JP3195265B2 - Bi系強誘電体薄膜形成用塗布液およびこれを用いて形成した強誘電体薄膜、強誘電体メモリ - Google Patents

Bi系強誘電体薄膜形成用塗布液およびこれを用いて形成した強誘電体薄膜、強誘電体メモリ

Info

Publication number
JP3195265B2
JP3195265B2 JP02960597A JP2960597A JP3195265B2 JP 3195265 B2 JP3195265 B2 JP 3195265B2 JP 02960597 A JP02960597 A JP 02960597A JP 2960597 A JP2960597 A JP 2960597A JP 3195265 B2 JP3195265 B2 JP 3195265B2
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric thin
forming
metal
coating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02960597A
Other languages
English (en)
Other versions
JPH10258252A (ja
Inventor
佳宏 澤田
晃 橋本
哲彌 逢坂
一郎 小岩
充郎 見田
仁典 前野
幸久 岡田
博代 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Oki Electric Industry Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd, Oki Electric Industry Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP02960597A priority Critical patent/JP3195265B2/ja
Priority to TW086119089A priority patent/TW455884B/zh
Priority to KR1019970076813A priority patent/KR100327279B1/ko
Priority to US09/007,752 priority patent/US5972096A/en
Priority to EP98100703A priority patent/EP0854503A1/en
Priority to US09/102,048 priority patent/US6120912A/en
Publication of JPH10258252A publication Critical patent/JPH10258252A/ja
Priority to US09/391,380 priority patent/US6303231B1/en
Application granted granted Critical
Publication of JP3195265B2 publication Critical patent/JP3195265B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、リーク電流が小さ
く、緻密な膜が形成可能で、かつ保存安定性に優れると
ともに、Pt以外の電極にも適用可能なBi系強誘電体
薄膜形成用塗布液、およびこれを用いて形成した強誘電
体薄膜、強誘電体メモリに関する。
【0002】
【従来の技術】近年、(Bi222+(Am-1
m3m+12-〔ただし、Aは1、2、3価のイオン(例
えば、Bi、Pb、Ba、Sr、Ca、Na、K、およ
び希土類元素)およびこれらのイオンの組み合わせを示
し;Bは4、5、6価のイオン(例えば、Ti、Nb、
Ta、W、Mo、Fe、Co、Cr等の金属元素)およ
びこれらのイオンの組み合わせを示し;m=1〜5の整
数である〕の一般式で表される層状構造を有するBi系
強誘電体(BLSF)薄膜は、P−Eヒステリシスの抗
電界が小さく、分極反転に伴う膜の疲労性が少ないなど
の特性を有することから、半導体メモリ用の材料として
脚光を浴びており(竹中正 「ビスマス層状構造強誘電
体と粒子配向」(社)応用物理学会 応用電子物性分科
会研究報告、1994年11月22日、pp.1−8;
「セラミックス」Vol.30、No.6、pp.49
9−503(1995))、中でもSrBi2Ta29
系、すなわち、(Bi222+(SrTa272-のB
LSF薄膜はこれらの特性をよく示す材料として注目さ
れている。
【0003】これらBLSF薄膜の形成方法としては、
スパッタ法、CVD法、塗布型被膜形成法等が挙げられ
るが、構成する金属酸化物成分が多いことから、スパッ
タ法やCVD法による薄膜形成方法は、高価な装置を必
要としコストがかかること、所望の誘電体膜組成制御と
その管理が難しいことなどの理由により、特に大口径の
基板への適用には困難とされている。これに対し塗布型
被膜形成法は、高価な装置を必要とせず、成膜コストが
比較的安価で、しかも所望の誘電体膜組成制御やその管
理も容易なため有望視されている。
【0004】この塗布型被膜形成法に使用されるBLS
F系塗布液としては、Sr、Biのカルボン酸塩(例え
ば、2−エチルヘキサン酸塩)と、Taのアルコキシド
化合物とを酢酸エステルに溶解して塗布液としたもの
(第12回強誘電体応用会議講演予稿集;三菱マテリア
ル(株);24−TP−11(pp.57−58);1
995.5.24−27,"Jpn.J.Appl.P
hys."Vol.34(1995)pp.5096−
5099)や、Sr、Bi、Ta、Nb、Ti等の2−
エチルヘキサン酸塩をキシレンに溶解してMOD(Meta
llo-Organic Decomposition)型の塗布液としたもの
(同予稿集;オリンパス光学(株)、シメトリックス・
コーポレーション;26−TC−10、pp.139−
140、1995.5.24−27)等が報告されてい
るが、これらの塗布液は、各金属成分を構成する2−エ
チルヘキサン酸塩が炭素原子数8の長鎖の有機基を有す
るため、塗布液全体に占める有機分の含有量が多く、塗
布→焼成→結晶化処理時に有機成分焼失による膜減り性
が高いことから、得られる膜はポーラスとなり、また、
被膜の表面形状(表面モホロジー)も良好でなく、超L
SI素子への適用が困難である。また、この塗布液を用
いて薄膜を形成する場合、適正な電気特性を得るために
800℃の高温で2度焼きしなければならず、半導体製
造プロセスの面からも問題がある。
【0005】さらに、従来の塗布液に用いられる一塩基
酸の長鎖のカルボン酸金属塩(金属セッケン)は、一般
に極性溶媒には難溶性であるため、キシレン、トルエン
等の芳香族系溶媒が使用されるが、これら芳香族系溶媒
を用いた場合、溶媒が外部に揮散、消失しないよう、塗
布液をガラスや金属製の容器に保管する必要がある。し
かしながら、ガラスや金属製の容器は、その内壁から金
属成分が塗布液中に滲出するおそれがあり、金属不純物
の混入を嫌う半導体製造分野においては好ましくない。
このようなことから、液中へ混入する金属不純物の少な
さ、また衝撃に対する取り扱い性の容易さ、コスト等の
点からポリエチレン製またはポリプロピレン製の容器の
使用が好ましく、これらの容器を用いても溶媒の揮散が
少ない溶媒の利用が望まれている。
【0006】また、上記の芳香族系溶剤は人体に対する
影響が高く、その使用方法、管理方法等が著しく制限さ
れる傾向にある。
【0007】一方、前記の一塩基酸の長鎖のカルボン酸
金属塩に代えて短鎖のカルボン酸金属塩を用いた場合
は、実用的な有機溶媒にはほとんど不溶であり、また金
属の低級アルコキシド化合物も、一部の極性溶媒に溶解
するものの、空気中の水分により容易に加水分解するた
め、保存安定性に欠け、再現性が悪く実用的ではない。
【0008】また近年、前述のBi層状構造強誘電体薄
膜(Bi系強誘電体薄膜)を含む強誘電体薄膜(PZT
など)を利用した半導体メモリ(強誘電体メモリ)とし
て、その下部、上部電極にPtが使用されてきたが、疲
労特性の改善や、微細加工の簡易化を図るため、Pt以
外の電極材料を適用する方向にあり、例えばIr、R
u、Rh、Re、Os等の金属、およびその金属酸化
物、中でもIr、Ruや、IrO2、RuO2等の導電性
の金属酸化物が上記目的に適した材料として脚光を浴び
ている。
【0009】しかしながら、従来のBi系強誘電体薄膜
においては、Pt以外のIr、Ru、IrO2、RuO2
等の電極上では結晶性および電気特性に優れず、また分
極反転に伴う膜疲労や、リーク電流が大きいといった問
題を有しており、これまでにPt以外の電極を用いた場
合に良好な特性が得られたという報告はない。
【0010】このような現況にあって、被膜形成密度が
高く、リーク電流の小さい、良質な膜を形成するため
に、被膜形成時に有機成分の含有量が少なく、また実用
的な有機溶媒に可溶で、保存安定性に優れた塗布液の実
現とともに、Pt以外の電極上でも強誘電体メモリとし
ての諸特性に優れたBi系強誘電体薄膜の実現が望まれ
ていた。
【0011】
【発明が解決しようとする課題】本発明は上記事情に鑑
みてなされたもので、その課題は、実用的な有機溶媒に
可溶な有機金属化合物を含有し、リーク電流が小さく、
緻密な膜が形成可能で、保存安定性、再現性に優れたB
i系強誘電体薄膜形成用塗布液を得ること、並びにこの
塗布液を用いて、特にPt以外の電極上においても諸特
性に優れたBi系強誘電体薄膜および強誘電体メモリを
得ることにある。
【0012】
【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意研究を重ねた結果、従来のBLSF系塗
布液は、いずれもカルボン酸金属塩、金属アルコキシド
化合物等を有機溶媒中で混合しただけのものであり、こ
のことが電極との界面における強誘電体薄膜の形成に影
響を生じさせ、被膜の結晶性低下の原因になっているも
のと考え、また、リーク電流が大きいことも、塗布液中
での各金属化合物どうしが単独で存在しているため、被
膜形成時に金属元素の析出(偏析)、焼失等が起こりや
すく、それにより膜中の金属組成比が変化することによ
り発生すると推測し、Bi系強誘電体薄膜を構成する各
金属化合物を複合化し、さらには加水分解により無機性
を高めることにより、またさらに安定化することによ
り、強誘電体メモリとしての諸特性の向上を実現できる
との知見を得、本発明を完成するに至った。
【0013】 すなわち本発明は、Bi、A金属元素
(ただし、AはBi、Pb、Ba、Sr、Ca、Na、
Kおよび希土類元素の中から選ばれる少なくとも1種の
金属元素である)、およびB金属元素(ただし、BはT
i、Nb、Ta、W、Mo、Fe、CoおよびCrの中
から選ばれる少なくとも1種の金属元素である)の各金
属アルコキシドを含み、かつ、これら各金属アルコキシ
ドのいずれか2種以上が複合金属アルコキシドを形成し
てなる複合金属アルコキシド類を、水または水と触媒を
用いて加水分解することによって、少なくともBiを含
むメタロキサン結合を含んでなる有機金属化合物を含有
することを特徴とする、Bi系強誘電体薄膜形成用塗布
液に関する。
【0014】 ここで、上記加水分解の前、あるいは加
水分解後に、安定化剤と反応させる態様がより好まし
い。また、上記有機金属化合物をさらに安定化剤と反応
させてもよい。なお、上記安定化剤としては、無水カル
ボン酸類、ジカルボン酸モノエステル類、β−ジケトン
類、およびグリコール類の中から選ばれる少なくとも1
種が好ましく用いられる。
【0015】また本発明は、上記塗布液を、特にPt以
外の金属あるいは導電性の金属酸化物、例えばIr、R
u、Rh、ReおよびOsよりなる群から選択される少
なくとも1種の金属および/またはその金属酸化物から
なる電極上に塗布し、所望により加湿雰囲気中に晒した
後、焼成してなる、強誘電体薄膜に関する。
【0016】さらに本発明は、上記強誘電体薄膜上に電
極を形成してなる、強誘電体メモリに関する。
【0017】
【発明の実施の形態】 本発明のBi系強誘電体膜形成
用塗布液は、Bi(ビスマス)、A金属元素(ただし、
Aは、Bi、Pb、Ba、Sr、Ca、Na、Kおよび
希土類元素の中から選ばれる少なくとも1種を表す)、
およびB金属元素(ただし、Bは、Ti、Nb、Ta、
W、Mo、Fe、CoおよびCrの中から選ばれる少な
くとも1種を表す)の各金属アルコキシドを含み、か
つ、Bi、A金属元素、およびB金属元素の各金属アル
コキシドのいずれか2種以上が複合金属アルコキシドを
形成してなる複合金属アルコキシド類を、水または水と
触媒を用いて加水分解することによって、少なくともB
iを含むメタロキサン結合を含んでなる有機金属化合物
含有する。
【0018】ここで、上記複合金属アルコキシド類とし
ては、具体的には以下の(a)〜(d)の態様が例示さ
れる。 (a)ABi複合金属アルコキシド、およびB金属アル
コキシドを含む複合金属アルコキシド類。 (b)BiB複合金属アルコキシド、およびA金属アル
コキシドを含む複合金属アルコキシド類。 (c)AB複合金属アルコキシド、およびBi金属アル
コキシドを含む複合金属アルコキシド類。 (d)ABiB複合金属アルコキシドを含む複合金属ア
ルコキシド類。
【0019】すなわち本発明における複合金属アルコキ
シド類は、A金属元素、B金属元素、Biの中の少なく
とも2種の異種金属アルコキシドからなる複合金属アル
コキシドを含む。このように2種以上の異種金属アルコ
キシドを複合化することにより、単独の金属元素の析出
(偏析)、焼失という現象の抑制を図ることができる。
【0020】本発明でいう複合金属アルコキシドとは、
異種金属アルコキシドどうしを溶媒中で30〜100℃
の加熱条件下で、2〜15時間程度還流させることによ
り得られる化合物をいう。反応の終点は、液体が徐々に
変色し、最終的には茶褐色の液体となるので、このよう
に液体が完全に変色した時点を反応の終点とするのがよ
い。このようにして得られた複合金属アルコキシドは、
「ゾル・ゲル法によるガラス・セラミックスの製造技術
とその応用」(応用技術出版(株)、1989年6月4
日発行)のpp.46〜47に定義されているものであ
ると考えられ、具体的には、ABi(OR1m(O
23、BBi(OR3n(OR23、AB(OR1m
(OR3n、ABBi(OR1m(OR3n(O
23、(ここで、A、Bは上記で定義したとおりであ
り;mはA金属元素の原子価であり;nはB金属元素の
原子価であり;R1、R2、R3はそれぞれ独立に炭素原
子数1〜6のアルキル基を表す)で表されるものである
と考えられる。中でも、昇華性が高いといわれるBiを
複合化したABi(OR1m(OR23、BBi(OR
3n(OR23、ABBi(OR1m(OR3n(OR
23を用いるのが好ましい。
【0021】金属アルコキシド、複合金属アルコキシド
を形成するアルコールとしては、下記一般式(V)
【0022】
【化5】R8OH (V) (式中、R8は炭素原子数1〜6の飽和または不飽和の
炭化水素基を表す)が好ましく用いられる。これらアル
コール類としては、具体的には、メタノール、エタノー
ル、プロパノール、ブタノール、アミルアルコール、シ
クロヘキサノール等が例示される。
【0023】また、上記のアルコール以外のアルコール
類としては、R8がさらに炭素原子数1〜6のアルコキ
シル基で置換されたものが挙げられ、具体的には、メト
キシメタノール、メトキシエタノール、エトキシメタノ
ール、エトキシエタノール等が例示される。
【0024】これらの金属アルコキシド、複合金属アル
コキシドは、そのアルコキシル基の一部が、後述の無水
カルボン酸、ジカルボン酸モノエステル、β−ジケト
ン、およびグリコール等で置換されるものであってもよ
い。
【0025】本発明の塗布液では、上記複合金属アルコ
キシド類を、水または水と触媒を用いて加水分解するこ
とによって、例えば(−Ta−O−Sr−O−Bi−)
のような、酸素を介しての金属元素の結合(メタロキサ
ン結合)が形成され、単独金属元素の析出(偏析)、焼
失をより抑制することができ、好ましい。また、さら
に、被膜の無機性を高めることができるので好ましい。
【0026】加水分解反応は、塗布液中に水または水と
触媒を添加し、20〜50℃で数時間〜数日間撹拌して
行われる。触媒としては、金属アルコキシドの加水分解
反応用として公知のもの、例えば塩酸、硫酸、硝酸等の
無機酸、酢酸、プロピオン酸、酪酸等の有機酸などの酸
触媒や、水酸化ナトリウム、水酸化カリウム、アンモニ
ア、モノエタノールアミン、ジエタノールアミン、テト
ラメチルアンモニウムヒドロキシド等の無機・有機アル
カリ触媒などを挙げることができる。しかし、水酸化ナ
トリウム、水酸化カリウム等の無機アルカリは、ナトリ
ウム、カリウム等の金属イオンが塗布液中に残存して、
被膜の電気特性に影響を与えることが懸念され、また、
アンモニア、アミン等の含窒素系のアルカリは、加水分
解反応後、沸点の高い窒素化合物を形成することがあ
