JP3700059B2 - 電圧変換装置、電圧変換方法、電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体 - Google Patents

電圧変換装置、電圧変換方法、電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体 Download PDF

Info

Publication number
JP3700059B2
JP3700059B2 JP2002234653A JP2002234653A JP3700059B2 JP 3700059 B2 JP3700059 B2 JP 3700059B2 JP 2002234653 A JP2002234653 A JP 2002234653A JP 2002234653 A JP2002234653 A JP 2002234653A JP 3700059 B2 JP3700059 B2 JP 3700059B2
Authority
JP
Japan
Prior art keywords
voltage
feedback
command
output voltage
duty ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002234653A
Other languages
English (en)
Other versions
JP2004080864A (ja
Inventor
堅滋 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002234653A priority Critical patent/JP3700059B2/ja
Priority to EP03741433A priority patent/EP1536548A4/en
Priority to KR1020057002350A priority patent/KR100653827B1/ko
Priority to PCT/JP2003/009056 priority patent/WO2004017506A1/ja
Priority to US10/523,145 priority patent/US7262978B2/en
Priority to CNB038189739A priority patent/CN100435462C/zh
Publication of JP2004080864A publication Critical patent/JP2004080864A/ja
Application granted granted Critical
Publication of JP3700059B2 publication Critical patent/JP3700059B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/125Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M3/135Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M3/137Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/139Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/06Controlling the motor in four quadrants
    • H02P23/07Polyphase or monophase asynchronous induction motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Description

【0001】
【発明の属する技術分野】
この発明は、直流電源からの直流電圧を指令電圧に変換する電圧変換装置、直流電圧を指令電圧に変換する電圧変換方法、および直流電圧を指令電圧に変換する電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体に関するものである。
【0002】
【従来の技術】
最近、環境に配慮した自動車としてハイブリッド自動車(Hybrid Vehicle)および電気自動車(Electric Vehicle)が大きな注目を集めている。そして、ハイブリッド自動車は、一部、実用化されている。
【0003】
このハイブリッド自動車は、従来のエンジンに加え、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。つまり、エンジンを駆動することにより動力源を得るとともに、直流電源からの直流電圧をインバータによって交流電圧に変換し、その変換した交流電圧によりモータを回転することによって動力源を得るものである。また、電気自動車は、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。
【0004】
このようなハイブリッド自動車または電気自動車においては、直流電源からの直流電圧を昇圧コンバータによって昇圧し、その昇圧した直流電圧がモータを駆動するインバータに供給されるようにすることも検討されている(たとえば、特開2001−275367号公報など)。
【0005】
すなわち、ハイブリッド自動車または電気自動車は、図23に示すモータ駆動装置を搭載している。図23を参照して、モータ駆動装置300は、直流電源Bと、システムリレーSR1,SR2と、コンデンサC1,C2と、双方向コンバータ310と、電圧センサー320と、インバータ330とを備える。
【0006】
直流電源Bは、直流電圧を出力する。システムリレーSR1,SR2は、制御装置(図示せず)によってオンされると、直流電源Bからの直流電圧をコンデンサC1に供給する。コンデンサC1は、直流電源BからシステムリレーSR1,SR2を介して供給された直流電圧を平滑化し、その平滑化した直流電圧を双方向コンバータ310へ供給する。
【0007】
双方向コンバータ310は、リアクトル311と、NPNトランジスタ312,313と、ダイオード314,315とを含む。リアクトル311の一方端は直流電源Bの電源ラインに接続され、他方端はNPNトランジスタ312とNPNトランジスタ313との中間点、すなわち、NPNトランジスタ312のエミッタとNPNトランジスタ313のコレクタとの間に接続される。NPNトランジスタ312,313は、電源ラインとアースラインとの間に直列に接続される。そして、NPNトランジスタ312のコレクタは電源ラインに接続され、NPNトランジスタ313のエミッタはアースラインに接続される。また、各NPNトランジスタ312,313のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオード314,315が接続されている。
【0008】
双方向コンバータ310は、制御装置(図示せず)によってNPNトランジスタ312,313がオン/オフされ、コンデンサC1から供給された直流電圧を昇圧して出力電圧をコンデンサC2に供給する。また、双方向コンバータ310は、モータ駆動装置300が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1によって発電され、インバータ330によって変換された直流電圧を降圧してコンデンサC1へ供給する。
【0009】
コンデンサC2は、双方向コンバータ310から供給された直流電圧を平滑化し、その平滑化した直流電圧をインバータ330へ供給する。電圧センサー320は、コンデンサC2の両側の電圧、すなわち、双方向コンバータ310の出力電圧Vmを検出する。
【0010】
インバータ330は、コンデンサC2から直流電圧が供給されると制御装置(図示せず)からの制御に基づいて直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値によって指定されたトルクを発生するように駆動される。また、インバータ330は、モータ駆動装置300が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1が発電した交流電圧を制御装置からの制御に基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して双方向コンバータ310へ供給する。
【0011】
モータ駆動装置300においては、直流電源Bから出力された直流電圧を昇圧して出力電圧Vmをインバータ330へ供給するとき、電圧センサー320が検出した出力電圧Vmが電圧指令Vdccomになるようにフィードバック制御される。そして、このフィードバック制御はPI制御であり、出力電圧Vmが電圧指令VdccomになるようにPI制御ゲインが決定される。
【0012】
このように、従来のモータ駆動装置においては、PI制御ゲインを決定し、その決定したPI制御ゲインを用いたフィードバック制御によって、昇圧された出力電圧Vmが電圧指令Vdccomになるように制御される。
【0013】
【発明が解決しようとする課題】
しかし、ある条件下でPI制御ゲインを決定し、その決定したPI制御ゲインに固定した場合、出力電圧Vmと電圧指令Vdccomとの差が一定であっても出力電圧Vmおよび電圧指令Vdccomが変化すれば、NPNトランジスタ313の両端に印加される電圧の調整量が出力電圧Vmによって変化する。その結果、電圧指令Vdccomに対する出力電圧Vmの追従特性が変化するという問題が発生する。
【0014】
そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、指令電圧に対する出力電圧の追従特性が一定になるように直流電圧を出力電圧に変換する電圧変換装置を提供することである。
【0015】
また、この発明の別の目的は、指令電圧に対する出力電圧の追従特性が一定になるように直流電圧を出力電圧に変換する電圧変換方法を提供することである。
【0016】
さらに、この発明の別の目的は、指令電圧に対する出力電圧の追従特性が一定になるように直流電圧を出力電圧に変換する電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体を提供することである。
【0017】
【課題を解決するための手段および発明の効果】
この発明によれば、電圧変換装置は、出力電圧が指令電圧になるように直流電源からの直流電圧を出力電圧に変換する電圧変換装置であって、電圧変換器と、検出手段と、制御手段とを備える。
【0018】
電圧変換器は、直流電圧の電圧レベルを変えて出力電圧を出力する。検出手段は、電圧変換器から出力された出力電圧を検出する。制御手段は、検出された出力電圧と指令電圧とに基づいて、指令電圧に対する出力電圧のフィードバック制御における追従特性を基本特性に一致させ、かつ、出力電圧が指令電圧になるように電圧変換器を制御する。
【0019】
好ましくは、電圧変換器は、チョッパ回路から成り、制御手段は、フィードバック電圧指令演算部と、デューティー比演算部と、スイッチング信号生成部とを含む。フィードバック電圧指令演算部は、出力電圧と指令電圧との誤差を検出し、その検出した誤差に応じてフィードバック制御における制御ゲインを決定し、その決定した制御ゲインと、出力電圧と誤差とに基づいて、追従特性が基本特性になるようにフィードバック制御におけるフィードバック電圧指令を演算する。また、デューティー比演算部は、演算されたフィードバック電圧指令に基づいて、チョッパ回路におけるスイッチングデューティー比を演算する。さらに、スイッチング信号生成部は、デューティー比演算部によって演算されたスイッチングデューティー比を有するスイッチング信号を生成し、その生成したスイッチング信号をチョッパ回路へ出力する。
【0020】
好ましくは、フィードバック電圧指令演算部は、制御ゲインを用いて演算されたフィードバック予備電圧指令を追従特性が基本特性になるように補正することによりフィードバック指令電圧を演算する。
【0021】
好ましくは、フィードバック電圧指令演算部は、減算器と、ゲイン決定部と、演算器と、補正器とを含む。
【0022】
減算器は、出力電圧と指令電圧との誤差を演算する。ゲイン決定部は、誤差に基づいて制御ゲインを決定する。演算器は、決定された制御ゲインに基づいてフィードバック予備電圧指令を演算する。補正器は、追従特性が基本特性になるときの基準電圧に出力電圧を換算することによりフィードバック予備電圧指令を補正してフィードバック電圧指令を出力する。
【0023】
好ましくは、補正器は、出力電圧に対する基準電圧の比を演算し、その演算結果をフィードバック予備電圧指令に乗算することによりフィードバック予備電圧指令を補正する。
【0024】
好ましくは、フィードバック電圧指令演算部は、追従特性が基本特性になるように誤差を補正することによりフィードバック電圧指令を演算する。
【0025】
好ましくは、フィードバック電圧指令演算部は、減算器と、補正器と、ゲイン決定部と、演算器とを含む。
【0026】
減算器は、出力電圧と指令電圧との誤差を演算する。補正器は、追従特性が基本特性になるように誤差を補正する。ゲイン決定部は、誤差に基づいて制御ゲインを決定する。演算器は、決定された制御ゲインと補正された誤差とに基づいてフィードバック電圧指令を演算する。
【0027】
好ましくは、補正器は、追従特性が基本特性になるときの基準電圧に出力電圧を換算することにより誤差を補正する。
【0028】
好ましくは、補正器は、出力電圧に対する基準電圧の比を演算し、その演算結果を誤差に乗算することにより誤差を補正する。
【0029】
好ましくは、電圧変換器は、チョッパ回路から成り、制御手段は、フィードバック電圧指令演算部と、デューティー比演算部と、スイッチング信号生成部とを含む。
【0030】
フィードバック電圧指令演算部は、出力電圧と指令電圧との誤差を検出し、その検出した誤差に応じてフィードバック制御における制御ゲインを決定し、その決定した制御ゲインと出力電圧と誤差とに基づいて、フィードバック制御におけるフィードバック予備電圧指令を演算する。また、デューティー比演算部は、演算されたフィードバック予備電圧指令および出力電圧に基づいて、追従特性が基本特性になるようにチョッパ回路におけるスイッチングデューティー比を演算する。さらに、スイッチング信号生成部は、デューティー比演算部によって演算されたスイッチングデューティー比を有するスイッチング信号を生成し、その生成したスイッチング信号をチョッパ回路へ出力する。
【0031】
好ましくは、デューティー比演算部は、フィードバック予備電圧指令を用いて演算された予備デューティー比を追従特性が基本特性になるように補正することによりスイッチングデューティー比を演算する。
【0032】
好ましくは、デューティー比演算部は、演算器と、補正器とを含む。
演算器は、フィードバック予備電圧指令に応じた予備デューティー比を演算する。補正器は、追従特性が基本特性になるように予備デューティー比を補正する。
【0033】
好ましくは、補正器は、追従特性が基本特性になるときの基準電圧に出力電圧を換算することにより予備デューティー比を補正する。
【0034】
好ましくは、補正器は、出力電圧に対する基準電圧の比を演算し、その演算結果を予備デューティー比に乗算することにより予備デューティー比を補正する。
【0035】
また、この発明によれば、電圧変換方法は、出力電圧が指令電圧になるようにフィードバック制御し、直流電源からの直流電圧を出力電圧に変換する電圧変換方法であって、出力電圧を検出する第1のステップと、指令電圧と出力電圧との誤差を検出する第2のステップと、検出した誤差に応じて制御ゲインを決定する第3のステップと、決定した制御ゲインと、検出した誤差と、検出した出力電圧とに基づいて、指令電圧に対する出力電圧のフィードバック制御における追従特性を基本特性に一致させ、かつ、出力電圧が指令電圧になるように直流電圧を出力電圧に変換する第4のステップとを含む。
【0036】
好ましくは、直流電圧は、チョッパ回路により出力電圧に変換され、第4のステップは、制御ゲインと、誤差と、出力電圧とに基づいて、フィードバック制御における追従特性を基本特性に一致させるフィードバック電圧指令を演算する第1のサブステップと、フィードバック電圧指令を用いて、チョッパ回路におけるスイッチングデューティー比を演算する第2のサブステップと、スイッチングデューティー比に基づいて、出力電圧が指令電圧になるようにチョッパ回路を制御する第3のサブステップとを含む。
【0037】
好ましくは、第1のサブステップは、制御ゲインと誤差とに基づいて、フィードバック制御におけるフィードバック予備電圧指令を演算するステップと、出力電圧を用いてフィードバック予備電圧指令を補正し、フィードバック電圧指令を演算するステップとを含む。
【0038】
好ましくは、フィードバック電圧指令を演算するステップは、追従特性が基本特性になる基準電圧に出力電圧を換算するときの換算比を演算するステップと、フィードバック予備電圧指令に換算比を乗算してフィードバック電圧指令を演算するステップとを含む。
【0039】
好ましくは、第1のサブステップは、出力電圧を用いて誤差を補正し、追従特性が基本特性になる補正誤差を演算するステップと、制御ゲインと補正誤差とに基づいてフィードバック電圧指令を演算するステップとを含む。
【0040】
好ましくは、補正誤差を演算するステップは、追従特性が基本特性になる基準電圧に出力電圧を換算するときの換算比を演算するステップと、誤差に換算比を乗算して補正誤差を演算するステップとを含む。
【0041】
好ましくは、直流電圧は、チョッパ回路により前記出力電圧に変換され、第4のステップは、制御ゲインおよび誤差に基づいてフィードバック制御におけるフィードバック予備電圧指令を演算する第1のサブステップと、フィードバック予備電圧指令に基づいて、チョッパ回路における予備スイッチングデューティー比を演算する第2のサブステップと、出力電圧を用いて予備スイッチングデューティー比を補正し、追従特性が基本特性になるスイッチングデューティー比を演算する第3のサブステップと、スイッチングデューティー比に基づいて、出力電圧が指令電圧になるようにチョッパ回路を制御する第4のサブステップとを含む。
【0042】
好ましくは、第3のサブステップは、追従特性が基本特性になる基準電圧に出力電圧を換算するときの換算比を演算するステップと、予備スイッチングデューティー比に換算比を乗算してスイッチングデューティー比を演算するステップとを含む。
【0043】
また、この発明によれば、出力電圧が指令電圧になるようにフィードバック制御し、直流電源からの直流電圧を出力電圧に変換する電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体は、出力電圧を検出する第1のステップと、指令電圧と出力電圧との誤差を検出する第2のステップと、検出した誤差に応じて制御ゲインを決定する第3のステップと、決定した制御ゲインと、検出した誤差と、検出した出力電圧とに基づいて、指令電圧に対する出力電圧のフィードバック制御における追従特性を基本特性に一致させ、かつ、出力電圧が指令電圧になるように直流電圧を出力電圧に変換する第4のステップとをコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体である。
【0044】
好ましくは、直流電圧は、チョッパ回路により出力電圧に変換され、コンピュータ読取り可能な記録媒体に記録されたプログラムにおいて、第4のステップは、制御ゲインと、誤差と、出力電圧とに基づいて、フィードバック制御における追従特性を基本特性に一致させるフィードバック電圧指令を演算する第1のサブステップと、フィードバック電圧指令を用いて、チョッパ回路におけるスイッチングデューティー比を演算する第2のサブステップと、スイッチングデューティー比に基づいて、出力電圧が指令電圧になるようにチョッパ回路を制御する第3のサブステップとを含む。
【0045】
好ましくは、コンピュータ読取り可能な記録媒体に記録されたプログラムにおいて、第1のサブステップは、制御ゲインと誤差とに基づいて、フィードバック制御におけるフィードバック予備電圧指令を演算するステップと、出力電圧を用いてフィードバック予備電圧指令を補正し、フィードバック電圧指令を演算するステップとを含む。
【0046】
好ましくは、コンピュータ読取り可能な記録媒体に記録されたプログラムにおいて、フィードバック電圧指令を演算するステップは、追従特性が基本特性になる基準電圧に出力電圧を換算するときの換算比を演算するステップと、フィードバック予備電圧指令に換算比を乗算してフィードバック電圧指令を演算するステップとを含む。
【0047】
好ましくは、コンピュータ読取り可能な記録媒体に記録されたプログラムにおいて、第1のサブステップは、出力電圧を用いて誤差を補正し、追従特性が基本特性になる補正誤差を演算するステップと、制御ゲインと補正誤差とに基づいてフィードバック電圧指令を演算するステップとを含む。
【0048】
好ましくは、コンピュータ読取り可能な記録媒体に記録されたプログラムにおいて、補正誤差を演算するステップは、追従特性が基本特性になる基準電圧に出力電圧を換算するときの換算比を演算するステップと、誤差に換算比を乗算して補正誤差を演算するステップとを含む。
【0049】
好ましくは、直流電圧は、チョッパ回路により出力電圧に変換され、コンピュータ読取り可能な記録媒体に記録されたプログラムにおいて、第4のステップは、制御ゲインおよび誤差に基づいてフィードバック制御におけるフィードバック予備電圧指令を演算する第1のサブステップと、フィードバック予備電圧指令に基づいて、チョッパ回路における予備スイッチングデューティー比を演算する第2のサブステップと、出力電圧を用いて予備スイッチングデューティー比を補正し、追従特性が基本特性になるスイッチングデューティー比を演算する第3のサブステップと、スイッチングデューティー比に基づいて、出力電圧が指令電圧になるようにチョッパ回路を制御する第4のサブステップとを含む。
【0050】
好ましくは、コンピュータ読取り可能な記録媒体に記録されたプログラムにおいて、第3のサブステップは、追従特性が基本特性になる基準電圧に出力電圧を換算するときの換算比を演算するステップと、予備スイッチングデューティー比に換算比を乗算してスイッチングデューティー比を演算するステップとを含む。
【0051】
したがって、この発明によれば、電圧指令に対する出力電圧のフィードバック制御における追従特性を一定に保持して直流電源からの直流電圧を出力電圧に変換できる。
【0052】
【発明の実施の形態】
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
【0053】
[実施の形態1]
図1を参照して、この発明の実施の形態1による電圧変換装置を備えたモータ駆動装置100は、直流電源Bと、電圧センサー10,13と、システムリレーSR1,SR2と、コンデンサC1,C2と、昇圧コンバータ12と、インバータ14と、電流センサー24と、制御装置30とを備える。
【0054】
交流モータM1は、ハイブリッド自動車または電気自動車の駆動輪を駆動するためのトルクを発生するための駆動モータである。あるいは、このモータはエンジンにて駆動される発電機の機能を持つように、そして、エンジンに対して電動機として動作し、たとえば、エンジン始動を行ない得るようなものとしてハイブリッド自動車に組み込まれるようにしてもよい。
【0055】
昇圧コンバータ12は、リアクトルL1と、NPNトランジスタQ1,Q2と、ダイオードD1,D2とを含む。リアクトルL1の一方端は直流電源Bの電源ラインに接続され、他方端はNPNトランジスタQ1とNPNトランジスタQ2との中間点、すなわち、NPNトランジスタQ1のエミッタとNPNトランジスタQ2のコレクタとの間に接続される。NPNトランジスタQ1,Q2は、電源ラインとアースラインとの間に直列に接続される。そして、NPNトランジスタQ1のコレクタは電源ラインに接続され、NPNトランジスタQ2のエミッタはアースラインに接続される。また、各NPNトランジスタQ1,Q2のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD1,D2が接続されている。
【0056】
インバータ14は、U相アーム15と、V相アーム16と、W相アーム17とから成る。U相アーム15、V相アーム16、およびW相アーム17は、電源ラインとアースラインとの間に並列に設けられる。
【0057】
U相アーム15は、直列接続されたNPNトランジスタQ3,Q4から成り、V相アーム16は、直列接続されたNPNトランジスタQ5,Q6から成り、W相アーム17は、直列接続されたNPNトランジスタQ7,Q8から成る。また、各NPNトランジスタQ3〜Q8のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD3〜D8がそれぞれ接続されている。
【0058】
各相アームの中間点は、交流モータM1の各相コイルの各相端に接続されている。すなわち、交流モータM1は、3相の永久磁石モータであり、U,V,W相の3つのコイルの一端が中点に共通接続されて構成され、U相コイルの他端がNPNトランジスタQ3,Q4の中間点に、V相コイルの他端がNPNトランジスタQ5,Q6の中間点に、W相コイルの他端がNPNトランジスタQ7,Q8の中間点にそれぞれ接続されている。
【0059】
直流電源Bは、ニッケル水素またはリチウムイオン等の二次電池から成る。電圧センサー10は、直流電源Bから出力される直流電圧Vbを検出し、その検出した直流電圧Vbを制御装置30へ出力する。システムリレーSR1,SR2は、制御装置30からの信号SEによりオンされる。コンデンサC1は、直流電源Bから供給された直流電圧を平滑化し、その平滑化した直流電圧を昇圧コンバータ12へ供給する。
【0060】
昇圧コンバータ12は、コンデンサC1から供給された直流電圧を昇圧してコンデンサC2へ供給する。より具体的には、昇圧コンバータ12は、制御装置30から信号PWUを受けると、信号PWUによってNPNトランジスタQ2がオンされた期間に応じて直流電圧を昇圧してコンデンサC2に供給する。
【0061】
また、昇圧コンバータ12は、制御装置30から信号PWDを受けると、コンデンサC2を介してインバータ14から供給された直流電圧を降圧して直流電源Bを充電する。ただし、昇圧機能のみを行なうような回路構成に適用してもよいことは言うまでもない。
【0062】
コンデンサC2は、昇圧コンバータ12からの直流電圧を平滑化し、その平滑化した直流電圧をインバータ14へ供給する。電圧センサー13は、コンデンサC2の両端の電圧、すなわち、昇圧コンバータ12の出力電圧Vm(インバータ14への入力電圧に相当する。以下同じ。)を検出し、その検出した出力電圧Vmを制御装置30へ出力する。
【0063】
インバータ14は、コンデンサC2から直流電圧が供給されると制御装置30からの信号PWMIに基づいて直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値TRによって指定されたトルクを発生するように駆動される。また、インバータ14は、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1が発電した交流電圧を制御装置30からの信号PWMCに基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。なお、ここで言う回生制動とは、ハイブリッド自動車または電気自動車を運転するドライバーによるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
【0064】
電流センサー24は、交流モータM1に流れるモータ電流MCRTを検出し、その検出したモータ電流MCRTを制御装置30へ出力する。
【0065】
制御装置30は、外部に設けられたECU(Electrical Control Unit)から入力されたトルク指令値TRおよびモータ回転数MRN、電圧センサー10からの直流電圧Vb、電圧センサー13からの出力電圧Vm、および電流センサー24からのモータ電流MCRTに基づいて、後述する方法により昇圧コンバータ12を駆動するための信号PWUとインバータ14を駆動するための信号PWMIとを生成し、その生成した信号PWUおよび信号PWMIをそれぞれ昇圧コンバータ12およびインバータ14へ出力する。
【0066】
信号PWUは、昇圧コンバータ12がコンデンサC1からの直流電圧を出力電圧Vmに変換する場合に昇圧コンバータ12を駆動するための信号である。そして、制御装置30は、昇圧コンバータ12が直流電圧Vbを出力電圧Vmに変換する場合に、出力電圧Vmをフィードバック制御し、出力電圧Vmが指令された電圧指令Vdccomになるように昇圧コンバータ12を駆動するための信号PWUを生成する。信号PWUの生成方法については後述する。
【0067】
また、制御装置30は、ハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号を外部のECUから受けると、交流モータM1で発電された交流電圧を直流電圧に変換するための信号PWMCを生成してインバータ14へ出力する。この場合、インバータ14のNPNトランジスタQ4,Q6,Q8は信号PWMCによってスイッチング制御される。すなわち、交流モータM1のU相で発電されるときNPNトランジスタQ6,Q8がオンされ、V相で発電されるときNPNトランジスタQ4,Q8がオンされ、W相で発電されるときNPNトランジスタQ4,Q6がオンされる。これにより、インバータ14は、交流モータM1で発電された交流電圧を直流電圧に変換して昇圧コンバータ12へ供給する。
【0068】
さらに、制御装置30は、ハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号を外部のECUから受けると、インバータ14から供給された直流電圧を降圧するための信号PWDを生成し、その生成した信号PWDを昇圧コンバータ12へ出力する。これにより、交流モータM1が発電した交流電圧は、直流電圧に変換され、降圧されて直流電源Bに供給される。
【0069】
さらに、制御装置30は、システムリレーSR1,SR2をオンするための信号SEを生成してシステムリレーSR1,SR2へ出力する。
【0070】
図2は、制御装置30の機能ブロック図である。図2を参照して、制御装置30は、モータトルク制御手段301と、電圧変換制御手段302とを含む。モータトルク制御手段301は、トルク指令値TR(車両におけるアクセルペダルの踏み込み度合い、ハイブリッド車両においてはエンジンの動作状態をも考慮しながらモータに与えるべきトルク指令を演算して得られている)、直流電源Bから出力された直流電圧Vb、モータ電流MCRT、モータ回転数MRNおよび昇圧コンバータ12の出力電圧Vmに基づいて、交流モータM1の駆動時、後述する方法により昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWUと、インバータ14のNPNトランジスタQ3〜Q8をオン/オフするための信号PWMIとを生成し、その生成した信号PWUおよび信号PWMIをそれぞれ昇圧コンバータ12およびインバータ14へ出力する。
【0071】
電圧変換制御手段302は、回生制動時、ハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号RGEを外部のECUから受けると、交流モータM1が発電した交流電圧を直流電圧に変換するための信号PWMCを生成してインバータ14へ出力する。
【0072】
また、電圧変換制御手段302は、回生制動時、信号RGEを外部のECUから受けると、インバータ14から供給された直流電圧を降圧するための信号PWDを生成して昇圧コンバータ12へ出力する。このように、昇圧コンバータ12は、直流電圧を降圧するための信号PWDにより直流電圧を降下させることもできるので、双方向コンバータの機能を有するものである。
【0073】
図3は、モータトルク制御手段301の機能ブロック図である。図3を参照して、モータトルク制御手段301は、モータ制御用相電圧演算部40と、インバータ用PWM信号変換部42と、インバータ入力電圧指令演算部50と、フィードバック電圧指令演算部52と、デューティー比変換部54とを含む。
【0074】
モータ制御用相電圧演算部40は、昇圧コンバータ12の出力電圧Vm、すなわち、インバータ14への入力電圧を電圧センサー13から受け、交流モータM1の各相に流れるモータ電流MCRTを電流センサー24から受け、トルク指令値TRを外部ECUから受ける。そして、モータ制御用相電圧演算部40は、これらの入力される信号に基づいて、交流モータM1の各相のコイルに印加する電圧を計算し、その計算した結果をインバータ用PWM信号変換部42へ供給する。
【0075】
インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40から受けた計算結果に基づいて、実際にインバータ14の各NPNトランジスタQ3〜Q8をオン/オフする信号PWMIを生成し、その生成した信号PWMIをインバータ14の各NPNトランジスタQ3〜Q8へ出力する。
【0076】
これにより、各NPNトランジスタQ3〜Q8は、スイッチング制御され、交流モータM1が指令されたトルクを出すように交流モータM1の各相に流す電流を制御する。このようにして、モータ駆動電流が制御され、トルク指令値TRに応じたモータトルクが出力される。
【0077】
一方、インバータ入力電圧指令演算部50は、トルク指令値TRおよびモータ回転数MRNに基づいてインバータ入力電圧の最適値(目標値)、すなわち、電圧指令Vdccomを演算し、その演算した電圧指令Vdccomをフィードバック電圧指令演算部52へ出力する。
【0078】
フィードバック電圧指令演算部52は、電圧センサー13からの昇圧コンバータ12の出力電圧Vmと、インバータ入力電圧指令演算部50からの電圧指令Vdccomとに基づいて、後述する方法によってフィードバック電圧指令Vdccom_fbを演算し、その演算したフィードバック電圧指令Vdccom_fbをデューティー比変換部54へ出力する。また、フィードバック電圧指令演算部52は、電圧指令Vdccomと電圧センサー10からのバッテリ電圧Vbとに基づいて、補償率Rcomを演算し、その演算した補償率Rcomをデューティー比変換部54へ出力する。
【0079】
なお、この補償率Rcomは、直流電源Bから出力された直流電圧Vbを出力電圧Vmのフィードバック制御に組み入れるためのものである。つまり、昇圧コンバータ12は、直流電圧Vbを電圧指令Vdccomに変換するものであるため、直流電圧Vbを考慮して昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフさせるデューティー比を決定するようにしたものである。
【0080】
デューティー比変換部54は、電圧センサー10からのバッテリ電圧Vbと、フィードバック電圧指令演算部52からのフィードバック電圧指令Vdccom_fbおよび補償率Rcomとに基づいて、電圧センサー13からの出力電圧Vmを、フィードバック電圧指令演算部52からのフィードバック電圧指令Vdccom_fbに設定するためのデューティー比を演算し、その演算したデューティー比に基づいて昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWUを生成する。そして、デューティー比変換部54は、生成した信号PWUを昇圧コンバータ12のNPNトランジスタQ1,Q2へ出力する。
【0081】
なお、昇圧コンバータ12の下側のNPNトランジスタQ2のオンデューティーを大きくすることによりリアクトルL1における電力蓄積が大きくなるため、より高電圧の出力を得ることができる。一方、上側のNPNトランジスタQ1のオンデューティーを大きくすることにより電源ラインの電圧が下がる。そこで、NPNトランジスタQ1,Q2のデューティー比を制御することで、電源ラインの電圧を直流電源Bの出力電圧以上の任意の電圧に制御可能である。
【0082】
図4を参照して、フィードバック電圧指令演算部52は、減算器521と、ゲイン決定部522と、PI制御器523と、補正器524と、前向き補償器525とを含む。減算器521は、インバータ入力電圧指令演算部50からの電圧指令Vdccomと電圧センサー13からの出力電圧Vmとを受け、出力電圧Vmから電圧指令Vdccomを減算する。そして、減算器521は、減算した結果を誤差ΔVdcとしてゲイン決定部522およびPI制御器523へ出力する。
【0083】
ゲイン決定部522は、減算器521から受けた誤差ΔVdcに応じたPI制御ゲインを決定する。つまり、ゲイン決定部522は、誤差ΔVdcに応じた比例ゲインPGおよび積分ゲインIGを決定する。そして、ゲイン決定部522は、決定したPI制御ゲインをPI制御器523へ出力する。
【0084】
PI制御器523は、ゲイン決定部522から受けたPI制御ゲインおよび減算部521から受けた誤差ΔVdcに基づいてフィードバック予備電圧指令Vdccom_fb_prを演算する。具体的には、PI制御器523は、ゲイン決定部522から受けた比例ゲインPGおよび積分ゲインIGと、減算部521から受けた誤差ΔVdcとを次式へ代入してフィードバック予備電圧指令Vdccom_fb_prを演算する。
【0085】
【数1】
Figure 0003700059
【0086】
補正器524は、PI制御器523からのフィードバック予備電圧指令Vdccom_fb_prと、電圧センサー13からの出力電圧Vmとを受け、次式によってフィードバック予備電圧指令Vdccom_fb_prを補正してフィードバック電圧指令Vdccom_fbを演算する。
【0087】
【数2】
Figure 0003700059
【0088】
なお、Vstdは、基準電圧を表わし、基準電圧Vstdは、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になるときの昇圧コンバータ12の出力電圧である。
【0089】
したがって、補正器524は、基準電圧Vstdを出力電圧Vmで除算することにより、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になる基準電圧Vstdに出力電圧Vmを換算するための換算比を演算する。そして、補正器524は、演算した換算比をフィードバック予備電圧指令Vdccom_fg_prに乗算することにより、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になるフィードバック電圧指令Vdccom_fbを演算する。
【0090】
前向き補償器525は、インバータ入力電圧指令演算部50からの電圧指令Vdccomと、電圧センサー10からのバッテリ電圧Vbとを受け、次式により補償率Rcomを演算する。
【0091】
【数3】
Figure 0003700059
【0092】
そして、前向き補償器525は、補償率Rcomを用いて補償率1−Rcomをさらに演算し、補償率Rcom,1−Rcomをデューティー比変換部54へ出力する。
【0093】
デューティー比変換部54は、デューティー比演算部541と、加算器542と、PWM信号変換部543とを含む。デューティー比演算部541は、電圧センサー10からのバッテリ電圧Vbと、補正器524からのフィードバック電圧指令Vdccom_fbとに基づいて、電圧センサー13からの出力電圧Vmを、フィードバック電圧指令Vdccom_fbに設定するためのデューティー比を演算する。
【0094】
加算器542は、デューティー比演算部541からのデューティー比と、前向き補償器525からの補償率Rcom,1−Rcomとを受け、デューティー比に補償率Rcom,1−Rcomをそれぞれ加算した2つの補償デューティー比を演算する。そして、加算器542は、2つの補償デューティー比をPWM信号変換部543へ出力する。
【0095】
PWM信号変換部543は、加算器542からの2つの補償デューティー比に基づいて昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWUを生成する。より具体的には、PWM信号変換部543は、デューティー比演算部541が出力するオンデューティーをD0とすると、次の式(4),(5)によって、それぞれ、昇圧コンバータ12のNPNトランジスタQ1,Q2のオンデューティーD1,D2が決定される信号PWUを生成する。
【0096】
【数4】
Figure 0003700059
【0097】
【数5】
Figure 0003700059
【0098】
そして、PWM信号変換部543は、生成した信号PWUを昇圧コンバータ12のNPNトランジスタQ1,Q2へ出力する。そして、昇圧コンバータ12のNPNトランジスタQ1,Q2は、信号PWUに基づいてオン/オフされる。これによって、昇圧コンバータ12は、出力電圧Vmが電圧指令Vdccomになるように直流電圧Vbを出力電圧Vmに変換する。この場合、電圧指令Vdccomに対する出力電圧Vmの追従特性は基本特性に一致する。
【0099】
このようにして、制御装置30のモータトルク制御手段301は、外部のECUからトルク指令値TRを受けると、昇圧コンバータ12の出力電圧Vmがトルク指令値TRに基づいて演算された電圧指令Vdccomになるように直流電圧Vbから出力電圧Vmへの昇圧コンバータ12における電圧変換をフィードバック制御し、トルク指令値TRのトルクを交流モータM1が発生するようにインバータ14を制御する。これにより、交流モータM1は、トルク指令値TRによって指定されたトルクを発生する。
【0100】
上述したように、補正器524は、PI制御器523から出力されたフィードバック予備電圧指令Vdccom_fb_prを式(2)により補正する。式(2)の関係を図示すると、図5に示す曲線k1のようになる。
【0101】
図5を参照して、昇圧コンバータ12の出力電圧Vmが基準電圧Vstdであるとき、フィードバック電圧指令Vdccom_fbは、フィードバック電圧指令Vdccom_fb0(=Vdccom_fb_pr)になる。また、出力電圧Vmが基準電圧Vstdよりも高いとき、フィードバック電圧指令Vdccom_fbは、フィードバック電圧指令Vdccom_fb1になる。さらに、出力電圧Vmが基準電圧Vstdよりも低いとき、フィードバック電圧指令Vdccom_fbは、フィードバック電圧指令Vdccom_fb2になる。
【0102】
そうすると、図6を参照して、デューティー比演算部541は、出力電圧Vmが基準電圧Vstdであるとき、フィードバック電圧指令Vdccom_fb0に基づいてオンデューティーがD00(<1)であるデューティー比DR0を演算する。また、デューティー比演算部541は、出力電圧Vmが基準電圧Vstdよりも高いとき、フィードバック電圧指令Vdccom_fb1に基づいてオンデューティーがD01(<D00)であるデューティー比DR1を演算する。さらに、デューティー比演算部541は、出力電圧Vmが基準電圧Vstdよりも低いとき、フィードバック電圧指令Vdccom_fb2に基づいてオンデューティーがD02(D00<D02<1)であるデューティー比DR2を演算する。
【0103】
そして、加算器542は、出力電圧Vmが基準電圧Vstdであるとき、デューティー比DR0に補償率Rcomを加算して補償デューティー比DR0UをPWM信号変換部543へ出力し、デューティー比DR0に補償率1−Rcomを加算して補償デューティー比DR0LをPWM信号変換部543へ出力する。
【0104】
また、加算器542は、出力電圧Vmが基準電圧Vstdよりも高いとき、デューティー比DR1に補償率Rcomを加算して補償デューティー比DR1UをPWM信号変換部543へ出力し、デューティー比DR1に補償率1−Rcomを加算して補償デューティー比DR1LをPWM信号変換部543へ出力する。
【0105】
さらに、加算器542は、出力電圧Vmが基準電圧Vstdよりも低いとき、デューティー比DR2に補償率Rcomを加算して補償デューティー比DR2UをPWM信号変換部543へ出力し、デューティー比DR0に補償率1−Rcomを加算して補償デューティー比DR2LをPWM信号変換部543へ出力する。
【0106】
そうすると、図7を参照して、PWM信号変換部543は、出力電圧Vmが基準電圧Vstdであるとき、デューティー比DR0U,DR0Lに基づいて信号PWU0U,PWU0Lを生成し、信号PWU0U,PWU0Lからなる信号PWU0を昇圧コンバータ12へ出力する。また、PWM信号変換部543は、出力電圧Vmが基準電圧Vstdよりも高いときデューティー比DR1U,DR1Lに基づいて信号PWU1U,PWU1Lを生成し、信号PWU1U,PWU1Lからなる信号PWU1を昇圧コンバータ12へ出力する。さらに、PWM信号変換部543は、出力電圧Vmが基準電圧Vstdよりも低いときデューティー比DR2U,DR2Lに基づいて信号PWU2U,PWU2Lを生成し、信号PWU2U,PWU2Lからなる信号PWU2を昇圧コンバータ12へ出力する。
【0107】
なお、信号PWU0U,PWU1U,PWU2Uは、昇圧コンバータ12のNPNトランジスタQ1をオン/オフするための信号であり、PWU0L,PWU1L,PWU2Lは、昇圧コンバータ12のNPNトランジスタQ2をオン/オフするための信号である。
【0108】
図8は、図7に示す信号PWU0,PWU1,PWU2を用いて昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフさせたときの出力電圧Vmのフィードバック制御におけるフィードバック電圧指令Vdccom_fb0に対する追従特性を示す。
【0109】
図8を参照して、出力電圧Vmが基準電圧Vstdに一致するとき、出力電圧Vmはパターン1のようにフィードバック電圧指令Vdccom_fb0に追従する。すなわち、出力電圧Vmは、タイミングt0において点Aから出発して、タイミングt1でフィードバック電圧指令Vdccom_fb0と交差し、その後、曲線k2に従ってフィードバック電圧指令Vdccom_fb0に追従する。なお、曲線k2によって示される追従特性を基本特性と言う。
【0110】
また、出力電圧Vmが基準電圧Vstdよりも高いとき、出力電圧Vmは、パターン2のようにフィードバック電圧指令Vdccom_fb0に追従する。すなわち、出力電圧Vmは、基準電圧Vstdよりも高い電圧である点Bから出発し、NPNトランジスタQ2のオンデューティーがパターン1の場合(D00+1−Rcom)よりも小さい(D01+1−Rcom)ためパターン1の場合よりもゆっくりと上昇し、タイミングt1でフィードバック電圧指令Vdccom_fb0と交差する。その後、出力電圧Vmは、パターン1と同じように曲線k2に従ってフィードバック電圧指令Vdccom_fb0に追従する。
【0111】
この場合、補正器524によるフィードバック予備電圧指令Vdccom_fb_prの補正を行なわないとき、出力電圧Vmは、曲線k3に従ってフィードバック電圧指令Vdccom_fb0に追従する。すなわち、出力電圧Vmは、パターン1の場合と同じ速さで上昇し、タイミングt1よりも早いタイミングt2でフィードバック電圧指令Vdccom_fb0と交差し、その後、フィードバック電圧指令Vdccom_fb0に追従する。
【0112】
したがって、誤差ΔVdcを換算比Vstd<1で補正することにより、基本特性(曲線k2で表わされる)からずれていた追従特性(曲線k3で表わされる)が基本特性に一致する。
【0113】
さらに、出力電圧Vmが基準電圧Vstdよりも低いとき、出力電圧Vmは、パターン3のようにフィードバック電圧指令Vdccom_fb0に追従する。すなわち、出力電圧Vmは、基準電圧Vstdよりも低い電圧である点Cから出発し、NPNトランジスタQ2のオンデューティーがパターン1の場合(D00+1−Rcom)よりも大きい(D02+1−Rcom)ためパターン1の場合よりも速く上昇し、タイミングt1でフィードバック電圧指令Vdccom_fb0と交差する。その後、出力電圧Vmは、パターン1と同じように曲線k2に従ってフィードバック電圧指令Vdccom_fb0に追従する。
【0114】
この場合、補正器524によるフィードバック予備電圧指令Vdccom_fb_prの補正を行なわないとき、出力電圧Vmは、曲線k4に従ってフィードバック電圧指令Vdccom_fb0に追従する。すなわち、出力電圧Vmは、パターン1の場合と同じ速さで上昇し、タイミングt1よりも遅いタイミングt3でフィードバック電圧指令Vdccom_fb0と交差し、その後、フィードバック電圧指令Vdccom_fb0に追従する。
【0115】
したがって、誤差ΔVdcを換算比Vstd>1で補正することにより、基本特性(曲線k2で表わされる)からずれていた追従特性(曲線k4で表わされる)が基本特性に一致する。
【0116】
フィードバック電圧指令Vdccom_fb0(=Vdccom_fb_pr)は、出力電圧Vmが電圧指令Vdccomに一致するようにフィードバック制御するために演算された電圧指令であるので、出力電圧Vmがフィードバック電圧指令Vdccom_fb0に追従することは、出力電圧Vmが電圧指令Vdccomに追従することに相当する。
【0117】
このように、出力電圧Vmが基準電圧Vstdに一致しないとき、フィードバック予備電圧指令Vdccom_fb_prが補正され、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になるように制御される。
【0118】
したがって、出力電圧Vmが変動しても、出力電圧Vmに基づいてフィードバック予備電圧指令Vdccom_fb_prを補正することにより、電圧指令Vdccomに対する出力電圧Vmの追従特性を一定に保持できる。
【0119】
図9を参照して、昇圧コンバータ12における直流電圧から出力電圧Vmへの電圧変換を制御する動作について説明する。動作がスタートすると、電圧センサー10は、直流電源Bからの直流電圧Vbを検出し、その検出した直流電圧Vbを制御装置30へ出力する。また、電圧センサー13は、昇圧コンバータ12の出力電圧Vmを検出し、その検出した出力電圧Vmを制御装置30へ出力する(ステップS1)。
【0120】
そうすると、制御装置30において、減算器521は、出力電圧Vmと電圧指令Vdccomとの誤差ΔVdcを演算し、その演算した誤差ΔVdcをゲイン決定部522およびPI制御器523へ出力する(ステップS2)。そして、ゲイン決定部522は、誤差ΔVdcに応じて比例ゲインPGおよび積分ゲインIGからなる制御ゲインを決定する(ステップS3)。
【0121】
その後、PI制御器523は、ゲイン決定部522からの制御ゲインと、減算器521からの誤差ΔVdcとを受け、比例ゲインPG、積分ゲインIGおよび誤差ΔVdcを式(1)に代入してフィードバック予備電圧指令Vdccom_fb_prを演算する(ステップS4)。
【0122】
そして、補正器524は、PI制御器523からのフィードバック予備電圧指令Vdccom_fb_prと、電圧センサー13からの出力電圧Vmとを受け、式(2)によりフィードバック予備電圧指令Vdccom_fb_prを出力電圧Vmに応じて補正し、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になるフィードバック電圧指令Vdccom_fbを演算する。そして、補正器524は、演算したフィードバック電圧指令Vdccom_fbをデューティー比演算部541へ出力する(ステップS5)。
【0123】
そうすると、デューティー比演算部541は、フィードバック電圧指令Vdccom_fbに基づいて、上述した方法によってデューティー比(DR0,DR1,DR2のいずれか)を演算し、その演算したデューティー比を加算器542へ出力する(ステップS6)。
【0124】
一方、前向き補償器525は、電圧センサー10からの直流電圧Vbと、インバータ入力電圧指令演算部50からの電圧指令Vdccomとを受け、式(3)を用いて補償率Rcom,1−Rcomを演算して加算器542へ出力する。
【0125】
そして、加算器542は、デューティー比演算部541からのデューティー比に前向き補償器525からの補償率Rcom,1−Rcomを加え、補償デューティー比をPWM信号変換部543へ出力する。PWM信号変換部543は、加算器542からの補償デューティー比に基づいて信号PWUを生成し(ステップS7)、その生成した信号PWUを昇圧コンバータ12へ出力する。
【0126】
昇圧コンバータ12のNPNトランジスタQ1,Q2は、信号PWUに基づいてオン/オフされ、昇圧コンバータ12は、出力電圧Vmが電圧指令Vdccomになるように制御される(ステップS8)。そして、一連の動作が終了する(ステップS9)。
【0127】
再び、図1を参照して、モータ駆動装置100における動作について説明する。制御装置30は、外部のECUからトルク指令値TRが入力されると、システムリレーSR1,SR2をオンするための信号SEを生成してシステムリレーSR1,SR2へ出力するとともに、交流モータM1がトルク指令値TRを発生するように昇圧コンバータ12およびインバータ14を制御するための信号PWUおよび信号PWMIを生成してそれぞれ昇圧コンバータ12およびインバータ14へ出力する。
【0128】
そして、直流電源Bは直流電圧Vbを出力し、システムリレーSR1,SR2は直流電圧VbをコンデンサC1へ供給する。コンデンサC1は、供給された直流電圧Vbを平滑化し、その平滑化した直流電圧Vbを昇圧コンバータ12へ供給する。
【0129】
そうすると、昇圧コンバータ12のNPNトランジスタQ1,Q2は、制御装置30からの信号PWUに応じてオン/オフされ、直流電圧Vbを出力電圧Vmに変換してコンデンサC2に供給する。電圧センサー13は、コンデンサC2の両端の電圧である出力電圧Vmを検出し、その検出した出力電圧Vmを制御装置30へ出力する。
【0130】
制御装置30は、上述したように、電圧指令Vdccomと出力電圧Vmとの誤差ΔVdcを演算し、その演算した誤差ΔVdcに応じてPI制御ゲインを決定する。そして、制御装置30は、決定したPI制御ゲインを用いて演算したフィードバック予備電圧指令を、上述したように出力電圧Vmに応じて補正し、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になる信号PWUを生成して昇圧コンバータ12へ出力する。これによって、昇圧コンバータ12は、電圧指令Vdccomに対する出力電圧Vmの追従特性を基本特性に一致させながら、出力電圧Vmが電圧指令Vdccomになるように直流電圧を出力電圧Vmに変換する。
【0131】
コンデンサC2は、昇圧コンバータ12から供給された直流電圧を平滑化してインバータ14へ供給する。インバータ14のNPNトランジスタQ3〜Q8は、制御装置30からの信号PWMIに従ってオン/オフされ、インバータ14は、直流電圧を交流電圧に変換し、トルク指令値TRによって指定されたトルクを交流モータM1が発生するように交流モータM1のU相、V相、W相の各相に所定の交流電流を流す。これにより、交流モータM1は、トルク指令値TRによって指定されたトルクを発生する。
【0132】
モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車が回生制動モードになった場合、制御装置30は、回生制動モードになったことを示す信号を外部のECUから受け、信号PWMCおよび信号PWDを生成してそれぞれインバータ14および昇圧コンバータ12へ出力する。
【0133】
交流モータM1は、交流電圧を発電し、その発電した交流電圧をインバータ14へ供給する。そして、インバータ14は、制御装置30からの信号PWMCに従って、交流電圧を直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。
【0134】
昇圧コンバータ12は、制御装置30からの信号PWDに従って直流電圧を降圧して直流電源Bに供給し、直流電源Bを充電する。
【0135】
このように、モータ駆動装置100においては、電圧指令Vdccomに対する昇圧コンバータ12の出力電圧Vmの追従特性が基本特性になるように直流電源Bからの直流電圧Vbが出力電圧Vmに変換され、その変換された出力電圧VmはコンデンサC2を介してインバータ14へ供給され、トルク指令値TRによって指定されたトルクを発生するように交流モータM1が駆動される。また、回生制動モードにおいては、交流モータM1が発電した電力によって直流電源Bが充電されるようにモータ駆動装置100が駆動する。
【0136】
なお、この発明においては、昇圧コンバータ12、制御装置30のフィードバック電圧指令演算部52およびデューティー比変換部54は、「電圧変換装置」を構成する。
【0137】
また、この発明においては、フィードバック電圧指令演算部52およびデューティー比変換部54は、電圧変換器としての昇圧コンバータ12を制御する「制御手段」を構成する。
【0138】
さらに、PI制御器523は、フィードバック予備電圧指令Vdccom_fb_prを演算する「演算器」を構成する。
【0139】
さらに、この発明による電圧変換方法は、図9に示すフローチャートに従ってフィードバック制御を行ない、直流電圧を出力電圧Vmに変換する電圧変換方法である。
【0140】
さらに、フィードバック電圧指令演算部52およびデューティー比変換部54におけるフィードバック制御は、実際にはCPU(Central Processing Unit)によって行なわれ、CPUは、図9に示すフローチャートの各ステップを備えるプログラムをROM(Read Only Memory)から読出し、その読出したプログラムを実行して図9に示すフローチャートに従って直流電圧から出力電圧Vmへの電圧変換を制御する。したがって、ROMは、図9に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。
【0141】
実施の形態1によれば、電圧変換装置は、直流電源からの直流電圧を変換した出力電圧が電圧指令になるように制御するフィードバック制御において、出力電圧と指令電圧との誤差に基づいて演算したフィードバック予備電圧指令を、電圧指令に対する出力電圧の追従特性が基本特性になるときのフィードバック電圧指令に補正する制御手段を備えるので、電圧指令に対する出力電圧の追従特性を一定に保持して直流電圧を出力電圧に変換できる。
【0142】
[実施の形態2]
図10を参照して、実施の形態2による電圧変換装置を備えるモータ駆動装置100Aは、モータ駆動装置100の制御装置30を制御装置30Aに代えたものであり、その他はモータ駆動装置100と同じである。
【0143】
図11を参照して、制御装置30Aは、制御装置30のモータトルク制御手段301をモータトルク制御手段301Aに代えたものであり、その他は、制御装置30と同じである。
【0144】
モータトルク制御手段301Aは、モータトルク制御手段301と同じ方法により信号PWMIを生成してインバータ14へ出力するとともに、後述する方法によって、昇圧コンバータ12のNPNトランジスタQ1,Q2を制御する信号PWUを生成し、その生成した信号PWUを昇圧コンバータ12へ出力する。
【0145】
図12を参照して、モータトルク制御手段301Aは、モータトルク制御手段301のフィードバック電圧指令演算部52をフィードバック電圧指令演算部52Aに代えたものであり、その他はモータトルク制御手段301と同じである。
【0146】
フィードバック電圧指令演算部52Aは、インバータ入力電圧指令演算部50からの電圧指令Vdccomと、電圧センサー13からの出力電圧Vmとに基づいて、出力電圧Vmと電圧指令Vdccomとの誤差ΔVdcを補正して電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になるようにフィードバック電圧指令Vdccom_fbv2を演算する。
【0147】
図13を参照して、フィードバック電圧指令演算部52Aは、フィードバック電圧指令演算部52の補正器524を補正器524Aに代え、PI制御器523をPI制御器523Aに代えたものであり、その他は、フィードバック電圧指令演算部52と同じである。
【0148】
フィードバック電圧指令演算部52Aにおいては、減算器521は、演算した誤差ΔVdcをゲイン決定部522、PI制御器523Aおよび補正器524Aへ出力する。補正器524Aは、減算器521からの誤差ΔVdcと、電圧センサー13からの出力電圧Vmとを受け、出力電圧Vmに応じて誤差ΔVdcを次式によって補正する。
【0149】
【数6】
Figure 0003700059
【0150】
そして、補正器524Aは、補正した補正誤差ΔVdccをPI制御器523Aへ出力する。
【0151】
補正器524Aは、基準電圧Vstdを出力電圧Vmで除算することにより、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になる基準電圧Vstdに出力電圧Vmを換算するための換算比を演算する。そして、補正器524Aは、演算した換算比を誤差ΔVdcに乗算することにより、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になるフィードバック電圧指令Vdccom_fbv2を求めるための補正誤差ΔVdccを演算する。
【0152】
PI制御器523Aは、ゲイン決定部522からの制御ゲイン(比例ゲインPGおよび積分ゲインIG)と、補正器524Aからの補正誤差ΔVdccとを受け、比例ゲインPG、積分ゲインIGおよび補正誤差ΔVdccを次式に代入することにより、フィードバック電圧指令Vdccom_fbv2を演算する。
【0153】
【数7】
Figure 0003700059
【0154】
そして、PI制御器523Aは、演算したフィードバック電圧指令Vdccom_fbv2をデューティー比演算部541へ出力する。
【0155】
式(1)を式(2)に代入すると、次式になる。
【0156】
【数8】
Figure 0003700059
【0157】
また、式(6)を式(7)に代入すると、次式になる。
【0158】
【数9】
Figure 0003700059
【0159】
そうすると、フィードバック電圧指令演算部52Aが出力するフィードバック電圧指令Vdccom_fbv2は、実施の形態1におけるフィードバック電圧指令演算部52が出力するフィードバック電圧指令Vdccom_fbに一致する。
【0160】
実施の形態1においては、フィードバック電圧指令演算部52は、誤差ΔVdcに応じて決定した制御ゲイン(比例ゲインPGおよび積分ゲインIG)と誤差ΔVdcとを用いてフィードバック予備電圧指令Vdccom_fb_prを演算し、その演算したフィードバック予備電圧指令Vdccom_fb_prを換算比Vstd/Vmを用いて補正してフィードバック電圧指令Vdccom_fbを演算する。
【0161】
これに対して、実施の形態2におけるフィードバック電圧指令演算部52Aは、誤差ΔVdcを換算比Vstd/Vmを用いて補正する。つまり、出力電圧Vmが基準電圧Vstdに一致するとき、補正器524Aは、減算器521からの誤差ΔVdcに換算比Vstd/Vm=1を乗算し、誤差ΔVdcからなる補正誤差ΔVdccを出力する。また、出力電圧Vmが基準電圧Vstdよりも高いとき、補正器524Aは、誤差ΔVdcに換算比Vstd/Vm<1を乗算し、ΔVdc×(Vstd/Vm)からなる補正誤差ΔVdccを出力する。さらに、出力電圧Vmが基準電圧Vstdよりも低いとき、補正器524Aは、誤差ΔVdcに換算比Vstd/Vm>1を乗算し、ΔVdc×(Vstd/Vm)からなる補正誤差ΔVdccを出力する。
【0162】
そして、出力電圧Vmが基準電圧Vstdに一致するとき、フィードバック電圧指令Vdccom_fbv2=Vdccom_fb0となり、電圧指令Vdccomに対する出力電圧Vmの追従特性は、図8に示すパターン1のようになる。また、出力電圧Vmが基準電圧Vstdよりも高いとき、フィードバック電圧指令Vdccom_fbv2=Vdccom_fb1となり、電圧指令Vdccomに対する出力電圧Vmの追従特性は、図8に示すパターン2のようになる。つまり、誤差ΔVdcを換算比Vstd<1で補正することにより、基本特性(曲線k2で表わされる)からずれていた追従特性(曲線k3で表わされる)が基本特性に一致する。さらに、出力電圧Vmが基準電圧Vstdよりも低いとき、フィードバック電圧指令Vdccom_fbv2=Vdccom_fb2となり、電圧指令Vdccomに対する出力電圧Vmの追従特性は、図8に示すパターン3のようになる。つまり、誤差ΔVdcを換算比Vstd>1で補正することにより、基本特性(曲線k2で表わされる)からずれていた追従特性(曲線k4で表わされる)が基本特性に一致する。
【0163】
このように、補正器524Aは、出力電圧Vmが基準電圧Vstdからずれた場合、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になるように誤差ΔVdcを出力電圧Vmに応じて補正する。
【0164】
したがって、補正誤差ΔVdccは、電圧指令Vdccomに対する出力電圧Vmの追従特性を基本特性に一致させるための誤差である。
【0165】
そして、フィードバック電圧指令演算部52,52Aは、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になるフィードバック電圧指令Vdccom_fb,Vdccom_fbv2を演算する点で共通する。
【0166】
上述したように、実施の形態2においては、出力電圧Vmと電圧指令Vdccomとの誤差ΔVdcを出力電圧Vmに応じて補正し、その補正した補正誤差ΔVdccを用いて電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になるフィードバック電圧指令Vdccom_fbv2(=Vdccom_fb)を演算することを特徴とする。そして、制御ゲインとしての比例ゲインPGおよび積分ゲインIGは、補正されない。
【0167】
図14を参照して、実施の形態2における電圧変換を制御する動作について説明する。図14に示すフローチャートは、図9に示すフローチャートのステップS4,S5を、それぞれ、ステップS4a,S5aに代えたものであり、その他は、図9に示すフローチャートと同じである。
【0168】
ステップS3の後、補正器524Aは、減算器521からの誤差ΔVdcと電圧センサー13からの出力電圧Vmとを受け、誤差ΔVdcを式(6)により補正する(ステップS4a)。そして、補正器524Aは、補正誤差ΔVdccをPI制御器523Aへ出力する。
【0169】
PI制御器523Aは、ゲイン決定部522からの制御ゲイン(比例ゲインPGおよび積分ゲインIG)と、補正器524Aからの補正誤差ΔVdccとを受け、式(7)によりフィードバック電圧指令Vdccom_fbv2(=Vdccom_fb)を演算し、その演算したフィードバック電圧指令Vdccom_fbv2をデューティー比演算部541へ出力する(ステップS5a)。
【0170】
その後、上述したステップS6〜S8が実行されて一連の動作が終了する(ステップS9)。
【0171】
なお、この発明においては、昇圧コンバータ12、制御装置30Aのフィードバック電圧指令演算部52Aおよびデューティー比変換部54は、「電圧変換装置」を構成する。
【0172】
また、この発明においては、フィードバック電圧指令演算部52Aおよびデューティー比変換部54は、電圧変換器としての昇圧コンバータ12を制御する「制御手段」を構成する。
【0173】
さらに、PI制御器523Aは、フィードバック電圧指令Vdccom_fbを演算する「演算器」を構成する。
【0174】
さらに、フィードバック電圧指令演算部52Aは、フィードバック電圧指令演算部52と同様に、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になるフィードバック電圧指令Vdccom_fbv2(=Vdccom_fb)を演算するので、この発明におけるフィードバック電圧指令演算部は、誤差ΔVdcまたはフィードバック予備電圧指令Vdccom_fb_prを換算比Vstd/Vmによって補正することにより、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になるフィードバック電圧指令を演算するものであればよい。
【0175】
さらに、この発明による電圧変換方法は、図14に示すフローチャートに従ってフィードバック制御を行ない、直流電圧を出力電圧Vmに変換する電圧変換方法である。
【0176】
さらに、フィードバック電圧指令演算部52Aおよびデューティー比変換部54におけるフィードバック制御は、実際にはCPU(Central Processing Unit)によって行なわれ、CPUは、図14に示すフローチャートの各ステップを備えるプログラムをROM(Read Only Memory)から読出し、その読出したプログラムを実行して図14に示すフローチャートに従って直流電圧から出力電圧Vmへの電圧変換を制御する。したがって、ROMは、図14に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。
【0177】
さらに、この発明による電圧変換方法は、図9に示すステップS4,S5、または図14に示すステップS4a,S5aを、「誤差ΔVdcおよび制御ゲイン(比例ゲインPGおよび積分ゲインIG)に基づいて、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になるフィードバック電圧指令Vdccom_fbを演算する」ステップに代えたものであってもよい。
【0178】
そして、このステップは、ROMに記録されたプログラムにも適用可能なものである。
【0179】
その他は、実施の形態1と同じである。
実施の形態2によれば、電圧変換装置は、直流電源からの直流電圧を変換した出力電圧が電圧指令になるように制御するフィードバック制御において、出力電圧と指令電圧との誤差を電圧指令に対する出力電圧の追従特性が基本特性になるときの誤差に補正し、その補正した補正誤差を用いてフィードバック電圧指令を演算する制御手段を備えるので、電圧指令に対する出力電圧の追従特性を一定に保持して直流電圧を出力電圧に変換できる。
【0180】
[実施の形態3]
図15を参照して、実施の形態3による電圧変換装置を備えるモータ駆動装置100Bは、モータ駆動装置100の制御装置30を制御装置30Bに代えたものであり、その他はモータ駆動装置100と同じである。
【0181】
図16を参照して、制御装置30Bは、制御装置30のモータトルク制御手段301をモータトルク制御手段301Bに代えたものであり、その他は、制御装置30と同じである。
【0182】
モータトルク制御手段301Bは、モータトルク制御手段301と同じ方法によって信号PWMIを生成するとともに、後述する方法によって、信号PWUを生成し、その生成した信号PWUを昇圧コンバータ12へ出力する。
【0183】
図17を参照して、モータトルク制御手段301Bは、モータトルク制御手段301のフィードバック電圧指令演算部52をフィードバック電圧指令演算部52Bに代え、デューティー比変換部54をデューティー比変換部54Aに代えたものであり、その他はモータトルク制御手段301と同じである。
【0184】
フィードバック電圧指令演算部52Bは、インバータ入力電圧指令演算部50からの電圧指令Vdccomと電圧センサー13からの出力電圧Vmとに基づいてフィードバック電圧指令Vdccom_fbv3を演算し、その演算したフィードバック電圧指令Vdccom_fbv3をデューティー比変換部54Aへ出力する。その他、フィードバック電圧指令演算部52Bは、フィードバック電圧指令演算部52と同じ機能を果たす。
【0185】
デューティー比変換部54Aは、フィードバック電圧指令演算部52Bからのフィードバック電圧指令Vdccom_fbv3および補償率Rcom,1−Rcomと電圧センサー13からの出力電圧Vmとに基づいて、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になるための信号PWUを生成し、その生成した信号PWUを昇圧コンバータ12へ出力する。
【0186】
図18を参照して、フィードバック電圧指令演算部52Bは、フィードバック電圧指令演算部52の補正器524を削除したものであり、その他はフィードバック電圧指令演算部52と同じである。
【0187】
したがって、フィードバック電圧指令演算部52Bは、出力電圧Vmと電圧指令Vdccomとの誤差ΔVdcと制御ゲイン(比例ゲインPGおよび積分ゲインIG)とを式(1)に代入してフィードバック電圧指令Vdccom_fbv3を演算する。そして、フィードバック電圧指令演算部52Bは、演算したフィードバック電圧指令Vdccom_fbv3をデューティー比演算部541へ出力する。
【0188】
つまり、フィードバック電圧指令演算部52Bは、実施の形態1,2のような補正を行なうことなく、誤差ΔVdcから決定されるフィードバック電圧指令Vdccom_fbv3を演算してデューティー比演算部541へ出力する。
【0189】
なお、フィードバック電圧指令Vdccom_fbv3は、実施の形態1におけるフィードバック予備電圧指令Vdccom_fb_prに等しい。
【0190】
デューティー比変換部54Aは、デューティー比変換部54に補正器544を追加したものであり、その他は、デューティー比変換部54と同じである。補正器544は、ディーティー比演算部541と加算器542との間に配置される。そして、補正器544は、デューティー比演算部541からのデューティー比DROと、電圧センサー13からの出力電圧Vmとを受け、デューティー比DROを出力電圧Vmを用いて次式により補正し、補正デューティー比DRCを演算する。
【0191】
【数10】
Figure 0003700059
【0192】
そして、補正器544は、補正デューティー比DRCを加算器542へ出力する。
【0193】
補正器544は、基準電圧Vstdを出力電圧Vmで除算することにより、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になる基準電圧Vstdに出力電圧Vmを換算するための換算比を演算する。そして、補正器544は、演算した換算比をデューティー比DROに乗算することにより、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になる補正デューティー比DRCを演算する。
【0194】
上述したように、フィードバック電圧指令演算部52Bは、何ら補正することなく、誤差ΔVdcのみに基づいてフィードバック電圧指令Vdccom_fbv3を演算する。そして、デューティー比演算部541は、フィードバック電圧指令Vdccom_fbv3に基づいてデューティー比DROを演算する。
【0195】
この場合、デューティー比DROは、誤差ΔVdcのみに基づいて演算されたデューティー比であるので、出力電圧Vmが変化しても誤差ΔVdcが一定であれば一定である。つまり、デューティー比演算部541は、フィードバック電圧指令Vdccom_fbv3に基づいてデューティー比を演算し、図6に示すデューティー比DR0と同じデューティー比DROを補正器544へ出力する。
【0196】
そして、補正器544は、デューティー比演算部541からのデューティー比DROを式(10)を用いて補正し、補正デューティー比DRCを加算器542へ出力する。
【0197】
すなわち、補正器544は、出力電圧Vmが基準電圧Vstdに一致するとき、デューティー比演算部541からのデューティー比DROに換算比Vstd/Vm=1を乗算してデューティー比DRO(=DR0:図6参照)からなる補正デューティー比DRCを加算器542へ出力する。また、補正器544は、出力電圧Vmが基準電圧Vstdよりも高いとき、デューティー比演算部541からのデューティー比DROに換算比Vstd/Vm<1を乗算して図6に示すデューティー比DR1からなる補正デューティー比DRCを加算器542へ出力する。さらに、補正器544は、出力電圧Vmが基準電圧Vstdよりも低いとき、デューティー比演算部541からのデューティー比DROに換算比Vstd/Vm>1を乗算して図6に示すデューティー比DR2からなる補正デューティー比DRCを加算器542へ出力する。
【0198】
そうすると、加算器542は、補正器544からの補正デューティー比DRCに前向き補償器525からの補償率Rcom,1−Rcomを加算して補償デューティー比をPWM信号変換部543へ出力する。
【0199】
すなわち、加算器542は、出力電圧Vmが基準電圧Vstdに一致するとき、図6に示すデューティー比DR0からなる補正デューティー比DRCに補償率Rcom,1−Rcomを加算して、図6に示すデューティー比DR0U,DR0Lからなる補償デューティー比をPWM信号変換部543へ出力する。また、加算器542は、出力電圧Vmが基準電圧Vstdよりも高いとき、図6に示すデューティー比DR1からなる補正デューティー比DRCに補償率Rcom,1−Rcomを加算して、図6に示すデューティー比DR1U,DR1Lからなる補償デューティー比をPWM信号変換部543へ出力する。さらに、加算器542は、出力電圧Vmが基準電圧Vstdよりも低いとき、図6に示すデューティー比DR2からなる補正デューティー比DRCに補償率Rcom,1−Rcomを加算して、図6に示すデューティー比DR2U,DR2Lからなる補償デューティー比をPWM信号変換部543へ出力する。
【0200】
そして、PWM信号変換部543は、加算器542からの補償デューティー比に基づいて信号PWUを生成して昇圧コンバータ12へ出力する。すなわち、PWM信号変換部543は、出力電圧Vmが基準電圧Vstdに一致するとき、図6に示すデューティー比DR0U,DR0Lからなる補償デューティー比に基づいて、それぞれ、図7に示す信号PWU0U,PWU0Lを生成し、信号PWU0U,PWU0Lからなる信号PWU0を昇圧コンバータ12へ出力する。また、PWM信号変換部543は、出力電圧Vmが基準電圧Vstdよりも高いとき、図6に示すデューティー比DR1U,DR1Lからなる補償デューティー比に基づいて、それぞれ、図7に示す信号PWU1U,PWU1Lを生成し、信号PWU1U,PWU1Lからなる信号PWU1を昇圧コンバータ12へ出力する。さらに、PWM信号変換部543は、出力電圧Vmが基準電圧Vstdよりも低いとき、図6に示すデューティー比DR2U,DR2Lからなる補償デューティー比に基づいて、それぞれ、図7に示す信号PWU2U,PWU2Lを生成し、信号PWU2U,PWU2Lからなる信号PWU2を昇圧コンバータ12へ出力する。
【0201】
上述したように、デューティー比演算部541が出力するデューティー比DROは、出力電圧Vmの変動を考慮して演算されたデューティー比ではないので、この実施の形態3においては、デューティー比DROを出力電圧Vmに応じて補正し、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になる補正デューティー比DRCを演算することにしたものである。
【0202】
その結果、電圧指令Vdccomに対する出力電圧Vmの追従特性を基本特性に保持して、直流電源Bからの直流電圧Vbを出力電圧Vmに変換できる。
【0203】
図19を参照して、実施の形態3における電圧変換を制御する動作について説明する。図19に示すフローチャートは、図9に示すフローチャートのステップS5〜S7を、それぞれ、ステップS51〜S53に代えたものであり、その他は、図9に示すフローチャートと同じである。
【0204】
ステップS4の後、デューティー比演算部541は、フィードバック電圧指令Vdccom_fbv3に基づいてデューティー比DROを演算し、その演算したデューティー比DROを補正器544へ出力する(ステップS51)。補正器544は、デューティー比DROを式(10)によって補正し、補正デューティー比DRCを加算器542へ出力する(ステップS52)。
【0205】
加算器542は、補正器544からの補正デューティー比DRCに前向き補償器525からの補償率Rcom,1−Rcomを加え、補償デューティー比をPWM信号変換部543へ出力する。そして、PWM信号変換部543は、加算器542からの補償デューティー比に基づいて信号PWU0(またはPWU1またはPWU2)を生成する(ステップS53)。その後、ステップS8が実行され、一連の動作が終了する(ステップS9)。
【0206】
なお、この発明においては、昇圧コンバータ12、制御装置30Bのフィードバック電圧指令演算部52Bおよびデューティー比変換部54Aは、「電圧変換装置」を構成する。
【0207】
また、この発明においては、フィードバック電圧指令演算部52Bおよびデューティー比変換部54Aは、電圧変換器としての昇圧コンバータ12を制御する「制御手段」を構成する。
【0208】
さらに、実施の形態3におけるデューティー比演算部541は、予備デューティー比を演算する「演算器」を構成する。
【0209】
さらに、この発明による電圧変換方法は、図19に示すフローチャートに従ってフィードバック制御を行ない、直流電圧を出力電圧Vmに変換する電圧変換方法である。
【0210】
さらに、フィードバック電圧指令演算部52Bおよびデューティー比変換部54Aにおけるフィードバック制御は、実際にはCPU(Central Processing Unit)によって行なわれ、CPUは、図19に示すフローチャートの各ステップを備えるプログラムをROM(Read Only Memory)から読出し、その読出したプログラムを実行して図19に示すフローチャートに従って直流電圧から出力電圧Vmへの電圧変換を制御する。したがって、ROMは、図19に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。
【0211】
その他は、実施の形態1と同じである。
実施の形態3によれば、電圧変換装置は、直流電源からの直流電圧を昇圧コンバータにより変換した出力電圧が電圧指令になるように制御するフィードバック制御において、出力電圧と指令電圧との誤差に基づいて演算されたデューティー比を電圧指令に対する出力電圧の追従特性が基本特性になるときのデューティー比に補正し、その補正したデューティー比を用いて昇圧コンバータを制御する制御手段を備えるので、電圧指令に対する出力電圧の追従特性を一定に保持して直流電圧を出力電圧に変換できる。
【0212】
[実施の形態4]
図20を参照して、実施の形態4による電圧変換装置を備えたモータ駆動装置100Cは、電流センサー28およびインバータ31をモータ駆動装置100に追加し、モータ駆動装置100の制御装置30を制御装置30Cに代えたものであり、その他は、モータ駆動装置100と同じである。
【0213】
なお、コンデンサC2は、昇圧コンバータ12からの出力電圧VmをノードN1,N2を介して受け、その受けた出力電圧Vmを平滑化してインバータ14のみならずインバータ31にも供給する。また、電流センサー24は、モータ電流MCRT1を検出して制御装置30Cへ出力する。さらに、インバータ14は、制御装置30Cからの信号PWMI1に基づいてコンデンサC2からの直流電圧を交流電圧に変換して交流モータM1を駆動し、信号PWMC1に基づいて交流モータM1が発電した交流電圧を直流電圧に変換する。
【0214】
インバータ31は、インバータ14と同じ構成から成る。そして、インバータ31は、制御装置30Cからの信号PWMI2に基づいて、コンデンサC2からの直流電圧を交流電圧に変換して交流モータM2を駆動し、信号PWMC2に基づいて交流モータM2が発電した交流電圧を直流電圧に変換する。電流センサー28は、交流モータM2の各相に流れるモータ電流MCRT2を検出して制御装置30Cへ出力する。
【0215】
制御装置30Cは、直流電源Bから出力された直流電圧Vbを電圧センサー10から受け、モータ電流MCRT1,MCRT2をそれぞれ電流センサー24,28から受け、昇圧コンバータ12の出力電圧Vm(すなわち、インバータ14,31への入力電圧)を電圧センサー13から受け、トルク指令値TR1,TR2およびモータ回転数MRN1,MRN2を外部ECUから受ける。そして、制御装置30Cは、電圧Vb、出力電圧Vm、モータ電流MCRT1、トルク指令値TR1およびモータ回転数MRN1に基づいて、上述した方法によりインバータ14が交流モータM1を駆動するときにインバータ14のNPNトランジスタQ3〜Q8をスイッチング制御するための信号PWMI1を生成し、その生成した信号PWMI1をインバータ14へ出力する。
【0216】
また、制御装置30Cは、直流電圧Vb、出力電圧Vm、モータ電流MCRT2、トルク指令値TR2およびモータ回転数MRN2に基づいて、上述した方法によりインバータ31が交流モータM2を駆動するときにインバータ31のNPNトランジスタQ3〜Q8をスイッチング制御するための信号PWMI2を生成し、その生成した信号PWMI2をインバータ31へ出力する。
【0217】
さらに、制御装置30Cは、インバータ14または31が交流モータM1またはM2を駆動するとき、直流電圧Vb、出力電圧Vm、モータ電流MCRT1(またはMCRT2)、トルク指令値TR1(またはTR2)およびモータ回転数MRN1(またはMRN2)に基づいて、上述した方法(実施の形態1〜実施の形態3のいずれかにおける方法)により昇圧コンバータ12のNPNトランジスタQ1,Q2をスイッチング制御するための信号PWUを生成して昇圧コンバータ12へ出力する。
【0218】
さらに、制御装置30Cは、回生制動時に交流モータM1が発電した交流電圧を直流電圧に変換するための信号PWMC1、または交流モータM2が発電した交流電圧を直流電圧に変換するための信号PWMC2を生成し、その生成した信号PWMC1または信号PWMC2をそれぞれインバータ14またはインバータ31へ出力する。この場合、制御装置30Cは、インバータ14または31からの直流電圧を降圧して直流電源Bを充電するように昇圧コンバータ12を制御する信号PWDを生成して昇圧コンバータ12へ出力する。
【0219】
さらに、制御装置30Cは、システムリレーSR1,SR2をオンするための信号SEを生成してシステムリレーSR1,SR2へ出力する。
【0220】
図21を参照して、制御装置30Cは、モータトルク制御手段301Cおよび電圧変換制御手段302Aを含む。モータトルク制御手段301Cは、モータ電流MCRT1,2、トルク指令値TR1,2、モータ回転数MRN1,2、直流電圧Vbおよび出力電圧Vmに基づいて信号PWMI1,2を生成し、その生成した信号PWMI1,2を、それぞれ、インバータ14,31へ出力する。また、モータトルク制御手段301Cは、直流電圧Vb、出力電圧Vm、モータ電流MCRT1(またはMCRT2)、トルク指令値TR1(またはTR2)およびモータ回転数MRN1(またはMRN2)に基づいて、信号PWUを生成し、その生成した信号PWUを昇圧コンバータ12へ出力する。
【0221】
電圧変換制御手段302Aは、モータ駆動装置100Cが搭載されたハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、信号PWMC1,2および信号PWDを生成し、その生成した信号PWMC1,2をそれぞれインバータ14,31へ出力し、信号PWDを昇圧コンバータ12へ出力する。
【0222】
図22を参照して、モータトルク制御手段301Cは、モータトルク制御手段301と同じ構成からなる(図3参照)。ただし、モータトルク制御手段301Cは、2つのトルク指令値TR1,2、2つのモータ電流MCT1,2および2つのモータ回転数MRN1,2に基づいて、信号PWMI1,2および信号PWUを生成し、その生成した信号PWMI1,2および信号PWUに基づいてそれぞれインバータ14,31および昇圧コンバータ12を制御する点がモータトルク制御手段301と異なる。
【0223】
モータ制御用相電圧演算部40は、昇圧コンバータ12の出力電圧Vm、モータ電流MCRT1、およびトルク指令値TR1に基づいて交流モータM1の各相に印加する電圧を計算し、出力電圧Vm、モータ電流MCRT2、およびトルク指令値TR2に基づいて交流モータM2の各相に印加する電圧を計算する。そして、モータ制御用相電圧演算部40は、計算した交流モータM1またはM2用の電圧をインバータ用PWM信号変換部42へ出力する。
【0224】
インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40から交流モータM1用の電圧を受けると、その受けた電圧に基づいて信号PWMI1を生成してインバータ14へ出力する。また、インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40から交流モータM2用の電圧を受けると、その受けた電圧に基づいて信号PWMI2を生成してインバータ31へ出力する。
【0225】
インバータ入力電圧指令演算部50は、トルク指令値TR1およびモータ回転数MRN1(またはトルク指令値TR2およびモータ回転数MRN2)に基づいて電圧指令Vdccomを演算し、その演算した電圧指令Vdccomをフィードバック電圧指令演算部52へ出力する。
【0226】
フィードバック電圧指令演算部52は、実施の形態1において説明したように、電圧指令Vdccom、出力電圧Vmおよびバッテリ電圧Vbに基づいて、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になるフィードバック電圧指令Vdccom_fbと、補償率Rcom,1−Rcomとを演算し、その演算したフィードバック電圧指令Vdccom_fbおよび補償率Rcom,1−Rcomをデューティー比変換部54へ出力する。
【0227】
そうすると、デューティー比変換部54は、実施の形態1において説明したように信号PWU(信号PWU0,PWU1,PWU2のいずれか)を生成し、その生成した信号PWU(信号PWU0,PWU1,PWU2のいずれか)を昇圧コンバータ12へ出力する。
【0228】
これによって、2つの交流モータM1,M2が接続された場合にも、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性に保持され、直流電源Bから出力された直流電圧Vbが出力電圧Vmに変換される。
【0229】
モータトルク制御手段301Cにおいては、フィードバック電圧指令演算部52に代えてフィードバック電圧指令演算部52Aを適用してもよい。
【0230】
また、モータトルク制御手段301Cにおいては、フィードバック電圧指令演算部52に代えてフィードバック電圧指令演算部52Bを適用し、デューティー比変換部54に代えてデューティー比変換部54Aを適用してもよい。
【0231】
フィードバック電圧指令演算部52およびデューティー比変換部54をモータトルク制御手段301Cに適用した場合、電圧指令Vdccomに対する出力電圧Vmの追従特性を基本特性に保持した直流電圧Vbから出力電圧Vmへの電圧変換は、図9に示すフローチャートに従って制御される。
【0232】
また、フィードバック電圧指令演算部52Aおよびデューティー比変換部54をモータトルク制御手段301Cに適用した場合、電圧指令Vdccomに対する出力電圧Vmの追従特性を基本特性に保持した直流電圧Vbから出力電圧Vmへの電圧変換は、図14に示すフローチャートに従って制御される。
【0233】
さらに、フィードバック電圧指令演算部52Bおよびデューティー比変換部54Aをモータトルク制御手段301Cに適用した場合、電圧指令Vdccomに対する出力電圧Vmの追従特性を基本特性に保持した直流電圧Vbから出力電圧Vmへの電圧変換は、図19に示すフローチャートに従って制御される。
【0234】
さらに、モータ駆動装置100Cにおいては、駆動すべきモータは2個に限らず、3個以上であってもよい。たとえば、交流モータM1、交流モータM2およびエンジンをプラネタリーギア機構に接続し(エンジン出力軸をキャリア、交流モータM1をサンギア、交流モータM2をリングギアに接続し)、リングギアの出力軸を車両のたとえば、前輪駆動軸を回転できるように構成するとともに、第3の交流モータは、たとえば、後輪駆動軸を回転できるように車両に配置することができる。電気自動車やハイブリッド自動車の種々の形態に合わせて本発明を適宜アレンジしてもよい。
【0235】
再び、図20を参照して、モータ駆動装置100Cにおける全体動作について説明する。なお、制御装置30Cは、フィードバック電圧指令演算部52およびデューティー比演算部54を含むものとして説明する。
【0236】
全体の動作が開始されると、制御装置30Cは、信号SEを生成してシステムリレーSR1,2へ出力し、システムリレーSR1,2がオンされる。直流電源Bは直流電圧をシステムリレーSR1,SR2を介して昇圧コンバータ12へ出力する。
【0237】
電圧センサー10は、直流電源Bから出力される直流電圧Vbを検出し、その検出した直流電圧Vbを制御装置30Cへ出力する。また、電圧センサー13は、コンデンサC2の両端の電圧Vmを検出し、その検出した電圧Vmを制御装置30Cへ出力する。さらに、電流センサー24は、交流モータM1に流れるモータ電流MCRT1を検出して制御装置30Cへ出力し、電流センサー28は、交流モータM2に流れるモータ電流MCRT2を検出して制御装置30Cへ出力する。そして、制御装置30Cは、外部ECUからトルク指令値TR1,2、およびモータ回転数MRN1,2を受ける。
【0238】
そうすると、制御装置30Cは、直流電圧Vb、出力電圧Vm、モータ電流MCRT1、トルク指令値TR1およびモータ回転数MRN1に基づいて、上述した方法により信号PWMI1を生成し、その生成した信号PWMI1をインバータ14へ出力する。また、制御装置30Cは、直流電圧Vb、出力電圧Vm、モータ電流MCRT2、トルク指令値TR2およびモータ回転数MRN2に基づいて、上述した方法により信号PWMI2を生成し、その生成した信号PWMI2をインバータ31へ出力する。
【0239】
さらに、制御装置30Cは、インバータ14(または31)が交流モータM1(またはM2)を駆動するとき、直流電圧Vb、出力電圧Vm、モータ電流MCRT1(またはMCRT2)、トルク指令値TR1(またはTR2)、およびモータ回転数MRN1(またはMRN2)に基づいて、上述した方法(実施の形態1)により昇圧コンバータ12のNPNトランジスタQ1,Q2をスイッチング制御するための信号PWUを生成し、その生成した信号PWUを昇圧コンバータ12へ出力する。
【0240】
すなわち、制御装置30Cは、電圧指令Vdccom、出力電圧Vmおよびバッテリ電圧Vbに基づいて、電圧指令Vdccomに対する出力電圧Vmの追従特性が基本特性になるフィードバック電圧指令Vdccom_fbと、補償率Rcom,1−Rcomとを演算し、その演算したフィードバック電圧指令Vdccom_fbおよび補償率Rcom,1−Rcomに基づいて信号PWU(信号PWU0,PWU1,PWU2のいずれか)を生成する。そして、制御装置30Cは、生成した信号PWU(信号PWU0,PWU1,PWU2のいずれか)を昇圧コンバータ12へ出力する。
【0241】
そうすると、昇圧コンバータ12は、信号PWU(信号PWU0,PWU1,PWU2のいずれか)に応じて、電圧指令Vdccomに対する出力電圧Vmの追従特性を基本特性に保持しながら、直流電源Bからの直流電圧を昇圧し、その昇圧した直流電圧をノードN1,N2を介してコンデンサC2に供給する。そして、インバータ14は、コンデンサC2によって平滑化された直流電圧を制御装置30Cからの信号PWMI1によって交流電圧に変換して交流モータM1を駆動する。また、インバータ31は、コンデンサC2によって平滑化された直流電圧を制御装置30Cからの信号PWMI2によって交流電圧に変換して交流モータM2を駆動する。これによって、交流モータM1は、トルク指令値TR1によって指定されたトルクを発生し、交流モータM2は、トルク指令値TR2によって指定されたトルクを発生する。
【0242】
また、モータ駆動装置100Cが搭載されたハイブリッド自動車または電気自動車の回生制動時、制御装置30Cは、外部ECUから信号RGEを受け、その受けた信号RGEに応じて、信号PWMC1,2を生成してそれぞれインバータ14,31へ出力し、信号PWDを生成して昇圧コンバータ12へ出力する。
【0243】
そうすると、インバータ14は、交流モータM1が発電した交流電圧を信号PWMC1に応じて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。また、インバータ31は、交流モータM2が発電した交流電圧を信号PWMC2に応じて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。そして、昇圧コンバータ12は、コンデンサC2からの直流電圧をノードN1,N2を介して受け、その受けた直流電圧を信号PWDによって降圧し、その降圧した直流電圧を直流電源Bに供給する。これにより、交流モータM1またはM2によって発電された電力が直流電源Bに充電される。
【0244】
なお、制御装置30Cがフィードバック電圧指令演算部52Aおよびデューティー比演算部54を含む場合、モータ駆動装置100Cの全体動作は、上述した動作のうち、昇圧コンバータ12による昇圧動作を図14に示すフローチャートに従って行なわれる動作に代えたものである。
【0245】
また、制御装置Cがフィードバック電圧指令演算部52Bおよびデューティー比演算部54Aを含む場合、モータ駆動装置100Cの全体動作は、上述した動作のうち、昇圧コンバータ12による昇圧動作を図19に示すフローチャートに従って行なわれる動作に代えたものである。
【0246】
その他は、実施の形態1〜実施の形態3と同じである。
実施の形態4によれば、電圧変換装置は、直流電源からの直流電圧を変換した出力電圧が電圧指令になるように制御するフィードバック制御において、電圧指令に対する出力電圧の追従特性が基本特性になるように昇圧コンバータを制御する制御手段を備え、電圧変換装置によって変換された出力電圧は、複数のモータを駆動する複数のインバータに供給されるので、複数のモータが接続された場合にも、電圧指令に対する出力電圧の追従特性を一定に保持して直流電圧を出力電圧に変換できる。
【0247】
なお、上記においては、この発明を比例ゲインPGと積分ゲインIGとを用いたフィードバック制御に適用した場合について説明したが、この発明を比例ゲインPGと積分ゲインIGと微分ゲインDGとを用いたフィードバック制御に適用してもよい。
【0248】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【図面の簡単な説明】
【図1】 実施の形態1による電圧変換装置を備えたモータ駆動装置の概略ブロック図である。
【図2】 図1に示す制御装置の機能ブロック図である。
【図3】 図2に示すモータトルク制御手段の機能を説明するための機能ブロック図である。
【図4】 図3に示すフィードバック電圧指令演算部およびデューティー比変換部の機能を説明するための機能ブロック図である。
【図5】 フィードバック電圧指令と昇圧コンバータの出力電圧との関係図である。
【図6】 図4に示すデューティー比演算部が生成するデューティー比を説明するための図である。
【図7】 図3に示すデューティー比変換部が生成する信号のタイミングチャートである。
【図8】 制御パターンのタイミングチャートである。
【図9】 実施の形態1における電圧変換を制御する動作を説明するためのフローチャートである。
【図10】 実施の形態2による電圧変換装置を備えたモータ駆動装置の概略ブロック図である。
【図11】 図9に示す制御装置の機能ブロック図である。
【図12】 図10に示すモータトルク制御手段の機能を説明するための機能ブロック図である。
【図13】 図11に示すフィードバック電圧指令演算部およびデューティー比変換部の機能を説明するための機能ブロック図である。
【図14】 実施の形態2における電圧変換を制御する動作を説明するためのフローチャートである。
【図15】 実施の形態3による電圧変換装置を備えたモータ駆動装置の概略ブロック図である。
【図16】 図14に示す制御装置の機能ブロック図である。
【図17】 図15に示すモータトルク制御手段の機能を説明するための機能ブロック図である。
【図18】 図16に示すフィードバック電圧指令演算部およびデューティー比変換部の機能を説明するための機能ブロック図である。
【図19】 実施の形態3における電圧変換を制御する動作を説明するためのフローチャートである。
【図20】 実施の形態4による電圧変換装置を備えたモータ駆動装置の概略ブロック図である。
【図21】 図19に示す制御装置の機能ブロック図である。
【図22】 図20に示すモータトルク制御手段の機能を説明するための機能ブロック図である。
【図23】 従来のモータ駆動装置の概略ブロック図である。
【符号の説明】
10,13,320 電圧センサー、12 昇圧コンバータ、14,31,330 インバータ、15 U相アーム、16 V相アーム、17 W相アーム、24,28 電流センサー、30,30A,30B,30C 制御装置、40 モータ制御用相電圧演算部、42 インバータ用PWM信号変換部、50 インバータ入力電圧指令演算部、52,52A,52B フィードバック電圧指令演算部、54,54A デューティー比変換部、100,100A,100B,100C,300 モータ駆動装置、301,301A,301B,301C モータトルク制御手段、302,302A 電圧変換制御手段、310 双方向コンバータ、521 減算器、522 ゲイン決定部、523,523A PI制御器、524,524A,544 補正器、525 前向き補償器、541 デューティー比演算部、542 加算器、543 PWM信号変換部、B 直流電源、SR1,SR2 システムリレー、C1,C2 コンデンサ、L1,311リアクトル、Q1〜Q8,312,313 NPNトランジスタ、D1〜D8,314,315 ダイオード、M1,M2 交流モータ。

Claims (33)

  1. 出力電圧が指令電圧になるように直流電源からの直流電圧を前記出力電圧に変換する電圧変換装置であって、
    前記直流電圧の電圧レベルを変えて出力電圧を出力する電圧変換器と、
    前記電圧変換器から出力された出力電圧を検出する検出手段と、
    前記検出された出力電圧と前記指令電圧とに基づいて、前記指令電圧に対する前記出力電圧のフィードバック制御における追従特性を基本特性に一致させ、かつ、前記出力電圧が前記指令電圧になるように前記電圧変換器を制御する制御手段とを備える電圧変換装置。
  2. 前記電圧変換器は、チョッパ回路から成り、
    前記制御手段は、
    前記出力電圧と前記指令電圧との誤差を検出し、その検出した誤差に応じて前記フィードバック制御における制御ゲインを決定し、その決定した制御ゲインと、前記出力電圧と前記誤差とに基づいて、前記追従特性が前記基本特性になるように前記フィードバック制御におけるフィードバック電圧指令を演算するフィードバック電圧指令演算部と、
    前記演算されたフィードバック電圧指令に基づいて、前記チョッパ回路におけるスイッチングデューティー比を演算するデューティー比演算部と、
    前記スイッチングデューティー比を有するスイッチング信号を生成し、その生成したスイッチング信号を前記チョッパ回路へ出力するスイッチング信号生成部とを含む、請求項1に記載の電圧変換装置。
  3. 前記フィードバック電圧指令演算部は、前記制御ゲインを用いて演算されたフィードバック予備電圧指令を前記追従特性が前記基本特性になるように補正することにより前記フィードバック指令電圧を演算する、請求項2に記載の電圧変換装置。
  4. 前記フィードバック電圧指令演算部は、
    前記出力電圧と前記指令電圧との誤差を演算する減算器と、
    前記誤差に基づいて前記制御ゲインを決定するゲイン決定部と、
    前記決定された制御ゲインに基づいて前記フィードバック予備電圧指令を演算する演算器と、
    前記追従特性が前記基本特性になるときの基準電圧に前記出力電圧を換算することにより前記フィードバック予備電圧指令を補正して前記フィードバック電圧指令を出力する補正器とを含む、請求項3に記載の電圧変換装置。
  5. 前記補正器は、前記出力電圧に対する前記基準電圧の比を演算し、その演算結果を前記フィードバック予備電圧指令に乗算することにより前記フィードバック予備電圧指令を補正する、請求項4に記載の電圧変換装置。
  6. 前記フィードバック電圧指令演算部は、前記追従特性が前記基本特性になるように前記誤差を補正することにより前記フィードバック電圧指令を演算する、請求項2に記載の電圧変換装置。
  7. 前記フィードバック電圧指令演算部は、
    前記出力電圧と前記指令電圧との誤差を演算する減算器と、
    前記追従特性が前記基本特性になるように前記誤差を補正する補正器と、
    前記誤差に基づいて前記制御ゲインを決定するゲイン決定部と、
    前記決定された制御ゲインと前記補正された誤差とに基づいて前記フィードバック電圧指令を演算する演算器とを含む、請求項6に記載の電圧変換装置。
  8. 前記補正器は、前記追従特性が前記基本特性になるときの基準電圧に前記出力電圧を換算することにより前記誤差を補正する、請求項7に記載の電圧変換装置。
  9. 前記補正器は、前記出力電圧に対する前記基準電圧の比を演算し、その演算結果を前記誤差に乗算することにより前記誤差を補正する、請求項8に記載の電圧変換装置。
  10. 前記電圧変換器は、チョッパ回路から成り、
    前記制御手段は、
    前記出力電圧と前記指令電圧との誤差を検出し、その検出した誤差に応じて前記フィードバック制御における制御ゲインを決定し、その決定した制御ゲインと前記出力電圧と前記誤差とに基づいて、前記フィードバック制御におけるフィードバック予備電圧指令を演算するフィードバック電圧指令演算部と、
    前記演算されたフィードバック予備電圧指令および前記出力電圧に基づいて、前記追従特性が前記基本特性になるように前記チョッパ回路におけるスイッチングデューティー比を演算するデューティー比演算部と、
    前記スイッチングデューティー比を有するスイッチング信号を生成し、その生成したスイッチング信号を前記チョッパ回路へ出力するスイッチング信号生成部とを含む、請求項1に記載の電圧変換装置。
  11. 前記デューティー比演算部は、前記フィードバック予備電圧指令を用いて演算された予備デューティー比を前記追従特性が前記基本特性になるように補正することにより前記スイッチングデューティー比を演算する、請求項10に記載の電圧変換装置。
  12. 前記デューティー比演算部は、
    前記フィードバック予備電圧指令に応じた前記予備デューティー比を演算する演算器と、
    前記追従特性が前記基本特性になるように前記予備デューティー比を補正する補正器とを含む、請求項11に記載の電圧変換装置。
  13. 前記補正器は、前記追従特性が前記基本特性になるときの基準電圧に前記出力電圧を換算することにより前記予備デューティー比を補正する、請求項12に記載の電圧変換装置。
  14. 前記補正器は、前記出力電圧に対する前記基準電圧の比を演算し、その演算結果を前記予備デューティー比に乗算することにより前記予備デューティー比を補正する、請求項13に記載の電圧変換装置。
  15. 出力電圧が指令電圧になるようにフィードバック制御し、直流電源からの直流電圧を前記出力電圧に変換する電圧変換方法であって、
    前記出力電圧を検出する第1のステップと、
    前記指令電圧と前記出力電圧との誤差を検出する第2のステップと、
    前記検出した誤差に応じて制御ゲインを決定する第3のステップと、
    前記決定した制御ゲインと、前記検出した誤差と、前記検出した出力電圧とに基づいて、前記指令電圧に対する前記出力電圧の前記フィードバック制御における追従特性を基本特性に一致させ、かつ、前記出力電圧が前記指令電圧になるように前記直流電圧を前記出力電圧に変換する第4のステップとを含む電圧変換方法。
  16. 前記直流電圧は、チョッパ回路により前記出力電圧に変換され、
    前記第4のステップは、
    前記制御ゲインと、前記誤差と、前記出力電圧とに基づいて、前記フィードバック制御における前記追従特性を前記基本特性に一致させるフィードバック電圧指令を演算する第1のサブステップと、
    前記フィードバック電圧指令を用いて、前記チョッパ回路におけるスイッチングデューティー比を演算する第2のサブステップと、
    前記スイッチングデューティー比に基づいて、前記出力電圧が前記指令電圧になるように前記チョッパ回路を制御する第3のサブステップとを含む、請求項15に記載の電圧変換方法。
  17. 前記第1のサブステップは、
    前記制御ゲインと前記誤差とに基づいて、前記フィードバック制御におけるフィードバック予備電圧指令を演算するステップと、
    前記出力電圧を用いて前記フィードバック予備電圧指令を補正し、前記フィードバック電圧指令を演算するステップとを含む、請求項16に記載の電圧変換方法。
  18. 前記フィードバック電圧指令を演算するステップは、
    前記追従特性が前記基本特性になる基準電圧に前記出力電圧を換算するときの換算比を演算するステップと、
    前記フィードバック予備電圧指令に前記換算比を乗算して前記フィードバック電圧指令を演算するステップとを含む、請求項17に記載の電圧変換方法。
  19. 前記第1のサブステップは、
    前記出力電圧を用いて前記誤差を補正し、前記追従特性が前記基本特性になる補正誤差を演算するステップと、
    前記制御ゲインと前記補正誤差とに基づいて前記フィードバック電圧指令を演算するステップとを含む、請求項16に記載の電圧変換方法。
  20. 前記補正誤差を演算するステップは、
    前記追従特性が前記基本特性になる基準電圧に前記出力電圧を換算するときの換算比を演算するステップと、
    前記誤差に前記換算比を乗算して前記補正誤差を演算するステップとを含む、請求項19に記載の電圧変換方法。
  21. 前記直流電圧は、チョッパ回路により前記出力電圧に変換され、
    前記第4のステップは、
    前記制御ゲインおよび前記誤差に基づいて前記フィードバック制御におけるフィードバック予備電圧指令を演算する第1のサブステップと、
    前記フィードバック予備電圧指令に基づいて、前記チョッパ回路における予備スイッチングデューティー比を演算する第2のサブステップと、
    前記出力電圧を用いて前記予備スイッチングデューティー比を補正し、前記追従特性が前記基本特性になるスイッチングデューティー比を演算する第3のサブステップと、
    前記スイッチングデューティー比に基づいて、前記出力電圧が前記指令電圧になるように前記チョッパ回路を制御する第4のサブステップとを含む、請求項15に記載の電圧変換方法。
  22. 前記第3のサブステップは、
    前記追従特性が前記基本特性になる基準電圧に前記出力電圧を換算するときの換算比を演算するステップと、
    前記予備スイッチングデューティー比に前記換算比を乗算して前記スイッチングデューティー比を演算するステップとを含む、請求項21に記載の電圧変換方法。
  23. 出力電圧が指令電圧になるようにフィードバック制御し、直流電源からの直流電圧を前記出力電圧に変換する電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体であって、
    前記出力電圧を検出する第1のステップと、
    前記指令電圧と前記出力電圧との誤差を検出する第2のステップと、
    前記検出した誤差に応じて制御ゲインを決定する第3のステップと、
    前記決定した制御ゲインと、前記検出した誤差と、前記検出した出力電圧とに基づいて、前記指令電圧に対する前記出力電圧の前記フィードバック制御における追従特性を基本特性に一致させ、かつ、前記出力電圧が前記指令電圧になるように前記直流電圧を前記出力電圧に変換する第4のステップとをコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体。
  24. 前記直流電圧は、チョッパ回路により前記出力電圧に変換され、
    前記第4のステップは、
    前記制御ゲインと、前記誤差と、前記出力電圧とに基づいて、前記フィードバック制御における前記追従特性を前記基本特性に一致させるフィードバック電圧指令を演算する第1のサブステップと、
    前記フィードバック電圧指令を用いて、前記チョッパ回路におけるスイッチングデューティー比を演算する第2のサブステップと、
    前記スイッチングデューティー比に基づいて、前記出力電圧が前記指令電圧になるように前記チョッパ回路を制御する第3のサブステップとを含む、請求項23に記載のコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体。
  25. 前記第1のサブステップは、
    前記制御ゲインと前記誤差とに基づいて、前記フィードバック制御におけるフィードバック予備電圧指令を演算するステップと、
    前記出力電圧を用いて前記フィードバック予備電圧指令を補正し、前記フィードバック電圧指令を演算するステップとを含む、請求項24に記載のコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体。
  26. 前記フィードバック電圧指令を演算するステップは、
    前記追従特性が前記基本特性になる基準電圧に前記出力電圧を換算するときの換算比を演算するステップと、
    前記フィードバック予備電圧指令に前記換算比を乗算して前記フィードバック電圧指令を演算するステップとを含む、請求項25に記載のコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体。
  27. 前記第1のサブステップは、
    前記出力電圧を用いて前記誤差を補正し、前記追従特性が前記基本特性になる補正誤差を演算するステップと、
    前記制御ゲインと前記補正誤差とに基づいて前記フィードバック電圧指令を演算するステップとを含む、請求項24に記載のコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体。
  28. 前記補正誤差を演算するステップは、
    前記追従特性が前記基本特性になる基準電圧に前記出力電圧を換算するときの換算比を演算するステップと、
    前記誤差に前記換算比を乗算して前記補正誤差を演算するステップとを含む、請求項27に記載のコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体。
  29. 前記直流電圧は、チョッパ回路により前記出力電圧に変換され、
    前記第4のステップは、
    前記制御ゲインおよび前記誤差に基づいて前記フィードバック制御におけるフィードバック予備電圧指令を演算する第1のサブステップと、
    前記フィードバック予備電圧指令に基づいて、前記チョッパ回路における予備スイッチングデューティー比を演算する第2のサブステップと、
    前記出力電圧を用いて前記予備スイッチングデューティー比を補正し、前記追従特性が前記基本特性になるスイッチングデューティー比を演算する第3のサブステップと、
    前記スイッチングデューティー比に基づいて、前記出力電圧が前記指令電圧になるように前記チョッパ回路を制御する第4のサブステップとを含む、請求項23に記載のコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体。
  30. 前記第3のサブステップは、
    前記追従特性が前記基本特性になる基準電圧に前記出力電圧を換算するときの換算比を演算するステップと、
    前記予備スイッチングデューティー比に前記換算比を乗算して前記スイッチングデューティー比を演算するステップとを含む、請求項29に記載のコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体。
  31. 前記制御手段は、前記追従特性が前記基本特性となるときの前記出力電圧である基準電圧と前記検出された出力電圧との比に基づいて、前記追従特性を前記基本特性に一致させた前記フィードバック制御を行なう、請求項1に記載の電圧変換装置。
  32. 前記第4のステップは、前記追従特性が前記基本特性となるときの前記出力電圧である基準電圧と前記検出した出力電圧との比に基づいて、前記追従特性を前記基本特性に一致させた前記フィードバック制御を行なう、請求項15に記載の電圧変 換方法。
  33. 前記第4のステップは、前記追従特性が前記基本特性となるときの前記出力電圧である基準電圧と前記検出した出力電圧との比に基づいて、前記追従特性を前記基本特性に一致させた前記フィードバック制御を行なう、請求項23に記載のコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体。
JP2002234653A 2002-08-12 2002-08-12 電圧変換装置、電圧変換方法、電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体 Expired - Fee Related JP3700059B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002234653A JP3700059B2 (ja) 2002-08-12 2002-08-12 電圧変換装置、電圧変換方法、電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
EP03741433A EP1536548A4 (en) 2002-08-12 2003-07-16 VOLTAGE CONVERTER, VOLTAGE CONVERSION METHOD, AND COMPUTER-READABLE RECORDER CONTAINING A PROGRAM FOR THE COMPUTER TO MANAGE VOLTAGE CONVERSION
KR1020057002350A KR100653827B1 (ko) 2002-08-12 2003-07-16 전압변환장치, 전압변환방법 및 전압변환의 제어를 컴퓨터에 실행시키는 프로그램을 기록한 컴퓨터 판독 가능한 기록매체
PCT/JP2003/009056 WO2004017506A1 (ja) 2002-08-12 2003-07-16 電圧変換装置、電圧変換方法および電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
US10/523,145 US7262978B2 (en) 2002-08-12 2003-07-16 Voltage conversion apparatus, voltage conversion method, and computer-readable recording medium with program recorded thereon to allow computer to execute voltage conversion control
CNB038189739A CN100435462C (zh) 2002-08-12 2003-07-16 电压转换装置、电压转换方法和具有记录于其上的程序以允许计算机执行电压转换控制的计算机可读记录介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234653A JP3700059B2 (ja) 2002-08-12 2002-08-12 電圧変換装置、電圧変換方法、電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体

Publications (2)

Publication Number Publication Date
JP2004080864A JP2004080864A (ja) 2004-03-11
JP3700059B2 true JP3700059B2 (ja) 2005-09-28

Family

ID=31884352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234653A Expired - Fee Related JP3700059B2 (ja) 2002-08-12 2002-08-12 電圧変換装置、電圧変換方法、電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体

Country Status (6)

Country Link
US (1) US7262978B2 (ja)
EP (1) EP1536548A4 (ja)
JP (1) JP3700059B2 (ja)
KR (1) KR100653827B1 (ja)
CN (1) CN100435462C (ja)
WO (1) WO2004017506A1 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052195B2 (ja) * 2003-07-31 2008-02-27 トヨタ自動車株式会社 電圧変換装置および電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP4545508B2 (ja) * 2004-07-28 2010-09-15 株式会社豊田中央研究所 Dc/dcコンバータの制御システム
JP4775656B2 (ja) * 2005-11-29 2011-09-21 株式会社デンソー 電気自動車の制御装置
ES2781771T3 (es) * 2005-11-29 2020-09-07 Denso Corp Aparato y método de control para vehículos eléctricos
JP4827018B2 (ja) * 2005-12-07 2011-11-30 株式会社デンソー 電気自動車の制御装置
JP4538850B2 (ja) * 2005-12-07 2010-09-08 株式会社デンソー 電気自動車の制御装置
JP2007166874A (ja) * 2005-12-16 2007-06-28 Toyota Motor Corp 電圧変換装置
JP5067603B2 (ja) * 2005-12-26 2012-11-07 株式会社デンソー 電気自動車の制御装置
JP5067604B2 (ja) * 2006-06-02 2012-11-07 株式会社デンソー 電気自動車の制御装置
JP4835171B2 (ja) * 2006-01-27 2011-12-14 トヨタ自動車株式会社 モータ駆動装置
JP4479919B2 (ja) * 2006-03-29 2010-06-09 株式会社デンソー 電気自動車の制御装置
JP5272067B2 (ja) * 2006-09-12 2013-08-28 株式会社豊田自動織機 スイッチング電源装置
DE102006045970A1 (de) * 2006-09-27 2008-04-03 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Transformators
US8217616B2 (en) * 2007-11-02 2012-07-10 HJamilton Sundstrand Corporation Electric motor control with buck boost converter
UA101203C2 (ru) * 2008-06-27 2013-03-11 Дзе Реджентс Ов Дзе Юниверсити Ов Калифорния Контур для прямого получения энергии из пучка заряженных частиц
TWI386789B (zh) * 2008-12-29 2013-02-21 Acbel Polytech Inc Three port type AC and DC power supply
JP5206489B2 (ja) * 2009-02-26 2013-06-12 トヨタ自動車株式会社 電圧変換装置
EP2647260B1 (en) * 2010-12-03 2019-08-21 Signify Holding B.V. Adaptable driver circuit for driving a light circuit
US8838330B2 (en) * 2012-03-30 2014-09-16 GM Global Technology Operations LLC Diagnostics for smart sensors of vehicles
US8688318B2 (en) * 2012-03-30 2014-04-01 GM Global Technologies Operations LLC DC converter diagnostics for vehicles
JP6008273B2 (ja) * 2012-04-25 2016-10-19 パナソニックIpマネジメント株式会社 インバータ装置
EP2816728B1 (en) * 2013-06-20 2020-08-05 ABB Schweiz AG Active gate drive circuit
CN103441678B (zh) * 2013-08-21 2015-12-09 中国人民解放军海军工程大学 大容量隔离型直流换流器变pi变频率控制方法
JP5817947B1 (ja) * 2014-06-19 2015-11-18 ダイキン工業株式会社 電力変換制御装置
JP6299734B2 (ja) * 2015-11-30 2018-03-28 トヨタ自動車株式会社 電源装置
DE102016106472A1 (de) 2016-04-08 2017-10-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Regeln einer Leistungselektronik
US10093184B2 (en) * 2016-09-09 2018-10-09 Ford Global Technologies, Llc Direct current voltage clamping in a vehicle
KR102552538B1 (ko) * 2016-12-23 2023-07-07 한온시스템 주식회사 전원보상을 이용한 브러시리스 직류모터 구동 방법 및 장치
DE112018001464A5 (de) 2017-05-15 2019-12-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung und Verfahren zur spektralen Regelung eines Gleichspannungswandlers
JP6962233B2 (ja) 2018-02-22 2021-11-05 株式会社オートネットワーク技術研究所 車載用のdcdcコンバータ
JP6904283B2 (ja) * 2018-03-12 2021-07-14 株式会社オートネットワーク技術研究所 車載用のdcdcコンバータ
CN109104114A (zh) * 2018-08-10 2018-12-28 南京轨道交通系统工程有限公司 一种基于pi和重复控制并联的三相逆变器控制方法
JP7251170B2 (ja) 2019-01-30 2023-04-04 トヨタ自動車株式会社 車両の電源システム
JP7385383B2 (ja) * 2019-06-21 2023-11-22 ルネサスエレクトロニクス株式会社 半導体装置、システムおよび制御方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3220198A1 (de) * 1982-05-28 1983-12-01 Ralph Dipl.-Ing. 6800 Mannheim Kennel Regelverfahren fuer eine adaptive regelung bei stromrichter-stellgliedern
JPS60219966A (ja) * 1984-04-17 1985-11-02 Toshiba Corp 電力変換器の制御装置
CA1295014C (en) * 1986-08-01 1992-01-28 Christopher Paul Henze Digitally controlled a.c. to d.c. power conditioner that draws sinusoidal input current
US4969076A (en) * 1989-08-14 1990-11-06 General Electric Company Load compensating gain control for a series resonant inverter
US5115386A (en) * 1990-10-15 1992-05-19 Hitachi, Ltd. Circuit for controlling an electric power supply apparatus, a method therefor and an uninterruptible power supply
JPH05233007A (ja) * 1992-02-18 1993-09-10 Toyo Electric Mfg Co Ltd 可変構造pi制御装置
US5373195A (en) * 1992-12-23 1994-12-13 General Electric Company Technique for decoupling the energy storage system voltage from the DC link voltage in AC electric drive systems
JPH0883103A (ja) * 1994-07-12 1996-03-26 Fuji Electric Co Ltd 調節器パラメータの自動調整装置
JPH0833375A (ja) * 1994-07-20 1996-02-02 Toshiba Corp 速度制御装置
US5867379A (en) * 1995-01-12 1999-02-02 University Of Colorado Non-linear carrier controllers for high power factor rectification
US5847952A (en) * 1996-06-28 1998-12-08 Honeywell Inc. Nonlinear-approximator-based automatic tuner
DE19734208A1 (de) * 1997-08-07 1999-02-11 Heidenhain Gmbh Dr Johannes Verfahren und Schaltungsanordnung zur Ermittlung optimaler Reglerparamter für eine Drehzahlregelung
US5889393A (en) * 1997-09-29 1999-03-30 Impala Linear Corporation Voltage regulator having error and transconductance amplifiers to define multiple poles
EP0910157B1 (en) * 1997-10-17 2003-04-02 STMicroelectronics S.r.l. Step-up continuous mode DC-to-DC converter with integrated fuzzy logic current control
US5949225A (en) * 1998-03-19 1999-09-07 Astec International Limited Adjustable feedback circuit for adaptive opto drives
SG82592A1 (en) * 1998-12-30 2001-08-21 Univ Singapore A novel predictive and self-tuning pi control apparatus for expanded process control applications
JP2001275364A (ja) 2000-03-27 2001-10-05 Meidensha Corp 半導体電力変換装置
JP4489238B2 (ja) * 2000-03-29 2010-06-23 正行 服部 電動機制御装置
JP2002084743A (ja) * 2000-09-04 2002-03-22 Shindengen Electric Mfg Co Ltd スイッチング電源装置
JP4346813B2 (ja) 2000-11-15 2009-10-21 トヨタ自動車株式会社 動力出力装置およびその制御方法
US6411071B1 (en) * 2000-12-29 2002-06-25 Volterra Semiconductor Corporation Lag compensating controller having an improved transient response
US6657417B1 (en) * 2002-05-31 2003-12-02 Champion Microelectronic Corp. Power factor correction with carrier control and input voltage sensing
US6664769B1 (en) * 2002-07-20 2003-12-16 Richard Haas Variable amplitude regulator

Also Published As

Publication number Publication date
US20050254265A1 (en) 2005-11-17
KR100653827B1 (ko) 2006-12-05
US7262978B2 (en) 2007-08-28
KR20050047529A (ko) 2005-05-20
EP1536548A1 (en) 2005-06-01
CN100435462C (zh) 2008-11-19
CN1675819A (zh) 2005-09-28
EP1536548A4 (en) 2008-12-10
WO2004017506A1 (ja) 2004-02-26
JP2004080864A (ja) 2004-03-11

Similar Documents

Publication Publication Date Title
JP3700059B2 (ja) 電圧変換装置、電圧変換方法、電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP3969165B2 (ja) 電圧変換装置、電圧変換方法、電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP4052195B2 (ja) 電圧変換装置および電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP4623065B2 (ja) 電圧変換装置および電圧変換方法
JP4280573B2 (ja) 負荷駆動装置
JP4193704B2 (ja) 電源装置およびそれを搭載する自動車
JP3661689B2 (ja) モータ駆動装置、それを備えるハイブリッド車駆動装置、モータ駆動装置の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP3928559B2 (ja) 電圧変換装置、故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体および故障処理方法
JP4640200B2 (ja) 電圧変換装置および電圧変換器の制御方法
JP4001120B2 (ja) 電圧変換装置
JP4220851B2 (ja) 電圧変換装置および電圧変換装置における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2007166874A (ja) 電圧変換装置
JP4623003B2 (ja) モータ駆動装置
JP4013739B2 (ja) 電圧変換装置、電圧変換方法および電圧変換をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP4120310B2 (ja) 電気負荷駆動装置、電気負荷駆動方法、電気負荷の駆動をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP2003244801A (ja) 電圧変換装置
JP4049038B2 (ja) 負荷駆動装置および負荷駆動装置における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2006006073A (ja) 電源装置
JP5206489B2 (ja) 電圧変換装置
JP2004194475A (ja) インバータ装置
JP2004166370A (ja) 電圧変換装置
JP2005354763A (ja) 電圧変換装置
JP4019953B2 (ja) 電圧変換装置、電圧変換方法、電力供給方法および電力供給の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP3931734B2 (ja) 電気負荷駆動装置
JP2004201400A (ja) リアクトル装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Ref document number: 3700059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees