JP2600762B2 - 酸化亜鉛ウィスカーの製造方法 - Google Patents

酸化亜鉛ウィスカーの製造方法

Info

Publication number
JP2600762B2
JP2600762B2 JP4133088A JP4133088A JP2600762B2 JP 2600762 B2 JP2600762 B2 JP 2600762B2 JP 4133088 A JP4133088 A JP 4133088A JP 4133088 A JP4133088 A JP 4133088A JP 2600762 B2 JP2600762 B2 JP 2600762B2
Authority
JP
Japan
Prior art keywords
zinc oxide
powder
zinc
water
whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4133088A
Other languages
English (en)
Other versions
JPH01252600A (ja
Inventor
實 芳中
栄三 朝倉
利裕 見崎
基 北野
英行 ▲吉▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4133088A priority Critical patent/JP2600762B2/ja
Priority to KR1019880017591A priority patent/KR920009567B1/ko
Priority to DE3889319T priority patent/DE3889319T2/de
Priority to EP88121808A priority patent/EP0325797B1/en
Priority to US07/291,611 priority patent/US5066475A/en
Priority to CA000587226A priority patent/CA1320625C/en
Publication of JPH01252600A publication Critical patent/JPH01252600A/ja
Application granted granted Critical
Publication of JP2600762B2 publication Critical patent/JP2600762B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、巨大なテトラポッド状構造を有する新規な
酸化亜鉛ウィスカーの製造方法に関する。
従来の技術 現在、一般的工業素材として使用される酸化亜鉛は、
いわゆるフランス法によるもので、粒子の大きさ、特に
形状がまちまちの団塊状粒子の集合体である。又、細く
短い針状結晶粒子を高収率で形成させる方法(例えば特
公昭60−5529号公報)があるが、これは上記フランス法
の改良法で、加熱による金属亜鉛蒸気を急速に冷却する
ものであり、このため巨大結晶体は生成せず、微小寸法
(長さが1〜1.5μm)の針状結晶となる。この様な寸
法の針状結晶体は、現在市販されている各種工業用ウィ
スカーと比較すると寸法面で約2桁小さい。このため前
記ウィスカーの共通的特長である金属,セラミック,樹
脂等への補強効果は前記団塊状酸化亜鉛の水準となり、
ウィスカー的な顕著な効果は認められない。即ち繊維形
状の単結晶性であるウィスカーは同じ均質の団塊状物質
より格段と機械的強度が大で、これを他の物質中に混入
して高い機械的強度を得るための強化物質として注目さ
れており、現在では金属,金属酸化物,金属炭化物,金
属窒化物等の工業用ウィスカーが市販されている。又酸
化亜鉛においても長さがmm桁のウィスカーの例(特開昭
50−5597号公報)があるが、これらは単純針状体のもの
で、わざわざ亜鉛の合金を用いるため結晶中に不純物を
含んだり、成長時に基板を必要としたり、低収率であっ
たり、複雑な装置,操作で長時間を要する等の実験室的
検討に過ぎないものが多い。
発明が解決しようとする課題 本発明は、工業用ウィスカー級の寸法性を有する酸化
亜鉛の巨大結晶体を得る製造法を提供することを目的と
する。また、本発明は、巨大テトラポッド状構造の酸化
亜鉛ウィスカーの新規な製造方法を提供するものであ
る。
課題を解決するための手段 本発明による酸化亜鉛ウィスカーの製造方法は、酸化
皮膜を有する亜鉛粉末を酸素を含む雰囲気下で加熱処理
して酸化亜鉛を生成させることを特徴とする。
ここにおいて、亜鉛粉末に酸化皮膜を形成する好まし
い方法としては、後述のように亜鉛粉末を水と共存下で
擂潰し、熟成させる方法、あるいは亜鉛粉末を水との共
存下で擂潰する方法、亜鉛粉末を水との共存下で熟成す
る方法等がある。また、酸化を伴う溶湯法や機械的粉砕
により得た亜鉛粉末については、前記のような擂潰や水
分共存下での熟成を省くこともできる。
作 用 本発明の方法によって得られる酸化ウィスカーは、中
心の核部とこの核部から異なる4軸方向に伸びた針状結
晶部からなり、前記針状結晶部の基部の径が0.7〜14μ
mであり、前記針状結晶部の基部から先端までの長さが
3〜200μmである。又、少量の針状結晶部が3軸ある
いは2軸のものも混入するが、これらは成長中あるいは
後に他のウィスカーと接触して、その一部が折損した
り、成長が停止した結果である。又この成長中の接触に
より完全なテトラポッド形の一部に他のテトラポッドが
付着したものも多少みられる。又他の形状即ち板状晶が
針状部に付着することもある。しかし、本発明の製造方
法によれば、テトラポッド状のものが主体となる。
本発明では、従来の酸化亜鉛の製造方法や酸化亜鉛ウ
ィスカーの製造方法と異なり、金属亜鉛粉末を使用す
る。それらの粒子径は0.1〜500μmのものが使用可能で
あり、なかでも10〜300μmのものが最良の結果とな
る。これらの金属亜鉛粉末は亜鉛線や亜鉛粉末をアーク
式の溶射装置で空気中に溶射することにより得た粉末、
溶湯粉化によるもの、即ち粒状化法,アトマイズ法によ
る粉末がある。又機械的粉砕による方法即ち地金等を切
削又はジョー・クラッシャー,ジャイレートリ・クラッ
シャーで粗粉砕されたものを再粉砕したものがあり、そ
の中粉砕には、いろいろの形式があるが、スタンプミ
ル,渦流ミル等があり、より微細粉にするためにハンマ
ーミル,カッティングミル,ミクロナイザー等を使用し
て得た粉末がある。又電解によるもの、金属の蒸発,凝
固等を利用した物理的装作、化学的反応を利用した化学
操作による亜鉛粉末を用いることもできる。通常は、上
記各方法では粉末表面に酸化皮膜が生成しない様に留意
して製造されるが、本発明に使用する場合には逆に酸化
皮膜が形成されれば有効であるため、水分共存下や高酸
素濃度(大気中)、高湿度中で製造することも可能であ
る。又高温,高機械的応力下で製造する場合にも良好な
粉末を得ることができる。
又上記の酸化皮膜助成法を採って酸化皮膜形成が不充
分な場合や、酸化皮膜が形成されない粉末製造法が採ら
れた場合には以下に示す好ましい方法が採られる。まず
水共存下での機械的処理として乳鉢式擂潰機,ロール等
で処理を行い粒子に機械的に圧力を加える。更にこれを
水中に24時間以上、なかでも76時間ならば如何なる粒子
径のものでも完全な結果を与える。又放置熱成温度は20
℃以上に保つことが好ましい。酸化皮膜の形成は、上記
メカノケミカル反応によらなくても熟成等によるケミカ
ル反応だけでも形成できるが、通常、後者の場合は時間
がかかりすぎる。この様に酸化皮膜形成、成長の要因は
多岐にわたるが、総括すると機械的圧力の付加、水
中ないし高湿度下での酸化反応、,の相剰効果
(メカノケミカル反応)、酸素濃度効果、温度効果
等が関係する。生成するウィスカーの寸法、特に針状部
の長さから評定すると上記による時間が大きく影響を
与える。ただし短時間で効果は大である。水との共存下
での擂潰時間が長くなれば上記寸法も増大する傾向にあ
る。粉体上の酸化皮膜は、焼成時その内部の金属亜鉛部
からの亜鉛の放出を抑制するし、又内部への酸素の移行
を抑制すると考えられる。このため単結晶成長時に十分
な時間が与えられ、結晶は寸法的に大きく成長し、通常
の気相法のものとかけ離れた巨大テトラポッド状酸化亜
鉛ウィスカーが発現するものと思われる。
次に放置後乾燥する。この乾燥は粉末表面の水切りが
達成されればよく、次の焼成工程の高温中へ移行した当
初の弊害が防がれるように、即ち、るつぼ割れ,粉の飛
び散りがなくなる程度に乾燥すれば良好である。このた
め風乾ないし亜鉛粉末が溶融しない高温迄の温度範囲で
行うことができる。
次に乾燥した粉末は耐熱容器、通常はアルミナ等のる
つぼに入れ、酸素を含む雰囲気中で700〜1300℃、中で
も900〜1100℃で加熱するのが、いかなる粒子径でも良
好な結果を与える。又上記温度域の炉内に前記るつぼを
保持しておき、調整した粉末を投入して焼成しても好ま
しい結果を与える。焼成時間は、700〜1300℃において
は120〜20分間、900〜1100℃においては90〜30分間が適
当である。前記加熱焼成は通常空気中で行えば良いが、
窒素と酸素の混合比を調整したガスを用いても良結果と
なる。
金属亜鉛粉末は前記のように、水共存下で擂漬やロー
ル等で機械的圧力を付与することにより、メカノケミカ
ル効果により急速に表面に酸化皮膜が発現し、後の水中
での放置熟成によりこの皮膜が成長する。これはX線回
折法により確認した。又この様に形成された酸化皮膜又
はこれらの処理はウィスカーが発現する焼成工程に特別
な効果を与える。すなわち、亜鉛粉末が酸化を受けない
良好な方法で製造された直後のもので酸化皮膜の形成が
無いもの、あるいは乾燥状態が良好でX線回折法では全
く検出できない薄い不動態的皮膜しか有さないもので
は、前記条件下の焼成時に不均一焼成となり、温度,酸
素濃度等を調整しても、種々の色調の団塊状酸化亜鉛と
未燃部の金属亜鉛が共存した系が生成し、ウィスカーは
生成しない。一方、上記の成長した酸化皮膜を有する亜
鉛粉末では、高温焼成が均一かつ完全に進行して、金属
亜鉛は完全に酸化されて、極めて高収率に巨大テトラポ
ッド状ウィスカーに成長する。
このように、亜鉛粉末が酸化皮膜により完全に覆われ
ているのが理想的であるが、局部的に酸化皮膜が形成さ
れている場合でもテトラポッド状ウィスカーを得ること
は可能である。
また、焼成時、加工調整された粉末のみかけ体積に比
し、ウィスカー生成系は急激に体積を増大するが、気相
成長法で通常みられるソース部外へのウィスカーの付着
発現,成長のタイプではなく連続的な体積増加であり、
容器内のソース部上に連続的に生成するものである。
実施例 以下、本発明の実施例について説明する。
実施例1 純度99.99%の純亜鉛線を、アーク放電方式による溶
射法で空気中に溶射し、直後その粉末(金属亜鉛粉末)
1Kgを回収して、これをイオン交換水500g中に投入し、
乳鉢型擂潰機で20分間撹拌処理する。次に温度26℃の水
中に72時放置熟成する。水量は粉体層から約1cmの水位
を保って大気中で保管した。この水中放置後、150℃30
分間の乾燥を行うことにより、粉末表面の水分を除去す
る。次にこの粉末をアルミナ磁器製のるつぼ中に入れ、
予め、1000℃に保たれた炉内に前記るつぼを配置させて
約1時間の加熱処理を行う。この結果、上記るつぼ内の
下層部には団塊状酸化亜鉛が生成され、上層部には、み
かけ嵩比重0.09の巨大テトラポッド状酸化亜鉛ウィスカ
ー集合体が生成された。生成酸化亜鉛中の上記ウィスカ
ー集合体の割合は86wt%であった。得られた酸化亜鉛ウ
ィスカーの電子顕微鏡写真を第1図に示す。核部と、こ
の核部から異なる4軸方向に伸びた針状結晶部からなる
テトラポッド状の結晶体が明確に認められる。上記の針
状結晶部はつけ根部分の径が1〜10μmであり、長さが
10〜200μmである。針状結晶部が3軸あるいは2軸の
ものも認められるが、これらは基本形4軸のものの一部
が互いに接触して成長時あるいは成長後に折損したもの
と思われる。また板状晶のものも認められた。いずれに
しても、上記の方法によると、テトラポッド状のものが
80%以上を占める。
第2図は上記の酸化亜鉛ウィスカーをボールミルで24
時間粉砕処理したものの電子顕微鏡写真を示し、第3図
はその拡大図を示す。第4図は上記ウィスカーのX線回
折図を示す。すべて酸化亜鉛のピークを示し、電子線回
折の結果も転移,格子欠陥の少ない単結晶性を示した。
また、不純物含有量も少なく、原子吸光分析の結果、酸
化亜鉛が99.98%であった。
実施例2 純度99.9%の亜鉛線を実施例1同様に溶射し、その粉
末を回収して、温度35℃,湿度RH85%中に1カ月間放置
した。その後、100℃で3時間乾燥後960℃で45分間焼成
処理をした。他は実施例1と同様に行った。
こうしてみかけ嵩比重0.1の酸化亜鉛ウィスカーが84
%得られ、他は団塊状酸化亜鉛であった。このウィスカ
ーの電子顕微鏡写真を第5図に示す。得られたウィスカ
ー中4軸テトラポッド状のものは約84%であった。X線
回折、電子線回折の結果は実施例1と同様であった。原
子吸光分析では酸化亜鉛が99.96%であった。
実施例3 溶湯粉化法の1つであるアトマイズ(噴霧)法で製造
された亜鉛粉末を用いた。粉末製造に際して圧力媒体と
しては酸素ガスを用いた。粉末形状は球体状で粒子径は
10〜200μmのものである。亜鉛純度は95.7%であっ
た。この粉末500gをイオン交換水500gに投入して、乳鉢
型擂潰機で30分間撹拌し、その後110℃で2時間乾燥
し、990℃で45分間焼成した。他は実施例1と同様に行
った。みかけ嵩比重0.08の酸化亜鉛ウィスカーが91%得
られた。他は下層部に生成した団塊状酸化亜鉛であっ
た。このウィスカーの電子顕微鏡写真を第6図に示す。
又4軸テトラポッド状のものの割合は約80%であった。
X線回折、電子線回折の結果は実施例1と同様であっ
た。原子吸光分析では酸化亜鉛が99.81%であった。
実施例4 溶湯粒化法の中の粒状化法の1つであるグレイニング
法により亜鉛粉末を製造した。凝固温度近くの温度で大
気中に接触させて急激に撹拌して行った。純度は95.4%
で粒径は10〜250μmであった。この粉末を湿度RH50%
の大気中に1週間放置した後、粉末100gに70gの水を加
え、72時間放置熟成した。その後、その系を100℃で45
分間乾燥した後970℃の炉で1時間焼成した。他は全て
実施例1と同様に行った。みかけ嵩比重0.15の酸化亜鉛
ウィスカーが79%得られ、他は団塊状酸化亜鉛であっ
た。このウィスカーの電子顕微鏡写真を第7図に示す。
4軸テトラポッド状のものは約90%であった。X線,電
子線回折の結果は実施例1と同様であった。原子吸光分
析では酸化亜鉛が99.97%であった。
実施例5 前記のアトマイズ法により製造された粉末を使用し
た。リキッドアトマイズ法を採り、水中に噴霧して製造
した。純度は96.7%で粒径は1〜100μmである。この
粉末を製造後直ちに粉末100gに水90gになる様に補い、
乳鉢型擂潰機で2時間撹拌した。その系を放置熟成する
ことなく、150℃で1時間加熱乾燥し1000℃で40分間焼
成した。他は全て実施例1と同様に行った。みかけ嵩比
重0.08の酸化亜鉛ウィスカーが93%得られた。他は団塊
状酸化亜鉛であった。このウィスカーの電子顕微鏡写真
を第8図に示す。4軸テトラポッド状のものが約70%で
あった。X線,電子線回折の結果は実施例1と同様であ
った。原子吸光分析では酸化亜鉛が99.94%であった。
実施例6 機械的粉砕による粉末を使用した。地金を水をつけて
切削し、これを水に浸したまま5回ジョークラッシャー
で粗粉砕した後、12時間水と共存させて微粉砕し、その
後29℃において水中で2日間熟成した。この粉末は純度
90%で粒径は10〜100μmであった。この粉末を100℃で
2時間乾燥し、その後980℃で50分間焼成した。他は全
て実施例1と同様に行った。みかけ嵩比重0.10の酸化亜
鉛ウィスカーが87%得られ、他は団塊状酸化亜鉛であっ
た。このウィスカーの電子顕微鏡写真を第9図に示す。
4軸テトラポッド状のものが約75%であった。X線,電
子線回折の結果は実施例1と同様であった。原子吸光分
析では酸化亜鉛が99.89%であった。
実施例7 純度99.5%の亜鉛線を20mm片に切断して、渦流ミル中
に水と共存させて12時間粉砕した。この粉末の粒径は15
〜300μmであった。これを125℃で1時間乾燥し、その
後1000℃で1時間焼成した。他は全て実施例1と同様に
行った。みかけ嵩比重0.09の酸化亜鉛ウィスカーが90%
得られた。他は団塊状酸化亜鉛であった。このウィスカ
ーの電子顕微鏡写真を第10図に示す。4軸テトラポッド
状のものが約90%であった。X線,電子線回折の結果は
実施例1と同様であった。原子吸光分析では酸化亜鉛が
99.71%であった。
比較例1 実施例1と同様に粉末を調整して焼成工程のみ500℃
で1時間加熱処理した。ウィスカーは全く生じなく、全
て団塊状酸化亜鉛であった。
比較例2 実施例1と同様に粉末を調整して1550℃で20分間焼成
した。酸化亜鉛の焼結体が主体であり、中に所々異形針
状ウィスカ(4軸テトラポッド状でない)が確認され
た。
比較例3 実施例3と同様な操作を行いながら乳鉢型擂潰機での
30分間の撹拌操作を省いた。その後は同じ条件で焼成し
たところ、焼成が不均一となり団塊状酸化亜鉛と金属亜
鉛が共存した系となり、表面に僅かに4軸テトラポッド
状ウィスカーの変形したウィスカー片が確認された。
比較例4 実施例1と同様に粉末を調整したが20分間の擂潰処理
を省いて焼成したところ、団塊状酸化亜鉛と金属亜鉛が
共存した系となり、表面に僅かにウィスカー状のものが
確認されたが、4軸テトラポッド状のものは極めて少な
かった。
比較例5 実施例1と同様にして粉末を調整しながら、放置熟成
工程を省いた。結果は比較例1とほぼ同様であった。
比較例6 実施例2と同様に粉末を調整したが、温度20℃で乾燥
窒素ガス雰囲気で1日放置したものを用いた。焼成結果
は比較例4と同じ傾向を示した。
上記実施例及び比較例を次表にまとめる。
発明の効果 本発明の製造方法によると新規な巨大テトラポッド状
の酸化亜鉛ウィスカーが得られる。又製造方法として、
金属亜鉛粉末の調整,保存,水中での機械的擂潰処理、
水中での熟成,乾燥,焼成工程を採った場合、これらの
工程条件の設定で上記テトラポッド状酸化亜鉛ウィスカ
ーの各種の大きさのものが得られる。
本発明で得られるウィスカーは異方性のない立体構造
を有しているため、各種材料の強化材として用いる場合
や電子材料として用いる場合にも機械的,電気的特性に
異方性を生じさせない。又、従来の酸化亜鉛の微細針状
結晶に比べて寸法的にはるかに大きく、金属や樹脂,セ
ラミックと複合させて、それらの機械的強度を強化でき
る等の効果の他、他の同種目的の炭化硅素や窒化硅素等
に比べて安価に製造できる利点を有しており、工業的に
も経済的にも極めて大きな効果を奏するものである。
【図面の簡単な説明】
第1図および第5〜第10図は本発明による酸化亜鉛ウィ
スカーの電子顕微鏡写真、第2図はその二次加工後の電
子顕微鏡写真、第3図は同拡大写真、第4図はX線回折
図である。第11〜15図は比較例の電子顕微鏡写真であ
る。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 北野 基 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 ▲吉▼田 英行 大阪府門真市大字門真1006番地 松下電 器産業株式会社内

Claims (5)

    (57)【特許請求の範囲】
  1. 【請求項1】酸化皮膜を有する亜鉛粉末を、酸素を含む
    雰囲気下で加熱処理して酸化亜鉛を生成させることを特
    徴とする酸化亜鉛ウィスカーの製造方法。
  2. 【請求項2】亜鉛粉末を水と共存下で擂潰し、熟成させ
    た後に水分を乾燥させて、酸素を含む雰囲気下で加熱処
    理して酸化亜鉛を生成させることを特徴とする酸化亜鉛
    ウィスカーの製造方法。
  3. 【請求項3】亜鉛粉末を水と共存下で擂潰した後、水分
    を乾燥させて、酸素を含む雰囲気下で加熱処理して酸化
    亜鉛を生成させることを特徴とする酸化亜鉛ウィスカー
    の製造方法。
  4. 【請求項4】亜鉛粉末を水と共存させて熟成させた後に
    水分を乾燥させて、酸素を含む雰囲気下で加熱処理して
    酸化亜鉛を生成させることを特徴とする酸化亜鉛ウィス
    カーの製造方法。
  5. 【請求項5】酸化を伴う溶湯法または機械的粉砕により
    得た亜鉛粉末を、酸素を含む雰囲気下で加熱処理して酸
    化亜鉛を生成させることを特徴とする酸化亜鉛ウィスカ
    ーの製造方法。
JP4133088A 1987-12-29 1988-02-24 酸化亜鉛ウィスカーの製造方法 Expired - Lifetime JP2600762B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4133088A JP2600762B2 (ja) 1987-12-29 1988-02-24 酸化亜鉛ウィスカーの製造方法
KR1019880017591A KR920009567B1 (ko) 1987-12-29 1988-12-27 산화아연위스커 및 그 제조방법
DE3889319T DE3889319T2 (de) 1987-12-29 1988-12-28 Zinkoxid-Whisker mit tetraedrischer kristalliner Form und Verfahren zu ihrer Herstellung.
EP88121808A EP0325797B1 (en) 1987-12-29 1988-12-28 Zinc oxide whiskers having a tetrapod crystalline form and method for making the same
US07/291,611 US5066475A (en) 1987-12-29 1988-12-29 Zinc oxide whiskers having a novel crystalline form and method for making same
CA000587226A CA1320625C (en) 1987-12-29 1988-12-29 Zinc oxide whiskers having a novel crystalline form and method for making the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33441887 1987-12-29
JP62-334418 1987-12-29
JP4133088A JP2600762B2 (ja) 1987-12-29 1988-02-24 酸化亜鉛ウィスカーの製造方法

Publications (2)

Publication Number Publication Date
JPH01252600A JPH01252600A (ja) 1989-10-09
JP2600762B2 true JP2600762B2 (ja) 1997-04-16

Family

ID=26380928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4133088A Expired - Lifetime JP2600762B2 (ja) 1987-12-29 1988-02-24 酸化亜鉛ウィスカーの製造方法

Country Status (1)

Country Link
JP (1) JP2600762B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605847B2 (ja) * 1988-12-16 1997-04-30 松下電器産業株式会社 酸化亜鉛ウイスカーの製造法
JPH03207722A (ja) * 1990-01-10 1991-09-11 Matsushita Electric Ind Co Ltd 複合強化材
JPH05243054A (ja) * 1992-02-28 1993-09-21 Toshiba Corp 磁 心
JP3242468B2 (ja) * 1992-11-09 2001-12-25 三井金属鉱業株式会社 導電性針状酸化亜鉛の製造方法
US6649824B1 (en) 1999-09-22 2003-11-18 Canon Kabushiki Kaisha Photoelectric conversion device and method of production thereof
JP3715911B2 (ja) 2000-09-21 2005-11-16 キヤノン株式会社 酸化物針状結晶の製造方法、酸化物針状結晶および光電変換装置
JP4737577B2 (ja) * 2001-03-16 2011-08-03 独立行政法人物質・材料研究機構 針状酸化亜鉛の製法
JP2002356400A (ja) 2001-03-22 2002-12-13 Canon Inc 酸化亜鉛の針状構造体の製造方法及びそれを用いた電池、光電変換装置
JP5528064B2 (ja) * 2009-11-13 2014-06-25 株式会社東京精密 切断用ブレード
CN105200519B (zh) * 2015-10-20 2017-10-31 唐山建华科技发展有限责任公司 海泡石‑四针状氧化锌晶须复合材料的制备方法

Also Published As

Publication number Publication date
JPH01252600A (ja) 1989-10-09

Similar Documents

Publication Publication Date Title
KR920009567B1 (ko) 산화아연위스커 및 그 제조방법
JP4340160B2 (ja) ナノサイズ及びサブミクロンサイズのリチウム遷移金属酸化物の製造方法
JP6564553B1 (ja) MXene粒子材料、それらの粒子材料の製造方法、及び、二次電池
JP2600762B2 (ja) 酸化亜鉛ウィスカーの製造方法
JPH11302835A (ja) ZnO系焼結体の製造方法
EP1295953B1 (en) Method for producing platinum material reinforced with dispersed oxide
US4152281A (en) Molten salt synthesis of lead zirconate titanate solid solution powder
WO2018110560A1 (ja) 窒化ケイ素粉末、多結晶シリコンインゴット用離型剤及び多結晶シリコンインゴットの製造方法
JPH03141115A (ja) 酸化イットリウム微粉末の製造方法
JPS5939367B2 (ja) 酸化ジルコニウム微粉体の製造方法
JP2584032B2 (ja) 酸化亜鉛ウィスカーの製造法
JP2605847B2 (ja) 酸化亜鉛ウイスカーの製造法
DE60027018T2 (de) Synthese und konsolidierung von nanophasenmaterielien
JPS63239104A (ja) β相含有窒化ケイ素微粉末の製造方法
JP2600761B2 (ja) 酸化亜鉛ウイスカー
JP2563544B2 (ja) 酸化亜鉛ウイスカーの製造法
JP2584035B2 (ja) 酸化亜鉛ウィスカ−の製造法
JP3748084B2 (ja) NiO/YSZ複合粉末の製造方法
JPS60195016A (ja) 金属けい素の精製法
KR101905713B1 (ko) 티탄산칼륨 및 이의 제조방법
JP2612016B2 (ja) 低酸素窒化アルミニウム粉末の製造方法
JPH0867517A (ja) インジウム−スズ酸化物からなる部材およびその製造法
KR100564089B1 (ko) 주석산화물 분말 제조방법
JPH0519486B2 (ja)
Badar et al. Crystallite size reduction of Cr doped Al2O3 materials via optimized high-energy ball milling method