り、これが焼成工程時の被膜の緻密化に影響を与えるこ
とが懸念されるため、本発明においては、酸触媒を用い
ることが特に好ましい。
【0027】加水分解反応は、塗布液を電極上に塗布
後、被膜表面を加湿雰囲気に晒すことによっても行うこ
とができ、例えば50〜120℃で10〜60分間程
度、50〜100%の湿度下で行うことができる。
【0028】以上の条件は、被膜を用いる用途に応じ適
宜選択することができ、上記に限られるものではない。
【0029】このように加水分解処理することにより、
乾燥工程後の塗布膜全体に占める有機成分の含有量を低
減させることができ、また、各金属のメタロキサン結合
が形成されるため、Bi等の金属元素の析出(偏析)、
焼失を抑制することができる。その理由としては、各有
機金属化合物は、有機基をその構造中に有するが、加水
分解処理することによりアルコキシル基等の有機基を脱
離せしめ、より一層無機性の高いメタロキサン結合をつ
くることができる。脱離した有機基は、低沸点のアルコ
ール、グリコール等になり、塗布液または被膜中に残存
するが、乾燥工程において溶媒とともに蒸発するため、
焼成工程前の被膜の無機性が高まり、緻密な膜の形成が
可能となる。また、複合化、メタロキサン結合の生成に
より、金属元素どうしの結びつきが強くなり、Bi等の
金属元素の析出(偏析)、焼失が抑えられ、リーク電流
の増大が抑えられる。
【0030】なお、上記加水分解処理は、上記複合金属
アルコキシド類を安定化剤と反応させた後に行ってもよ
い。また、安定化剤は、該複合金属アルコキシド類と反
応させてもよいし、加水分解した後の複合金属アルコキ
シド類と反応させてもよい。
【0031】上記安定化剤は、塗布液の保存安定性を向
上させるためのものであり、特に加水分解後の塗布液の
増粘、ゲル化を抑制するものであるが、本発明において
は無水カルボン酸類、ジカルボン酸モノエステル類、β
−ジケトン類、およびグリコール類の中から選ばれる少
なくとも1種が好ましく用いられる。
【0032】ここで、無水カルボン酸類としては、下記
一般式(I)
【0033】
【化6】R1(CO)2O (I) (式中、R1は2価の炭素原子数1〜6の飽和または不
飽和の炭化水素基を表す)で表される無水カルボン酸の
中から選ばれる少なくとも1種が好適に用いられる。こ
のような無水カルボン酸類としては、具体的には、例え
ば無水マレイン酸、無水シトラコン酸、無水イタコン
酸、無水コハク酸、無水メチルコハク酸、無水グルタル
酸、無水α−メチルグルタル酸、無水α,α−ジメチル
グルタル酸、無水トリメチルコハク酸等を挙げることが
できる。
【0034】ジカルボン酸モノエステル類としては、下
記一般式(II)
【0035】
【化7】R2OCOR3COOH (II) (式中、R2は炭素原子数1〜6の飽和または不飽和の
炭化水素基を表し;R3は2価の炭素原子数1〜6の飽
和または不飽和の炭化水素基を表す)で表されるジカル
ボン酸モノエステル類の中から選ばれる少なくとも1種
が好ましく用いられる。
【0036】このようなジカルボン酸モノエステル類と
しては、具体的には、例えば2塩基酸のカルボン酸とア
ルコールとを反応させてハーフエステル化したものを用
いることができ、シュウ酸、マロン酸、コハク酸、グル
タル酸、アジピン酸、ピメリン酸、スペリン酸、アゼリ
ン酸、セバシン酸、マレイン酸、シトラコン酸、イタコ
ン酸、メチルコハク酸、α−メチルグルタル酸、α,α
−ジメチルグルタル酸、トリメチルグルタル酸等の2塩
基酸のカルボン酸の少なくとも1種と、メチルアルコー
ル、エチルアルコール、プロピルアルコール、ブチルア
ルコール、アミルアルコール、ヘキシルアルコール、エ
チレングリコールモノメチルエーテル、プロピレングリ
コールモノメチルエーテル等の少なくとも1種とを公知
の方法によりエステル化反応させて合成することができ
る。
【0037】β−ジケトン類としては、下記一般式(I
II)
【0038】
【化8】R4COCR5HCOR6 (III) (式中、R4は炭素原子数1〜6の飽和または不飽和の
炭化水素基を表し;R5はHまたはCH3を表し;R6
炭素原子数1〜6のアルキル基またはアルコキシル基を
表す)で表されるβ−ケトエステルを含むβ−ジケトン
の中から選ばれる少なくとも1種が好適に用いられる。
【0039】本発明で用いられるβ−ジケトン類として
は、具体的には、例えばアセチルアセトン、3−メチル
−2、4−ペンタンジオン、ベンゾイルアセトン等を挙
げることができる。またβ−ケトエステルとしては、例
えばアセト酢酸エチル、マロン酸ジエチル等を挙げるこ
とができる。これ以外の錯体形成剤も適用可能ではある
が、ジピバロイルメタンやそのTHF付加体、さらに焼
成後、金属ハロゲン化物を形成するヘキサフルオロアセ
チルアセトンなどの錯体形成剤は、昇華性または揮発性
の高い金属錯体を形成するため、本発明の塗布液への使
用は不適当である。
【0040】グリコール類としては、下記一般式(I
V)
【0041】
【化9】HOR7OH (IV) (式中、R7は2価の炭素原子数1〜6の飽和または不
飽和の炭化水素基を表す)で表されるグリコールの中か
ら選ばれる少なくとも1種が好適に用いられる。
【0042】本発明で用いられるグリコール類として
は、具体的には、エチレングリコール、ジエチレングリ
コール、プロピレングリコール、ジプロピレングリコー
ル、ブタンジオール、ペンタンジオール、ヘキシレング
リコール、グリセリングリコール等を例示的に挙げるこ
とができる。これらグリコール類は、安定化剤としてβ
−ジケトンを用いた場合に特に効果があり、後の加水分
解反応後の液の安定性を高める。
【0043】以上の安定化剤は、いずれも炭素原子数が
1〜6の短鎖のものであることが、金属化合物の極性、
塗布後の無機性を高める点で好ましい。
【0044】本発明のBLSF用塗布液においては、金
属アルコキシドを複合化することにより、単独の金属元
素の析出(偏析)、焼失を抑制することができる。これ
は、例えば各金属アルコキシドが単独であれば、Bi等
の昇華性の高い元素の析出(偏析)、焼失を生じること
があり、そのため結晶中においてBiの不足をきたし、
SBT膜の結晶性が劣化したり、導電性の金属Biが析
出(偏析)したりして、リーク電流の増加の原因となり
得る。しかし、複合化が達成できれば、金属元素の結び
つきが強くなり、Bi等の金属元素の析出(偏析)、焼
失を抑制することができ、もってリーク電流の発生を抑
制することができる。さらに、加水分解処理を行って
(−Bi−O−Ta−)などの重合化をすることによ
り、単独金属元素の析出がより抑制される。また被膜の
無機化も高まるため、緻密なBLSF薄膜を形成するこ
とが可能となった。
【0045】 なお、当該複合化、加水分解処理によ
り、RTP(Rapid Themal Procc
ssing)と呼ばれる急速昇温処理を利用した被膜の
焼成工程においても、粒界におけるBi等の特定の金属
元素の析出が抑制され、また各金属元素から構成される
微粒子の結晶性を向上させることができた。
【0046】 本発明の塗布液は、上述した複合金属
アルコキシド類反応生成物(有機金属化合物)を酸素
原子を分子中に有する溶媒に溶解してなる。該溶媒とし
ては、例えばアルコール系溶媒、多価アルコール系溶
媒、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、
低級カルボン酸系溶媒等を挙げることができる。
【0047】アルコール系溶媒としては、メタノール、
エタノール、プロパノール、ブタノール、アミルアルコ
ール、シクロヘキサノール、メチルシクロヘキサノール
等が例示される。
【0048】多価アルコール系溶媒としては、エチレン
グリコールモノメチルエーテル、エチレングリコールモ
ノアセトエステル、ジエチレングリコールモノメチルエ
ーテル、ジエチレングリコールモノアセテート、プロピ
レングリコールモノエチルエーテル、プロピレングリコ
ールモノアセテート、ジプロピレングリコールモノエチ
ルエーテル、メトキシブタノール等が例示される。
【0049】エーテル系溶媒としては、メチラール、ジ
エチルエーテル、ジプロピルエーテル、ジブチルエーテ
ル、ジアミルエーテル、ジエチルアセタール、ジヘキシ
ルエーテル、トリオキサン、ジオキサン等が例示され
る。
【0050】ケトン系溶媒としては、アセトン、メチル
エチルケトン、メチルプロピルケトン、メチルイソブチ
ルケトン、メチルアミルケトン、メチルシクロヘキシル
ケトン、ジエチルケトン、エチルブチルケトン、トリメ
チルノナノン、アセトニトリルアセトン、ジメチルオキ
シド、ホロン、シクロヘキサノン、ダイアセトンアルコ
ール等が例示される。
【0051】エステル系溶媒としては、ギ酸エチル、酢
酸メチル、酢酸エチル、酢酸ブチル、酢酸シクロヘキシ
ル、プロピオン酸メチル、酪酸エチル、オキシイソ酪酸
エチル、アセト酢酸エチル、乳酸エチル、メトキシブチ
ルアセテート、シュウ酸ジエチル、マロン酸ジエチル等
が例示される。
【0052】低級カルボン酸系溶媒としては、酢酸、プ
ロピオン酸、酪酸、吉草酸等が例示される。
【0053】各種金属化合物の安定化処理、複合化処理
時においては、これらの溶媒、特にアルコール系溶媒と
金属化合物との反応が行われていてもよい。
【0054】上記の溶媒は、単独若しくは2種以上を混
合した形で用いることができる。
【0055】また、芳香族炭化水素系溶媒に対しても、
本発明の有機金属化合物は良好な溶解性を示すが、前述
したように、これらの溶媒はその使用方法、管理方法等
が著しく制限される傾向にあり好ましくない。
【0056】上記した種々の溶媒は、オープンスピン塗
布法、密閉スピン塗布法、ミスト化塗布のLSM−CV
D法、ディッピング法等の塗布条件の違いにより、その
ときどきに応じて最も好ましいものを用いることができ
る。
【0057】本発明の塗布液は、実用的な有機溶媒を用
い、保存安定性がよく、Pt以外の金属あるいは導電性
の金属酸化物、特に、近年脚光を浴びているIr、R
u、Rh、ReおよびOsよりなる群から選択される少
なくとも1種の金属および/またはその金属酸化物、中
でもIr、Ru、IrO2、RuO2等からなる電極上に
おいて、高密度で良質なBi系強誘電体薄膜を形成する
ことができる。
【0058】次に、本発明の塗布液を用いた強誘電体薄
膜および強誘電体メモリの作製方法の一例を示す。
【0059】まず、Siウェーハ等の基板を酸化して基
板上部にSi酸化膜を形成し、その上にIr、Ru、R
e、Os等の金属、およびその金属酸化物である導電性
金属酸化物をスパッタ法、蒸着法等の公知の方法により
形成し、下部電極を作製する。そしてこの下部電極上
に、スピンナー法、ディップ法等の公知の塗布法により
本発明の塗布液を塗布し、50〜200℃の温度で乾燥
を行い、次いで200〜700℃の温度で仮焼成を行
う。好ましくは、塗布から仮焼成までの操作を数回繰り
返して行い、所望の膜厚に設定する。次いで酸素雰囲気
中、700〜900℃の高温で本焼成を行い、結晶構造
をもった強誘電体薄膜を形成する。本焼成工程において
は、室温から5〜20℃/min程度の昇温速度で本焼
成温度まで昇温し、その後本焼成温度を維持して30〜
80分程度焼成するファーネス法、室温から50〜15
0℃/sec程度の昇温速度で本焼成温度まで昇温し、
その後本焼成温度を維持して0.5〜3分間程度焼成す
るRTP法など、種々の焼成方法を選ぶことができる。
【0060】次いで、上述のようにして作製した強誘電
体薄膜上に電極(上部電極)を形成する。上部電極とし
ては、下部電極用材料として挙げた金属、金属酸化物等
を用いることができ、これら材料をスパッタ法、蒸着法
等の公知の方法により強誘電体薄膜上に形成し、酸素雰
囲気中、700〜900℃の高温で焼成して強誘電体メ
モリを作製する。このとき、上部電極としては、下部電
極と異なる材料を用いてもよく、例えば、下部電極にI
rを用い、上部電極にRuを用いてもよい。
【0061】なお、加湿雰囲気下で加水分解反応を行う
場合は、上述の仮焼成の前に、湿度50〜100%、好
ましくは70〜100%、温度50〜120℃、10〜
60分間で行うことができる。
【0062】以上のごとく、各種金属アルコキシドを複
合化、加水分解処理することにより塗布、焼成時におけ
るBi等の金属元素の析出(偏析)量、焼失量を低減さ
せることができる。
【0063】また、複合化金属アルコキシドをカルボキ
シル化、β−ジケトン化、キレート化等の処理をするこ
とにより、極性を有し、しかも安定性に優れた有機金属
化合物の合成に成功し、加水分解性が向上するととも
に、実用的な極性溶媒の適用が可能となった。その結
果、塗布液中でゾル−ゲル法による縮合重合反応を十分
に進行させることができ、Bi−O−Bi、Bi−O−
Ta、Bi−O−Sr、Ta−O−Bi−O−Sr等の
無機結合(メタロキサン結合)の生成により、さらにB
i等の特定の金属元素の析出(偏析)量、焼失量を低減
することができるとともに、塗布液全体の無機化を高め
ることができた。
【0064】特に複合化、加水分解による無機化によ
り、金属元素どうしの結びつきを強くして金属元素の析
出、焼失を抑制したことにより、リーク電流を抑えるこ
とができ、また結晶性、耐圧性等の強誘電体メモリとし
ての特性が向上した。
【0065】また、上記ゾル−ゲル法(加水分解処理)
による無機化が不十分な塗布液、または全く加水分解処
理を行わない塗布液であっても、基板への被膜形成時に
おいて、被膜の焼成前に該被膜を加湿雰囲気中に一定時
間晒すことにより、被膜の加水分解縮重合による無機化
を行うことができ、もって緻密な膜の形成が可能であ
る。
【0066】前記した塗布液中での加水分解処理は、過
剰に行われると塗布液の増粘・ゲル化、または経時変化
を引き起こすおそれがあるため、上記の被膜形成時の加
水分解処理による方法も有効である。
【0067】なお、従来技術で挙げた長鎖の有機基を有
するカルボン酸金属塩からなるMOD型の塗布液を用い
て、前記と同様に被膜形成時に加水分解処理を行った場
合、反応は不均一、またはほとんど進行せず、被膜の高
密度化(緻密化)に限界がある。
【0068】また、Bi系強誘電体薄膜形成用塗布液中
におけるBi元素成分、A金属元素成分、B金属元素成
分の含有量は、本発明の塗布液の適用箇所、条件によっ
て種々変化し、適用デバイスの種類(FRAM用、DR
AM用、MFS用、MFIS用、MFMIS用等)や、
使用上、下部電極の種類、厚さ、組み合わせ、バリヤ層
の種類、厚さ、さらにシードレイヤーの有無(配向膜)
等、そのときどきに応じた適正値を選ぶことができる。
【0069】 それぞれの有機金属化合物の配合量、残
留アルコキシ基の種類と量、カルボニル基配合割合、錯
体化度合、加水分解率や、縮合重合度合、複合アルコキ
シ化度合等は、本発明の塗布液が用いられる用途、条件
(乾燥、焼成時における温度、時間、雰囲気、昇温方法
など)等によって幾通りにも選択可能であるため、以下
の実施例に示す本発明の態様は、これら多くの適用分野
に対するほんの一例に過ぎず、本発明はこれら実施例に
よってなんら限定されるものでない。なお、以下の実施
例において、合成例1、2、3、5、7および9は、参
考例として示した。
【0070】
【実施例】
合成例1(塗布液1の合成) (Sr、Bi、Taの複合金属アルコキシドからなる塗
布液の調製)Bi(O−nC493とTa(OC
255をメトキシエタノール(MC)に溶解し、これ
にSr(OC25OCH32のMC溶液を滴下して、モ
ル比でSr:Bi:Ta=0.7:2.3:2.0とな
るよう調整した。
【0071】滴下終了後、80℃まで温度を上げ、10
時間還流を行ったところ溶液は透明から黒褐色へと変化
した。その後加熱を止め、液温が25℃になるまで放置
した。
【0072】24時間室温で放置した後、溶媒を減圧留
去し、濃度10重量%まで濃縮して、Bi系強誘電体薄
膜形成用塗布液1を合成した。
【0073】合成例2(塗布液2の合成) (Sr、Bi、Taの複合金属アルコキシドをβ−ジケ
トンおよびグリコール化してなる塗布液の調製)合成例
1で得られた塗布液1の一部を濃縮し、濃度20重量%
の溶液とした。次いでSr0.7Bi2.3Ta2.01モルに
対して3倍モルのアセト酢酸エチルのMC溶液を滴下し
て80℃の加熱下で、2時間還流を行った。
【0074】室温が25℃になるまで放置したところ、
濃度15重量%の溶液が得られた。次いでSr0.7Bi
2.3Ta2.01モルに対して等モルのプロピレングリコー
ルのMC溶液を加え、25℃で1時間撹拌し、濃度10
重量%のBi系強誘電体薄膜形成用塗布液2を合成し
た。
【0075】合成例3(塗布液3の合成) (Sr、Bi、Taの複合金属アルコキシドを無水カル
ボン酸化してなる塗布液の調製)合成例2において、ア
セト酢酸エチルの代わりに無水マレイン酸を用いて、プ
ロピレングリコールを用いなかった以外は、合成例2と
同様にして、濃度10重量%のBi系強誘電体薄膜形成
用塗布液3を合成した。
【0076】合成例4(塗布液4の合成) (Sr、Bi、Taの複合金属アルコキシドをβ−ジケ
トンおよびグリコール化し、加水分解してなる塗布液の
調製)合成例2で得られた塗布液2の一部を濃縮し、濃
度12重量%の溶液とした。次いでSr0.7Bi2.3Ta
2.01モルに対して2倍モルのH2OのMC溶液を滴下
し、25℃で2時間撹拌を行った。次いで得られた塗布
液を40℃の恒温室内で4日間熟成させ、濃縮し、濃度
10重量%のBi系強誘電体薄膜形成用塗布液4を合成
した。
【0077】合成例5(塗布液5の合成) (Sr、Biの複合金属アルコキシドとTaアルコキシ
ドからなる塗布液の調製)Bi(O−nC493とS
r(OC25OCH32をモル比で2.3:0.7とな
るようにMCに溶解し、80℃まで温度を上げ、10時
間還流を行ったところ、溶液は透明から茶褐色へと変化
した。その後加熱を止め、液温が25℃になるまで放置
した。
【0078】これにTa(OC255のMC溶液を滴
下して、モル比でSr:Bi:Ta=0.7:2.3:
2.0となるように調整した。
【0079】滴下終了後、24時間室温で撹拌した後、
溶媒を減圧留去し、濃度10重量%まで濃縮して、Bi
系強誘電体薄膜形成用塗布液5を合成した。
【0080】合成例6(塗布液6の合成) (Sr、Biの複合金属アルコキシドとTaアルコキシ
ドからなる塗布液をβ−ジケトンおよびグリコール化
し、加水分解してなる塗布液の調製)Bi(O−nC4
93とSr(OC25OCH32をモル比で2.3:
0.7となるようにMCに溶解し、80℃まで温度を上
げ、10時間還流を行ったところ、溶液は透明から茶褐
色へと変化した。その後加熱を止め、液温が25℃にな
るまで放置した。
【0081】 次いでSr0.7Bi2.31モルに対
して3倍モルのアセト酢酸エチルのMC溶液を滴下して
80℃の加熱下で2時間還流を行い、Sr0.7Bi
2.3溶液を得た。同様にして、Ta(OC
のMC溶液にTa2.01モルに対して3倍モルのアセ
ト酢酸エチルのMC溶液を滴下して80℃の加熱下で、
2時間還流を行いTa2.0 溶液を得た。
【0082】Sr0.7Bi2.3溶液とTa2.0溶液をS
r:Bi:Taのモル比が0.7:2.3:2.0とな
るように混合し、濃縮して濃度15重量%の溶液にし、
次いでSr0.7Bi2.3Ta2.01モルに対して等モルの
プロピレングリコールのMC溶液を加え、25℃で1時
間撹拌し、濃度12重量%の溶液とした。次いでSr
0.7Bi2.3Ta2.01モルに対して2倍モルのH2OのM
C溶液を滴下し、25℃で2時間撹拌を行った。次いで
得られた塗布液を40℃の恒温室内で4日間熟成させ、
濃縮し、濃度10重量%のBi系強誘電体薄膜形成用塗
布液6を合成した。
【0083】合成例7(塗布液7の合成) (Bi、Taの複合金属アルコキシドとSrアルコキシ
ドからなる塗布液の調製)合成例5において、Sr(O
25OCH32をTa(OC255に、Ta(OC2
55をSr(OC25OCH32に代え、Sr:B
i:Taのモル比が0.7:2.3:2.0となるよう
に代えた以外は、合成例5と同様にしてBi系強誘電体
薄膜形成用塗布液7を合成した。
【0084】合成例8(塗布液8の合成) (Bi、Taの複合金属アルコキシドとSrアルコキシ
ドからなる塗布液をβ−ジケトンおよびグリコール化
し、加水分解してなる塗布液の調製)合成例6におい
て、Sr(OC25OCH32をTa(OC25
5に、Ta(OC255をSr(OC25OCH32
それぞれ代え、Sr:Bi:Taのモル比が0.7:
2.3:2.0となるように代えた以外は、合成例6と
同様にしてBi系強誘電体薄膜形成用塗布液8を合成し
た。
【0085】合成例9(塗布液9の合成) (Sr、Taの複合金属アルコキシドとBiアルコキシ
ドとからなる塗布液の調製)合成例5において、Bi
(O−nC493をTa(OC255に、Ta(OC
255をBi(O−nC493に代え、Sr:Bi:
Taのモル比が0.7:2.3:2.0となるように代
えた以外は、合成例5と同様にしてBi系強誘電体薄膜
形成用塗布液9を合成した。
【0086】合成例10(塗布液10の合成) (Sr、Taの複合金属アルコキシドとBiアルコキシ
ドとからなる塗布液をβ−ジケトンおよびグリコール化
し、加水分解してなる塗布液の調製)合成例6におい
て、Bi(O−nC493をTa(OC255に、T
a(OC255をBi(O−nC493にそれぞれ代
え、Sr:Bi:Taのモル比が0.7:2.3:2.
0となるように代えた以外は、合成例6と同様にしてB
i系強誘電体薄膜形成用塗布液10を合成した。
【0087】比較合成例1(比較塗布液1の合成) (Sr、Ta、Biのアルコキシドを混合してなる塗布
液の調製)Bi(O−nC493とTa(OC255
をMCに溶解し、これにSr(OC25OCH32のM
C溶液を滴下して、モル比でSr:Bi:Ta=0.
7:2.3:2.0となるよう調製した。
【0088】24時間室温で撹拌した後、溶媒を減圧留
去し、濃度10重量%まで濃縮して、Bi系強誘電体薄
膜形成用比較塗布液1を合成した。
【0089】比較合成例2(比較塗布液2の合成) (Sr、Ta、Biのカルボン酸塩を混合してなる塗布
液の調製)Bi〔OCO(C25)C5103とTa
〔OCO(C25)C5105をキシレンに溶解し、こ
れにSr〔OCO(C25)C5102のキシレン溶液
を滴下して、モル比でSr:Bi:Ta=0.7:2.
3:2.0となるように調整した。
【0090】24時間室温で撹拌した後、溶媒を減圧留
去し、濃度10重量%まで濃縮して、Bi系強誘電体薄
膜形成用比較塗布液2を合成した。
【0091】(実施例1〜10、比較例1〜2) I.強誘電体薄膜 上記合成例および比較合成例で得られた塗布液1〜1
0、比較塗布液1、2を、100nmの熱酸化SiO2
が形成されたシリコンウェ−ハ上にスパッタリング法に
より形成された(1)60nm膜厚のPt下部電極、
(2)100nm/100nm膜厚のIr/IrO2
部電極、(3)200nm膜厚のIrO2下部電極、
(4)100nm/100nm膜厚のRu/RuO2
部電極、(5)200nm膜厚のRuO2下部電極のそ
れぞれに対して500rpmで5秒間、次いで2000
rpmで30秒間回転塗布し、150℃で30分間乾燥
を行った後、600℃で30分間仮焼成を行い、以上の
塗布から仮焼成までの操作を8回繰り返した後、酸素雰
囲気中、800℃で60分間本焼成を行うことにより、
300nm膜厚の強誘電体薄膜を形成した。
【0092】〔薄膜の表面特性〕当該薄膜の表面および
断面をSEM写真により観察したところ、塗布液1〜1
0を用いた場合は、いずれも表面モホロジー、緻密性に
優れていたが、比較塗布液1、2を用いた場合には、表
面の凹凸が大きく、また緻密性を欠いたものであった。
【0093】〔X線回折(XRD)測定〕Bi系強誘電
体に帰属される(105)面の強度を測定することによ
り、電極上に形成されたBi系強誘電体(BLSF)薄
膜の結晶性を調べた。結晶性の良いものを◎、多少劣る
ものを○、大変劣るものを×とした。結果を表1に示
す。
【0094】なお、図6〜7に、測定の結果得られたX
RD曲線のいくつかの例を示す。
【0095】図6(a)は比較例1の下部電極(2)の
場合のXRD曲線を、図6(b)は比較例1の下部電極
(1)の場合のXRD曲線を、それぞれ示す。図6
(b)では、下部電極であるPtと基板であるSiのピ
ークが観察される。一方、Ir/IrO2電極上に形成
したBLSF薄膜は、(105)面の強度ピークが小さ
くなっている。また、下部電極、基板に相当するIr、
IrO2、Siの強度ピークが観察される。したがっ
て、混合金属アルコキシド溶液を用いた場合、下部電極
をPtからIr/IrO2に変えることにより、形成さ
れるBLSF薄膜の結晶性が劣化していることがわか
る。
【0096】図7(a)は実施例4の下部電極(3)の
場合のXRD曲線を、図7(b)は実施例4の下部電極
(2)の場合のXRD曲線を、それぞれ示す。
【0097】図7と図6との比較から明らかなように、
混合金属アルコキシド溶液を用いた場合に比べて、加水
分解処理をした複合金属アルコキシド溶液を用いること
により、下部電極をPt以外のIr/IrO2、IrO2
等を用いた場合でも、BLSF薄膜の(105)面強度
ピークが格段に大きくなり、その強度が飛躍的に高まる
ことがわかる。また、IrO2の1層構造の場合でも、
Ir/IrO2の2層構造の場合と同様に結晶性の高い
BLSF薄膜を得ることができることがわかる。II.
強誘電体メモリその後、上記誘電体薄膜上に、メタルマ
スクを介して、図1〜5に示すように、それぞれ直径
0.2mmの(1)200nm膜厚のPt上部電極(図
5)、(2)100nm/100nm膜厚のIr/Ir
2上部電極(図1)、(3)100nm膜厚のIrO2
上部電極(図2)、(4)100nm/100nm膜厚
のRu/RuO2上部電極(図3)、(5)100nm
膜厚のRuO2上部電極(図4)をそれぞれ形成し、強
誘電体メモリを形成した。
【0098】その結果、塗布液1〜10を用いて形成し
た強誘電体メモリは、印加電圧2〜15Vにおいて、
(1)〜(5)の電極のいずれに対しても良好なヒステ
リシス曲線を示したが、比較塗布液1、2を用いた場合
には、(2)〜(5)の電極を用いた場合にヒステリシ
ス曲線を示さなかった。
【0099】〔リーク電流測定〕強誘電体メモリの上部
電極と下部電極間に回路を形成し、3V印加時のリーク
電流密度(A/cm2)を調べた。10-5.0未満のもの
を◎、10-2.0〜10-5.0のものを○、10-2.0を超え
るものを×とした。結果を表1に示す。
【0100】
【表1】 また、図8〜12に、リーク電流密度と印加電圧との関
係を示すグラフのいくつかの例を示す。
【0101】図8は、比較塗布液1、塗布液1、塗布液
4を用いて、図1に示す構造の強誘電体メモリをそれぞ
れ作製し、そのリーク電流と印加電圧との関係を測定し
た結果を示す。図8から明らかなように、混合金属アル
コキシド溶液を用いた場合(図中、黒丸で示す)に比べ
て、複合金属アルコキシド溶液を用いる(図中、四角で
示す)ことによりリーク電流を小さくすることができ、
さらに加水分解処理をする(図中、三角で示す)ことに
より、より一層リーク電流の低減化を図ることができ
る。
【0102】図9は、比較塗布液1、塗布液1、塗布液
5を用いて、図1に示す構造の強誘電体メモリをそれぞ
れ作製し、そのリーク電流と印加電圧との関係を測定し
た結果を示す。図9から明らかなように、混合金属(S
r、Bi、Ta)アルコキシド溶液を用いた場合(図
中、三角で示す)に比べて、複合金属アルコキシド溶液
を用いた場合は、SrとBiの2種の複合金属アルコキ
シド溶液(図中、丸で示す)の場合でも、Sr、Bi、
Taの3種の複合金属アルコキシド溶液(図中、四角で
示す)の場合も、いずれも同程度にリーク電流の低減化
を図ることができる。
【0103】図10は、比較塗布液1、塗布液4、塗布
液6を用いて、図1に示す構造の強誘電体メモリをそれ
ぞれ作製し、そのリーク電流と印加電圧との関係を測定
した結果を示す。図10から明らかなように、混合金属
(Sr、Bi、Ta)アルコキシド溶液を用いた場合
(図中、三角で示す)に比べて、加水分解処理を加えた
複合金属アルコキシド溶液を用いた場合は、SrとBi
の2種の複合金属アルコキシド溶液(図中、丸で示す)
の場合でも、Sr、Bi、Taの3種の複合金属アルコ
キシド溶液(図中、四角で示す)の場合も、いずれもリ
ーク電流の低減化の格段の効果を得ることができる。
【0104】図11は、比較塗布液1、塗布液1、塗布
液7を用いて、図1に示す構造の強誘電体メモリをそれ
ぞれ作製し、そのリーク電流と印加電圧との関係を測定
した結果を示す。図11から明らかなように、混合金属
(Sr、Bi、Ta)アルコキシド溶液を用いた場合
(図中、三角で示す)に比べて、複合金属アルコキシド
溶液を用いた場合は、BiとTaの2種の複合金属アル
コキシド溶液(図中、丸で示す)の場合でも、Sr、B
i、Taの3種の複合金属アルコキシド溶液(図中、四
角で示す)の場合も、いずれも同程度にリーク電流の低
減化を図ることができる。
【0105】図12は、比較塗布液1、塗布液4、塗布
液8を用いて、図1に示す構造の強誘電体メモリをそれ
ぞれ作製し、そのリーク電流と印加電圧との関係を測定
した結果を示す。図12から明らかなように、混合金属
(Sr、Bi、Ta)アルコキシド溶液を用いた場合
(図中、三角で示す)に比べて、加水分解処理を加えた
複合金属アルコキシド溶液を用いた場合は、BiとTa
の2種の複合金属アルコキシド溶液(図中、丸で示す)
の場合でも、Sr、Bi、Taの3種の複合金属アルコ
キシド溶液(図中、四角で示す)の場合も、いずれもリ
ーク電流の低減化の格段の効果を得ることができる。
【0106】
【発明の効果】以上詳述したように本発明によれば、リ
ーク電流が小さく、緻密な膜が形成可能で、かつ保存安
定性に優れたBi系強誘電体薄膜形成用塗布液が提供さ
れる。さらに該塗布液を用いることにより、Pt以外の
電極上でも適用可能な、低コストで被膜密度、表面モホ
ロジーの向上した強誘電体薄膜、強誘電体メモリを形成
することが可能となった。
【図面の簡単な説明】
【図1】本発明の強誘電体メモリの一構成例を示す模式
図である。
【図2】本発明の強誘電体メモリの他の構成例を示す模
式図である。
【図3】本発明の強誘電体メモリの他の構成例を示す模
式図である。
【図4】本発明の強誘電体メモリの他の構成例を示す模
式図である。
【図5】本発明の強誘電体メモリの他の構成例を示す模
式図である。
【図6】比較例1の下部電極(2)の場合のXRD曲線
(図6(a))と、比較例1の下部電極(1)の場合の
XRD曲線(図6(b))を示す。
【図7】実施例4の下部電極(3)の場合のXRD曲線
(図7(a))と、実施例4の下部電極(2)の場合の
XRD曲線(図7(b))を示す。
【図8】比較塗布液1、塗布液1、塗布液4を用いて作
製した強誘電体メモリにおけるリーク電流と印加電圧と
の関係を示すグラフである。
【図9】比較塗布液1、塗布液1、塗布液5を用いて作
製した強誘電体メモリにおけるリーク電流と印加電圧と
の関係を示すグラフである。
【図10】比較塗布液1、塗布液4、塗布液6を用いて
作製した強誘電体メモリにおけるリーク電流と印加電圧
との関係を示すグラフである。
【図11】比較塗布液1、塗布液1、塗布液7を用いて
作製した強誘電体メモリにおけるリーク電流と印加電圧
との関係を示すグラフである。
【図12】比較塗布液1、塗布液4、塗布液8を用いて
作製した強誘電体メモリにおけるリーク電流と印加電圧
との関係を示すグラフである。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 21/8242 H01L 27/10 451 27/10 451 651 27/108 (72)発明者 逢坂 哲彌 東京都新宿区大久保3−4−1 早稲田 大学理工学総合研究センタ内 (72)発明者 小岩 一郎 東京都港区虎ノ門1丁目7番地12号 沖 電気工業株式会社内 (72)発明者 見田 充郎 東京都港区虎ノ門1丁目7番地12号 沖 電気工業株式会社内 (72)発明者 前野 仁典 東京都港区虎ノ門1丁目7番地12号 沖 電気工業株式会社内 (72)発明者 岡田 幸久 東京都港区虎ノ門1丁目7番地12号 沖 電気工業株式会社内 (72)発明者 加藤 博代 東京都港区虎ノ門1丁目7番地12号 沖 電気工業株式会社内 (56)参考文献 特開 平9−301716(JP,A) 特開 平7−315810(JP,A) 特開 平5−304041(JP,A) 特開 平6−122599(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 35/00 C01G 29/00 H01L 27/10 451 CA(STN)

Claims (15)

    (57)【特許請求の範囲】
  1. 【請求項1】 Bi、A金属元素(ただし、AはBi、
    Pb、Ba、Sr、Ca、Na、Kおよび希土類元素の
    中から選ばれる少なくとも1種の金属元素である)、お
    よびB金属元素(ただし、BはTi、Nb、Ta、W、
    Mo、Fe、CoおよびCrの中から選ばれる少なくと
    も1種の金属元素である)の各金属アルコキシドを含
    み、かつ、これら各金属アルコキシドのいずれか2種以
    上が複合金属アルコキシドを形成してなる複合金属アル
    コキシド類を、水または水と触媒を用いて加水分解する
    ことによって、少なくともBiを含むメタロキサン結合
    を含んでなる有機金属化合物を含有することを特徴とす
    る、Bi系強誘電体薄膜形成用塗布液。
  2. 【請求項2】 下記式 (Bi 2 2 2+ (A m-1 m 3m+1 2- (ただし、A、Bは上記で定義したとおりであり、mは
    1〜5の整数を示す) で表される層状構造を有するBi
    系強誘電体薄膜を形成するための塗布液である、請求項
    1記載のBi系強誘電体薄膜形成用塗布液。
  3. 【請求項3】 複合金属アルコキシド類を、水または水
    と触媒を用いて加水分解した後、安定化剤と反応させ
    、請求項1または2記載のBi系強誘電体薄膜形成用
    塗布液。
  4. 【請求項4】 複合金属アルコキシド類を、安定化剤と
    反応させた後、水または水と触媒を用いて加水分解す
    、請求項1または2記載のBi系強誘電体薄膜形成用
    塗布液。
  5. 【請求項5】 上記有機金属化合物をさらに安定化剤と
    反応させてなる、請求項3または4記載のBi系強誘電
    体薄膜形成用塗布液。
  6. 【請求項6】 安定化剤が、無水カルボン酸類、ジカル
    ボン酸モノエステル類、β−ジケトン類、およびグリコ
    ール類の中から選ばれる少なくとも1種である、請求項
    3〜のいずれか1項に記載のBi系強誘電体薄膜形成
    用塗布液。
  7. 【請求項7】 無水カルボン酸類が下記一般式(I) 【化1】R1(CO)2O (I) (式中、R1は2価の炭素原子数1〜6の飽和または不
    飽和の炭化水素基を表す)で表される無水カルボン酸の
    中から選ばれる少なくとも1種である、請求項記載の
    Bi系強誘電体薄膜形成用塗布液。
  8. 【請求項8】 ジカルボン酸モノエステル類が下記一般
    式(II) 【化2】R2OCOR3COOH (II) (式中、R2は炭素原子数1〜6の飽和または不飽和の
    炭化水素基を表し;R3は2価の炭素原子数1〜6の飽
    和または不飽和の炭化水素基を表す)で表されるジカル
    ボン酸モノエステル類の中から選ばれる少なくとも1種
    である、請求項記載のBi系強誘電体薄膜形成用塗布
    液。
  9. 【請求項9】 β−ジケトン類が下記一般式(III) 【化3】R4COCR5HCOR6 (III) (式中、R4は炭素原子数1〜6の飽和または不飽和の
    炭化水素基を表し;R5はHまたはCH3を表し;R6
    炭素原子数1〜6のアルキル基またはアルコキシル基を
    表す)で表されるβ−ジケトンの中から選ばれる少なく
    とも1種である、請求項記載のBi系強誘電体薄膜形
    成用塗布液。
  10. 【請求項10】 グリコール類が下記一般式(IV) 【化4】HOR7OH (IV) (式中、R7は2価の炭素原子数1〜6の飽和または不
    飽和の炭化水素基を表す)で表されるグリコールの中か
    ら選ばれる少なくとも1種である、請求項記載のBi
    系強誘電体薄膜形成用塗布液。
  11. 【請求項11】 請求項1〜10のいずれか1項に記載
    の塗布液を電極上に塗布し、焼成してなる、強誘電体薄
    膜。
  12. 【請求項12】 請求項1〜10のいずれか1項に記載
    の塗布液を電極上に塗布し、加湿雰囲気中に晒した後、
    焼成してなる、強誘電体薄膜。
  13. 【請求項13】 電極がIr、Ru、Rh、Reおよび
    Osよりなる群から選択される少なくとも1種の金属お
    よび/またはその金属酸化物である、請求項11または
    12記載の強誘電体薄膜。
  14. 【請求項14】 請求項1113のいずれか1項に記
    載の強誘電体薄膜上に電極を形成してなる、強誘電体メ
    モリ。
  15. 【請求項15】 電極がIr、Ru、Rh、Reおよび
    Osよりなる群から選択される少なくとも1種の金属お
    よび/またはその金属酸化物である、請求項14記載の
    強誘電体メモリ。
JP02960597A 1997-01-18 1997-01-29 Bi系強誘電体薄膜形成用塗布液およびこれを用いて形成した強誘電体薄膜、強誘電体メモリ Expired - Fee Related JP3195265B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP02960597A JP3195265B2 (ja) 1997-01-18 1997-01-29 Bi系強誘電体薄膜形成用塗布液およびこれを用いて形成した強誘電体薄膜、強誘電体メモリ
TW086119089A TW455884B (en) 1997-01-18 1997-12-17 Coating solutions for use in forming bismuth-based ferroelectric thin films, and ferroelectric thin films, ferroelectric capacitors and ferroelectric memories formed with said coating solutions, as well as processes for production thereof
KR1019970076813A KR100327279B1 (ko) 1997-01-18 1997-12-29 비스무스계 강유전체 박막 형성용 도포액과 이것을 사용하여 형성한 강유전체 박막, 강유전체 캐패시터, 강유전체 메모리 및, 이들 제조방법
US09/007,752 US5972096A (en) 1997-01-18 1998-01-15 Coating solutions for use in forming bismuth-based ferroelectric thin films
EP98100703A EP0854503A1 (en) 1997-01-18 1998-01-16 Coating solutions for use in forming bismuth-based ferro-electric thin films, and ferro-electric thin films, ferro-electric capacitors and ferro-electric memories formed with said coating solutions, as well as processes for production thereof
US09/102,048 US6120912A (en) 1997-01-18 1998-06-22 Coating solutions for use in forming bismuth-based ferroelectric thin films, and ferroelectric thin films, ferroelectric capacitors and ferroelectric memories formed with said coating solutions, as well as processes for production thereof
US09/391,380 US6303231B1 (en) 1997-01-18 1999-09-08 Coating solutions for use in forming bismuth-based ferroelectric thin films, and ferroelectric memories formed with said coating solutions, as well as processes for production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-19833 1997-01-18
JP1983397 1997-01-18
JP02960597A JP3195265B2 (ja) 1997-01-18 1997-01-29 Bi系強誘電体薄膜形成用塗布液およびこれを用いて形成した強誘電体薄膜、強誘電体メモリ

Publications (2)

Publication Number Publication Date
JPH10258252A JPH10258252A (ja) 1998-09-29
JP3195265B2 true JP3195265B2 (ja) 2001-08-06

Family

ID=26356693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02960597A Expired - Fee Related JP3195265B2 (ja) 1997-01-18 1997-01-29 Bi系強誘電体薄膜形成用塗布液およびこれを用いて形成した強誘電体薄膜、強誘電体メモリ

Country Status (5)

Country Link
US (3) US5972096A (ja)
EP (1) EP0854503A1 (ja)
JP (1) JP3195265B2 (ja)
KR (1) KR100327279B1 (ja)
TW (1) TW455884B (ja)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2954877B2 (ja) * 1996-06-18 1999-09-27 松下電子工業株式会社 容量素子の製造方法
JP3108039B2 (ja) 1997-01-18 2000-11-13 東京応化工業株式会社 Bi系強誘電体薄膜形成用塗布液およびこれを用いて形成した強誘電体薄膜、強誘電体メモリ
JP4146533B2 (ja) * 1997-08-21 2008-09-10 ローム株式会社 強誘電体膜形成用溶液および強誘電体膜の形成法
US6133051A (en) * 1998-06-30 2000-10-17 Advanced Technology Materials, Inc. Amorphously deposited metal oxide ceramic films
US6358810B1 (en) * 1998-07-28 2002-03-19 Applied Materials, Inc. Method for superior step coverage and interface control for high K dielectric capacitors and related electrodes
KR100333669B1 (ko) * 1999-06-28 2002-04-24 박종섭 레드니오비움지르코니움타이타니트 용액 형성 방법 및 그를 이용한 강유전체 캐패시터 제조 방법
US6376691B1 (en) * 1999-09-01 2002-04-23 Symetrix Corporation Metal organic precursors for transparent metal oxide thin films and method of making same
KR100393486B1 (ko) * 2000-09-08 2003-08-06 학교법인 포항공과대학교 솔 코팅법에 의한 란탄함유 티탄산 비스무스 박막의 경제적인 제조방법
US7037598B2 (en) * 2001-08-07 2006-05-02 Fuji Photo Film Co., Ltd. Light-emitting element and novel iridium complexes
JP4825373B2 (ja) * 2001-08-14 2011-11-30 ローム株式会社 強誘電体薄膜の製造方法およびこれを用いた強誘電体メモリの製造方法
CN1323441C (zh) * 2001-10-12 2007-06-27 日亚化学工业株式会社 发光装置及其制造方法
KR100772559B1 (ko) * 2001-12-24 2007-11-02 주식회사 하이닉스반도체 강유전체 메모리 소자의 캐패시터의 제조방법
KR101030068B1 (ko) * 2002-07-08 2011-04-19 니치아 카가쿠 고교 가부시키가이샤 질화물 반도체 소자의 제조방법 및 질화물 반도체 소자
JP3963811B2 (ja) * 2002-09-30 2007-08-22 富士フイルム株式会社 有機電界発光素子
AU2003294176A1 (en) 2002-12-17 2004-07-09 Fuji Photo Film Co., Ltd. Organic electroluminescent device
US6887523B2 (en) * 2002-12-20 2005-05-03 Sharp Laboratories Of America, Inc. Method for metal oxide thin film deposition via MOCVD
US6876536B2 (en) * 2002-12-27 2005-04-05 Tdk Corporation Thin film capacitor and method for fabricating the same
US6977806B1 (en) 2003-02-26 2005-12-20 Tdk Corporation Multi-layered unit including electrode and dielectric layer
US7067458B2 (en) * 2003-02-26 2006-06-27 Tdk Corporation Multi-layered unit including electrode and dielectric layer
US20040164416A1 (en) * 2003-02-26 2004-08-26 Tdk Corporation Multi-layered unit
US6891714B2 (en) * 2003-02-26 2005-05-10 Tdk Corporation Multi-layered unit including electrode and dielectric layer
US6885540B2 (en) * 2003-02-26 2005-04-26 Tdk Corporation Multi-layered unit including electrode and dielectric layer
US6958900B2 (en) * 2003-02-26 2005-10-25 Tdk Corporation Multi-layered unit including electrode and dielectric layer
US20060237760A1 (en) * 2003-02-27 2006-10-26 Tdk Corporation Thin-film capacitative element and electronic circuit and electronic equipment including the same
KR100956051B1 (ko) 2003-05-09 2010-05-06 후지필름 가부시키가이샤 유기 전계발광 소자 및 백금 화합물
EP2924094B1 (en) 2003-06-02 2017-04-05 UDC Ireland Limited Organic electroluminescent devices and metal complex compounds
US6930875B2 (en) * 2003-06-12 2005-08-16 Tdk Corporation Multi-layered unit
JPWO2005122260A1 (ja) * 2004-06-11 2008-04-10 富士通株式会社 容量素子、集積回路および電子装置
JP2006076843A (ja) * 2004-09-10 2006-03-23 Nissan Chem Ind Ltd ストロンチウム、ビスマス、タンタル系前駆物質及びその製造法
JP4500735B2 (ja) * 2004-09-22 2010-07-14 富士フイルム株式会社 有機電界発光素子
JP4531509B2 (ja) * 2004-09-27 2010-08-25 富士フイルム株式会社 発光素子
JP2006140218A (ja) * 2004-11-10 2006-06-01 Fuji Photo Film Co Ltd 有機電界発光素子
JP4762527B2 (ja) * 2004-11-10 2011-08-31 富士フイルム株式会社 有機電界発光素子
US7771845B2 (en) * 2005-03-14 2010-08-10 Fujifilm Corporation Organic electroluminescent device
JP5080816B2 (ja) * 2007-01-09 2012-11-21 株式会社Adeka 塗布液組成物および該塗布液組成物を用いる金属酸化物膜の製造方法
JP5127300B2 (ja) * 2007-05-28 2013-01-23 キヤノン株式会社 フルオレン化合物及びそれを用いた有機発光素子並びに表示装置
JP5053713B2 (ja) * 2007-05-30 2012-10-17 キヤノン株式会社 リン光発光材料、それを用いた有機電界発光素子及び画像表示装置
JP5008470B2 (ja) * 2007-06-18 2012-08-22 キヤノン株式会社 有機電界発光素子
JP5311785B2 (ja) * 2007-09-13 2013-10-09 キヤノン株式会社 有機発光素子及び表示装置
KR101548382B1 (ko) 2007-09-14 2015-08-28 유디씨 아일랜드 리미티드 유기 전계 발광 소자
JP4531836B2 (ja) * 2008-04-22 2010-08-25 富士フイルム株式会社 有機電界発光素子並びに新規な白金錯体化合物及びその配位子となり得る新規化合物
JP4531842B2 (ja) * 2008-04-24 2010-08-25 富士フイルム株式会社 有機電界発光素子
JP2012532342A (ja) * 2009-06-30 2012-12-13 ナノインク インコーポレーティッド フォトマスクの修復方法
CN102543438B (zh) * 2011-12-07 2014-04-16 厦门法拉电子股份有限公司 一种叠片式金属化薄膜电容器的电极结构
JP5845866B2 (ja) * 2011-12-07 2016-01-20 富士通セミコンダクター株式会社 半導体装置の製造方法
JP7155730B2 (ja) * 2018-03-22 2022-10-19 三菱マテリアル株式会社 圧電体膜形成用液組成物及びこの液組成物を用いて圧電体膜を形成する方法
CN110590403B (zh) * 2019-09-23 2022-02-01 济南大学 一种外延高电导bfco光电固溶薄膜的制备方法及所得产品

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1217927A (en) * 1983-04-15 1987-02-17 Tsutomu Nanao Inorganic composite material and process for preparing the same
JPS6186423A (ja) * 1984-10-04 1986-05-01 Mitsubishi Mining & Cement Co Ltd ビスマス複酸化物の製造方法
US5514822A (en) * 1991-12-13 1996-05-07 Symetrix Corporation Precursors and processes for making metal oxides
US5196388A (en) * 1991-06-10 1993-03-23 Akzo N.V. Process for the preparation of double metal oxide powders containing a Group IIIA and a Group IVB element and a novel double metal hydroxyl carboxylate useful in preparing same
JP2877588B2 (ja) * 1991-10-28 1999-03-31 ローム株式会社 金属酸化物薄膜のパターン形成法
US5612082A (en) * 1991-12-13 1997-03-18 Symetrix Corporation Process for making metal oxides
JPH05298920A (ja) * 1992-04-23 1993-11-12 Mitsubishi Electric Corp 高誘電体薄膜
JP3007795B2 (ja) * 1994-06-16 2000-02-07 シャープ株式会社 複合金属酸化物誘電体薄膜の製造方法
JPH0891841A (ja) * 1994-09-27 1996-04-09 Sharp Corp 強誘電体膜の製造方法
JP3116768B2 (ja) * 1995-04-06 2000-12-11 ソニー株式会社 ビスマス層状化合物の製法
KR100381498B1 (ko) * 1995-05-22 2005-02-05 미쓰비시 마테리알 가부시키가이샤 비스무스계유전체박막및그의형성방법및그박막형성용조성물
JPH11511293A (ja) * 1995-06-07 1999-09-28 サイメトリックス コーポレイション 基板および配線層を備え、基板と配線層との間にバッファ層を有する集積回路
JPH0977592A (ja) * 1995-09-14 1997-03-25 Kojundo Chem Lab Co Ltd ビスマス層状強誘電体薄膜の製造方法
TW346676B (en) * 1996-05-14 1998-12-01 Matsushita Electron Co Ltd Method of manufacturing layered ferroelectric Bi containing film

Also Published As

Publication number Publication date
JPH10258252A (ja) 1998-09-29
TW455884B (en) 2001-09-21
EP0854503A1 (en) 1998-07-22
KR100327279B1 (ko) 2002-12-06
US6303231B1 (en) 2001-10-16
KR19980070255A (ko) 1998-10-26
US5972096A (en) 1999-10-26
US6120912A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
JP3195265B2 (ja) Bi系強誘電体薄膜形成用塗布液およびこれを用いて形成した強誘電体薄膜、強誘電体メモリ
JP3108039B2 (ja) Bi系強誘電体薄膜形成用塗布液およびこれを用いて形成した強誘電体薄膜、強誘電体メモリ
JP3217699B2 (ja) Bi系誘電体薄膜形成用塗布液及びこれを用いて形成した誘電体薄膜
TWI286996B (en) Coating solutions for use in forming bismuth-based paraelectric or ferroelectric thin films, and bismuth-based paraelectric or ferroelectric thin films
JP2001261338A (ja) Tiを含有する金属酸化物薄膜形成用原料溶液、Tiを含有する金属酸化物薄膜の形成方法及びTiを含有する金属酸化物薄膜
KR100385194B1 (ko) Bi계 강유전체 박막형성용 도포액 및 이것을 사용한Bi계 강유전체 박막의 형성방법
JP2007019432A (ja) 常誘電体薄膜およびその形成方法
JPH08245263A (ja) 酸化物薄膜およびその作製方法
JP4329288B2 (ja) Blt又はbt強誘電体薄膜、その形成用組成物及び形成方法
WO2007007561A1 (ja) 常誘電体薄膜形成用組成物、常誘電体薄膜および誘電体メモリ
JPH0790594A (ja) チタン系複合酸化物形成用塗布液
JPH1087329A (ja) Ti系複合金属酸化膜形成用塗布液及びこれを用いて形成した誘電体薄膜
JP2001298164A (ja) ヒステリシス特性の改善したBi系強誘電体素子およびその製造方法
JP2001072926A (ja) ペロブスカイト型酸化物薄膜形成用原料溶液
JP2007005028A (ja) Bi系誘電体薄膜形成用組成物およびBi系誘電体薄膜
JP2001110237A (ja) 強誘電体薄膜形成用塗布液、その製造方法及び強誘電体薄膜
JP2001316117A (ja) Bi系強誘電体薄膜形成用塗布液およびこれを用いたBi系強誘電体薄膜の形成方法
JP2002211929A (ja) Bi系強誘電体薄膜の形成方法
JP2003063825A (ja) 強誘電体薄膜形成用塗布液、その製造方法および強誘電体薄膜
JP2002193616A (ja) 強誘電体薄膜形成用塗布液、その製造方法および強誘電体薄膜
US20070062414A1 (en) Coating solutions for use in forming bismuth-based ferroelectric thin films and a method of forming bismuth-based ferroelectric thin films using the coating solutions
JP2004345922A (ja) 高誘電体薄膜、高誘電体薄膜形成用材料、および高誘電体薄膜形成方法
JP2002029753A (ja) Bi系強誘電体薄膜形成用材料、Bi系強誘電体素子、およびBi系強誘電体素子の製造方法
JP2001089146A (ja) c軸方向への結晶の成長が抑制されたBi系強誘電体薄膜の形成方法およびBi系強誘電体薄膜
JP2004339057A (ja) Bi系強誘電体薄膜形成用塗布液およびこれを用いたBi系強誘電体薄膜の形成方法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees