JP3625467B2 - カーボンファイバーを用いた電子放出素子、電子源および画像形成装置の製造方法 - Google Patents

カーボンファイバーを用いた電子放出素子、電子源および画像形成装置の製造方法 Download PDF

Info

Publication number
JP3625467B2
JP3625467B2 JP2003306158A JP2003306158A JP3625467B2 JP 3625467 B2 JP3625467 B2 JP 3625467B2 JP 2003306158 A JP2003306158 A JP 2003306158A JP 2003306158 A JP2003306158 A JP 2003306158A JP 3625467 B2 JP3625467 B2 JP 3625467B2
Authority
JP
Japan
Prior art keywords
electron
emitting device
manufacturing
substrate
catalyst particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003306158A
Other languages
English (en)
Other versions
JP2004139973A (ja
Inventor
信一 河手
健夫 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003306158A priority Critical patent/JP3625467B2/ja
Priority to US10/661,627 priority patent/US7147533B2/en
Priority to CNB031598447A priority patent/CN100361258C/zh
Publication of JP2004139973A publication Critical patent/JP2004139973A/ja
Application granted granted Critical
Publication of JP3625467B2 publication Critical patent/JP3625467B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/844Growth by vaporization or dissociation of carbon source using a high-energy heat source, e.g. electric arc, laser, plasma, e-beam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、カーボンファイバーを用いた電子放出素子、電子源並びに画像形成装置の製造方法関する。
近年、カーボンナノチューブなどのナノサイズのカーボンファイバーが注目されている。カーボンファイバーの製造方法としては、様々な手法が知られている(例えば、特許文献1〜3参照)。
そして、カーボンナノチューブなどのナノサイズのカーボンファイバーを電界放出型電子放出素子に用いる試みが多数行われている(例えば、特許文献4および5参照)。
特開平5−287616号公報 特開平3−260119号公報 米国特許第4900483号明細書 米国特許第5872422号明細書 米国特許出願公開第2002/9637号明細書
カーボンファイバーを基板上に成長させる手法としては、触媒層を基板上に配置し、炭化水素ガス中で熱CVDを行う方法がある。このような従来の方法では、複数のカーボンファイバーが非常に高い密度で基板上に成長してしまい、各々のカーボンファイバーの先端に印加される電界強度が低くなってしまう。その結果、高い電子放出能力を持つカーボンファイバーの特性を十分に引き出すことができない場合が多かった。
本発明の目的は、比較的低温でカーボンファイバーを成長させることができる、カーボンファイバーを用いた電子放出素子、電子源および画像形成装置の製造方法を提供することにある。また、本発明は、電界を有効的に印加することができる密度でカーボンファイバーを成長させることができるように、制御性良く、また、容易に、複数の触媒粒子を基板上に所望の密度で分散配置することをも目的とする。
本発明は、上記目的を達成するためになされたものであって、本発明の第1は、カーボンファイバーを用いた電子放出素子の製造方法であって、
(A)触媒粒子が多数分散された液体を基体上に塗布することにより、前記触媒粒子を基板上に配置する工程と、
(B)前記基板上に配置された前記触媒粒子に炭素含有ガスを接触させることにより、カーボンファイバーを形成する工程と、
有し、
前記触媒粒子は、Pdと、添加物と、を含み、
前記添加物が、Fe、Co、Ni、Y、Rh、Pt、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Luの中から選択された少なくとも一つであり、
前記添加物の含有量がPdに対し、5atm%以上80atm%以下の割合(原子百分率)で含有することを特徴とするカーボンファイバーを用いた電子放出素子の製造方法を提供するものである。
上記本発明の第1は、前記触媒粒子は、前記液体に対し、1g/L以下の割合で含まれること、
前記触媒粒子が多数分散された液体を基板上に塗布することにより、前記触媒粒子を基板上に配置する工程は、各々が高分子で覆われた触媒粒子が多数分散された液体を基板上に塗布した後に前記高分子を加熱除去する工程であること
前記高分子が水溶性高分子であること、
前記高分子が、ポリビニルピロリドン、ポリビニルアルコール、ポリアクリル酸類のいずれかであること、
前記ポリアクリル酸類は、ポリアクリル酸、ポリメタクリル酸、およびそれらの同族体のいずれかであること、
前記高分子が前記液体に対し、0.1wt%以上30wt%以下含まれること、
前記高分子は、平均膜厚が2.5nm以上25nm以下の範囲で前記触媒粒子を覆っていること
をその好ましい態様として含むものである。
本発明の第2は、カーボンファイバーを用いた電子放出素子の製造方法であって、
(A)少なくとも2種以上の元素を含む触媒粒子が多数分散された液体を基体上に塗布することにより、前記触媒粒子を基板上に配置する工程と、
(B)前記基体上に配置された前記触媒粒子に炭素含有ガスを接触させることにより、カーボンファイバーを形成する工程と、
有し、
前記触媒粒子は、前記液体に対し、1g/L以下の割合で含まれることを特徴とするカーボンファイバーを用いた電子放出素子の製造方法を提供するものである。
本発明の第2は、前記触媒粒子が多数分散された液体を基板上に塗布することにより、前記触媒粒子を基板上に配置する工程は、さらに各々が高分子で覆われた触媒粒子が多数分散された液体を基板上に塗布した後に前記高分子を加熱除去する工程を含むこと、をその好ましい態様として含むものである。
本発明の第3は、カーボンファイバーを用いた電子放出素子の製造方法であって、
(A)各々が高分子で覆われた触媒粒子が多数分散された液体を基板上に塗布した後に前記高分子を加熱除去することで前記触媒粒子を基板上に配置する工程と、
(B)前記基板上に配置された前記触媒粒子に炭素含有ガスを接触させることにより、カーボンファイバーを形成する工程と、
を有することを特徴とするカーボンファイバーを用いた電子放出素子の製造方法を提供するものである。
本発明の第1〜第3は、前記触媒粒子の平均粒径が、1nm以上100nm以下であること、
前記基体上に配置された前記触媒粒子に炭素含有ガスを接触させることにより、カーボンファイバーを形成する工程は、前記触媒粒子に炭素含有ガスを接触させる前に、前記基体上に配置された前記触媒粒子を酸化した後に還元する工程を含むこと、
をその好ましい態様として含むものである。
各々が高分子で覆われた触媒粒子が多数分散された液体を基板上に塗布することで前記触媒粒子を基板上に配置する態様の本発明の第2および第3は、前記高分子が水溶性高分子であること、
前記高分子が、ポリビニルピロリドン、ポリビニルアルコール、ポリアクリル酸類のいずれかであること、
前記ポリアクリル酸類は、ポリアクリル酸、ポリメタクリル酸、およびそれらの同族体のいずれかであること、
前記高分子が前記液体に対し、0.1wt%以上30wt%以下含まれること、
前記高分子は、平均膜厚が2.5nm以上25nm以下の範囲で前記触媒粒子を覆っていること、
をその好ましい態様として含むものである。
本発明の第3は、前記触媒粒子が、Pdと、添加物と、を含み、
前記添加物は、Fe、Co、Ni、Y、Rh、Pt、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Luの中から選択された少なくとも一つであること、
をその好ましい態様として含むものである。
本発明の第4は、複数の電子放出素子を有する電子源の製造方法であって、該電子放出素子を前記本発明の第1乃至第3のいずれかの電子放出素子の製造方法により製造することを特徴とする電子源の製造方法を提供するものであり、本発明の第5は、電子源と、該電子源と対向して配置された画像形成部材とを有する画像形成装置の製造方法であって、前記電子源を本発明の第4の電子源の製造方法により製造することを特徴とする画像形成装置の製造方法を提供するものである。
本発明による2種類以上の異なる元素を含む粒子を用いたカーボンファイバーを用いた電子放出素子の製造方法は、基板上での高温合金化工程を必要とせず、カーボンファイバーが安定に低温で良好に成長させることができ、カーボンファイバーを用いた電子放出素子を容易に得ることができる。加えて、低温で作製可能なため、加熱による他の部材への悪影響や、製造コスト上昇を防止することができる。
また、上記粒子を分散した分散液中にさらに抗凝集剤(高分子)を加えることで、粒子の濃度の調整や、粒子の付設密度を容易に調整することができ、電子放出に必要な電界がより有効にカーボンファイバーに印加することができる。それにより、電子放出の閾値電圧が低下させることができ、同じ値の電子放出電流を得るための必要電界を低減できる。
さらに、Pdと特定の添加元素とからなる合金微粒子を触媒として用いると、粉塵爆発の危険性がなくなり、製造装置の防爆設備が不要となるだけでなく、Pdのみの場合に生じる、初期状態よりも大きな形状を持つ粒子となる形状変化を防ぐことができ、カーボンファイバーの成長温度の上昇や電子放出の閾値の上昇を防ぐことができるものである。
本発明のカーボンファイバーを用いた電子放出素子、電子源および画像形成装置の製造方法について、それぞれの例を以下に説明する。ただし、以下に記載する構成部品の寸法、材質、形状、その相対位置などは、本発明の範囲をそれらのみに限定する趣旨のものではない。同様に以下に記述する製造工程も唯一のものではない。
まず、本発明でカーボンファイバーを成長させるために用いる触媒について説明する。
本発明でカーボンファイバーを成長させるために用いる触媒は、複数の金属を含む粒子である。そして、特には合金粒子が好ましい。この複数の金属を含む粒子としては、Pdと、Fe、Co、Ni、Y、Rh、Pt、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Luの中から選択された少なくとも一つの添加元素とを含有する粒子であることが好ましい。また、Pdと組み合わされる前記添加元素の中では、Fe、Ni、Coのいずれかを少なくとも含むことことが好ましい。そして特には、PdとCoの組み合わせが好ましい。
ここで、本発明における「カーボンファイバー」あるいは「カーボンを主成分とするファイバー」とは、カーボンナノチューブ、グラファイトナノファイバー、アモルファスカーボンファイバー、ダイアモンドファイバーなどを含む。そして、特には、平均直径が5nm以上100nm以下であるカーボンファイバーが好ましく、また、さらには、平均直径が10nm以上50nm以下であるカーボンファイバーがより好ましい。また、本発明における「カーボンファイバー」あるいは「カーボンを主成分とするファイバー」は、直径と長さの比が大きい(典型的にはアスペクト比(長さ/直径)が10以上、好ましくは100以上、さらに好ましくは1000以上である)部材を指す。
本発明において、触媒として用いる粒子がPdと、Fe、Co、Ni、Y、Rh、Pt、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Luの中から選択された少なくとも一つの添加元素とからなるものであることが好ましい理由は以下の通りである。
粒子状態においては、Pd以外の触媒は大気にさらすと、大気中の水や酸素と化学反応を生じて酸化物となってしまうが、Pdは他の触媒材料と異なり、金属結合状態をより安定に保つ。特に、Fe系の金属粒子は、大気にさらすと急激に化学反応を起こし、粉塵爆発の危険性があるが、金属Pdではこのような危険性がない。さらにPdを主成分としてCo、Ni、Feなどを含んだ金属触媒としても酸化反応が遅く進行するため、安全に触媒を取り扱うことが可能である。
一方、Pdは、水素を容易に触媒内に取り込む性質と関連して、特異な挙動がある。Pdを水素、有機ガスなどの還元雰囲気にさらすと、水素を含んだ粒子同士が、比較的低温度(約450℃以上)で結びついて、初期状態よりも大きな形状の粒子となる。この現象により、Pd粒子が大きい形状に変化すると、カーボンファイバーの成長温度が高くなるだけでなく、これを電子放出材料として用いたときの電子放出の閾値が高くなるなどの不都合がある。
このような不都合を避ける方法として、成長に必要な温度に達するまで、触媒に水素、あるいは炭化水素に可能な限り暴露しない方法もある。しかし、より有効な方法として、Pdと、Fe、Co、Ni、Y、Rh、Pt、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Luのうちの少なくとも一つの添加元素とで粒子を構成することで、粒子同士が結びついて、初期状態よりも大きな形状を持つ粒子となる形状変化を防ぐことが可能なことを本発明者らは見出した。
Pdと組み合わされる前記添加元素の中では、Fe、Ni、Coのいずれかを少なくとも含むことことが好ましい。そして、特には、PdとCoの組み合わせが好ましい。Fe、Ni、Coの中から選択された好ましい添加元素と、Pdとを含む粒子を用いて、カーボンファイバーを作成し、この得られたカーボンファイバーを電子放出素子に応用した際には、特に印加電圧−電子放出電流特性において、鋭い立ち上がり特性を得ることができる。また、長期に渡って安定な電子放出特性を得ることができる。Pdと組み合わされる前記好ましい添加元素(Fe、Ni、Co)は、Pdとの合金状態で粒子を構成することが、多数のカーボンファイバーを、均一性高く、そして安定に製造する上で好ましい。
Pdと、Pdに組み合わされる添加元素との原子比は、Pdに対して、Pdに組み合わされる添加元素が5atm%(原子百分率)以上である時に顕著な効果が発現する。さらには、Pdに対して、Pdに組み合わされる添加元素が20atm%(原子百分率)以上であることが好ましい。但し、Pdに対して、Pdに組み合わされる添加元素が80atm%(原子百分率)を超えると、カーボンファイバーの成長が遅くなったり、積極的な水素添加などによる還元プロセスが必要となる傾向が出る。また、Pdに対する添加元素の比率(原子比)が80atm%(原子百分率)を超えると、添加元素が100%の触媒と同様の特性になってしまい、形成されるカーボンファイバーの結晶性が低下してしまう。このため、上記Pdへの添加元素の添加量は、80atm%(原子百分率)以下であることが好ましい。特に、PdとCoを含有する触媒粒子中におけるCoの割合が20atm%未満であると、形成された複数のカーボンファイバーを含む膜を用いた電子放出素子では、長期に渡る良好な電子放出特性が得られない。また、PdとCoを含有する触媒粒子中におけるCoの割合が80atm%を超えると、カーボンファイバーの最低成長温度が一般的なガラス基板を用いて形成することが実質上困難である。また、Coの割合が80atm%を超えると、安定性は良いが、電子放出特性が低下する。そのため、PdとCoを含有する触媒粒子中におけるCoの割合は、20atm%以上、80atm%以下であることが好ましい。
前記粒子の製造方法は、特に限定されず、上記した要件を満たす粒子を形成できるのであればいずれの製造方法を用いても良い。この粒子の製造の際に高温工程が必要であったとしても、粒子を基体上への塗布工程以降の工程には何ら影響しない。
また、詳しくは後述するが、カーボンファイバーを電子放出素子に応用する際には、多数のカーボンファイバーの集合体(「複数のカーボンファイバーを含む膜」と呼ぶ場合もある)を1つの電子放出素子に適用する。このような複数のカーボンファイバーを含む膜を、均一性が高く、安定に形成する際には、本発明の触媒粒子に含まれる、前述したPdと、添加元素とが、合金状態であることが重要である。そのため、カーボンファイバーを成長させる時点においては、粒子が合金状態を示していればよいが、カーボンファイバーを成長させる前(例えば後述する分散液中に分散されている状態)においては、粒子中に含まれる前述のPdと添加元素とが合金化している必要は必ずしもない。
カーボンファイバーの成長に用いる上記粒子の平均粒径は、カーボンファイバーの成長温度を低く維持し、これを電子放出材料として用いたときの電子放出の閾値を低くするために、1nm以上100nm以下、好ましくは1nm以上50nm以下、さらに好ましくは1nm以上20nm以下である。
本発明においては、カーボンファイバーを基体上に成長させるために、上記粒子を基体上に配置する。基体上への上記粒子の付設は、上記粒子を多数含む液体(カーボンファイバーを用いた電子放出素子作成用のインク)を基体上に付与することで行われる。通常、この粒子を含む液体の塗布は、粒子を分散媒中に分散させた分散液を塗布することで行うことができる。以下、この分散液について説明する。
分散媒としては、水または有機溶媒を用いることができる。有機溶媒としては、例えばエタノール、イソプロピルアルコール、ベンゼンなどを用いることができる。環境への負荷を考慮すると、分散媒としては水を用いることが好ましい。
分散液中には、上記粒子を基体上で所望の間隔を置いて離散的に配置するために、抗凝集剤として、保護コロイド作用を有する高分子を添加することが好ましい。上記高分子としては、例えばPVP(ポリビニルピロリドン)、PVA(ポリビニルアルコール)、ポリアクリル酸類(ポリアクリル酸、ポリメタクリル酸、およびそれらの同族体(エステル、アミド、二トリルなど))を用いることが好ましい。ポリメタクリル酸類としては、例えば、ポリメタクリル酸メチルやポリアクリロニトリルを用いることができる。尚、分散媒として水を使用する場合も考慮すると、本発明のインクに用いる高分子としては水溶性高分子を用いることが好ましい。水溶性高分子の重合度は400以上2000以下の範囲が好ましい。
上記抗凝集剤は、分散液に対し、0.1wt%以上30wt%以下含まれることが分散液中における粒子の安定性の観点から好ましい。さらには、抗凝集剤は、分散液に対し、0.2wt%以上10wt%以下の範囲で含まれることがより好ましい。
分散液中において、上記高分子は前述した個々の粒子を覆う(包む)。そして0.1wt%以上30wt%以下の範囲で上記高分子が分散液中に添加した場合、高分子は、前述した粒子の平均粒径を5nm以上50nm以下の範囲で増加させる程度に、個々の粒子の表面を覆う。つまり、平均的には2.5nm以上25nm以下の膜厚の高分子で粒子が覆われることになる。
そして、上述した粒子は、分散液に対し、1g/L(Lはリットルを表す)以下の割合で含まれることが好ましい。さらには、0.1g/L以下の割合で含まれることが、成長させたカーボンファイバーに対し実効的に印加される電界強度を向上する上で、より好ましい。また、上述した粒子は、分散液に対し、0.01g/L以上含まれることが、一つの電子放出素子から十分な放出電流密度を得る上で好ましい。
また、上記粒子は、後述するように、分散液中の抗凝集剤の濃度によっては、粒子1つ1つが分散して基体上に配置される場合だけでなく、複数の粒子が凝集して構成された凝集体毎に基体上に分散して配置される場合もある。そのため、上記抗凝集剤の添加または不添加および添加する場合の添加量は、所望のカーボンファイバーの分散状態に応じて選択することができる。しかし、カーボンファイバーの密度の制御性の観点から、好ましくは、上述した抗凝集体を分散媒中に添加して均一性高く基体上に分散して配置する。
次に、本発明におけるカーボンファイバーの製造方法の概要を説明する。
まず、前記粒子を多数含む分散液を、カーボンファイバー生成対象面(例えば後述する電子放出素子や電子源を形成するときのベースとなる基体(基板や電極))上に付与する。尚、カーボンファイバーを電子放出素子に応用する場合には、カーボンファイバーに電子を供給する必要があるため、上記分散液は電極などの導電性部材上に付与する。
前記分散液は、感光性成分をさらに含むことも可能である。感光性成分(例えば感光性高分子など)を上記分散液に添加し、前記カーボンファイバー生成対象面上に前記分散液を塗布することによって得た塗膜の所望の領域に、光を照射し、さらに、前記光を照射した領域あるいは前記光を照射した領域以外の領域の前記塗膜を除去することにより、所望の領域のみに、触媒粒子を配置することができる。
そして、前記粒子(および高分子)を含む塗膜を前記基体上や電極上に形成した後に、該塗膜を加熱することで分散媒を除去(高分子が入っている場合には高分子と分散媒を除去)することにより、カーボンファイバーの生成対象面である基体上に前記粒子を付設する。一般的な分散媒除去は、120℃程度の乾燥工程が用いられる。しかしながら、このような、乾燥工程のみでは、前記粒子の基板への強固な固定は困難である。また、触媒粒子の配置領域をパターニングする場合(特にはウエットプロセスによってパターニングする場合)には、パターニングの際の剥離剤や溶剤などと共に触媒粒子を構成する材料が喪失する場合がある。そこで、上記塗膜の加熱工程を酸化雰囲気中で行うことで、一旦、触媒粒子を酸化物にした状態で、上記パターニングを行い、その後、触媒粒子を還元処理(例えば還元ガス雰囲気中で加熱処理)することが好ましい。このように基体上に配置した触媒粒子を一旦酸化し、その後還元することで、パターニングの際の剥離剤や溶剤などと共に触媒粒子を構成する材料が喪失するのを抑制することができる効果に加え、後述のファイバーの成長を安定に行うことができる。
次いで、基体上に配置された前記粒子が触媒作用を発現するのに必要なエネルギーを供給し(最も簡便な方法としては粒子と共に基体を加熱する)、触媒作用を発現した粒子に炭素含有ガス(CVD法のソースガスに相当する)を接触させることで、前記基体上にカーボンファイバーを成長(CVD成長)させることができる。
以上の工程でカーボンファイバーを成長させたい基体上にカーボンファイバーを形成することができる。尚、本発明においては、カーボンファイバーを成長させる際の粒子の組成と、分散液中で分散している粒子の組成とは基本的に変わらないが、結晶性は変化する場合がある。例えば、分散液中での粒子は異種材料の混合体で構成された状態で、カーボンファイバーを成長させる際の粒子は合金化した状態である場合などが上記した結晶性の変化に相当する。また、分散液中での粒子は、異なる元素のクラスター同士が集まって粒子を形成しており、カーボンファイバーを成長させる際の粒子は異種元素が合金化して一つの粒子を形成している場合なども上記した結晶性の変化に相当する。尚、粒子がPdとCoとからなる場合には、分散液中およびカーボンファイバーを成長時の双方においても、粒子は合金状態であることが安定性の観点で好ましい。
基体上への上記分散液の塗布方法としては、スピンコート法、スプレー法、インクジェット法、ディッピング法(浸漬法)、オフセット印刷などの印刷法などを適宜用いることができる。分散液の塗布の際には、前述した粒子の分散液の濃度調整だけでなく、スピンコート法における回転数の調整や、インクジェット法による液滴の付与回数などにより、基体上における粒子の密度を制御することもできる。
粒子を高密度に密集させずに、低密度で基体上に配置することにより、後で生成されるカーボンファイバーも低密度に配置することができる。その結果、基体上に多数配置されたカーボンファイバーの端部に実効的に印加される電界強度が低下することを抑制する(カーボンファイバーの端部に実効的に印加される電界強度を高くする)ことが可能となる。
本発明においては、上記粒子の分散液を付与した基体に対し、プラズマを用いず、単なる熱CVD法によっても、カーボンファイバーを成長させることもできる。また、カーボンファイバーを成長させるために、前記触媒粒子に接触させる炭素含有ガスとしては、例えばアセチレン、エチレン、メタン、プロパン、プロピレンなどの炭化水素ガスの他、例えばエタノールやアセトンなどの有機溶剤の蒸気をも用いることもできる。良質のカーボンファイバーを得るためには、炭化水素ガスを用いることが好ましい。さらには、カーボンファイバーを成長させる環境内(例えばチャンバー内)に上記炭素含有ガスと共に水素を導入することがカーボンファイバーを効率良く成長させる上で好ましい。
前記粒子の触媒作用を利用して上記炭素含有ガス(好ましくは炭化水素ガス)を分解して得られるカーボンファイバーを複数含む膜の一例の模式図を図8および図9に示す。各図では一番左側に光学顕微鏡レベル(〜1000倍)で見えるカーボンファイバーの形態、真中は走査電子顕微鏡(SEM)レベル(〜10万倍)で見えるカーボンファイバーの形態、右側は透過電子顕微鏡(TEM)レベル(〜100万倍)で見えるカーボンファイバーの形態を模式的に示している。
図8に示されるカーボンファイバーは、グラフェン16が円筒形状の形態をとっており、カーボンナノチューブと呼ばれる。円筒形のグラフェン16が多重構造になっているものはマルチウォールナノチューブと呼ばれる。これを電子放出素子の電子放出部材として用いる場合、特にチューブの先端が開放された構造の時に電子放出のために必要な閾値電界が最も下がる。
また、グラファイトナノファイバーを図9に模式的に示す。この形態のカーボンファイバーは複数のグラフェン16がファイバーの軸方向に積層されて構成されている。そして各々のグラフェン16は、ファイバーの軸方向に対して非垂直に配列されている。より具体的には、図9の一番右側の模式図に示す様に、グラファイトナノファイバーは、その長手方向(ファイバーの軸方向)にグラフェン16が積層されたファイバー状の物質を指す。あるいはまた、図9の一番右側の模式図に示す様に、グラフェン16がファイバーの軸に対して非平行に配置されたファイバー状の物質を指すものである。グラフェンが、ファイバーの軸方向に対して実質的に垂直に配置される場合も本発明におけるグラファイトナノファイバーに包含される。
尚、グラファイトの1枚面を「グラフェン」あるいは「グラフェンシート」と呼ぶ。グラファイトは、炭素原子がsp2混成により共有結合されることでできた正六角形を敷き詰める様に配置された炭素平面が、理想的には3.354Åの距離を保って積層してできたものである。この一枚一枚の炭素平面を「グラフェン」あるいは「グラフェンシート」と呼ぶ。
どちらのカーボンファイバーも電子放出に必要な閾値電界強度が1V〜10V/μm程度であり、電子放出材料として好ましい特性をもつ。カーボンファイバーを用いて電子放出素子を形成する場合には、1つの電子放出素子は、複数のカーボンファイバーを含む。そして、電子放出材料としては、カーボンファイバーとしてグラファイトナノファイバーを用いることがより好ましい。何故なら、複数のグラファイトナノファイバーを電子放出材(複数のグラファイトナノファイバーからなる膜を電子放出膜)として用いた電子放出素子では、カーボンナノチューブを用いた場合よりも、電子放出電流密度を大きく確保できる為である。グラファイトナノファイバーは、カーボンナノチューブ等と異なり、図9などに示した様に、表面(ファイバーの側面)に微細な凹凸形状を有するために電界集中が起きやすく、電子を放出しやすいと考えられる。そして、また、ファイバーの中心軸からファイバーの外周(表面)に向かってグラフェンが伸びている形態であるため、電子放出をし易いのではないかと考えている。一方のカーボンナノチューブは、ファイバーの側面は、基本的に、c面に相当するため、化学的に不活性であり、グラファイトナノファイバーのような凹凸もないため、ファイバーの側面からは電子の放出は生じないと考えられる。そのため、カーボンファイバーとしてグラファイトナノファイバーを用いることが電子放出素子として好ましいと考えられる。
本発明においては、複数のカーボンファイバーからなる膜をカソード電極に電気的に接続してエミッタを構成する。そして、このエミッタから電子を引き出すための電極(引き出し電極:ゲート電極やアノード電極)をエミッタに対向するように配置することで電子放出装置(所謂ダイオード構造の電子放出装置)とすることができる。さらにカーボンファイバーから放出された電子の照射により発光する蛍光体などの発光体を引き出し電極上に配置すればランプなどの発光装置を形成することができる。また、さらには、複数のカーボンファイバーを含む膜を用いた電子放出素子を複数配列した基体に対向するように、蛍光体などの発光体とアノード電極とを有する透明な基板を配置することで、ディスプレイなどの画像表示装置をも構成することができる。
本発明のカーボンファイバーを用いた電子放出装置、発光装置、あるいは画像表示装置においては、内部を従来の電子放出素子のように超高真空に保持しなくても安定な電子放出をすることができ、また低電界で電子放出するため、信頼性の高い装置を非常に簡易に製造することができる。
尚、本発明において、「複数のカーボンファイバーからなる膜」あるいは「複数のカーボンファイバーを含む膜」とは、複数のカーボンファイバーが離散的に基体上に配置された状態をも含むものである。そのため、互いに接触する程度に複数のカーボンファイバが配置されているような状態に限定されるものではない。
以下、図1を用いてカーボンファイバーを用いた電子放出素子の製造工程の一例を詳細に説明する。図1は断面模式図であり、引出し(ゲート)電極の無い単純な構成になっている。このような電子放出素子は、アノード電極と対向させて使用され、所謂ダイオード構造の電子放出装置を構成することができる。
図1において101は絶縁性の基板、103は陰極電極(カソード電極)、105は導電性材料層、106は粒子、107はカーボンファイバーで、図1は、導電性材料層105上に配置した粒子106の触媒作用を利用して、エミッタ材料となる複数のカーボンファイバー107を導電性材料層105上に成長させる工程を示している。陰極電極103の材料は、例えば、金属、金属の窒化物、金属の炭化物、金属のホウ化物、半導体、半導体の金属化合物などから適宜選択される。好ましくは、陰極電極103の材料は、金属、金属の窒化物、金属の炭化物の耐熱性材料が望ましい。陰極電極103と導電性材料層105は導電性の材料から構成される。
尚、導電性材料層105は用いる粒子の材料と陰極電極の材料との組み合わせにもよるが必ずしも配置する必要はない。しかしながら、陰極電極と粒子の組み合わせの設計自由度を上げるためには、導電性材料層105を用いることが好ましい。導電性材料層105を用いる場合には、導電性材料層105として、Ti、Zr、NbもしくはAlの中から選ばれた材料の酸化物または窒化物を用いることが好ましい。特にはTiNを用いることが好ましい。この導電性材料層105は、電極103と粒子106とが後述するカーボンファイバーを成長させる際などの加熱により反応することを抑制するためのものである。
絶縁性の基板101としては、ガラスなどの電気的絶縁性の板材を用いることができ、その表面を十分に洗浄して使用される。
エミッタ材料であるカーボンファイバー107は、前述した粒子106を用いてCVD成長させたカーボンナノチューブ、グラファイトナノファイバーなどである。
以下、工程毎に説明する。
(工程1)
基板101を十分に洗浄した後、陰極電極103と、導電性材料層105を形成する(図1A)。
(工程2)
上記陰極電極103上(導電性材料層105が陰極電極103上に形成されている場合は導電性材料層105上)に、前述した粒子106を含む分散液を塗布する。そして、上記分散液の塗膜から、分散媒および抗凝集剤を除去する(具体的には加熱する)ことにより、導電性材料層105上に複数の金属を含む粒子106を多数配置する。そして、特には、上記分散媒および抗凝集剤を除去する際(特には加熱の際)の雰囲気は、酸化雰囲気であることが好ましい。酸化雰囲気中で加熱することにより、粒子106の少なくともその表面を酸化し、基体(例えば陰極電極103)との密着性を増すことができる。その結果、この工程2と後述する工程3との間に、例えばリフトオフやホトリソグラフィ―などのパターニング工程を行っても、パターニング工程において用いる溶液(剥離液など)による洗浄工程に起因する、粒子106を構成する元素の一部溶出や、溶液とともに粒子106が除去(流出)されたりすること、などを抑制することができる。そしてまた、ファイバーの成長も安定にすることができる。分散液中の粒子濃度の調整や、スピンコート時の回転数の調整などにより、基板101表面上に配置される粒子の密度を制御することができる。
この際、上記分散液として、抗凝集剤を添加した、粒子106が分散したものを用いた場合には、粒子106は基板101上に、分散液中で分散していた一つ一つの粒子が、実質的に凝集することなしに、そのまま一つ一つの粒子が互いに離れて基体上(導電性材料層105上)に付設される(図1B−1)。また、抗凝集剤を添加していない(あるいは、前述した好ましい範囲の抗凝集剤の含有量を下回る)、分散液を用いた場合には、粒子106は基板101上に、複数個の粒子が凝集して形成される凝集体毎に互いに離れて分散付設される(図1B−2)。
尚、本発明においては、分散液に感光性成分(ネガ型あるいはポジ型の感光性成分)を加え、これを基体上に塗布して前述した塗膜(塗膜から分散媒を除去したもの)を形成し、該塗膜の残したい領域に光を照射する(この場合はネガ型の感光性成分を使用する)あるいは該塗膜の除去したい領域に光を照射する(この場合はポジ型の感光性成分を使用する)ことで変質させて、その後に溶剤などで洗浄することで、所望の領域のみに塗膜を残すパターニング工程を行うことができる。
(工程3)
続いて、炭素含有ガス中で、粒子106の触媒作用を利用して、炭素含有ガスを加熱分解(熱CVD)処理をすることで、カーボンファイバー107を成長させる。この時、抗凝集剤を添加した分散液を用いた場合には、粒子一つに対し一つのカーボンファイバー107が成長する(図1C−1)。また、抗凝集剤を添加していない(あるいは、前述した好ましい範囲の抗凝集剤の含有量を下回る)分散液を用いた場合には、複数の粒子からなる凝集体1つに対し、複数本のカーボンファイバー107の束が成長する。(図1C−2)。
尚、上述の工程2において、粒子106の酸化工程を加えた場合には、上記工程3を行う前(パターニング工程を終えた後)に、粒子106を還元する工程(例えば水素などの還元性ガス中で加熱する工程)を加えることが好ましい。また、上記還元工程を、上記工程3(カーボンファイバーを成長させる工程)とともに行ってもよい。つまり、上記炭素含有ガスに還元性ガス(例えば水素ガス)を混ぜて、上記カーボンファイバー107の成長工程を行ってもよい。あるいはまた、炭素含有ガス自体が還元性機能を持ったものを用いれば、還元性ガスを別途加えることを省略することもできる。
このようにして形成したカーボンファイバー107から電子放出させるために、陰極電極103と、基板101上方に配置された不図示の陽極(アノード板)との間に真空中で電圧を印加すると、カーボンファイバー107の先端から陽極にむけて電子が放出される。
以上のように、本発明の粒子含有分散液を用いて粒子106を基体上に低密度に分散配置することにより、形成された多数のカーボンファイバー107も互いに適当な距離を置いて配置することができる。その結果、個々のカーボンファイバー107に、電界がより有効に印加される。それにより、電子放出の閾値電圧を低下させることができ、同じ値の電子放出電流を得るための必要電界を低減することができる。
以下、図2に基づいて、図3で示した電子放出素子の製造工程の一例を説明する。図2および図3で示す例は、第1電極(カソード電極)203と、第2電極(ファイバーから電子を引き出すための電極(引き出し電極あるいはゲート電極と呼ぶ場合もある)、あるいは、ファイバーから放出された電子(あるいはファイバーから放出される電子)を制御するための電極(制御電極と呼ぶ場合もある))とを、同一の基板201の表面上に離れて配置した例である。第2電極202と第1電極203とを配置した基板201に対向するようにアノード電極411を配置することで所謂トライオード構造(3端子構造)の電子放出装置を形成することができる(図4参照)。尚、図3で示した構造において、第2電極をファイバーから放出された電子(あるいはファイバーから放出される電子)を制御するための電極とした場合には、典型的には、アノード電極411がファイバーから電子を引き出すための電極としての機能も兼ねることとなる。
図3は、本発明によって得られる電子放出素子の構造の一例を示す模式図で、図3Aは、平面図、図3Bは、図3Aのa−a断面図である。
図3において、201は絶縁性の基板、202は前述した第2電極、203は前述した第1電極(カソード電極)、205は導電性材料層、207はエミッタ材料であるカーボンファイバーを示している。
絶縁性の基板201としては、図1でも説明したように、石英ガラスなどの電気的絶縁性の板材を用いることができ、その表面を十分に洗浄して使用される。
陰極電極203、導電性材料層205として用いることのできる材料は、図1で説明した陰極電極および導電性材料層の材料と同様である。また、この例においても、導電性材料層205は用いる粒子の材料にもよるが必ずしも配置する必要はないが、好ましくは使用される。さらに、第2電極202の材料としては、陰極電極203と同様の材料が用いることができる。
エミッタ材料であるカーボンファイバー207は、図1で既に説明したように、粒子206(図2参照)を用いて成長させたカーボンファイバーである。
以下、工程毎に説明する。
(工程1)
基板201を十分洗浄した後、第2電極202および陰極電極203を形成するため、はじめに基板201表面全体に不図示の電極層を被覆形成する。
次に、フォトリソグラフィー工程で、不図示のポジ型フォトレジストを用いてレジストパターンを形成し、パターニングした前記フォトレジストをマスクとしてドライエッチングを行い、電極ギャップ(電極間の間隙の幅)を数ミクロン(例えば5μm)として、第2電極202および陰極電極203をパターニングする(図2A)。
以下、フォトリソグラフィー工程、成膜、リフトオフ、エッチングなどによる薄膜やレジストのパターニングを単にパターンニングと称する。
(工程2)
後の上部層をリフトオフするためのリフトオフ用メタル(例えばCr)204をパターンニングする(図2B)。
次に、導電性材料層205を形成する。そして、その上に粒子206の分散液を塗布し塗膜を配置する。そして、該塗膜を加熱することにより、分散媒と抗凝集剤を除去し、導電性材料層205上に多数の粒子206を分散付設する。この時、上記分散液として抗凝集剤を添加したものを用いた場合は図2(C−1)に示すように、粒子206は基板201上に、ほぼ分散液中で分散している一つ一つの粒子が、実質的に凝集することなしに、互いに間隔を置いて付設される。一方、抗凝集剤を添加していない、あるいは、前述した抗凝集剤の含有量を下回る、分散液を用いた場合には、粒子206は基板201上に、複数個の粒子が凝集して形成される凝集体毎に、互いに間隔を置いて付設される(図2C−2)。そして、特には、上記分散媒および抗凝集剤を除去する際(特には加熱の際)の雰囲気は、酸化雰囲気であることが好ましい。酸化雰囲気中で加熱することにより、粒子206の少なくともその表面を酸化することができ、結果、基体(例えば陰極電極203)と粒子206との密着性を増すことができる。その結果、後述する工程3におけるパターニング工程における剥離液を用いた洗浄工程などに起因した、粒子206を構成する元素の一部溶出や、剥離液とともに粒子206が流出すること、などを抑制することができる。そしてまた、ファイバーの成長も安定にすることができる。
(工程3)
工程2でパターンニングしたリフトオフ用のメタル層204の剥離液を用いて、メタル層204ごと、メタル層204上の導電性材料層205および粒子206をリフトオフし、所望の領域に導電性材料層205および粒子206のパターンを形成する(図2D−1、D−2)。
(工程4)
続いて、炭素含有ガス中で、粒子206の触媒作用を用いて炭素含有ガスの加熱分解(熱CVD)処理をする。この処理後に走査電子顕微鏡で観察すると、カーボンファイバー207が形成されているのがわかる(図2E−1、E−2)。
上述の工程2において、粒子206の酸化工程を加えた場合には、上記工程4を行う前(工程3を終えた後)に、粒子206を還元する工程(例えば水素などの還元性ガス中で加熱する工程)を加えることが好ましい。また、上記還元工程は、上記酸化工程により失われた触媒作用を再度発現させるため、或いは、上記酸化工程により低下した触媒作用を高めるために行われる工程で、上記工程4(カーボンファイバーを成長させる工程)とともに行ってもよい。つまり、上記炭素含有ガスに還元性ガス(例えば水素ガス)を混ぜて、上記カーボンファイバー207の成長工程を行ってもよい。また、還元性の炭素含有ガスを用いれば、還元性ガスを別途加えることを省略することもできる。
上記酸化工程による効果は、触媒粒子が2種以上の元素を含む場合には限らない。つまり、触媒粒子は、前記Pdと添加元素とからなる合金系粒子に限らず、触媒機能を有する金属(触媒金属)であれば単一元素からなるものでもよく、単一元素からなる触媒金属の触媒粒子を用いた場合においても、上記酸化工程を行った上で溶液(剥離液なども含む)を用いたパターニングを行えば、再現性良く、安定に、粒子を配置することができる。また、上記酸化工程を行った上でカーボンファイバーの成長工程を行えば、安定に、そして、基板に対し接着力の高いカーボンファイバーを形成することができ、結果、安定な電子放出特性を得ることができる。また、このような、単一元素からなる触媒粒子は、上述した複数元素からなる触媒粒子を分散させた分散液と、粒子の組成以外は同様の分散液に分散して基体上に塗布することが好ましい。
以上の工程により、多数のカーボンファイバーを有する電子放出素子を形成することができる。
尚、ここでは、同一基板表面上に、第1電極203と第2電極202とを配置した例を示したが、本発明の電子放出素子はこのような形態に限られれるものではない。例えば、スピント型のように開口を有する第2電極をカソード電極上に配置し、該開口内に露出するカソード電極上に複数のカーボンファイバーを配置する形態であっても良い。より具体的には、カソード電極上に第1の開口を有する絶縁層を配置し、さらに、第1の開口に連通する第2開口を有する第2電極を絶縁層上に積層し、この第1および第2の開口で形成される開口内に位置する(露出する)カソード電極の一部に電気的に接続するように、複数のカーボンファイバーを本発明の方法により成長させて配置する形態であってもよい。
上記工程1〜工程4により形成した多数のカーボンファイバー207を有する電子放出素子について、さらに図4、図5を用いてその電子放出特性について説明する。
電子放出特性を測定するには、まず、第2電極202と陰極電極(カソード電極)203とが数ミクロン〜数十μmのギャップで隔てられた図3に示す電子放出素子を図4に示すような真空装置408中に設置し、真空排気装置409によって内部を10-4Pa程度に到達するまで十分に排気する。そして、高電圧電源を用いて、基板201から数ミリの高さHの位置に陽極(アノード)410を設け、数キロボルトからなる高電圧Vaを印加する。尚、アノード410には導電性フィルムを被覆した蛍光体411が設置される。
そして、電子放出素子の第1電極203と第2電極202の間に駆動電圧Vfとして数十V程度からなるパルス電圧を印加することで、電極203と電極202間に流れる素子電流Ifと電子放出電流Ieを計測することができる。尚、ここで説明する例は、第2電極が、ファイバー207から電子を引き出すための引き出し電極として用いられる電子放出素子の例である。
この時の等電位線412は図4のように形成され、最も電界の集中する点413は電子放出材料であるカーボンファイバー207の最もアノード410寄りで、かつ電極202と電極203との間のギャップの近傍の場所と想定され、そこから主に電子が放出されると考えられる。
上記のような配置により計測される電子放出特性としては図5に示すような特性を得ることができる。すなわち、Vf(電極202と電極203との間に印加される電圧)を増加させると、Ie(放出電流)が急激に立ち上がり、不図示のIf(電極202と電極203との間に流れる電流)はIeの特性に類似しているが、その値はIeと比較して十分に小さな値となる。尚、この電子放出特性は、図1に示した基板101の上方にアノード電極を配置した形態においても基本的に同様である。
以下この原理に基づき、図3に示した電子放出素子を複数備えた電子源を配して得られる画像形成装置について、図6、図7を用いて説明する。尚、ここで説明する例においても、第2電極が、ファイバー207から電子を引き出すための引き出し電極として用いられる電子放出素子の例である。
図6において、601は電子源基体、602はX方向配線、603はY方向配線である。604は本発明により得られる電子放出素子である。
図6においてm本のX方向配線602は、Dx1,Dx2…Dxmから構成される。配線の材料、膜厚、幅は、適宜設計される。Y方向配線603は、Dy1,Dy2…Dynのn本の配線よりなり、X方向配線602と同様に形成される。これらm本のX方向配線602とn本のY方向配線603との間には、不図示の層間絶縁層が設けられており、両者を電気的に分離している(m、nは共に正の整数)。
X方向配線602とY方向配線603は、図7に示すように、それぞれ外部端子Dox1〜Doxm、Doy1〜Doynに接続することで外部に引き出される。尚、ここでは、Dx1〜Dxm(Dy1〜Dyn)とDox1〜Doxm(Doy1〜Doyn)と区別したが、それぞれが一つの連続した配線であっても良い。
各々の電子放出素子604を構成する一対の電極(図3における第1電極203および第2電極202)の各々は、m本のX方向配線602のいずれかと、n本のY方向配線603のいずれかとに電気的に接続される。
X方向配線602には、例えばX方向に配列した電子放出素子604の行を選択するための走査信号を印加する不図示の走査信号印加手段が接続される。一方、Y方向配線603には、Y方向に配列した電子放出素子604の各列を入力信号に応じて変調するための不図示の変調信号発生手段が接続されることによって、個別の電子放出素子604を選択し、独立に駆動可能とすることができるようになっている。
このような単純マトリクス配置の電子源を用いて構成した画像形成装置について図7を用いて説明する。
図7は、本発明によって得られる画像形成装置の一例である画像表示装置(フラットパネルディスプレイ)を示す図である。
図7において、701は本発明の電子放出素子706を複数配した電子源基体、703は電子源基体701を固定したリアプレート、710はガラス基体709の内面に蛍光膜708とメタルバック(Alなどからなる金属膜)707などからなるフェースプレートである。704は、支持枠であり、リアプレート703、フェースプレート710と接続されている。711は外囲器であり、上記フェースプレート710、支持枠704、リアプレート703を相互に封着することで構成される。尚、この外囲器の内部は真空に保持される。
702、705は、図6を用いて説明した、電子放出素子706と接続されたX方向配線およびY方向配線である。
外囲器711は、上述の如く、フェースプレート710、支持枠704、リアプレート703で構成される。一方、フェースプレート710と、リアプレート703との間に、スペーサーとよばれる不図示の支持体を設置することにより、大気圧に対して十分な強度をもつ外囲器711を構成することもできる。
ここで述べた画像形成装置の構成は、本発明によって得られる画像形成装置の一例であり、本発明の技術思想に基づいて種々の変形が可能である。入力信号については、NTSC方式、PAL、SECAM方式などの他、これよりも、多数の走査線からなるTV信号(例えば、MUSE方式をはじめとする高品位TV)方式をも採用できる。また、本発明によって得られる画像形成装置は、テレビジョン放送の表示装置、テレビ会議システムやコンピューターなどの表示装置の他、感光性ドラムなどを用いて構成された光プリンターなどとしても用いることができるものである。
以下、本発明を実施例により詳細に説明する。
<実施例1>
組成がPd(60atm%)、Co(40atm%)で、平均粒径が5nmの合金粒子を用意し、この合金粒子を0.1g/lで分散させた分散液を形成した。上記分散液において、分散媒としては、エタノールを使用し、上記合金粒子が単体で分散するように抗凝集剤としてPVP(ポリビニルピロリドン)を5wt%添加した。
以下に、上記分散液を用いて、図2に示す本実施例の電子放出素子の製造工程を詳細に説明する。
(工程1)
基板201に石英基板を用い、十分洗浄を行った後、ゲート電極202および陰極(エミッタ)電極203を形成するため、はじめに基板201全体に、スパッタ法により、不図示の厚さ5nmのTiの下地と、厚さ100nmのPtとを順次連続的に蒸着した。
次に、フォトリソグラフィー工程で、不図示のポジ型フォトレジストを用いてレジストパターンを形成した。パターニングした前記フォトレジストをマスクとして上記Pt層およびTi層を、ドライエッチングし、電極ギャップが5μmからなる引き出し電極202および陰極電極203をパターニングした(図2A)。
(工程2)
後の上部層をリフトオフするためのリフトオフ用メタルCr204をパターンニングする(図2B)。
次に、導電性材料層205として、TiN層を形成した。
その上に、前記合金粒子206の分散液を、スピナーを用いて2000rpmの条件で回転塗布した。塗布後、クリーンオーブンにて大気中350℃10分での酸化工程により、分散媒と抗凝集剤の除去及び、粒子の酸化を行った(図2C−1)。その後にリフトオフを行った。
(工程3)
工程2でパターンニングしたCrのエッチャントを用いて、Cr層204ごとレジストパターン204上の導電性材料層205および合金粒子206をリフトオフし、所望の領域に導電性材料層205および合金粒子206のパターンを形成した(図2D−1)。
(工程4)
続いて、水素ガス含有雰囲気で、粒子の還元を行った後、エチレンと水素の混合雰囲気中で550℃で加熱処理を行った。処理後に走査電子顕微鏡で観察したところ、ほぼ1本ずつまばらにカーボンファイバー207が形成されているのが確認された(図2E−1)。
以上のようにして作製した電子放出素子を、図4に示すような真空装置408内にに設置し、真空排気装置409によって2×10-5Paに到達するまで十分に排気し、基板201からH=2mm離れた陽極(アノード)411に、陽極(アノード)電圧としてVa=10KV印加した。このとき、電子放出素子には駆動電圧Vf=20Vからなるパルス電圧を印加し、流れる素子電流Ifと電子放出電流Ieを計測した。
素子のIf、Ie特性は図5に示すような特性であった。すなわち、閾値電圧を超えると、Ieが急激に増加し、Vfが15Vでは約1μAの電子放出電流Ieが測定された。一方、IfはIeの特性に類似していたが、その値はIeと比較して一桁以上小さな値であった。
また、カーボンファイバー207を密集させた場合よりも電界が有効に掛かりり、閾値(電子放出)電圧を低減できた。
<実施例2>
組成がPd(60atm%)、Ni(40atm%)で平均粒径が8nmの合金粒子をを0.1g/lで分散させた分散液を用いた。分散媒としては純水を使用し、実施例1で使用した抗凝集剤は使用せず、合金微粒子が数個から数十個の凝集体となった分散液とした。
本実施例では、実施例1における工程2を以下のように行った以外は、実施例1と同様にして電子放出素子の作製を行った。
(工程2)
後の上部層をリフトオフするためのリフトオフ用メタルCr204をパターンニングする(図2B)。
次に、合金粒子206を介してカーボンファイバー207を成長させる導電性材料層205として、TiN層を形成した。
その上に、前記合金微粒子206の分散液を、スピナ−を用いて3000rpmの条件で回転塗布した。塗布後、クリーンオーブンにて、大気中350℃10分の酸化工程により、分散媒と抗凝集剤の除去、及び、粒子の酸化工程を行った(図2C−2)。その後にリフトオフを行った。
そして、水素ガス含有雰囲気で、還元を行った後、エチレンと水素との混合雰囲気中で加熱処理を行った後、走査電子顕微鏡で観察したところ、カーボンファイバー207が、数本から数十本ずつの束を1単位として、まばらに成長形成されているのが確認された(図2E−2)。しかしながら、一方で、合金粒子の大きな凝集体も存在し、全体としては、カーボンファイバーの密度の均一性が低かった。
実施例1と同様に、得られた電子放出素子のIf、Ie特性は図5に示すような特性であった。すなわち、閾値電圧を超えると、Ieが急激に増加し、Vfが15Vでは約1μAの電子放出電流Ieが測定された。一方、IfはIeの特性に類似していたが、その値はIeと比較して一桁以上小さな値であった。
また、従来の、粒子の密度が高い状態でカーボンファイバーを形成した場合よりも電界が有効に掛かり、閾値(電子放出)電圧を低減できたが、実施例1で作成した電子放出素子よりも特性の再現性は低かった。
<実施例3>
組成がPd(70atm%)、Fe(30atm%)で平均粒径が10nmの合金粒子を0.1g/lで分散させた分散液を用意した。分散媒としては、イソプロピルアルコールを使用した。また、本実施例では、上記合金粒子が単体で分散するように抗凝集剤としてPVA(ポリビニルアルコール)を10wt%分散液に添加した。
本実施例では、実施例1における工程2を以下のように行った以外は、実施例1と同様にして電子放出素子の作製を行った。
(工程2)
後の上部層をリフトオフするためのリフトオフ用メタルCr204をパターンニングする(図2B)。
次に、導電性材料層205として、TiN層を形成した。
その上に、前記合金粒子206の分散液を、スプレー法を用いて、基板201の上方から塗布した。塗布後、クリーンオーブンにて、大気中350℃10分の酸化工程により、分散媒と抗凝集剤の除去、及び、粒子の酸化を行った(図2C−1)。その後にリフトオフを行った。
水素ガス含有雰囲気で、還元を行った後、アセチレンと水素との混合雰囲気中で550℃の加熱処理を行った後、走査電子顕微鏡で観察するとカーボンファイバー207が、ほぼ1本ずつまばらに成長形成されているのが確認された(図2E−1)。
実施例1と同様に、得られた電子放出素子のIf、Ie特性は図5に示すような特性であった。すなわち、閾値電圧を超えると、Ieが急激に増加し、Vfが15Vでは約1μAの電子放出電流Ieが測定された。
密集したカーボンファイバー207の場合よりも電界が有効に掛かり、閾値(電子放出)電圧を低減できた。
本発明のカーボンファイバーの製造方法の一例を示す図である。 本発明のカーボンファイバーの製造方法を用いた電子放出素子の製造工程の一例を示す図である。 本発明のカーボンファイバーの製造方法により得られる電子放出素子の一例を示す模式的平面図およびa−a断面図である。 本発明による電子放出素子を動作させる時の構成例を示す図である。 本発明による基本的な電子放出素子の動作特性例を示す図である。 本発明による複数電子源を用いた単純マトリクス回路の構成例を示す図である。 本発明による電子源を用いた画像形成パネルの構成例を示す図である。 カーボンナノチューブの構造を示す概要図である。 グラファイトナノファイバーの構造を示す概要図である。
符号の説明
101、201:基板
103、203:陰極電極
105、205:導電性材料層
106、206:合金微粒子
107、207:カーボンファイバー
202:ゲート電極
204:レジストパターン
408:真空装置
409:真空排気装置
410:陽極電極
411:蛍光体
412:等電位線
413:電界最集中点
601、701:電子源基体
602、702:X方向配線
603、705:Y方向配線
604、706:電子放出素子
703:リアプレート
704:支持枠
707:メタルバック
708:蛍光膜
709:ガラス基体
710:フェースプレート
711:外囲器

Claims (21)

  1. カーボンファイバーを用いた電子放出素子の製造方法であって、
    (A)触媒粒子が多数分散された液体を基体上に塗布することにより、前記触媒粒子を基板上に配置する工程と、
    (B)前記基板上に配置された前記触媒粒子に炭素含有ガスを接触させることにより、カーボンファイバーを形成する工程と、
    有し、
    前記触媒粒子は、Pdと、添加物と、を含み、
    前記添加物が、Fe、Co、Ni、Y、Rh、Pt、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Luの中から選択された少なくとも一つであり、
    前記添加物の含有量がPdに対し、5atm%以上80atm%以下の割合(原子百分率)で含有することを特徴とするカーボンファイバーを用いた電子放出素子の製造方法。
  2. 前記触媒粒子は、前記液体に対し、1g/L以下の割合で含まれることを特徴とする請求項に記載の電子放出素子の製造方法。
  3. 前記触媒粒子が多数分散された液体を基板上に塗布することにより、前記触媒粒子を基板上に配置する工程は、各々が高分子で覆われた触媒粒子が多数分散された液体を基板上に塗布した後に前記高分子を加熱除去する工程であることを特徴とする請求項1または2に記載の電子放出素子の製造方法。
  4. 前記高分子が水溶性高分子であることを特徴とする請求項に記載の電子放出素子の製造方法。
  5. 前記高分子が、ポリビニルピロリドン、ポリビニルアルコール、ポリアクリル酸類のいずれかであることを特徴とする請求項に記載の電子放出素子の製造方法。
  6. 前記ポリアクリル酸類は、ポリアクリル酸、ポリメタクリル酸、およびそれらの同族体のいずれかであることを特徴とする請求項に記載の電子放出素子の製造方法。
  7. 前記高分子が前記液体に対し、0.1wt%以上30wt%以下含まれることを特徴とする請求項3乃至6のいずれか1項に記載の電子放出素子の製造方法。
  8. 前記高分子は、平均膜厚が2.5nm以上25nm以下の範囲で前記触媒粒子を覆っていることを特徴とする請求項3乃至7のいずれか1項に記載の電子放出素子の製造方法。
  9. カーボンファイバーを用いた電子放出素子の製造方法であって、
    (A)少なくとも2種以上の元素を含む触媒粒子が多数分散された液体を基体上に塗布することにより、前記触媒粒子を基板上に配置する工程と、
    B)前記基体上に配置された前記触媒粒子に炭素含有ガスを接触させることにより、カーボンファイバーを形成する工程と、
    有し、
    前記触媒粒子は、前記液体に対し、1g/L以下の割合で含まれることを特徴とするカーボンファイバーを用いた電子放出素子の製造方法。
  10. 前記触媒粒子が多数分散された液体を基板上に塗布することにより、前記触媒粒子を基板上に配置する工程は、さらに各々が高分子で覆われた触媒粒子が多数分散された液体を基板上に塗布した後に前記高分子を加熱除去する工程を含むことを特徴とする請求項に記載の電子放出素子の製造方法。
  11. カーボンファイバーを用いた電子放出素子の製造方法であって、
    (A)各々が高分子で覆われた触媒粒子が多数分散された液体を基板上に塗布した後に前記高分子を加熱除去することで前記触媒粒子を基板上に配置する工程と、
    (B)前記基板上に配置された前記触媒粒子に炭素含有ガスを接触させることにより、カーボンファイバーを形成する工程と、
    を有することを特徴とするカーボンファイバーを用いた電子放出素子の製造方法。
  12. 前記触媒粒子が、Pdと、添加物と、を含み、
    前記添加物は、Fe、Co、Ni、Y、Rh、Pt、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Luの中から選択された少なくとも一つであることを特徴とする請求項11に記載の電子放出素子の製造方法。
  13. 前記高分子が水溶性高分子であることを特徴とする請求項10乃至12のいずれか1項に記載の電子放出素子の製造方法。
  14. 前記高分子が、ポリビニルピロリドン、ポリビニルアルコール、ポリアクリル酸類のいずれかであることを特徴とする請求項13に記載の電子放出素子の製造方法。
  15. 前記ポリアクリル酸類は、ポリアクリル酸、ポリメタクリル酸、およびそれらの同族体のいずれかであることを特徴とする請求項14に記載の電子放出素子の製造方法。
  16. 前記高分子が前記液体に対し、0.1wt%以上30wt%以下含まれることを特徴とする請求項10乃至15のいずれか1項に記載の電子放出素子の製造方法。
  17. 前記高分子は、平均膜厚が2.5nm以上25nm以下の範囲で前記触媒粒子を覆っていることを特徴とする請求項10乃至16のいずれか1項に記載の電子放出素子の製造方法。
  18. 前記触媒粒子の平均粒径が、1nm以上100nm以下であることを特徴とする請求項1乃至17のいずれか1項に記載の電子放出素子の製造方法。
  19. 前記基体上に配置された前記触媒粒子に炭素含有ガスを接触させることにより、カーボンファイバーを形成する工程は、前記触媒粒子に炭素含有ガスを接触させる前に、前記基体上に配置された前記触媒粒子を酸化した後に還元する工程を含むことを特徴とする請求項1乃至18のいずれか1項に記載の電子放出素子の製造方法。
  20. 複数の電子放出素子を有する電子源の製造方法であって、該電子放出素子を請求項1乃至19のいずれか1項に記載の電子放出素子の製造方法により製造することを特徴とする電子源の製造方法。
  21. 電子源と、該電子源と対向して配置された画像形成部材とを有する画像形成装置の製造方法であって、前記電子源を請求項20に記載の電子源の製造方法により製造することを特徴とする画像形成装置の製造方法。
JP2003306158A 2002-09-26 2003-08-29 カーボンファイバーを用いた電子放出素子、電子源および画像形成装置の製造方法 Expired - Fee Related JP3625467B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003306158A JP3625467B2 (ja) 2002-09-26 2003-08-29 カーボンファイバーを用いた電子放出素子、電子源および画像形成装置の製造方法
US10/661,627 US7147533B2 (en) 2002-09-26 2003-09-15 Method of producing electron emitting device using carbon fiber, electron source and image forming apparatus, and ink for producing carbon fiber
CNB031598447A CN100361258C (zh) 2002-09-26 2003-09-26 电子发射元件、电子源以及图像形成装置的制造方法和墨

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002280420 2002-09-26
JP2003306158A JP3625467B2 (ja) 2002-09-26 2003-08-29 カーボンファイバーを用いた電子放出素子、電子源および画像形成装置の製造方法

Publications (2)

Publication Number Publication Date
JP2004139973A JP2004139973A (ja) 2004-05-13
JP3625467B2 true JP3625467B2 (ja) 2005-03-02

Family

ID=32032903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306158A Expired - Fee Related JP3625467B2 (ja) 2002-09-26 2003-08-29 カーボンファイバーを用いた電子放出素子、電子源および画像形成装置の製造方法

Country Status (3)

Country Link
US (1) US7147533B2 (ja)
JP (1) JP3625467B2 (ja)
CN (1) CN100361258C (ja)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100038121A1 (en) * 1999-08-27 2010-02-18 Lex Kosowsky Metal Deposition
AU6531600A (en) * 1999-08-27 2001-03-26 Lex Kosowsky Current carrying structure using voltage switchable dielectric material
US20100038119A1 (en) * 1999-08-27 2010-02-18 Lex Kosowsky Metal Deposition
US20080035370A1 (en) * 1999-08-27 2008-02-14 Lex Kosowsky Device applications for voltage switchable dielectric material having conductive or semi-conductive organic material
JP3768908B2 (ja) * 2001-03-27 2006-04-19 キヤノン株式会社 電子放出素子、電子源、画像形成装置
JP3619240B2 (ja) * 2002-09-26 2005-02-09 キヤノン株式会社 電子放出素子の製造方法及びディスプレイの製造方法
US7064475B2 (en) * 2002-12-26 2006-06-20 Canon Kabushiki Kaisha Electron source structure covered with resistance film
JP3907626B2 (ja) * 2003-01-28 2007-04-18 キヤノン株式会社 電子源の製造方法、画像表示装置の製造方法、電子放出素子の製造方法、画像表示装置、特性調整方法、及び画像表示装置の特性調整方法
JP3697257B2 (ja) 2003-03-25 2005-09-21 キヤノン株式会社 カーボンファイバー、電子放出素子、電子源、画像形成装置、ライトバルブ、二次電池の製造方法
CN100505134C (zh) * 2003-06-02 2009-06-24 松下电器产业株式会社 电子发射材料及其制造方法
US7202596B2 (en) * 2003-06-06 2007-04-10 Electrovac Ag Electron emitter and process of fabrication
JP4324078B2 (ja) * 2003-12-18 2009-09-02 キヤノン株式会社 炭素を含むファイバー、炭素を含むファイバーを用いた基板、電子放出素子、該電子放出素子を用いた電子源、該電子源を用いた表示パネル、及び、該表示パネルを用いた情報表示再生装置、並びに、それらの製造方法
JP2005190889A (ja) * 2003-12-26 2005-07-14 Canon Inc 電子放出素子、電子源、画像表示装置およびこれらの製造方法
US20050279274A1 (en) * 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
JP3935479B2 (ja) * 2004-06-23 2007-06-20 キヤノン株式会社 カーボンファイバーの製造方法及びそれを使用した電子放出素子の製造方法、電子デバイスの製造方法、画像表示装置の製造方法および、該画像表示装置を用いた情報表示再生装置
JP4596878B2 (ja) 2004-10-14 2010-12-15 キヤノン株式会社 構造体、電子放出素子、2次電池、電子源、画像表示装置、情報表示再生装置及びそれらの製造方法
KR100682952B1 (ko) * 2005-08-31 2007-02-15 삼성전자주식회사 나노탄성 메모리 소자 및 그 제조 방법
US7824495B1 (en) 2005-11-09 2010-11-02 Ut-Battelle, Llc System to continuously produce carbon fiber via microwave assisted plasma processing
US20100264225A1 (en) * 2005-11-22 2010-10-21 Lex Kosowsky Wireless communication device using voltage switchable dielectric material
WO2007062122A2 (en) 2005-11-22 2007-05-31 Shocking Technologies, Inc. Semiconductor devices including voltage switchable materials for over-voltage protection
CN100573778C (zh) * 2006-07-07 2009-12-23 清华大学 场发射阴极及其制造方法
JP2008027853A (ja) * 2006-07-25 2008-02-07 Canon Inc 電子放出素子、電子源および画像表示装置、並びに、それらの製造方法
US20080032049A1 (en) * 2006-07-29 2008-02-07 Lex Kosowsky Voltage switchable dielectric material having high aspect ratio particles
CN101496113A (zh) * 2006-07-29 2009-07-29 肖克科技有限公司 具有高纵横比粒子的电压可切换介电材料
US7968014B2 (en) * 2006-07-29 2011-06-28 Shocking Technologies, Inc. Device applications for voltage switchable dielectric material having high aspect ratio particles
US20080029405A1 (en) * 2006-07-29 2008-02-07 Lex Kosowsky Voltage switchable dielectric material having conductive or semi-conductive organic material
US7879131B2 (en) * 2006-08-15 2011-02-01 Applied Nanotech Holdings, Inc. Metal encapsulation
KR20090055017A (ko) 2006-09-24 2009-06-01 쇼킹 테크놀로지스 인코포레이티드 스탭 전압 응답을 가진 전압 가변 유전 재료를 위한 조성물및 그 제조 방법
WO2008036984A2 (en) * 2006-09-24 2008-03-27 Shocking Technologies Inc Technique for plating substrate devices using voltage switchable dielectric material and light assistance
US20120119168A9 (en) * 2006-11-21 2012-05-17 Robert Fleming Voltage switchable dielectric materials with low band gap polymer binder or composite
US20080169003A1 (en) * 2007-01-17 2008-07-17 Nasa Headquarters Field reactive amplification controlling total adhesion loading
US20090050856A1 (en) * 2007-08-20 2009-02-26 Lex Kosowsky Voltage switchable dielectric material incorporating modified high aspect ratio particles
US8206614B2 (en) 2008-01-18 2012-06-26 Shocking Technologies, Inc. Voltage switchable dielectric material having bonded particle constituents
US20090220771A1 (en) * 2008-02-12 2009-09-03 Robert Fleming Voltage switchable dielectric material with superior physical properties for structural applications
EP2109131B1 (en) * 2008-04-10 2011-10-26 Canon Kabushiki Kaisha Electron emitter and electron beam apparatus and image display apparatus using said emitter
EP2109132A3 (en) * 2008-04-10 2010-06-30 Canon Kabushiki Kaisha Electron beam apparatus and image display apparatus using the same
JP2009277457A (ja) * 2008-05-14 2009-11-26 Canon Inc 電子放出素子及び画像表示装置
JP2009277460A (ja) * 2008-05-14 2009-11-26 Canon Inc 電子放出素子及び画像表示装置
US20100047535A1 (en) * 2008-08-22 2010-02-25 Lex Kosowsky Core layer structure having voltage switchable dielectric material
JP4458380B2 (ja) * 2008-09-03 2010-04-28 キヤノン株式会社 電子放出素子およびそれを用いた画像表示パネル、画像表示装置並びに情報表示装置
WO2010033635A1 (en) * 2008-09-17 2010-03-25 Shocking Technologies, Inc. Voltage switchable dielectric material containing boron compound
JP2010073470A (ja) * 2008-09-18 2010-04-02 Canon Inc 画像表示装置
WO2010039902A2 (en) * 2008-09-30 2010-04-08 Shocking Technologies, Inc. Voltage switchable dielectric material containing conductive core shelled particles
US9208931B2 (en) * 2008-09-30 2015-12-08 Littelfuse, Inc. Voltage switchable dielectric material containing conductor-on-conductor core shelled particles
US8272123B2 (en) 2009-01-27 2012-09-25 Shocking Technologies, Inc. Substrates having voltage switchable dielectric materials
US9226391B2 (en) 2009-01-27 2015-12-29 Littelfuse, Inc. Substrates having voltage switchable dielectric materials
US8399773B2 (en) 2009-01-27 2013-03-19 Shocking Technologies, Inc. Substrates having voltage switchable dielectric materials
US8968606B2 (en) 2009-03-26 2015-03-03 Littelfuse, Inc. Components having voltage switchable dielectric materials
US8623288B1 (en) 2009-06-29 2014-01-07 Nanosys, Inc. Apparatus and methods for high density nanowire growth
EP2499686A2 (en) 2009-11-11 2012-09-19 Amprius, Inc. Intermediate layers for electrode fabrication
US20110198544A1 (en) * 2010-02-18 2011-08-18 Lex Kosowsky EMI Voltage Switchable Dielectric Materials Having Nanophase Materials
US9224728B2 (en) * 2010-02-26 2015-12-29 Littelfuse, Inc. Embedded protection against spurious electrical events
US9320135B2 (en) * 2010-02-26 2016-04-19 Littelfuse, Inc. Electric discharge protection for surface mounted and embedded components
US9082622B2 (en) 2010-02-26 2015-07-14 Littelfuse, Inc. Circuit elements comprising ferroic materials
KR20140051928A (ko) 2011-07-01 2014-05-02 암프리우스, 인코포레이티드 향상된 접착 특성을 가진 템플레이트 전극 구조체
RU2521436C1 (ru) * 2013-01-09 2014-06-27 Открытое акционерное общество "Научно-исследовательский институт газоразрядных приборов "Плазма" (ОАО "Плазма") Импульсная рентгеновская трубка
US20170283629A1 (en) * 2016-03-29 2017-10-05 University Of North Texas Metal-based ink for additive manufacturing process
EP3229303B1 (en) * 2016-04-06 2019-07-31 Greenerity GmbH Method and device for preparing a catalyst coated membrane
US11913146B1 (en) * 2019-07-18 2024-02-27 United States Of America As Represented By The Secretary Of The Air Force Carbon nanotube yarn cathode using textile manufacturing methods

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171560A (en) * 1984-12-06 1992-12-15 Hyperion Catalysis International Carbon fibrils, method for producing same, and encapsulated catalyst
US4948573A (en) * 1986-12-02 1990-08-14 Alcan International Limited Process for producing silicon carbide and metal carbides
US4904895A (en) * 1987-05-06 1990-02-27 Canon Kabushiki Kaisha Electron emission device
US4900483A (en) * 1987-10-29 1990-02-13 Exxon Research And Engineering Company Method of producing isotropically reinforced net-shape microcomposites
JP2721075B2 (ja) 1992-04-09 1998-03-04 シャープ株式会社 気相成長炭素繊維の製造方法
JPH0765708A (ja) 1993-08-25 1995-03-10 Canon Inc 電子放出素子並びに画像形成装置の製造方法
JP3072825B2 (ja) * 1994-07-20 2000-08-07 キヤノン株式会社 電子放出素子、電子源、及び、画像形成装置の製造方法
JP3332676B2 (ja) * 1994-08-02 2002-10-07 キヤノン株式会社 電子放出素子、電子源及び画像形成装置と、それらの製造方法
US6246168B1 (en) * 1994-08-29 2001-06-12 Canon Kabushiki Kaisha Electron-emitting device, electron source and image-forming apparatus as well as method of manufacturing the same
ATE261611T1 (de) * 1994-09-22 2004-03-15 Canon Kk Verfahren zur herstellung einer elektronen- emittierenden einrichtung sowie einer elektronenquelle und eines bilderzeugungsgerätes mit derartigen elektronen-emittierenden einrichtungen
JP2903290B2 (ja) 1994-10-19 1999-06-07 キヤノン株式会社 電子放出素子の製造方法、該電子放出素子を用いた電子源並びに画像形成装置
JP2932250B2 (ja) * 1995-01-31 1999-08-09 キヤノン株式会社 電子放出素子、電子源、画像形成装置及びそれらの製造方法
JP3174999B2 (ja) * 1995-08-03 2001-06-11 キヤノン株式会社 電子放出素子、電子源、それを用いた画像形成装置、及びそれらの製造方法
US5872422A (en) * 1995-12-20 1999-02-16 Advanced Technology Materials, Inc. Carbon fiber-based field emission devices
JP3441923B2 (ja) 1997-06-18 2003-09-02 キヤノン株式会社 カーボンナノチューブの製法
JP3740295B2 (ja) * 1997-10-30 2006-02-01 キヤノン株式会社 カーボンナノチューブデバイス、その製造方法及び電子放出素子
JP3363759B2 (ja) 1997-11-07 2003-01-08 キヤノン株式会社 カーボンナノチューブデバイスおよびその製造方法
JP3631015B2 (ja) * 1997-11-14 2005-03-23 キヤノン株式会社 電子放出素子及びその製造方法
JP2000200544A (ja) 1999-01-08 2000-07-18 Canon Inc 電子放出素子の製造方法、および電子源と画像形成装置の製造方法
JP2000311587A (ja) * 1999-02-26 2000-11-07 Canon Inc 電子放出装置及び画像形成装置
US6333016B1 (en) * 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
JP2002197965A (ja) 1999-12-21 2002-07-12 Sony Corp 電子放出装置、冷陰極電界電子放出素子及びその製造方法、並びに、冷陰極電界電子放出表示装置及びその製造方法
US20020036452A1 (en) 1999-12-21 2002-03-28 Masakazu Muroyama Electron emission device, cold cathode field emission device and method for the production thereof, and cold cathode field emission display and method for the production thereof
JP3953276B2 (ja) 2000-02-04 2007-08-08 株式会社アルバック グラファイトナノファイバー、電子放出源及びその作製方法、該電子放出源を有する表示素子、並びにリチウムイオン二次電池
JP2004519066A (ja) 2000-05-26 2004-06-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 触媒的に成長させた炭素繊維フィールドエミッターおよびそれから作製されたフィールドエミッターカソード
JP3463091B2 (ja) 2000-08-29 2003-11-05 独立行政法人産業技術総合研究所 カーボンナノチューブの製造方法
JP3639808B2 (ja) * 2000-09-01 2005-04-20 キヤノン株式会社 電子放出素子及び電子源及び画像形成装置及び電子放出素子の製造方法
JP3658346B2 (ja) * 2000-09-01 2005-06-08 キヤノン株式会社 電子放出素子、電子源および画像形成装置、並びに電子放出素子の製造方法
JP3639809B2 (ja) * 2000-09-01 2005-04-20 キヤノン株式会社 電子放出素子,電子放出装置,発光装置及び画像表示装置
JP3610325B2 (ja) 2000-09-01 2005-01-12 キヤノン株式会社 電子放出素子、電子源及び画像形成装置の製造方法
JP3634781B2 (ja) * 2000-09-22 2005-03-30 キヤノン株式会社 電子放出装置、電子源、画像形成装置及びテレビジョン放送表示装置
CN1207185C (zh) * 2000-09-26 2005-06-22 天津南开戈德集团有限公司 碳纳米管的制备方法
JP3768908B2 (ja) 2001-03-27 2006-04-19 キヤノン株式会社 電子放出素子、電子源、画像形成装置
US20030222560A1 (en) * 2001-05-22 2003-12-04 Roach David Herbert Catalytically grown carbon fiber field emitters and field emitter cathodes made therefrom
JP3703415B2 (ja) * 2001-09-07 2005-10-05 キヤノン株式会社 電子放出素子、電子源及び画像形成装置、並びに電子放出素子及び電子源の製造方法
JP3605105B2 (ja) * 2001-09-10 2004-12-22 キヤノン株式会社 電子放出素子、電子源、発光装置、画像形成装置および基板の各製造方法
JP3710436B2 (ja) * 2001-09-10 2005-10-26 キヤノン株式会社 電子放出素子、電子源及び画像表示装置の製造方法
JP3768937B2 (ja) * 2001-09-10 2006-04-19 キヤノン株式会社 電子放出素子、電子源及び画像表示装置の製造方法
JP3619240B2 (ja) * 2002-09-26 2005-02-09 キヤノン株式会社 電子放出素子の製造方法及びディスプレイの製造方法

Also Published As

Publication number Publication date
CN100361258C (zh) 2008-01-09
JP2004139973A (ja) 2004-05-13
CN1497639A (zh) 2004-05-19
US20040063839A1 (en) 2004-04-01
US7147533B2 (en) 2006-12-12

Similar Documents

Publication Publication Date Title
JP3625467B2 (ja) カーボンファイバーを用いた電子放出素子、電子源および画像形成装置の製造方法
JP3610325B2 (ja) 電子放出素子、電子源及び画像形成装置の製造方法
US7074380B2 (en) Method for manufacturing carbon fibers and electron emitting device using the same
JP3768908B2 (ja) 電子放出素子、電子源、画像形成装置
KR100490112B1 (ko) 파이버의 제조 방법 및 그 파이버를 이용한 전자 방출소자와, 전자원 및 화상 표시 장치 각각의 제조 방법
US7448931B2 (en) Method for manufacturing carbon nanotube field emission device
JP3605105B2 (ja) 電子放出素子、電子源、発光装置、画像形成装置および基板の各製造方法
US20050200261A1 (en) Low work function cathode
KR100670330B1 (ko) 전자 방출원 및 상기 전자 방출원을 포함하는 전자 방출소자
JP3944155B2 (ja) 電子放出素子、電子源及び画像表示装置の製造方法
JP2006294525A (ja) 電子放出素子、その製造方法及びそれを用いた画像表示装置
JP3897794B2 (ja) 電子放出素子、電子源、画像形成装置の製造方法
Song et al. The production of transparent carbon nanotube field emitters using inkjet printing
JP3633598B2 (ja) 電子放出素子の製造方法及び表示装置の製造方法
KR100972374B1 (ko) 젯 프린팅 방법을 이용한 냉음극 제조방법
JP2005521217A (ja) 電界電子放出材料および装置
JP2003081699A (ja) 炭素を主成分とするファイバーの製造方法および製造装置、並びに該ファイバーを用いた電子放出素子
JP3745360B2 (ja) 電子放出素子、電子源及び画像形成装置
KR100972390B1 (ko) 젯 프린팅을 이용한 냉음극 제조방법
JP2005228662A (ja) 電子放出素子、電子源および画像表示装置の製造方法
JP2004281159A (ja) カーボンファイバーのパターニング方法
Choi et al. Fabrication of electron field emitters using carbon nanotubes
JP2000340143A (ja) 画像形成装置及びその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees