JP2006006073A - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP2006006073A
JP2006006073A JP2004182059A JP2004182059A JP2006006073A JP 2006006073 A JP2006006073 A JP 2006006073A JP 2004182059 A JP2004182059 A JP 2004182059A JP 2004182059 A JP2004182059 A JP 2004182059A JP 2006006073 A JP2006006073 A JP 2006006073A
Authority
JP
Japan
Prior art keywords
power supply
temperature
voltage
capacitor
ripple current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004182059A
Other languages
English (en)
Inventor
Natsuki Nozawa
奈津樹 野澤
Ryoji Oki
良二 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004182059A priority Critical patent/JP2006006073A/ja
Publication of JP2006006073A publication Critical patent/JP2006006073A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】 低温においても安定して電力を出力可能な電源装置を提供する。
【解決手段】 電源装置は、直流電源B、コンデンサC1、電圧センサー10、昇圧コンバータ12および制御装置30を備える。直流電源Bは、内部抵抗Rbを有し、コンデンサC1は、等価直列抵抗Rcを有する。等価直列抵抗Rcは、−20℃以上の温度では内部抵抗Rb以下であり、−20℃よりも低い温度では内部抵抗Rbよりも大きい。コンデンサC1は、直流電源Bからの直流電流を平滑化して昇圧コンバータ12へ供給する。制御装置30は、モータ回転数MRN、トルク指令値TRおよび電圧Vb,Vmに基づいてNPNトランジスタQ1,Q2をスイッチング制御するための信号PWCを生成して昇圧コンバータ12へ出力する。
【選択図】 図1

Description

この発明は、電源装置に関し、特に、低温においても安定して電力を出力可能な電源装置に関するものである。
最近、環境に配慮した自動車としてハイブリッド自動車(Hybrid Vehicle)および電気自動車(Electric Vehicle)が大きな注目を集めている。そして、ハイブリッド自動車は、一部、実用化されている。
このハイブリッド自動車は、従来のエンジンに加え、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。つまり、エンジンを駆動することにより動力源を得るとともに、直流電源からの直流電圧をインバータによって交流電圧に変換し、その変換した交流電圧によりモータを回転することによって動力源を得るものである。また、電気自動車は、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。
このようなハイブリッド自動車または電気自動車においては、直流電源からの直流電圧をチョッパ回路によって昇圧し、その昇圧した直流電圧をモータを駆動するインバータに供給するシステムも提案されている(特許文献1)。
特開2001−275367号公報 特開平9−121595号公報
しかし、特許文献1に開示されたシステムにおいては、たとえば、氷点下のような極低温において電池の内部抵抗が上昇するため、電源の出力が低下するという問題がある。
そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、低温においても安定して電力を出力可能な電源装置を提供することである。
この発明によれば、電源装置は、電源と、電源からの直流電圧の電圧レベルを変換するチョッパ回路と、電源の温度が基準値よりも低い低温領域において、電源に入出力するリプル電流を大きくする手段とを備える。
好ましくは、リプル電流を大きくする手段は、直流電圧を平滑化する平滑コンデンサに含まれ、低温領域において電源の内部抵抗よりも大きい抵抗値を有する等価直列抵抗である。
好ましくは、基準値は、等価直列抵抗が電源の内部抵抗以上になり始める温度である。
好ましくは、平滑コンデンサは、アルミ電解コンデンサである。
好ましくは、リプル電流を大きくする手段は、低温領域においてチョッパ回路のキャリア周波数を常温時よりも低下させる制御である。
好ましくは、リプル電流を大きくする手段は、チョッパ回路に含まれ、低温領域におけるインダクタンスが常温におけるインダクタンスよりも低下するリアクトルである。
好ましくは、チョッパ回路は、上アームおよび下アームを含み、リプル電流を大きくする手段は、低温領域におけるチョッパ回路の目標電圧を常温時の目標電圧よりも高く設定し、かつ、低温領域における下アームのオンデューティーを常温時のオンデューティーよりも長く設定する制御である。
好ましくは、基準値は、電源の内部抵抗の温度に対する増加率が温度の低下に伴って大きくなり始める温度である。
この発明による電源装置においては、低温領域では、より大きなリプル電流が電源に入出力する。そして、電源の内部抵抗で消費される電力が増加し、電源の温度が上昇して内部抵抗が低下する。
したがって、この発明によれば、電源装置は、低温においても安定して電力を出力できる。
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態1]
図1は、この発明の実施の形態1による電源装置を備えるモータ駆動装置の概略図である。図1を参照して、この発明の実施の形態1による電源装置を備えるモータ駆動装置100は、直流電源Bと、電圧センサー10,13と、コンデンサC1,C2と、昇圧コンバータ12と、インバータ14と、電流センサー21と、制御装置30とを備える。
交流モータM1は、ハイブリッド自動車または電気自動車の駆動輪を駆動するためのトルクを発生するための駆動モータである。また、この交流モータM1は、エンジンにて駆動される発電機の機能を有し、そして、エンジンに対して電動機として動作し、たとえば、エンジン始動を行ない得るようなモータとしてハイブリッド自動車に搭載されるようにしてもよい。
昇圧コンバータ12は、リアクトルL1と、NPNトランジスタQ1,Q2と、ダイオードD1,D2とを含む。リアクトルL1の一方端は直流電源Bの電源ラインに接続され、他方端はNPNトランジスタQ1とNPNトランジスタQ2との中間点、すなわち、NPNトランジスタQ1のエミッタとNPNトランジスタQ2のコレクタとの間に接続される。NPNトランジスタQ1,Q2は、電源ラインとアースラインとの間に直列に接続される。そして、NPNトランジスタQ1のコレクタは電源ラインに接続され、NPNトランジスタQ2のエミッタはアースラインに接続される。また、各NPNトランジスタQ1,Q2のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD1,D2がそれぞれ配置されている。
インバータ14は、U相アーム15と、V相アーム16と、W相アーム17とから成る。U相アーム15、V相アーム16、およびW相アーム17は、電源ラインとアースラインとの間に並列に設けられる。
U相アーム15は、直列接続されたNPNトランジスタQ3,Q4から成り、V相アーム16は、直列接続されたNPNトランジスタQ5,Q6から成り、W相アーム17は、直列接続されたNPNトランジスタQ7,Q8から成る。また、各NPNトランジスタQ3〜Q8のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD3〜D8がそれぞれ接続されている。
各相アームの中間点は、交流モータM1の各相コイルの各相端に接続されている。すなわち、交流モータM1は、3相の永久磁石モータであり、U,V,W相の3つのコイルの一端が中点に共通接続されて構成され、U相コイルの他端がNPNトランジスタQ3,Q4の中間点に、V相コイルの他端がNPNトランジスタQ5,Q6の中間点に、W相コイルの他端がNPNトランジスタQ7,Q8の中間点にそれぞれ接続されている。
直流電源Bは、ニッケル水素またはリチウムイオン等の二次電池から成る。そして、直流電源Bは、内部抵抗Rbを有する。電圧センサー10は、直流電源Bから出力される電圧Vbを検出し、その検出した電圧Vbを制御装置30へ出力する。
コンデンサC1は、アルミ電解コンデンサからなり、直流電源Bから出力される直流電流を平滑化し、その平滑化した直流電流を昇圧コンバータ12へ出力する。そして、コンデンサC1は、等価直列抵抗Rcを有する。
昇圧コンバータ12は、直流電源Bから供給された直流電圧を昇圧してコンデンサC2へ供給する。より具体的には、昇圧コンバータ12は、制御装置30から信号PWCを受けると、信号PWCによってNPNトランジスタQ2がオンされた期間に応じて直流電圧を昇圧してコンデンサC2に供給する。また、昇圧コンバータ12は、制御装置30から信号PWCを受けると、コンデンサC2を介してインバータ14から供給された直流電圧を降圧して直流電源Bを充電する。
コンデンサC2は、昇圧コンバータ12からの直流電圧を平滑化し、その平滑化した直流電圧をインバータ14へ供給する。電圧センサー13は、コンデンサC2の両端の電圧、すなわち、昇圧コンバータ12の出力電圧Vm(インバータ14への入力電圧に相当する。以下同じ。)を検出し、その検出した出力電圧Vmを制御装置30へ出力する。
インバータ14は、コンデンサC2から直流電圧が供給されると制御装置30からの信号PWMに基づいて直流電圧を交流電圧に変換して交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値TRによって指定されたトルクを発生するように駆動される。また、インバータ14は、モータ駆動装置100が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1が発電した交流電圧を制御装置30からの信号PWMに基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。なお、ここで言う回生制動とは、ハイブリッド自動車または電気自動車を運転するドライバーによるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
電流センサー21は、交流モータM1に流れるモータ電流MCRTを検出し、その検出したモータ電流MCRTを制御装置30へ出力する。
制御装置30は、外部に設けられたECU(Electrical Control Unit)からトルク指令値TRおよびモータ回転数MRNを受け、電圧センサー10,13からそれぞれ電圧Vb,Vmを受け、電流センサー21からモータ電流MCRTを受ける。
そして、制御装置30は、トルク指令値TR、モータ回転数MRN、電圧Vb,Vm、およびモータ電流MCRTに基づいて、後述する方法により昇圧コンバータ12を駆動するための信号PWCとインバータ14を駆動するための信号PWMとを生成し、その生成した信号PWCおよび信号PWMをそれぞれ昇圧コンバータ12およびインバータ14へ出力する。
信号PWCは、昇圧コンバータ12が直流電源Bとインバータ14との間で電圧変換を行なう場合に昇圧コンバータ12を駆動するための信号である。そして、制御装置30は、昇圧コンバータ12が直流電源Bからの直流電圧Vbを出力電圧Vmに変換する場合に、出力電圧Vmをフィードバック制御し、出力電圧Vmが電圧指令Vdc_comになるように昇圧コンバータ12を駆動するための信号PWCを生成する。信号PWCの生成方法については後述する。
また、制御装置30は、ハイブリッド自動車または電気自動車の回生制動モードにおいて、交流モータM1で発電された交流電圧を直流電圧に変換するための信号PWMを生成してインバータ14へ出力する。この場合、インバータ14のNPNトランジスタQ3〜Q8は、信号PWMによってスイッチング制御され、インバータ14は、交流モータM1で発電された交流電圧を直流電圧に変換して昇圧コンバータ12へ供給する。
さらに、制御装置30は、ハイブリッド自動車または電気自動車の回生制動モードにおいて、インバータ14から供給された直流電圧を降圧するための信号PWCを生成し、その生成した信号PWCを昇圧コンバータ12へ出力する。これにより、交流モータM1が発電した交流電圧は、直流電圧に変換され、降圧されて直流電源Bに供給される。
図2は、図1に示す制御装置30の機能ブロック図である。図2を参照して、制御装置30は、インバータ制御手段301と、コンバータ制御手段302とを含む。インバータ制御手段301は、モータ電流MCRT、トルク指令値TRおよび昇圧コンバータ12の出力電圧Vmに基づいて、後述する方法によってインバータ14を駆動するための信号PWMを生成し、その生成した信号PWMをインバータ14のNPNトランジスタQ3〜Q8へ出力する。
コンバータ制御手段302は、モータ回転数MRN、トルク指令値TRおよび電圧Vb,Vmに基づいて、交流モータM1の駆動時、後述する方法により、出力電圧Vmが電圧指令Vdc_comに一致するように昇圧コンバータ12をフィードバック制御するための信号PWCを生成し、その生成した信号PWCを昇圧コンバータ12のNPNトランジスタQ1,Q2へ出力する。
この信号PWCは、直流電源Bから供給された直流電圧Vbを出力電圧Vmが電圧指令Vdc_comになるように昇圧するための信号、またはインバータ14から供給された直流電圧を降圧するための信号である。したがって、昇圧コンバータ12は、信号PWCに応じて昇圧動作または降圧動作を行なう。このように、昇圧コンバータ12は、双方向コンバータの機能を有するものである。
図3は、図2に示すインバータ制御手段301の機能ブロック図である。図3を参照して、インバータ制御手段301は、モータ制御用相電圧演算部40と、インバータ用PWM信号変換部42とを含む。
モータ制御用相電圧演算部40は、外部ECUからのトルク指令値TR、電圧センサー13からの電圧Vmおよび電流センサー21からのモータ電流MCRTに基づいて交流モータM1の各相に印加する電圧を計算してインバータ用PWM信号変換部42へ出力する。
インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40から受けた交流モータM1の各相に印加する電圧に基づいて、実際にインバータ14の各NPNトランジスタQ3〜Q8をオン/オフする信号PWMを生成し、その生成した信号PWMを各NPNトランジスタQ3〜Q8へ出力する。
これにより、インバータ14の各NPNトランジスタQ3〜Q8は、スイッチング制御され、交流モータM1が指令されたトルクを出力するように交流モータM1の各相に流す電流を制御する。このようにして、モータ駆動電流が制御され、トルク指令値TRに応じたモータトルクが出力される。
図4は、図2に示すコンバータ制御手段302の機能ブロック図である。図4を参照して、コンバータ制御手段302は、インバータ入力電圧指令演算部50と、フィードバック電圧指令演算部52と、デューティー比変換部54とを含む。
インバータ入力電圧指令演算部50は、トルク指令値TRおよびモータ回転数MRNに基づいて電圧指令Vdc_comを演算し、その演算した電圧指令Vdc_comをフィードバック電圧指令演算部52へ出力する。
フィードバック電圧指令演算部52は、電圧センサー13から昇圧コンバータ12の出力電圧Vmを受け、インバータ入力電圧指令演算部50から電圧指令Vdc_comを受ける。そして、フィードバック電圧指令演算部52は、電圧Vmを電圧指令Vdc_comに設定するためのフィードバック電圧指令Vdc_com_fbを演算し、その演算したフィードバック電圧指令Vdc_com_fbをデューティー比変換部54へ出力する。
デューティー比変換部54は、電圧センサー10からの電圧Vbと、フィードバック電圧指令演算部52からのフィードバック電圧指令Vdc_com_fbとに基づいて、電圧センサー13からの出力電圧Vmをフィードバック電圧指令演算部52からのフィードバック電圧指令Vdc_com_fbに設定するためのデューティー比を演算し、その演算したデューティー比に基づいて、実際に昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWCを生成する。そして、デューティー比変換部54は、生成した信号PWCを昇圧コンバータ12のNPNトランジスタQ1,Q2へ出力する。
なお、昇圧コンバータ12の下側のNPNトランジスタQ2のオンデューティーを大きくすることによりリアクトルL1における電力蓄積が大きくなるため、より高電圧の出力を得ることができる。一方、上側のNPNトランジスタQ1のオンデューティーを大きくすることにより電源ラインの電圧が下がる。そこで、NPNトランジスタQ1,Q2のデューティー比を制御することで、電源ラインの電圧を直流電源Bの出力電圧以上の任意の電圧に制御可能である。
図5は、抵抗と温度との関係を示す図である。図5を参照して、曲線k1は、コンデンサC1の等価直列抵抗Rcの温度依存性を表わし、曲線k2は、直流電源Bの内部抵抗Rbの温度依存性を表わす。等価直列抵抗Rcは、臨界温度Tcri1以上の温度領域では、直流電源Bの内部抵抗Rb以下であり、臨界温度Tcri1よりも低い温度領域では、直流電源Bの内部抵抗Rbよりも大きい。
臨界温度Tcri1は、たとえば、−20℃程度であり、コンデンサC1は、アルミ電解コンデンサからなるとき、−20℃よりも低い低温領域において直流電源Bの内部抵抗Rbよりも大きい等価直列抵抗Rcを有する。
この実施の形態1において、低温領域とは、コンデンサC1の等価直列抵抗Rcが直流電源Bの内部抵抗Rbよりも大きくなる温度領域を言う。そして、等価直列抵抗Rcが直流電源Bの内部抵抗Rb以上になり始める臨界温度Tcri1は、低温領域を判定する基準値である。
図6は、図1に示す直流電源B、コンデンサC1および昇圧コンバータ12の回路図である。図6を参照して、昇圧コンバータ12のNPNトランジスタQ1,Q2が所定のキャリア周波数fでスイッチング制御されている場合、リアクトルL1には、リプル電流Irpが流れる。そして、このリプル電流Irpは、直流電源Bに流れるリプル電流IrpbとコンデンサC1に流れるリプル電流Irpcとの和になる。
モータ駆動装置100の温度が臨界温度Tcri1よりも低い低温領域になると、図5に示すように、コンデンサC1の等価直列抵抗Rcは、直流電源Bの内部抵抗Rbよりも大きくなるため、直流電源Bに流れるリプル電流Irpbは、コンデンサC1に流れるリプル電流Irpcよりも大きくなる。すなわち、臨界温度Tcri1よりも低い低温領域においては、全体のリプル電流Irpは、主に、直流電源Bに流れるリプル電流Irpbによって構成され、リプル電流Irpは、主に、直流電源Bに流れる。そして、コンデンサC1に流れる電流成分が少なくなる結果、直流電流がコンデンサC1により平滑化される割合は小さくなり、直流電源Bに流れるリプル電流Irpbは、その振幅が大きくなる。また、低温領域においては、直流電源Bの内部抵抗Rbも大きくなる。その結果、内部抵抗Rbで消費される電力が多くなり、直流電源Bの温度が早期に上昇し、内部抵抗Rbが低下するため、直流電源Bの出力低下が抑制される。
このように、実施の形態1においては、臨界温度Tcri1よりも低い低温領域において直流電源Bの内部抵抗Rbよりも大きい等価直列抵抗Rcを有するアルミ電解コンデンサを昇圧コンバータ12の入力側に設けられた平滑コンデンサ(コンデンサC1)として用いることを特徴とする。
この特徴により、臨界温度Tcri1よりも低い低温領域において、より大きなリプル電流が直流電源Bに入出力され、直流電源Bが早期に昇温されるため、臨界温度Tcri1よりも低い低温領域においても直流電源Bから安定して電力を取り出すことができる。その結果、モータ駆動装置100は、低温においても交流モータM1を安定して駆動できる。
なお、コンデンサC1の等価直列抵抗Rcは、「電源に入出力するリプル電流を大きくする手段」を構成する。
また、昇圧コンバータ12は、「チョッパ回路」を構成する。
さらに、直流電源B、コンデンサC1、電圧センサー10、昇圧コンバータ12および制御装置30は、この発明による「電源装置」を構成する。
[実施の形態2]
図7は、実施の形態2による電源装置を備えるモータ駆動装置の概略図である。図7を参照して、実施の形態2による電源装置を備えるモータ駆動装置100Aは、図1に示すモータ駆動装置100のコンデンサC1をコンデンサC3に代え、制御装置30を制御装置30Aに代え、温度センサー11を追加したものであり、その他は、モータ駆動装置100と同じである。
コンデンサC3は、たとえば、フィルムコンデンサからなり、図5に示す臨界温度Tcri1よりも低い低温領域においても直流電源Bの内部抵抗Rbよりも小さい等価直列抵抗を有する。そして、コンデンサC3は、直流電源Bからの直流電流を平滑化し、その平滑化した直流電流を昇圧コンバータ12へ供給する。
温度センサー11は、直流電源Bの温度Tbを検出し、その検出した温度Tbを制御装置30Aへ出力する。
制御装置30Aは、温度センサー11から温度Tbを受け、その受けた温度Tbが後述する臨界温度Tcri2よりも低いとき、常温時のキャリア周波数fよりも低いキャリア周波数fでNPNトランジスタQ1,Q2をスイッチング制御する。
制御装置30Aは、その他、制御装置30と同じ機能を果たす。
図8は、図7に示す制御装置30Aの機能ブロック図である。図8を参照して、制御装置30Aは、図2に示す制御装置30のコンバータ制御手段302をコンバータ制御手段302Aに代えたものであり、その他は、制御装置30と同じである。
コンバータ制御手段302Aは、温度センサー11から温度Tbを受け、その受けた温度Tbが臨界温度Tcri2よりも低いか否かを判定する。そして、コンバータ制御手段302Aは、温度Tbが臨界温度Tcri2よりも低いと判定したとき、キャリア周波数を常温時のキャリア周波数fよりも低いキャリア周波数fに設定し、その設定したキャリア周波数fを用いて、モータ回転数MRN、トルク指令値TRおよび電圧Vb,Vmに基づいてNPNトランジスタQ1,Q2をオン/オフするための信号PWC_L(信号PWCの一種、以下同じ)を生成して昇圧コンバータ12へ出力する。
また、コンバータ制御手段302Aは、温度Tbが臨界温度Tcri2以上であるとき、キャリア周波数を常温時のキャリア周波数fに設定し、その設定したキャリア周波数fを用いて、モータ回転数MRN、トルク指令値TRおよび電圧Vb,Vmに基づいてNPNトランジスタQ1,Q2をオン/オフするための信号PWC_N(信号PWCの一種、以下同じ)を生成して昇圧コンバータ12へ出力する。
図9は、図8に示すコンバータ制御手段302Aの機能ブロック図である。図9を参照して、コンバータ制御手段302Aは、図4に示すコンバータ制御手段302のデューティー比変換部54をデューティー比変換部54Aに代え、判定部56を追加したものであり、その他は、コンバータ制御手段302と同じである。
判定部56は、臨界温度Tcri2を保持しており、温度センサー11から温度Tbを受ける。そして、判定部56は、温度Tbが臨界温度Tcri2よりも低いか否かを判定し、温度Tbが臨界温度Tcri2よりも低いとき信号LOWを生成してデューティー比変換部54Aへ出力し、温度Tbが臨界温度Tcri2以上であるとき、信号NRMを生成してデューティー比変換部54Aへ出力する。
デューティー比変換部54Aは、判定部56から信号NRMを受けると、キャリア周波数を常温時のキャリア周波数fに設定し、その設定したキャリア周波数fを用いて、電圧センサー13からの出力電圧Vmをフィードバック電圧指令演算部52からのフィードバック電圧指令Vdc_com_fbに設定するためのデューティー比を演算し、その演算したデューティー比に基づいて、実際に昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWC_Nを生成する。そして、デューティー比変換部54Aは、生成した信号PWC_Nを昇圧コンバータ12のNPNトランジスタQ1,Q2へ出力する。
また、デューティー比変換部54Aは、判定部56から信号LOWを受けると、キャリア周波数を常温時のキャリア周波数fよりも低いキャリア周波数fに設定し、その設定したキャリア周波数fを用いて、電圧センサー13からの出力電圧Vmをフィードバック電圧指令演算部52からのフィードバック電圧指令Vdc_com_fbに設定するためのデューティー比を演算し、その演算したデューティー比に基づいて、実際に昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWC_Lを生成する。そして、デューティー比変換部54Aは、生成した信号PWC_Lを昇圧コンバータ12のNPNトランジスタQ1,Q2へ出力する。
実施の形態2における低温領域について説明する。図10は、ニッケル水素電池における内部抵抗の温度依存性を示す図である。図10を参照して、内部抵抗は、温度の低下に伴って大きくなる。図10に示す内部抵抗と温度との関係を数値で示すと表1のようになる。
Figure 2006006073
そして、表1においては、内部抵抗の温度に対する増加率も示されている。表1の結果から、温度20℃以下の温度領域においては、内部抵抗の増加率が温度の低下に伴って大きくなっていることが解る。
したがって、実施の形態2においては、低温領域とは、直流電源Bの内部抵抗Rbの温度に対する増加率が温度の低下に伴って大きくなる温度領域を言う。そして、直流電源Bの内部抵抗Rbの温度に対する増加率が温度の低下に伴って大きくなり始める温度を臨界温度Tcri2とし(図10参照)、この臨界温度Tcri2が低温領域を判定する基準値となる。また、常温とは、臨界温度Tcri2以上の温度領域を言う。
次に、リプル電流Irpを求める方法について説明する。図11は、リプル電流Irpを求める方法を説明するための図である。なお、図11においては、図7に示すリアクトルL1に流れる電流をリアクトル電流ILとして説明する。
図11を参照して、リアクトル電流ILは、リプル電流Irpが重畳されると周期的に上下に変化する。リアクトル電流ILの極大値をIn(K−1),In(K),In(K+1),・・・とし、リアクトル電流ILの極小値をIp(K−1),Ip(K),Ip(K+1),・・・とする。そして、昇圧コンバータ12のNPNトランジスタQ1がオンされる時間をTpとし、NPNトランジスタQ2がオンされる時間をTnとする。なお、時間Tpと時間Tnとの和が、信号PWC(信号PWC_Nまたは信号PWC_L)の1周期に相当する。
そうすると、電流In(K),Ip(K)およびコンデンサC2の両端の電圧Vc(K)は、次式のようになる。
Figure 2006006073
式(1)において、Rは、直流電源Bから昇圧コンバータ12までの回路の抵抗を表わし、Lは、リアクトルL1のインダクタンスを表わし、Cは、コンデンサC2の容量を表わす。
式(1)において、K→∞とし、In(K)=In(K+1)、Ip(K)=Ip(K+1)およびVc(K)=Vc(K+1)=Vmと考えると、式(1)を用いてリプル電流Irpは、次式により表わされる。
Figure 2006006073
したがって、直流電源Bから昇圧コンバータ12までの回路の抵抗R、直流電源Bから出力される直流電圧Vb、コンデンサC2の容量C、リアクトルL1のインダクタンスL、コンデンサC2の両端の出力電圧Vmおよび時間Tp,Tnを式(2)に代入すれば、リプル電流Irpを求めることができる。
これらの各値のうち、抵抗R、容量CおよびインダクタンスLは、配線、コンデンサC2およびリアクトルL1に対して固定値であるので、既知であり、直流電圧Vbは電圧センサー10によって検出され、出力電圧Vmは電圧センサー13によって検出される。また、時間Tp,Tnは、信号PWC_Nまたは信号PWC_Lのキャリア周波数fまたはf(すなわち、キャリア周期)およびデューティー比DRから求めることができる。
したがって、直流電源Bから昇圧コンバータ12までの回路の抵抗R、コンデンサC2の容量C、リアクトルL1のインダクタンスL、演算した時間Tp,Tn、電圧センサー10からの直流電圧Vb、および電圧センサー13からの出力電圧Vmを式(2)に代入することによりリプル電流Irpを演算できる。
NPNトランジスタQ1,Q2をスイッチング制御するときのキャリア周波数を低くすることにより、時間Tp,Tnは、長くなり、キャリア周波数を高くすることにより、時間Tp,Tnは、短くなる。
そうすると、NPNトランジスタQ1,Q2をスイッチング制御するときのキャリア周波数を低くすると、式(2)における1−AnBpは小さくなり、リプル電流Irpは大きくなる。一方、NPNトランジスタQ1,Q2をスイッチング制御するときのキャリア周波数を高くすると、式(2)における1−AnBpは大きくなり、リプル電流Irpは小さくなる。
図12は、信号およびリプル電流のタイミングチャートである。図12を参照して、信号PWC_Nは、キャリア周波数fを有し、温度Tbが臨界温度Tcri2以上である場合にNPNトランジスタQ1,Q2をスイッチング制御するための信号であり、信号PWC_Lは、キャリア周波数fよりも低いキャリア周波数fを有し、温度Tbが臨界温度Tcri2よりも低い場合にNPNトランジスタQ1,Q2をスイッチング制御するための信号である。
また、リアクトル電流IL_Nは、NPNトランジスタQ1,Q2が信号PWC_Nによってスイッチング制御されるときに直流電源Bに入出力する電流であり、リアクトル電流IL_Lは、NPNトランジスタQ1,Q2が信号PWC_Lによってスイッチング制御されるときに直流電源Bに入出力する電流である。
直流電源Bの温度Tbが臨界温度Tcri2以上である常温時においては、NPNトランジスタQ1,Q2は、キャリア周波数fを有する信号PWC_Nによりオン/オフされ、リアクトル電流IL_Nが直流電源Bに入出力する。
一方、直流電源Bの温度Tbが臨界温度Tcri2よりも低い低温領域においては、NPNトランジスタQ1,Q2は、キャリア周波数fよりも低いキャリア周波数fを有する信号PWC_Lによってオン/オフされるため、リプル電流Irpが増加し、リアクトル電流IL_Nよりも大きいリアクトル電流IL_Lが直流電源Bに入出力する。
そうすると、直流電源Bは、常温時よりもリプル電流が増加したことに起因して大きくなったリアクトル電流IL_Lによって昇温され、内部抵抗Rbが低下する。その結果、直流電源Bは、出力が低下するのを抑制される。
このように、実施の形態2においては、臨界温度Tcri2よりも低い低温領域において昇圧コンバータ12を構成するNPNトランジスタQ1,Q2を常温時のキャリア周波数fよりも低いキャリア周波数fでスイッチング制御することを特徴とする。
この特徴により、臨界温度Tcri2よりも低い低温領域において、より大きなリプル電流が直流電源Bに入出力され、直流電源Bが早期に昇温されるため、臨界温度Tcri2よりも低い低温領域においても直流電源Bから安定して電力を取り出すことができる。その結果、モータ駆動装置100Aは、低温においても交流モータM1を安定して駆動できる。
なお、臨界温度Tcri2よりも低い低温領域においてNPNトランジスタQ1,Q2を常温時のキャリア周波数fよりも低いキャリア周波数fでスイッチング制御することは、「電源に入出力するリプル電流を大きくする手段」を構成する。
また、直流電源B、コンデンサC3、電圧センサー10、温度センサー11、昇圧コンバータ12および制御装置30Aは、この発明による「電源装置」を構成する。
さらに、実施の形態2によるモータ駆動装置100Aにおいては、コンデンサC3に代えてコンデンサC1を用いてもよい。コンデンサC1を用いることにより、温度Tbが臨界温度Tcri1よりも低い低温領域において、等価直列抵抗Rcが直流電源Bの内部抵抗Rbよりも大きくなり、直流電源Bに入出力するリプル電流がさらに大きくなるので、NPNトランジスタQ1,Q2をスイッチング制御するときのキャリア周波数を低くしたときのリプル電流の増大との相乗効果によって、さらに、直流電源Bの温度を早期に昇温でき、直流電源Bから安定して電力を取り出することができる。
その他は、実施の形態1と同じである。
[実施の形態3]
図13は、実施の形態3による電源装置を備えたモータ駆動装置の概略図である。図13を参照して、実施の形態3による電源装置を備えたモータ駆動装置100Bは、図1に示すモータ駆動装置100のコンデンサC1および昇圧コンバータ12をそれぞれコンデンサC3および昇圧コンバータ12Aに代えたものであり、その他は、モータ駆動装置100と同じである。なお、実施の形態3における低温領域、低温領域を判定する基準値および常温は、実施の形態2において説明したのと同じである。
コンデンサC3については、実施の形態2において説明したとおりである。
昇圧コンバータ12Aは、図1に示す昇圧コンバータ12のリアクトルL1をリアクトルL2に代えたものであり、その他は、昇圧コンバータ12と同じである。
図14は、フェライトにおける透磁率の温度依存性を示す図である。図14において、縦軸は、透磁率を表し、横軸は、温度を表す。図14を参照して、フェライトの透磁率は、約90℃〜110℃の範囲に最大値を有し、90℃以下の温度範囲においては、温度の低下に伴って小さくなる。
インダクタンスLは、透磁率に比例するので、フェライトのインダクタンスLは、90℃以下の温度領域において、温度の低下に伴って小さくなる。
リアクトルL2は、コアと、コアに巻回されたコイルとからなる。そして、リアクトルL2のコアは、透磁率が図14に示す温度依存性を有するフェライトからなる。
一方、リプル電流Irpは、次式によって表わすこともできる。
Irp=Tn×Vb/L・・・(3)
なお、Tnは、NPNトランジスタQ2がオンされる時間である。
上述したように、リアクトルL2のインダクタンスLは、温度の低下に伴って小さくなり、式(3)より、リプル電流Irpは、インダクタンスLの低下に伴って大きくなる。したがって、リプル電流Irpは、温度の低下に伴って大きくなる。
このように、インダクタンスLが温度の低下に伴って小さくなるフェライトをリアクトルL2のコア材として用いることにより、臨界温度Tcri2よりも低い低温領域において、より大きなリプル電流Irpが直流電源Bに入出力する。
そうすると、直流電源Bは、常温時よりもリプル電流が増加したことに起因して昇温され、内部抵抗Rbが低下する。その結果、直流電源Bは、出力低下が抑制される。
このように、実施の形態3においては、インダクタンスが温度の低下に伴って小さくなる材料からなるコア材を含むリアクトルを用いて昇圧コンバータ12Aを構成することを特徴とする。
この特徴により、臨界温度Tcri2よりも低い低温領域において、より大きなリプル電流が直流電源Bに入出力され、直流電源Bが早期に昇温されるため、臨界温度Tcri2よりも低い低温領域においても直流電源Bから安定して電力を取り出すことができる。その結果、モータ駆動装置100Bは、低温においても交流モータM1を安定して駆動できる。
なお、インダクタンスが温度の低下に伴って小さくなるコア材からなるリアクトルL2は、「電源に入出力するリプル電流を大きくする手段」を構成する。
また、昇圧コンバータ12Aは、「チョッパ回路」を構成する。
さらに、直流電源B、コンデンサC3、電圧ンサー10、昇圧コンバータ12Aおよび制御装置30は、この発明による「電源装置」を構成する。
さらに、実施の形態3によるモータ駆動装置100Bにおいては、実施の形態1および実施の形態2の少なくともいずれか一方をさらに適用してもよい。これにより、温度Tbが臨界温度Tcri1またはTcri2よりも低い低温領域において、直流電源Bに入出力するリプル電流がさらに大きくなるので、さらに、直流電源Bの温度を早期に昇温でき、直流電源Bから安定して電力を取り出することができる。
その他は、実施の形態1と同じである。
[実施の形態4]
図15は、実施の形態4による電源装置を備えたモータ駆動装置の概略図である。図15を参照して、実施の形態4による電源装置を備えたモータ駆動装置100Cは、図7に示すモータ駆動装置100Aの制御装置30Aを制御装置30Bに代えたものであり、その他は、モータ駆動装置100Aと同じである。なお、実施の形態4における低温領域、低温領域を判定する基準値および常温については、実施の形態2において説明したのと同じである。
制御装置30Bは、温度センサー11から温度Tbを受け、その受けた温度Tbが臨界温度Tcri2よりも低いとき、昇圧コンバータ12の出力電圧Vmの目標電圧を常温時の目標電圧よりも高く設定し、かつ、NPNトランジスタQ2のオンデューティーを常温時のオンデューティーDON_Nよりも長いオンデューティーDON_Lに設定してNPNトランジスタQ1,Q2をスイッチング制御する。
制御装置30Bは、その他、制御装置30Aと同じ機能を果たす。
図16は、図15に示す制御装置30Bの機能ブロック図である。図16を参照して、制御装置30Bは、図8に示す制御装置30Aのコンバータ制御手段302Aをコンバータ制御手段302Bに代えたものであり、その他は、制御装置30Aと同じである。
コンバータ制御手段302Bは、温度センサー11から温度Tbを受け、その受けた温度Tbが臨界温度Tcri2よりも低いか否かを判定する。そして、コンバータ制御手段302Bは、温度Tbが臨界温度Tcri2よりも低いと判定したとき、昇圧コンバータ12の電圧指令を常温時の電圧指令Vdc_comよりも高い電圧指令Vdc_com_hに設定し、かつ、NPNトランジスタQ2のオンデューティーを常温時のオンデューティーDON_Nよりも長いオンデューティーDON_Lに設定し、その設定した電圧指令Vdc_com_hおよびオンデューティーDON_Lを用いて、後述する方法によってNPNトランジスタQ1,Q2をオン/オフするための信号PWC_Lを生成して昇圧コンバータ12へ出力する。
また、コンバータ制御手段302Bは、温度Tbが臨界温度Tcri2以上であるとき、昇圧コンバータ12の電圧指令を常温時の電圧指令Vdc_comに設定し、かつ、NPNトランジスタQ2のオンデューティーを常温時のオンデューティーDON_Nに設定し、その設定した電圧指令Vdc_comおよびオンデューティーDON_Nを用いて、後述する方法によってNPNトランジスタQ1,Q2をオン/オフするための信号PWC_Nを生成して昇圧コンバータ12へ出力する。
図17は、図16に示すコンバータ制御手段302Bの機能ブロック図である。図17を参照して、コンバータ制御手段302Bは、図9に示すコンバータ制御手段302Aのインバータ入力電圧指令演算部50をインバータ入力電圧指令演算部50Aに代え、デューティー比変換部54Aをデューティー比変換部54Bに代え、判定部56を判定部56Aに代えたものであり、その他は、コンバータ制御手段302Aと同じである。
判定部56Aは、温度センサー11から温度Tbを受けると、その受けた温度Tbが臨界温度Tcri2よりも低いか否かを判定し、温度Tbが臨界温度Tcri2よりも低いとき、信号LOWを生成してインバータ入力電圧指令演算部50Aおよびデューティー比変換部54Bへ出力する。また、判定部56Aは、温度Tbが臨界温度Tcri2以上であるとき、信号NRMを生成してインバータ入力電圧指令演算部50Aおよびデューティー比変換部54Bへ出力する。
インバータ入力電圧指令演算部50Aは、判定部56Aから信号LOWを受けると、外部ECUから受けたトルク指令値TRおよびモータ回転数MRNに基づいて電圧指令Vdc_comを演算し、その演算した電圧指令Vdc_comよりも高い電圧指令Vdc_com_hを生成してフィードバック電圧指令演算部52へ出力する。
また、インバータ入力電圧指令演算部50Aは、判定部56Aから信号NRMを受けると、外部ECUから受けたトルク指令値TRおよびモータ回転数MRNに基づいて電圧指令Vdc_comを演算し、その演算した電圧指令Vdc_comをフィードバック電圧指令演算部52へ出力する。
デューティー比変換部54Bは、判定部56から信号NRMを受けると、オンデューティーを常温時のオンデューティーDON_Nに設定し、その設定したオンデューティーDON_Nを用いて、電圧センサー13からの出力電圧Vmをフィードバック電圧指令演算部52からのフィードバック電圧指令Vdc_com_fbに設定するためのデューティー比を演算し、その演算したデューティー比に基づいて、実際に昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWC_Nを生成する。そして、デューティー比変換部54Bは、生成した信号PWC_Nを昇圧コンバータ12のNPNトランジスタQ1,Q2へ出力する。
また、デューティー比変換部54Bは、判定部56から信号LOWを受けると、オンデューティーを常温時のオンデューティーDON_Nよりも長いオンデューティーDON_Lに設定し、その設定したオンデューティーDON_Lを用いて、電圧センサー13からの出力電圧Vmをフィードバック電圧指令演算部52からのフィードバック電圧指令Vdc_com_fbに設定するためのデューティー比を演算し、その演算したデューティー比に基づいて、実際に昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWC_Lを生成する。そして、デューティー比変換部54Bは、生成した信号PWC_Lを昇圧コンバータ12のNPNトランジスタQ1,Q2へ出力する。
昇圧コンバータ12の電圧指令を常温における電圧指令Vdc_comよりも高い電圧指令Vdc_com_hに設定することにより直流電源Bからインバータ14へ流れる直流電流は増加する。
また、式(3)より、リプル電流Irpは、NPNトランジスタQ2がオンされる時間Tn、すなわち、NPNトランジスタQ2のオンデューティーに比例する。したがって、直流電源Bの温度Tbが臨界温度Tcri2よりも低い場合に、昇圧コンバータ12の電圧指令を常温における電圧指令Vdc_comよりも高い電圧指令Vdc_com_hに設定し、かつ、NPNトランジスタQ2のオンデューティーを常温時のオンデューティーDON_Nよりも長く設定することにより、リプル電流Irpは増加する。
そうすると、直流電源Bは、常温時よりもリプル電流が増加したことに起因して昇温され、内部抵抗Rbが低下する。その結果、直流電源Bは、出力低下が抑制される。
このように、実施の形態4においては、直流電源Bの温度Tbが臨界温度Tcri2よりも低い低温領域において、昇圧コンバータ12の電圧指令を常温における電圧指令Vdc_comよりも高い電圧指令Vdc_com_hに設定し、かつ、NPNトランジスタQ2のオンデューティーを常温時のオンデューティーDON_Nよりも長いオンデューティーDON_Lに設定してNPNトランジスタQ1,Q2をスイッチング制御することを特徴とする。
この特徴により、臨界温度Tcri2よりも低い低温領域において、より大きなリプル電流が直流電源Bに入出力され、直流電源Bが早期に昇温されるため、臨界温度Tcri2よりも低い低温領域においても直流電源Bから安定して電力を取り出すことができる。その結果、モータ駆動装置100Cは、低温においても交流モータM1を安定して駆動できる。
なお、直流電源Bの温度Tbが臨界温度Tcri2よりも低い低温領域において、昇圧コンバータ12の電圧指令を常温における電圧指令Vdc_comよりも高い電圧指令Vdc_com_hに設定し、かつ、NPNトランジスタQ2のオンデューティーを常温時のオンデューティーDON_Nよりも長いオンデューティーDON_Lに設定してNPNトランジスタQ1,Q2をスイッチング制御することは、「電源に入出力するリプル電流を大きくする手段」を構成する。
また、直流電源B、コンデンサC3、電圧ンサー10、温度センサー11、昇圧コンバータ12および制御装置30Bは、この発明による「電源装置」を構成する。
さらに、実施の形態4によるモータ駆動装置100Cにおいては、実施の形態1から実施の形態3の少なくとも1つをさらに適用してもよい。これにより、温度Tbが臨界温度Tcri1またはTcri2よりも低い低温領域において、直流電源Bに入出力するリプル電流がさらに大きくなるので、さらに、直流電源Bの温度を早期に昇温でき、直流電源Bから安定して電力を取り出することができる。
その他は、実施の形態1と同じである。
上述したように、実施の形態1から実施の形態4においては、直流電源Bの温度Tbが臨界温度Tcri1またはTcri2よりも低温になったとき、直流電源Bに入出力するリプル電流Irpを大きくすることによって、直流電源Bの温度Tbを上昇させて直流電源Bの内部抵抗Rbを小さくし、直流電源Bから安定して出力を取り出すことにした。モータ駆動装置100,100A,100B,100Cがハイブリッド自動車または電気自動車に搭載される場合、モータ駆動装置100,100A,100B,100Cが氷点下で駆動される場合もあるので、この発明による電源装置は、特に、ハイブリッド自動車または電気自動車等の車両に搭載される場合にその効果を発揮する。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明は、低温においても安定して電力を出力可能な電源装置に適用される。
この発明の実施の形態1による電源装置を備えるモータ駆動装置の概略図である。 図1に示す制御装置の機能ブロック図である。 図2に示すインバータ制御手段の機能ブロック図である。 図2に示すコンバータ制御手段の機能ブロック図である。 抵抗と温度との関係を示す図である。 図1に示す直流電源、コンデンサおよび昇圧コンバータの回路図である。 実施の形態2による電源装置を備えるモータ駆動装置の概略図である。 図7に示す制御装置の機能ブロック図である。 図8に示すコンバータ制御手段の機能ブロック図である。 ニッケル水素電池における内部抵抗の温度依存性を示す図である。 リプル電流を求める方法を説明するための図である。 信号およびリプル電流のタイミングチャートである。 実施の形態3による電源装置を備えたモータ駆動装置の概略図である。 フェライトにおける透磁率の温度依存性を示す図である。 実施の形態4による電源装置を備えたモータ駆動装置の概略図である。 図15に示す制御装置の機能ブロック図である。 図16に示すコンバータ制御手段の機能ブロック図である。
符号の説明
10,13 電圧センサー、11 温度センサー、12,12A 昇圧コンバータ、14 インバータ、15 U相アーム、16 V相アーム、17 W相アーム、21 電流センサー、30,30A,30B 制御装置、40 モータ制御用相電圧演算部、42 インバータ用PWM信号変換部、50,50A インバータ入力電圧指令演算部、52 フィードバック電圧指令演算部、54,54A,54B デューティー比変換部、56,56A 判定部、100,100A,100B,100C モータ駆動装置、301 インバータ制御手段、302,302A,302B コンバータ制御手段、B 直流電源、C1〜C3 コンデンサ、Q1〜Q8 NPNトランジスタ、D1〜D8 ダイオード、L1,L2 リアクトル、M1 交流モータ。

Claims (8)

  1. 電源と、
    前記電源からの直流電圧の電圧レベルを変換するチョッパ回路と、
    前記電源の温度が基準値よりも低い低温領域において、前記電源に入出力するリプル電流を大きくする手段とを備える電源装置。
  2. 前記リプル電流を大きくする手段は、前記直流電圧を平滑化する平滑コンデンサに含まれ、前記低温領域において前記電源の内部抵抗よりも大きい抵抗値を有する等価直列抵抗である、請求項1に記載の電源装置。
  3. 前記基準値は、前記等価直列抵抗が前記電源の内部抵抗以上になり始める温度である、請求項2に記載の電源装置。
  4. 前記平滑コンデンサは、アルミ電解コンデンサである、請求項2または請求項3に記載の電源装置。
  5. 前記リプル電流を大きくする手段は、前記低温領域において前記チョッパ回路のキャリア周波数を常温時よりも低下させる制御である、請求項1に記載の電源装置。
  6. 前記リプル電流を大きくする手段は、前記チョッパ回路に含まれ、前記低温領域におけるインダクタンスが常温におけるインダクタンスよりも低下するリアクトルである、請求項1に記載の電源装置。
  7. 前記チョッパ回路は、上アームおよび下アームを含み、
    前記リプル電流を大きくする手段は、前記低温領域における前記チョッパ回路の目標電圧を常温時の目標電圧よりも高く設定し、かつ、前記低温領域における前記下アームのオンデューティーを前記常温時のオンデューティーよりも長く設定する制御である、請求項1に記載の電源装置。
  8. 前記基準値は、前記電源の内部抵抗の温度に対する増加率が温度の低下に伴って大きくなり始める温度である、請求項5から請求項7のいずれか1項に記載の電源装置。
JP2004182059A 2004-06-21 2004-06-21 電源装置 Withdrawn JP2006006073A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182059A JP2006006073A (ja) 2004-06-21 2004-06-21 電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182059A JP2006006073A (ja) 2004-06-21 2004-06-21 電源装置

Publications (1)

Publication Number Publication Date
JP2006006073A true JP2006006073A (ja) 2006-01-05

Family

ID=35773994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182059A Withdrawn JP2006006073A (ja) 2004-06-21 2004-06-21 電源装置

Country Status (1)

Country Link
JP (1) JP2006006073A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007723A1 (fr) * 2006-07-10 2008-01-17 Toyota Jidosha Kabushiki Kaisha Dispositif de commande de charge et véhicule utilisant celui-ci
US7594491B2 (en) 2006-01-31 2009-09-29 Toyota Jidosha Kabushiki Kaisha Internal combustion engine start controller
JP2010272395A (ja) * 2009-05-22 2010-12-02 Nissan Motor Co Ltd 電動車両のモータ制御装置
JP2011018532A (ja) * 2009-07-08 2011-01-27 Toyota Motor Corp 二次電池の温度推定装置
JP2011018531A (ja) * 2009-07-08 2011-01-27 Toyota Motor Corp 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
JP2011018533A (ja) * 2009-07-08 2011-01-27 Toyota Motor Corp 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
JP2011122835A (ja) * 2009-12-08 2011-06-23 Toyota Motor Corp 蓄電装置の内部抵抗推定装置、蓄電装置の劣化判定装置、および電源システム
WO2011101959A1 (ja) 2010-02-17 2011-08-25 トヨタ自動車株式会社 電源装置
JP2012016079A (ja) * 2010-06-29 2012-01-19 Nippon Soken Inc バッテリの温度調節システム
WO2012060016A1 (ja) 2010-11-05 2012-05-10 三菱電機株式会社 充放電装置および充放電制御方法
WO2012093493A1 (ja) 2011-01-07 2012-07-12 三菱電機株式会社 充放電装置
US8275512B2 (en) 2006-11-08 2012-09-25 Toyota Jidosha Kabushiki Kaisha Input/output controller for secondary battery and vehicle
US8339104B2 (en) 2009-04-23 2012-12-25 Denso Corporation Battery system for vehicle
JP5293820B2 (ja) * 2009-07-08 2013-09-18 トヨタ自動車株式会社 二次電池の昇温装置およびそれを備える車両

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7594491B2 (en) 2006-01-31 2009-09-29 Toyota Jidosha Kabushiki Kaisha Internal combustion engine start controller
US8027181B2 (en) 2006-07-10 2011-09-27 Toyota Jidosha Kabushiki Kaisha Load drive device and vehicle equipped with the same
WO2008007723A1 (fr) * 2006-07-10 2008-01-17 Toyota Jidosha Kabushiki Kaisha Dispositif de commande de charge et véhicule utilisant celui-ci
US8275512B2 (en) 2006-11-08 2012-09-25 Toyota Jidosha Kabushiki Kaisha Input/output controller for secondary battery and vehicle
US8339104B2 (en) 2009-04-23 2012-12-25 Denso Corporation Battery system for vehicle
JP2010272395A (ja) * 2009-05-22 2010-12-02 Nissan Motor Co Ltd 電動車両のモータ制御装置
CN102470760B (zh) * 2009-07-08 2013-08-14 丰田自动车株式会社 二次电池升温控制装置和包括该装置的车辆以及二次电池升温控制方法
JP5293820B2 (ja) * 2009-07-08 2013-09-18 トヨタ自動車株式会社 二次電池の昇温装置およびそれを備える車両
US9327611B2 (en) 2009-07-08 2016-05-03 Toyota Jidosha Kabushiki Kaisha Temperature elevating apparatus of secondary battery and vehicle equipped with same
US8684596B2 (en) 2009-07-08 2014-04-01 Toyota Jidosha Kabushiki Kaisha Secondary battery temperature-estimating apparatus and method
KR101135314B1 (ko) 2009-07-08 2012-04-17 도요타지도샤가부시키가이샤 2차 전지 승온 제어 장치 및 이를 구비한 차량과, 2차 전지 승온 제어 방법
JP2011018532A (ja) * 2009-07-08 2011-01-27 Toyota Motor Corp 二次電池の温度推定装置
CN102470760A (zh) * 2009-07-08 2012-05-23 丰田自动车株式会社 二次电池升温控制装置和包括该装置的车辆以及二次电池升温控制方法
JP2011018531A (ja) * 2009-07-08 2011-01-27 Toyota Motor Corp 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
US8248033B2 (en) 2009-07-08 2012-08-21 Toyota Jidosha Kabushiki Kaisha Secondary battery temperature-increasing control apparatus and vehicle including the same, and secondary battery temperature-increasing control method
JP2011018533A (ja) * 2009-07-08 2011-01-27 Toyota Motor Corp 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
US8421468B2 (en) 2009-12-08 2013-04-16 Toyota Jidosha Kabushiki Kaisha Internal resistance estimation apparatus for power storage device, degradation determination apparatus for power storage device, power supply system, and internal resistance estimation method for power storage device
JP2011122835A (ja) * 2009-12-08 2011-06-23 Toyota Motor Corp 蓄電装置の内部抵抗推定装置、蓄電装置の劣化判定装置、および電源システム
WO2011101959A1 (ja) 2010-02-17 2011-08-25 トヨタ自動車株式会社 電源装置
US8750008B2 (en) 2010-02-17 2014-06-10 Toyota Jidoha Kabushiki Multi-phase converter for DC power supply with two choppers having magnetically coupled reactors
JP2012016079A (ja) * 2010-06-29 2012-01-19 Nippon Soken Inc バッテリの温度調節システム
WO2012060016A1 (ja) 2010-11-05 2012-05-10 三菱電機株式会社 充放電装置および充放電制御方法
WO2012093493A1 (ja) 2011-01-07 2012-07-12 三菱電機株式会社 充放電装置
US20130271084A1 (en) * 2011-01-07 2013-10-17 Mitsubishi Electric Corporation Charging and discharging device
US9520733B2 (en) 2011-01-07 2016-12-13 Mitsubishi Electric Corporation Charging and discharging device to increase battery temperature by controlling ripple current

Similar Documents

Publication Publication Date Title
JP4640200B2 (ja) 電圧変換装置および電圧変換器の制御方法
US7379313B2 (en) Voltage conversion device
JP4710588B2 (ja) 昇圧コンバータの制御装置
JP4623065B2 (ja) 電圧変換装置および電圧変換方法
JP3928559B2 (ja) 電圧変換装置、故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体および故障処理方法
JP4052195B2 (ja) 電圧変換装置および電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP4280573B2 (ja) 負荷駆動装置
KR100801611B1 (ko) 모터구동장치
US20090033302A1 (en) Voltage conversion device
JP2007166874A (ja) 電圧変換装置
JP4013739B2 (ja) 電圧変換装置、電圧変換方法および電圧変換をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2006006073A (ja) 電源装置
JP3879528B2 (ja) 電圧変換装置
JP4049038B2 (ja) 負荷駆動装置および負荷駆動装置における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP4172203B2 (ja) 電源システム、電源制御方法、および電源制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP2003324942A (ja) 電圧変換装置、電圧変換装置の駆動方法、電圧変換装置の駆動をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP2004166370A (ja) 電圧変換装置
JP5206489B2 (ja) 電圧変換装置
JP2005354763A (ja) 電圧変換装置
JP2004015895A (ja) 電気負荷駆動装置
JP4285333B2 (ja) モータ駆動システム
JP2004201400A (ja) リアクトル装置
JP2004180421A (ja) モータ駆動装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904