増幅器3(38)の出力を分岐して、一方をSAU35a(35b)、他方をOSC光挿入カプラ34(40)へ出力するものであり、OSC光挿入カプラ34(40)は、モニタ光分岐カプラ34(40)の出力にOSC光を挿入するためのものである。そして、SAU35a,35bは、それぞれ、端局1におけるSAU17と同様の構成を有し、WDM信号に含まれる前記パイロット信号成分に基づいてWDM信号の波長使用状況及びスペクトル(OSNR)を監視することができるものである。ただし、本中継局3においては、下流及び上流方向のそれぞれについてSAU35a,35bが専用となっているので、端局1のSAU17におけるスイッチ51に相当するものは装備されていない。
【0045】
上述のごとく構成された本実施形態のWDM伝送システムでは、端局1から、WDM信号の未使用波長を用いて当該波長に固有のパイロット信号データ(固定パターン)が送信され、このパイロット信号データを中継局3やOADM(図示省略)等の途中ノードに装備されたSAU17(35)において検出することで、WDM信号の使用/未使用波長(波長使用状況)を識別することができるので、その波長使用状況に応じたアクティブな通信制御が可能となる。
【0046】
即ち、上記の波長使用状況をOSCにより他ノード(OADM等)に通知することで、他ノードにおいて未使用波長を用いた別の通信が可能となる。例えば、OADMノードでは、光送信手段(アド/ドロップ機能)により、上述のごとくOSCにより通知される波長使用状況に基づいてアイドル状態と判別された波長の光信号に他の送信データを載せて他のWDM伝送装置へ送信することが可能となる。
【0047】
したがって、WDM伝送システムの波長資源を有効活用することができ、トラフィックの瞬時的増大による輻輳を低減させることが可能である。
また、上記パイロット信号データに基づいてWDM信号のスペクトル(OSNR)を計測できるので、高価な光学回路を用いることなく測定することも可能である。
【0048】
以下、上記のパイロット信号データを扱う端局1のトランスポンダ11の詳細について説明する。
(A1)トランスポンダ11の第1態様の説明
図3(A)及び図4は上記のトランスポンダ11の第1態様を示すブロック図で、図3(A)はトランスポンダ11の送信部の構成、図4はトランスポンダ11の受信部の構成をそれぞれ示すブロック図である。
【0049】
まず、図3(A)に示すように、本第1態様のトランスポンダ11は、送信部11Sとして、例えば、図3(B)に示すようにフレームパターン5,オーバヘッド部6及びペイロード7を有するデータフレームを生成するフレーム組立部11A(前記のデータフレーム組立・パイロット信号挿入部112に相当する)と、このフレーム組立部11Aで生成されたデータフレームをWDM信号として波長多重される所定波長の光信号に載せるE/O部11Bとをそなえており、フレーム組立部11Aには、パラレル/シリアル(P/S)部11A−1,オーバヘッド挿入部11A−2,スクランブラ11A−3,パイロット信号付加部11A−4,フレームパターン挿入部11A−5及びパルスジェネレータ(PG)部11A−6等がそなえられ、E/O部11Bには、光変調部11B−1及びLD(光源)11B−2等がそなえられている。
【0050】
ここで、P/S部11A−1は、ATM網やSONET,SDH網,イーサネット等の所要のネットワークから受信されるデータ(パラレルデータ)をシリアルデータに変換するものであり、オーバヘッド挿入部11A−2は、このP/S部11A−1の出力(ペイロードデータ)に対して必要なオーバヘッド情報(オーバヘッド部6)を付加するものであり、スクランブラ11A−3は、このオーバヘッド挿入部11A−2の出力(オーバヘッド部6+ペイロード7)に対して一括してスクランブルをかけるものである。
【0051】
そして、パイロット信号付加部11A−4は、ペイロード7に格納すべきデータが無いアイドル状態であるときに、スクランブラ11A−3をバイパスしてくる信号(オーバヘッド部6及びペイロード7から成る領域)にパイロット信号データを挿入するものである。
このため、本パイロット信号付加部11A−4は、例えば図5に示すように、ペイロードALL零検出部41,保護タイマ42,OR回路43,N進カウンタ44,T/N周期タイマ45,パルス生成部46及びセレクタ(SEL)47をそなえて構成される。
【0052】
ここで、ペイロードALL零検出部(送信データ有無識別手段)41は、スクランブラ11A−3によるスクランブル前のペイロードデータが全て零であるか否かを検出することにより、WDM信号に波長多重される光信号を用いて送信すべき送信データの有無を識別するものであり、このペイロードALL零検出部41にてペイロードデータのALL“0”が検出されると、N進カウンタ44,T/N周期タイマ45(パイロット信号のパルスデューティのインクリメントに用いられる)及びパルス生成部46によって生成されるパイロット信号が、スクランブラ11A−3によるスクランブル後のデータ(オーバヘッド部6及びペイロード7)に代わってセレクタ47にてフレームパターン挿入部11A−5への入力として選択出力されるようになっている。
【0053】
なお、上記のNは最大零連許容数〔データとして0(又は1)が連続する最大許容数(ビット)〕を表し、例えばN>20であり、Tはパイロット信号周期を表す。これにより、例えば図6に示すように、送信データの無いアイドル期間において、パイロット信号周期T内においてNビット毎に論理が反転されたパターンをもつパイロット信号がオーバヘッド部6及びペイロード7に挿入されることになる。
【0054】
また、上記のパイロット信号周期Tを波長毎に変えることで、各波長に固有のパイロット信号を生成できる(パイロット信号を波長毎にラベル化することができる)。保護タイマ42は、ペイロードALL零検出部41にてペイロードデータのALL零が検出された時点で直ぐに検出信号を出力するのではなく、その後も或る程度連続してデータ零が検出されて初めて検出信号を出力するためのタイマである。
【0055】
OR回路43は、この保護タイマ42の出力と外部切り替え信号(トランスポンダ11の受信系からの光入力断検出信号やフレーム同期外れ信号から検出信号)についてORをとるもので、これにより、ペイロードALL零が検出された場合のみならず、上記外部切り替え信号が入力された場合にも、セレクタ47の出力がパルス生成部46側に切り替えられるようになっている。
【0056】
次に、図3において、フレームパターン挿入部11A−5は、上述のごとくパイロット信号の挿入された信号(オーバヘッド部6+ペイロード7)に対して同期のための所定のフレームパターン5を付加することにより、最終的に、図3(B)に示すような送信データフレームを生成するものである。なお、PG部11A−6は、装置内基準クロックに基づいて上記の各部11A−1〜11A−5に必要な動作クロックを供給するものである。
【0057】
一方、E/O部11Bにおいて、光変調部11B−1は、LD11B−2から供給される所定波長の光を、PG部11A−6から供給される動作クロックに従い、上述のごとくフレーム組立部11Aによって生成された送信データフレームによって変調することで、送信光信号を生成するものである。
つまり、上述したパイロット信号付加部11A−4及びE/O部11Bは、上記のペイロードALL零検出部41でペイロードデータのALL“0”が検出されて光信号を用いて送信すべき送信データ(ペイロード)が無いと識別されると、その光信号の波長に固有の(波長毎にラベル化された)パイロット信号を当該光信号にて送信するパイロット信号送信手段としての機能を果たすものである。
【0058】
これに対し、図4に示すトランスポンダ11の受信部11Rは、光伝送路600からの受信光信号(詳細には図1に示す光分波カプラ22の出力)を電気信号に変換してデータフレームを抽出するO/E部11Cと、このO/E部11Cで得られたデータフレームに対してデスクランブラやS/P(シリアル/パラレル)変換等の所要の終端処理を施す終端LSI11Dとをそなえて構成される。
【0059】
このため、O/E部11Cには、例えば、フォトダイオード(PD)11C−1,バイアス回路11C−2,前置増幅部11C−3,等化フィルタ11C−4,タイミング抽出部11C−5及びデータ抽出部11C−6等がそなえられ、終端LSI11Dには、フレームタイミング抽出部11D−1,パイロットパターン検出部11D−2,デスクランブラ11D−3,S/P部11D−4及びメモリ(バッファ)部11D−5等がそなえられている。
【0060】
ここで、O/E部11Cにおいて、PD11C−1は、光伝送路600から受信される所定波長の光信号を受光して電気信号に変換するものであり、バイアス回路11C−2は、このPD11C−1のバイアスを調整するためのものであり、前置増幅部11C−3は、PD11C−1からの電気信号を所要の信号レベルに増幅するものである。
【0061】
また、等化フィルタ11C−4は、この前置増幅部11C−3の出力について等化処理を施すものであり、タイミング抽出部11C−5は、同じく前置増幅部11C−3の出力から基準伝送クロックを抽出するものであり、データ抽出部11C−6は、等化フィルタ11C−4による等化後信号からデータフレームを抽出するものである。
【0062】
一方、終端LSI11Dにおいて、フレームタイミング抽出部11D−1は、上述のごとくタイミング抽出部11C−5にて抽出された基準伝送クロックに基づいて受信データフレームのフレームタイミング(前記のフレームパターン5)を抽出するものであり、パイロットパターン検出部11D−2は、フレームタイミング抽出部11D−1から供給される動作クロックに従って、データ抽出部11C−6によって抽出されたデータフレームからパイロット信号を検出するものである。なお、本パイロットパターン検出部11D−2は、パイロットパターン情報設定により、予め送信側の最大零連許容数Nとパイロット信号周期Tとを知っている。
【0063】
また、デスクランブラ11D−3は、データ抽出部11C−6によって得られた受信データフレームに対してデスクランブラを施して、受信データフレームのスクランブルを解くものであり、S/P部11D−4は、このデスクランブラ11D−3の出力についてS/P変換を施すものであり、メモリ部11D−5は、このS/P部11D−4の出力を一時的に保持するものである。ただし、パイロットパターン検出部11D−2によるパイロット信号検出時にはデータはALL“0”又はALL“1”固定とする。
【0064】
以上の構成により、本実施形態のトランスポンダ11は、下流側への送信WDM信号の未使用波長を用いて、その波長に固有のパイロット信号を送信することが可能となり、下流側からの受信WDM信号に含まれるパイロット信号を分離して、必要なデータのみをATM網やSONET,SDH網,イーサネット等の所要のネットワークへ送信することが可能となる。
【0065】
なお、上述したトランスポンダ11では、アイドル状態の場合のパイロット信号挿入箇所を、送信データフレームのオーバヘッド部6及びペイロード7の双方の領域としているが、この他に、例えば、オーバヘッド部6及びペイロード7のいずれか一方のみに挿入するようにしてもよいし、オーバヘッド部6とペイロード7とで異なるパイロット信号を挿入するようにしてもよい。
【0066】
また、オーバヘッド部6にパイロット信号を挿入する場合は、その全てではなく一部(非常駐オーバヘッド;誤り監視のための有意なバイト(A1〜Zバイト)以外の未使用バイト)に挿入することも可能である。以下に、これらの各態様について順に説明する。
(A2)トランスポンダ11の第2態様(パイロット信号をオーバヘッド部にのみ挿入する場合)
図7(A)及び図8は上述したトランスポンダ11の第2態様(パイロット信号をオーバヘッド部にのみ挿入する場合)を示すブロック図で、図7(A)はトランスポンダ11の送信部11Sの構成、図8は同トランスポンダ11の受信部11Rの構成を示すブロック図である。
【0067】
そして、図7(A)に示すように、本第2態様における送信部11Sは、パイロット信号をオーバヘッド部6にのみ挿入するため、オーバヘッド挿入部11A−2の前段に設けたペイロードスクランブラ11A−31及びオーバヘッド挿入部11A−2の後段に設けたオーバヘッドスクランブラ11A−32により、入力データに対するスクランブルをペイロード7(以下、ペイロードデータ7とも表記する)とオーバヘッド部6(以下、オーバヘッド情報6とも表記する)とで個別に行なえる構成になっている。
【0068】
即ち、送信データがアイドル状態ではないときには、まず、送信ペイロードデータ7がペイロードスクランブラ11A−31にてスクランブルされ、そのスクランブル後のペイロードデータ7にオーバヘッド挿入部11A−2にて必要なオーバヘッド情報6が付加されたのち、オーバヘッドスクランブラ11A−32にてオーバヘッド情報6がスクランブルされ、パイロット信号付加部11A−4をスルーして、最終的に、フレームパターン挿入部11A−5でフレームパターン5が付加されて、送信データフレームが生成される。
【0069】
これに対し、送信データがアイドル状態の場合は、送信ペイロードデータ7(データ無し)が、ペイロードスクランブラ11A−3を通じてオーバヘッド挿入部11A−2に入力され、オーバヘッド挿入部11A−2をスルーするとともに、オーバヘッドスクランブラ11A−32をバイパスしてパイロット信号付加部11A−4へ入力されて、そこでオーバヘッド情報6の代わりにパイロット信号が挿入される〔図7(B)参照〕。なお、他の動作は基本的に図3(A)により上述した送信部11Sの動作と同様である。
【0070】
一方、受信部11Rは、パイロット信号の挿入箇所をオーバヘッド部6のみとすることに対応して、図8に示すように、終端LSI11Dに、オーバヘッド抽出部11D−6が付加されるとともに、ペイロードデータ7とオーバヘッド情報6とで個別にデスクランブル,S/P変換及びバッファの各処理を行なえるように、ペイロードデータ7用のデスクランブラ11D−31,S/P部11D−41及びメモリ(バッファ)部11D−51と、オーバヘッド情報6用のデスクランブラ11D−32,S/P部11D−42及びメモリ(バッファ)部11D−52とがそなえられている。なお、他の構成は図3(A)に示すものと同一もしくは同様である。
【0071】
これにより、受信部11Rでは、O/E11Cにおいて得られたデータフレームからオーバヘッド抽出部11D−6にてオーバヘッド情報6が抽出され、当該オーバヘッド情報6はデスクランブラ11D−32にてデスクランブルされたのち、S/P部11D−42にてS/P変換されてメモリ部11D−52で一旦保持される一方、残りのペイロードデータ7はデスクランブラ11D−31にてデスクランブルされたのち、S/P部11D−41にてS/P変換されてメモリ部11D−51で一旦保持される。
【0072】
そして、パイロットパターン検出部11D−2にて、オーバヘッド抽出部11D−6で抽出されたオーバヘッド部6からパイロット信号が検出された場合は、各メモリ11D−51及び11D−52の保持内容がALL“0”又はALL“1”とされる。
このようにして、パイロット信号をオーバヘッド部6のみに挿入する場合においても、デスクランブル,S/P変換及びバッファの各処理をオーバヘッド部6とペイロード7とで個別に行なうことで、正常な信号受信処理を行なうことができる。
【0073】
(A3)トランスポンダ11の第3態様(パイロット信号をペイロードにのみ挿入する場合)
次に、図9(A)及び図10は上述したトランスポンダ11の第3態様〔パイロット信号をペイロード7にのみ挿入する場合:図9(B)参照〕を示すブロック図で、図9(A)はトランスポンダ11の送信部11Sの構成、図10は同トランスポンダ11の受信部11Rの構成を示すブロック図である。
【0074】
そして、図9(A)に示すように、本第3態様における送信部11Sは、パイロット信号をペイロード7にのみ挿入するため、パイロット信号付加部11A−4の前段に設けたペイロードスクランブラ11A−31及びオーバヘッド挿入部11A−2の後段に設けたオーバヘッドスクランブラ11A−32により、入力データに対するスクランブルをペイロードデータ7とオーバヘッド情報6とで個別に行なえる構成になっている。
【0075】
即ち、アイドル状態ではないときには、まず、送信ペイロードデータ7がペイロードスクランブラ11A−31にてスクランブルされ、パイロット信号付加部11A−4をスルーしてオーバヘッド挿入部11A−2に入力され、そのスクランブル後のペイロードデータ7にオーバヘッド挿入部11A−2にて必要なオーバヘッド情報6が付加されたのち、オーバヘッドスクランブラ11A−32にてオーバヘッド情報6がスクランブルされて、フレームパターン挿入部11A−5でフレームパターン5が付加される。
【0076】
これに対し、アイドル状態の場合は、P/S部11A−1の出力が、ペイロードスクランブラ11A−3をバイパスしてパイロット信号付加部11A−4に入力され、パイロット信号付加部11A−4にてペイロードデータ7の代わりにパイロット信号が挿入されたのち、オーバヘッド挿入部11A−2にてオーバヘッド情報6が付加される。そして、このオーバヘッド情報6がオーバヘッドスクランブラ11A−32にてスクランブルされたのち、フレームパターン挿入部11A−5にてフレームパターン5が付加されて、ペイロード7にパイロット信号を有する送信データフレームが生成される。なお、他の動作は基本的に図3(A)及び図7(A)により上述した送信部11Sの動作と同様である。
【0077】
一方、受信部11Rは、パイロット信号の挿入箇所をペイロード7のみとすることに対応して、図10に示すように、図8に示すオーバヘッド抽出部11D−6に代えて、データ抽出部11C−6の出力からペイロード7を抽出するペイロード抽出部11D−7がそなえられている点が異なる。
そして、この場合は、ペイロード抽出部11D−7で抽出されたペイロード7からパイロットパターン検出部11D−2にてパイロット信号が検出されたときには、ペイロード7用のメモリ部11D−51についてのみその保持内容がALL“0”又はALL“1”固定となる。他の動作は図8と同様である。これにより、パイロット信号をペイロード7のみに挿入する場合においても、正常な信号受信処理を行なうことができる。
【0078】
(A4)トランスポンダ11の第4態様(パイロット信号をオーバヘッド部6の一部(非常駐オーバヘッド部)とペイロードとに挿入する場合)
次に、図11(A)及び図12はトランスポンダ11の第4態様〔パイロット信号を図11(B)に示す非常駐オーバヘッド部62とペイロード7とに挿入する場合〕を示すブロック図で、図11(A)はトランスポンダ11の送信部11Sの構成、図12は同トランスポンダ11の受信部11Rの構成を示すブロック図である。なお、これらの図11(A),(B)及び図12においても、既述の符号と同一符号を付したものは、それぞれ、既述のものと同一もしくは同様の機能を有するものである。
【0079】
そして、図11(A)に示すように、本第4態様における送信部11Sは、パイロット信号を非常駐オーバヘッド部62とペイロード7とに挿入するため、P/S部11A−1と非常駐オーバヘッドスクランブラ11A−33との間に非常駐オーバヘッド挿入部11A−21が設けられるとともに、パイロット信号付加部11A−4と常駐オーバヘッドスクランブラ11A−34との間に常駐オーバヘッド挿入部11A−22が設けられ、各スクランブラ11A−33及び11A−34により、入力データに対するスクランブルを、ペイロードデータ7と、オーバヘッド部6のうち常駐オーバヘッド部61に格納される情報(以下、常駐オーバヘッド情報61と表記する)以外の非常駐オーバヘッド部62に格納される情報(以下、非常駐オーバヘッド情報62と表記する)とで個別に行なえる構成になっている。
【0080】
なお、常駐オーバヘッド情報61とは、前述したように、誤り監視のための有意なバイト(A1〜Zバイト)情報を表し、非常駐オーバヘッド情報62とは、それ以外の未使用バイト情報を表す。
これにより、本第4態様の送信部11Sでは、アイドル状態のときには、まず、P/S部11A−1の出力が、非常駐オーバヘッド付加部11A−21をスルーするとともに、非常駐オーバヘッドスクランブラ11A−33をバイパスしてパイロット信号付加部11A−4に入力され、そこで入力された非常駐オーバヘッド情報62及びペイロードデータ7の代わりにパイロット信号が付加される。
【0081】
そして、パイロット信号付加部11A−4の出力は、さらに、常駐オーバヘッド挿入部11A−22にて常駐オーバヘッド情報61が付加されて、常駐オーバヘッドスクランブラ11A−34にて常駐オーバヘッド情報61のスクランブルが施され、最終的に、フレームパターン5がフレームパターン挿入部11A−5にて付加されて、パイロット信号を非常駐オーバヘッド部62及びペイロード7に有する送信データフレームが生成される。
【0082】
なお、非アイドル状態のときには、ペイロードデータ7は、非常駐オーバヘッド挿入部11A−21にて非常駐オーバヘッド情報62が付加されたのち、バイパスされずに非常駐オーバヘッドスクランブラ11−33にてスクランブルを施され、パイロット信号付加部11A−4をスルーして常駐オーバヘッド挿入部11A−22に入力される。
【0083】
そして、常駐オーバヘッド挿入部11A−22にて、常駐オーバヘッド情報6が付加されたのち、常駐オーバヘッドスクランブラ11A−34にてスクランブルを施されて、最終的に、フレームパターン5がフレームパターン挿入部11A−5にて付加されて、送信データフレームが生成される。
なお、他の動作は、この場合も、基本的に図3(A),図7(A)及び図9(A)により上述した送信部11Sの動作と同様である。
【0084】
一方、受信部11Rは、パイロット信号の挿入箇所を非常駐オーバヘッド部62及びペイロード7とすることに対応して、図12に示すように、図10に示す構成と同様の構成を有している。ただし、この場合、オーバヘッド抽出部11D−6は、常駐オーバヘッド部61と非常駐オーバヘッド部62とを個別に抽出できるようになっており、常駐オーバヘッド情報61はデスクランブラ11D−32へ、非常駐オーバヘッド情報62はデスクランブラ11D−31へそれぞれ出力されるようになっている。
【0085】
また、パイロットパターン検出部11D−2にてパイロット信号が検出されたときには、メモリ部11D−51及び11D−52のそれぞれの保持内容がALL“0”又はALL“1”固定となる。他の動作は図10に示す受信部11Rの動作と同様である。これにより、パイロット信号を非常駐オーバヘッド部62及びペイロード7に挿入する場合においても、正常な信号受信処理を行なうことができる。
【0086】
(A5)トランスポンダ11の第5態様(パイロット信号をオーバヘッド部6の一部(非常駐オーバヘッド部)とペイロードとに挿入する場合)
次に、図13(A)はトランスポンダ11の第5態様〔パイロット信号を図13(B)に示す常駐オーバヘッド部61と非常駐オーバヘッド部62とに挿入する場合〕を示すブロック図で、トランスポンダ11の送信部11Sの構成を示している。なお、この図13(A)においても、既述の符号と同一符号を付したものは、それぞれ、既述のものと同一もしくは同様の機能を有するものである。
【0087】
そして、この場合は、図13(B)に示すように、パイロット信号を常駐オーバヘッド部61と非常駐オーバヘッド部62とに挿入するため、P/S部11A−1とフレームパターン挿入部11A−5との間において、常駐オーバヘッド挿入部11A−22,常駐オーバヘッドスクランブラ11A−34,非常駐オーバヘッド挿入部11A−21,非常駐オーバヘッドスクランブラ11A−33,パイロット信号付加部11A−4の順に、各部が配置され、アイドル状態において常駐オーバヘッド挿入部11A−22の出力がパイロット信号付加部11A−4へバイパスされるようになっている。
【0088】
これにより、本第5態様の送信部11Sでは、アイドル状態のときには、まず、P/S部11A−1の出力が常駐オーバヘッド挿入部11A−22をスルーするとともに、常駐オーバヘッドスクランブラ11A−34をバイパスして、パイロット信号付加部11A−4に入力され、そこで非常駐オーバヘッド情報62の代わりにパイロット信号が挿入され、最終的に、フレームパターン5がフレームパターン挿入部11A−5にて付加されて、パイロット信号を非常駐オーバヘッド部62に有する送信データフレームが生成される。
【0089】
なお、非アイドル状態のときには、ペイロードデータ7は、バイパスルートをとらずに、まず、常駐オーバヘッド挿入部11A−22にて常駐オーバヘッド情報61が付加されたのち、常駐オーバヘッドスクランブラ11A−34に入力され、そこで常駐オーバヘッド部61及びペイロードデータ7の一括スクランブルが施されたのち、非常駐オーバヘッド挿入部11A−21に入力されて、非常駐オーバヘッド情報62が付加される。
【0090】
そして、非常駐オーバヘッド挿入部11A−21の出力(非常駐オーバヘッド情報62,常駐オーバヘッド情報61及びペイロードデータ7から成るデータ)は、非常駐オーバヘッドスクランブラ11A−33に入力されて、そこで非常駐オーバヘッド情報62のスクランブルが施されたのち、パイロット信号付加部11A−4をスルーして常駐オーバヘッド挿入部11A−22に入力され、最終的に、フレームパターン11A−5がフレームパターン挿入部11A−5にて付加されて、送信データフレームが生成される。なお、他の動作は、この場合も、基本的に図3(A),図7(A),図9(A)及び図11(A)により上述した送信部11Sの動作と同様である。
【0091】
また、この場合の受信部11Rの構成及び動作は、第4態様のもの(図12)と同様であるので、その説明は省略する。
(A6)トランスポンダ11の第6態様(パイロット信号を非常駐オーバヘッド部のみに挿入する場合)
次に、図14(A)及び図15はトランスポンダ11の第6態様〔パイロット信号を図14(B)に示す非常駐オーバヘッド部62のみに挿入する場合〕を示すブロック図で、図14(A)はトランスポンダ11の送信部11Sの構成を示すブロック図、図15は同トランスポンダ11の受信部11Rの構成を示すブロック図である。なお、これらの図14(A)及び図15においても、既述の符号と同一符号を付したものは、それぞれ、既述のものと同一もしくは同様の機能を有するものである。
【0092】
そして、この場合は、図14(B)に示すようにパイロット信号をオーバヘッド部6のうち非常駐オーバヘッド部62のみに挿入するため、P/S部11A−1とフレームパターン挿入部11A−5との間において、ペイロードスクランブラ11A−31,非常駐オーバヘッド挿入部11A−21,非常駐オーバヘッドスクランブラ11A−33,パイロット信号付加部11A−4,常駐オーバヘッド挿入部11A−22,常駐オーバヘッドスクランブラ11A−34の順に、各部が配置され、アイドル状態においてP/S部11A−1の出力がパイロット信号付加部11A−4へバイパスされるようになっている。
【0093】
これにより、本第6態様の送信部11Sでは、アイドル状態のときには、まず、P/S部11A−1の出力が、パイロット信号付加部11A−4にバイパスされ、パイロット信号付加部11A−4にて、非常駐オーバヘッド情報62の代わりにパイロット信号が挿入されたのち、常駐オーバヘッド挿入部11A−22にて、常駐オーバヘッド情報61が付加される。
【0094】
その後、常駐オーバヘッド挿入部11A−22の出力は、常駐オーバヘッドスクランブラ11A−34にて常駐オーバヘッド情報61がスクランブルされて、最終的に、フレームパターン挿入部11A−5にて、フレームパターン5が付加され、パイロット信号を非常駐オーバヘッド部62に有する送信データフレームが生成される。
【0095】
なお、非アイドル状態のときには、ペイロードデータ7は、バイパスルートをとらずに、まず、ペイロードスクランブラ11A−31にてスクランブルが施されて、非常駐オーバヘッド挿入部11A−21にて非常駐オーバヘッド情報62が付加されたのち、非常駐オーバヘッドスクランブラ11−33にて非常駐オーバヘッド情報62がスクランブルされる。
【0096】
そして、スクランブル後のデータは、パイロット信号付加部11A−4を通過して、常駐オーバヘッド挿入部11A−22にて常駐オーバヘッド情報61が付加され、常駐オーバヘッドスクランブラ11A−34にてスクランブルされ、最終的に、フレームパターン挿入部11A−5にてフレームパターン11A−5が付加されて、送信データフレームが生成される。なお、他の動作は、この場合も、基本的に図3(A),図7(A),図9(A),図11(A)及び図13(A)により上述した送信部11Sの動作と同様である。
【0097】
一方、受信部11Rは、パイロット信号の挿入箇所を図14(B)に示すようにオーバヘッド部6の非常駐オーバヘッド部62とすることに対応して、図15に示すように、終端LSI11Dに、ペイロードデータ7を抽出するペイロード抽出部11D−7を有するとともに、常駐オーバヘッド情報61と非常駐オーバヘッド情報62とペイロードデータ7とで個別にデスクランブル,S/P変換及びバッファの各処理を行なえるように、ペイロードデータ7用のデスクランブラ11D−31,S/P部11D−41及びメモリ(バッファ)部11D−51と、常駐オーバヘッド情報61用のデスクランブラ11D−32,S/P部11D−42及びメモリ(バッファ)部11D−52と、非常駐オーバヘッド情報62用のデスクランブラ11D−33,S/P部11D−43及びメモリ(バッファ)部11D−53とがそなえられている。なお、他の構成は図3(A)に示すものと同一もしくは同様である。
【0098】
これにより、本第6態様の受信部11Rでは、O/E11Cにおいて得られたデータフレームからペイロード抽出部11D−7にてペイロードデータ7が抽出され、これがデスクランブラ11D−31にてデスクランブルされたのち、S/P部11D−41にてS/P変換されてメモリ部11D−51で一旦保持される。
【0099】
一方、残りの常駐オーバヘッド部61及び非常駐オーバヘッド部62は、それぞれ、対応するデスクランブラ11D−32,11D−33に入力され、そこでデスクランブルされたのち、対応するS/P部11D−42,11D−43にてS/P変換されたのち、対応するメモリ部11D−52,11D−53で一旦保持される。
【0100】
そして、パイロットパターン検出部11D−2にて、非常駐オーバヘッド部62からパイロット信号が検出された場合は、各メモリ11D−51の保持内容がALL“0”又はALL“1”固定とされる。
このようにして、パイロット信号を非常駐オーバヘッド部62に挿入する場合においても、デスクランブル,S/P変換及びバッファの各処理を常駐オーバヘッド部61と非常駐オーバヘッド62とペイロード7とで個別に行なうことで、正常な信号受信処理を行なうことができる。
【0101】
(A7)トランスポンダ11の第7態様(非常駐オーバヘッド部とペイロードとで異なるパイロット信号を挿入する場合)
次に、図16(A)及び図17はトランスポンダ11の第7態様を示すブロック図で、図16(A)はトランスポンダ11の送信部11Sの構成を示すブロック図、図17は同トランスポンダ11の受信部11Rの構成を示すブロック図である。なお、これらの図16(A)及び図17においても、既述の符号と同一符号を付したものは、それぞれ、既述のものと同一もしくは同様の機能を有するものである。
【0102】
そして、この場合は、図16(B)に示すように、非常駐オーバヘッド部62とペイロード7とで異なるパイロット信号“1”,“2”を挿入すべく、P/S部11A−1とフレームパターン挿入部11A−5との間において、ペイロードスクランブラ11A−31,パイロット信号“2”を付加するためのパイロット信号付加部11A−41,非常駐オーバヘッド挿入部11A−21,非常駐オーバヘッドスクランブラ11A−33,パイロット信号“2”を付加するためのパイロット信号付加部11A−42,常駐オーバヘッド挿入部11A−22,常駐オーバヘッドスクランブラ11A−34の順に、各部が配置され、アイドル状態において、P/S部11A−1の出力がパイロット信号付加部11A−41へバイパスされるとともに、非常駐オーバヘッド挿入部11A−21の出力がパイロット信号付加部11A−42へバイパスされるようになっている。
【0103】
これにより、本第7態様の送信部11Sでは、アイドル状態のときには、まず、P/S部11A−1の出力が、パイロット信号付加部11A−41にバイパスされ、パイロット信号付加部11A−41にて、ペイロードデータ7の代わりにパイロット信号“2”が挿入されたのち、非常駐オーバヘッド挿入部11A−22をスルーするとともに、非常駐オーバヘッドスクランブラ11A−34をバイパスしてパイロット信号付加部11A−42に入力されて、パイロット信号付加部11A−42にて、非常駐オーバヘッド情報62の代わりにパイロット信号“1”が付加される。
【0104】
そして、パイロット信号付加部11A−42の出力は、常駐オーバヘッド挿入部11A−22に入力され、そこで常駐オーバヘッド情報61が付加されたのち、その常駐オーバヘッド情報61が常駐オーバヘッドスクランブラ11A−34にてスクランブルされ、最終的に、フレームパターン挿入部11A−5にて、フレームパターン5が付加され、異なるパイロット信号“1”,“2”をそれぞれ非常駐オーバヘッド部62とペイロード7とに有するデータフレームが生成される。
【0105】
このように非常駐オーバヘッド部62とペイロード7とで異なるパイロット信号“1”,“2”を挿入することで、例えば、一方のパイロット信号“2”(パイロット信号周期T2,最大零連許容数N2)で波長のアイドル状態を表示し、他方のパイロット信号“1”(パイロット信号周期T1,最大零連許容数N1)をSAU17(35)でのスペクトルモニタ結果に応じたパワーレベル調整の表示(通知)に利用することが可能となる。
【0106】
なお、非アイドル状態のときには、送信ペイロードデータ7は、バイパスルートをとらずに、まず、ペイロードスクランブラ11A−31にてペイロードスクランブルが施されて、パイロット信号付加部11A−41をスルーして非常駐オーバヘッド挿入部11A−21にて非常駐オーバヘッド情報62が付加されたのち、非常駐オーバヘッドスクランブラ11−33にて非常駐オーバヘッド情報62がスクランブルされる。
【0107】
そして、非常駐オーバヘッド情報62のスクランブル後のデータは、パイロット信号付加部11A−42をスルーして、常駐オーバヘッド挿入部11A−22にて常駐オーバヘッド情報61が付加され、常駐オーバヘッドスクランブラ11A−34にて常駐オーバヘッド情報61のスクランブルが施されたのち、最終的に、フレームパターン挿入部11A−5にてフレームパターン5が付加されて、データフレームが生成される。なお、他の動作は、この場合も、基本的に既述の送信部11Sの動作と同様である。
【0108】
一方、受信部11Rは、上述のごとく非常駐オーバヘッド部62とペイロード7とで異なるパイロット信号“1”,“2”を挿入することに対応して、図17に示すように、終端LSI11Dに、ペイロードデータ7を抽出するペイロード抽出部11D−7と、非常駐オーバヘッド情報62を抽出する非常駐オーバヘッド抽出部11D−8と、ペイロード7に挿入されたパイロット信号“2”を検出するパイロットパターン11D−21と、非常駐オーバヘッド部62に挿入されたパイロット信号“1”を検出するパイロットパターン検出部11D−22とがそなえられている。
【0109】
また、この場合も、常駐オーバヘッド情報61と非常駐オーバヘッド情報62とペイロードデータ7とで個別にデスクランブル,S/P変換及びバッファの各処理を行なえるように、ペイロードデータ7用のデスクランブラ11D−31,S/P部11D−41及びメモリ(バッファ)部11D−51と、常駐オーバヘッド情報61用のデスクランブラ11D−32,S/P部11D−42及びメモリ(バッファ)部11D−52と、非常駐オーバヘッド情報62用のデスクランブラ11D−33,S/P部11D−43及びメモリ(バッファ)部11D−53とがそなえられている。なお、他の構成は既述のものと同一もしくは同様である。
【0110】
このような構成により、本第7態様の受信部11Rでは、O/E11Cにおいて得られたデータフレームからペイロード抽出部11D−7にてペイロードデータ7が抽出され、これがデスクランブラ11D−31にてデスクランブルされたのち、S/P部11D−41にてS/P変換されてメモリ部11D−51に一旦保持される。
【0111】
そして、パイロットパターン検出部11D−21にて、ペイロード抽出部11D−7で抽出されたペイロード7からパイロット信号が検出された場合は、メモリ11D−51の保持内容がALL"0"又はALL"1"とされる。
また、このとき並行して、O/E11Cにおいて得られたデータフレームから非常駐オーバヘッド部62が非常駐オーバヘッド抽出部11D−8にて抽出され、これがデスクランブラ11D−31でデスクランブルされたのち、S/P部11D−43にてS/P変換されてメモリ部11D−53に一旦保持される。
【0112】
そして、パイロットパターン検出部11D−22にて、非常駐オーバヘッド抽出部11D−8で抽出された非常駐オーバヘッド部62からパイロット信号が検出された場合は、メモリ11D−53の保持内容がALL“0”又はALL“1”とされる。
なお、残りの常駐オーバヘッド部61は、対応するデスクランブラ11D−32に入力され、そこでデスクランブルされたのち、S/P部11D−42にてS/P変換されたのち、メモリ部11D−52に一旦保持される。
【0113】
このようにして、非常駐オーバヘッド部62とペイロード7とで異なるパイロット信号“1”,“2”を挿入する場合においても、デスクランブル,S/P変換及びバッファの各処理を常駐オーバヘッド部61と非常駐オーバヘッド62とペイロード7とで個別に行なうことで、正常な信号受信処理を行なうことができる。
【0114】
(B)SAU17,35の詳細説明
次に、以下では、図1及び図2により前述したSAU17,35の詳細について説明する。なお、以下では、端局1におけるSAU17と中継局3におけるSAU35とを区別しない場合、符号を省略して単に「SAU」と表記する。
(B1)SAUの第1態様の説明
図18は上述したSAUの第1態様を示すブロック図で、この図18に示すSAUは、図1(図2)により前述したPD52,増幅器53,フィルタ54,ピーク/ボトムホールド回路55,AD変換器56,CPU57及びDA変換器58をそなえるほか、光シャッタ50,ドライブ回路50A,分岐バッファ部63,AD変換器64,65,DA変換器66,ローパスフィルタ(LPF)68,分岐回路69をそなえるとともに、CPU57の機能として、平均化処理部57−1,57−3,57−5,バイアス調整部57−2,補正係数演算部57−4,差分計算部57−6等をそなえて構成されている。なお、上記のフィルタ54は、この図18においては入力信号の直流成分を除去するコンデンサを用いて実現されており、増幅器53は、AGC(Automatic Gain Controlled)アンプにより構成されている。
【0115】
ここで、上記の光シャッタ50は、前記のモニタ光カプラ15,21,33又は39(図1,図2参照)からの入力WDM信号をドライブ回路50Aからの制御により遮断しうるものであり、LPF68は、PD52の出力(電圧レベルV1)のうち所定の低周波数成分のみを通過させるためのもので、例えば、前述したデータフレームのフレーム周期を8kHzとすると、4kHz以上の周波数成分をカットするようにその通過帯域が設定される。
【0116】
また、分岐回路69は、増幅器53による増幅後の電気信号を二分岐して一方をフィルタ54へ、他方をAD変換器65へそれぞれ出力するものであり、フィルタ54は、前述したように、この分岐回路69からの電気信号(電圧レベルV2)に含まれる直流(DC)成分(主に、ASE光によるもの)及び交流(AC)成分のうち直流成分を除去して交流成分のみを通過させるものである。
【0117】
これにより、パイロット信号が前記のように受信データフレームに挿入されていた場合に、そのパイロット信号成分が受信データフレームから抽出され、そのピーク値とボトム値とがピーク/ボトムホールド回路55にて保持され、それぞれの値がAD変換器56にてディジタル信号に変換されて、CPU57(平均化処理部57−5)に入力されることになるのである。
【0118】
さらに、分岐バッファ部63は、上記のフィルタ54の出力信号を波長多重数分だけ分岐してそれぞれの信号を一時的に保持しながら、後述する波長(チャンネル)毎に設けられたフィルタ部70へ出力するものであり、AD変換器64は、PD52の出力をディジタル信号に変換するものであり、AD変換器65は、分岐回路6の他方の出力をディジタル信号に変換するものであり、バイアス回路67は、DA変換器58でディジタル信号に変換された、CPU57のバイアス調整部57−2で求められたバイアス制御信号に応じてPD52のバイアス電流を調整するものである。
【0119】
そして、CPU57において、平均化処理部57−1は、AD変換器64の出力(つまり、PD52の出力)について平均化処理を施して、PD52の出力電圧レベルV1の平均値を求めるもので、このPD52の出力電圧レベルV1の平均値に基づいて、バイアス調整部57−2にて上記バイアス制御信号が生成されるようになっている。なお、この際、バイアス調整部57−2では、PD52の出力電圧レベルV1の平均値とバイアス制御信号の電圧レベルとから受信WDM信号のトータルパワーP0が計算される。
【0120】
また、平均化処理部57−3は、AD変換器65によってディジタル信号に変換された、分岐回路69の出力(つまり、増幅器53の出力)について平均化処理を施して、増幅器53の増幅出力(電圧レベルV2)の平均値を求めるものであり、補正係数演算部57−4は、この平均化処理部57−3で求められた増幅出力電圧レベルV2の平均値について後述する係数補正処理を施して、増幅出力電圧レベルV2の補正値P1を求めるものである。
【0121】
さらに、平均化処理部57−5は、上述したごとくAD変換器56によりディジタル信号に変換された、パイロット信号成分のピーク値及びボトム値について平均化処理を施すものであり、差分計算部57−6は、これらのピーク値及びボトム値の各平均値の差分を計算することにより、パイロット信号成分の振幅情報P3を求めるものである。なお、上記のP1,P3を用いてP1/P3なる演算を行なうことにより、平均変調度が求められる(これは、増幅器53のゲイン及びバイアス調整部57−2によるバイアス調整量の調整に用いられる)。
【0122】
さて次に、上述したチャンネル毎に設けられたフィルタ部70は、例えば図20(A)に示すように、それぞれ、バンドパスフィルタ(BPF)71,直流変換部72,AD変換器73及び平均化処理部74をそなえて構成される。
ここで、BPF71は、WDM信号のチャンネル(CH)数をn(nは2以上の整数)とすると、分岐バッファ部63からの出力信号のうちチャンネルx(x=1〜n)に相当する信号の周波数成分のみを通過させるものであり、直流変換部72は、このBPF71を通過してきたチャンネルxの周波数成分を直流信号に変換するものである。
【0123】
AD変換器73は、このチャンネルxの直流信号をディジタル信号に変換するものであり、平均化処理部74は、このAD変換器73によって得られたチャンネルxのディジタル信号について平均化処理を施して、チャンネルxのディジタル信号の平均値(CHx生データ)を求めるものである。
つまり、上述したローパスフィルタ68及び各フィルタ部70(バンドパスフィルタ71)は、PD52からの電気信号のうち、送信データの無いアイドル波長の光信号にて送信されてくる当該アイドル波長に固有のパイロット信号成分を通過させるパイロット信号検出用フィルタ部としての機能を果たしていることになるのである。なお、上述したフィルタ部70の各機能は、CPU57の一機能として実現される。
【0124】
以上のような構成により、本実施形態のSAUでは、次のようにして、受信WDM信号の各チャンネルのパワー,OSNR,平均OSNRを測定することができる。
即ち、光シャッタ50を通じて受信されたWDM信号は、PD52にて電気信号(電圧レベルV1)に変換されたのち、LPF68にて4kHz以上の周波数成分がカットされて増幅器53に入力され、増幅器53にて増幅される。なお、PD52の出力はPD52のバイアスフィードバック制御のためにAD変換器64及び平均化処理部57−1を経由してバイアス調整回路57−2へ入力される。
【0125】
また、上記の増幅器53の出力は、分岐回路69に二分岐されて、AD変換器65とフィルタ54とにそれぞれ出力され、AD変換器65では、増幅後の出力電圧レベルV2をディジタル信号に変換して、平均化処理部57−3へ出力する。これにより、出力電圧レベルV2の平均値が平均化処理部57−3にて求められ、補正係数演算部57−4にて、その平均値の補正値P1が求められる。
【0126】
一方、フィルタ54では、分岐回路69からの入力信号の交流成分(パイロット信号成分)のみを通過させて、ピーク/ボトムホールド回路55と分岐バッファ部63とにそれぞれ出力する。これにより、ピーク/ボトムホールド回路55では、パイロット信号成分のピーク値とボトム値とが保持され、これらのピーク値及びボトム値がそれぞれAD変換器56にてディジタル信号に変換され、平均化処理部57−5においてその平均値が求められたのち、各平均値の差分が差分計算部57−6にて計算されて、パイロット信号の振幅情報P3が求められる。
【0127】
また、分岐バッファ部63へ出力された信号は、分岐バッファ部63にてnチャンネル分だけ分岐されて、それぞれが、フィルタ部70へ入力され、BPF71,直流変換部72,AD変換部73及び平均化処理部74により、CHx生データがそれぞれ得られる。得られた各CHx生データは、CPU57により、図22(A)に示すような係数補正処理に用いられる。
【0128】
即ち、上記のフィルタ部70をチャンネル数分並列して設ける場合には、各フィルタ部70での回路変換効率によるバラツキ(偏差)を補正する必要があるので、CPU57は、上記の各CHx生データに対して係数Kx(P0)を乗じることにより、WDM信号の各チャンネルパワーPchxを求めるのである。なお、係数Kx(P0)は、PD52のバイアス調整により電圧レベルV1が変化することを考慮して、バイアス調整部57−2にて求められるトータルパワーP0の関数として表されることを意味し、実質はトータルパワーP0と定数との積で表される。
【0129】
そして、CPU57は、図22(B)に示すように、上述のごとく得られた個々のチャンネルパワーPchx(P31)を、トータルパワーP0から各チャンネルパワーPchxの総和を減じたものに補正係数B1(B1=1チャンネル当たりのグリッド幅/EDF利得帯域幅)を乗じた値P11で除算することにより、各チャンネルのOSNRを求めることができる。
【0130】
また、CPU57は、図22(C)に示すように、各チャンネルパワーPchxの総和(P3)を、トータルパワーP0から各チャンネルパワーPchxの総和を減じたものに補正係数B2(B2=チャンネルグリッド幅×最大波長数/EDF利得帯域幅)を乗じた値P12で除算することにより、WDM信号の平均OSNRを求めることができる。
【0131】
なお、上述したフィルタ部70は、例えば図20(B)に示すように構成することもできる。即ち、この図20(B)に示すフィルタ部70は、BPF71,ピークホールド回路72A,ボトムホールド回路72B,AD変換部73A,73B,平均化処理部74A,74B及び差分計算部75をそなえて構成され、BPF71を通過するパイロット信号成分のピーク値をピークホールド回路72A、ボトム値をボトムホールド回路72Bにてそれぞれ保持し、これらのピーク値及びボトム値をそれぞれ対応するAD変換器73A,73Bでディジタル信号に変換し、それらの平均値を平均化処理部74A,74Bにて求めたのち、各平均値の差分を差分計算部75にて求めるのである。
【0132】
このようにすれば、図20(A)に示す構成に比して、より精度の良いCHx生データを得ることが可能である。
また、通過帯域固定のBPF71ではなく、通過帯域可変のBPFを用いれば、上述のごとく全チャンネル分並列にフィルタ部70を設ける必要はない。理論的には、1つの可変BPFを用いた1つのフィルタ部70で全チャンネルの帯域幅をカバーすることも考えられるが、この場合、可変BPFの通過帯域の掃引幅が大きくなるので、測定時間が長くなってしまうことになる。
【0133】
そこで、WDM信号の波長帯域を複数に分割して、それぞれの分割波長帯域をカバーする可変BPFを用いたフィルタ部70であれば、測定時間の増大を抑止しつつ、全チャンネル数よりも大幅に少ない数のフィルタ部70で、必要なCHx生データを得ることができる。
例えば、WDM信号の波長帯域を3分割した場合、フィルタ部70は、例えば図21に示すように、それぞれ、可変BPF71′,直流変換部72,AD変換部73,平均化処理部74,メモリ76及び係数乗算部77を有し、分割波長帯域において通過設定されて可変BPF71′を通過するパイロット信号から得られるCHx生データをチャンネル別にメモリ76に保持する構成をもつ3系統のフィルタ部70を用意すればよい。
【0134】
ただし、この場合も、フィルタ部70が複数並列して設けられることになるので、異なる分割波長帯域間での回路誤差を考慮する必要がある。かかる回路誤差を補正するのが係数乗算部(誤差補正部)77である。即ち、係数乗算部77は、初期動作時にモニタされる同じチャンネルについてのCHx生データを全フィルタ部70で測定し、全フィルタ部70での測定結果が等しくなる係数(誤差補正係数)を保持しておき、この係数をその後の運用において検出されるCHx生データの回路誤差の補正に用いるのである。なお、図21では、最上段の係数乗算部77に係数1、中段の係数乗算部77に係数G1、最下段の係数乗算部77に係数G2がそれぞれ保持されていることを示している。
【0135】
つまり、この場合は、スペクトル測定手段として機能するCPU57が、初期動作時に同じチャンネルのパイロット信号成分についての可変BPF71′の出力がそれぞれ同じとなる誤差補正係数を算出する誤差補正係数算出部としての機能を有し、運用時においてこの誤差補正係数算出部で算出された誤差補正係数に基づいて可変BPF71′の各出力について誤差補正処理を係数乗算部77にて行なうようになっているのである。
【0136】
ところで、上記のパイロット信号は、項目(A)にて前述したように、オーバヘッド部6(例えば、非常駐オーバヘッド部62)を用いて常時送信する場合には、全チャンネルについて常時受信側で検出することが可能であるが、ペイロード7のみを用いて送信する場合のように、アイドル状態のチャンネルについてのみ送信する場合には、使用中状態(ペイロード7に送信データが格納されている場合)のチャンネルについてはパイロット信号が検出されない。
【0137】
このような場合にも、上述したスペクトル測定を行なえるようにするためには、使用中チャンネルについてはアイドル時に検出したパイロット信号成分(CHx生データ)を保持しておく必要がある。そこで、例えば図23に示すように、上述した係数補正処理によって得られたチャンネルパワーPchxをそれぞれレジスタ(保持回路)83で保持しておくようにする。
【0138】
そして、その後に得られる現チャンネルパワーPchxと、パイロット検出レベルしきい値保持部81に保持されたチャンネルパワーPchxについてのしきい値とを比較器82にて比較し、現チャンネルパワーPchxがしきい値以下であれば、パイロット信号が検出されていないものとして、比較器82の出力を書き込み禁止信号としてレジスタ83に供給し、レジスタ83に保持された前回測定のチャンネルパワーPchxの上書きを防止する。
【0139】
これにより、或るチャンネルが使用中でそのパイロット信号が不可避的に消失(検出不可)することによるスペクトル測定に対する影響を回避することができ、CPU57は、同時期に全チャンネルについてパイロット信号がリアルタイムに検出できなかったとしても、WDM信号のスペクトル計測を正常に実施することができる。
【0140】
つまり、本実施形態のCPU57は、上記のレジスタ83に保持された、各チャンネルの光信号がアイドル状態のときの各チャンネルパワーPchx(振幅情報)に基づいて各チャンネルのOSNRを計算する光信号品質計算部としての機能も果たしているのである。
(B2)SAUの第2態様の説明
次に、図19はSAUの第2態様を示すブロック図で、この図19に示すSAUは、図18に示すものに比して、フィルタ54の入出力側の信号のそれぞれについて、ピーク/ボトムホールド回路55A,55Bと、AD変換器56A,56Bがそなえられるとともに、CPU57の機能として、平均化処理部57A−5,57B−5,差分計算部57A−6,57B−6,57C−6,演算部57−7がそなえられている点が異なる。
【0141】
ここで、ピーク/ボトムホールド回路55Aは、フィルタ54での直流成分除去前の増幅器53の出力(電圧レベルV2)のピーク値とボトム値とを保持するものであり、AD変換器56Aは、このピーク/ボトムホールド回路55Aで保持されたピーク値及びボトム値をそれぞれディジタル信号に変換するものである。
【0142】
また、ピーク/ボトムホールド回路55B及びAD変換器56Bは、図18により前述したピーク/ボトムホールド回路55及びAD変換器56とそれぞれ同様のもので、ピーク/ボトムホールド回路55Bにて、フィルタ54での直流成分除去後の増幅器出力(つまり、パイロット信号成分)のピーク値とボトム値とが保持され、これらのピーク値及びボトム値がそれぞれAD変換器56Bにてそれぞれディジタル信号に変換されるようになっている。
【0143】
そして、CPU57において、平均化処理部57A−5は、上記の各AD変換器56A,56Bによって得られたディジタル信号(フィルタ54の入出力信号についての2組のピーク値及びボトム値)の平均値を求めるものであり、平均化処理部57B−5は、AD変換器56Bによって得られたディジタル信号(フィルタ54の出力信号(パイロット信号成分)についてのピーク値及びボトム値の各平均値を求めるものである。
【0144】
また、差分計算部57A−6は、平均化処理部57A−5で得られた2組の平均値のうち互いに異なる組に属するピーク値平均値とボトム値平均値との差分を計算して振幅情報P21を得るものであり、差分計算部57B−6は、残りのピーク値平均値とボトム値平均値との差分を計算して振幅情報P22を得るものである。
【0145】
なお、平均化処理部57B−5及び差分計算部57C−6は、それぞれ、図18により前述したものと同様のもので、この場合も、平均化処理部57B−5にて、AD変換器56Bにてディジタル信号に変換されたパイロット信号成分のピーク値及びボトム値の平均値がそれぞれ求められ、差分計算部57C−6にて、これらのピーク値平均値とボトム値平均値の差分を計算して振幅情報P3を得るものである。
【0146】
そして、演算部57−7は、上記差分計算部57A−6,57B−6で得られた振幅情報P21,P22について、(P21+P22)/2なる演算を行なうことにより、これらの振幅情報P21,P22の平均値P1を求めるとともに、この平均値P1と、差分計算部57C−6で得られた振幅情報P3とを用いて、P3/P1なる演算を行なうことにより、バイアス調整部57−2によるPD52のバイアス調整のために用いられる変調度を求めることができるものである。なお、
つまり、本第2態様のSAUは、フィルタ54での直流成分除去前後の信号のピーク値及びボトム値の各平均値に基づいて、より精度の高いPD52のバイアス調整を行なえるようになっているのである。したがって、スペクトル計測自体の精度も向上する。なお、CPU57によるスペクトル計測自体は図22(A)〜図22(C)により前述した計測手法と同様の手法によって行なわれる。また、フィルタ部70の構成も、図20(A),図20(B)又は図21に示す構成と同様で良いし、アイドル時のチャンネルパワーPchxをレジスタ83(図23参照)に保持しておく構成についても同様で良い。
【0147】
(C)その他
ところで、上述した実施形態において、或るチャンネルが光入力断となった場合は、上述したパイロット信号を検出できないが、そのチャンネルは使用可能であることから、例えば図25に示すように、WDM伝送装置の各波長(チャンネル)の入力ポート毎に、各チャンネルの光信号を分岐してSAU35に入力する光入力断検出用カプラ30Bを設け、SAU35において光入力断が検出されれば、その光入力断検出情報をOSCにより上流側(OADMノード等)へ送信するようにしてもよい。これにより、上記光入力断検出情報を受信した他ノードは、下流側で光入力断状態となっているチャンネルを他の通信に使用できるか判断して、チャンネルの使用を調停することができる。
【0148】
なお、図25において、既述の符号と同一符号を付したものはそれぞれ既述のものと同一もしくは同様のものであり、30Aは各チャンネルの光信号のレベルを調整する光可変減衰器を示し、30CはSAU35からの通知情報(上記光断検出情報,SAU35で検出した自ノードの使用波長情報等)とOSC部36aで検出される下流側からのビジー情報(どのチャンネルが下流側ノードで使用中かを示す情報)との論理和をとるOR回路30Cを示す。
【0149】
つまり、図25に示す構成では、下流側ノード(OADMノード等)で或るチャンネルを使用していることをOSCにより上流側ノードへ通知することができ、その上流側ノードでは、当該チャンネルが未使用であると判断して使用してしまうことを回避することができる(SAU35でモニタされた使用波長状況とOSCにより得た下流側の使用波長状況とに基づいて使用チャンネルを調停することができる)。
【0150】
また、上記の光入力断検出は、光入力断検出用カプラ30Bを設けなくても、上述したパイロット信号を利用して実現することもできる。即ち、パイロット信号の送信側において、各チャンネルの最大使用時間を予め規定しておき、その規定時間を経過したチャンネルについては、アイドル状態にしてパイロット信号を一定時間送信するようにし、受信側のSAUでは、例えば図24に示すように、図23に示す構成に加えて、レジスタ84とタイマ85とを設け、レジスタ83に対する書き込み禁止状態がタイマ85により計時される上記規定時間継続すると、レジスタ83と同じ情報(チャンネルパワーPchx)を保持しているレジスタ84の保持内容を光入力断検出情報に書き換えるようにするのである。
【0151】
これにより、SAUでは、上記規定時間が経過してもパイロット信号が検出されないチャンネルは光入力断状態であると判断することができるので、光入力断検出用カプラ30Bを用いる必要がなくなる。
さらに、前述したトランスポンダ11の送信部11S(図3,図7,図9,図11,図13,図14又は図16参照)は、例えば図26に示すように、受信部11R(図4,図8,図10,図12,図15又は図17参照)においてパイロット信号が検出されると、送信データフレームへのパイロット信号の挿入を停止することで、その旨を下流側ノードへ通知するようにしてもよい。
【0152】
つまり、トランスポンダ11に、受信部11Rのパイロットパターン検出部(パイロット信号検出手段)11D−2(あるいは、11D−21,11D−22)でパイロット信号が検出されると、そのパイロット信号に対応する波長の光信号についてのパイロット信号付加部11A−4(あるいは、11A−41,11A−42)によるパイロット信号の付加を停止して、E/O部11Bによるパイロット信号の送信を停止するパイロット信号送信停止手段を設けるのである。
【0153】
これにより、OSCによらずにWDM信号の波長使用状況を下流側ノードへ通知することが可能となる(OSCの容量肥大化を抑制できる)。なお、この場合、送信方向と反対方向とで異なるパイロット信号を用意し、例えば、一方をオーバヘッド部6に格納する送信方向のアイドル状態表示に用い、他方をペイロード7に格納する反対方向のアイドル状態表示に用いるのが好ましい。
【0154】
そして、本発明は上述した実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
(D)付記
(付記1) 複数の波長の光信号が波長多重された波長多重光信号を伝送する複数の波長多重伝送装置をそなえた波長多重伝送システムであって、
該波長多重光信号を送信する送信側の波長多重伝送装置が、
該波長多重光信号に波長多重される光信号を用いて送信すべき送信データの有無を識別する送信データ有無識別手段と、
該送信データ有無識別手段により該光信号を用いて送信すべき該送信データが無いと識別されると、当該光信号の波長に固有のパイロット信号データを該光信号にて送信するパイロット信号送信手段とをそなえ、且つ、
該波長多重光信号を受信する受信側の波長多重伝送装置が、
受信した該波長多重光信号から該パイロット信号データを検出するパイロット信号検出手段と、
該パイロット信号検出手段での該パイロット信号データの検出結果に基づいて各波長の光信号の使用/未使用状態を判別する使用波長判別手段とをそなえて構成されたことを特徴とする、波長多重伝送システム。
【0155】
(付記2) 複数の波長の光信号が波長多重された波長多重光信号を伝送する波長多重伝送システムに使用される波長多重伝送装置であって、
該波長多重光信号に波長多重される光信号を用いて送信すべき送信データの有無を識別する送信データ有無識別手段と、
該送信データ有無識別手段により該光信号を用いて送信すべき該送信データが無いと識別されると、当該光信号の波長に固有のパイロット信号データを該光信号にて送信するパイロット信号送信手段とをそなえたことを特徴とする、波長多重伝送装置。
【0156】
(付記3) 該パイロット信号送信手段が、
該送信データをオーバヘッド部とペイロード部とを有するフレーム信号の該ペイロードに格納して該フレーム信号を組み立てるフレーム組立部をそなえ、
該フレーム組立部が、
該送信データ有無識別手段により該光信号を用いて送信すべき該送信データが無いと識別されると、少なくとも該オーバヘッド部及び該ペイロード部のいずれかに該パイロット信号データを格納するパイロット信号付加部をそなえて構成されたことを特徴とする、付記2記載の波長多重伝送装置。
【0157】
(付記4) 該パイロット信号付加部が、
該ペイロード部に該パイロット信号データを格納するように構成されたことを特徴とする、付記3記載の波長多重伝送装置。
(付記5) 該パイロット信号付加部が、
該オーバヘッド部に該パイロット信号データを格納するように構成されたことを特徴とする、付記3記載の波長多重伝送装置。
【0158】
(付記6) 該パイロット信号付加部が、
該オーバヘッド部及び該ペイロード部の双方に該パイロット信号データを格納するように構成されたことを特徴とする、付記3記載の波長多重伝送装置。
(付記7) 該パイロット信号付加部が、
該オーバヘッド部の未使用領域に該パイロット信号データを格納するように構成されたことを特徴とする、付記5又は6に記載の波長多重伝送装置。
【0159】
(付記8) 該パイロット信号付加部が、
該オーバヘッド部及び該ペイロード部からなる領域に複数種類のパイロット信号データを格納するように構成されたことを特徴とする、付記3記載の波長多重伝送装置。
(付記9) 該パイロット信号送信手段が、
該送信データの送信に使用している波長の光信号について所定の最大使用時間時間を経過すると、該送信データの送信を停止して当該波長の光信号を未使用状態とし当該光信号により該パイロット信号データを一定時間送信するように構成されたことを特徴とする、付記2記載の波長多重伝送装置。
【0160】
(付記10) 複数の波長の光信号が波長多重された波長多重光信号を伝送する波長多重伝送システムに使用される波長多重伝送装置であって、
受信した該波長多重光信号から、送信データが無い波長の光信号にて送信されてくる当該波長に固有のパイロット信号データを検出するパイロット信号検出手段と、
該パイロット信号検出手段での該パイロット信号データの検出結果に基づいて各波長の光信号の使用/未使用状態を判別する使用波長判別手段とをそなえたことを特徴とする、波長多重伝送装置。
【0161】
(付記11) 該使用波長判別手段で未使用状態と判別された波長の光信号に他の送信データを載せて他の波長多重伝送装置へ送信する光送信手段をさらにそなえたことを特徴とする、付記10記載の波長多重伝送装置。
(付記12) 該使用波長判別手段での判別結果を他の波長多重伝送装置に通知する使用波長通知手段をさらにそなえたことを特徴とする、付記10記載の波長多重伝送装置。
【0162】
(付記13) 該使用波長通知手段が、
該波長多重光信号のうち予め監視制御情報の送受のために割り当てられている波長の光信号を用いて該使用波長判別手段での判別結果を該他の波長多重伝送装置へ通知する監視制御情報送信部として構成されていることを特徴とする、付記12記載の波長多重伝送装置。
【0163】
(付記14) 該パイロット信号検出手段が、
各波長の光信号を受光してその光パワーに応じた電気信号を出力する光電変換部と、
該光電変換部からの電気信号のうち、送信データが無い未使用波長の光信号にて送信されてくる当該未使用波長に固有のパイロット信号データ成分を通過させるパイロット信号検出用フィルタ部とをそなえるとともに、
該波長多重伝送装置が、
該パイロット信号検出用フィルタ部を通過する該パイロット信号データ成分の振幅情報に基づいて該波長多重光信号の各波長のスペクトルを測定するスペクトル測定手段をそなえたことを特徴とする、付記10記載の波長多重伝送装置。
【0164】
(付記15) 該スペクトル測定手段が、
該振幅情報を波長別に保持する保持回路と、
該保持回路に保持された、各波長の光信号が未使用状態のときの各振幅情報に基づいて該波長多重光信号の光信号品質を計算する光信号品質計算部とをそなえたことを特徴とする、付記14記載の波長多重伝送装置。
【0165】
(付記16) 該波長多重光信号の各波長の光信号の入力断状態を検出する入力断検出手段と、
該入力断検出部で該入力断状態が検出されると、その旨を他の波長多重伝送装置に通知する入力断通知手段とをさらにそなえたことを特徴とする、付記10記載の波長多重伝送装置。
【0166】
(付記17) 他の波長多重伝送装置が、送信データの送信に使用している波長の光信号について所定の最大使用時間を経過すると、該送信データの送信を停止して当該波長の光信号を未使用状態とし当該光信号により該パイロット信号データを一定時間送信するように構成されている場合に、
該使用波長判別手段が、
該一定時間を経過しても該パイロット信号データが検出されないと、当該パイロット信号データに対応する波長の光信号が入力断状態であると判断する入力断判断部をそなえたことを特徴とする、付記10記載の波長多重伝送装置。
【0167】
(付記18) 複数の波長の光信号が波長多重された波長多重光信号を伝送する波長多重伝送システムに使用される波長多重伝送装置であって、
該波長多重光信号に波長多重される光信号を用いて送信すべき送信データの有無を識別する送信データ有無識別手段と、該送信データ有無識別手段により該光信号を用いて送信すべき該送信データが無いと識別されると、当該光信号の波長に固有のパイロット信号データを該光信号にて他の波長多重伝送装置へ送信するパイロット信号送信手段とを有する送信部と、
該他の波長多重伝送装置から受信した波長多重光信号からパイロット信号データを検出するパイロット信号検出手段と、該パイロット信号検出手段での該パイロット信号データの検出結果に基づいて各波長の光信号の使用/未使用状態を判別する使用波長判別手段とを有する受信部と、
該受信部の該パイロット信号検出手段で該パイロット信号データが検出されると、当該パイロット信号データに対応する波長の光信号についての該パイロット信号送信手段による該パイロット信号データの送信を停止するパイロット信号送信停止手段とをそなえたことを特徴とする、波長多重伝送装置。
【0168】
(付記19) 複数の波長の光信号が波長多重された波長多重光信号を伝送する波長多重伝送システムに使用される波長多重伝送装置であって、
該波長多重光信号の各波長の光信号を受光してその光パワーに応じた電気信号を出力する光電変換部と、該光電変換部からの電気信号のうち、送信データが無い未使用波長の光信号にて送信されてくる当該未使用波長に固有のパイロット信号データ成分を通過させるパイロット信号検出用フィルタ部とを有するパイロット信号検出手段と、
該パイロット信号検出用フィルタ部を通過する該パイロット信号データ成分の振幅情報に基づいて該波長多重光信号の各波長のスペクトルを測定するスペクトル測定手段とをそなえたことを特徴とする、波長多重伝送装置。
【0169】
(付記20) 該パイロット信号検出用フィルタ部が、
該光電変換部からの電気信号のうち該パイロット信号データ成分よりも高い周波数成分を遮断するローパスフィルタと、
該波長多重光信号の各波長に固有のパイロット信号データに対応して設けられ、それぞれ、該ローパスフィルタの出力のうち該波長に固有のパイロット信号データ成分を通過させる固定波長帯域のバンドパスフィルタとをそなえて構成されたことを特徴とする、付記19記載の波長多重伝送装置。
【0170】
(付記21) 該パイロット信号検出用フィルタ部が、
該光電変換部からの電気信号のうち該パイロット信号データ成分よりも高い周波数成分を遮断するローパスフィルタと、
該波長多重光信号の波長帯域を複数の波長帯域に分割したときの分割波長帯域に対応して設けられ、それぞれ、該ローパスフィルタの出力のうち該分割波長帯域に含まれる波長に対応する該パイロット信号データ成分を通過させる複数の可変波長帯域のバンドパスフィルタとをそなえて構成されたことを特徴とする、付記19記載の波長多重伝送装置。
【0171】
(付記22) 該スペクトル測定手段が、
初期動作時において同じ波長のパイロット信号データ成分についての該可変バンドフィルタの出力がそれぞれ同じとなる誤差補正係数を算出する誤差補正係数算出部と、
運用時において該誤差補正係数算出部で算出された該誤差補正係数に基づいて該可変波長帯域のバンドパスフィルタの各出力について誤差補正処理を行なう誤差補正部とをそなえたことを特徴とする、付記21記載の波長多重伝送装置。
【0172】
(付記23) 該スペクトル測定手段が、
該振幅情報を波長別に保持する保持回路と、
該保持回路に保持された、各波長の光信号が未使用状態のときの各振幅情報に基づいて各波長の光信号品質を計算する光信号品質計算部とをそなえたことを特徴とする、付記19記載の波長多重伝送装置。
【0173】
【発明の効果】
以上詳述したように、本発明によれば、次のような効果ないし利点が得られる。
(1)送信側の波長多重(WDM)伝送装置から、波長多重光信号(WDM信号)に波長多重される光信号に載せる送信データが無い未使用状態の波長を用いて当該光信号の波長に固有のパイロット信号データを送信し、受信側のWDM伝送装置において、そのパイロット信号データを検出することで、WDM信号の波長使用状況を識別することができるので、その波長使用状況に応じたアクティブな通信制御が可能となる。例えば、上記の波長使用状況をOSCにより他のWDM伝送装置に通知することで、そのWDM伝送装置において未使用波長を用いた別の通信が可能となる。
【0174】
(2)受信WDM信号をその光パワーに応じた電気信号に変換し、その電気信号のうち、各波長の光信号にて送信されてくる当該波長に固有のパイロット信号データ成分をパイロット信号検出用フィルタ部(ローパスフィルタ及びバンドパスフィルタ)によって通過させ、その通過成分の振幅情報に基づいてWDM信号の各波長のスペクトルを測定するので、高価な光学回路を用いずに、WDM信号のスペクトル測定を行なうことができる。
【0175】
(3)スペクトル測定の際、送信データの無い未使用状態の波長の光信号にてパイロット信号データを送信する場合に、上記振幅情報を保持回路にて波長別に保持しておき、各波長の光信号が未使用状態のときの各振幅情報に基づいてWDM信号の光信号品質を計算することもできるので、たとえ同時期に全チャンネルについてパイロット信号がリアルタイムに検出できなかったとしても、WDM信号のスペクトル計測を正常に実施することができる。
【0176】
(4)送信データの送信に使用している波長の光信号について所定の最大使用時間を経過すると、その送信データの送信を停止して当該波長の光信号を未使用状態とし当該光信号により該パイロット信号データを一定時間送信するようにし、この一定時間を経過してもパイロット信号データが受信側で検出されないと、そのパイロット信号データに対応する波長の光信号が入力断状態であると判断することもできるので、専用の入力断検出機能を用いずに上記パイロット信号データを利用して同等の機能を実現できる。
【0177】
(5)WDM信号の波長帯域を複数の波長帯域に分割し、それらの分割波長帯域について可変バンドパスフィルタを用いて各波長に対応するパイロット信号データを検出する場合に、初期動作時において同じ波長のパイロット信号データ成分についての可変バンドフィルタの出力がそれぞれ同じとなる誤差補正係数を算出し、運用時においてその誤差補正係数に基づいて可変バンドパスフィルタの各出力について誤差補正を行なうこともできるので、可変バンドパスフィルタを波長数分並列して設けた場合の波長間の検出誤差を補正して、より精度の高いスペクトル測定を行なうことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態としてのWDM伝送システムに使用される端局装置の構成を示すブロック図である。
【図2】本発明の一実施形態としてのWDM伝送システムに使用される中継局の構成を示すブロック図である。
【図3】(A)は図1に示すトランスポンダ(送信部)の第1態様を示すブロック図、(B)は(A)に示す構成におけるデータフレーム中のパイロット信号挿入箇所を説明するための図である。
【図4】図1に示すトランスポンダ(受信部)の第1態様を示すブロック図である。
【図5】図3(A)に示すパイロット信号付加部の構成を示すブロック図である。
【図6】本実施形態において用いるパイロット信号の送信タイミングを説明するための図である。
【図7】(A)は図1に示すトランスポンダ(送信部)の第2態様を示すブロック図、(B)は(A)に示す構成におけるデータフレーム中のパイロット信号挿入箇所を説明するための図である。
【図8】図1に示すトランスポンダ(受信部)の第2態様を示すブロック図である。
【図9】(A)は図1に示すトランスポンダ(送信部)の第3態様を示すブロック図、(B)は(A)に示す構成におけるデータフレーム中のパイロット信号挿入箇所を説明するための図である。
【図10】図1に示すトランスポンダ(受信部)の第3態様を示すブロック図である。
【図11】(A)は図1に示すトランスポンダ(送信部)の第4態様を示すブロック図、(B)は(A)に示す構成におけるデータフレーム中のパイロット信号挿入箇所を説明するための図である。
【図12】図1に示すトランスポンダ(受信部)の第4態様を示すブロック図である。
【図13】(A)は図1に示すトランスポンダ(送信部)の第5態様を示すブロック図、(B)は(A)に示す構成におけるデータフレーム中のパイロット信号挿入箇所を説明するための図である。
【図14】(A)は図1に示すトランスポンダ(送信部)の第6態様を示すブロック図、(B)は(A)に示す構成におけるデータフレーム中のパイロット信号挿入箇所を説明するための図である。
【図15】図1に示すトランスポンダ(受信部)の第6態様を示すブロック図である。
【図16】(A)は図1に示すトランスポンダ(送信部)の第7態様を示すブロック図、(B)は(A)に示す構成におけるデータフレーム中のパイロット信号挿入箇所を説明するための図である。
【図17】図1に示すトランスポンダ(受信部)の第7態様を示すブロック図である。
【図18】図1及び図2に示すSAUの第1態様を示すブロック図である。
【図19】図1及び図2に示すSAUの第2態様を示すブロック図である。
【図20】(A)及び(B)はいずれも図18及び図19に示す分岐バッファ部の出力側に設けられるフィルタ部の構成を示すブロック図である。
【図21】図18及び図19に示す分岐バッファ部の出力側に設けられるフィルタ部の構成を示すブロック図である。
【図22】(A)〜(C)はいずれも図18及び図19に示すCPUによるスペクトル測定方法を説明するための図である。
【図23】図18及び図19に示すCPUのチャンネルパワー上書き禁止機能を説明するためのブロック図である。
【図24】図18及び図19に示すCPUの光入力断状態検出機能を説明するためのブロック図である。
【図25】図19に示すSAUによる光入力断状態検出時の動作を説明するためのブロック図である。
【図26】本実施形態に係るパイロット信号検出時の送信側パイロット信号停止機能を説明するためのブロック図である。
【図27】既存の波長多重(WDM)伝送システムの一例を示すブロック図である。
【図28】図27に示す端局の構成を示すブロック図である。
【図29】図28に示す中継局の構成を示すブロック図である。
【符号の説明】
1 端局装置
3 中継局
5 フレームパターン
6 オーバヘッド部
7 ペイロード
11 トランスポンダ
11S 送信部
11A フレーム組立部
11A−1 P/S部
11A−2 オーバヘッド挿入部
11A−3,11A−33,11A−34 スクランブラ
11A−4 パイロット信号付加部
11A−5 フレームパターン挿入部
11A−6 パルスジェネレータ(PG)部
11A−21 非常駐オーバヘッド挿入部
11A−22 常駐オーバヘッド挿入部
11A−31 ペイロードスクランブラ
11A−32 オーバヘッドスクランブラ
11A−41,11A−42 パイロット信号付加部
11B E/O部
11B−1 光変調部
11B−2 LD(レーザダイオード)
11R 受信部
11C O/E部
11C−1 PD
11C−2 バイアス回路
11C−3 前置増幅器
11C−4 等化フィルタ
11C−5 タイミング抽出部
11C−6 データ抽出部
11D 終端LSI
11D−1 フレームタイミング抽出部
11D−2,11D−21,11D−22 パイロットパターン検出部
11D−3,11D−31,11D−32,11D−33 デスクランブラ
11D−4,11D−41,11D−42,11D−43 S/P部
11D−5,11D−51,11D−52,11D−53 メモリ(バッファ)部
11D−6 オーバヘッド抽出部
11D−7 ペイロード抽出部
11D−8 非常駐オーバヘッド抽出部
12,30A 光可変減衰器
13 波長多重部(合波カプラ)
14,20 光増幅器
32,38 光増幅器
15,21 モニタ光分岐カプラ
16,34,40 OSC光挿入カプラ
17,35(35a,35b) SAU
18,36a,36b OSC部
19,31,37 OSC光分岐カプラ
22 波長分離部(分波カプラ)
30B 光入力断検出用カプラ
30C,43 OR回路
41 ペイロードALL零検出部
42 保護タイマ
44 N進カウンタ
45 T/N周期タイマ
46 パルス生成部
47 セレクタ(SEL)
50 光シャッタ
50A ドライブ回路
51 スイッチ
52 フォトダイオード(PD;光電変換部)
53 増幅器
54 フィルタ
55,55A,55B ピーク/ボトムホールド回路
56,56A,56B,64,65,73,73A,73B AD変換器
57 CPU
57−1,57−3,57−5,57A−5,57B−5,74,74A,74B 平均化処理部
57−2 バイアス調整部
57−4 補正係数演算部
57−6,57A−6,57B−6,57C−6,75 差分計算部
57−7 演算部
58,65,66 DA変換器
61 常駐オーバヘッド部
62 非常駐オーバヘッド部
63 分岐バッファ部
67 バイアス回路
68 ローパスフィルタ(LPF)
69 分岐回路
70 フィルタ部
71 バンドパスフィルタ
71′ 可変バンドパスフィルタ
72 直流変換部
72A ピークホールド回路
72B ボトムホールド回路
76 メモリ
77 係数乗算部
81 パイロット検出レベルしきい値保持部
82 比較器
83,84 レジスタ(保持回路)
85 タイマ
111 終端部
112 データフレーム組立・パイロット信号挿入部
113 光源
114 光スイッチ
115 光変調・ポートスイッチング部
500,600 光伝送路

Claims (12)

  1. 複数の波長の光信号が波長多重された波長多重光信号を伝送する複数の波長多重伝送装置をそなえた波長多重伝送システムであって、
    該波長多重光信号を送信する送信側の波長多重伝送装置が、
    該波長多重光信号に波長多重される光信号を用いて送信すべき送信データの有無を識別する送信データ有無識別手段と、
    該送信データ有無識別手段により該光信号を用いて送信すべき該送信データが無いと識別されると、当該光信号の波長に固有のパイロット信号データを該光信号にて送信するパイロット信号送信手段とをそなえ、且つ、
    該波長多重光信号を受信する受信側の波長多重伝送装置が、
    受信した該波長多重光信号から該パイロット信号データを検出するパイロット信号検出手段と、
    該パイロット信号検出手段で検出されたパイロット信号データ成分振幅情報に基づいて該波長多重光信号の各波長のスペクトルを測定するスペクトル測定手段とをそなえて構成されたことを特徴とする、波長多重伝送システム。
  2. 前記受信側の波長多重伝送装置が、
    該パイロット信号検出手段で検出された該パイロット信号データに基づいて該波長多重光信号の各波長の光信号の使用/未使用状態を判別する使用波長判別手段をそなえて構成されたことを特徴とする、請求項1記載の波長多重伝送システム。
  3. 複数の波長の光信号が波長多重された波長多重光信号を伝送する波長多重伝送システムに使用される波長多重伝送装置であって、
    該波長多重光信号に波長多重される光信号を用いて送信すべき送信データの有無を識別する送信データ有無識別手段と、
    該送信データ有無識別手段により該光信号を用いて送信すべき該送信データが無いと識別されると、当該光信号の波長に固有のパイロット信号データであって、受信側で当該パイロット信号データ成分の振幅情報に基づいて該波長多重光信号の各波長のスペクトルを測定するためのデータを該光信号にて送信するパイロット信号送信手段とをそなえたことを特徴とする、波長多重伝送装置。
  4. 該パイロット信号送信手段が、
    該送信データをオーバヘッド部とペイロード部とを有するフレーム信号の該ペイロードに格納して該フレーム信号を組み立てるフレーム組立部をそなえ、
    該フレーム組立部が、
    該送信データ有無識別手段により該光信号を用いて送信すべき該送信データが無いと識別されると、少なくとも該オーバヘッド部及び該ペイロード部のいずれかに該パイロット信号データを格納するパイロット信号付加部をそなえて構成されたことを特徴とする、請求項記載の波長多重伝送装置。
  5. 複数の波長の光信号が波長多重された波長多重光信号を伝送する波長多重伝送システムに使用される波長多重伝送装置であって、
    受信した該波長多重光信号から、送信データが無い波長の光信号にて送信されてくる当該波長に固有のパイロット信号データを検出するパイロット信号検出手段と、
    該パイロット信号検出手段で検出されたパイロット信号データ成分振幅情報に基づいて該波長多重光信号の各波長のスペクトルを測定するスペクトル測定手段とをそなえたことを特徴とする、波長多重伝送装置。
  6. 該パイロット信号検出手段で検出された該パイロット信号データに基づいて該波長多重光信号の各波長の光信号の使用/未使用状態を判別する使用波長判別手段をそなえたことを特徴とする、請求項5記載の波長多重伝送装置。
  7. 該パイロット信号検出手段が、
    各波長の光信号を受光してその光パワーに応じた電気信号を出力する光電変換部と、
    該光電変換部からの電気信号のうち、送信データが無い未使用波長の光信号にて送信されてくる当該未使用波長に固有のパイロット信号データ成分を通過させるパイロット信号検出用フィルタ部とをそなえるとともに、
    スペクトル測定手段が、
    該パイロット信号検出用フィルタ部を通過する該パイロット信号データ成分の振幅情報に基づいて該波長多重光信号の各波長のスペクトルを測定するように構成されたことを特徴とする、請求項5又は6記載の波長多重伝送装置。
  8. 複数の波長の光信号が波長多重された波長多重光信号を伝送する波長多重伝送システムに使用される波長多重伝送装置であって、
    該波長多重光信号に波長多重される光信号を用いて送信すべき送信データの有無を識別する送信データ有無識別手段と、該送信データ有無識別手段により該光信号を用いて送信すべき該送信データが無いと識別されると、当該光信号の波長に固有のパイロット信号データを該光信号にて他の波長多重伝送装置へ送信するパイロット信号送信手段とを有する送信部と、
    該他の波長多重伝送装置から受信した波長多重光信号からパイロット信号データを検出するパイロット信号検出手段と、該パイロット信号検出手段で検出されたパイロット信号データ成分振幅情報に基づいて該波長多重光信号の各波長のスペクトルを測定するスペクトル測定手段とを有する受信部と、
    該受信部の該パイロット信号検出手段で該パイロット信号データが検出されると、当該パイロット信号データに対応する波長の光信号についての該パイロット信号送信手段による該パイロット信号データの送信を停止するパイロット信号送信停止手段とをそなえたことを特徴とする、波長多重伝送装置。
  9. 該パイロット信号検出手段で検出された該パイロット信号データに基づいて該波長多重光信号の各波長の光信号の使用/未使用状態を判別する使用波長判別手段をそなえたことを特徴とする、請求項8記載の波長多重伝送装置。
  10. 該パイロット信号検出用フィルタ部が、
    該光電変換部からの電気信号のうち該パイロット信号データ成分よりも高い周波数成分を遮断するローパスフィルタと、
    該波長多重光信号の波長帯域を複数の波長帯域に分割したときの分割波長帯域に対応して設けられ、それぞれ、該ローパスフィルタの出力のうち該分割波長帯域に含まれる波長に対応する該パイロット信号データ成分を通過させる複数の可変波長帯域のバンドパスフィルタとをそなえて構成されたことを特徴とする、請求項7記載の波長多重伝送装置。
  11. 該スペクトル測定手段が、
    初期動作時において同じ波長のパイロット信号データ成分についての該バンドパスフィルタの出力がそれぞれ同じとなる誤差補正係数を算出する誤差補正係数算出部と、
    運用時において該誤差補正係数算出部で算出された該誤差補正係数に基づいて該可変波長帯域のバンドパスフィルタの各出力について誤差補正処理を行なう誤差補正部とをそなえたことを特徴とする、請求項10記載の波長多重伝送装置。
  12. 該スペクトル測定手段が、
    該振幅情報を波長別に保持する保持回路と、
    該保持回路に保持された、各波長の光信号が未使用状態のときの各振幅情報に基づいて各波長の光信号品質を計算する光信号品質計算部とをそなえたことを特徴とする、請求項7記載の波長多重伝送装置。
JP2002117766A 2002-04-19 2002-04-19 波長多重伝送システム及び波長多重伝送装置 Expired - Fee Related JP3851836B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002117766A JP3851836B2 (ja) 2002-04-19 2002-04-19 波長多重伝送システム及び波長多重伝送装置
US10/288,022 US7505685B2 (en) 2002-04-19 2002-11-05 Wavelength-division multiplex communication system and apparatus
DE60239022T DE60239022D1 (de) 2002-04-19 2002-11-22 Frequenzteilungsmultiplex-Kommunikationsgerät
EP07118054A EP1873950B1 (en) 2002-04-19 2002-11-22 Wavelength-division multiplex communication apparatus
DE60238901T DE60238901D1 (de) 2002-04-19 2002-11-22 Vorrichtung zur Übertragung im Wellenlängenmultiplex
EP02258055A EP1355440B1 (en) 2002-04-19 2002-11-22 Wavelength-division multiplex communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002117766A JP3851836B2 (ja) 2002-04-19 2002-04-19 波長多重伝送システム及び波長多重伝送装置

Publications (2)

Publication Number Publication Date
JP2003318833A JP2003318833A (ja) 2003-11-07
JP3851836B2 true JP3851836B2 (ja) 2006-11-29

Family

ID=28672689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002117766A Expired - Fee Related JP3851836B2 (ja) 2002-04-19 2002-04-19 波長多重伝送システム及び波長多重伝送装置

Country Status (4)

Country Link
US (1) US7505685B2 (ja)
EP (2) EP1355440B1 (ja)
JP (1) JP3851836B2 (ja)
DE (2) DE60238901D1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165853A (ja) * 2002-11-11 2004-06-10 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
DE10253671B3 (de) * 2002-11-18 2004-08-19 Infineon Technologies Ag Unterdrückung der Nachbarkanalinterferenz durch adaptive Kanalfilterung in Mobilfunkempfängern
US7424223B1 (en) * 2003-08-04 2008-09-09 Ciena Corporation Reconfigurable wavelength blocking apparatus and optical selector device therefore
DE102004004087A1 (de) * 2004-01-27 2005-08-18 Siemens Ag Verfahren zur Kanalidentifizierung in optischen Netzen
EP1626512A1 (en) * 2004-08-09 2006-02-15 Alcatel Method of determining an optical signal to noise ratio (OSNR) and optical transmission system
US7761011B2 (en) * 2005-02-23 2010-07-20 Kg Technology Associates, Inc. Optical fiber communication link
JP4601500B2 (ja) * 2005-07-06 2010-12-22 独立行政法人情報通信研究機構 データ受信方法及び装置
JP4660725B2 (ja) * 2005-07-06 2011-03-30 独立行政法人情報通信研究機構 データ伝送方法、データ伝送システム、データ受信方法及び光受信装置
FR2898229B1 (fr) * 2006-03-06 2008-05-30 Eads Secure Networks Soc Par A Synchronisation cryptographique entrelacee
JP4519817B2 (ja) * 2006-08-22 2010-08-04 株式会社エヌ・ティ・ティ・ドコモ 基地局および移動局
JP4957212B2 (ja) * 2006-11-29 2012-06-20 富士通株式会社 無線フレーム可変制御による最適な無線通信方法及び,これを適用する無線通信システム
JP2009296044A (ja) * 2008-06-02 2009-12-17 Fujitsu Ltd 光送信装置および光送受信装置
CN102171961A (zh) * 2008-09-30 2011-08-31 诺基亚西门子通信公司 用于信号处理的方法和设备以及包括这种设备的通信系统
CN101771490B (zh) * 2008-12-31 2013-06-05 华为技术有限公司 获取波长连接关系信息的方法、系统及节点
US20120288284A1 (en) * 2010-02-25 2012-11-15 Mitsubishi Electric Corporation Optical transmitter
JP5678527B2 (ja) * 2010-09-07 2015-03-04 日本電気株式会社 信号光モニタリング装置および信号光モニタリング方法
JP5582942B2 (ja) * 2010-09-28 2014-09-03 矢崎総業株式会社 信号伝送装置
EP2874331B1 (en) * 2012-06-06 2017-06-21 Kuang-Chi Innovative Technology Ltd. Handshake synchronization method and system based on visible light communication
JP6036468B2 (ja) * 2013-03-26 2016-11-30 富士通株式会社 伝送装置、伝送システム及び光入力パワー制御方法
US9252913B2 (en) 2013-05-06 2016-02-02 Ciena Corporation Systems and methods for optical dark section conditioning
EP3008837B1 (en) * 2013-06-11 2019-03-27 Telefonaktiebolaget LM Ericsson (publ) Security monitoring for optical network
JP6482043B2 (ja) * 2014-11-05 2019-03-13 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 光ポートオートネゴシエーション方法、光モジュール、中央局終端デバイス、及び終端デバイス
US10256901B2 (en) * 2017-07-31 2019-04-09 Huawei Technologies Co., Ltd. Systems and methods for optical signal-to-noise ratio monitoring
JP7211909B2 (ja) * 2019-07-11 2023-01-24 三菱電機株式会社 受信機、送信機、通信機、通信システム、品質推定方法、およびプログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797879A (en) * 1987-06-05 1989-01-10 American Telephone And Telegraph Company At&T Bell Laboratories Packet switched interconnection protocols for a star configured optical lan
JPH03117233A (ja) 1989-09-29 1991-05-20 Toshiba Corp 副情報信号伝送方式
US5212577A (en) * 1990-01-19 1993-05-18 Canon Kabushiki Kaisha Optical communication equipment and optical communication method
JPH04334134A (ja) * 1991-05-10 1992-11-20 Mitsubishi Electric Corp 通信方式
US5777761A (en) * 1995-12-22 1998-07-07 Mci Communications Corporation System and method for photonic facility and line protection switching using wavelength translation
JPH11103275A (ja) 1997-09-29 1999-04-13 Nec Corp 光波長挿入分離装置およびその監視方法
JPH11122177A (ja) * 1997-10-17 1999-04-30 Fujitsu Ltd 監視制御信号送信装置及び方法
JP3164049B2 (ja) 1997-12-12 2001-05-08 日本電気株式会社 光パケット交換装置
JP3532759B2 (ja) 1998-03-11 2004-05-31 富士通株式会社 Wdm通信システムにおける中継装置及び同装置の送信レベル制御方法
JP2000228649A (ja) 1999-02-05 2000-08-15 Kdd Kaitei Cable System Kk 光wdm伝送システム並びに光送信装置及び方法
JP3440886B2 (ja) 1999-06-16 2003-08-25 日本電気株式会社 波長多重光伝送システム
JP3561183B2 (ja) 1999-07-29 2004-09-02 日本電信電話株式会社 ギガビット帯光信号多重伝送装置
US6188816B1 (en) 1999-09-08 2001-02-13 Nortel Networks Limited Filter topologies for optical add-drop multiplexers
GB2358332B (en) 2000-01-14 2002-05-29 Marconi Comm Ltd Method of communicating data in a communication system
WO2001063819A1 (en) * 2000-02-23 2001-08-30 Tedram Optical Networks, Inc. Optical network processor for system having channels defined by wavelength, phase, and modulation frequency
JP2001358654A (ja) * 2000-06-15 2001-12-26 Fujitsu Ltd 光波長変換器及び、これを用いる光波長多重化システム
JP3813063B2 (ja) * 2001-02-01 2006-08-23 富士通株式会社 通信システム及び波長分割多重装置

Also Published As

Publication number Publication date
EP1873950B1 (en) 2011-01-19
EP1355440A3 (en) 2006-07-26
DE60238901D1 (de) 2011-02-24
JP2003318833A (ja) 2003-11-07
US20040213566A1 (en) 2004-10-28
EP1873950A3 (en) 2008-01-16
EP1355440A2 (en) 2003-10-22
US7505685B2 (en) 2009-03-17
DE60239022D1 (de) 2011-03-03
EP1873950A2 (en) 2008-01-02
EP1355440B1 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP3851836B2 (ja) 波長多重伝送システム及び波長多重伝送装置
JP5482128B2 (ja) 光通信ネットワークおよび監視制御装置
EP2701316A1 (en) Diverging device with oadm function and wavelength division multiplexing optical network system and method therefor
JP3976771B2 (ja) 伝送ルート切替制御方法および光伝送装置
JP4072184B2 (ja) 光伝送システム
JP2009290594A (ja) 光終端装置
US20040096214A1 (en) Method and apparatus for using optical idler tones for performance monitoring in a WDM optical transmission system
JP6829678B2 (ja) バースト中継システム及びプログラム
CN107735963B (zh) 通信装置、通信方法和通信系统
US11309973B2 (en) Optical burst monitoring
KR20100000740A (ko) 광대역 무선 서비스를 위한 광 백홀 네트워크
US20090304388A1 (en) Optical Branching Apparatus and Passive Optical Network System
JP4431760B2 (ja) 波長分割多重方式受動型光加入者通信網における光線路の障害位置検出装置
US8452174B2 (en) Measuring differential group delay in an optical fiber
WO2017117405A1 (en) Trunk and drop rfog architecture
US9077475B2 (en) Optical packet switching system and method for controlling the peak power
US7313327B2 (en) Switching control device for wavelength-division multiplexing optical signal
JP5492118B2 (ja) Wdm信号一括コヒーレント受信器及び方法
EP2482481B1 (en) Method of optical data transmission
US20040109686A1 (en) Architecture for metropolitan dense wavelength division multiplex network with all-optical reference node
JP2000332686A (ja) 光伝送装置、光伝送システム及び光伝送方法
JP4029661B2 (ja) 光合分波方法及び装置
JP3636007B2 (ja) 光信号品質監視装置
Aoki et al. Next generation photonic node architecture using software-defined universal transceivers
JP2000041025A (ja) 波長多重伝送システム、及び波長多重伝送方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees