JP2024023809A - 焼結システム及び焼結済み物品 - Google Patents

焼結システム及び焼結済み物品 Download PDF

Info

Publication number
JP2024023809A
JP2024023809A JP2023216668A JP2023216668A JP2024023809A JP 2024023809 A JP2024023809 A JP 2024023809A JP 2023216668 A JP2023216668 A JP 2023216668A JP 2023216668 A JP2023216668 A JP 2023216668A JP 2024023809 A JP2024023809 A JP 2024023809A
Authority
JP
Japan
Prior art keywords
tape
less
sintered
sintering
sintered article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023216668A
Other languages
English (en)
Other versions
JP2024023809A5 (ja
Inventor
エドワード バディング マイケル
Edward Badding Michael
ドミニク ボンバ リチャード
Dominic Bomba Richard
レスリー ブラウン ジャクリーン
Leslie Brown Jacquieline
ジョセフ ボートン ウィリアム
Joseph Bouton William
エドワード ハルディナ ケネス
Edward Hrdina Kenneth
デイル ケッチャム トーマス
Thomas D Ketcham
エドワード メルツ ゲイリー
Edward Merz Gary
リー ミラー エリック
Lee Miller Eric
シャシダール ナガラジャ
Shashidhar Nagaraja
ジョセフ セイント ジュリアン デル
Joseph St Julien Dell
ソン ジェン
Zhen Song
ウェイン タナー キャメロン
Cameron W Tanner
ジェイムズ ウォルシュ コナー
James Walsh Conor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2024023809A publication Critical patent/JP2024023809A/ja
Publication of JP2024023809A5 publication Critical patent/JP2024023809A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/21Paper; Textile fabrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J1/00Adhesives based on inorganic constituents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/06102Disposition the bonding areas being at different heights
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/2732Screen printing, i.e. using a stencil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/27444Manufacturing methods by blanket deposition of the material of the layer connector in gaseous form
    • H01L2224/2745Physical vapour deposition [PVD], e.g. evaporation, or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/27444Manufacturing methods by blanket deposition of the material of the layer connector in gaseous form
    • H01L2224/27452Chemical vapour deposition [CVD], e.g. laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2746Plating
    • H01L2224/27462Electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32237Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48229Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81192Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/83005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/8321Applying energy for connecting using a reflow oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/85005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85401Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/85411Tin (Sn) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85401Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/85416Lead (Pb) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85439Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85444Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85447Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85455Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10157Shape being other than a cuboid at the active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15151Shape the die mounting substrate comprising an aperture, e.g. for underfilling, outgassing, window type wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Powder Metallurgy (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Ceramic Products (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

【課題】薄い、幅が広い、及び/又は長いテープ材料を、例えばロール・ツー・ロールプロセスで焼結するためのシステムの提供。【解決手段】素地テープ及びこれを支持するキャリアウェブを備えるテープ材料のソースであって、素地テープは結合剤中に無機材料の粒体を含み、キャリアウェブを巻き戻し方向に配向し、素地テープを巻き戻し方向とは異なる下流処理方向に配向するための、剥離器;及びテープ材料をソースから受承し、テープ材料を剥離器へと搬送するよう位置決め及び構成された、真空ドラムを備え、真空ドラムは、キャリアウェブへの張力の印加を促進するためにキャリアウェブに吸引力を印加する孔を備え、断面積あたりの力としてのキャリアウェブの張力は、テープ材料が真空ドラムから剥離器へと搬送される際の素地テープの張力より高く、これにより、素地テープをキャリアウェブから分離する間の、素地テープの変形が軽減されるテープ分離システム。【選択図】 図3

Description

優先権
本出願は、2016年12月21日出願の米国特許出願第62/437,157号;2016年12月28日出願の米国特許出願第62/439,613号;2017年3月13日出願の米国特許出願第62/470,550号;2016年12月28日出願の米国特許出願第62/439,609号;2017年6月29日出願の米国特許出願第62/526,806号;2016年12月28日出願の米国特許出願第62/439,598号;2017年4月10日出願の米国特許出願第62/483,726号;2017年4月11日出願の米国特許出願第62/484,106号;及び2017年9月11日出願の米国特許出願第62/556,712号の米国特許法119条に基づく優先権の利益を主張して2019年6月24日に出願された国際出願の日本国へ国内移行された特願2019-533152号(出願日:2017年12月19日)の分割出願である特願2021-197031号(出願日:2021年12月3日)の分割出願である。
本開示は一般に:焼結、例えば結合剤中で結合した多結晶質セラミック粒体又は他の無機粒子を含む素地テープの焼結のためのプロセス;並びに上記プロセスから作製されたセラミックシート、テープ又はセラミック片等の連続及び不連続焼結済み物品に関する。本開示は、セラミック又は他の無機材料の薄型シート、テープ、リボン又は片といった物品に関し、これらは多くの潜在的な用途を有し、例えば:セラミックが光透過性である場合には導波路として機能するか;コーティング又は積層でき、かつバッテリ及び他の構成部品内に組み込むことができる、基板として機能するか;又は電子部品パッケージ(例えばLEDパッケージ)内の誘電体として機能する等のために、若しくは他の用途のために、基板として使用されるか若しくは基板と接合される。高い抵抗性、低い反応性、低い熱膨張係数といった、特にセラミック材料の様々な材料特性によって、上記物品は、幅広い用途において特に有用となる。
本開示のいくつかの態様は、焼結準備のためのテープ分離システムに関する。上記テープ分離システムは、素地テープ及び上記素地テープを支持するキャリアウェブを備える、テープ材料のソースを含む。上記素地テープは、結合剤中に、無機材料の粒体を含む。上記テープ分離システムは更に:上記キャリアウェブを巻き戻し方向に配向し、上記素地テープを上記巻き戻し方向とは異なる下流処理方向に配向するための、剥離器と;上記テープ材料を上記ソースから受承し、上記テープ材料を上記剥離器へと搬送するよう、位置決め及び構成された、真空ドラムとを含む。上記真空ドラムは、上記キャリアウェブへの張力の印加を促進するために上記キャリアウェブに吸引力を印加するための孔を備え、断面積あたりの力としての上記キャリアウェブの張力は、上記テープ材料が上記真空ドラムから上記剥離器へと搬送される際の上記素地テープの張力より高く、これにより、上記素地テープを上記キャリアウェブから分離する間の、上記素地テープの変形が軽減される。
本開示の他の態様は、焼結準備のためにテープを処理するためのシステムに関する。上記システムは:テープであって、上記テープの素地部分を備え、上記素地部分は、有機結合剤中の無機材料の粒体を有する、テープと;アクティブヒータを備える結合剤バーンアウトステーションとを備える。上記テープは、上記結合剤バーンアウトステーションを通って前進し、これにより、上記結合剤バーンアウトステーションが、上記テープの上記素地部分を受承して、上記テープの上記素地部分が上記ヒータからの熱に接する際に上記有機結合剤を炭化又は燃焼し、これにより、上記テープの上記無機材料の焼結のための準備ができた上記テープの第2の部分が形成される。いくつかの実施形態では、ある瞬間において、上記テープは同時に、上記結合剤バーンアウトステーションに向かって、上記結合剤バーンアウトステーションを通って、及び上記結合剤バーンアウトステーションから延在し、これにより、上記瞬間において、上記テープは、上記第2の部分に連続して接続された上記素地部分を含み、例えばここで、上記結合剤バーンアウトステーションは、上記無機材料の上記粒体を実質的に焼結することなく、上記テープの上記素地部分から、重量で少なくともほとんどの上記有機結合剤を炭化又は燃焼する。いくつかの実施形態では、焼結準備のためにテープを処理するためのシステムは更に、超低張力ダンサーを含み、これは、上記テープに有意な張力を印加することなく上記テープを再配向するための、軽量かつ低慣性のローラを含み、これにより、上記テープの上記第2の部分の張力は、断面1mmあたり500重量グラム未満となり、これにより、上記テープの上記第2の部分の破断の可能性が低減され、焼結のための上記テープの長い連続した長さを促進する。いくつかの実施形態では、焼結準備のためにテープを処理するためのシステムは、上記テープが上記結合剤バーンアウトステーションを通って前進する際に、上記テープ上にガスを吹き付け、及び/又は引き込み、上記結合剤バーンアウトステーションは、上記テープ上に吹き付けられる及び/又は引き込まれる上記ガスを用いずに上記有機結合剤が発火する温度より高い温度で、上記テープを加熱し、これにより、上記有機結合剤は炭化又は燃焼されるものの、上記テープは引火しない。
本開示の更なる態様は、テープを処理するための上記システムを備える製造ラインに関し、ここで、上記結合剤バーンアウトステーションは第1のステーションであり、上記製造ラインは更に、上記第1のステーションから離間した第2のステーションを備える。上記第2のステーションは、上記テープの上記第2の部分の無機材料を少なくとも部分的に焼結して、上記テープの第3の部分を形成し、ここである瞬間において、上記テープは、上記第2の部分を経由して上記第3の部分に連続して接続された素地部分を含む。例えば、いくつかのこのような実施形態では、上記テープの上記第3の部分は、上記第2の部分より大幅に曲がりやすく、これにより、上記第3の部分の非破断最小曲げ半径は、上記第2の部分の非破断最小曲げ半径の半分未満となり、また上記素地部分は、上記第2の部分より大幅に曲がりやすく、これにより、上記素地部分の非破断最小曲げ半径は、上記第2の部分の上記非破断最小曲げ半径の半分未満となる。上記製造ラインは更に、上述のテープ分離システムを含んでよい。
本開示のいくつかの態様は、無機材料の粒体を含むテープ材料と、焼結ステーションとを備える、焼結システムに関する。上記焼結ステーションは、入口、出口、及び上記入口と上記出口との間に延在するチャネルを含む。ある瞬間において、上記テープ材料は、上記焼結ステーションの上記入口内へ、上記チャネルを通って、そして上記出口から外へと延在する。上記チャネル内の熱によって上記無機材料は焼結され、これにより、上記無機材料は、上記入口における第1の多孔率と、上記出口における、上記第1の多孔率未満である第2の多孔率とを有する。更に、上記テープ材料には、上記テープ材料が上記焼結ステーションの上記チャネルを通過する際に正の張力が印加され、これにより、焼結ひずみが軽減される。いくつかの実施形態では、上記テープ材料は、少なくとも1インチ(2.54cm)/分の速度で、上記焼結ステーションを通って移動する。いくつかの実施形態では、上記焼結ステーションの上記チャネルは、少なくとも2つの、独立して制御される加熱素子によって加熱され、上記加熱素子は、上記チャネルの温度が、上記焼結ステーションの上記入口から上記出口に向かう方向において、上記チャネルの長さに沿って上昇するような温度プロファイルを生成し、上記チャネル内の焼結温度は、800℃超である。いくつかの実施形態では、上記焼結システムは更に、上記焼結ステーションの上記チャネルに沿って配置された曲面を含み、ここで上記テープ材料は、上記テープ材料が上記焼結ステーションを通って移動する際に、上記曲面の周囲において、上記テープ材料の幅方向軸に関して曲がり、これによって上記テープ材料の形状に影響を及ぼす。いくつかの実施形態では、上記焼結ステーションの上記出口及び上記入口は、1つの略水平な平面内にあり、従って、上記焼結ステーションの上記出口と上記入口との間に画定される、水平面に対する角度は、10°未満となり、これにより、上記チャネルに対するガスの流れが少なくとも部分的に制御され;例えばいくつかのこのような実施形態では、上記焼結ステーションは更に、上記チャネルの下側表面を画定する、上向きチャネル表面と、上記チャネルの上側表面を画定する、下向きチャネル表面とを備え、ここで上記下向きチャネル表面は、上記テープ材料の上側表面付近に位置決めされ、これにより、上記テープ材料の上記上側表面と上記下向きチャネル表面との間の間隙は、0.5インチ(1.27cm)未満となり、これによって上記チャネル内のガスの流れが少なくとも部分的に制御される。上記テープ材料は特に、幅が広く、長さが長く、また厚さが薄いものであってよく、5ミリメートル超の幅、30センチメートル超の長さ、及び3マイクロメートル~1ミリメートルの厚さを有し、また上記テープの上記無機材料は、多結晶質セラミック材料及び合成鉱物のうちの少なくとも1つであってよい。
本開示の他の態様は、セラミックテープを製造するためのプロセスに関し、上記プロセスは、多結晶質セラミックを含むテープを、上記多結晶質セラミックの粒子を熱源に曝露して上記粒子間の焼結を誘発することにより、上記多結晶質セラミックの多孔率が20体積%未満となるまで焼結するステップを含む。上記テープは特に薄型であり、上記テープの厚さは500μm未満であり、これにより、熱浸透による迅速な焼結を促進する。更に、上記テープは、幅が少なくとも5mm、及び長さが少なくとも300cmである。いくつかの実施形態では、上記プロセスは更に、上記焼結するステップ中に上記テープに正の長さ方向の張力を印加するステップを含む。いくつかのこのような実施形態では、上記プロセスは更に、上記焼結するステップ中に、上記テープを、上記熱源に向かって、及びその後上記熱源から離すように、移動させるステップを含む。いくつかの実施形態では、上記焼結するステップの時間量は特に短く、合計2時間未満であり、これにより、上記セラミックテープ内での小さな粒体サイズの維持が補助され;例えばいくつかのこのような実施形態では、上記焼結するステップの合計時間は1時間未満であり、上記焼結するステップ後の上記多結晶質セラミックの密度は、体積で95%超の密度であり、及び/又は上記テープは、上記焼結するステップの後、閉鎖された細孔を備える。いくつかの実施形態では、上記テープは、上記焼結するステップ中に気化する揮発性成分を含み、上記揮発性成分は無機性であり、また上記テープは、上記焼結するステップの後に比べて、上記焼結するステップの前に、上記揮発性成分を少なくとも1体積%多く含む。
本開示の更に他の態様は、互いに対して焼結された無機材料の粒体を含む本体を備える、テープに関する。上記本体は、第1の主表面と第2の主表面との間に延在し、ここで上記本体は、上記第1の主表面と上記第2の主表面との間の距離として定義される厚さ、上記厚さに対して垂直な上記第1の主表面の第1の寸法として定義される幅、並びに上記厚さ及び上記幅の両方に対して垂直な上記第1の主表面の第2の寸法として定義される長さを有する。上記テープは長く、約300cm以上の長さを有する。上記テープは薄く、約3μm~約1mmの厚さを有する。上記テープは特に幅が広く、約5mm以上の幅を有する。ある例示的実施形態によると、上記テープの幾何学的一貫性は、以下のようなものである:長さ方向において1m離間した複数の場所で測定した場合の上記テープの幅の差は、100μm未満であり;上記テープの幅方向の中央に沿った、長さ方向において1m離間した複数の場所で測定した場合の、上記テープの厚さの差は、10μm未満である。いくつかの実施形態では、上記テープは平坦であるか、又は平坦化でき、従って、平行な平坦表面の間で押圧された長さ10cmの上記テープは、破断することなく、上記平行な平坦表面との接触から0.05mm以内まで平坦化され;例えばいくつかのこのような実施形態では、上記平行な平坦表面との接触から0.05mm以内まで平坦化された場合、上記テープは、そのヤング率の1%以下の最大面内応力を示す。いくつかの実施形態では、上記テープの上記第1の主表面及び上記第2の主表面は粒体プロファイルを有し、ここでは上記粒体がセラミックであり、またここでは、上記セラミックの少なくともいくつかの独立した粒体が、中間の非晶質材料がほとんど又は全く存在しない状態で、互いに隣接し、従って2つの隣接する粒体の間の非晶質材料の厚さは5nm未満となる。いくつかの実施形態では、上記本体は、体積で10%未満の多孔率を有し、及び/又は上記本体は、閉鎖された細孔を有する。いくつかの実施形態では、上記粒体はリチウムを含み、上記本体は、5×10-5S/cm超のイオン伝導度を有する。いくつかの実施形態では、上記本体は、5μm以下という特に微細な粒体サイズを有する。いくつかの実施形態では、上記テープは更に、上記本体の上記第1の主表面に連結された導電性金属を含み、いくつかのこのような実施形態では、上記本体は、反復パターンのビアを備え、上記導電性金属は反復パターンで配設される。いくつかの実施形態では、上記第1の主表面及び上記第2の主表面は、粒体プロファイルを有し、上記テープは更に、上記第1の主表面の上記粒体プロファイルの上に重なるコーティングを含み、上記コーティングの外向き表面は、上記第1の表面の上記粒体プロファイルより粗度が低く、ここで、上記第1の主表面に連結された上記導電性金属は、上記コーティングの上記外向き表面への結合を介して連結される。いくつかの実施形態では、上記無機材料は、900℃超の温度において12.5ポアズの粘度を有する。
本開示の更なる態様は、上述の実施形態のうちのいずれか1つのテープのロールに関し、ここで上記テープは、それ自体の周りに巻かれてそれ自体の上に重なり、30cm未満の半径まで曲げられる。
本開示の更に他の態様は、上述の実施形態のうちのいずれか1つのテープから切断された複数のシートに関する。
本開示のいくつかの態様は、互いに対して焼結されたセラミック粒体を含む本体を備える、テープに関し、上記本体は、第1の主表面と第2の主表面との間に延在し、ここで上記本体は、上記第1の主表面と上記第2の主表面との間の距離として定義される厚さ、上記厚さに対して垂直な上記第1の主表面の第1の寸法として定義される幅、並びに上記厚さ及び上記幅の両方に対して垂直な上記第1の主表面の第2の寸法として定義される長さを有し;ここでは上記テープは薄く、約3μm~約1mmの厚さを有し;またここでは、上記テープの上記第1の主表面及び上記第2の主表面は、粒体プロファイルを有し、上記セラミックの少なくともいくつかの独立した粒体が、中間の非晶質材料がほとんど又は全く存在しない状態で、互いに隣接し、従って2つの隣接する粒体の間の非晶質材料の厚さは5nm未満となる。
本開示のいくつかの態様は、互いに対して焼結されたセラミック粒体を含む本体を備える、テープに関し、上記本体は、第1の主表面と第2の主表面との間に延在し、ここで上記本体は、上記第1の主表面と上記第2の主表面との間の距離として定義される厚さ、上記厚さに対して垂直な上記第1の主表面の第1の寸法として定義される幅、並びに上記厚さ及び上記幅の両方に対して垂直な上記第1の主表面の第2の寸法として定義される長さを有し;上記テープは薄く、約3μm~約1mmの厚さを有し;上記テープの上記第1の主表面及び上記第2の主表面は、粒体プロファイルを有し;ここでは上記粒体はリチウムを含み、上記本体は、5×10-5S/cm超のイオン伝導度を有する。
更なる特徴及び利点は、以下の「発明を実施するための形態」に記載され、またその一部は、当業者には「発明を実施するための形態」から容易に明らかとなり、又は本記載及び本出願の請求項、並びに添付の図面に記載された通りに実施形態を実践することにより認識されるだろう。
上述の「発明の概要」及び以下の「発明を実施するための形態」はいずれも単なる例示であり、請求項の性質及び特徴を理解するための概観又は枠組みを提供することを意図したものであることを理解されたい。
添付の図面は、更なる理解を提供するために含まれており、本明細書に組み込まれて本明細書の一部を構成する。図面は、1つ以上の実施形態を図示しており、本記載と併せて、様々な実施形態の原理及び動作を説明する役割を果たす。
制御下の素地リボン張力印加及び本明細書に記載の他の技術等の、本明細書で開示される技術を用いずに形成された、ひずみが発生した焼結済みセラミックテープ材料の例 不均一な焼結を引き起こす温度プロファイル及びテープ速度を利用して生産された、ひずみが発生した焼結済みセラミックテープ材料の例 ある例示的実施形態による、焼結済み物品を生産するためのロール・ツー・ロールシステム ある例示的実施形態による、図3に示す分離システムのある実施形態の拡大図 ある例示的実施形態による、連続テープ材料の側面図 ある例示的実施形態による、真空ドラムの斜視図 ある例示的実施形態による、図6に示す真空ドラムの拡大図 ある例示的実施形態による、図4に示す剥離器の拡大図 ある例示的実施形態による、焼結のために素地テープを準備するための製造ラインのステーションの概念的な側面図 ある例示的実施形態による、図9のステーションの正面斜視図 ある例示的実施形態による、焼結のために素地テープを少なくとも部分的に準備するために、素地テープを処理するための方法のブロック図 ある例示的実施形態による、図3のシステムの結合剤除去ステーション及び焼結ステーションの詳細図 ある例示的実施形態による、図12の焼結炉のチャネル内のテープ材料の詳細図 ある例示的実施形態による、焼結炉を出る焼結済みテープ材料 ある例示的実施形態による、加熱システムを示す、図12の焼結ステーションの図 ある例示的実施形態による異なる複数のテープ輸送速度に関する、距離に対する予想熱プロファイル及びモデル化された焼結収縮のグラフ ある例示的実施形態による、焼結炉のチャネルに沿って投射された予想焼結温度プロファイル ある例示的実施形態による、インライン複数炉型の焼結ステーション ある例示的実施形態による、図18の2つの焼結炉に関する予想温度プロファイル ある例示的実施形態による、2つの並列生産システムを有する焼結システム 各温度に関するデータに当てはめた曲線を含む、様々な温度及び温度における時間での、ジルコニアテープの焼結収縮のグラフ 様々な温度及び様々な温度における時間での、ジルコニアテープの焼結収縮の数学関数の曲線当てはめのグラフ 加熱ゾーンの個数と、パスの回数と、テープ幅の関数としてのテープ輸送速度との関数としての、焼結中のジルコニアテープの中心線におけるピーク応力のモデル化されたグラフ 加熱ゾーンの個数と、パスの回数と、テープ幅の関数としてのテープ輸送速度との関数としての、焼結中のジルコニアテープの縁部におけるピーク応力のモデル化されたグラフ 2つのテープ輸送速度に関する、単一の高温ゾーンを通る2回のパスを用いた焼結中のジルコニアテープの収縮のモデル化されたグラフ 2つのテープ輸送速度に関する、単一の高温ゾーンを通る2回のパスを用いた焼結中のジルコニアテープの応力のモデル化されたグラフ 2つのテープ輸送速度に関する、10個の高温ゾーンを通る2回のパスを用いた焼結中のジルコニアテープの収縮のモデル化されたグラフ 2つのテープ輸送速度及び様々なテープ幅に関する、10個の高温ゾーンを通る2回のパスを用いた焼結中のジルコニアテープの応力(MPa)のモデル化されたグラフ ある例示的実施形態による、焼結済み物品の一部分の斜視図 焼結済み物品の非研磨表面のデジタル画像 図30Aの焼結済み物品の概念的な側部プロファイル 焼結済み物品の研磨済み表面のデジタル画像 図31Aの焼結済み物品の概念的な側部プロファイル 1つ以上の実施形態による、焼結済み物品の幅に沿った側面図 薄板曲げ応力の方程式を説明するための図 ある例示的実施形態による、ロール化済み焼結済み物品の側面斜視図 ある例示的実施形態による、図34Aのロール化済み焼結済み物品の断面図 平坦化用平面の上方において測定された高さを示す、平坦化される前の実施例5の焼結済み物品の高さプロファイル 平坦化用平面の上方において測定された高さを示す、平坦化される前の実施例6の焼結済み物品の高さプロファイル 平坦化用平面の上方において測定された高さを示す、平坦化される前の比較例7の焼結済み物品の高さプロファイル 平坦化用平面の上方において測定された高さを示す、平坦化される前の比較例8の焼結済み物品の高さプロファイル 実施例5~6及び比較例7~8それぞれの、平坦化用平面の上方における最大高さのプロット 実施例5~6及び比較例7~8の焼結済み物品を平坦化するために必要な力のプロット 実施例5~6及び比較例7~8の焼結済み物品を平坦化するために必要な圧力のプロット 実施例5~6及び比較例7~8の焼結済み物品の、平坦化後の最大面内応力のプロット 平坦化後の実施例5の焼結済み物品の底面の、測定された応力を示す変形プロット 平坦化後の実施例5の焼結済み物品の上面の、測定された応力を示す変形プロット 平坦化後の実施例6の焼結済み物品の底面の、測定された応力を示す変形プロット 平坦化後の実施例6の焼結済み物品の上面の、測定された応力を示す変形プロット 平坦化後の比較例7の焼結済み物品の底面の、測定された応力を示す変形プロット 平坦化後の比較例7の焼結済み物品の上面の、測定された応力を示す変形プロット 平坦化後の比較例8の焼結済み物品の底面の、測定された応力を示す変形プロット 平坦化後の比較例8の焼結済み物品の上面の、測定された応力を示す変形プロット ある例示的実施形態による、焼結済み物品を含むパッケージのセグメントの断面図 ある例示的実施形態による、焼結済み物品を含むパッケージのセグメントの長さ方向断面図 ある例示的実施形態による、焼結済み物品を含むパッケージのセグメントの別の断面図 ある例示的実施形態による、焼結済み物品を含むパッケージを作製するための例示的方法 ある例示的実施形態による、焼結済み物品を含むパッケージを作製するための別の例示的方法 ある例示的実施形態による、焼結済み物品及び「フリップチップ(flip‐chip)」構成を含むパッケージのセグメントの例示的な断面図 ある例示的実施形態による、焼結済み物品及び「フリップチップ」構成を含むパッケージのセグメントの別の例示的な断面図 ある例示的実施形態による、焼結済み物品及び「フリップチップ」構成を含むパッケージのセグメントの更に別の例示的な断面図 ある例示的実施形態による、焼結済み物品を含むパッケージのセグメントの別の断面図 ある例示的実施形態による、ある長さのスレッディング(threading)材料を含む焼結済み物品を生産するためのロール・ツー・ロールシステム及び関連するプロセス ある例示的実施形態による、図56のシステムにおけるある長さのスレッディング材料とテープ材料との間の結合を示す詳細図 ある例示的実施形態による、ある連続長さのテープ材料の長手方向に沿った湾曲を形成するよう構成された、焼結ステーションを含むロール・ツー・ロールシステム ある例示的実施形態による、焼結用チャネルの湾曲した下側表面を画定するインサートを含む焼結ステーションの詳細図 ある例示的実施形態による、焼結用チャネルを画定する、対向する湾曲した上側及び下側表面を有する、焼結ステーションのチャネルの側面図 ある例示的実施形態による、焼結用チャネルに沿って曲率半径を変動させる焼結ステーションの側面概略図 ある例示的実施形態による、焼結用チャネルの曲面を画定する湾曲した上側表面を有する、気体軸受 ある例示的実施形態による、焼結中にある連続長さのテープに長手方向の湾曲を形成するためのローラの配置 ある例示的実施形態による、焼結中にある連続長さのテープに複数の長手方向の湾曲を形成するための、複数のローラを含む構成 ある例示的実施形態による、焼結中にある連続長さのテープに長手方向の湾曲を形成するための、フリーループ構成 焼結中にテープが曲がる際に生成される平坦化を実証する、焼結済みテープのデジタル画像 ある例示的実施形態による、焼結済みセラミックテープのロールのデジタル画像 ある例示的実施形態による、焼結済みセラミックテープのロールのデジタル画像 別の実施形態による、焼結済みセラミックテープのロールのデジタル画像 更に別の実施形態による、焼結済みセラミックテープのロールのデジタル画像 ある例示的実施形態による、従来のバッチ焼成及び本開示の技術に関する焼結時間のグラフ 例示的実施形態による、焼結済み物品の表面の上面図 例示的実施形態による、焼結済み物品の表面の上面図 例示的実施形態による、焼結済み物品の表面の側面斜視図 例示的実施形態による、焼結済み物品の表面の側面斜視図 例示的実施形態による、焼結済み物品の粒界の顕微鏡写真 例示的実施形態による、焼結済み物品の粒界の顕微鏡写真 例示的実施形態による、焼結済み物品の粒界の顕微鏡写真 他の例示的実施形態による、焼結済み物品の粒界の顕微鏡写真 他の例示的実施形態による、焼結済み物品の粒界の顕微鏡写真 例示的実施形態による、焼結済み物品の表面の上面図 例示的実施形態による、焼結済み物品の表面の上面図 ある例示的実施形態による、焼結済み物品のテープのデジタル画像 例示的実施形態による、焼結済み物品の側面図 例示的実施形態による、焼結済み物品の側面図 ある例示的実施形態による、焼結済み物品の側面図 焼結材料が非晶質に見える別の例示的実施形態による、焼結済み物品の側面図 複数の組成のグラフ 例示的実施形態による、焼結済み物品の表面の側面斜視図 例示的実施形態による、焼結済み物品の表面の側面斜視図 例示的実施形態による、非焼結済み素地材料の表面の側面斜視図 例示的実施形態による、非焼結済み素地材料の表面の側面斜視図 例示的実施形態による、焼結済み材料の側面斜視図 例示的実施形態による、焼結済み材料の側面斜視図 様々な材料に関する、温度に対する粘度のグラフ ある例示的実施形態による、焼結炉を通した温度プロファイルのグラフ 図88Aの焼結炉の概略図 別の例示的実施形態による、焼結炉の概略図 別の例示的実施形態による、焼結炉を通した温度プロファイルのグラフ 図90Aの焼結炉の概略図 例示的実施形態による、焼結済み材料の側面斜視図 例示的実施形態による、焼結済み材料の側面斜視図 ある例示的実施形態による、焼結済み材料の側面図 ある例示的実施形態による、バッテリの形態の電子部品の概略図 例示的実施形態による、焼結スケジュールのグラフ 例示的実施形態による、焼結スケジュールのグラフ 例示的実施形態による、複数の焼結済み物品に関する、イオン伝導度に対する焼結温度のグラフ 例示的実施形態による、複数の焼結済み物品に関する、立方晶ガーネットのパーセンテージに対する焼結温度のグラフ 例示的実施形態による、焼結済み材料の表面の側面斜視図 例示的実施形態による、焼結済み材料の表面の側面斜視図 ある例示的実施形態による、焼結済み材料の一方の側部の表面の上面図 ある例示的実施形態による、焼結済み材料の一方の側部の表面の上面図 図100Aの焼結済み材料のもう一方の側部の表面の上面図 図100Bの焼結済み材料のもう一方の側部の表面の上面図 ある例示的実施形態による、焼結済み材料の側面図 ある例示的実施形態による、平滑な表面を提供する層を有する焼結済み材料のデジタル画像 ある例示的実施形態による、焼結済み物品の積層体の形態の電子部品の概略図
図面を全体的に参照して、長さが長く、薄く、及び/又は幅が広い焼結済み物品を製造するためのシステム及びプロセスの様々な実施形態を図示及び説明する。ここで出願人は、用語「焼結する(sinter)」によって、(例えば粉末化された又は粒体材料の)粒子又は粒体を、中実の又は多孔質の本体へと癒合させる(例えば互いに直接結合させる)プロセスであって、上記粒子又は粒体を、上記粒子又は粒体の結晶構造が癒合後の本体内に残るよう、上記粒子又は粒体を完全に液化させることなく、加熱することによって行われる、プロセスを指すが、本発明の技術の態様は、無機材料の処理の分野の当業者には直感的に分かるように、従来の製造技法を用いて処理するのが困難又は不可能であるもの等の、非晶質材料の製造にも使用できる。更に、出願人は、従来の技術を利用して達成することはこれまでできなかった本明細書に記載のシステム/プロセスを用いて、多様な特性を有する新規の焼結済み物品を形成できることを発見した。具体的には、出願人は、焼結済み物品の形成中に材料が経験する多様な条件/力の極めて正確なレベルの制御を実現でき、かつこの正確な制御/材料の取り扱いにより、従来のシステムでは達成できないと考えられてきた、長さが長く、薄く、及び/又は幅が広い焼結済み材料の生産を可能とする、材料取り扱いシステム及びプロセスを開発した。更に、本明細書で開示される技術を用いて製造される物品は、他の独特の品質、例えば:欠陥の個数が少ないことによるもの等であってよい、強度;制御された空気流及び焼結期間、並びに誘電率及び不浸透性等の純度に関連する特性によるもの等であってよい、純度;平坦性、厚さ、粗度、粒体サイズ等に関する、長さ方向及び/又は幅方向等に沿った一貫性;並びに他の独特の属性を有してよい。
一般に、本明細書に記載のシステムは、スプール又はリール上に巻き付けられた、ウェブ支持型素地テープの入力ロールを利用する。以下で更に詳細に説明するように、ウェブ支持型素地テープは、有機結合剤材料によって結合された無機材料の粒体(例えばセラミック材料の粒体、多結晶質セラミック材料の粒体、金属粒体、又は合成材料の粒体等)を含む素地テープ材料を含み、上記素地テープ材料はキャリアウェブ(例えばポリマー材料のシート)上で支持される。ウェブ支持型素地テープの入力ロールの巻きを解き、キャリアウェブ/裏張りを、素地テープ材料から注意深く分離させる。出願人は、素地テープからのキャリアウェブの分離を、素地テープの歪みをほとんど又は全く生じさせずに正確に制御することにより、その長さに沿って非常に一貫した/制御された様々な特性(例えば厚さ、平坦性、密度、形状等)を有する焼結済み物品を生産できることを発見した。そうは言っても、他の考えられる実施形態では、焼結前に例えば製造ラインに沿って直線状に形成される場合等においては、素地テープはウェブで支持されていなくてもよく、及び/又はロールでなくてもよい。
キャリアウェブの除去に続いて、(有機結合剤材料で支持された無機材料の粒体を含む)自立型素地テープを、結合剤除去ステーションを通して移動させる。一般に、結合剤除去ステーションは、結合剤除去ステーションを出るテープ材料が非結合テープ材料となるように有機結合剤を除去する又は有機結合剤を化学的に変化させる様式で、自立型素地テープに熱を印加する。出願人は、「非結合(unbound)」によって、結合剤材料が除去されたことを表すが、非結合テープは依然として、例えば燃焼した結合剤のチャーによって、又は無機粒子間の織り込み若しくは結合によって、又は他の手段(例えば静電気力、空気圧)によって、一体に保持され得る。有機結合剤の除去後、非結合テープ材料を焼結ステーション内へと移動させ、この焼結ステーションは、非結合テープ材料に熱を印加し、この熱は、無機粒子を焼結して(例えば完全に焼結して、又は部分的に焼結して)焼結済み物品を形成し、この焼結済み物品は焼結ステーションを出る。
出願人は、驚くべきことに:有機結合剤が除去された後であっても、無機材料の粒体が、それ自体を非結合テープ材料として支持すること;及び/又は上述のようにテープが他の方法で支持され得ることを発見した。しかしながら、有機結合剤の除去後、非結合テープ材料は、焼結前には極めて繊細である、又は焼結前には極めて繊細であり得る。従って出願人は更に、繊細な支持されていないテープ材料を、極めて高品質の焼結済み物品の生産を実現できるような様式で取り扱うことを可能とする、新規の結合剤除去及び焼結ステーション構成を確認した。(出願人は、直前の文中の「支持されていない(unsupported)」によって、結合剤の除去又は燃焼後に有機結合剤によって支持されていないことを意味する。)特に、ロール・ツー・ロール方式の取り扱いに好適な、幅が広く、長さが長く、高品質な焼結済み物品を、有意な歪みを導入することなく、又は結合剤の除去若しくは焼結中に物品を破損させることなく、生産する。
特に、出願人は、結合剤除去ステーション及び/又は焼結ステーション内の空気流(例えば熱勾配によって生成された乱流空気流)が、テープ材料に衝突して、テープ材料の歪み又は破損をを引き起こし得ることを確認した。更に出願人は、結合剤除去ステーション及び/又は焼結ステーション内の、極めて水平な処理経路により、乱流空気流が低減又は排除され、これにより、有意な歪みを有しない焼結済み物品が生産される、又は生産され得ることを発見した。更に出願人は、空気流に基づく歪みの排除は、幅が広い焼結済み物品(例えば、幅5mm超の物品)の形成時に特に重要であると判断している。というのは、出願人は、テープ材料の幅が増大するに従って、空気流に基づく歪みの発生しやすさが上昇すると考えているためである。更に出願人は、空気流に基づく歪みの排除又は低減は、ロール・ツー・ロール処理を可能とするために特に重要であると判断している。というのは出願人は、わずかなレベルの歪みであっても、焼結済み物品の破損を引き起こし得る、又はそうでなくても、取り込みリール(テープアップリールとも呼ばれる)上での適切な巻き取りを不可能にすることを発見したためである。
結合剤の除去及び/又は焼結中のテープの水平方向位置決めの同定は、無機素地材料及び過去の焼結技術を考えると、驚くべき発見であった。例えば、いくつかのテープ材料焼結は、重力を利用して、繊細なテープ材料を、システムの加熱ステップを通して牽引するための手段として、テープ材料の下向きに傾斜した位置決め(例えば12~20°の下向き傾斜)を用いてよく、これは恐らく、テープ材料をプロセスの加熱ステップを通して牽引するための、テープ材料にわたる均一に分布した力の印加を目的としたものである。
しかしながら、出願人は、焼結システムの加熱部分を傾斜させて位置決めすると、高温空気が、テープ材料を保持する加熱システムのチャネルを通って上昇する際に、乱流空気流が形成され得ることを発見した。よって、この流れる空気がテープ材料に衝突し、場合によっては歪みを形成し、又はテープを破損させる可能性がある。更に出願人は、水平でない加熱構成を用いて形成された焼結済みテープ内に生成される歪みに基づく空気流の入射が、テープ材料の幅が増大するに従って増大し得ることを発見した。そうは言っても、本明細書で開示される技術の態様は、結合剤除去ステーション等の、水平でない加熱チャネル又はシステムを含むシステムと共に使用してもよい。更に、本明細書で開示される技術の態様、例えば独特の材料及び形状因子(例えばガーネット若しくは他の材料の薄型リボン、又は他の幾何学的形状)を、水平でない加熱チャネル又はシステムを用いて製造することもできる。
出願人は、傾斜構成を用いて、より幅が広いテープ(例えば幅5mm超のテープ、及び具体的には、厚さ25マイクロメートル、幅32mmの、ジルコニア‐3モル%Y無機粒子を含む素地テープ)を焼結することを試みた。図1に示すように、1250℃で部分的に焼結した場合、形成された部分焼結済み物品は、テープの長さに沿って、有意な、かつ周期的な歪み又は気泡を有していた。歪みの高さは1mmを超える程度のものであり、直径3~6インチ(7.62~15.24cm)のコア上にテープを巻き付けるのを妨げるほどに大きかった。出願人は、テープの処理の昇温ステージ中に(例えば焼結及び結合剤の除去中に)、高温の空気が、テープの下側の傾斜した支持表面に上向きに吹き付けられるため、乱流空気流がテープを上向きに押す際に、上記気泡が形成されたと考えている。
空気流の制御に加えて、出願人は、高品質の焼結済み物品を形成するために、結合剤除去ステーション及び/又は焼結ステーション内の熱プロファイルの制御が重要である、又は重要となり得ることを確認した。特に、出願人は、幅が広いテープ材料を、本明細書に記載のもの等のロール・ツー・ロールプロセスで加熱する場合、特に焼結中にテープ材料が曝露される熱応力を正確に制御することによって、少なくともいくつかの薄く幅広の無機材料のテープといった本明細書で開示される少なくともいくつかの材料及び/又は形状に関して、上記制御を行わなければ、焼結中にテープが収縮/高密度化する際に発生し得る、歪み又は破損を制限する必要があることを発見した。図2に示す例のように、未焼結材料から焼結済み材料への遷移状態のテープの一部分を含む、セラミックテープ(具体的にはアルミナテープ)のセクションは、高温焼結ゾーン内で温度が急激に上昇するプロセスを用いて形成されたものとして示されている。図2に示すように、この急激な温度上昇は、焼結ゾーンでの急速な温度上昇に続いてテープが焼結される際のテープ材料内の応力によって、歪み又はウェブ横断方向の形状を引き起こす、又は引き起こし得る。そうは言っても、異なる材料(例えばリチウムガーネット)に関するもの等の他の実施形態では、酸化又は不純物への曝露の低減によるもの等の急激な温度上昇は有益であり得、また歪みを、例えば空気流の制御及びより狭いテープの幅といった、他の因子によって制御できる。
よって、以下で図示及び説明されるように、出願人は、独立して制御される複数の加熱ゾーンを有する焼結炉、及び/又は複数の独立して制御される焼結炉を利用することによって、幅が広く長さが長いテープ材料のセグメントを、有意な歪み及び/又は破損を伴わずに、高いプロセススループットレートで、焼結できると判断した。同様に、結合剤除去炉及び焼結炉は、テープが本明細書に記載のシステム内の異なる複数の昇温ゾーン間を移行する際にテープが曝露されるサーマルショック(例えば急激な温度勾配への曝露)を制限するよう、設計され、また互いに対して位置決めされる。
焼結に続いて、幅が広い焼結済みテープを、焼結済みテープ材料のロールを形成する取り込み用リール上に巻くか、又は巻くことができる。考えられる複数の実施形態では、上記ロールは円筒状であり、又は楕円、頂点が丸みを帯びた三角形等の非円形の幾何学的形状の周りに巻く場合等には、その他の形状である。本明細書に記載の1つ以上のシステムによって形成されるテープの高い品質(例えば歪みの少なさ)により、少なくともいくつかの実施形態では、焼結済みテープのロールを、後続の製造プロセスにおいて便利かつ効率的に使用できる、例えばロール・ツー・ロール製造プロセスにおいて下流の基板として使用できるような様式で、テープをロールへと巻くことができる。出願人は、本明細書に記載の1つ以上のシステムによって生産されるテープ又は他の物品の、幅、長さ、厚さ、形状及び/若しくは平坦性の高いレベルの一貫性、並びに/又は他の属性(純度、強度、不浸透性、誘電性能)により、取り込み用リール上へのテープの巻き付けが可能となることを発見した。対照的に、高いレベルの歪み又は不規則性を有するテープは、破損する、若しくは歪んで一貫性のないテープロールを形成することになるか、又はそのようになる傾向を有し得、焼結済みテープのロールを形成するためにリール上に取り込むには不適となり得る。そうは言っても、いくつかの考えられる水平でない焼結システム、特に本明細書で開示される技術を採用する焼結システムにより、例えば本明細書で開示されるように、空気流が制御され、テープが十分に薄く、かつ十分な張力を印加され、焼結の速度及び温度が制御される場合等には、歪みのないテープを実現できる。
最後に、いくつかの従来の焼結済み物品は、個別の未焼結片又は素地テープの片を、セッターボードと呼ばれる表面上に配置し、有機結合剤を燃焼させて無機粒体を焼結する炉の中に入れるシステムで形成される。出願人は、焼結済み物品のロール・ツー・ロール方式の形成が、個別の、従来のように焼結された物品では見られない、多数の利点を提供することを確認した。例えば、焼結済み物品の、幅が広い巻かれたロールを、高いスループット速度(例えば、6インチ(15.24cm)/分以上の速度)で形成できる。更に、本明細書に記載の1つ以上のシステム/プロセスは、幅が広く薄い焼結済み材料(例えば薄型セラミック及び/又は焼結済み物品)を形成し、これは、上記焼結済み物品を基板として使用して、小型かつ低コストのデバイス(例えば半導体デバイス、バッテリ等)を形成することを可能とする。同様に、焼結済み材料のロールを提供することにより、高スループットの下流の製造プロセスへの入力基板ロールとして焼結済み材料を使用することを可能とし、更に、本明細書に記載の焼結済み物品を利用して、下流の物品を高速及び/又は低コストで形成することを可能とする。
システムの概観
図3を参照すると、ある例示的実施形態による、焼結済みテープ物品を生産するためのシステム10が図示されている。一般に、素地テープ材料は、入力側、分離システム12においてシステム10に供給され、そして上記素地テープ材料は、概ね処理方向14に、システム10を通って移動する。分離システム12内には、連続テープ材料18のソース16(「連続(continuous)」は、本明細書で開示されているような長い長さ、例えば300cm以上を意味し、これはスプール又はベルトの形状で提供できる)が設けられ、システム10の下流部分へと供給される。
一般に、連続テープ材料18は、素地テープ材料20の層を含み、これは、有機結合剤(例えばポリビニルブチラール、ジブチルフタレート、ポリアルキルカルボネート、アクリルポリマー、ポリエステル、シリコーン等)によって一体に結合された、無機性の焼結可能な材料の粒体を含む。連続テープ材料18の素地テープ材料20は、キャリアウェブ又は裏張り層22上に支持されるか、又は支持できる。以下で更に詳細に記載されるように、具体的実施形態では、システム10は、長さが長く、幅が広く、及び/又は薄い焼結済み物品を形成するよう構成され、このような実施形態では、システム10に入ってくる素地テープ材料20もまた、比較的長く、幅が広く、及び/又は薄い。例えば具体的実施形態では、素地テープ材料20は、5mm超、10mm超、40mm超又は125mm超の幅を有する。具体的実施形態では、素地テープ材料20は、10メートル(m)超、具体的には30m超、より具体的には60m超の長さを有する。具体的実施形態では、素地テープ材料20は、3マイクロメートル~1ミリメートルの厚さを有する。更に、入ってくる素地テープ材料20は、システム10が生産する焼結済み物品の多孔率より高い多孔率を有する。他の考えられる実施形態では、素地テープ材料20は、5mm未満、例えば少なくとも0.5mm、少なくとも1mm、少なくとも2.5mm、又はいくつかのこのような実施形態では0.5mm未満の幅を有してよい。同様に、テープは、別の厚さ及び/又は長さ及び/又は多孔率を有してよい。いくつかの実施形態では、テープ材料20は、その長さに対して垂直な断面が長方形でなくてよく、例えば円形、楕円形、平行四辺形、ひし形等であってよく、ここで、このような実施形態の幅は、長さに対して垂直な最大断面寸法を指し、厚さは、長さに対して垂直な最小断面寸法である。
分離システム12は、キャリアウェブ除去ステーション24を含む。キャリアウェブ除去ステーション24では、キャリアウェブ22が素地テープ材料20から分離され、除去されたキャリアウェブ22は、取り込み用リール26上に巻かれる、又は巻くことができる。一般に、キャリアウェブ除去ステーション24は:真空ドラムを含むことができる張力遮断器28と;素地テープ材料20を歪ませず、又は圧縮せず、かつ取り込み用リール26によって生成されるキャリアウェブ22内の張力を素地テープ20から遮断する様式で、キャリアウェブ22を除去する、剥離器30とを含む。キャリアウェブ22からの分離に続いて、素地テープ20は、有機結合剤材料によって支持された無機材料の粒体を含むものの、システム10を通した下流の処理中にテープ材料を一体に保持するためのキャリアウェブ又は他の支持構造体を含まない、自立型素地テープとなる、又は自立型素地テープとなることができる。
自立型素地テープ20は、超低張力制御システム32内へと移動する、又は移動できる。一般に、自立型素地テープ20は、比較的繊細な構造体であり、これは、様々なスプール、リール、ローラ等の動作によって、システム10を通して牽引されている。この牽引作用は、自立型素地テープ20に張力を印加する。出願人は、均一で低レベル(テープのサイズ及び結合剤の強度に応じて、例えばグラムを単位とするレベル;0.1グラムから1kg未満;少なくとも1グラム、少なくとも5グラム、及び/又は100グラム以下)の張力を自立型素地テープ20に印加することが、有利である、又は有利であり得ることを発見した。というのは、これにより、最終的な焼結済み物品の横幅形状及び平坦性といった様々な特性が改善されるためである。しかしながら、自立型素地テープ20の繊細な性質(これは以下で更に詳細に説明するように、結合剤の除去後に更に繊細になる)のために、テープ20の結合剤除去/焼結中の歪みを制限するために十分な張力をテープ20に供給しながら、テープ20が破損しないことを保証するために最大張力を制限するように、上記低レベルの張力を正確に制御する。そうは言っても、他の考えられる実施形態では、例えばより強靭なテープに対してはより高い張力を、又はテープ自体の重量による張力以外にはゼロである張力を、印加する。
1つ以上の実施形態では、図3に示すように、張力制御システム32は、低重量かつ低慣性の炭素繊維ローラを利用する超低張力ダンサー33を含む。超低張力ダンサー33は、空気軸受を含んでよく、これは張力ダンサー33の炭素繊維ローラの低摩擦回転を促進する。他の実施形態では、材料のフリーループ又は真空ボックスを利用して、テープ20に、一貫した、グラムを単位とするレベルの張力を提供できる。
張力制御システム32に続いて、自立型素地テープ20は、結合剤除去ステーション34内へと移動する。一般に、結合剤除去ステーション34は、このステーション34によって形成されるチャネルに熱を送達する、1つ以上の加熱素子を含む。結合剤除去ステーション34内の熱は、自立型素地テープ20の有機結合剤材料の少なくとも一部分を、化学的に変化させ、及び/又は除去し、これにより、非結合テープ36が結合剤除去ステーション34を出る。一般に、非結合テープ36は、有機結合剤がほとんど又は全く残留しない状態で、無機材料の粒体を含む。出願人は、非結合テープ36が、有機結合剤の不在下であっても、張力制御、空気流制御、焼結ステーション38に対する結合剤除去ステーション34の近接度、及びこれらの間の温度制御、図3に示すようなテープとステーション34、38との配向及び位置合わせを利用して、非結合テープ36を焼結ステーション38内へと移動させることができるような様式で、それ自体を一体として保持することを発見した。
一般に、結合剤除去ステーション34は、テープ20が結合剤除去ステーション34を横断する際に、テープ20に小さな歪みしか提供しないよう、配設及び制御される。更に、結合剤除去ステーション34は加熱素子を含んでよく、これにより、あまりに多くの熱をあまりに急速に印加することなく(そうでなければ有機結合剤の化合物を点火してしまう恐れがある)、揮発性有機化合物を除去できる。点火は、空気流によって制御することもできる。
更に、結合剤除去ステーション34は、結合剤除去ステーション34から焼結ステーション38内への移動中に非結合テープ36が曝露されるサーマルショック又は温度勾配が小さくなるように、焼結ステーション38に対して位置決めされる(例えば離間しているものの、直線状に位置合わせされた経路と、互いに位置合わせされた並びに/又は互いに1m以内、10cm以内、2cm以内、及び/若しくはそれ以下に近接したそれぞれの開口とを備える)。出願人は、非結合テープ36の繊細な性質により、ステーション34とステーション38との間でテープ36が経験するサーマルショックを制限すると、ステーション34とステーション38との間で経験される温度勾配によって発生することになる歪みが制限/排除されるため、平坦な、一貫した、及び/又は歪みのない、焼結済みテープの生産が更に提供されることを発見した。
様々な実施形態では、ステーション34内の温度を正確に制御することにより、ステーション34を出るテープ36の所望の特性を達成する。様々な実施形態では、ステーション34内の温度は、200セルシウス度(℃)(又は約200℃)~500℃(又は約500℃)であり、ステーション34を加熱することによって、結合剤除去ステーション34を出るテープ材料内に結合剤がごくわずかしか又は全く残らないような温度プロファイルを、その長さに沿って提供する。更に、いくつかの実施形態では、無機材料の粒体のある程度の焼結(例えば収縮、密度の上昇、多孔率の低下等)が、結合剤除去ステーション34の通過中に発生し得る。
ステーション34における結合剤の除去に続いて、非結合テープ36は、焼結ステーション38内へと移動する。一般に、焼結ステーション38は、1つ以上の加熱素子(例えば以下の加熱素子及びそのタイプに関する更なる記載を参照)を含み、これは、焼結ステーション38を、非結合テープ36の無機材料の粒体の焼結を引き起こす、500℃超(例えば500℃(又は約500℃)~3200℃(又は約3200℃、例えば3200℃±10%))に加熱する。一般に、無機材料の多孔率は焼結中に低下する。この多孔率の低下は、例えば焼結ステーション38内で材料を焼結する際に、テープ材料の収縮(例えば幅、厚さ、長さ等の減少)も引き起こし得る。一部の材料では、多孔率の有意な減少又は有意な収縮を伴わずに、焼結中に弾性率が上昇し得、強度が上昇し得、多孔率の形態が変化し得る。いくつかの実施形態では、焼結ステーション38は、テープ36を、完全にではないが部分的に焼結された素焼き材料へと変換する。
出願人は、非結合テープ36が焼結ステーション38を通過する際に、非結合テープ36が、非結合テープ36が焼結中に遭遇する様々な力によって引き起こされ得る変形又は破損を受けやすいことを発見した。特に上述のように、出願人は、焼結ステーション38を通る乱流空気流によって引き起こされる力が、有意な変形の1つの原因であることを発見し、また出願人は、焼結中のテープ36内の応力が、変形の別の有意な潜在的原因であることを発見した。これらの発見に基づいて、出願人は、許容可能な低いレベルの歪みを有する焼結済み物品を生産するためにこれらの力を制限するよう、多様な方法で焼結ステーション38を配設又は構成した。
特に図3に示すように、焼結ステーション38は、略水平な配置で配設され、これにより、非結合テープ36は、略水平な配向でステーション38を通過する。出願人は、焼結ステーション38の略水平な配置を維持することによって、乱流空気流を低減又は最小化でき、これが、焼結ステーション38の出力における、低いレベルの変形を有する、低いレベルのテープ横断方向形状を有する、及び/又は平坦である、焼結済みテープ材料の形成につながることを発見した。様々な実施形態では、出願人は、様々な幅広のテープ材料に関して、乱流の小ささ及びその結果としての歪みの小ささは、水平面に対するテープ材料の処理経路の角度を10°未満、具体的には3°未満、更に具体的には1°未満に維持することによって達成できると考えている。いくつかの実施形態では、テープは、以下に記載されるように、概ね水平な円弧状の経路上を移動してよい。更に他の実施形態では、焼結ステーション38を通る経路は、上述のように、水平線の上方に10°より大きく傾斜していてよい。
図3の実施形態において示されているように、結合剤除去ステーション34はまた、略水平な位置に位置決めされ、これにより、乱流空気流は、結合剤除去ステーション34を用いた加熱中に、歪み、破損等を引き起こさない。同様に、結合剤除去ステーション34は、焼結ステーション38と垂直方向に(即ちそれぞれの開口が位置合わせされ、互いに対面するように)位置合わせされ、これにより、非結合テープ36は、テープ36が結合剤除去ステーション34から焼結ステーション38へと移動する際、水平位置に保たれる。
更に、出願人は、非結合テープ36が、急激な温度上昇/下降を有する、焼結ステーション38の長さに沿った温度プロファイルに曝露される場合、高レベルの応力がテープ36内で生成され、又は生成され得、これは、焼結中にテープ36の変形又は破損を引き起こす、又は引き起こし得ることを発見した。更に、出願人は、焼結応力が、テープ36の幅が増大するに従って、変形のリスクを上昇させることを発見した。よって、これらの発見に基づいて、出願人は、焼結ステーション38を、複数の独立して制御可能な加熱素子(及び場合によっては複数の焼結炉)と共に利用することによって、テープ36による応力をある閾値未満に維持する、焼結ステーション38の長さに沿った温度プロファイルを生成できると判断した。この閾値は、出願人が、特定のテープ構成に基づいて変形又は破損を引き起こす傾向があると発見したものである。
焼結ステーション38の通過に続いて、部分的に又は完全に焼結されたテープ材料40は、焼結ステーション38を出て、出力側の取り込みシステム42に入る。焼結済みテープ材料40は、取り込み用リール44上に巻き付けられる。層間支持材料46は、リール48から繰り出される。支持材料46は取り込み用リール44に巻き付けられ、これにより、支持材料46の層は、取り込み用リール44上において、焼結済みテープ材料40の各層又は少なくともいくつかの層の間に位置する、又は位置してよい。この配置は、支持された焼結済みテープ材料のロール又はスプール50を形成する。一般に、支持材料46は、焼結済みテープ材料40を比較的低い巻き付け張力で取り込み用リール44上に保持することを可能とする、適合性の、比較的高摩擦の材料である。支持材料46の適合性により、テープ40(焼結済みテープ材料40)内に存在し得るウェブ横断方向の形状を補償できる。支持材料46はまた、リール44上のテープ40(焼結済みテープ材料40)の隣接する層間の摩擦を増大させ、これは、テープ40(焼結済みテープ材料40)がリール44から滑る/伸縮するのを制限する。出願人は、支持材料46を用いなければ、焼結済みテープ材料40は、スプール50から滑り落ちる(例えば伸縮する)傾向があると考えており、これは少なくとも部分的には、焼結済みテープ40(焼結済みテープ材料40)の弾性が比較的高く、これが、テープ40(焼結済みテープ材料40)の、巻き付け張力下で引き伸ばされる可能性を制限し、これがロールの一体性を悪化させる傾向がある、又は悪化させ得るためである。
本明細書に記載されているように、システム10は、焼結済み物品の幅及び/又は長さにもかかわらず、低レベルの歪み、低レベルの破損リスク、その長さに沿って一貫した特性等を有する焼結済みテープ材料40を形成するよう構成される。出願人が発見したように、システム10の様々なステージにおけるテープの歪み及び破損のリスクは、特にテープの幅が増大するに従って上昇し得る。例えば、具体的実施形態では、焼結済みテープ40(焼結済みテープ材料40)は、5mm超、10mm超、40mm超、又は125mm超の幅を有し、また本明細書に記載のシステム10の様々な構成は、テープ材料の幅にかかわらず、変形又は破損のリスクを制限する。他の実施形態では、焼結済みテープは、5mm未満及び/又は少なくとも0.5mm、例えば少なくとも1mm、例えば少なくとも2mmの幅を有する。
更に、システム10の1つ以上の様々な材料取り扱い及び加熱機構により、焼結済みテープ40(焼結済みテープ材料40)を高いスループットレートで形成できる。具体的実施形態では、システム10のロール・ツー・ロール処理により、従来のトンネルキルン処理等の、少なくともいくつかの場合におけるトンネルキルン処理のような他の焼結プロセスより有意に速いと考えられる速度で、焼結済みテープを生産できる。具体的実施形態では、システム10は、焼結済みテープ40を、少なくとも6インチ(15.24cm)/分、少なくとも8インチ(20.32cm)/分、少なくとも19インチ(48.26cm)/分、少なくとも29インチ(73.66cm)/分、及び少なくとも59インチ(149.86cm)/分の速度で生産するよう構成される。更なる追加の具体的実施形態では、システム10は、焼結済みテープ40を、幅50mm超の素地テープ20に関して少なくとも3インチ(7.62cm)/分、幅35mm~50mmの素地テープ20に関して少なくとも5インチ(12.7cm)/分、幅15mm~35mmの素地テープ20に関して少なくとも9インチ(22.86cm)/分、及び幅5mm~15mmの素地テープ20に関して少なくとも10インチ(25.4cm)/分の速度で生産するよう構成される。更なる具体的実施形態では、システム10は、焼結済みテープ40を、幅50mm超の素地テープ20に関して少なくとも1インチ(1.54cm)/分(ipm)、幅35mm~50mmの素地テープ20に関して少なくとも1.5インチ(3.81cm)/分、幅15mm~35mmの素地テープ20に関して少なくとも2インチ(5.08cm)/分、及び幅5mm~15mmの素地テープ20に関して少なくとも3インチ(7.62cm)/分の速度で生産するよう構成される。
支持ウェブ除去ステーション
本明細書に記載の焼結済み物品の実施形態の形成は、焼結の前及び後に、素地テープ材料に均一なウェブ張力を印加するステップを含む。本開示の1つ以上の実施形態による分離システムは、素地テープが支持用キャリアウェブから分離される際に、このような均一なウェブ張力を、均一な速度と共に、素地テープに印加するよう設計される。従って、本明細書で開示されているようなウェブの支持の除去は、素地テープ材料の形状の一貫性を実現でき、これは、素地テープのネッキング又は収縮の事例を削減又は排除し、また、素地テープに対して設備の表面の特徴が刻印される事例を削減又は排除する。そうしなければ、これらの事例は、焼結済みテープにおいても存在し得ることになる。そうは言っても、本明細書で開示される技術を、支持ウェブ除去ステーションを用いずに使用して、本明細書で開示されているような新規の焼結済みテープを生産でき、ここでは、テープは、支持ウェブ除去ステーションが存在しないことに起因する特徴、例えば厚さの変化、刻印された表面特徴の繰り返し等を有し得る。
上述のように、システム10は、一般にはシステム10の入力側に、支持ウェブ除去ステーションを含む。支持ウェブ除去ステーションの一態様は、分離システム12を含む。図4を参照すると、分離システム12は、素地テープ材料20を下流で処理できるように、素地テープ材料20をキャリアウェブ22から分離させるよう構成される。1つ以上の実施形態では、分離される連続テープ材料18のソース16が設けられる。図5に更に分かりやすく図示されているように、連続テープ材料18は、キャリアウェブ22上に支持された素地テープ材料20を含む。図4では、ソース16はスプールの形態で設けられ、これは連続テープ材料18を、(張力遮断器28及び剥離器30を含む)キャリアウェブ除去ステーション24に向かって解く。1つ以上の実施形態では、ソース16は、連続テープ材料を供給するために、ベルト又は他の形態を含んでよい。他の考えられる実施形態では、素地テープ材料のソースは、製造ライン上の別のステーションであってよく、これは、素地材料を連続的に生産する、又は連続的に生産でき、素地テープを、本明細書で開示される1つ以上のシステム内での後続の取り扱いのために、形成及び調整できる。更に他の考えられる実施形態は、有機材料によって隔てられた素地テープ材料を有してよく、上記有機材料は、本明細書で開示される結合剤除去ステーション等によって、燃焼されるか、又は他の方法で除去される。
ある例示的実施形態によると、素地テープ材料20は、(本明細書に記載の)無機材料の粒体を含み、上記粒体は焼結可能であり、また有機結合剤によって一体に結合される。キャリアウェブ22は、ポリマー、紙、又はポリマーと紙材料との組み合わせを含んでよい。いくつかの実施形態では、素地テープ材料は、キャリアウェブ22のポリマー含有量未満の量のポリマーを含み、ここでポリマー含有量は、各材料の体積パーセントを単位とする。ある例示的実施形態によると、素地テープ材料20及びキャリアウェブ22はそれぞれ、例えば長方形又は楕円形である連続した断面の幾何学的形状を有する素地テープ(例えば焼結後に縁部を除去して直線状の側部を形成できる場合)に関して:第1の主表面と第2の主表面との間の距離として定義されるそれぞれの厚さ(t);上記厚さに対して垂直な、第1又は第2の表面のうちの一方の第1の寸法として定義されるそれぞれの幅(W);並びに上記厚さ及び上記幅の両方に対して垂直な、第1又は第2の表面のうちの一方の第2の寸法として定義されるそれぞれの長さ(L)を有する。他の考えられる実施形態では、無機性の焼結可能な材料のテープを、システム10での処理後に焼結済みテープの一部となる無機結合剤等の無機結合剤によって、一体に保持してよい。更に他の考えられる実施形態では、例えば本明細書で開示されているように、素地テープではなく、部分的に焼結された素焼きテープを用いる等して、無機材料をそれ自体に結合させることにより、無機材料のテープを一体に保持してよい。
本明細書に記載するように、ある例示的実施形態によると、キャリアウェブ22は、分離システム12を通して連続テープ材料を搬送するため、特にキャリアウェブ除去ステーション24を通して連続テープ材料を搬送するための、一次接触面を提供する、又は提供できる。換言すれば、少なくともいくつかのこのような実施形態では、キャリアウェブ22が主に接触され、素地テープ材料20は、実質的に接触されない状態で残され、従って接触によって生成される又は生成され得る欠陥又は傷を実質的に含まず、上記欠陥又は傷は例えば、完成品の焼結済み製品において検出可能であり得るテープの素地材料に対する、ホイール又はローラの表面による刻印による、反復する表面特徴である。他の実施形態は、本明細書で開示される技術の態様を、例えばキャリアウェブ除去ステーション24を用いずに使用した場合等には、このような欠陥又は傷を含んでよい
ソース16がスプールである場合、連続テープ材料は、(本明細書中で更に説明されるように)比較的低い第1の張力を有し、また連続材料が一定の低い張力に保持されている場合であっても、巻かれた状態から比較的高速で解ける傾向を有する。分離システム12は、連続テープ材料がソース16から解かれる速度を低減する、又は他の様式で制御若しくは制限するためのブレーキとして機能する、又は機能してよい。
少なくともいくつかのこのような例示的実施形態によると、キャリアウェブ除去ステーション24は、ソース16の付近かつ下流に位置決めされた張力遮断器28と、張力遮断器28の下流に位置決めされた剥離器30とを含む。張力遮断器28及び剥離器30は、素地テープ材料を損傷することなく、キャリアウェブ22を素地テープ材料20から分離する。特に、張力遮断器28は、キャリアウェブを把持して、分離システムを通る連続テープ材料の速度を整えるために、設計及び使用される。1つ以上の実施形態では、キャリアウェブ22を素地テープ材料から分離した後、素地テープ材料20からの分離後のキャリアウェブ22を回収する速度を制御して、キャリアウェブ22内、従って連続素地テープ材料20内に一定の張力を維持する。1つ以上の実施形態では、張力遮断器28は、素地テープ材料20からのキャリアウェブ22の分離を、ソース16から入ってくる素地テープ材料20の品質から隔離する。張力遮断器28を用いない場合、連続テープ材料の巻きの品質のいずれの又は一部の不連続性(即ち、巻きを解く間、又は剥離器30への供給の間にシンチングを招く恐れがある、巻きの過剰な緩さ)が、剥離器30における張力及び速度の変動を引き起こし得る。
ある例示的実施形態によると、連続テープ材料18は、第1の張力で張力遮断器28に供給され、1つ以上の実施形態の張力遮断器は、連続テープ材料18を剥離器30へと搬送する際に、連続テープ材料18の第1の張力より大きな第2の張力をキャリアウェブ22に印加するための構造を有するか、又はそのように構成される。いくつかの実施形態では、第2の張力(即ち引張力)は、第1の張力より少なくとも20%大きく、及び/又は少なくとも25ミリニュートン(mN)、例えば少なくとも100mN、例えば少なくとも200mN大きい。いくつかのこのような実施形態によると、第2の張力はキャリアウェブ22に印加されるが、素地テープ材料には全く印加されないか、又は少なくとも実質的に印加されない。1つ以上の実施形態では、素地テープ材料20は、連続テープ材料を遮断器28に沿って移動させる際に、第1の張力を維持する。1つ以上の実施形態では、連続テープ材料を張力遮断器28に沿って移動させる際に、素地テープ材料は、張力を備えないか若しくは有さず、又はその自重を支持するための張力を超える張力を備えないか若しくは有さず、又は実質的にその自重を支持するための張力を超える張力、例えばその自重を支持するための張力を1ニュートン(N)未満だけ超える張力を実質的に備えないか若しくは有しない。従って、張力遮断器28は、張力遮断器28とソース16との間に第1の張力ゾーン17を生成し、また張力遮断器28と剥離器30との間に第2の張力ゾーン19を生成する。第1の張力ゾーン17においてキャリアウェブ22に印加される張力は、第2の張力ゾーン19においてキャリアウェブ22に印加される張力未満である。1つ以上の実施形態では、第2の張力ゾーン19においてキャリアウェブ22に印加される張力(即ち引張応力)は、約2.5ポンド毎(直線)インチ(PLI)(446.45g/cm)以下である。例えば、1つ以上の実施形態では、キャリアウェブ22に印加される張力は、約2.4PLI(428.592g/cm)以下、約2.3PLI(410.734g/cm)以下、約2.2PLI(392.876g/cm)以下、約2.1PLI(375.018g/cm)以下、約2PLI(357.16g/cm)以下、約1.8PLI(321.444g/cm)以下、約1.6PLI(285.728g/cm)以下、約1.5PLI(267.87g/cm)以下、約1.4PLI(250.012g/cm)以下、約1.2PLI(214.296g/cm)以下、又は約1PLI(178.58g/cm)以下である。1つ以上の実施形態では、第1の張力は、第2の張力の約50%以下(例えば、約45%以下、約40%以下、約35%以下、約30%以下、又は約25%以下)である。いくつかの実施形態では、第2の張力ゾーン19においてキャリアウェブ22に印加される張力(即ち引張力)は、第1の張力ゾーン17においてキャリアウェブ22に印加される張力より少なくとも20%大きく、及び/又は少なくとも25ミリニュートン(mN)、例えば少なくとも100mN、例えば少なくとも200mN大きい。1つ以上の実施形態では、キャリアウェブ22に対する張力の印加によって素地テープ材料に印加される張力以外に、(わずかな)追加の張力が素地テープ材料に印加される。このような実施形態では、キャリアウェブは、キャリアウェブに対する張力の印加等によって引き伸ばされる場合があり、これは素地テープ材料に対する多少の張力を生成し、例えばここで、張力のうちの相当な部分がキャリアウェブによって支えられる。
1つ以上の実施形態では、張力遮断器28は、素地テープ材料20に印加される張力より大きな張力をキャリアウェブ22に印加する。いくつかの実施形態では、張力遮断器は、連続テープ材料がソース16から剥離器30へと移動される際に、素地テープ材料に印加される張力の約2倍以上の張力を、キャリアウェブに印加する。いくつかの実施形態では、張力遮断器28は、素地テープ材料20に印加される張力より少なくとも20%大きな、及び/又は少なくとも25ミリニュートン(mN)、例えば少なくとも100mN、例えば少なくとも200mN大きな張力を、キャリアウェブ22に印加する。直感的に理解できるように、本明細書において使用される「張力(tension)」は一般に、材料の長さ方向又は軸方向の引き離しを指し、本明細書中で力の単位が与えられている場合には、張力は引張力を指し、応力の単位が与えられている場合には、張力は引張応力を指し、及び/又は張力は、ポンド毎直線インチ若しくはメートル法での等量といった他の単位を与えられて、別の関連するパラメータを指す場合がある。
図4に示す実施形態では、張力遮断器28は真空ドラム25を含んでよい。図6に示すように、1つ以上の実施形態では、軸受ハウジング29によって真空ドラムに接続された駆動モータ入力27によって、真空ドラム25を回転させて連続テープ材料を移動させる。図7に示すように、真空ドラムは、均一な分布で配置された複数の真空孔7を含む外面を含んでよい。真空孔7は、真空孔7において互いに交差する複数の軸方向溝8及び/又は径方向溝に沿って形成してよい。真空は、真空ソース(例えば真空ブロワー)を介して真空ドラム25に供給され、これは真空孔7を通してキャリアウェブ22を把持し、それにより、本明細書に記載されるようなキャリアウェブへの張力印加を促進する。1つ以上の実施形態では、真空孔7の分布、並びに(直径及び使用される真空力を含む)真空ドラムの構成は、キャリアウェブの幅に沿って、キャリアウェブに均一な張力を印加するか、又は上記印加を補助する。この作用及び構成により、真空ドラムは、キャリアウェブが分離システム12を通って移動する際のキャリアウェブの(従って連続テープ材料の)速度を整える。1つ以上の実施形態では、張力遮断器は、第1の張力ゾーン17に沿って、連続テープ材料をソースから牽引する。ソース16から剥離器30への素地テープ材料の送達におけるいずれの又は一部の不連続性、例えば(ソースから剥離器への搬送中にシンチングを招く恐れがある)緩い巻きは、分離プロセスに影響を及ぼさないか、又は及ぼし得ない。真空ドラム25は、テープ材料(例えばキャリアウェブ)と真空ドラム25との間に、張力に比例する垂直方向の力及び摩擦に加えて、結合力又は牽引力を提供し、従って、テープ材料の張力を増大させる必要なしに、結合力又は牽引力を増大させる。少なくともこの利点を理由として、出願人は、キャリアウェブから素地テープを分離するステップ中に、テープ材料とローラ(即ち真空ドラム)との間の結合力又は牽引力を制御するために真空ドラムを使用することが、特に繊細なものであり得る素地テープの形状の保護及び制御のための、独特で効果的なプロセスであると考えている。そうは言っても、本技術の態様を用いて、本明細書で開示されているような真空ドラムを使用しない分離の印、例えばローラ由来の反復的な欠陥、テープ厚さの変化、テープの長さがより短くなること等を有しないテープ等の、新規の焼結済み製品を生成してよい。
1つ以上の実施形態では、張力遮断器28は、連続テープ材料が剥離器30へと搬送されるに従って、第2の張力ゾーン19に沿って、連続テープ材料の(より詳細には、キャリアウェブの、又は主にキャリアウェブの)張力を増大させる。図4に示す実施形態では、分離システム12は、キャリアウェブに対する張力を維持するための荷重コントローラ21を含む。1つ以上の実施形態では、荷重コントローラ21は、張力遮断器28に対する取り込み用リール26の速度を調整するためにも使用される。
1つ以上の実施形態では、剥離器30は、張力遮断器28の下流に配置され、図8に示すように、キャリアウェブ22を巻き戻し方向Aに配向し、素地テープ材料20を、巻き戻し方向Aとは異なる下流処理方向Bに配向する。1つ以上の実施形態では、巻き戻し方向Aと上記下流処理方向とは、約90°超(例えば95°以上、100°以上、110°以上、又は役120°以上)である角度Cを形成する。
1つ以上の実施形態では、剥離器30は、先端31として示されている角度Cの頂点又は頂点付近等において、素地テープ材料内に分離線を生成するための、鋭利なナイフ又はエッジを含む。1つ以上の実施形態では、鋭利なナイフ又はエッジは、図8に示すように、先端31の直前又は先端31の付近において、素地テープ材料内に分離線を生成するものの、キャリアウェブ内には生成しない。1つ以上の実施形態では、上記先端は、約0.05インチ(1.27mm)以下(例えば、約0.04インチ(1.016mm)以下、約0.035インチ(0.889mm)以下、約0.03125インチ(0.79375mm)以下、約0.03インチ(0.762mm)以下、又は約0.025インチ(0.635mm)以下)の半径を有する。
連続テープ材料が先端31を通過する際、先端31は、キャリアウェブ22を素地テープ材料20から分離する。1つ以上の実施形態では、先端31は、キャリアウェブを巻き戻し方向Aに配向し、かつ素地テープ材料を下流処理方向Bに配向する前に、キャリアウェブ22を素地テープ材料20から分離する。1つ以上の実施形態では、先端31は、キャリアウェブ22を巻き戻し方向Aに配向し、かつ素地テープ材料20を下流処理方向Bに配向するのと同時に、キャリアウェブ22を素地テープ材料20から分離する。
図4に示すように、分離システム12は、分離されたキャリアウェブ22を回収するための取り込み用リール26を含む。図示されている実施形態では、任意のアイドルローラ23を用いて、キャリアウェブ22の張力を更に制御及び維持できる。1つ以上の実施形態では、分離システムを通して連続テープ材料をより多く搬送するに従って、ソース16の直径が減少して取り込み用リール26の直径が増大する際に、キャリアウェブの張力を制御及び維持するために、センサ15も使用してよい。
支持ウェブ除去ステーションの別の態様は、2つの材料(例えば素地テープ材料及びキャリアウェブ)を分離するための方法に関する。1つ以上の実施形態では、上記方法は:連続テープ材料18を張力遮断器28に供給するステップ;張力遮断器を用いて素地テープ材料20に印加される張力より高い張力を、キャリアウェブ22に印加するステップ;及び本明細書に記載されているように、巻き戻し方向に移動するようにキャリアウェブを配向し、上記巻き戻し方向とは異なる下流処理方向に素地テープ材料を配向するステップを含む。1つ以上の実施形態では、上記方法は:キャリアウェブを巻き戻し方向に配向し、かつ素地テープ材料を下流処理方向に配向する前に、キャリアウェブを素地テープ材料から分離するステップを含む。1つ以上の実施形態では、上記方法は:キャリアウェブを巻き戻し方向に配向し、かつ素地テープ材料を下流処理方向に配向するのと同時に、キャリアウェブを素地テープ材料から分離するステップを含む。上で教示されているように、本方法の実施形態は、真空ドラムに接触するキャリアウェブを有する。他の実施形態では、テープ材料は、テープの両側にキャリアウェブを有してよく、また分離ステーションの要素は、両方のキャリアウェブを除去するために、反復させ、使用できる。
1つ以上の実施形態では、本方法は、素地テープ材料に張力を全く、又はほとんど全く、又は(上で開示されているように)ごくわずかしか、印加しないことを含む。1つ以上の例示的実施形態では、上記方法は、連続テープ材料が第1の張力ゾーン17に沿ってソース16から張力遮断器28に移動する際に、素地テープ材料に張力を全く、又はほとんど全く、又はごくわずかしか、印加しないことを含む。1つ以上の例示的実施形態では、上記方法は、連続テープ材料が第2の張力ゾーン19に沿って張力遮断器28から剥離器30に移動する際に、素地テープ材料に張力を全く、又はほとんど全く、又はごくわずかしか、印加しないことを含む。1つ以上の実施形態では、上記方法は、連続テープ18が(第1の張力ゾーンに沿って)ソース16から張力遮断器28に、そして(第2の張力ゾーンに沿って)剥離器30に移動する際に、素地テープ材料20に張力を全く、又はほとんど全く、又はごくわずかしか、印加しないことを含む。1つ以上の実施形態では、上記方法は、(分離システム12に沿ったいずれの点において)素地テープ材料20に印加される張力の少なくとも2倍大きな張力をキャリアウェブ22に印加することを含む。低い弾性を有するキャリアウェブを選択することにより、テープ材料に印加される張力の大部分をキャリアウェブに支えさせるのを促進できる。
1つ以上の実施形態では、上記方法は、キャリアウェブ28に対する張力の印加によって素地テープ材料に印加される張力以外の更なる張力を、素地テープ材料に印加しないことを含む。このような実施形態では、上述のようなキャリアウェブに対する張力の印加によってキャリアウェブを引き伸ばすことができ、これは、素地テープ材料に対するある程度の張力を生成する。1つ以上の例示的実施形態では、上記方法は、連続テープ材料が第1の張力ゾーン17に沿ってソース16から張力遮断器28へと移動する際に、素地テープ材料に更なる張力を印加しないことを含む。1つ以上の例示的実施形態では、上記方法は、連続テープ材料が第2の張力ゾーン19に沿って張力遮断器28から剥離器30へと移動する際に、素地テープ材料に更なる張力を印加しないことを含む。1つ以上の実施形態では、上記方法は、連続テープ18が(第1の張力ゾーンに沿って)ソース16から張力遮断器28に、そして(第2の張力ゾーンに沿って)剥離器30に移動する際に、素地テープ材料20に更なる張力を印加しないことを含む。
1つ以上の実施形態では、2つの材料(即ち素地テープ材料及びキャリアウェブ)を分離するための上記方法は:連続テープ材料を張力遮断器に供給して、第1の張力をキャリアウェブに印加するステップ;第1の張力より大きな第2の張力をキャリアウェブに印加するステップ;及び巻き戻し方向に移動するようにキャリアウェブを配向し、上記巻き戻し方向とは異なる下流処理方向に素地テープ材料を配向するステップを含む。1つ以上の実施形態では、第1の張力を印加するステップは、本明細書で開示されるように、張力を全く又はほとんど印加しないことを含む。1つ以上の実施形態では、第1の張力を印加するステップは、連続テープ材料が第1の張力ゾーンに沿ってソース16から張力遮断器28へと移動する際に、キャリアウェブに張力を全く又はほとんど印加しないことを含む。1つ以上の実施形態では、第2の張力は約2.5PLI(446.45g/cm)以下である。例えば、1つ以上の実施形態では、キャリアウェブ22に印加される張力は、約2.4PLI(428.592g/cm)以下、約2.3PLI(410.734g/cm)以下、約2.2PLI(392.876g/cm)以下、約2.1PLI(375.018g/cm)以下、約2PLI(357.16g/cm)以下、約1.8PLI(321.444g/cm)以下、約1.6PLI(285.728g/cm)以下、約1.5PLI(267.87g/cm)以下、約1.4PLI(250.012g/cm)以下、約1.2PLI(214.296g/cm)以下、又は約1PLI(178.58g/cm)以下である。1つ以上の実施形態では、第1の張力は、第2の張力の約50%以下(例えば約45%以下、約40%以下、約35%以下、約30%以下、又は約25%以下)である。
1つ以上の実施形態では、上記方法は、素地テープ材料をキャリアウェブ22から分離した後に、(焼結ステーションに関連して本明細書中で更に詳細に記載されるように)素地テープ材料を少なくとも部分的に焼結するステップを含む。1つ以上の実施形態では、上記方法は、キャリアウェブ22を素地テープ材料20から分離した後に、キャリアウェブ22を取り込み用リール26上に巻き取るステップを含む。1つ以上の実施形態では、上記方法は、第2の張力ゾーンに沿って、上記キャリアウェブが取り込み用リール上に巻き取られるまで、キャリアウェブ22上の張力を連続的に維持するステップを含む。
結合剤除去ステーション
図3に関して上述したように、システム10は、結合剤材料を素地テープ20から除去するよう構成された加熱ステーションを含み、上記素地テープ20は、少なくともいくつかの実施形態では、焼結ステーションとは別にアクティブに独立して加熱される。本明細書で開示されるような素焼きテープの焼成を伴うもの等の他の実施形態では、加熱ステーションは存在しなくてもよい。出願人は、結合剤の除去専用のステーションを、焼結炉内のヒータとは独立した、それ自体の制御可能な熱源を用いてアクティブに加熱することにより、結合剤除去プロセスをより良好に制御でき、素地テープの結合剤中の揮発性物質の燃焼の可能性が低減され、これは特に、幅広の素地テープ(例えば、少なくとも5mm、少なくとも10mm、少なくとも30mm、少なくとも50mm)にとって有益である。他の実施形態は、本明細書で開示される、パッシブに加熱される結合剤除去ステーションを含み、上記ステーションは、隣接する焼結炉から放出される熱を使用する。
ある例示的実施形態によると、図3に示すように、結合剤除去ステーション34は、分離ステーション12から素地テープ20を受承し、次に素地テープ20は、結合剤除去ステーション34を通って前進する。ここで図9を参照すると、システム10の結合剤除去ステーション34の詳細図が、更に詳細に図示及び説明されている。
上述のように、素地テープ20は、本明細書で開示されているような、有機結合剤等の結合剤によって結合された無機材料の粒体を含む。結合剤除去ステーション34は、素地テープ20を受承し、結合剤を化学的に変化させること、及び/又は無機材料の粒体を残して結合剤を素地テープ20から除去することによって、素地テープ20を焼結のために準備し、これにより、自立型非結合テープ36が形成され、これは、以下で更に詳細に記載されるように、焼結ステーション38に向かって処理方向14に移動させることができる。ある例示的実施形態によると、ある瞬間(即ち時間的に一瞬)において、素地テープ20は同時に、ステーション34に向かって、ステーション34内へ、ステーション34を通って、ステーション34内で、ステーション34に隣接して、及び/又はステーション34から離れるように、延在する。従って、理解されるように、システム10内で処理されるテープ材料は、テープ材料が結合剤除去ステーション34を通過する際、非結合テープ36に連続的に接続された素地テープ20を同時に含む。
ある例示的実施形態によると、素地テープ20の結合剤は、ポリマー結合剤であってよく、上記結合剤は化学的に変化し、及び/又は結合剤を加熱して結合剤を燃焼若しくは炭化させることによって素地テープ20から除去される。ある例示的実施形態によると、結合剤除去ステーション34は、無機材料の粒体を焼結することなく、素地テープ20の第1の部分から、重量で少なくともほとんどの有機結合剤を炭化又は燃焼させ、これは、ステーション34における結合剤除去前の素地テープと、素地テープ形成前の無機材料とを計量し、続いて結合剤除去ステーション34の動作後に非結合テープ36を計量し、これらの差を比較することによって測定できる。結合剤の残部、例えば炭素が残っている場合、出願人は、これに続いて更に高い温度で焼結することによって、これらの残部を概ね除去できると考えている。他の考えられる実施形態では、焼結前に結合剤除去ステーションにおいて素地テープに送達された別の材料(例えば触媒、ガス)と化学的に反応するよう選択された材料から形成されたもの等の結合剤を、化学的に除去できる。更に他の考えられる実施形態では、結合剤は、焼結前のステーションにおいて、蒸発又は気化させて、素地テープ20からガスとして放出できる。
引き続き図9を参照すると、ある例示的実施形態によると、結合剤除去ステーション34は、素地テープ20が結合剤除去ステーション34と接し、(例えば:素地テープ20の、焼結されることになる無機材料ではない部分の重量を、50%超、例えば70%超、例えば90%超だけ低減することによって;素地テープ20の全体の重量を、30%超、例えば50%超だけ低減することによって)非結合テープ36を形成する際に、素地テープ20から有機結合剤の少なくともほとんどを炭化又は燃焼させるための、アクティブヒータ5120を備える。アクティブヒータ5120は、素地テープ20に熱エネルギを提供して、結合剤をバーンアウトさせる。いくつかの実施形態では、ヒータ5120は、誘導性若しくは抵抗性加熱素子といった電子加熱素子であるか、又はこれを含む。他の実施形態では、ヒータ5120は、ガス加熱素子といった燃焼加熱素子であるか、又はこれを含む。更に他の実施形態では、ヒータ5120は、マイクロ波及び/若しくはレーザ若しくは他の加熱素子であるか、又はこれを含む。このような加熱素子は、焼結ステーション38でも使用できるが、本明細書で開示されるような様々な温度まで加熱を行う。
ある例示的実施形態によると、結合剤除去ステーション34のアクティブヒータ5120は、ゾーン5120A、5120B、5120C、5120D等の加熱ゾーンを含み、これにより、素地テープ20が結合剤除去ステーション34を通って前進する際に、素地テープ20が受ける熱エネルギの量が増大する。いくつかの実施形態では、素地テープ20が受ける熱エネルギの量は、非線形様式で増大し、例えば初めは結合剤が崩壊して燃焼可能なガス状副産物を放出する際にゆっくりと増大し、続いて素地テープ20に着火する可能性が低下する際に、より速く増大する。この高温ゾーンのアプローチ、より具体的には非線形アプローチは、システム10等の製造ラインを一定の速度で移動できる、本明細書で開示されるようなテープの焼結のために特に有用であり得る。ある例示的実施形態によると、結合剤除去ステーション34内で素地テープ20が経験する温度は、少なくとも200℃、例えば少なくとも250℃、及び/又は素地テープ20が担持する無機粒体の焼結温度未満、例えば1200℃未満、例えば900℃未満であってよい。考えられる実施形態では、本明細書で開示される少なくともいくつかの材料に関して、結合剤除去ステーション34は、少なくともある程度まで、テープの無機材料を焼結でき、例えば恐らく、個々の粒体を互いに結合させ、これにより、テープの引張強度を上昇させることができる。
ある例示的実施形態によると、結合剤除去ステーション34は、素地テープ20が結合剤除去ステーション34を通って前進する際に、素地テープ20の上及び/又は下(例えば上及び下)に対して、ガスを吹き付ける、及び/又はガスを引き込む。いくつかの実施形態では、ヒータ5120は、高温空気の流れを提供して、プレナムから壁を通るノズルのアレイを通して、又は多孔質壁部材料を通して送達できる熱エネルギの一部又は全てを素地テープ20に伝達できる。他の実施形態では、ガスの流れは、結合剤除去ステーション34に隣接するファン又はポンプ、例えば図9に示すファン5122によって促進される。加圧ガスのタンクを、テープ上に吹き付けられるガスを供給するためのソースとして使用してもよい。いくつかの実施形態では、上記ガスは空気である。他の実施形態では、上記ガスは、アルゴン等の不活性ガスである。
いくつかの実施形態では、ガスは、素地テープ20の上側及び下側の両方に対して吹き付けられる及び/又は引き込まれるが、他の実施形態では、ガスは上側又は下側のみに対して配向される。いくつかのこのような実施形態では、素地テープ20は、気体軸受及び/又は下層の表面によって直接支持され、この表面に対して移動する。例えば素地テープ20は、ステンレス鋼製の表面等の下層の表面に沿って摺動し、接触してよい。いくつかの実施形態では、上記ガスは、テープ上に吹き付けられる又は引き込まれる前に、室温を超える温度、例えば少なくとも100℃まで加熱され、出願人は、この温度が、素地テープ20のサーマルショックの防止を補助できることを発見しており、これは、得られる焼結済み材料の特性に影響を及ぼし得、例えば表面の不規則性及び応力の集中の部位の個数が少ないことにより、強度又は平坦性の上昇を提供する。
ガス、特に空気、又は酸素を含有するガスを、素地テープ20上にアクティブに吹き付ける、又は引き込むことは、当業者にとって直感的なものではない場合がある。というのは、酸素は、テープの着火を刺激及び促進すると予測でき、これが、テープ20がステーション34を通過する際に、素地テープ20の形状を歪ませ得る、及び/又は素地テープ20の品質を損ない得るためである。しかしながら、出願人は、結合剤除去ステーション34を通して素地テープ20を搬送する際、いくつかの実施形態では空気を含むガスを、素地テープ20上に吹き付ける及び/又は引き込むことにより、実際には、テープが着火しないようにすることを補助することを発見した。例えば、出願人は、結合剤は、結合剤除去ステーション34によって、着火することなく除去される及び/又は炭化させられるものの、空気を素地テープ20上に吹き付けない場合、同一の速度でステーション34を通して移動すると、テープは着火することを発見した。出願人は、素地テープ20が着火するリスクは:結合剤除去ステーション34を通して素地テープ20をよりゆっくりと移動させること;高温ゾーン5120A、5120B、5120C、5120Dを更に離間させること;結合剤中に難燃剤を使用すること;及び結合剤除去ステーション34の換気を増大させること;並びに/又はこれらの技術の組み合わせによっても、低減及び/又は排除できると考えている。
素地テープ20及び/又は非結合テープ36上にガスをアクティブに吹き付ける及び/又は引き込むことができるが、出願人は、ガスがどのように流れるかに応じて、非結合テープ36が特に、振動及び/又は面外の曲げによる損傷を受けやすい場合があることを発見した。従っていくつかの実施形態では、結合剤除去ステーション34を通って流れるガスは、層流である、及び/又は層流を含む。空気の流れは拡散してよく、及び/又は非結合テープ36へと配向されなくてよい。いくつかの実施形態では、ガスのソース又はモチベータ(例えばファン、ポンプ、加圧供給源)は、結合剤除去ステーション34を通して、例えば通路5128(図10を参照)を通して、少なくとも1リットル/分のガスを送達する。
いくつかの実施形態によると、素地テープ20は、結合剤除去ステーション34を通って、垂直ではなく水平に前進する。テープを水平に配向すると、例えば「煙突効果」(この場合、高温のガスが結合剤除去ステーション34を通って上昇し、あまりに多くの空気を引き込み、非結合テープ36を振動させる)を低減すること等によって、結合剤除去ステーション34を通る空気流の制御を補助できる。他の考えられる実施形態では、空気ポンプ、ファン、及び周囲環境の空気の条件(例えば高い温度)は、結合剤除去ステーション34を通して素地テープ20を水平に配向することなく、煙突効果を相殺及び/又は制御する。
ある例示的実施形態によると、非結合テープ36は、素地テープ20がステーション34を通って前進する際、正の長さ方向張力下にある。素地テープ20の張力は、素地テープ20が、更なる処理のために、製造システムの別のステーション、例えば焼結ステーション38内へと移動する場合等に、素地テープ20を平坦な配向に保持するのを補助できる。結合剤を用いない場合(例えばステーション34内での結合剤の除去に続いて)、非結合テープ36は、素地テープ材料20より弱くてよく、例えば、半分以下、1/4以下等、より低い極限引張強度を有する。ある例示的実施形態によると、非結合テープ36の長さ方向の張力(即ち引張応力)は、断面1mmあたり500重量グラム未満である。出願人は、素地テープ20が非結合テープ36より大幅に曲がりやすく、従って素地テープ20が破断しない最小曲げ半径は、ASTM規格(E290を参照)によって測定した場合に、非結合テープ36の最小曲げ半径の半分未満(例えば1/4未満、1/8未満)である。このASTM規格では、曲げ半径は、素地テープ20の各部分を破断させることなく円筒の周りで曲げることができる、最小内側半径である。
少なくともいくつかの実施形態では、結合剤除去ステーション34を通した処理の後、非結合テープ36は、非結合テープ36の無機材料を少なくとも部分的に焼結して焼結済みテープ40を形成する(以下で詳細に記載される)焼結ステーション38内に移動する。従って、連続処理に関して、ある瞬間において、素地テープ20は、非結合テープ36によって焼結済みテープ40に連続的に接続される。
いくつかのこのような実施形態では、結合剤除去ステーション34は焼結ステーション38に近接しており、これらの間の距離は10m未満であり(例えば、結合剤除去ステーション34の出口開口と焼結ステーション38の入口開口106(図12を参照)との間が、10mm未満、2.5cm未満、5cm未満、10cm未満、25cm未満、100cm未満、5m未満等であり)、これにより、非結合テープ36がステーション34とステーション38との間の空隙で経験し得るサーマルショックが軽減される。このサーマルショックは、得られる焼結済み材料の特性に影響を及ぼし得、例えば表面の不規則性及び応力の集中の部位の個数が少ないことにより、強度又は平坦性の上昇を提供する。考えられる実施形態では、結合剤除去ステーション34は、焼結ステーション38に直接接触して隣接しており、及び/又はこれと共通のハウジングの下にあるが、少なくともいくつかのこのような実施形態では、中間通気孔が、煙霧、又は結合剤除去の他の副産物を取り除く。
ここで図10を参照すると、結合剤除去ステーション34は、通路5128を画定する壁部5126を含み、この通路5128は、通路5128の対向する端部に入口開口5130及び出口開口5132を有する。上記通路は、入口開口5130と出口開口5132との間の長さLを有し、これはいくつかの実施形態では、少なくとも5cm、例えば少なくとも10cm、及び/又は10m以下である。ある例示的実施形態によると、出口開口5132及び/又は入口開口5130は細長く、例えば高さH及び高さHに対して垂直な幅を有し、ここで高さHは、幅Wの半分未満、例えば幅Wの1/5未満、例えば幅Wの1/10未満である。いくつかのこのような実施形態では、高さHは、5cm未満、例えば2cm未満、例えば1cm未満であり、及び/又は少なくとも処理対象の素地テープ20の厚さより大きく、少なくとも本明細書で開示される素地テープの厚さより大きく、例えば少なくとも20μmより大きい。出願人は、1つ以上の狭い開口を有することにより、入口開口5130及び出口開口5132におけるガス(例えば周囲環境の空気流)の循環を制限することによって、結合剤除去ステーション34の性能が改善されることを発見した。いくつかの実施形態では、通路5128は直線であるが、他の実施形態では、上記通路は緩やかに湾曲し、例えば1mより大きな曲率半径を有し、この場合、テープの湾曲及び対応する曲率は、テープの成形及び平坦化を補助できる。
図11を参照すると、テープを処理する方法5210は、製造システム(例えば、本明細書で開示される結合剤除去ステーション34又は他の製造システム)を通ってテープを前進させるステップ5212を含み、例えばここで、テープは、結合剤によって結合された無機材料の粒体を有する第1の部分(素地テープ20)を含む。上記方法は更に、結合剤を化学的に変化させること、及び/又は結合剤をテープの第1の部分から除去し、無機材料の粒体を残すことにより、テープの第2の部分を形成することによって、テープの第2の部分(例えば非結合テープ36)を製造システムのステーションにおいて形成することにより、テープを焼結のために準備するステップ5214を含む。
いくつかのこのような実施形態では、テープを焼結のために準備するステップ5214は更に、無機材料の粒体を同時に焼結しながら、又は焼結せずに、(例えば上述のように)テープの第1の部分から結合剤の少なくともほとんどを炭化又は燃焼させることを含む。いくつかの実施形態では、製造システムのステーションは、第1のステーションであり、処理の方法5210は更に、第2のステーションにおいてテープの第2の部分を受承するステップ5218、並びに第2のステーションのテープの第2の部分の無機材料を少なくとも部分的に及び/又は更に焼結して、テープの第3の部分を形成するステップ5220を含む。
いくつかの実施形態では、処理の方法5210は更に、テープを前進させるステップ5212の際にテープの第2の部分に正の張力を印加することを含む。いくつかのこのような実施形態では、正の張力の印加は、テープの第2の部分の長さ方向の張力(即ち引張応力)が、断面1mmあたり500重量グラム未満となるようなものである。いくつかの実施形態では、処理の方法5210は更に、テープを焼結のために準備するステップ5214の間に、テープ上にガスを吹き付ける、及び/又は引き込むことを含む。いくつかの実施形態では、テープを前進させるステップ5212は更に、ステーションを通してテープを水平に前進させること、並びに/又はテープを気体軸受及び/若しくは下層の表面によって直接支持し、テープをこの表面に対して及び/若しくは開口5128に対して移動させるステップを含む。
結合剤の除去の例
出願人は、結合剤除去ステーション34に類似した結合剤バーンアウト炉を用いて、焼結前に素地テープから結合剤を除去した。一例として、素地テープは、幅約42mm及び厚さ約25μmのリボンを形成する、ポリマー結合剤が装入されたテープキャストジルコニアセラミック粒体であった。この素地テープを、水平6高温ゾーン型結合剤バーンアウト炉を通して、20インチ(50.8cm)/分で供給した。結合剤バーンアウト炉は、入口において325℃に設定され、出口の475℃まで、他の4個の高温ゾーンは、0~25℃の増分で温度が段階的に上昇する。0~250℃の約7.5リットル/分の空気流も提供した。この空気流は、結合剤バーンアウト炉の両側の間で分割された。炉は長さ36インチ(91.44cm)であり、18インチ(45.72cm)の高温ゾーンを有していた。
焼結ステーション
図12~図20を参照すると、焼結ステーション38が更に詳細に図示及び説明されている。一般に、結合剤除去ステーション34内で結合剤材料を素地テープ20から除去した後、非結合テープ36は焼結ステーション38内に移動する。
少なくとも1つの具体的実施形態では、焼結ステーション38は焼結炉100を含む。焼結炉100は断熱ハウジング102を含む。一般に、断熱ハウジング102は、入口開口106として示されている入口と、出口開口108として示されている出口との間に、焼結炉100を通って延在するチャネル104を画定する、複数の内壁を含む。結合剤除去ステーション34は入口開口106に隣接して配置され、これにより、素地テープ材料20は、上述のように結合剤除去ステーション34を通過して、非結合テープ材料36を生産する。非結合テープ材料36は、入口開口106内へ移動し、チャネル104を通過する。チャネル104内にある間に、(以下で更に詳細に説明される;様々なタイプの加熱素子に関して上述した)ヒータによって生成された熱が、非結合テープ36の焼結を引き起こして焼結済みテープ40を形成し、焼結済みテープ40は、図3に示すような更なる処理又は取り込みのために、出口開口108を通過して外に出る。非結合テープ36が焼結中に曝露される温度プロファイルに応じて、テープ40は、焼結炉100を出ると、完全に焼結されていてよく、又は部分的に焼結されていてよい。テープ40が部分的に焼結されているか完全に焼結されているかにかかわらず、テープ40の多孔率は、炉100内で発生する焼結により、素地テープ20の多孔率未満となる。同様に、いくつかの実施形態では、テープ40の幅は素地テープ20の幅未満である。いくつかのこのような実施形態、及び更に他の実施形態では、テープ40の厚さ、幅及び/又は長さが素地テープ20の厚さ未満となるように、焼結中に非結合テープ36の収縮を制御してよい。
図12において確認できるように、また個別の片をベースとした典型的な焼結システムとは対照的に、非結合テープ36は、炉100を完全に通って延在する、材料の連続した長さである。この構成では、非結合テープ36の単一の連続した長さが、入口106に入り、チャネル104を通り、出口108から出るように延在する。理解されるように、非結合テープ36は炉100を通して連続しているため、その左側縁部、その右側縁部、及びその中心線(例えば、上記左側縁部及び上記右側縁部に対して平行かつこれらから等距離に位置する長手方向の線)もまた、入口106と出口108との間の炉100を通る全距離にわたって延在する、又は延在してよい。参考までに、図14は、焼結炉100を出た後の上述の縁部を、縁部130及び132として示す。連続テープ36と炉100との間のこの関係は、本明細書に記載のロール・ツー・ロール焼結プロセスに固有のものであると考えられ、焼結のためのトンネルキルン処理(この処理では、材料の個別の片が、セッターボードで支持された炉を通って移動し、上記セッターボードは、焼結中の片を共に炉を通って移動する)の物理的構成とは異なる。例えばいくつかの実施形態では、テープは、炉100のチャネル104を通って、1つ以上の表面(例えば下側表面126)に対して及び/又はこれに沿って摺動し、セッター又はコンベアで運ばれないため、セッター、静止摩擦又は動摩擦、並びに接着に関連する、上記テープに対する結合及び上記テープの接着の摩耗を低減できる。
上述のように、出願人は、チャネル104の、及び/又はチャネル104内の非結合テープ36の高いレベルの水平度により、焼結中のテープ36に対する乱流空気流の影響が低減されることを発見した。図12に示すように、チャネル104、入口106、及び出口108は、略水平な平面内にある。具体的実施形態では、チャネル104、入口106及び出口108の中心軸によって画定される経路は、略水平な平面、及び/又は(例えば少なくとも1mの曲率半径を有する)緩やかな湾曲若しくは曲線を画定する。同様に、このような実施形態では、非結合テープ36はまた、チャネル104内の、略水平な平面及び/又は緩やかな湾曲若しくは曲線内にあってもよい(例えば図13に示すテープ36の上側表面124及び/又は下側表面126は、略水平な平面内にある)。本明細書中で使用される場合、テープ36の、チャネル104、入口106及び出口108によって画定される略水平な平面は、水平基準平面に対して10°以内の角度を形成するものである。他の具体的実施形態では、チャネル104、入口106及び出口108、並びに/又はチャネル104内のテープ36は、更に水平な平面、例えば水平基準平面に対して3°以内の角度を形成する平面、より具体的には水平基準平面に対して1°以内の角度の平面内にある。他の実施形態では、チャネル104がこのように配向されていない場合、対応する焼結済みテープは、例えばチャネル104を通る空気流が乱流であれば、「煙突効果」又は不規則な加熱に関連する印(例えばうねる表面の円丘又は隆起)を有し得る。
システム10のテープ材料がシステム10を通過する間に曝露される乱流空気流を更に制御又は制限するために、テープ20及び36が結合剤除去ステーション34及び焼結ステーション38を通過する際に、テープ材料(例えば結合剤除去ステーション内の素地テープ材料20、及び焼結ステーション内の非結合テープ材料36)を略水平位置に維持するような様式で、結合剤除去ステーション34を焼結ステーション38に対して位置決めしてよい。このような実施形態では、焼結用チャネル104の水平な位置決めと同様に、結合剤除去ステーション34もまた、略水平な位置に配向され、又は配向でき、例えばここで、開口116、118は、水平の10°以内の線をその間に形成するように位置合わせされる。
このような実施形態では、結合剤除去ステーション34は、結合剤バーンアウト炉110を含む。結合剤バーンアウト炉110は断熱ハウジング112を含む。一般に、断熱ハウジング112は複数の内壁を含み、これらは、入口開口116と出口開口118との間で結合剤バーンアウト炉110を通って延在するチャネル114を画定する。
図12に示すように、結合剤バーンアウト炉110を参照すると、チャネル114、入口116、及び出口118は、略水平な平面内にある。具体的実施形態では、チャネル114、入口116及び出口118の中心軸によって画定される経路は、略水平な平面を画定する。同様に、このような実施形態では、素地テープ20はまた、チャネル114内の、略水平な平面内にあってもよい。本明細書中で使用される場合、素地テープ20の、並びにチャネル114、入口開口116及び出口開口118の、略水平な平面は、水平基準平面に対して10°以内の角度を形成するものである。他の具体的実施形態では、チャネル114、入口開口116及び出口開口118、並びに/又はチャネル114内の素地テープ20は、更に水平な平面、例えば水平基準平面に対して3°以内の角度、を形成する平面、より具体的には水平基準平面に対して1°以内の角度の平面内にある。更に他の実施形態では、これらの特徴部分はこのように水平に位置合わせされていなくてもよい。
素地テープ20及び非結合テープ36の、それぞれ結合剤バーンアウト炉110及び焼結炉100内における水平度を維持することに加えて、非結合テープ36が結合剤バーンアウト炉110から焼結炉100へと移行する際に非結合テープ36が水平位置を維持するように、結合剤バーンアウト炉110(結合剤除去ステーションとも呼ばれる)及び焼結炉100を互いに対して位置合わせする。出願人は、この移行点において、非結合テープ36が様々な力(例えば乱流空気流によって引き起こされる力)による変形又は破損を特に受けやすいことを発見した。これは、有機結合剤のほとんどを除去すると、非結合テープ36の非焼結済み無機粒体が比較的弱い力(例えばファンデルワールス力、静電気的な相互作用、少量の残留した有機結合剤、隣接する粒子間の摩擦相互作用/係合、結合剤中に担持された低いレベルの無機物、可塑化剤、液体ビヒクル、場合によっては何らかの粒子間結合等)によって一体に保持され、従って、非結合テープ36と相互作用する乱流空気流によって引き起こされるもの等の比較的弱い力でさえ、変形又は破損を引き起こし得るためである。
よって図12に示すように、乱流空気流を制限するために、結合剤バーンアウト炉110のチャネル114は、焼結炉100のチャネル104と垂直方向に位置合わせされる。焼結炉100及び結合剤バーンアウト炉110を通るテープ経路に続いて、素地テープ20は、(図3に示す)入力ロールから結合剤バーンアウト炉入口116へ、そして結合剤バーンアウト炉チャネル114を通って結合剤バーンアウト炉出口118から出るように、水平方向に移動する。チャネル114内にある間に、炉110のヒータによって生成された熱が、素地テープ20の有機結合剤材料の少なくとも一部分を化学的に変化させ、及び/又は除去し、これは「バーンアウト」と呼ばれる。更に、結合剤バーンアウト炉110及び焼結炉100の相対的な位置決めは、上述のような水平位置又は概ね水平な位置を保っている間に、非結合テープ36が全て結合剤バーンアウト炉110から焼結炉100内へと移動するようなものである。よって、チャネル104とチャネル114との間の垂直方向の位置合わせにより、少なくともいくつかの実施形態では、非結合テープ36は、テープ材料が炉100及び110の両方を通過する際、略同一の水平な平面内に留まる(即ち炉110と炉100との間で上又は下方向に変位しない)。
出願人は、水平な結合剤除去及び/又は水平な焼結の便益は、テープ材料の幅が増大するに従って更に重要となると判断している。というのは、テープ材料は幅が広いほど、空気流の乱流による変形を受けやすいためである。よって出願人は、焼結炉100及び/又は結合剤バーンアウト炉110の水平な配置により、従来のシステムを用いて達成できないと考えられていた、有意な変形又は破損のない、幅がより広い及び/又はより長い焼結済みテープ材料の生産が可能となると考えている。
図13及び図14を参照すると、結合剤バーンアウト炉110、焼結炉100並びに炉内のテープ材料(例えば、素地テープ20及び非結合テープ36)の水平な位置決めに加えて、出願人は、乱流空気流を、焼結用チャネル104に比較的小さな高さ寸法(これは非結合テープ36に対する比較的小さなクリアランスに関連する)を提供することによって制限できることも発見した。出願人は、チャネル104内の超高温空気によって発生し得る乱流空気流を、熱勾配が生じ得、そして上記熱勾配が空気を移動させ得る領域の容積を低減することによって、制限できることを発見した。
図13及び12に示すように、チャネル104は、水平で全体として上方を向いた表面120によって少なくとも部分的に画定され、上記表面120は、チャネル104の下側表面の少なくとも一部分を画定する。同様に、チャネル104は、水平で全体として下方を向いた表面122によっても、少なくとも部分的に画定され、上記表面122は、チャネル104の上側表面の少なくとも一部分を画定する。G1として示されている第1の空隙は、上向き表面120と下向き表面122との間の垂直方向距離であり、G2は、下向き表面122と、非結合テープ36の上側表面124との間の垂直方向距離又はクリアランスである。
上述のように、様々な実施形態では、G1及びG2は、乱流空気流が制限されるよう、比較的小さいものの、G1及びG2は一般に、様々な処理ステップ(例えばチャネル104のスレッディング)を可能とするために十分な大きさでなければならない。様々な実施形態では、G2は、0.5インチ未満(12.7mm未満)、具体的には0.375インチ未満(9.5mm未満)、より具体的には0.25インチ(約6.35mm)である。理解されるように、G1は、G2と非結合テープ36の厚さT1との和に概ね等しい。従って様々な実施形態では、T1は比較的小さく、例えば、3マイクロメートル~1ミリメートルであるため、G1は1インチ未満(25.4mm未満)、具体的には0.75インチ未満(19mm未満)であり、また薄型テープ材料に関しては0.5インチ未満(12.7mm未満)であってよく、また超薄型テープ材料に関しては0.375インチ未満(9.5mm未満)であってよい。
図14は、焼結炉100の出口108を示し、ある例示的実施形態によるテープ40に対する小さなクリアランスG2を図示する。様々な実施形態では、G1及びG2は、関連する表面間の最大間隙距離を表してよく、また別の実施形態では、G1及びG2は、チャネル104の長さに沿って測定された関連する表面間の平均間隙距離を表してよい。
具体的実施形態では、表面120及び/又は表面122はまた、炉100の入口106と出口108との間に延在する(上述のような)略水平な表面である。従ってこのような実施形態では、表面120及び122は、略水平なチャネル104を画定する。いくつかの具体的実施形態では、表面120及び/又は122は、炉100の入口106と出口108との間の距離全体にわたって延在する、平坦かつ平面状の水平表面であってよい。他の具体的実施形態では、表面120及び/又は122は、結合剤除去ステーションについてもそうなり得るように、上述のように徐々に湾曲するか又は曲線を描いてよい。具体的実施形態では、表面120及び/又は122は、これらの表面が水平基準平面に対して10°未満、具体的には3°未満、更に具体的には1°未満の角度を形成するよう、略水平である。
図13に示すように、非結合テープ36の下側表面126は、上向き表面120に接触し、これにより、非結合テープ36の下側表面126は、非結合テープ36が炉100を通って前進する際に、上向き表面120に沿って又は上向き表面120に対して摺動する。特定の実施形態では、焼結中の下側表面126と上向き表面120との間の摺動接触は、上側表面124ではなく下側表面126に形成される、様々な長手方向特徴部分(例えば長手方向に延在するマーク、トラフ、隆起等)を生成する、又は生成し得る。従って具体的実施形態では、下側表面126上の表面特徴部分は、焼結中に対向する表面と接触しない上側表面124の表面特徴部分とは異なる。特に、この摺動接触は、セラミック材料をセッターボードに載せて、これら両方が共に焼結炉を通って移動するトンネルキルンプロセス等の、いくつかの焼成プロセスにおける構成とは大幅に異なる。具体的実施形態では、表面120及び122は、チャネル104を画定するアルミナチューブの内面等のアルミナであり、又はアルミナを含む。
上述の位置的構成及び空気流制御構成に加えて、出願人は、非結合テープ36が曝露される、炉100を通した温度プロファイルの制御が、テープの変形又は破損を制限するために重要であることも発見し、またこのテープの変形又は破損は、温度上昇が速すぎる(例えば焼結速度が速すぎる、又はテープのあまりに短い距離にわたるものである)場合に発生し得ることを、出願人が発見した。図15を全体的に参照すると、炉100は、テープ36が炉100を通過する際に、非結合テープ36の焼結を引き起こすためにチャネル104に熱を送達するよう位置決めされた、複数の独立して制御される加熱素子140を含んでよい。最大及び最小焼結温度は、テープ36が担持する無機材料粒体のタイプに少なくとも部分的に基づいて変動することになるが、一般に、加熱素子140は、チャネル104の少なくとも一部分に沿って少なくとも500°の温度を生成するよう構成される。いくつかの実施形態では、例えばThO(トリア)及び/又はTiO(チタニア)の焼結に関して、チャネル104は3100℃を超える最大温度まで加熱してよい。3200℃を超える融点を有するいくつかの材料、例えばカーバイド、タングステンが存在し、いくつかのこのような実施形態では、ヒータ140が生成する温度範囲は、500℃からより高い温度、例えば3500℃又は3600℃までである。具体的実施形態では、加熱素子140は、U字型の二ケイ化モリブデン加熱素子、及び/又は本明細書で開示される他の加熱素子であってよい。
一般に、各加熱素子140は、制御システム142の制御下であってよく、この制御システム142は、焼結中の変形を制限しながら、焼結済みテープ40内の所望のレベルの焼結を提供するための温度プロファイルをチャネル104の長さに沿って生成するために、炉100の個々の加熱素子140を独立して制御するよう構成(例えば物理的配設、プログラム等)される。いくつかの実施形態では、制御システム142は、チャネル104内の温度を検出する1つ以上の温度センサ144と通信してよい。このような実施形態では、制御システム142は、センサ144から受信した入力信号に基づいて、連続非結合テープ36の連続的な焼結中に所望の温度プロファイルを維持するよう、加熱素子140を制御してよい。いくつかの実施形態では、制御システム142はまた、テープ移動速度、位置、収縮及び張力を示す入力信号を受信して、これらの信号又はこれらの若しくは他のテープの特性に関連し得る他の信号に基づいて、温度及び/又は運動速度を制御してよい。
以下に記載の焼結炉の実施例に関連して実証されるように、出願人は、チャネル104の長さに沿った焼結温度プロファイルの適用が、焼結中のテープ材料の変形を低レベル又は制御されたレベルに維持するために重要となる、又は重要となり得ることを発見した。特に、出願人は、非結合テープ36が焼結中に曝露される温度の上昇が大きすぎる場合(例えば温度プロファイルの勾配が急峻すぎる場合)、材料が焼結されて収縮するに従って、許容できない高いレベルの応力がテープ36内に形成され、又は形成され得、これは図2に示すもののような、テープ36の面外変形をもたらすことを発見した。特に、出願人は、焼結中に、縁部130及び132における、並びに又はテープ36の中心線に沿った応力を制御することによって、焼結中のテープ36の変形を制御できることを発見した。同様のテープ36に対する潜在的に有害な影響は、システム10の昇温部分から(例えば炉100から出る際の)システム10の室温部分への移行があまりにも急激に行われる場合に発生し得る。そうは言っても、本出願の技術を用いて、このような温度制御又はプロファイルを伴わずにテープを焼結することもでき、この場合、得られる新規のテープ又は他の焼結済み物品は、上述のような特徴的な変形又は他の欠陥を有し得る。
図16及び図17を参照すると、例示的実施形態による、焼結用チャネル104の長さに沿って加熱素子140が生成する温度プロファイル160及び170が示されている。図16を参照すると、温度プロファイル160は、チャネル104内の温度が概して、チャネル104の長さに沿って処理方向14に上昇することを示している。プロファイル160は、以下の少なくとも3つのセクションを含む:入口開口106に隣接するチャネル104の領域内の温度を表す、第1のセクション162;チャネル104の長さの大部分(例えば、少なくとも50%、少なくとも75%等)に沿った温度を表す、第2のセクション164;及び出口開口108に隣接するチャネル104の領域内の温度を表す、第3のセクション166。
図16に示すように、第1のセクション162の平均勾配は、第2のセクション164の平均勾配より大きく、これは、入口開口106に隣接するチャネル104内における、相対的に急速な温度上昇を示す。第2のセクション164の平均勾配は、相対的に低い(及び第1のセクション162の平均勾配よりも小さい)。第2のセクション164の低い平均勾配は、テープ36がチャネル104の長さの大半に沿って移動する際にテープ36が経験する温度の漸増を表す。以下に記載されるように、この漸増は、テープ36内の応力を、所望のレベル未満の変形を維持する所定の閾値未満に維持するために選択される。第3のセクション166の平均勾配は、出口開口108に隣接するチャネル104内の冷却セクションを表す、負の勾配であり、これは、炉100から出る際にテープ36が経験するサーマルショックを制限する。
様々な実施形態において、セクション164の小さな勾配が表す漸進的な温度上昇は、チャネル104の長さに沿った温度上昇速度を制御することによって達成できる。様々な実施形態では、図16のプロットのx軸によって表されるように、チャネル104の長さは、少なくとも1メートル、少なくとも50インチ(127cm)、少なくとも60インチ(152.4cm)又はそれ以上等、比較的大きくてよい。図16においてモデル化され図示されている特定の焼結炉では、加熱されるチャネル104は64インチ(162.56cm)である。
様々な実施形態において、プロファイル160は、焼結中のテープ36内の圧縮応力を許容可能な低いレベルに維持するように成形され、これにより、望ましくない変形が回避される。出願人は、テープの変形が、本明細書に記載されるように制御されない場合、特に幅広のテープ材料及び高スループット焼結システムに関して課題となることを発見した。特に、テープの幅が広いほど、このタイプの変形を受けやすく、また更に、幅方向の変形により、取り込み用リール上での巻き取りが困難若しくは不可能となる、又はなり得る。そうは言っても、本開示の技術の態様(例えばキャリアの分離、張力の制御、結合剤の除去等)は、上記温度プロファイルを用いずに新規の材料及び製品を生成するために実行及び使用してよく、例えばここで、得られる製品の幅が比較的狭い、及び/又は得られる製品がこのような処理の欠陥若しくは変形特性を有する。
従って、様々な実施形態において、プロファイル160は、焼結中の非結合テープ36の左側縁部130及び/又は右側縁部132における圧縮応力が、縁部応力閾値未満のままとなり、また焼結中の非結合テープ36の中心線における圧縮応力が、中心線応力閾値未満のままとなるように、成形される。一般に、縁部応力閾値及び中心線応力閾値は、それを超えると非結合テープ36が焼結中に1mm超の面(長さ‐幅平面)外変形を発生させる、圧縮応力として定義される。出願人は、少なくともいくつかの材料及びテープ幅に関して、縁部圧縮応力及び中心線圧縮応力を、100MPa、具体的には75MPa、より具体的には60MPaの閾値未満に維持することによって、焼結中に面外変形を1mm未満に制限できることを発見した。ある具体的実施形態では、本出願人は、少なくともいくつかの材料及びテープ幅に関して、中心線圧縮応力を100MPa、具体的には75MPa、より具体的には60MPaの閾値未満に維持することによって、及び縁部応力を300MPa、具体的には250MPa、より具体的には200MPaの閾値未満に維持することによって、焼結中に面外変形を1mm未満に制限できることを発見した。
ある具体的実施形態では、セクション162及び166の勾配を制御することにより、炉100への入口及び炉100からの出口において、特に低いテープ応力を提供できる。このような一実施形態では、制御システム142は、セクション162及び166内の温度プロファイルを、炉100を通るテープの速度の制御と組み合わせて制御するよう構成される。このような実施形態では、セクション162及び166内の温度の制御と速度制御とのこのような組み合わせにより、焼結中に、テープ36内において、均一な焼結収縮(焼結歪み)、従って低い応力及び小さな変形が得られる。
図17を参照すると、別の例示的な温度プロファイル170が、チャネル104の図に沿って投影されて図示されている。図示されているように、プロファイル170は、チャネル104の全長のおよそ少なくとも75%にわたるゾーン172における、最高温度への上昇を示す。特定の実施形態では、ウェブ横断(テープ/シート)幅方向の温度勾配を低下させるために、焼結炉100を高熱伝導性材料(例えば鋼鉄又は高伝導性セラミック)製とすることができる。図17に示すように、幅方向には温度の変動はほとんど又は全く存在しない。一般に理解されるように、ある特定の焼結システムに関する温度プロファイルは、材料のタイプ、無機粒子のサイズ、粒子の密度、粒子サイズ分布、多孔率、細孔サイズ、細孔サイズ分布、焼結雰囲気、上述のような部品に関する応力閾値/許容可能な変形、チャネル104の長さ、スループット速度等、並びに所望の成果に基づくものとなる。
図18を参照すると、ある例示的実施形態による、焼結ステーション38の別の実施形態が示されている。この実施形態では、焼結ステーション38は、互いに直列に位置決めされた2つの炉180及び182を含む。一般に、炉180及び182は、少なくともいくつかの実施形態において炉180の温度プロファイルが炉182内の温度プロファイルとは異なる点を除いて、上述の炉100と略同一である。この構成では、非結合テープ36は炉180の入口106に入る。炉180内では、非結合テープ36は部分的に焼結されて、部分焼結済みテープ184を形成し、これは出口108を通って炉180を出る。次に、部分焼結済みテープ184は、入口106を通って第2の炉182に入り、更なる焼結が炉182のチャネル104の長さに沿って発生し、これにより、焼結済みテープ40が、上述のようなリールでの取り込みのために、出口108を通って炉182を出る。
様々な実施形態において、各炉180及び182は、複数の独立して制御可能な加熱素子を含み、これにより、各炉180及び182内において、異なる独立した温度プロファイルを形成できる。いくつかの実施形態では、2つの熱的に隔離された炉、例えば炉180及び182を利用することにより、炉180と炉182との合計チャネル長さに等しいチャネル長さを有する単一の長い炉に比べて、焼結中にテープ材料が曝露される温度プロファイルのより精密な制御を提供できる。他の考えられる実施形態では、更なる焼結のために、テープを、同一の炉を通して、ただし異なる経路に沿って戻るように移動させることができ、及び/又は異なる温度プロファイルに曝露できる。
更に、いくつかの実施形態では、炉180と炉182との間で異なる張力を印加することが望ましい場合がある。このような実施形態では、張力制御システム186は、炉180及び182のチャネル104によって画定される焼結経路に沿って配置される。具体的実施形態では、張力制御システム186は炉180と炉182との間に配置され、部分焼結済みテープ184に、第2の炉182内のテープ184の張力が炉180内の非結合テープ36の張力より大きくなるように、張力を印加する。様々な実施形態において、第2の焼結炉内の張力を増大させることは、炉182内での最終的な又は後続の焼結中に、改善された平坦性又は変形の低減を提供するために、望ましい場合がある。更に、この増大した張力は、部分焼結済みテープ184への印加に好適となり得る。というのは、部分焼結は、炉180内での非結合テープ36の相対的に低い引張強度に比べて、テープ184の引張強度を増大させるためである。
図19を参照すると、ある例示的実施形態による、炉180及び182内での予想温度プロファイルが示されている。図19に示すように、炉180の加熱素子を制御することによって、温度プロファイル190が生成され、また炉182の加熱素子を制御することによって、温度プロファイル192が生成される。以下で記載するように、プロファイル190及び192はいずれも、上述の温度プロファイル160の漸進的な温度上昇と同様の漸進的な温度上昇を有し、これは同一の小さな応力を生成する。しかしながら、プロファイル192は、プロファイル190より上に位置し(例えばプロファイル190より高い平均温度を有し)、これにより、部分焼結済みテープ184が炉182を通過する際に発生する、より高いレベルの焼結(例えば更なる収縮、更なる多孔率の低下)が引き起こされる。
図20を参照すると、ある例示的実施形態による、高スループット焼結システム200が示されている。一般に、システム200は2つの並列のシステム10を含み、これらはそれぞれテープ材料を焼結する。システム200は、図18の構成と同様に、単一のタイプの焼結済みテープ材料の出力を増大させるよう、動作できる。あるいは、システム200の各システム10は、異なる焼結済みテープ材料を出力してもよい。様々な実施形態において、システム200は、焼結済みテープ材料の出力を更に増大させるために、3個、4個、5個等のシステム10を並列に含んでよい。
焼結ステーションの例及びモデル
図21~図28を参照すると、様々な焼結試験及び焼結モデルが説明されており、これらは、本明細書に記載の焼結における関係、例えば温度プロファイルと収縮率との関係、温度プロファイルとテープ材料の応力との関係、応力とテープの変形との関係、及びテープ幅と焼結変形のリスクとの関係を実証するものである。
物理的な焼結試験の例1
ある例では、アクティブに制御される複数のゾーン結合剤バーンアウト炉を有する、水平な炉を試験した。この試験では、幅42mm及び厚さ約25マイクロメートルのテープキャスト「素地」ジルコニアセラミックリボン(ポリマー結合剤が装入されたセラミック)を、(上述の炉38及び結合剤除去ステーション34と同様の)マルチゾーン型結合剤バーンアウト炉を有する水平な装置を通して、20インチ(50.8cm)/分で供給した。上記結合剤バーンアウト炉は、入口において325℃に設定され、出口の475℃まで、4個の中央高温ゾーンは、0~25℃の増分で温度を段階的に上昇させた。約0~約250℃の温度範囲の約7.5リットル/分の空気流も提供した。この空気流は、バーンアウト炉の両側の間で分割された。焼結炉は長さ36インチ(91.44cm)であり、18インチ(45.72cm)の長さの高温ゾーンを有していた。テープをアルミナ「D」チューブ上で摺動させることによって、テープを焼結炉内で輸送し、張力は20グラムであり、炉は1225℃に設定した。その結果としての10~20フィート(3.048~6.096m)の焼結済みジルコニアテープを作製し、直径3インチ(7.62cm)の取り込み用リール上に巻き付けた。幅にわたる焼結収縮は、約12%であった。
焼結モデル1
図21及び図22を参照すると、時間及び温度の関数としての、ジルコニアの焼結収縮が示されている。図21は、様々な温度及び温度における時間での、ジルコニアテープの焼結収縮のグラフを示す。図22は、様々な温度及び温度における時間での、ジルコニアテープの焼結収縮の数学関数によって生成された曲線のグラフを示す。
図21に示されているデータ点を生成するために、幅15mm及び厚さ約25マイクロメートルのテープキャスト「素地」ジルコニアセラミックリボン(ポリマー結合剤が装入されたセラミック)を、上述の「物理的な焼結試験の例1」で説明した装置内で、8インチ(20.32cm)/分で1200℃まで「素焼き」焼成した。このようにして生産された、種焼き焼成済みのテープを、1250℃、1300℃、1350℃、1400℃、1450℃、及び1500℃において、30秒間、1分間、2分間、3分間及び5分間、高温ゾーンが狭い炉内に投入して焼成した。焼結収縮を測定し、これらのデータを図21に示す。
この焼結データから、焼結収縮を温度及び時間の関数として記述する数学的曲線を当てはめ、実際に試験したものよりも低い温度及び中間の温度に外挿した。この曲線当てはめ及び外挿を図22に示す。図21及び図22に示した試験及び曲線当てはめに基づいて、ジルコニアに関する焼結収縮、焼結時間、及び温度の関係を決定した。出願人は、この情報を用いて、所望の収縮率を達成するため及び応力を上述の変形閾値未満に低減するための、ジルコニアに関する焼結温度プロファイルを得ることができると考えている。
ある具体的実施形態では、このデータを用いて、図16に示す64インチ(162.56cm)の焼結炉及び温度プロファイルをモデル化した。図16に示すように、熱勾配/プロファイル160は、1250℃で始まり、1450℃で終了した。モデル化された温度は、炉内の0インチ(0cm)から8インチ(20.32cm)までで1250℃から1300℃まで上昇し、8インチ(20.32cm)から16インチ(40.64cm)までで1300℃から1312.5℃まで上昇し、16インチ(40.64cm)から24インチ(60.96cm)までで1312.5℃から1325℃まで上昇し、24インチ(60.96cm)から32インチ(81.28cm)まで1325℃に維持され、32インチ(81.28cm)から40インチ(101.6cm)までで1325℃から1375℃まで上昇し、40インチ(101.6cm)から48インチ(121.92cm)までで1375℃から1400℃まで上昇し、48インチ(121.92cm)から56インチ(142.24cm)までで1400℃から1450℃まで上昇し、56インチ(142.24cm)から64インチ(162.56cm)まで1450℃に維持され、その後、64インチ(162.56cm)以降で1000℃未満まで冷却された。
収縮は、テープ輸送速度の関数としてモデル化された。図16に示すように、このモデルは、20インチ(50.8cm)/分(ipm)という比較的速い輸送速度が、高温ゾーンの長さにわたって、より均一な焼結収縮をもたらしたことを示した。よって、このモデル化は、焼結歪み/収縮が発生する距離が短いほど、テープの応力が大きくなり、折れ及び面外塑性変形の傾向が大きくなるため、比較的長い長さにわたる均一な収縮が望ましいことを実証している。
焼結モデル2
図23及び16を参照すると、焼結応力を有限要素解析(FEA)及び閉形式(CF)解によってモデル化した。図23及び図24で実証されているように、焼結されるテープの幅が広くなるに従って、100mm幅の静止テープ(単一の高温ゾーン)、高温ゾーンが2つしか存在しない場合の100mm幅のテープ、並びに8インチ(20.32cm)及び16インチ(40.64cm)/分で輸送されるテープに関して、-1000MPaを超える極限焼結応力が算出される。対照的に、9個の高温ゾーンを2回の焼結パスで使用した場合(これは単回パスでの18個の高温ゾーンと同等である)、約-200MPa未満の縁部応力が、150mm幅のシートに関してモデル化された。単一の高温ゾーン及び4個の高温ゾーンに関する試験では、各高温ゾーンは、炉が900mm(36インチ)であである状態で450mm(18インチ)の長さを有するようにモデル化され、従ってこれら2つのモデル化の例では、追加の高温ゾーンはより長い高温ゾーンに等しい。例えば1ゾーン/2パスの高温ゾーンは一般に、合計900mm(36インチ)の長さの1つの高温ゾーンに等しい。しかしながら、9ゾーン/2パスの高温ゾーンは、合計3660mm(144インチ)(長さ)の1つの高温ゾーンに等しい。よって図23及び図24は、高温ゾーンの個数(例えば焼結用高温ゾーンの合計長さ)、テープが曝露される温度プロファイル、及び高温ゾーンを通るテープの移動速度を制御することによって、ますます幅広のテープ(例えば50mm超、100mm、150mm、200mm、250mm等)に対応でき、焼結応力を、変形、折れ又は破損の生成を回避するために十分に低いレベルに維持できることを実証している。
焼結モデル3
図25及び図26は、急峻な温度勾配を有する単一の高温ゾーンを2回通過する素焼きジルコニアテープ(即ち部分焼結済みテープ)のモデルを示す。高温ゾーンは、第1のパスでは1250℃に設定され、続いて第2のパスでは1400℃に設定された。8インチ(20.32cm)及び16インチ(40.64cm)/分のテープ輸送速度が入力であった。テープは、厚さ20マイクロメートル、並びに幅15mm及び40mmとなるようにモデル化された。図25は、高温ゾーンを通した収縮を示し、図26は、急速な焼結歪みによって、(8ipmにおいて、40mm幅のテープに関して)90MPa超、及び(16ipmにおいて、40mm幅のテープに関して)120MPaという相当な圧縮応力がテープ内で生成されることを示している。これは、これらの幅及び厚さを有するテープに関して、折れ及び面外変形につながると考えられる。
焼結モデル4
図27及び図28は、モデルが、10個の高温ゾーンを有する複数ゾーン型の炉、及び2回のパス(ここで第2のパスは第1のパスより高い温度に設定される)を使用した場合の結果を示す。モデル化された応力は、図26に示されている応力に比べて、テープ輸送速度及びテープ幅の両方に関して、大きさが1桁降下している。この低い応力は、はるかに平坦なテープ、例えばはるかに小さな変形につながると考えられる。更にこのモデルは、焼結中の制御された焼結温度プロファイル又は漸進的な温度上昇の、応力に対する、及びその結果として変形に対する影響を実証している。
物理的な焼結試験の例2
別の試験の例では、厚さ約25マイクロメートル及び幅15cmのテープキャスト「素地」ジルコニアセラミックリボン(ポリマー結合剤が装入されたセラミック)を、焼結温度1100℃で、垂直方向に配向された焼結装置で作製した。約50フィート(15.24m)を作製し、直径3インチ(7.62cm)の取り込み用リール上に巻き付けた。幅にわたる素焼き焼結収縮は、約10%であった。
続いて、この1100℃「素焼き」テープを、図12に示されているものと略同一の水平焼結炉に通し、速度は約3インチ(7.62cm)/分、10インチ(25.4cm)/分、20インチ(50.8cm)/分、30インチ(76.2cm)/分、60インチ(152.4cm)/分及び75インチ(190.5cm)/分であり、また炉は1550℃に設定した。結果としての長さが40フィート(12.192m)の焼結済みテープを作製し、直径3インチ(7.62cm)の取り込み用リール上に巻き付けた。焼結中のテープの張力は、75インチ(190.5cm)/分でさえも10グラム程度であり、またテープは約15秒未満だけ高温ゾーン内にあり、20%未満の多孔率が達成された。速度が遅いほど、密度が高い材料が得られた。従ってこの試験は、焼結炉が長いほど、焼結済みテープにおいて高い密度/低い多孔率がもたらされること、及び温度が高いほど、焼結済みテープにおいて高い密度/低い多孔率がもたらされることを実証している。
物理的な焼結試験の例3
別の試験の例では、厚さ約50マイクロメートルのテープキャスト「素地」アルミナセラミックリボン(ポリマー結合剤が装入されたセラミック)を、図3に示されているものと略同一のシステムを通して、4~6インチ(10.16~15.24cm)/分で供給した。結合剤バーンアウト炉は、入口において325℃に設定され、出口の475℃まで、4個の中央高温ゾーンは、0~25℃の増分で温度を段階的に上昇させた。約0~約250℃の5~7.5リットル/分の空気流を使用した。焼結炉は長さ36インチ(91.44cm)であり、18インチ(45.72cm)の長さの高温ゾーンは1300℃に設定された。素地テープを、この18インチ(45.72cm)の1300℃の焼結用高温ゾーンに通し、部分焼結済み「素焼き」テープを生産した。上記部分焼結済みテープの幅は、素地テープの幅より7%小さかった。
続いて、この1300℃「素焼き」テープを再び、2インチ(5.08cm)/分で焼結炉に通し、ここで焼結炉は1550℃に設定され、これにより、約20フィート(6.096m)の完全焼結済みアルミナテープが生産された。上記テープを、直径6インチ(15.24cm)の取り込み用リール上に巻き付けた。テープの張力は、焼結中において約100グラムであり、第2のパスに関する幅にわたる焼結収縮は約15%であった。焼結後、テープは半透明であり、ほとんど透明であった。文書の上に上記テープを配置した場合、上記テープを通して文書を読むことができた。粒体のサイズは約2マイクロメートル未満であり、材料は約1%未満の多孔率を有していた。
試験の例4
別の試験の例では、厚さ約50マイクロメートルのテープキャスト「素地」ジルコニアセラミックリボン(ポリマー結合剤が装入されたセラミック)を、図3に示されているものと略同一のシステムを通して、6インチ(15.24cm)/分で供給した。結合剤バーンアウト炉は300~475℃に設定され、~7.5リットル/分の、200~250℃の空気流を含んでいた。焼結炉は長さ36インチ(91.44cm)であり、18インチ(45.72cm)の高温ゾーンを有していた。温度勾配は、9インチ(22.86cm)未満において25℃~1225℃であり、3~4(7.62~10.16cm)インチにわたって1000℃~1225℃であった。約3/8インチ(0.9525cm)だけ離間した2個のDチューブを用いて、空気の循環を制限し、温度勾配を低下させた。テープの張力は20~60グラムであり、焼結炉は1225℃に設定された。結果としての長さが50フィート(15.24m)の焼結済みジルコニアを作製し、直径3インチ(7.62cm)の取り込み用リール上に巻き付けた。幅にわたる素焼き焼結収縮は、約12%であった。
小さな温度勾配を有する炉を物理的にモデル化するために、1225℃焼結済み「素焼き」テープを、単一ゾーン型の炉に、温度を徐々に高めながら3回通した。これにより、焼結収縮は各パスに関して低下し、面外変形が低減された。具体的には、続いて1225℃「素焼き」テープを再び、6インチ(15.24cm)/分で炉に通し、ここで炉は1325℃に設定した。このプロセスにより、45フィート(13.716m)の焼結済みジルコニアテープを作製し、直径3インチ(7.62cm)の取り込み用リール上に巻き付けた。焼結中のテープの張力は100~250グラムであり、このパスに関する幅にわたる焼結収縮は5~6%であった。
続いて、この1325℃テープを更にもう一度(3回目)、6インチ(15.24cm)/分で焼結炉に通し、ここで焼結炉は1425℃に設定した。約40フィート(12.192m)の焼結済みジルコニアテープを作製し、直径3インチ(7.62cm)の取り込み用リール上に巻き付けた。焼結中のテープの張力は100~250グラムであり、このパスに関する幅にわたる焼結収縮は5~6%であった。この1425℃のパスの後、テープは半透明であり、ほとんど透明であった。文書の上に上記テープを配置した場合、上記テープを通して文書を読むことができた。
続いて、この1425℃テープを更にもう一度(4回目)、3~6インチ(7.62~15.24cm)/分で焼結炉に通し、ここで焼結炉は1550℃に設定した。1550℃で焼結済みの数フィートのテープを作製し、直径3インチ(7.62cm)の取り込み用リール上に巻き付けた。焼結中のテープの張力は100~300グラムであり、このパスに関する焼結収縮(幅)は0~2%であった。
焼結済み物品
これより、本明細書に記載のシステム及びプロセスを用いて形成される焼結済み物品の実施形態について説明する。焼結済み物品は、焼結済みテープ(即ち連続焼結済みテープ)又は個別の1つ以上の焼結済み物品の形態で提供できる。特段の指示がない限り、用語「焼結済み物品(sintered article)」は、連続焼結済み物品及び個別の1つ以上の焼結済み物品の両方を指すことを意図している。更に、「焼結済み(sintered)」は、部分焼結済み物品及び完全焼結済み物品の両方を指す。一態様では、焼結済み物品の実施形態は、これまで達成できなかった寸法を備える。1つ以上の実施形態では、焼結済み物品は、これらの寸法に沿って、特定の特性の均一性も示す。別の態様によると、焼結済み物品の実施形態は、平坦化可能性を示し、これは、焼結済み物品に有意な応力を印加することなく、焼結済み物品を平坦化でき、又は平坦化に供することができ、これにより焼結済み物品を下流のプロセスで良好に使用できることを示す。別の態様は、ロール化済み焼結済み物品の実施形態に関し、更に別の態様は、複数の個別の焼結済み物品の実施形態に関する。また更に他の態様は、材料の新規の組成物、又は新規の微小構造、例えば独特な粒界に関する新規の微小構造を有する組成物を含む。
図29を参照すると、1つ以上の実施形態による焼結済み物品1000は、第1の主表面1010、この第1の主表面の反対側の第2の主表面1020、及び上記第1の主表面と上記第2の主表面との間に延在する本体1030を含む。本体1030は、上記第1の主表面と上記第2の主表面との間の距離として定義される厚さ(t)、上記厚さに対して垂直な上記第1及び第2の主表面のうちの一方の第1の寸法として定義される幅(W)、並びに上記厚さ及び上記幅の両方に対して垂直な上記第1又は第2の主表面のうちの一方の第2の寸法として定義される長さ(L)を有する。1つ以上の実施形態では、上記焼結済み物品は、幅(W)を画定する、対向する小面1040を含む。具体的実施形態では、本発明の技術のいくつかのテープは図29に示されているテープより長くなり得るものの、本明細書に記載の焼結済み物品1000は、システム10を用いて生産される焼結済みテープ40の一例である。
1つ以上の実施形態では、焼結済み物品は、約5mm以上の幅、約3μm~約1mmの厚さ、及び約300cm以上の長さを有する、連続焼結済み物品である。他の実施形態では、幅は上述のように5mm未満である。
1つ以上の実施形態では、焼結済み物品は、約5mm~約200mm、約6mm~約200mm、約8mm~約200mm、約10mm~約200mm、約12mm~約200mm、約14mm~約200mm、約15mm~約200mm、約17mm~約200mm、約18mm~約200mm、約20mm~約200mm、約22mm~約200mm、約24mm~約200mm、約25mm~約200mm、約30mm~約200mm、約40mm~約200mm、約50mm~約200mm、約60mm~約200mm、約70mm~約200mm、約80mm~約200mm、約90mm~約200mm、約100mm~約200mm、約5mm~約150mm、約5mm~約125mm、約5mm~約100mm、約5mm~約75mm、約5mm~約50mm、約5mm~約40mm、約5mm~約30mm、約5mm~約20mm、又は約5mm~約10mmの幅を有する。
いくつかの実施形態では、焼結済み物品は、少なくとも0.5mm、例えば少なくとも1mm、例えば少なくとも2mm、例えば少なくとも5mm、例えば少なくとも8mm、例えば少なくとも10mm、例えば少なくとも15mm、例えば少なくとも20mm、例えば少なくとも30mm、例えば少なくとも50mm、例えば少なくとも75mm、例えば少なくとも10cm、例えば少なくとも15cm、例えば少なくとも20cm、及び/又は2m以下、例えば1m以下、例えば50cm以下、例えば30cm以下の幅Wを有する。他の実施形態では、焼結済み物品は、異なる幅Wを有する。
1つ以上の実施形態では、焼結済み物品は、約3μm~約1mm、約4μm~約1mm、約5μm~約1mm、約6μm~約1mm、約7μm~約1mm、約8μm~約1mm、約9μm~約1mm、約10μm~約1mm、約11μm~約1mm、約12μm~約1mm、約13μm~約1mm、約14μm~約1mm、約15μm~約1mm、約20μm~約1mm、約25μm~約1mm、約30μm~約1mm、約35μm~約1mm、約40μm~約1mm、約45μm~約1mm、約50μm~約1mm、約100μm~約1mm、約200μm~約1mm、約300μm~約1mm、約400μm~約1mm、約500μm~約1mm、約3μm~約900μm、約3μm~約800μm、約3μm~約700μm、約3μm~約600μm、約3μm~約500μm、約3μm~約400μm、約3μm~約300μm、約3μm~約200μm、約3μm~約100μm、約3μm~約90μm、約3μm~約80μm、約3μm~約70μm、約3μm~約60μm、約3μm~約50μm、約3μm~約45μm、約3μm~約40μm、約3μm~約35μm、約3μm~約30μm、又は約3μm~約30μmの厚さ(t)を有する。
いくつかの実施形態では、焼結済み物品は、少なくとも3μm、例えば少なくとも5μm、例えば少なくとも10μm、例えば少なくとも15μm、例えば少なくとも20μm、例えば少なくとも25μm、例えば少なくとも0.5mm、例えば少なくとも1mm、及び/又は5mm以下、例えば3mm以下、例えば1mm以下、例えば500μm以下、例えば300μm以下、例えば100μmの厚さtを有する。他の実施形態では、焼結済み物品は、異なる厚さtを有する。
1つ以上の実施形態では、焼結済み物品は連続しており、約300cm~約500m、約300cm~約400m、約300cm~約200m、約300cm~約100m、約300cm~約50m、約300cm~約25m、約300cm~約20m、約350cm~約500m、約400cm~約500m、約450cm~約500m、約500cm~約500m、約550cm~約500m、約600cm~約500m、約700cm~約500m、約800cm~約500m、約900cm~約500m、約1m~約500m、約5m~約500m、約10m~約500m、約20m~約500m、約30m~約500m、約40m~約500m、約50m~約500m、約75m~約500m、約100m~約500m、約200m~約500m、又は約250m~約500mの長さLを有する
いくつかの実施形態では、焼結済み物品は、少なくとも5mm、例えば少なくとも25mm、例えば少なくとも1cm、例えば少なくとも15cm、例えば少なくとも50cm、例えば少なくとも1m、例えば少なくとも5m、例えば少なくとも10m、及び/又は5km以下、例えば3km以下、例えば1km以下、例えば500m以下、例えば300m以下、例えば100m以下の、連続した切れ目のない長さLを有する。他の実施形態では、焼結済み物品は、異なる長さLを有する。特に本明細書で開示されている材料及び品質の、このような連続した長い長さは、制御下での分離、張力制御、焼結ゾーン、結合剤除去技法等の本明細書で開示される技術を有しない当業者にとって、驚くべきものであり得る。
1つ以上の実施形態では、焼結済み物品の本体は、焼結済み無機材料を含む。1つ以上の実施形態では、無機材料は、約1mm未満の主境界面寸法を有する境界面を含む。本明細書中で使用される場合、用語「境界面(interface)」は、無機材料に関して使用される場合には、化学的不均質性、又は結晶構造の不均質性、又は化学的不均質性及び結晶構造の不均質性の両方を含むこととして定義される。
例示的な無機材料としては、セラミック材料、ガラスセラミック材料等が挙げられる。いくつかの実施形態では、無機材料は、圧電材料、熱電材料、焦電材料、可変抵抗材料、又は光電材料のうちのいずれの1つ以上を含んでよい。無機材料の具体例としては、ジルコニア(例えば、イットリア安定化ジルコニア)、アルミナ、スピネル、ガーネット、リチウムランタンジルコニウム酸化物(LLZO)、コーディエライト、ムライト、ペロブスカイト、パイロクロア、炭化ケイ素、窒化ケイ素、炭化ホウ素、チタン酸ビスマスナトリウム、チタン酸バリウム、二ホウ化チタン、窒化ケイ素アルミナ、酸窒化アルミニウム、又は反応性セラミック化ガラスセラミック(ガラスフリットと1つ以上の反応物粉体との間のインサイチュでの反応を含む、化学反応と失透との組み合わせによって形成されたガラスセラミック)が挙げられる。
1つ以上の実施形態では、焼結済み物品は、ある特定の面積にわたって組成の均一性を示す。1つ以上の具体的実施形態では、焼結済み物品は、長さに沿って、ある組成(即ち重量パーセント(%)を単位とする化学物質の相対量)を有する少なくとも10平方cmの面積を含み、ここで上記組成の少なくとも1つの成分は、上記面積にわたって、約3重量%未満(例えば約2.5重量%以下、約2重量%以下、約1.5重量%以下、約1重量%以下、又は約0.5重量%以下)のばらつきを有する。例えば上記無機材料がアルミナを含む場合、アルミナの量は、少なくとも10平方cmの面積にわたって、約3重量%未満(例えば、約2.5重量%以下、約2重量%以下、約1.5重量%以下、約1重量%以下、又は約0.5重量%以下)だけばらつき得る。このような組成の均一性は、少なくとも部分的には、独立して制御される複数の要素を備えた炉の加熱ゾーン、素地テープの注意深く繊細な取り扱い、連続テープ処理の安定した状態等といった、本明細書で開示されている新規の独特なプロセスによるものであり得る。他の実施形態では、本明細書で開示される少なくともいくつかの技術の、新規の独創的なテープ又は他の製品は、このような組成の均一性を有しなくてもよい。
1つ以上の実施形態では、焼結済み物品は、ある特定の面積にわたって、結晶構造の均一性を示す。1つ以上の具体的実施形態では、焼結済み物品は、その長さに沿って、ある結晶構造を有する少なくとも10平方cmの面積を含み、上記結晶構造は、上記面積にわたって百分率にして約5未満だけ変動する重量%を有する、少なくとも1つの相を有する。単なる例示として、焼結済み物品は、上記焼結済み物品の20重量%を構成する少なくとも1つの相を含んでよく、この相の量は、上記少なくとも10平方cmの面積にわたって、約15重量%~約25重量%である。1つ以上の実施形態では、焼結済み物品は、その長さに沿って、ある結晶構造を有する少なくとも10平方cmの面積を含み、上記結晶構造は、上記面積にわたって百分率にして約4.5未満、百分率にして約4未満、百分率にして約3.5未満、百分率にして約3未満、百分率にして約2.5未満、百分率にして約2未満、百分率にして約1.5未満、百分率にして約1未満、又は百分率にして約0.5未満だけ変動する重量%を有する、少なくとも1つの相を有する。このような結晶構造の均一性は、少なくとも部分的には、独立して制御される複数の要素を備えた炉の加熱ゾーン、素地テープの注意深く繊細な取り扱い、連続テープ処理の安定した状態等といった、本明細書で開示されている新規の独特なプロセスによるものであり得る。他の実施形態では、本明細書で開示される少なくともいくつかの技術の、新規の独創的なテープ又は他の製品は、このような結晶構造の均一性を有しなくてもよい。
1つ以上の実施形態では、上記焼結済み物品は、ある特定の面積にわたって、多孔率の均一性を示す。1つ以上の具体的実施形態では、焼結済み物品は、その長さに沿って、約20%未満だけ多孔率が変動する少なくとも10平方cmの面積を含む。本明細書中で使用される場合、用語「多孔率(porosity)」は体積パーセント(例えば少なくとも10体積%、又は少なくとも30体積%)として記述され、ここで「多孔率」は、焼結済み物品の体積の、無機材料が占有していない部分を指す。従って一例として、焼結済み物品は、10体積%の多孔率を有し、この多孔率は、少なくとも10平方cmの面積にわたって、約8体積%超から約12体積%未満までの範囲内である。1つ以上の具体的実施形態では、焼結済み物品は、長さに沿って、少なくとも10平方cmの面積であって、上記面積にわたって18%以下、16%以下、15%以下、14%以下、12%以下、10%以下、8%以下、6%以下、5%以下、4%以下又は約2%以下だけ変動する多孔率を有する、面積を備える。このような多孔率の均一性は、少なくとも部分的には、独立して制御される複数の要素を備えた炉の加熱ゾーン、素地テープの注意深く繊細な取り扱い、連続テープ処理の安定した状態等といった、本明細書で開示されている新規の独特なプロセスによるものであり得る。他の実施形態では、本明細書で開示される少なくともいくつかの技術の、新規の独創的なテープ又は他の製品は、このような多孔率の均一性を有しなくてもよい。
1つ以上の実施形態では、焼結済み物品は粒体プロファイルを示し、これは例えば、顕微鏡下で視認した場合に、このような粒体プロファイル構造の例としての図30Aのデジタル画像に図示され、かつ図30Bの側面図に概念的に図示されているように、本体1030から概ね外向きに突出した粒体1034を含み、この粒体1034が、粒体1034間の境界1032の表面の凹状部分に対して少なくとも25ナノメートル(nm)及び/又は150マイクロメートル(μm)以下の高さH(例えば平均高さ)を有するような、粒体プロファイルである。1つ以上の実施形態では、高さHは、約25nm~約125μm、約25nm~約100μm、約25nm~約75μm、約25nm~約50μm、約50nm~約150μm、約75nm~約150μm、約100nm~約150μm、又は約125nm~約150μmである。1つ以上の実施形態では、高さHは、約25nm~約125nm、約25nm~約100nm、約25nm~約75nm、約25nm~約50nm、約50nm~約150nm、約75nm~約150nm、約100nm~約150nm、又は約125nm~約150nmである。他の実施形態では、高さHは他のサイズであってもよい。更に他の実施形態では、処理条件(例えば時間、温度)は、焼結済み材料の高さHが略ゼロとなるようなものであってよい。いくつかの実施形態では、本明細書で開示される材料及び製造に関して、製品(例えばテープ)は、少なくとも25nm、例えば少なくとも50nm、例えば少なくとも75nm、例えば少なくとも100nm、例えば少なくとも125nm、例えば少なくとも150nm、及び/又は200μm以下、例えば150μm以下、例えば100μm以下、例えば75μm以下、例えば50μm以下の、粒体の高さHを含む。このような微小構造のサイズ及び形状は、炉を通した搬送の速度、炉の1つ以上の温度及び温度プロファイル、素地テープ中の無機材料の組成、粒子/粒体サイズ及び密度、並びに本明細書で開示される他の因子といった、本明細書で開示される技術を用いて制御できる。
粒体プロファイルは、焼結済み物品1000を形成するために使用される製造プロセスのインジケータである、又はインジケータとなり得る。特に、粒体プロファイルは、物品1000がブールから切断されたものではなく、薄型連続物品として(即ちシート又はテープとして)焼結されたこと、及び各表面1010、1020が実質的に研磨されていないことの、インジケータである、又はインジケータとなり得る。更に、研磨済み表面に比べて、粒体プロファイルは、ディスプレイのバックライトユニットに関する光の散乱、コーティングの接着を高めるため又は培養増殖のための表面積の増大といったいくつかの用途において、焼結済み物品1000に便益を提供できる。考えられる実施形態では、表面1010、1020は、焼結済み物品の長さに沿った一次元における10mmの距離にわたって、約10nm~約1000nm、例えば約15nm~約800nmの粗度を有する。考えられる実施形態では、表面1010、1020のうちの一方又は両方は、単一の軸に沿った1cmの距離にわたって、約1nm~約10μmの粗度を有する。
1つ以上の実施形態では、一方又は両方の表面1010、1020を研磨してよく、ここで、粒体の境界の溝及び粒体の粗さ(又は小さな隆起)は、研磨によって概ね除去される。考えられる実施形態では、本明細書で開示されるプロセスによって製造された焼結済み物品1000は、例えば目的とする物品の特定の用途に応じて、例えば図31A~31Bに示されている表面と同様の表面を有するように、研磨してよい。例えば焼結済み物品1000を基板として使用するには、極度に平滑な平面は必要とされない場合があり、図30A~30Bの非研磨表面で十分となり得るが、物品を鏡として、又はレンズとして使用するには、図31A~31Bに示すような研磨が必要となり得る。しかしながら、本明細書で開示されるように、研磨は、特に薄い物品、又は薄くかつ大きな表面積を有する物品に関しては困難となり得る。示されているように、本明細書で開示される基板は、平滑度等の表面品質を変化させることができるコーティングを受承してもよい。
理論によって束縛されるものではないが、ブールから切断された焼結済みセラミック又は他の材料のシートは、図30A~30Bの物品とは対照的に、その表面上に、容易に識別可能な粒界が存在しない場合がある。理論によって束縛されるものではないが、ブールから切断された物品は典型的には、摩擦に由来する溝等を有する、切断に由来する粗い表面を補正するために研磨され得るが、表面の研磨は、焼結済みセラミック又は他の材料の極めて薄い物品に関しては、特に困難となり得るか、又は煩雑となり得、その困難の度合は、物品が薄くなるほど、及び上記物品の表面積が大きくなるほど上昇する。しかしながら、本開示の技術によって製造された焼結済み物品は、このような制約による制限が少なくなり得る。というのは、本技術によって製造された物品は、長さが長いテープとして連続して製造できるためである。更に、本明細書で開示されるような炉システムの寸法を、本明細書に記載の幅広の物品を収容して焼結させるように、拡大縮小できる。
焼結済み物品1000がシート又はテープの形態である場合等のいくつかの実施形態では、表面の一貫性は、第1の表面1010及び第2の表面1020のうちの一方又は両方がわずかな表面欠陥しか有しないようなものである。この文脈において、表面欠陥は、各表面に沿って少なくとも15μm、10μm、及び/又は5μmの寸法を有する摩擦及び/又は接着である。1つ以上の実施形態では、第1の主表面1010及び第2の主表面1020のうちの一方又は両方は、15μm超、10μm超、及び/又は5μm超の寸法を有する表面欠陥を、1平方センチメートルあたり15個未満、10個未満、及び/又は5個未満だけ有する。一例として、第1の主表面1010及び第2の主表面1020のうちの一方又は両方は、このような表面欠陥を、平均して1平方センチメートルあたり3個未満、又は1個未満だけ有する。1つ以上の実施形態では、第1の主表面及び第2の主表面のうちの一方又は両方は、接着又は摩擦に由来する5μm超の寸法の表面欠陥を100個未満だけ有する、少なくとも10平方センチメートルの面積を有する。あるいは、又は更に、第1及び第2の主表面のうちの一方は、接着又は摩擦に由来する5μm超の寸法の表面欠陥を100個未満だけ有する、少なくとも10平方センチメートルの面積を有し、その一方で、第1の主表面及び第2の主表面のうちのもう一方は、接着又は摩擦に由来する5μm超の寸法の表面欠陥を備える。従って、本明細書で開示される本発明の技術によって製造された焼結済み物品は、比較的高く一貫した表面品質を有することができる。出願人は、焼結済み物品1000の、この高く一貫した表面品質が、応力集中及び/又は割れ開始の部位を減少させることにより、物品1000の強度の上昇を促進すると考えている。
焼結済み物品は、単一の軸に沿った(例えば焼結済み物品の長さ又は幅等に沿った)1cmの距離にわたって、約0.1μm(100nm)~約50μmの平坦性を有するものとして記述できる。いくつかの実施形態では、上記平坦性は、約0.2μm~約50μm、約0.4μm~約50μm、約0.5μm~約50μm、約0.6μm~約50μm、約0.8μm~約50μm、約1μm~約50μm、約2μm~約50μm、約5μm~約50μm、約10μm~約50μm、約20μm~約50μm、約25μm~約50μm、約30μm~約50μm、約0.1μm~約45μm、約0.1μm~約40μm、約0.1μm~約35μm、約0.1μm~約30μm、約0.1μm~約25μm、約0.1μm~約20μm、約0.1μm~約15μm、約0.1μm~約10μm、約0.1μm~約5μm、又は約0.1μm~約1μmであってよい。このような平坦性を、本明細書で開示された材料の表面品質、表面の一貫性、大きな面積、薄い厚さ、及び/又は材料特性と組み合わせると、シート、基板、焼結済みテープ、物品等を、ディスプレイ用の強固なカバーシート、高温基板、可撓性セパレータ及び他の用途といった様々な用途に特に有用なものとすることができる。そうは言っても、実施形態はこのような平坦性を有しなくてもよい。平坦性は、各国の規格(例えばASTM A1030)を用いて測定される。
1つ以上の実施形態では、焼結済み物品は、図32に示すように、幅寸法に沿った線条付きプロファイルを示す。1つ以上の実施形態では、本体1030は、幅に沿って略一定の厚さを有する線条付きプロファイルを有する。例えば、全幅に沿った厚さは、約0.9t~約1.1t(例えば、約0.95t~約1.1t、約0.1t~約1.1t、約0.105t~約1.1t、約0.9t~約1.05t、約0.9t~約t、又は約0.9t~約0.95t)であり、ここでtは、本明細書で開示される厚さの値である。図32に示すように、線条付きプロファイルは、幅に沿って2つ以上のうねりを含む。本明細書中で使用される場合、「うねり(undulation)」は、完全な周期を意味する。いくつかの実施形態では、線条付きプロファイルは、全幅に沿って3個以上のうねり、4個以上のうねり、5個以上のうねり又は10個以上のうねりを含み、うねりの上限は、全幅に沿って約20個のうねり未満である。1つ以上の実施形態では、線条は、光学歪みに関して測定できる。1つ以上の実施形態では、焼結済み物品を、ゼブラボードの付近に配置してよく、上記ゼブラボードは、このボードを横断して対角線上に配置された直線状の黒色のストライプを有する白色のボードからなる。焼結済み物品を通してゼブラボードを視認すると、黒色のストライプの歪みを視覚的に確認でき、また当該技術分野で公知の方法及びツールを用いて測定できる。一例として、この歪みは、ASTM C1048に従って測定してよい。本明細書で開示される研磨された又はその他の様式で形成された物品を用いる場合等の他の実施形態では、歪みはより少ないか、又は全く存在しなくてよい。更に他の実施形態では、歪みの量及び/又は大きさが大きくなり得る。
1つ以上の実施形態では、焼結済み物品は平面であってよい。1つ以上の実施形態では、焼結済み物品の一部分、又は(本明細書中で説明されるような)個別の焼結済み物品は、3次元形状を有してよい。例えば、1つ以上の実施形態では、焼結済み物品の一部分、又は個別の焼結済み物品は、(幅に沿った凸形状及び長さに沿った凹形状、又は幅に沿った凹形状及び長さに沿った凸形状を有する)サドル形状を有してよい。1つ以上の実施形態では、焼結済み物品の一部分、又は個別の焼結済み物品は、(長さに沿った単一の凸形状を有する)C字型を有してよい。1つ以上の実施形態では、形状の大きさ(これは、焼結済み物品の一部分又は個別の焼結済み物品の、これが配置されている平面から測定した最大高さを意味する)は、約0.75mm未満(例えば、約0.7mm以下、0.65mm以下、0.6mm以下、0.55mm以下、0.5mm以下、0.45mm以下、0.4mm以下、0.35mm以下、0.3mm以下、0.25mm以下、0.2mm以下、0.15mm以下、又は0.1mm以下)である。
別の態様によると、焼結済み物品の実施形態を、平坦化可能性、即ち標準的な室温(23℃)条件において、物品を平坦化のために軟化させるために焼結済み物品を融点又は焼結温度付近まで加熱することなく、平坦化できることに関して記述できる。いくつかの実施形態では、焼結済み物品の一部分が平坦化可能である。平坦化可能な焼結済み物品の一部分は、約10cm以下の長さを有してよい。いくつかの実施形態では、焼結済み物品は、本明細書中の他の箇所に記載された寸法を有してよく(例えば幅は約5mm以上であり、厚さは約3μm~約1mmであり、長さは約300cm以上であり)、平坦化可能な焼結済み物品の一部分は、約10cm以下の長さを有する。例えば焼結済み物品が個別の焼結済み物品であるいくつかの実施形態では、焼結済み物品全体が平坦化可能である。
本明細書中で使用される場合、平坦化可能性は:焼結済み物品(若しくは焼結済み物品の一部分)を2つの剛性の平行な表面の間で締め付けることにより、焼結済み物品を平坦化することによって;又は焼結済み物品の第1の主表面1010上の表面圧力を剛性表面に対して印加して、平坦化用平面に沿って焼結済み物品(若しくは焼結済み物品の一部分)を平坦化することによって、決定される。平坦化可能性の測定値は、焼結済み物品(又は焼結済み物品の一部分)を2つの剛性の平行な表面の間で締め付ける場合、焼結済み物品(又は焼結済み物品の一部分)を平坦化用平面から0.05mm、0.01mm又は0.001mm以内の距離まで平坦に締め付けるために必要な力として表現できる。あるいは、平坦化可能性の測定値は、焼結済み物品(又は焼結済み物品の一部分)を剛性表面に対して押し付ける場合、焼結済み物品(又は焼結済み物品の一部分)を平坦化用平面から0.001mm以内の距離まで平坦に押圧するために第1の主表面1010に印加される表面圧力として表現できる。平坦化可能性の測定値は、焼結済み物品(又は焼結済み物品の一部分)を、いずれかの平坦化方法(即ち2つの剛性の平行な表面の間での締め付け、又は剛性表面に対する押し付け)を用いて、平坦化用平面から0.05mm、0.01mm又は0.001mm以内の距離まで平坦化する場合、焼結済み物品(又は焼結済み物品の一部分)に対する平面表面応力(圧縮又は引張)の絶対最大値として表現できる。この応力は、薄板曲げ応力の方程式:σ=Et/2R(1-ν)を用いて決定できる。
この薄板曲げ応力の方程式は、以下の式:σ=[E/(1-ν)]・(ε+νε)から導出され、ここでEは弾性率であり、νはポアソン比であり、ε及びεは、各方向における歪みである。偏向がビーム厚さよりはるかに小さい、厚いビームの場合、εは厚さの2乗に比例する。しかしながら、ビーム厚さが曲げ半径より大幅に小さい場合(例えば焼結済み物品が約20μの厚さを有してよく、ミリメートルレベルの大きさの曲げ半径まで曲げられる場合)、ε=0を適用できる。図33に示すように、薄型のプレート(又は焼結済み物品)が扇形に曲げられることが想定され、ここで中立軸の長さLはΘ×R(ただしΘはラジアンであり、Rは曲げ半径である)であり、外側のファイバの長さLはΘ×(R+t/2)(ただしΘはラジアンであり、Rは曲げ半径であり、tは厚さである)であり、外側ファイバにおけるεは(L-L)/Lであり、従ってε=[Θ×(R+t/2)-(Θ×R)]×1/(Θ×R)=t/2Rである。方程式σ=[E/(1-ν)]・t/2Rは、上述の薄板曲げ応力の方程式(σ=Et/2R(1-ν))となる。
1つ以上の実施形態では、焼結済み物品又は焼結済み物品の一部分は、少なくとも上述の程度まで平坦化されると、上記焼結済み物品の曲げ強度(これは2点曲げ強度によって測定される)の25%以下の最大面内応力(これは、薄板曲げ応力の方程式によって決定される応力の、この応力が圧縮応力であるか引張応力であるかにかかわらず、最大絶対値として定義される)を示す。例えば、焼結済み物品又は焼結済み物品の一部分の最大面内応力は、上記焼結済み物品の曲げ強度の24%以下、22%以下、20%以下、18%以下、16%以下、15%以下、14%以下、12%以下、10%以下、5%以下、又は4%以下であってよい。
1つ以上の実施形態では、焼結済み物品又は焼結済み物品の一部分は、本明細書に記載されているように平坦化する際に、上記焼結済み物品又は焼結済み物品の一部分が、上記焼結済み物品のヤング率の1%以下の最大面内応力を示すように、平坦化可能である。1つ以上の実施形態では、焼結済み物品の最大面内応力は、焼結済み物品のヤング率の0.9%以下、0.8%以下、0.7%以下、0.6%以下、0.5%以下、0.4%以下、0.3%以下、0.2%以下、0.1%以下、又は0.05%以下であってよい。
1つ以上の実施形態では、焼結済み物品又は焼結済み物品の一部分は、上記焼結済み物品又は焼結済み物品の一部分が約40μm~約80μmの厚さ(又は本明細書で開示されている他の厚さ)を有し、かつ0.03m超の曲げ半径まで曲げられる場合に、上記焼結済み物品又はその一部分が、上記物品の曲げ強度の25%以下の最大面内応力を示すように、平坦化可能である。1つ以上の実施形態では、焼結済み物品又は焼結済み物品の一部分は、上記焼結済み物品又は焼結済み物品の一部分が約20μm~約40μmの厚さ(又は本明細書で開示されている他の厚さ)を有し、かつ0.015m超の曲げ半径まで曲げられる場合に、上記焼結済み物品又は焼結済み物品の一部分が、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力を示すように、平坦化可能である。1つ以上の実施形態では、焼結済み物品が約3μm~約20μmの厚さ(又は本明細書で開示されている他の厚さ)を有し、かつ0.0075m超の曲げ半径まで曲げられる場合に、上記焼結済み物品又は焼結済み物品の一部分は、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力を示す。
1つ以上の実施形態では、焼結済み物品又は焼結済み物品の一部分は、上記焼結済み物品又は焼結済み物品の一部分が約80μmの厚さ(又は本明細書で開示されている他の厚さ)を有し、かつ0.03m超の曲げ半径まで曲げられる場合に、上記焼結済み物品又はその一部が、上記物品の曲げ強度の25%以下の最大面内応力を示すように、平坦化可能である。1つ以上の実施形態では、焼結済み物品又は焼結済み物品の一部分は、上記焼結済み物品又は焼結済み物品の一部分が約40μmの厚さ(又は本明細書で開示されている他の厚さ)を有し、かつ0.015m超の曲げ半径まで曲げられる場合に、上記焼結済み物品又は焼結済み物品の一部分が、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力を示すように、平坦化可能である。1つ以上の実施形態では、焼結済み物品が約20μmの厚さ(又は本明細書で開示されている他の厚さ)を有し、かつ0.0075m超の曲げ半径まで曲げられる場合に、上記焼結済み物品又は焼結済み物品の一部分は、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力を示す。
1つ以上の実施形態では、焼結済み物品又はその一部分は、いずれかの平坦化方法(即ち2つの剛性の平行な表面の間での締め付け、又は剛性表面に対する押し付け)を用いて、平坦化用平面から0.05mm、0.010mm又は0.001mm以内の距離まで平坦化した場合に、上記焼結済み物品又はその一部分が250MPa未満の最大面内応力を示すように、平坦化可能である。1つ以上の実施形態では、上記最大面内応力は、約225MPa以下、200MPa以下、175MPa以下、150MPa以下、125MPa以下、100MPa以下、75MPa以下、50MPa以下、25MPa以下、15MPa以下、14MPa以下、13MPa以下、12MPa以下、11MPa以下、10MPa以下、9MPa以下、8MPa以下、7MPa以下、6MPa以下、5MPa以下、又は4MPa以下であってよい。
1つ以上の実施形態では、焼結済み物品又はその一部分は、2つの剛性の平行な表面の間での締め付けによって、平坦化用平面から0.05mm、0.010mm又は0.001mm以内の距離まで上記焼結済み物品又はその一部分を平坦化するために、8N未満(又は7N以下、6N以下、5N以下、4N以下、3N以下、2N以下、1N以下、0.5N以下、0.25N以下、0.1N以下、若しくは0.05N以下)の力が必要となるように、平坦化可能である。
1つ以上の実施形態では、焼結済み物品又はその一部分は、上記焼結済み物品又は焼結済み物品の一部分を剛性表面に対して押し付ける場合に、平坦化用平面から0.05mm、0.010mm又は0.001mm以内の距離まで上記焼結済み物品(又は焼結済み物品の一部分)を平坦に押圧するために、0.1MPa以下の圧力が必要となるように、平坦化可能である。いくつかの実施形態では、上記圧力は、約0.08MPa以下、約0.06MPa以下、約0.05MPa以下、約0.04MPa以下、約0.02MPa以下、約0.01MPa以下、約0.008MPa以下、約0.006MPa以下、約0.005MPa以下、約0.004MPa以下、約0.002MPa以下、約0.001MPa以下、又は0.0005MPa以下であってよい。
別の態様によると、焼結済み物品は、図34Aに示すようなロール化済み焼結済み物品へと巻かれた焼結済みテープであってよい。このような実施形態では、ロール化済み焼結済み物品は、コア1100と、このコアの周りに巻き付けられた(本明細書に記載の1つ以上の実施形態による)焼結済み物品1200とを含む。1つ以上の実施形態では、上記コアは円筒状であり、60cm(即ち約20インチ)未満の直径1240を有する。例えば上記コアは、約55cm以下、50cm以下、約48cm以下、約46cm以下、約45cm以下、約44cm以下、約42cm以下、約40cm以下、約38cm以下、約36cm以下、約35cm以下、約34cm以下、約32cm以下、約30cm以下、約28cm以下、約26cm以下、約25cm以下、約24cm以下、約22cm以下、約20cm以下、約18cm以下、約16cm以下、約15cm以下、約14cm以下、約12cm以下、約10cm以下、約8cm以下、約6cm以下、約5cm以下、約4cm以下、又は約2cm以下の直径を有してよい。他の実施形態では、上記コアはその他の形状であり、ロールは、上述の直径寸法に対応する湾曲で、コアの周りで曲げられる。
1つ以上の実施形態では、コアの周りに巻き付けられた焼結済み物品は連続しており、本明細書中の他の箇所に記載されている寸法(例えば5mm以上の幅、約3μm~約1mmの厚さ、及び約30cm以上の長さ)を有する。
コア上への連続焼結済み物品(特にセラミック等の連続焼結済み無機材料)の巻き付けは、いくつかの困難を提示する。というのは、焼結済み物品はウェブ横断方向形状を有し、特に結合剤バーンアウト及び素焼き状態において焼結済み物品が耐えられるウェブ張力は極めて低い(例えばグラム単位のレベルの大きさの張力である)ためである。更に、焼結済み物品の弾性率は極めて高い(例えば最大で約210GPa)場合があり、従って焼結済み物品は張力下で引き伸ばされず、コアの周りに巻きつけると、結果として得られた巻き付け後のロールの一体性は劣悪なものとなり得る。連続した複数の巻きを取り扱う間に、連続焼結済み物品は容易に伸縮し得る(即ち、連続した複数の巻きは位置合わせされていない状態に移動し得る)。
出願人は、連続焼結済み物品をコア上に巻きつける際に、適合性の層間支持材料を使用することによって、1つ以上の実施形態のロール化済み焼結済み物品が優れた一体性を有することを発見した。1つ以上の実施形態では、連続焼結済み物品は層間支持材料上に配置され、連続焼結済み物品及び層間支持材料をコアの周りに巻くことにより、連続焼結済み物品の連続した複数の巻きがそれぞれ、層間支持材料によって互いから隔てられる。図3を参照して上述したように、焼結済み物品(又は焼結済みテープ材料)40は取り込み用リール44上に巻き付けられる。層間支持材料46は、リール48から繰り出され、又は繰り出すことができ、そして層間支持材料46は、取り込み用リール44上の連続焼結済み物品1000の各層、大半の層又は少なくともいくつかの層(例えば焼結済み物品1200又は焼結済みテープ材料40)の間に位置するように、取り込み用リール44上に巻き付けられる、又は巻き付けことができる。この配置により、ロール化済み焼結済み材料50が形成される。
図34Bを参照すると、ある例示的実施形態による図34Aのロール化済み焼結済み物品1200の詳細断面図が示されており、ここで焼結済み物品1200は、コア1100の周りに2回巻き付けられ、層間支持材料46は、焼結済み物品1200とコア1100との間、そして焼結済み物品1200の連続した複数の巻きの間に位置決めされる。図34Bから直感的に理解できるように、端部から見た場合、焼結済み物品1200(この場合はテープ)及び層間支持材料46は、交互になった渦巻きをコア1100の周りに形成する。他の考えられる実施形態では、焼結済み物品を個別のシートに切断してよく、また依然としてコア上に巻き付けられ、連続した層間支持材料46によって隣接する巻きから隔てられた状態としてよく、例えばここで、複数のシートを一体に合計した正味の長さは、本明細書に記載されているような長さLである。図34Bに示すように、様々な実施形態において、ある例示的実施形態による、ロール化済み焼結済み物品(例えば、焼結済み物品1000、焼結済み物品1200又は焼結済みテープ材料40)の各層の間に層間支持材料46を含むロール化済み焼結済み物品が示されている。様々な実施形態において、層間支持材料は:第1の主表面、及び上記第1の主表面の反対側の第2の主表面;第1の主表面と第2の主表面の間の距離として定義される、層間厚さ(t);上記層間厚さに対して垂直な第1及び第2の表面のうちの一方の第1の寸法として定義される、層間幅;並びに上記層間支持材料の上記層間厚さ及び上記層間幅の両方に対して垂直な、第1及び第2の表面のうちの一方の第2の寸法として定義される、層間長さを備える。1つ以上の例示的実施形態では、層間厚さは、焼結済み物品の厚さより大きい。1つ以上の実施形態では、層間幅は、ロール化済み焼結済み物品の幅より大きくてよい。
1つ以上の実施形態では、層間支持材料46は、ロードセルによって測定した場合に、連続焼結済み物品に対する張力より大きな張力を含む(又は張力下である)。1つ以上の実施形態では、層間支持材料は、(焼結済み物品と比較して)相対的に低い弾性率を有し、従って小さな張力下で引き伸ばされる。これにより、より高い層間ロール圧力が生成され、これが巻かれたロールの一体性を改善すると考えられる。更に、いくつかの実施形態では、巻かれたロールの張力は、層間支持材料に印加される張力を制御することによって制御され、またこの張力は、巻かれたロールの直径の関数として傾斜していてよい。いくつかのこのような実施形態では、層間支持材料46は張力下であり、焼結済み物品(例えばテープ)は圧縮下である。
1つ以上の実施形態では、層間支持材料は厚さ適合性である(即ち、主表面に圧力を印加することによって厚さを低減でき、従って、焼結プロセスによって生成される焼結済み物品のウェブ横断方向形状又は厚さの変動を補償できる)。いくつかのこのような実施形態では、側面から見た場合に、焼結済み物品は、層間支持材料によってロールの中に隠れていてよく、ここで層間支持材料は、層間支持材料の隣接する巻きと接触し、少なくともある程度、焼結済み物品を遮蔽して隔離し、例えばここで、層間支持材料は、図34Bに示すように焼結済み物品より幅広く、焼結済み物品(例えばテープ)の幅方向の両縁部を超えて延在する。
図34Aを参照すると、1つ以上の実施形態では、ロール化済み物品は円筒状コア上にあり、略一定の直径1220及び側壁幅1230を有する。層間支持材料により、ロール化済み物品の側壁幅を増大させる恐れのある伸縮を引き起こすことなく、連続又は不連続焼結済み物品をコアの周りに巻くことができる。いくつかの実施形態では、コアは、周と、この周に沿ったコア中心線とを備え、連続焼結済み物品は、長さ方向に沿った物品中心線を備え、コア中心線と物品中心線との間の距離は、連続又は不連続焼結済み物品の長さの少なくとも90%又は全体に沿って、2.5mm以下である。
1つ以上の実施形態では、ロール化済み物品は、層間支持材料と連続又は不連続焼結済み物品との間に摩擦力を備え、この摩擦力は、層間支持材料に極めて小さな張力が印加されている場合であっても、巻かれたロールの連続した複数の巻きの側方への伸縮に耐えるために十分なものである。一定の張力を層間支持材料に印加してよいが、ロール化済み物品のコアに向かう内側部分に対して印加される張力は、ロール化済み物品のコアから離れる外側部分に印加される張力より大きくなり得る。これは、より多くの層間支持材料及び連続焼結済み物品がコアの周りに巻き付けられるに従って、ロール化済み物品の直径が、コアから上記外側部分に向かって増大するためである。これはロール化済み物品を圧縮し、又は圧縮し得、この圧縮は、層間支持材料と連続焼結済み物品との間の摩擦と結びつくと、焼結済み物品表面間の伸縮及び相対移動を、少なくとも欠陥の防止を補助するために防止又は制限する。
1つ以上の実施形態では、層間支持材料は、ポリマー及び紙のうちのいずれの一方又は両方を含む。いくつかの実施形態では、層間支持材料は、ポリマーと紙との組み合わせである。1つ以上の実施形態では、層間支持材料は、発泡ポリマーを含んでよい。いくつかの実施形態では、発泡ポリマーは閉鎖セルである。
別の態様によると、本明細書に記載の焼結済み物品は、上で開示され、図35及び図36で図示されているような、複数の個別の焼結済み物品として提供できる。1つ以上の実施形態では、個別の焼結済み物品は、本明細書に記載されているように、ロール化済み焼結済み物品又は連続焼結済み物品から形成してよい。例えば、個別の焼結済み物品は、(シート又はテープ形状であってよい)より大きな焼結済み物品からレーザカットしてよく、又は他の方法で分離してよい。1つ以上の実施形態では、複数の個別の焼結済み物品はそれぞれ、上記複数の個別の焼結済み物品のうちの他のいくつか又は全てに対する均一性又は一貫性を有するが、これは、本明細書に記載の改善されたプロセス及び材料特性によるものであり得る。1つ以上の実施形態では、複数の個別の焼結済み物品はそれぞれ、第1の主表面、上記第1の主表面の反対側の第2の主表面、及び上記第1の表面と上記第2の表面との間に延在する本体を含む。上記本体は、焼結済み無機材料と:第1の主表面と第2の主表面の間の距離として定義される、厚さ(t);上記厚さに対して垂直な第1及び第2の表面のうちの一方の第1の寸法として定義される、幅;並びに上記厚さ及び上記幅の両方に対して垂直な、上記第1及び第2の表面のうちの一方の第2の寸法として定義される、長さとを含む。直感的に理解できるように、より長いテープから切断又は形成された、個別のシート又は他の焼結済み物品は、上で開示されているような均一で一貫した組成、均一で一貫した結晶構造、均一で一貫した厚さ、欠陥のレベル、並びに本明細書で開示される本発明の設備及びプロセスを用いて製造されたテープ又は他の細長い物品中に存在する又は存在し得る本明細書に記載の他の特性を有する。
1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、本明細書に記載されているように平坦化可能である。1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、平坦化されると、上記焼結済み物品の曲げ強度(これは2点曲げ法によって測定される)の25%以下の最大面内応力(これは、薄板曲げ応力の方程式によって決定される応力の、この応力が圧縮応力であるか引張応力であるかにかかわらず、最大絶対値として定義される)を示す。例えば、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品の最大面内応力は、上記焼結済み物品の曲げ強度の24%以下、22%以下、20%以下、18%以下、16%以下、15%以下、14%以下、12%以下、10%以下、5%以下、又は4%以下であってよい。
1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、本明細書に記載されているように平坦化する際に、上記複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品が、上記焼結済み物品のヤング率の1%以下の最大面内応力を示すように、平坦化可能である。1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品の最大面内応力は、各焼結済み物品のヤング率の0.9%以下、0.8%以下、0.7%以下、0.6%以下、0.5%以下、0.4%以下、0.3%以下、0.2%以下、0.1%以下、又は0.05%以下であってよい。
1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、上記焼結済み物品が約40μm~約80μmの厚さ(又は本明細書で開示されている他の厚さ)を有し、かつ0.03m超の曲げ半径まで曲げられる場合に、上記焼結済み物品が、上記物品の曲げ強度の25%以下の最大面内応力を示すように、平坦化可能である。1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、上記焼結済み物品が約20μm~約40μmの厚さ(又は本明細書で開示されている他の厚さ)を有し、かつ0.015m超の曲げ半径まで曲げられる場合に、上記焼結済み物品が、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力を示すように、平坦化可能である。1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、上記焼結済み物品が約3μm~約20μmの厚さ(又は本明細書で開示されている他の厚さ)を有し、かつ0.0075m超の曲げ半径まで曲げられる場合に、上記焼結済み物品が、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力を示すように、平坦化可能である。
1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、上記焼結済み物品が約80μmの厚さ(又は本明細書で開示されている他の厚さ)を有し、かつ0.03m超の曲げ半径まで曲げられる場合に、上記焼結済み物品が、上記物品の曲げ強度の25%以下の最大面内応力を示すように、平坦化可能である。1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、上記焼結済み物品が約40μmの厚さ(又は本明細書で開示されている他の厚さ)を有し、かつ0.015m超の曲げ半径まで曲げられる場合に、上記焼結済み物品が、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力を示すように、平坦化可能である。1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、上記焼結済み物品が約20μmの厚さ(又は本明細書で開示されている他の厚さ)を有し、かつ0.0075m超の曲げ半径まで曲げられる場合に、上記焼結済み物品が、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力を示すように、平坦化可能である。
1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、いずれかの平坦化方法(即ち2つの剛性の平行な表面の間での締め付け、又は剛性表面に対する押し付け)を用いて、平坦化用平面から0.05mm、0.01mm又は0.001mm以内の距離まで平坦化した場合に、上記焼結済み物品が250MPa未満の最大面内応力を示すように、平坦化可能である。1つ以上の実施形態では、上記最大面内応力は、約225MPa以下、200MPa以下、175MPa以下、150MPa以下、125MPa以下、100MPa以下、75MPa以下、50MPa以下、25MPa以下、15MPa、14MPa以下、13MPa以下、12MPa以下、11MPa以下、10MPa以下、9MPa以下、8MPa以下、7MPa以下、6MPa以下、5MPa以下、又は4MPa以下であってよい。
1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、2つの剛性の平行な表面の間での締め付けによって、平坦化用平面から0.05mm、0.010mm又は0.001mm以内の距離まで上記焼結済み物品を平坦化する際に、上記焼結済み物品又はその一部分それぞれを平坦化するために8N未満(又は7N以下、6N以下、5N以下、4N以下、3N以下、2N以下、1N以下、0.5N以下、0.25N以下、0.1N以下、若しくは0.05N以下)の力が必要となるように、平坦化可能である。
1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、上記焼結済み物品を剛性表面に対して押し付ける場合に、平坦化用平面から0.05mm、0.01mm又は0.001mm以内の距離まで上記焼結済み物品を平坦に押圧するために、0.1MPa以下の圧力が必要となるように、平坦化可能である。いくつかの実施形態では、上記圧力は、約0.08MPa以下、約0.06MPa以下、約0.05MPa以下、約0.04MPa以下、約0.02MPa以下、約0.01MPa以下、約0.008MPa以下、約0.006MPa以下、約0.005MPa以下、約0.004MPa以下、約0.002MPa以下、約0.001MPa以下、又は0.0005MPa以下であってよい。
1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品の厚さは、約0.7t~約1.3t(例えば、約0.8t~約1.3t、約0.9t~約1.3t、約t~約1.3t、約1.1t~約1.3t、約0.7t~約1.2t、約0.7t~約1.1t、約0.7t~約1t、又は約0.9t~約1.1t)であり、ここでtは、本明細書で開示されている厚さの値である。
1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、組成の均一性を示す。1つ以上の実施形態では、複数の焼結済み物品の少なくとも50%(例えば約55%以上、約60%以上、又は約75%以上)が、ある面積及びある組成であって、(本明細書に記載の)上記組成の少なくとも1つの成分が上記面積にわたって約3重量%未満だけ変動する、面積及び組成を備える。いくつかの実施形態では、上記組成の少なくとも1つの成分は、上記面積にわたって、約2.5重量%以下、約2重量%以下、約1.5重量%以下、約1重量%以下、又は約0.5重量%以下だけ変動する。1つ以上の実施形態では、上記面積は、上記焼結済み物品の約1平方センチメートルであり、又は上記面積は、上記焼結済み物品の全表面積である。
1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、結晶構造の均一性を示す。1つ以上の実施形態では、複数の焼結済み物品の少なくとも50%(例えば約55%以上、約60%以上、又は約75%以上)は、ある面積と、上記面積にわたって(本明細書に記載されているように)百分率にして約5未満だけ変動する重量パーセントを有する少なくとも1つの相を有する結晶構造とを備える。単なる例示として、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、上記焼結済み物品の20重量%、及び上記複数の焼結済み物品の少なくとも50%(例えば約55%以上、約60%以上、又は約75%以上)を構成する少なくとも1つの相を含んでよく、この相は、上記面積にわたって、約15重量%~約25重量%の量で存在する。1つ以上の実施形態では、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品の少なくとも50%(例えば約55%以上、約60%以上、又は約75%以上)は、ある面積と、上記面積にわたって百分率にして約4.5未満、百分率にして約4未満、百分率にして約3.5未満、百分率にして約3未満、百分率にして約2.5未満、百分率にして約2未満、百分率にして約1.5未満、百分率にして約1未満、又は百分率にして約0.5未満だけ変動する重量パーセントを有する少なくとも1つの相を有する結晶構造とを備える。1つ以上の実施形態では、上記面積は、上記焼結済み物品の約1平方センチメートルであり、又は上記面積は、上記焼結済み物品の全表面積である。
1つ以上の実施形態では、複数の焼結済み物品の少なくとも50%(例えば約55%以上、約60%以上、又は約75%以上)は、ある面積と、約20%未満だけ変動する(本明細書に記載の)多孔率とを備える。従って一例として、複数の焼結済み物品のうちの一部、大半、又は各焼結済み物品は、10体積%の多孔率を有し、この多孔率は、上記複数の焼結済み物品の少なくとも50%の上記面積にわたって、約8体積%超から約12体積%未満までの範囲内である。1つ以上の実施形態では、上記複数の焼結済み物品の少なくとも50%は、ある面積を有し、また上記面積にわたって18%以下、16%以下、15%以下、14%以下、12%以下、10%以下、8%以下、6%以下、5%以下、4%以下又は約2%以下だけ変動する多孔率を有する。1つ以上の実施形態では、上記面積は、上記焼結済み物品の約1平方センチメートルであり、又は上記面積は、上記焼結済み物品の全表面積である。
実施例5~6及び比較例7~8
実施例5~6及び比較例7~8は、正方晶又はテトラジルコニア多結晶質材料の連続焼結済み物品から形成された、個別の焼結済み物品である。実施例5~6は、本明細書に記載のプロセス及びシステムによって形成され、比較例7~8は、本開示の技術(例えば張力制御、ゾーン形成された焼結炉、空気流の制御)のうちの少なくともいくつかを含まない、他のプロセス及びシステムを用いて形成された。実施例5~6及び比較例7~8はそれぞれ、55.88mmの長さ、25.4mmの幅、0.04mmの厚さ、及び2mmの隅部半径を有していた。実施例5~6及び比較例7~8はそれぞれ、210GPaのヤング率、0.32のポアソン比(ν)、及び6g/cmの密度(ρ)を有していた。
実施例5は、図35に示すような、形状寸法が0.350mmのC字型であった。実施例6は、図36に示すような、形状寸法が0.350mmのサドル形状であった。比較例7は、図37に示すような、形状寸法が0.350mmのガルウィング形状であった。比較例8は、図38に示すような、形状寸法が0.750mmのガルウィング形状であった。平坦化前における、平面に関する各焼結済み物品の形状寸法を、図39において比較した。
これらの実施例の平坦化可能性を、本明細書中の他の箇所に記載した2つの荷重印加法(即ち2つの剛性の平行な表面間での焼結済み物品の締め付け、又は焼結済み物品を剛性表面に対して押し付けて、平坦化用平面に沿って焼結済み物品を平坦化するための、焼結済み物品の1つの主表面への表面圧力の印加)を用いて評価した。
図40は、2つの剛性の平行な表面間での締め付けによって、実施例5~6及び比較例7~8の各焼結済み物品を平坦化用表面から0.001mm以内の距離まで平坦に締め付けるために必要な力(単位:N)を示す。図40に示すように、実施例5~6は、焼結済み物品の平坦化のために必要な力が有意に少なく、これはより良好な平坦化可能性を示す。更に、焼結済み物品をこのような小さな力で平坦化できることは、このような物品を、破断、破損又は他の欠陥の形成を伴わずに、下流の処理において操作できる、又は下流の処理に供することができることを示す。下流の処理としては、例えば、導電性又は非導電性コーティングを含むコーティングの塗布が挙げられる。剛性表面に対する焼結済み物品の押し付けによって、実施例5~6及び比較例7~8の各焼結済み物品を平坦化用表面から0.001mm以内の距離まで平坦に押圧するために必要な圧力を測定した場合にも、これと同じ平坦化可能性が示される。結果が図41に示されており、これは、比較例7~8と比較した場合に、実施例5~6は平坦化のために必要とする圧力が大幅に少ないことを実証している。図42は、実施例5~6及び比較例7~8の平坦化された焼結済み物品における、最大面内表面応力を示す。実施例5~6は11MPa未満の応力を示すが、比較例7~8はこの応力の20倍を超える応力を示し、これは、比較例7~8の焼結済み物品が、下流の処理中に破断する、破損する又は欠陥を有する可能性が高いことを示している。実施例5における応力の位置を、図43A(平坦化時の底面の応力)及び43B(平坦化時の上面の応力)に示す。実施例6における応力の位置を、図44A(平坦化時の底面の応力)及び44B(平坦化時の上面の応力)に示す。比較例7における応力の位置を、図45A(平坦化時の底面の応力)及び45B(平坦化時の上面の応力)に示す。比較例7では、底面において、中央部分が208.6MPaの引張応力を示し、これは-254.6MPaの圧縮応力で両側から挟まれている。これに対応して、前面では、中央部分は約-208.6MPaの圧縮応力下にあり、254.6MPaの引張応力で両側から挟まれている。比較例8における応力の位置を、図46A(平坦化時の底面の応力)及び46B(平坦化時の上面の応力)に示す。比較例8では、底面において、中央部分が399.01MPaの引張応力を示し、これは-473.63MPaの圧縮応力で両側から挟まれている。これに対応して、前面では、中央部分は約-399.08MPaの圧縮応力下にあり、473.60MPaの引張応力で両側から挟まれている。比較例7~8の点Xにおける高い応力は、これらの焼結済み物品が高応力の場所に沿って破断しやすいことを示している。
いくつかの半導体パッケージ、及び同様の発光ダイオード(LED)内包パッケージでは、上記パッケージに又は上記パッケージを通して供給される電気エネルギの大半が、熱エネルギとして失われるか、又は放散され得る。これらの及び同様の半導体パッケージの熱放散能力は、パッケージを通して更なる電気エネルギ(又は電流)を供給しようとする際に、制限因子となり得る。また、少なくともいくつかのLED内包パッケージでは、LED内包パッケージの熱放散能力によって、LEDの輝度が制限され得る。半導体パッケージ内の構成部品の温度を、例えば約75℃~約85℃に低減して維持することが望ましい場合がある。
1つ以上の実施形態では、図47を参照すると、本明細書に記載の焼結済み物品(例えば(焼結済み物品1000、焼結済み物品1200、又は焼結済みテープ材料40)を、直接的又は間接的に、基板1500に対して接合する、結合する、接続する、又はその他の方法で取り付けることによって、パッケージ2000を形成する。焼結済み物品1000は、パッケージ2000内において誘電体として機能できる。いくつかの実施形態では、パッケージ2000は、半導体パッケージ、電気パッケージ、送電パッケージ、発光ダイオード(LED)パッケージ等である。本開示のパッケージ2000は、従来のパッケージに比べて改善された性能(例えば熱放散能力、より低い熱抵抗等)を提供する。他のこのような実施形態では、本明細書に記載の焼結済み物品(例えば焼結済み物品1000、焼結済み物品1200、又は焼結済みテープ材料40)は、基板1500である、又は基板1500でもある。
いくつかの実施形態では、パッケージ2000は、基板1500と焼結済み物品1000との間の中間層1300を含む。中間層1300は、基板1500と焼結済み物品1000とを接合する、結合する、接続する、又は他の方法で取り付ける、若しくはこれらの取り付けを促進する材料を含んでよい。中間層1300は、接合されて又は一体に接合されて中間層1300を形成する、複数の個別の層を含んでよい。いくつかの実施形態では、中間層1300は、高い熱伝導率特性を有する材料であり、これにより、電子構成部品(例えば半導体デバイス若しくはチップ)又は金属ベース層が生成した熱が、中間層1300を通して基板1500に伝導される。いくつかの実施形態では、中間層1300は、焼結済み物品1000の熱伝導率より高い熱伝導率を含む。いくつかの実施形態では、中間層1300は、基板1500未満の熱伝導率を含む。中間層1300は、約8W/m・K超~約20W/m・K、約8W/m・K超~約16W/m・K、又は約8W/m・K超~約13W/m・K、又は約9W/m・K超~約12W/m・K、例えば8、9、10、11、12、13、14、15、16、17、18、19、又は20W/m・K(これらの間の全ての範囲及び部分範囲を含む)の熱伝導率を有してよい。いくつかの実施形態では、中間層1300は、接着剤様材料である。いくつかの実施形態では、中間層1300は、変形するよう、並びに/又はパッケージ2000の加熱及び冷却の結果として発生する、基板1500と焼結済み物品1000との間の熱膨張係数(CTE)の差に由来するせん断力に耐えるよう構成された、適合性材料である。
いくつかの実施形態では、中間層1300は、ポリイミド、エポキシ、又はこれらの組み合わせのマトリクスを含む。いくつかの実施形態では、中間層1300のマトリクスは、非導電性粒子(例えば窒化ホウ素)、導電性材料(例えば銀、銅等)、又はこれらの組み合わせを含んでよい。上記導電性及び/又は非導電性粒子は、中間層1300のマトリクス全体にわたって均質に又は不均質に分布してよい。いくつかの実施形態では、中間層1300は、金属ベース層1350及び構成部品1401(図50(e))から熱を伝導し、伝導した熱を基板1500に伝達する。いくつかの実施形態では、中間層1300は、基板1500及び/又は焼結済み物品1000のうちの一方又は両方と略同様の長さ(L)及び幅(W)を有してよい。いくつかの実施形態では、中間層は、約0.1μm~約100μm、又は約10μm~約75μm、又は約15μm~約35μm、又は更には約20μm~約40μm、例えば5、10、15、20、25、30、35又は40μm(これらの間の全ての範囲及び部分範囲を含む)の厚さ(t)を有してよい。
1つ以上の実施形態では、基板1500は、第1の主表面1510、上記第1の主表面の反対側の第2の主表面1520、及び第1の主表面1510と第2の主表面1520との間に延在する本体1530を含む。焼結済み物品1000は、基板1500の第1の主表面1510又は第2の主表面1520に、直接的又は間接的に、接合、結合、接続、又はその他の方法で取り付けてよい。本体1530は:第1の主表面1510と第2の主表面1520との間の距離として定義される、厚さ(t);上記厚さに対して垂直な上記第1又は第2の表面のうちの一方の第1の寸法として定義される、幅(W);並びに上記厚さ及び上記幅の両方に対して垂直な、第1又は第2の表面のうちの一方の第2の寸法として定義される、長さを有する。1つ以上の実施形態では、基板1500は、幅Wを画定する、対向する小面1540を含む。いくつかの実施形態では、焼結済み物品1000及び基板1500長さ及び幅はそれぞれ、略同等(即ち互いの5%以内の側方寸法)である。いくつかの実施形態では、基板1500の厚さ(t)は、焼結済み物品1000の厚さ(t)、例えば焼結済み物品1000に関して本明細書で開示されている厚さ(t)より大きい。いくつかの実施形態では、基板1500の厚さ(t)は、焼結済み物品1000の厚さ(t)より、約25%、約50%、約75%、約100%、約200%、約500%、又はそれ以上大きい。いくつかの実施形態では、基板1500の厚さ(t)は、約0.5mm~約5.0mm、又は約1.0mm~約2.0mm、又は約1.0mm~約1.6mm、又は更には約1.2mm~約1.5mmである。いくつかの実施形態では、基板1500は、パッケージ2000のためのヒートシンクとして機能する。いくつかの実施形態では、基板1500は、アルミニウム、銅又はこれらの組み合わせといった導電性金属を含む。
図47及び48は、中間層1300が基板1500を焼結済み物品1000に接合している、例示的なパッケージ2000のあるセグメントの断面図を提供する。金属ベース層1350は、焼結済み物品1000の、中間層1300に結合されている主表面の反対側の主表面上に設けてよい。即ち焼結済み物品1000は、一方の主表面上に中間層1300を、そして反対側の主表面上に金属ベース層1350を含んでよい。中間層1300は、基板1500及び焼結済み物品1000のうちの一方又は両方に適用してよい。その後、基板1500及び焼結済み物品1000を、これらそれぞれの主表面の間の中間層1300を用いて、組み立てる、又は一体に接合してよい。中間層1300を、熱エネルギ、化学線波長、圧力、又は他の同様の方法で活性化して、基板1500を焼結済み物品1000に、中間層1300を介して接合、結合、接続、又は他の方法で取り付けてよい。
図47に示すように、基板1500の主表面1510、1520のうちの一方又は両方は、溝1325を含むようにパターン形成してよい。溝1325は、基板1500への中間層1300の接合を支援できる。溝1325はまた、基板1500と焼結済み物品1000との間のCTEの差の結果として中間層1300が受けるせん断応力を最小化するのを補助することもできる。いくつかの実施形態では、溝1325は、基板1500の主表面の少なくとも一部分をカバーする。溝1325は、基板1500の主表面において、約0.1μm~約1mm、又は約10μm~約50μmの深さを有してよい。中間層1300は、基板1500の溝1325内に少なくとも部分的に延在してよい。溝1325は、長方形、正方形、円形、三角形、又は他の同様の形状若しくは複数の形状の組み合わせの断面を有してよく、また焼結済み物品1000の主表面上で連続していても、破線状になっていても、又はその他の様式で延在していてもよい。
金属ベース層1350は、電気めっき、印刷、物理蒸着、化学蒸着、スパッタリング、又は他の同様の技法によって、焼結済み物品1000に直接的又は間接的に接合してよい。金属ベース層1350は、パッケージ2000を横断して及び通って、電気エネルギ(又は電流)を伝導又は供給できる、導電性材料である。いくつかの実施形態では、金属ベース層は、その長さにわたる電気抵抗及び熱生成を最小化するよう構成される。いくつかの実施形態では、金属ベース層1350は、銅、ニッケル、金、銀、真ちゅう、鉛、スズ及びこれらの組み合わせを含む。金属ベース層1350は、シード層1375を介して、焼結済み物品1000に間接的に接合してよい。即ち、シード層1375は、金属ベース層1350を焼結済み物品1000に接合するための基礎を提供できる。いくつかの実施形態では、金属ベース層1350を焼結済み物品1000に接合するシード層1375を、リフロー炉内で「リフロー(reflow)」させて、金属ベース層1350を、パッケージ2000内の他の電子構成部品に電気的に接続する。いくつかの実施形態では、シード層1375は、スズ、チタン、タングステン、鉛、又はこれらの組み合わせを含む。シード層1375は、電気めっき、印刷、物理蒸着、化学蒸着、スパッタリング、又は他の同様の技法によって、焼結済み物品1000の主表面に適用してよい。
いくつかの実施形態では、金属ベース層1350は、焼結済み物品1000を基板1500に接合する前、間又は後に、焼結済み物品1000に直接的又は間接的に接合してよい。いくつかの実施形態では、金属ベース層1350は、焼結済み物品1000の主表面上の、連続、半連続、若しくは不連続アレイ、又は「回路(circuit)」である。いくつかの実施形態では、金属ベース層1350及び/又はシード層1375を焼結済み物品1000上に適用する前に、焼結済み物品1000の主表面のうちの一方又は両方の複数の部分をマスキング又は被覆して、金属ベース層1350及び/又はシード層1375が、焼結済み物品1000の上記マスキングされた部分に適用されるのを防止してよい。即ち、焼結済み物品1000の一方又は両方の主表面のマスキング部分を用いて、焼結済み物品1000の主表面上に、金属ベース層1350及び/又はシード層1375の連続、半連続、若しくは不連続アレイ、又は「回路(circuit)」を形成できる。金属ベース層1350を、焼結済み物品1000の主表面のマスキングされていない部分に適用した後、マスキングを除去して、マスキングが存在していた主表面の部分(これはその上に金属ベース層及び/又はシード層を有しない)を露出させてよい。図47及び49は、焼結済み物品の主表面上のアレイとしての、金属ベース層1350の例を提供する。金属ベース層1350は、約0.1μm~約1mm、又は約2μm~約100μm、約5μm~約70μm、又は更には約5μm~約50μmの厚さ(t)を含む。
1つ以上の実施形態では、パッケージ2000は、半導体デバイス又はチップ1400を含む。いくつかの実施形態では、半導体デバイス1400は、焼結済み物品1000の第1の主表面1010又は第2の主表面1020に、直接的又は間接的に、接合される、結合される、接続される、又はその他の方法で取り付けられる。半導体デバイス1400は、図49に示すように、シード層1375を介して焼結済み物品1000に間接的に接合してよい。半導体デバイス1400は、1つ以上の発光ダイオード(LED)を含んでよい。いくつかの実施形態では、半導体デバイス1400は、1つ以上のリード1450によって金属ベース層1350に接続される。リード1450は、半導体デバイス1400と金属ベース層1350とを電気的に接続する、剛性又は可撓性の、ワイヤ又は(例えば金属ベース層1350と同様の)電気コネクタであってよい。図47及び49は、リード1450を、半導体デバイス1400と金属ベース層1350との間の距離に架かるものとして示す。当然のことながら、リード1450は、1つ以上の実施形態では、焼結済み物品1000の表面に沿って延在するか、又は上記表面に接触してよい。リード1450は、金属ベース層1350と半導体デバイス1400との間に電気エネルギを供給できる。いくつかの実施形態では、金属ベース層1350を通過する電気エネルギは、リード1450を通して半導体デバイス1400へと伝達される。いくつかの実施形態では、半導体デバイス1400に供給された電気エネルギは、その上のLEDに給電し、LEDは1つ以上の光波長(λ)を発する。半導体デバイス1400は、その上のLEDからの光を増強するための1つ以上のレンズ1405を含んでよい。半導体デバイス1400は燐光体材料1475も含んでよく、これは、これを通して、LEDから発せられた波長(λ)から特定の波長(λ)をフィルタリングして伝達するためのものである。
1つ以上の実施形態では、パッケージ2000の作製方法は、焼結済み物品1000を提供するステップを含む。焼結済み物品1000は、直径が60cm未満の丸みを帯びた又は円筒状のコアを含むロールであってよく、連続焼結済み物品は上記コアの周りに巻き付けられている。焼結済み物品1000は、個別の平坦化された複数の長さとして提供することもできる。1つ以上の実施形態では、パッケージ2000の作製方法は、キャリア又は仮基板1499(図50)を提供するステップを含み、これはロール、又は大型の平坦なシートであってよい。いくつかの実施形態では、ある長さの焼結済み物品1000を、ある長さのキャリア又は仮基板1499に接合して、結合して、接続して、又は他の方法で取り付けて、パッケージ先行物1999を形成する。キャリア又は仮基板1499は、焼結済み物品1000を、後でコア上に巻きつけるために支持してよい。いくつかの実施形態では、キャリア又は仮基板1499は、基板1500を損傷、劣化又は破損させる恐れがある後続のプロセス中に、焼結済み物品1000を支持してよい。いくつかの実施形態では、キャリア又は仮基板1499は、ガラス、ポリマー、又はこれらの組み合わせを含む。いくつかの実施形態では、キャリア又は仮基板1499は、ポリアミドテープ等のポリマー性物質である。
いくつかの実施形態では、パッケージ先行物1999は、焼結済み物品1000と仮基板1499との間に中間層先行物1299(図50)を含む。中間層先行物1299は、仮基板1499と焼結済み物品1000とを接合する、結合する、接続する、又は他の方法で取り付ける材料を含んでよい。いくつかの実施形態では、中間層先行物1299は、高温耐性接着剤である。中間層先行物1299を、熱エネルギ、化学線波長、圧力、又は他の同様の方法で活性化して、仮基板1499を焼結済み物品1000に接合する、結合する、接続する、又は他の方法で取り付けることができる。いくつかの実施形態では、中間層先行物1299を、活性化のための手段と同様の又は異なる手段で不活性化してよく、これにより、焼結済み物品1000を仮基板1499から取り外す、又は接続解除することができる。いくつかの実施形態では、中間層先行物1299及び仮基板1499は、金属ベース層1350、シード層1375、半導体デバイス1400、リード1450、及び/又は他の同様の構成部品の適用を含む、パッケージ先行物1999の後続の処理中に持ちこたえる(劣化しない)ように構成される。
図50は、パッケージ先行物1999からパッケージ2000を形成する方法を示す。図50のステップ(a)は、焼結済み物品1000の、中間層先行物1299と接合された表面の反対側の主表面に、金属ベース層1350を適用した後の、パッケージ先行物1999を示す。図50のステップ(a)は、(例えば金属ベース層1350の間において)焼結済み物品1000からマスキングを除去した後のパッケージ先行物1999も示す。ステップ(a)の前又は後に、シード層1375を焼結済み物品1000に適用してよい。図50のステップ(b)は、構成部品1401の部品(即ち半導体デバイス1400及びリード1450)を焼結済み物品1000に適用して、半導体デバイス1400及び金属ベース層1350を電気的に接続するステップを示す。いくつかの実施形態では、キャリア又は仮基板1499、及び中間層先行物1299は、焼結済み物品1000を支持し、また高温(例えば320℃以上)で実行される場合がある図50に示すステップ(a)及び(b)の間に劣化又は変形しないように構成される。図50のステップ(c)は、(金属ベース層1350、半導体デバイス1400及びリード1450をその上に含む)焼結済み物品1000を、仮基板1499から分離するステップを示す。いくつかの実施形態では、ステップ(c)は、中間層先行物1299を、熱エネルギ、化学線波長、牽引、又は他の同様の方法で不活性化することによって実行してよい。いくつかの実施形態では、(金属ベース層1350、半導体デバイス1400及びリード1450をその上に含む)焼結済み物品1000を、機械で、又は手で、仮基板1499から引き離す。いくつかの実施形態では、ステップ(c)は、シード層1375又ははんだによって構成部品1401の部品を電気的に接続する間に、リフロー炉内で行われる。中間層先行物1299は、焼結済み物品1000、仮基板1499、又はこれら両方(それぞれの一部分)に転写され得る。図50のステップ(c)は、中間層先行物1299が仮基板1499に転写される実施形態を示す。いくつかの実施形態では、中間層先行物1299は、後続の処理(例えば加熱)において、又は基板1500の結合若しくは接触によって、中間層1300となることができる。図50のステップ(d)は、焼結済み物品1000と基板1500とを、これらの間の中間層1300を用いて接合するステップを示す。いくつかの実施形態では、中間層先行物1299は、中間層1300と同一であってよい。図50のステップ(e)は、構成部品1401の追加の部品(例えばレンズ1405及び燐光体1475)を、焼結済み物品1000に適用するステップを示す。いくつかの実施形態では、構成部品1401の構築を実行する間に中間層1300及び基板1500を劣化又は変形させないように、構成部品1401の部品を、比較的低温(例えば<150℃)で適用してよい。図50のステップ(e)に示すパッケージ2000は、1つ以上の構成部品1401を含んでよい。
図51は、パッケージ先行物1999によってパッケージ2000を形成する、別の例示的な方法を提供する。図51のステップ(a)は、巻かれたコアから、平坦化された焼結済み物品1000を、平坦化されたシート等として提供するステップを示す。図51のステップ(b)は、平坦化された焼結済み物品1000とキャリア又は仮基板1499とを接合して、パッケージ先行物1999を形成するステップを示す。中間層先行物1299、又はこれと同様のこのような層を、焼結済み物品1000とキャリア又は仮基板1499との間に配置してよい。パッケージ先行物1999は、後続の処理のために、コアに巻きつける、保管する、輸送する、又は販売することができる。図51のステップ(c)は、金属ベース層1350と、発光用構成部品1401の部品(例えば半導体デバイス1400、リード1450、レンズ1405、燐光体1475等)とを、焼結済み物品1000に適用するステップを示す。ステップ(c)は、金属ベース層1350を、焼結済み物品1000上の半導体デバイス1400及びその上のいずれのLEDと、電気的に接続する、複数の段階を含んでよい。ステップ(c)はまた、構成部品1401の全ての部品を電気的に接続するための、リフロー炉内でのはんだリフロー作業を含んでよい。図51のステップ(d)は、(構成部品1401を含む)焼結済み物品1000と仮基板1499とを引き離す、又は分離させるステップを示す。ステップ(d)は、(構成部品1401を含む)焼結済み物品1000を、機械で、又は手で、仮基板1499から引き離すことによって達成してよい。ステップ(d)は、熱、化学線波長への曝露、冷却、溶媒への曝露、又は他の同様の方法によって触媒され得る。当然のことながら、中間層先行物1299は(それが存在する場合には)、焼結済み物品1000、仮基板1499、又はこれら両方(それぞれの一部分)に転写され得る。図51のステップ(e)は、(構成部品1401を含む)焼結済み物品1000と基板1500とを接合して、パッケージ2000を形成するステップを示す。いくつかの実施形態では、(構成部品1401を含む)焼結済み物品1000と基板1500とを、これらの間の中間層1300又は同様の層によって接合して、パッケージ2000を形成してよい。図51のステップ(f)は、パッケージ2000を、その長さLに沿った複数の点で、複数のセグメント2001に切断するステップを示す。パッケージ2000は、局所的な切断圧力、レーザエネルギ(例えばUVアブレーションレーザ)、又は同様の技法を用いて、その長さLに沿って複数のセグメント2001に切断してよい。いくつかの実施形態では、各セグメント2001は、少なくとも1つ以上の構成部品1401を含む。パッケージ2000のセグメント2001は、電球のフィラメント、電子デバイス、ハンドヘルドデバイス、ヘッドアップディスプレイ、車両計器パネル等を含む多様な用途に使用できる。
図52~54は、焼結済み物品1000と、半導体デバイス1400の「フリップチップ」構成とを含む、パッケージ2000の断面図を示す。これらの実施形態では、パッケージ2000のセグメントは、基板1500にアパーチャ1501を含んでよい。アパーチャ1501は、基板1500の一部を穿孔、切削又は除去することによって形成してよい。アパーチャ1501はまた、基板1500の2つの部分を焼結済み物品1000の1つの主表面から離間させることによって形成してもよい。いくつかの実施形態では、金属ベース層1350は、基板1500と同一の焼結済み物品1000の主表面に、接合する、結合する、接続する、又は他の方法で取り付けることができる。
図52は、基板1500と接合された焼結済み物品1000を含むパッケージ2000のセグメントの、例示的な断面図を示す。いくつかの実施形態では、金属ベース層1350はアパーチャ1501内に設けられる。即ち金属ベース層1350は、基板1500と同一の焼結済み物品1000の主表面上に接合される。いくつかの実施形態では、シード層1375が、金属ベース層1350に適用され、また金属ベース層1350に結合される。シード層1375は、金属ベース層1350と半導体デバイス1400とを「フリップチップ」構成で結合するのを支援できる。1つ以上の実施形態では、シード層1375は、スズ、チタン、タングステン、鉛、又はこれらの合金を含む。いくつかの実施形態では、シード層1375は導電性であり、金属ベース層と半導体デバイス1400とを電気的に接続するためのリードの必要性を排除できる。いくつかの実施形態では、焼結済み物品1000と半導体デバイス1400との間に容積1485を形成してよい。容積1485は、金属ベース層1350及び/又はシード層1375によって、焼結済み物品1000と半導体デバイス1400との間に封止され得る。いくつかの実施形態では、半導体デバイス1400上のLEDは、容積1485の反対側かつアパーチャ1501内にある。いくつかの実施形態では、半導体デバイス1400上のLEDは、容積1485内にある。燐光体材料1475を容積1485内に設けてよい。図52及び53では、焼結済み物品100は半透明又は略透明であってよく、これにより、半導体デバイス1400上のLEDから発せられた光波長(λ)は、焼結済み物品1000を透過する。いくつかの実施形態では、焼結済み物品1000は、LEDから発せられた、又は燐光体材料1475を透過した可視光波長(λ)の一部、大半又は全ての、約35%~約95%、又は約45%~約85%、又は約55%~約75%、例えば35%、40%、50%、60%、65%、75%、85%、90%、95%、又は最高99%(これらの間の全ての範囲及び部分範囲を含む)を透過してよい。
焼結済み物品1000を透過した光の合計(T)は、以下の式1によって定義できる:
(1)T=Φ /Φ
ここで:
Φ は、この表面を透過する放射束であり;
Φ は、この表面が受ける放射束である。
これらの量の測定は、ASTM標準試験方法D1003‐13に記載されている。
図53は、図52と同様であるが、焼結済み物品1000と基板1500との間の中間層1300を示す。図53は更に、(図52に示す)アパーチャ1501の少なくとも一部分が基板1500で塞がれる実施形態を示しており、この基板1500は、基板1500の隣接する部分から隔離されていても、隣接する部分に接続されていてもよい。他の実施形態では、アパーチャ1501の少なくとも一部分を、フィラー材料(例えばエポキシ、プラスチック、ポリマー材料等)で塞いで、チップ1400及び金属ベース層1350をパッケージ2000内に封止する。図53では、基板1500は半導体デバイス1400に接触して、電気エネルギがパッケージ2000に供給されたときに生成される半導体デバイス1400からの熱を伝導する。いくつかの実施形態では、焼結済み物品1000は、その厚さを貫通する孔1490を含む。図53及び55に示すように、焼結済み物品1000の孔1490は、容積1485と交差する。孔1490によって、容積1485内の燐光体材料1475を、大気の対流によって冷却できるようにすることができる。また、孔1490によって、容積1485内のLEDからの光波長(λ)を、パッケージ2000から発するようにすることができる。図54に示すように、半導体デバイス1400上のLEDから発せられた光波長(λ)を増強又は反射するために、容積1485及び/又は孔1490内に反射材1480を含めてよい。反射材1480は、円錐形、半円形、先細、又は湾曲形状を有してよい。いくつかの実施形態では、反射材1480をコーティングで被覆することにより、半導体デバイス1400上のLEDから発せられた光波長(λ)を増強してよい。図55は、別の可能な構成を示す。
1つ以上の実施形態では、本明細書に記載の焼結済み物品は、マイクロエレクトロニクス用途又は物品に使用してよい。例えば、このようなマイクロエレクトロニクス物品としては、第1の主表面、及び上記第1の主表面の反対側の第2の主表面を含む、(本明細書に記載の1つ以上の実施形態による)焼結済み物品が挙げられる。1つ以上の実施形態では、マイクロエレクトロニクス物品としては、連続(例えば本明細書に記載の長いテープ)又は個別の(例えばテープから切断若しくは個片化されたシート)焼結済み物品が挙げられる。1つ以上の実施形態では、マイクロエレクトロニクス物品としては、約1mm以上、約1cm以上、約5cm以上、又は約10cm以上の幅を有する、連続又は個別の焼結済み物品が挙げられる。1つ以上の実施形態では、マイクロエレクトロニクス物品としては、約1m以上、5m以上、又は約10m以上の長さを有する、焼結済み物品が挙げられる。1つ以上の実施形態では、マイクロエレクトロニクス物品としては、1mm未満、約0.5mm以下、約300マイクロメートル以下、約150マイクロメートル以下、又は約100マイクロメートル以下の厚さを有する、連続又は個別の焼結済み物品が挙げられる。1つ以上の実施形態では、マイクロエレクトロニクス物品としては、約10体積%以上、約25体積%以上、50体積%以上、約75体積%以上、又は約90体積%以上の結晶質セラミック含有量を有する焼結済み物品が挙げられる。
1つ以上の実施形態では、焼結済み物品は、焼結済み物品の第1の主表面の所与の領域に沿って配置された、1つ以上のビア(例えば、孔、アパーチャ、ウェル、パイプ、通路、連結部;図53の孔1490を参照)を含む。1つ以上の実施形態では、上記ビアは、焼結済み物品の厚さの一部又は全体を通って延在する。1つ以上の実施形態では、上記ビアは、反復型であっても周期的であってもよいパターンで配置でき、例えばここで、ビアは、連続ロール・ツー・ロールプロセスでテープに沿って形成され、その後でテープを個片化して、半導体又は他の電子装置のための複数の独立した構成部品を形成してよい。1つ以上の実施形態では、ビアは、ビア間(即ち少なくとも、一部のビア、大半のビア、又は各ビアと、最も近接したビアとの間)に約0.5m以下、10cm以下、又は5cm以下の距離が存在するように、互いから離間させてよい。いくつかの実施形態では、このビアの間隔は、1mm未満、約0.5mm以下、約300マイクロメートル以下、約150マイクロメートル以下、又は約100マイクロメートル以下の厚さを有する焼結済み物品内に存在してよい。1つ以上の具体的実施形態では、このビアの間隔は、約50マイクロメートル以下の厚さを有する焼結済み物品内に存在してよい。ビアは、レーザ、マスク及びエッチング液、パンチ、又は他の方法によって、例えば焼結の前、焼結中(例えば部分焼結時)、又は焼結の後に切断してよい。焼結後にビアを形成すると、ビアの配置及びサイズ設定の正確さを補助できるが、本明細書に記載のプロセス及び材料の一貫性により、ビアは、例えば素地テープ又は部分焼結済みテープにも形成でき、配置、サイズ設定、壁部の幾何学的形状等の精度は、一部の用途に関する所望の許容範囲内とすることができる。
1つ以上の実施形態では、焼結済み物品は、第1の主表面、第2の主表面、又は第1の主表面及び第2の主表面の両方に配置された、導電層(例えば銅、アルミニウム又は他の導電層;概して図47の層1350を参照)を含む。1つ以上の実施形態では、導電層は、これが配置されている主表面の一部又は全体をカバーし、例えば各表面の少なくとも20%、少なくとも40%、少なくとも60%、少なくとも80%に重なる。換言すれば、導電層は、これが配置された表面の全領域上に連続層を形成でき、又はこれが配置された表面上に不連続層を形成できる。導電層は、テープ上に形成された、まだ個片化されていない半導体構成部品等のために、反復型であっても周期的であってもよいパターンを形成してよい。1つ以上の実施形態では、焼結済み物品は、導電層の上若しくは導電層と焼結済み物品との間に配置された、及び/又は導電層とテープ(若しくは本明細書に記載の他の焼結済み物品)との中間の、1つ以上の追加の層を含んでよい。このような1つ以上の追加の層は、例えば導電層に関して上述したパーセンテージに従って、これが配置された表面(即ち焼結済み物品の主表面又は導電層)の一部又は全体をカバーしてよい。換言すれば、1つ以上の追加の層は、これが配置された表面の全領域上に連続層を形成でき、又はこれが配置された表面上に不連続層を形成できる。1つ以上の追加の層は、反復型であっても周期的であってもよいパターンを形成してよい。いくつかの実施形態では、1つ以上の追加の層は、導電層、誘電層、封止層、接着層、表面平滑化層、又は他の機能性の層であってもよい。いくつかの実施形態では、導電層、及び任意に1つ以上の追加の層は、1mm未満、約0.5mm以下、約300マイクロメートル以下、約150マイクロメートル以下、約100マイクロメートル以下、又は約50マイクロメートル以下の厚さを有する焼結済み物品内に存在してよい。従って、これらの層及び焼結済み物品は可撓性であってよく、及び/又は本明細書に記載されているように、ロール若しくはスプールに巻き付けることができる。
いくつかの実施形態では、焼結済み物品は、複数のビア、導電層、及び1つ以上の追加の層のうちの2つ以上を含んでよい。
1つ以上の実施形態では、焼結済みテープ物品を生産するためのシステム10は、本明細書に記載の素地テープ、部分焼結済み物品、及び/又は焼結済み物品を、マイクロエレクトロニクス物品内で使用するために更に処理するための、製作システムを含んでよい。1つ以上の実施形態では、製作システムは、結合剤バーンアウト炉110の下流に、ただし結合剤を含まないテープを処理するためには焼結ステーション38の上流に、又は部分焼結済み物品を処理するためには焼結ステーション38の後に、又は本明細書中の他の箇所に記載されているように後で焼結されることになる素地テープを処理するためには炉110の前に、配置してよい。1つ以上の実施形態では、製作システムは、焼結ステーション38の下流に、ただし焼結済み物品を処理するために取り込みシステム42の上流に、配置してよい。1つ以上の実施形態では、製作システムは、取り込み用リール44の下流に、ただし焼結済み物品を処理するために、リール48の上流に、配置してよい。1つ以上の実施形態では、製作システムは、焼結済み物品を処理するために、リール48から下流に配置してよい。このような実施形態では、製作システムは、素地テープ材料、部分焼結済み物品、又は焼結済み物品を、連続した(個別でない)状態のときに処理する。個別の物品としての焼結済み物品を処理するために、他の構成も可能である。
1つ以上の実施形態では、製作システムは、素地テープ材料、部分焼結済み物品又は焼結済み物品の少なくとも一部分を、ビアを形成するための機構、例えばレーザエネルギ又はドリルに対して露出してよい。レーザエネルギを用いてビアを形成する1つ以上の実施形態の製作システムは、ある曲率を有する表面を有するハグドラム(概して図6の真空ドラム25を参照)を含んでよく、このハグドラムは、素地テープ材料、部分焼結済み物品、又は焼結済み物品を、その曲率に一致するように牽引することにより、焼結済み物品の主表面上のビアの形成を促進する。1つ以上の実施形態では、ハグドラムは、素地テープ材料、部分焼結済み物品、又は焼結済み物品の主表面上でのレーザビームの集束を促進する。
1つ以上の実施形態では、ビアは、機械的手段によって形成してよい。例えば、製作システムは、素地テープ材料、部分焼結済み物品、又は焼結済み物品の一部分が一時的に固定される、平坦なプレートを含んでよい。これにより、素地テープ材料、部分焼結済み物品、又は焼結済み物品の1つの主表面が、上記平坦なプレートに接触する。製作システムへの素地テープ材料、部分焼結済み物品、又は焼結済み物品の搬送には、焼結済み物品の一部分を上記平坦なプレートに一時的に固定できるようにするために、段階な反復運動、加速若しくは減速、又は連続した速度を用いてよい。1つ以上の実施形態では、素地テープ材料、部分焼結済み物品、又は焼結済み物品の一部分を上記平坦なプレートに一時的に固定するために、真空を用いてよい。
1つ以上の実施形態では、製作システムは、素地テープ材料、部分焼結済み物品、又は焼結済み物品の一部分を機械的に分離させることによって、ビアを形成してよい。1つ以上の実施形態では、製作システムは、素地テープ材料、部分焼結済み物品、又は焼結済み物品の一部分を除去するための、溶媒又は酸を用いたフォトリソグラフィの使用を含んでよい。このような実施形態では、製作システムを素地テープ材料又は部分焼結済み物品に適用する場合、製作システムは、素地テープ材料又は部分焼結済み物品を完全に焼結したときの収縮による、ビアの拡大縮小及びビアのパターンの拡大縮小を制御するための、制御機構を含んでよい。例えば、制御機構は、ビア間の距離及びビアの間隔を測定して、この情報を調整のために製作システムにフィードバックするセンサを、焼結ステーション38の出口に含んでよい。例えば、製作システムが、直径約75マイクロメートル、ビア間の距離又はピッチ500マイクロメートルのビアを形成しており、かつ素地テープ材料から焼結済み物品への完全焼結収縮が25%であるものと仮定される場合、製作システムは、素地テープ材料のビアを、667マイクロメートルのピッチ及び約100マイクロメートルの直径を有するように形成するために、調整を行う、又は調整を行うことができる。処理後、完全焼結収縮は23%であるものと測定されると、製作システムは続いて、23%の完全焼結収縮に対応するために、素地テープ材料のビアに関する正しい間隔が649マイクロメートルとなるように、更なる調整を行うことができる。いくつかの実施形態のビアは、少なくとも250nm、例えば少なくとも1μm、例えば少なくとも10μm、例えば少なくとも30μm、例えば少なくとも50μm、及び/又は1mm未満、例えば500μm未満、例えば100μm未満の、(シート又はテープの表面と共面の)最大幅断面寸法を有する。いくつかの実施形態では、ビアは、銅、金、アルミニウム、銀、これらの合金、又は他の材料といった導電性材料で充填される。ビアは、レーザ切削されてよく、レーザ及びエッチング液で形成されてよく、機械的に穿孔されてよく、又は他の方法で形成されてよい。ビアは、後で複数の独立した電子装置構成部品に個片化できるシート又はテープに沿って、反復パターンで配設してよい。
図104は、ビア814が金属層815まで延在した、セラミックシート812の積層構成810の例の断面を示す。基準818は、シート812の位置合わせを補助できる。
本明細書に記載のシステム10は、焼結プロセス中にビアの間隔を制御するための他の方法を提供する。例えば、焼結中の処理方向14の張力は、焼結中の物品を引き伸ばし、焼結収縮を偏向させることができる。この張力は、ビアの間隔を処理方向14において増大させることができ、処理方向14の焼結収縮を効果的に低減できる。処理方向14に対して垂直な方向とは対照的に、処理方向14において焼結の差異が観察され、これは張力を印加した場合には約2%~約3%となり得る。従って、これがなければ円形であるいくつかのビアは、楕円形又は長円形となり得る。
ビアのサイズ及び形状は、処理方向14に対して平行な方向に沿った焼結収縮、処理方向14に対して垂直な方向にわたる焼結収縮、これら2つの方向における張力、及び焼結ステーション38の形状の組み合わせによって、並びに/又は素地テープ材料、部分焼結済み物品若しくは焼結済み物品を焼結中又は高温である間に輸送するための空気軸受の使用によって、制御及び調整できる。
1つ以上の実施形態では、セラミック材料をいずれのステップにおいてシステム10内に加えることにより、焼結収縮を低減してよい。セラミック材料は、インクジェット印刷ヘッドによって加えることができ、このインクジェット印刷ヘッドは、上記セラミック材料を、多孔質の部分焼結済み物品又は焼結済み物品に対して、これらの物品が開放気孔率を有したまま、均一に適用できる。1つ以上の実施形態では、印刷によって、少量のセラミック材料を、多孔質の部分焼結済み物品又は焼結済み物品に加えることができる。レーザ、フォトリソグラフィ、インクジェット、原子層堆積、並びにいくつかの印刷及びその他の処理手段を、湾曲した空気軸受の内半径によって、又は部分焼結済み物品若しくは焼結済み物品を処理設備に対して露出させるための開放領域を有する、複数のセクションに分割されたハグドラム(hug drum)を用いて、達成できる。従って、本明細書で開示されるようなテープ又は他の物品は、2つ以上の同時に焼成される無機材料(例えばセラミック若しくは相)からなるものであってよく、又は上記同時に焼成される無機材料からなる一部分を含んでよく、例えばこの場合、上記材料のうちの一方が、他方の材料の細孔に浸透する、又は他方の材料の細孔を充填する。考えられる実施形態では、充填/浸透材料は、多孔質材料と化学的に同一であってよいが、結晶含有量(例えば粒体サイズ、相)に関して区別できるものであってよい。
1つ以上の実施形態では、片側又は両側の導電体層のパターンを有する焼結済み物品上にビアを形成できる。1つ以上の導電体層は、ビアの形成及び最終焼結の後で、印刷又はパターン形成(スクリーン印刷、無電解めっき等)できる。しかしながら、1つ以上の実施形態では、1つ以上の導電体層を、焼結済み物品の最終的な焼成の前に印刷する又は堆積させることもできる。個別の片である(連続リボンではない)小型の(例えば約20cm×20cmの長さ及び幅寸法を有する)シートしか焼結しないいくつかの焼結プロセスでは、1つ以上の導電体層を、ビアの形成後に、及び/又は素地テープ上にのみ、印刷する。多層基板に関して、ここの素地テープ層は、位置合わせ及び積層され、又は位置合わせ及び積層でき、ここでいくつかの多層基板は、30~40個もの素地テープ層を用いる。タングステン、モリブデン又は白金導電体を備えたアルミナを同時焼結して、銅をベースとした導電体を用いて、コーディエライト(ガラスセラミック)をベースとした低焼成(low firing)セラミックパッケージを形成してよい。本明細書に記載のいくつかの実施形態では、1つ以上の導電層を最終焼結ステップの前に(例えば印刷又は堆積によって)形成してよく、本明細書で開示される技術は、焼結ステップ中のビア及び導電体パターンの寸法の制御を補助できる。
更に、連続焼結プロセス及びシステム10は、ビアの間隔及びパターン並びに1つ以上の導電層のパターンを焼結プロセス中の間隔に関して制御するための手段を提供する。焼結中の処理方向の張力は、上で開示されているように、素地テープ材料、部分焼結済み物品、若しくは焼結済み物品を引き伸ばすことができ、及び/又は焼結収縮を偏向させることができる。この張力は、ビアの間隔及びパターン並びに1つ以上の導電層のパターンを処理方向において増大させることができ、処理方向の焼結収縮を効果的に低減できる。処理方向に対して垂直な方向に対する、処理方向の焼結の差異は、約2%~約3%となり得、例えばこの場合、テープは処理方向、即ち長さ方向に引き伸ばされる。
曲率が制御された焼結ステーション38、又は湾曲した空気軸受を用いて、素地テープ材料、部分焼結済み物品又は焼結済み物品を処理方向14に輸送でき、また素地テープ材料、部分焼結済み物品又は焼結済み物品が、上記素地テープ材料、部分焼結済み物品又は焼結済み物品の幅にわたって過剰な曲率を有するのを防止できる。リボン又はシート横断方向の曲率が緩やかである場合、処理方向に対して平行な方向の張力は、処理方向に対して垂直な方向にある程度の張力を提供でき、これにより歪みが制御又は制限される。
処理方向14に対して垂直な方向に張力を提供するのは、特に焼結済み物品が塑性変形可能である、及び/又は焼結され塑性変形可能である温度では、困難であり得る。システム10(又は特に焼結ステーション38)のこのような領域において、処理方向14に対して平行な方向から離れるように角度を付けられたローラ(例えば図88Bを参照)は、処理方向14に対して垂直に(例えばテープの幅方向に)ある程度の張力を印加できる。この張力は、処理方向14に対して垂直なビアの間隔を増大させることができ、これは、処理方向14に対して垂直な焼結収縮を効果的に低減する。
位置合わせのための基準マークは、レーザ、機械的手段、化学的手段、例えば視認可能な結果をもたらすわずかな組成の変更によって、作製できる。これらのマークは、導電体印刷、パターン形成及び/又は積層といった更なる処理ステップの位置合わせを補助する。
本開示の別の態様は、約1mm以上、1cm以上、5cm以上、10cm以上、又は20cm以上の幅を、1m以上、3m以上、5m以上、10m以上、又は30m以上の長さと共に有する、多層焼結済み物品に関し、ここで上記焼結済み物品は、1mm未満、約0.5mm未満、約300マイクロメートル未満、約150マイクロメートル未満、約100マイクロメートル未満の厚さを有する。1つ以上の実施形態では、焼結済み物品は、10体積%超、25体積%超、50体積%超、75体積%超、又は90体積%超の結晶質セラミック含有量を有する。この物品は少なくとも2層の焼結済み物品を有し、40個超のこのような層を有してもよい。焼結済み物品の層は、150マイクロメートル以下、100マイクロメートル以下、75マイクロメートル以下、50マイクロメートル以下、25マイクロメートル以下、20マイクロメートル以下、15マイクロメートル以下、10マイクロメートル以下、5マイクロメートル以下、及び/又は例えば少なくとも3マイクロメートルの厚さを有してよい。1つ以上の実施形態では、焼結済み物品の複数の層は同一の組成である必要はなく、いくつかの上記層はガラスを含む。いくつかの実施形態では、このようなガラス層は、100%ガラス、例えば少なくとも100%非晶質シリケートガラスを含んでよい。
1つ以上の実施形態では、多層焼結済み物品は、複数のビア、1つ以上の導電層、及び/又はマイクロエレクトロニクス物品に関して上述したような任意の追加の層を含む。
1つ以上の実施形態では、システム10は、このような多層焼結済み物品を作製するためのプロセス及び装置を含んでよい。上記多層は、素地テープ材料の(即ちセラミック粒子をポリマー結合剤と共に含む)複数の層を、互いの上にキャスティング又はウェブコーティングすることによって作製できる。次に、この多層素地テープ材料構造体を、本明細書に記載のシステム10を通して処理してよい。1つ以上の実施形態では、多層素地テープ材料構造体は、セラミック粒子を含む複数の素地テープを、室温付近の温度で、連続的に積層し、続いて積層したテープをシステム10に供給することによって、形成することもできる。部分焼結済み物品を、焼結ステーション38内において、弱い圧力によって一体に積層することもできる。この圧力は、部分焼結済み物品がその中を横断するように牽引される焼結ステーション38に、緩やかな曲率を設けることによって、発生させることができる。部分焼結済み物品はそれぞれ、固有の張力印加及び繰り出し速度制御手段を有することができる。部分焼結済み物品はそれぞれ、物品の位置合わせを支援するための基準マークを有することができる。張力及び繰り出し速度を用いて、焼結収縮を複数の物品間で一致させ、ビアと導電体とを複数の物品間で位置合わせすることができる。多層物品が炉を出る際に基準マークが位置合わせされていない場合、層の繰り出し速度及び/又は張力を調整して、これらの層を位置合わせされた状態まで戻すことができる。多層物品の長さ及び幅に対して垂直な追加の圧力を、上述のような高温のローラによって提供できる。
多層電気基板内の導電体及びセラミック材料は、同一の熱膨張係数を有していない場合があるため、いくつかの設計は、多層焼結済み物品の「上部(top)」側に関して、「底部(bottom)」側に対する全体的な応力の低減(平衡化)を提供できる。このような設計は、例えば各積層内の中央平面に関して層を鏡像とすることにより、多層の上部及び底部に同等の量の金属又はセラミックを有する。薄いセラミック層内において、応力/CTEが平衡化されていない構造体は、セラミックの変形、及び/又は積層構造体全体の反りを受ける場合がある。
1つ以上の実施形態では、電子装置のための回路基板は、その上にパターン形成された導電体を有する、本明細書に記載の焼結済み物品を備える。回路基板用の導電体は、素地テープ材料、部分焼結済み物品若しくは焼結済み物品上に直接印刷してよく、並びに/又は素地テープ材料、部分焼結済み物品若しくは焼結済み物品に結合された1つ以上のコーティング若しくは1つ以上の層、例えば接着促進層、表面平滑化層及び/若しくは他の機能性の層上に印刷してよい。印刷は:直接スクリーン印刷;無電解めっき及びパターン形成;リソグラフィ;パターン形成とグラビアパターン形成ローラ及び/又は他のプロセスによる焼結済み物品上へのパターンの適用との間のシリコーンキャリア介在物の使用によるものとすることができる。
回路基板用の導電体は、中間焼成ステップの後であるが最終焼結の前に、部分焼結済み物品上に直接印刷でき、及び/又は部分焼結済み物品上のコーティングに印刷できる。部分焼結済み物品又は焼結済み物品の多孔率により、導電体の印刷又はパターンの接着性を改善できる。印刷は:直接スクリーン印刷;リソグラフィ;パターン形成とグラビアパターン形成ローラ又は他のプロセスによるセラミック上へのパターンの適用との間のシリコーンキャリア介在物の使用によるものとすることができる。
プロセス及び装置の一態様は、長さが長い連続した多孔質セラミックリボン又はシートにパターン形成しながら同時に、ハグドラムを使用することであってよい。ハグドラムは、セラミックリボン又はシートを牽引して、曲率をドラムの表面に一致させ、これにより導電体パターンの印刷の困難さを低減する。フォトリソグラフィは、最終焼結前の素地リボン又はシート上の導電体パターンの一部をエッチング又は洗浄除去するための溶媒又は酸と共に使用することもでき、フォトリソグラフィは、ハグドラム上で達成できる。最終焼結前に導電体をパターン形成する場合、焼結収縮によるパターン、サイズ、拡大縮小、又はピッチを制御するための手段を用いるのが賢明である。残念ながら、セラミックリボン又はシートの焼結収縮は素地リボン(又はシート)毎に、場合によっては単一の素地リボン又はシート内でさえ、1%以上変動し得る。導電体パターンの正確な間隔を保証するための1つの方法は、最終焼結ステップの出口にセンサを設け、導電体パターンの間隔の距離を測定することである。この情報をパターン印刷手段(例えばレーザ、穿孔、パンチ、エッチングシステム)、フォトリソグラフィ露出手段(例えば放射線源又は光源、マスク)に供給して、最終焼結前のリボン又はシートの導電体パターンを、現在の焼結収縮に一致するように調整できる。(測定手段と「パターン形成」手段との間のリボン又はシートの長さは完璧に正確でない場合があるが、単独窯による又はトンネルキルンの使用によるバッチ焼結(この場合、例えば最終製品のうちの多くを精度の低さによって失うことになり得る)よりは正確なものとすることができる。)
連続焼結(例えばロール・ツー・ロール焼結、連続焼成セラミック)は、焼結プロセス中のビアの間隔を制御するための別の手段を提供する。焼結中に提供される、ウェブ輸送方向(即ちテープに関する長さ方向)の張力は、焼結されている物品(例えばリボン若しくはシート)を引き伸ばすことができ、及び/又は焼結収縮を偏向させることができる。この張力は、導電体パターンの間隔をリボン又はシート輸送方向において増大させることができ、リボン輸送方向方向の焼結収縮を効果的に低減できる。リボン輸送方向に対して垂直な方向に対する、リボン輸送方向の焼結の差異が観察され、これは張力を印加した場合には最大約2%~約3%である。
フォトリソグラフィ、インクジェット、原子層堆積、いくつかの印刷及びその他の処理手段を、湾曲した空気軸受の内半径によって、又はセラミックリボン若しくはテープを導電体パターン形成処理設備に対して露出させるための開放領域を有する、複数のセクションに分割されたハグドラムを用いて、達成できる。
タングステン、モリブデン又は白金導電体を備えたアルミナを、本明細書で開示された他の無機材料と同時焼結して、銅をベースとした導電体を用いて、コーディエライト(ガラスセラミック)をベースとした低焼成セラミックパッケージを形成してよい。
導電体パターンを有するセラミックリボン又はウェブがその中を通って又はその上を通って牽引される、曲率が制御された窯又は湾曲した空気軸受は、導電体パターンを有するセラミックリボン又はシートが、いくつかのこのような実施形態ではリボン輸送方向に対して垂直な、リボンの短い方の長さにわたって、過剰な曲率を有しないようにする。
リボン輸送方向に対して垂直な方向(ウェブ横断方向)に張力を提供するのは、特に導電体パターンを有するセラミックリボンが塑性変形可能である、又は焼結され塑性変形可能である温度では、困難であり得る。炉の高温ゾーンにおいて、リボン輸送方向に対して平行な方向から離れるように角度を付けられたローラは、リボン輸送方向に対して垂直にある程度の張力を印加できる。この張力は、リボン輸送方向に対して垂直なビアの間隔を増大させることができ、これは、リボン輸送方向に対して垂直な焼結収縮を効果的に低減する。導電体パターンのサイズ及びピッチは、リボン輸送方向(セラミックリボンの長い長さ)に対して平行な方向に沿った焼結収縮、リボン輸送方向に対して垂直な方向にわたる焼結収縮、上記2方向の張力、並びにセラミックリボン又はシートが焼結中又は高温時にその上にある炉及び/又は空気軸受の形状の組み合わせによって、制御及び調整できる。
位置合わせのための基準マークは、レーザ、機械的手段、化学的手段、例えば視認可能な結果をもたらすわずかな組成の変更によって、作製できる。これらのマークは、導電体印刷、パターン形成及び積層といった更なる処理ステップの位置合わせを補助する。
セラミック及び導電体を有する多層構造体は、最終焼結済みの導電体と、より少数の層のセラミックシート又はリボンとから、更には単一のセラミックのみを有するシートと導電体層とから、高温で結合させることができる。
セラミック絶縁体層を有する薄い回路基板は、上部と底部との間の応力の平衡から利益を得る。これは、熱膨張係数CTE又は熱膨張に関連する導電体とセラミックとの間の応力(及び場合によっては導電体とセラミックとの間の焼結による応力の差異)を緩和できる、所望の導電体パターンとは反対側に印刷された材料のパッチ又はパターンを有することによって、達成できる。これは、ボードの底部の、同様の厚さ及び質量の材料を有する第2の導電体層の形態を取ってよく、これは、上部と底部との間のCTEによる応力(及び焼結による応力の差異)を平衡化し、これにより、回路基板は反ることなく、ほとんど平坦なままとなる。
多層構造体及び/又は回路基板が厚くなるほど、これは完全な焼結後に高い剛性を有するものとなる。特に、1mm、0.5mm、及び250マイクロメートルの厚さのセラミック及び導電体の構造体を用いる場合、直径30~7.5の小さなロールに物品を巻き付けることが問題となり得る。連続焼結済み物品を、レーザ、ダイヤモンドソー、研磨剤噴射、水噴射、及び他の技法によって切断するための手段を、連続焼結装置に適合させることができ、例えばここで、個々の構造体、又は構造体の群をシートに切断できる。切断装置を、最終焼結炉の出口に追加してよく、切断手段は、例えば長さが長い物品が炉を出る間、移動する、又はこの物品に接触する。
図56及び57を参照すると、ある例示的実施形態による、焼結済みテープ物品を生産するためのシステム1500Aの結合剤除去ステーション34A及び焼結ステーション38Aを通した、素地テープ20Aの焼結及びスレッディングの開始のためのプロセスが示されている。一般に、システム1500Aは、分離システム12A、張力制御システム32A及び取り込みシステム42A内でのわずかに異なる代替的なリールの配置/位置決めを除いて、上述のシステム10と略同一であり、また同様に機能する。
ソースリール16Aから取り込み用リール44Aへのテープ材料のリール間移動を開始するために、結合剤除去ステーション34Aのチャネル及び焼結ステーション38Aを通して素地テープ20Aをスレッディングすることによって、素地テープ20Aを、結合剤除去ステーション34A及び焼結ステーション38Aを通して素地テープを牽引するための張力を印加する取り込み用リール44Aに接続する必要がある。同様に、結合剤除去ステーション34A及び焼結ステーション38Aの動作中にテープ材料が破損した場合(これは結合剤除去後に発生し得る)、これらのステーションが十分な動作温度である間に、結合剤除去ステーション34A及びこれに続いて焼結ステーション38Aを通して、テープ材料をスレッディングする必要がある。出願人は、特に結合剤除去ステーション34A及び焼結ステーション38Aが高温である場合のスレッディングが、結合剤除去後の焼結ステーション38Aを通した(図3に示す)非結合テープ36(即ち有機結合剤除去後の自立型テープ材料)のスレッディングが困難であることにより、特に困難となり得ると判断した。よって、本明細書中でのスレッディングプロセス及びシステムに関する説明は、主に素地テープ20Aのスレッディングに関するものであるものの、このスレッディングプロセスは、システム10又はシステム1500Aといった焼結システムを通して、(図3に示す)非結合テープ36及び/又は部分焼結済みテープ材料を含む多様なテープ材料をスレッディングするために使用できることを理解されたい。
以下で更に詳細に記載されるように、出願人は、スレッディング材料又はリーダ(leader)を利用して、上述のリール間処理を開始するために結合剤除去ステーション34A及び焼結ステーション38Aを通して素地テープ20Aを牽引するプロセスを開発した。このような実施形態では、スレッディング材料は焼結ステーション38A及び結合剤除去ステーション34Aを通過し、リーダは、結合剤除去ステーション34Aの上流、即ち入口側において素地テープ20Aに連結される。
次に、取り込み用リール44Aからリーダを通して素地テープ20Aに張力を印加して、結合剤除去ステーション34A及び焼結ステーション38Aを通して素地テープ20Aを移動させるプロセスを開始させる。結合剤除去ステーション34A及び焼結ステーション38Aを通して素地テープをスレッディングするための種々のアプローチにより、素地テープの焼結を達成できる(例えば手動スレッディング)が、出願人は、本明細書に記載のリーダをベースとしたスレッディングプロセスにより、焼結済み材料の前端縁部においてさえ、高い品質/小さな反りが提供されると判断した。この改善された製品品質により、生産廃棄物が削減され、素地テープの反りを有するセクションの取り扱いの必要の削減/上記セクションの除去によってプロセス効率が改善され、また、焼結済みテープ材料の長さに沿った形状の一貫性によって、取り込み用リール44A上の焼結済み材料の巻きの一体性が改善される。更に、高温スレッディング(例えば結合剤除去ステーション34A及び焼結ステーション38Aが高温である場合のスレッディング)の文脈において、出願人は、本明細書に記載のリーダをベースとしたプロセスの使用により、結合剤除去ステーション34Aから出た後、焼結ステーション38Aの通過中に焼結が行われるまで、テープ材料(例えば図3に図示され、上に記載された非結合テープ36)の繊細な非結合部分の前端縁部を支持及び牽引するための効率的な方法が提供されることを発見した。
図56及び57に示す実施形態では、リーダ1502Aとして図示されているスレッディング材料は、取り込み用リール44Aから、焼結ステーション38A及び結合剤除去ステーション34A両方のチャネルを通して逆方向にスレッディングされ、これにより、端部セクション1504Aとして示されているリーダ1502Aの第1のセクションが、結合剤除去ステーション34Aの入口開口116Aの外側に位置決めされる。この配置では、図56に示すように、リーダ1502Aは、リーダ1502Aが取り込み用リール44Aから焼結ステーション38A及び結合剤除去ステーション34A全体を通る距離全体にわたって延在するように位置決めされた、材料の単一の連続片である。
素地テープ20Aは、ソースリール16Aから(例えば上述のリールから素地テープ20Aの巻きを解くことによって)結合剤除去ステーション34Aの入口開口116Aに向かって移動され、これにより、素地テープ20Aの前端セクション1506Aは、リーダ1502Aの端部セクション1504Aに隣接し、また端部セクション1504Aに重なるように配置される。図57に示すように、素地テープ20Aの前端セクション1506A及びリーダ1502Aの端部セクション1504Aを互いに隣接して位置決めした後、素地テープ20Aの前端セクション1506A及び端部セクション1504Aを、結合剤除去ステーションの上流(例えば処理方向14Aにおいて結合剤除去ステーションの入口開口116Aとソースリール16Aとの間)で、一体に連結又は結合する。これにより、リーダ1502Aと素地テープ20Aと間の重なったセクションにおいて、接合部又は結合部が形成される。
リーダ1502Aを素地テープ20Aに連結した後、結合剤除去ステーション34A及び焼結ステーション38Aの外側(例えば下流)に位置するリーダ1502Aの一部分に対して力を印加し、これにより、リーダ1502A及び素地テープ20Aを、結合剤除去ステーション34A及び焼結炉38Aを通して処理方向14Aに牽引する。図56に示す具体的実施形態では、リーダ1502Aの第2の端部又は下流端部1508Aを取り込み用リール44Aに連結し、取り込み用リール44Aの回転によって生成された力は、リーダ1502A及び素地テープ20Aを、結合剤除去ステーション34A及び焼結炉38Aを通して移動させる/牽引するための力を提供する。いくつかの実施形態では、出願人は、スレッディングプロセス中に、約3インチ(7.62cm)/分の処理速度(例えばシステム1500Aを通してテープ材料を移動させる速度)が使用され、この速度は、リーダ1502Aと素地テープ20Aとの間の接合部が結合剤除去ステーション34A及び焼結炉38Aを通過した後、焼結処理に関して約6インチ(15.24cm)/分まで上昇させることができることを発見した。
よって、リーダ1502Aの使用により、システム1500Aの下流側、即ち再巻き取り側をまず、システム1500Aの上流側、即ち巻きを解く側に連結し、これにより、素地テープ20Aの材料のリール間焼結を開始させることができる。更に、焼結処理中に素地テープ20Aを前進させる上記と同一の巻きを解くシステムと取り込みシステムとの間の接続による、結合剤除去ステーション34A及び焼結ステーション38Aのこのような初期スレッディングを提供することによって、本明細書に記載のリーダをベースとするスレッディングプロセスは、結合剤除去ステーション34A及び焼結ステーション38Aを通過する素地テープ20Aの全長(重なった位置における素地テープ20Aの前端セクション1506Aを含む)にわたって適切な張力及び速度を確立できる。更に、リーダ1502Aを通して水平方向の牽引力を提供することにより、本明細書に記載のリーダをベースとするプロセスは、結合剤除去ステーション34A及び焼結ステーション38Aの水平方向に配向されたチャネルを通したスレッディングを実現できる。これは(特に結合剤除去後のテープ材料の性質が繊細である場合には)困難となり得る。
システム10に関して既に詳細に記載したように、結合剤除去ステーション34Aを加熱することにより、素地テープ20Aから結合剤を除去し又は燃焼させ、焼結ステーション38Aを加熱することにより、素地テープ20Aの無機材料の焼結を引き起こす。本明細書に記載のスレッディングプロセスのある潜在的な用途において、結合剤除去ステーション34A及び/又は焼結ステーション38Aは、リーダ1502Aをスレッディングするときには既にそれぞれの動作温度となっている。これは、リーダ1502Aを、リール間焼結中の材料の破損後に素地テープ20Aをスレッディングするために使用する場合である。本明細書に記載のスレッディングプロセスの別の潜在的な用途において、結合剤除去ステーション34A及び/又は焼結ステーション38Aは、リーダ1502Aをスレッディングする際に低温(例えばそれぞれの動作温度未満、室温でのオフ状態等)である。これは、リーダ1502Aを、システム1500Aの最初の始動中に素地テープ20Aをスレッディングするために使用する場合である。
既に更に詳細に記載したように、リーダ1502Aと素地テープ20Aの前端セクション1506Aとの間の接合部又は重なり部の、結合剤除去ステーション34A及び焼結炉38Aを通る最初の移動の後、素地テープ20Aは、ソース16Aから連続的に解かれ、ステーション34A及び38Aを通して移動させられて、上述のような、ある長さの焼結済み材料を形成する。焼結後、焼結済み材料を取り込み用リール44Aに巻き付ける。一実施形態では、リーダ1502Aは、素地テープ20Aの前端セクション1506Aが焼結ステーション38Aから出た後、かつ焼結済みテープ材料を取り込み用リール44Aに巻き付ける前に、焼結済みテープ材料から連結解除される。別の実施形態では、リーダ1502Aを、焼結済み材料を含むリールの最も内側の層を形成する焼結済みテープ材料と共に、取り込み用リール44Aに巻き付ける。
様々な実施形態において、リーダ1502Aは、結合剤除去ステーション34A及び焼結ステーション38Aの高温に耐えることができる、細長い可撓性の材料の片である。図57に示す連結プロセスでは、素地テープ20Aの前端セクション1506Aは、リーダ1502Aの端部セクション1504Aと重なって、重なりセクション1512Aを形成する。この配置では、素地テープ20Aの下側表面は、リーダ1502Aの上側表面に対面して接触する。この配置では、素地テープ20Aをリーダ1502Aの上部に位置決めすることにより、リーダ1502Aは、結合剤除去ステーション34A及び焼結炉38Aを通して素地テープ20Aの前端セクション1506Aを支持するよう機能する。
いくつかの実施形態では、接着材料1510Aを用いて、リーダ1502Aを素地テープ20Aに接合する結合部を形成する。図57に示すように、いくつかのこのような実施形態では、接着材料1510Aは、リーダ1502Aの上側表面上に配置され、素地テープ20Aの下側表面に対する結合部を形成する。以下で更に詳細に記載されるように、様々な実施形態において、出願人は、様々な特性(例えば接着剤1510A、リーダ1502A及び素地テープ20Aを形成する材料の熱膨張係数(CTE)を一致させることにより、特に焼結ステーション38Aの高温を通過する間の、リーダ1502Aとテープ材料との間の結合部の維持が促進されることを確認した。更に、リーダ1502Aと素地テープ20Aとの間の強力な結合部により、所望のレベルの張力をリーダ1502Aに印加でき、また接着剤1510Aによって提供される素地テープ20Aへの結合部を通して伝達できる。本明細書に記載されているように、出願人は、焼結中に、テープ材料に対して小さい(例えばグラム単位のレベルである)ものの一定である張力を印加することにより、焼結中にテープの幅にわたって形成され得る反りが低減されることを発見した。
様々な実施形態において、出願人は、使用される接着材料1510Aの体積、及びリーダ1502Aに対して適用される接着材料1510Aの形状が、リーダ1502Aと素地テープ20Aとの間に形成される結合部の特性に影響すると判断した。具体的実施形態では、接着材料1510Aの体積は小さい(例えば約0.1mLのアルミナ系接着剤)。一実施形態では、接着剤1510Aを用いて、リーダ1502Aを、焼結されていない素地テープ材料20Aに結合し、このような実施形態では、出願人は、接着剤1510Aの円形のドットが良好に機能することを発見した。出願人は、この円形の幾何学的形状が、セメント及びテープ収縮並びに(存在する場合は)リーダ1502A、接着剤1510A及び素地テープ20Aの材料間のCTEミスマッチによって誘発される熱応力及び機械的応力の分散を補助すると仮説を立てている。別の実施形態では、接着剤1510Aを用いて、リーダ1502Aを部分焼結済み材料に結合し、このような実施形態では、出願人は、リーダ1502Aの幅にわたって延在する接着剤1510Aの線が良好に機能すると考えている。出願人は、この線状の幾何学的形状が、ウェブが焼結ステーションを通って移動する際に、ウェブに均一な圧迫を印加するよう作用すると仮説を立てている。
具体的実施形態では、結合剤除去ステーション34Aは、リーダ1502Aと素地テープ20Aとの間の重なりセクション1512Aが結合剤除去ステーション34Aを横断する際に、着剤1510Aから(及び素地テープ20Aから)液体及び/又は有機成分を除去するよう動作する。出願人は、接着材料1510A及び素地テープ20Aの様々な特性が、接着材料1510Aによって形成された結合剤が結合剤除去ステーション34A及び焼結ステーション38Aの通過中に破損する可能性に関連すると考えている。出願人は、結合剤除去ステーション34Aを通した温度プロファイルにより、素地テープ20A中の有機材料を、テープから放出される前に軟化させ、更には溶融させることができ、これにより、個々の構成要素が収縮及び熱膨張によって形状/サイズを変化させ始める際に、セメント接合部の周りの応力の強度を制限するのを補助できると仮説を立てている。出願人は、素地テープがその弾性/可塑性を失う前に、接着剤1510Aの位置の周りで素地テープを「変形させる」又は再成形することにより、欠陥の減少を補助でき、接着剤1510Aによって形成される結合部の品質が改善されると仮説を立てている。同様に、この弾性/可塑性により、接着剤1510Aから、リーダ1502Aと素地テープ20Aとの間の圧力の上昇を引き起こし得る液体及び有機材料を発散させることもできる。この圧力の上昇は、結合部の破損を引き起こし得、又はガスの蓄積が素地テープ20Aを断裂させ得る。
具体的実施形態では、リーダ1502Aと素地テープ20Aとの間の重なりセクション又は接合部を牽引するプロセス中に印加される張力は、重なりセクション1512Aが結合剤除去ステーション34A及び/又は焼結ステーション38Aを通過する際に変化及び/又は増大し得る。ある具体的実施形態では、重なりセクション1512Aが結合剤除去ステーション34Aを通過する間に、例えば25グラム未満の低いレベルの張力をまず供給し、その後、重なりセクション1512Aが焼結ステーション38Aを通過する際に、張力を増大させる。ある具体的実施形態では、重なりセクション1512A及び接着材料1510Aが焼結ステーション38Aの中央に到達した後で、25グラム程度以上の張力を印加する。出願人は、素地テープ20Aの材料の焼結がこの点で発生しているため、この点における張力を、リーダ1502Aと素地テープ20Aとの間の結合部を分離することなく増大させることができると考えている。出願人は、高いレベルの張力を、強度が成長する機会を得る前にあまりに早く印加すると、一般に、接着剤1510Aによって形成された結合部の破損につながると考えている。
様々な実施形態において、リーダ1502Aと素地テープ20Aとの間の結合及び/又は支持は、リーダ1502Aと素地テープ20Aとの間の様々なレベルの重なりによって増強される。図57において確認できるように、リーダ1502Aと素地テープ20Aとの間の重なりが大きいほど、リーダ1502Aによって素地テープ20Aに供給される支持の量が大きくなる。同様に、リーダ1502Aと素地テープ20Aとの間の重なりのレベルは、接着剤1510Aによって提供される結合を補うことができる、リーダ1502Aと素地テープ20Aとの間の摩擦に基づく連結の量に関連する。接着剤1510Aを利用する実施形態では、出願人は、処理方向14Aにおいて測定された、1~5インチ(2.54~12.7cm)の長さを有する重なりセクション1512Aが、良好に機能することを発見した。いくつかの実施形態では、リーダ1502Aと素地テープ20Aとの間の連結は、摩擦のみによって(例えば接着剤1510Aを用いずに)提供してよく、このような場合、処理方向14Aの重なりセクション1512Aの長さは、5インチ(12.7cm)超、例えば10インチ(25.4cm)超、10インチ(25.4cm)~30インチ(76.2cm)、約24インチ(60.96cm)等であってよい。
様々な実施形態において、出願人は、本明細書に記載のスレッディング特性/機能性を提供する、リーダ1502A、素地テープ20A、及び接着剤1510Aに関する多数の材料の組み合わせを同定した。一般に、リーダ1502Aは、素地テープ20Aとは少なくとも1つの態様において異なる材料から形成される。いくつかのこのような実施形態では、リーダ1502Aは、素地テープ20Aの無機粒体と同一の材料タイプから形成されるが、素地テープ20Aの無機材料とは異なる(例えばより高い)焼結の程度を有する。いくつかのこのような実施形態では、リーダ1502Aは、焼結済みセラミック材料の細長いテープであり、素地テープ20Aは、同一のタイプのセラミック材料の、焼結されていない、又は焼結の程度が低い粒体を支持する。
他のいくつかの実施形態では、リーダ1502Aは、素地テープ20Aの無機粒体の材料タイプとは異なる無機材料から形成される。ある具体的実施形態では、リーダ1502Aは、素地テープ20Aの無機粒体のセラミック材料タイプとは異なるセラミック材料タイプから形成される。他のいくつかの実施形態では、リーダ1502Aは金属材料から形成され、その一方で素地テープ20Aの無機粒体は、セラミック無機材料である。
出願人は、図57に図示され、かつ本明細書に記載されている連結構成が、結合解除の大きなリスク無しに、リーダ1502Aから素地テープ20Aへの力/張力の良好な伝達を可能とするような、リーダ1502Aと素地テープ20Aとの間の連結のレベルを提供することを発見した。更に出願人は、熱膨張係数(CTE)が互いに比較的同等であるような、リーダ1502A、接着剤1510A、及び素地テープ20Aの無機粒体材料のための材料を選択することによって、焼結中に引き起こされる結合解除及び反りのリスクを低減できることを発見した。様々な実施形態において、リーダ1502Aの材料のCTEは、素地テープ20Aの無機材料のCTEの±50パーセント以内、具体的には素地テープ20Aの無機材料のCTEの±40パーセント以内、より具体的には素地テープ20Aの無機材料のCTEの±35パーセント以内である。同様に、様々な実施形態において、リーダ1502Aの材料のCTEは、接着材料1510AのCTEの±50パーセント以内、具体的には接着材料1510AのCTEの±40パーセント以内、より具体的には接着材料1510AのCTEの±35パーセント以内である。
リーダ1502Aは、様々な好適な材料から形成できる。いくつかの実施形態では、リーダ1502Aは焼結済みセラミック材料から形成され、他の実施形態では、リーダ1502Aは金属材料から形成される。いくつかの実施形態では、出願人は、リーダ1502Aに多孔質セラミック材料を使用することにより、接着材料1510Aの、リーダ1502Aに結合する能力が向上することを発見した。出願人は、リーダ1502Aの多孔率により、リーダがより多孔率の低い表面又は研磨済み表面を有する場合に比べて、接着材料1510Aを容易に結合させることができると考えている。具体的実施形態では、リーダ1502Aは、白金リボン、又は完全焼結済みセラミック材料、例えばアルミナ若しくはイットリア安定化ジルコニア(YSZ)であってよい。
具体的実施形態では、リーダ1502Aは、取り扱い及び素地テープ20Aへの結合が可能となるようにサイズ設定される。具体的実施形態では、リーダ1502Aは、素地テープ20Aの幅に略一致する(例えば±10%の)幅を有する。具体的実施形態では、リーダ1502Aは、5μm~500μmの厚さ、より具体的には20~40μmの範囲内の厚さを有する。更に、リーダ1502Aは、取り込み用リール44Aから焼結ステーション38A及び結合剤除去ステーション34Aの両方を通って延在するために十分な長さを有し、従ってリーダ1502Aの長さは、システム1500Aのサイズと共に変動する。
図56及び57は概して、焼結済みセラミック材料の長く薄い平坦なセクションとしてリーダ1502Aを図示しているが、リーダ1502Aは他の形状を取ることもできる。例えば一実施形態では、リーダ1502Aは、素地テープにセメント接合された長い白金ワイヤを有するセラミックボードであってよい。別の実施形態では、リーダ1502Aは、ある長さのセラミック繊維ロープ又はセラミック繊維撚り糸であってよい。
接着材料1510Aは、様々な好適な材料から形成できる。いくつかの実施形態では、接着材料1510Aはセラミック接着材料である。具体的実施形態では、接着材料1510Aは、Zircar Ceramicsから入手可能なアルミナ系接着剤#C4002等の、アルミナ系接着材料である。
図58~65を参照すると、焼結中に非結合テープ36Bを長手又は長さ方向に曲げるための、様々なシステム及びプロセスが図示及び説明されている。全体として、出願人は、幅広で薄い、連続した複数の長さの非結合テープ36Bを焼結する際の、予期せぬ課題の1つは、最終焼結済みテープ40Bが高いレベルの幅横断方向平坦性を有することを保証することであると判断した。高いレベルの幅横断方向平坦性は、本明細書に記載の焼結済みテープ材料を、薄膜回路構成、厚膜回路構成、ソリッドステートリチウムイオンバッテリ等のための基板といった多数の用途で使用する際に望ましい。
いくつかの連続テープ焼結プロセスは、焼結中のテープ材料内の面内応力の生成によって形成されるものと考えられる、一定の平坦性の歪み(例えば幅横断方向の屈曲、縁部のしわ、気泡形成等)を受けやすい場合がある。例えば、出願人は、非結合テープ36B中のセラミック粒子密度の変動、システムの長さに沿った、テープ材料内の大きな温度差(例えば本明細書に記載のシステム及びプロセスの連続的な性質により、1000℃超となり得る)、処理速度等の様々な因子が、焼結中の面内応力の生成に寄与し、これは、これらの面内応力の解放を実現できるような方法で、相反する力を印加しなければ、折れを誘発し得ることを発見した。
例えば、本明細書に記載のシステムによる連続焼結を受けるアルミナテープは、同時に、室温の領域と最大焼結温度の領域とを有し得る。また、焼結プロセスが開始される、収縮が最小であるテープの領域と、収縮が略完了したテープの領域とが存在し得、収縮は直線を基準として8%超、又は10%超にもなる。収縮及び温度の勾配は、複雑な2軸応力の原因となり得、これは、焼結ステーションに入る、あるレベルの平坦性を有するテープにおいてさえも、反り及びしわ等の歪みを誘発し得る。そしてこのような歪みは冷却後に焼結済みテープ内に固着され得、これによって焼結済みテープの潜在的な用途が制限される。
以下で更に詳細に記載されるように、出願人は、平坦性の歪みを引き起こし得る応力を、焼結中にテープに長さ又は長手方向の湾曲を誘発することによって、少なくとも部分的に相殺できると判断した。焼結中、テープ材料は塑性的に弛緩して、誘発された長さ方向の曲げの形状へと変形し、これはテープ材料内に力を生成し、この力は、発生し得る面内応力を低減させる傾向を有し、結果として、高いレベルの幅横断方向の平坦性を有する焼結済みテープを生産できる。出願人は、焼結中に長さ方向の曲げを利用することにより、素地テープの粒子密度の変動及び高い生産速度にもかかわらず、より平坦な焼結済みテープを生産できると考えている。
更に、少なくともいくつかの実施形態では、本明細書に記載の平坦化プロセスは、焼結中に材料をカバープレート間で押圧する際に発生し得るもの等の接触/圧力をベースとした平坦化デバイスにおいては一般的な、表面の接触、並びにその結果としての表面の欠陥及び擦過傷を回避/制限しながら、平坦で薄い焼結済み物品を生産する。以下に示すように、出願人は、焼結中にテープの少なくとも1つの主表面を未接触のままとする長手方向の曲げを誘発するための、多数のシステム及びプロセス、並びに焼結中にテープの上側及び下側(主)面の両方を未接触のままとするいくつかのプロセスを開発した。出願人は、他のセラミック焼結プロセスは、連続焼結プロセスにおいて、又は本明細書に記載のシステム及びプロセスが提供する、限定された程度の表面接触を用いて、高いレベルの幅横断方向の平坦性を達成できないと考えている。
図58を参照すると、高い平坦性を有する焼結済み連続テープを生産するためのプロセス及びシステムが示されている。具体的には、図58は、ある例示的実施形態による、焼結済みテープ物品を生産するためのシステム1600Bを示す。全体として、システム1600Bは、システム1600Bが、焼結ステーション38B内に配置された曲げシステム1602Bを含む焼結ステーション38Bを含む点を除いて、上述のシステム10と同一であり、システム10と同様に機能する。一般に、曲げシステム1602Bは、テープ36Bが焼結ステーション38B内において高温(例えば500℃超)で焼結されている間に、非結合テープ36Bの長さ又は長手方向軸に沿ってある曲率半径を誘発するよう構成又は配設される。出願人は、焼結中の曲げによってテープ材料に長手方向の湾曲を誘発することにより、本明細書に記載の機構による最終焼結済みテープ40Bの幅横断方向形状を改善できると判断した。
図58に示す具体的実施形態では、曲げシステム1602Bは、焼結ステーション38Bを通る下側チャネル表面の少なくとも一部分を画定する、上向きの凸状曲面1604Bを含む。上向きの凸状曲面1604Bは、R1Bとして示されている少なくとも1つの曲率半径を画定し、具体的実施形態では、R1Bは、0.01m~13,000mの範囲内の曲率半径であるか、又はこのような曲率半径を含む。一般に、非結合テープ36Bが上述のように焼結ステーション38Bを通って移動する際、重力及び/又はテープ内の牽引力により、テープは、曲面1604Bに少なくとも部分的に一致するように曲げられ、これは、昇温下での焼結中に、テープに長手方向の曲げを誘発する。具体的実施形態では、非結合テープ36Bに印加される張力は、非結合テープ36Bの直線幅1インチ(2.54cm)あたり少なくとも0.1重量グラムであり、非結合テープ36Bは、焼結ステーション38Bを通して、テープ長さ1インチ(2.54cm)~100インチ(254cm)/分の速度で移動する。
図58に示すように、曲面1604Bは、非結合テープ36Bの幅方向軸に対して平行な(及び図58の視野平面に対して垂直な)軸の周りで湾曲する。よってこのような実施形態では、非結合テープ36Bは、チャネル104Bによって概ね画定される、焼結ステーション38Bを通る経路をたどり、凸状曲面1604Bは、焼結ステーション38Bを通る上記経路の湾曲セクションを画定する。この曲げは、非結合テープ36Bが凸状曲面1604Bによって画定された上記経路の上記湾曲セクションを通過する際に、曲面1604Bと一致するように成形されることによって、非結合テープ36B内に誘発される。
図58に示す具体的実施形態では、曲面1604Bは、単一の曲率半径を有する連続曲面を形成し、これは、焼結ステーション38Bの入口と出口との間の、チャネル104Bの全長にわたって延在する。このような実施形態では、表面1604Bの曲率半径は、十分なレベルの曲げを達成する必要があり、また焼結ステーションの長さに応じて変動し得る焼結ステーション38Bの長さ全体にわたって延在する必要があった。従って、曲面1604Bの所与の最大隆起H1B(図60に図示)に関して、短い焼結ステーション38Bは、長い焼結ステーション38Bよりも小さなR1Bを有していてよい。具体例として、長さが(少なくとも)1mの焼結ステーション38Bは、1m~130mのR1Bを有する曲面1604Bを有してよい。具体例として、長さが(少なくとも)3mの焼結ステーション38Bは、10m~1130mのR1Bを有する曲面1604Bを有してよい。具体例として、長さが(少なくとも)6mの焼結ステーション38Bは、40m~4500mのR1Bを有する曲面1604Bを有してよい。具体例として、長さが(少なくとも)10mの焼結ステーション38Bは、120m~13,000mのR1Bを有する曲面1604Bを有してよい。このような実施形態では、長さにかかわらず、H1Bは1mm~10cmであってよく、これは上に示したR1Bの範囲をもたらす。
システム10に関して上述したように、焼結ステーション38Bは、焼結ステーションの入口及び出口を横切る平面が、水平面に対して10°未満の角度を形成するように配設される。上述のように、この概ね水平な焼結構成により、非結合テープ36Bを、概ね水平位置の焼結ステーション38Bを通して移動させることができる。このような実施形態では、曲面1604Bは、テープ36Bが焼結ステーション38Bの入口と出口との間において通過する経路の下側表面を画定する。出願人は、(空気流に基づく熱勾配を低減するものとして上述されている)この水平な焼結構成を、焼結中のテープに長手方向に湾曲した形状を形成することと組み合わせると、他の焼結システムよりはるかに速い高速で、本明細書に記載の高いレベルの平坦性を有する焼結済みテープを生産できる、及び/又は生産し得ると考えている。出願人は、焼結中の曲げと、水平な焼結ステーション38Bとの組み合わせにより、高いレベルの平坦性が提供されると考えているものの、他の実施形態では、焼結ステーション38Bを、水平から垂直までのいずれの角度で配設してよいことを理解されたい。このような水平でない実施形態では、曲面1604Bの寸法及び位置決めは、所望のレベルの平坦性を達成するために十分なものとすることができる。
図58に示すように、このシステム1600Bの処理構成では、非結合テープ36B等のある連続した長さのテープ材料を、焼結ステーション38B等の加熱ステーション内へと移動させる。この構成では、非結合テープ36Bとして図示されている連続テープの一部分は、焼結ステーション38Bへの入口106Bの上流に位置する。焼結後、焼結済みテープ40B等の、上記連続テープの焼結済み部分は、焼結ステーション38Bの出口108Bの下流に位置する。一般に理解されるように、いずれの所与の時点において、連続テープは、焼結ステーション38B内でそのときに焼結中である、テープの第3の部分を含む。この連続テープの第3の部分は、焼結ステーション38Bの上流の、未結合の焼結されていないテープ36Bと、焼結ステーション38Bの下流の、連続テープの焼結済み部分40Bとの間に位置する。テープ部分1606Bとして示された、連続テープの現在焼結中である部分は、それが所望の焼結温度(例えば500℃超の温度)まで加熱される際に、焼結ステーション38B内に位置する。
一般に、テープ部分1606Bは、処理方向において(例えば図58の配向において右から左へと)、減少する多孔率及び上昇する焼結の程度を有する。図58に示すように、テープ部分1606Bは、上向きの凸状曲面1604Bと一致するように曲げられ、これにより、テープ部分1606Bは、R1Bに一致する曲率半径を有する湾曲形状に概ね適合する。上述のように、長手方向の張力を連続テープに印加することによって、テープ部分1606Bを、上向きの凸状曲面1604Bに一致するように曲げることができる。
上述のシステム10の、巻きを解く部分及び取り込み部分に関する説明から概ね理解されるように、システム1600Bは、ある長い連続した長さのテープの、連続したリール・ツー・リール処理を提供する。このようにして、処理されるテープの連続した長さ全体を、焼結ステーション38Bを通して連続的に順次移動させることができ、これにより、処理されるテープの連続した長さ全体が、焼結ステーション38Bの通過中に、上向きの凸状曲面1604Bの曲率R1Bまで曲げられる。
図59を参照すると、ある例示的実施形態による、曲げシステム1602Bを含む焼結ステーション38Bの詳細図が示されている。図59に示す実施形態では、焼結ステーションチャネル104Bは、部分的に、(上述のアルミナチューブ等の)チューブ1608Bによって画定される。この実施形態では、上向きの凸状曲面1604Bは、チューブ1608B内に配置された部品又はインサート1610Bの上向きの表面によって画定される。図59に示すように、部品1610Bの長さは、チャネル104Bの長さの少なくとも80%、具体的には少なくとも90%、より具体的には少なくとも95%である。いくつかの実施形態では、部品1610Bの長さはチャネル104Bの長さより大きく、これにより、テープの、入ってくる及び出てゆくセクションは、焼結ステーション38Bに入る際及び焼結ステーション38Bから出る際に、上向きの凸状曲面1604B上に支持される。
概ね理解されるように、様々な実施形態において、連続した凸状曲面1604Bを画定する曲率半径は、表面1604Bの最大隆起H1B及び長手方向長さL2B(例えば図60の水平方向における距離)の関数である。凸状曲面1604Bが焼結ステーション38Bの全長にわたって延在する具体的実施形態では、表面1604Bの長手方向長さは、焼結ステーション38Bの長手方向長さと略同一である。よってこのような実施形態では、凸状曲面1604Bの曲率半径R1Bは、R1B=H1B+(L2B^2)/H1Bとして定義され、様々な実施形態において、0.1mm<H1B<100mm、及び0.1m<L2B<100mである。他の考えられる実施形態、部品1610Bの一部分のみが円弧を形成し、上記表面は、部品1610BのR1Bに関して本明細書中で開示された範囲内の、(より複雑な幾何学的形状の中での)曲率半径又は最大曲率半径を有する、別の幾何学的形状を有してよい。
具体的実施形態では、インサート1610Bはチャネル104Bから着脱可能であり、またチューブ1608Bに着脱可能に連結されるか、又はチューブ1608Bによって着脱可能に支持される。このような実施形態では、これによって、異なる曲面1604Bを有する異なる複数のインサート1610Bを、焼結ステーション38B内に配置でき、これにより、ある特定のプロセス又はテープ材料のタイプ、厚さ、焼結の速度等に関して所望のレベルの平坦化を提供するために必要な、特定の曲げ半径を提供できる。
図60を参照すると、様々な実施形態において、焼結ステーション38Bを通るチャネル104Bの下側表面は、上向きの凸状曲面1604Bによって画定され、またチャネル104Bの上側表面は、下向きの凹状曲面1612Bによって画定される。具体的実施形態では、下向きの凹状曲面1612Bの曲率半径又は上記曲率半径は、上向きの凸状曲面1604Bの曲率半径又は上記曲率半径に概ね一致し(例えば1%以内、10%以内等であり)、例えば垂直方向に位置合わせされた対応する曲率半径である。この曲率の一致により、チャネル104Bの高さが、焼結ステーションを通るその長さに沿って略一定のままとなることが保証される。少なくともいくつかの設計では、一定の高さ、及び焼結中のテープに対する比較的小さなクリアランスを有することにより、熱勾配によるチャネル104B内での空気の垂直移動を低減でき、これは、最終焼結済みテープの形状及び平坦性を改善すると考えられる。
いくつかの実施形態では、下向きの凹状曲面1612Bは、インサート1614Bの表面である。このような実施形態では、インサート1614Bは、チューブ1608Bに着脱可能に連結されるか、又はチューブ1608Bによって着脱可能に支持され、これにより、ある特定のプロセス又は材料タイプのために使用され得るような下側の部品1610Bの曲率に一致するように、インサート1614Bを選択できる。
図61を参照すると、様々な実施形態において、焼結ステーション38Bを通るチャネル104Bの下側表面は、湾曲セクション1620B、1622B及び1624Bとして示されている2つ以上の湾曲セクションを有する、上向きの凸状曲面1604Bによって画定される。換言すれば、表面1604Bの曲率は、偏向点、不連続、非円弧形状等を含み得る。例えば図61に示すように、湾曲セクション1620Bは第1の曲率半径R1B’を有し、湾曲セクション1622Bは第2の曲率半径R2Bを有し、湾曲セクション1624Bは第3の曲率半径R3Bを有する。この実施形態では、焼結ステーション38Bを通るテープの経路はR1B’、R2B及びR3Bによって画定され、焼結中のテープは、焼結ステーション38B内で加熱される間に、各半径R1B’、R2B及びR3Bへと順次曲げられる。様々な実施形態において、R1B’、R2B及びR3Bは、0.01m~10mの曲率半径であるか、又はこのような曲率半径を含む。具体的実施形態では、R1B’、R2B及び/又はR3Bは互いに異なる。
更に、図61に示すように、いくつかの実施形態では、焼結ステーション38Bは、異なる湾曲セクション1620B、1622B及び1624Bを通過するテープ36Bを、異なる温度まで加熱する。ある具体的実施形態では、テープ36Bが加熱される温度は、テープ36Bが曲げられる曲率半径に反比例する。
図62を参照すると、少なくとも1つの実施形態では、上向きの凸状曲面1604Bは、気体軸受1630Bの上側表面である。気体軸受1630Bはガス供給チャネル1632Bを含み、これは加圧ガス(例えば空気、窒素、ヘリウム、アルゴン等)をチャネル104B(図60参照)に送達する。このようにして、加圧ガスは、焼結ステーション38Bの横断中にテープ36Bを支持し、これにより、表面1604Bとの接触の必要なしに、又は表面1604Bとの接触をより少なくして、テープを表面1604Bの曲率半径に曲げることができる。
図63及び64を参照すると、様々な実施形態において、曲げシステム1602Bは1つ以上のマンドレル又はローラを含み、その外面は凸状曲面を画定し、テープ36Bは、焼結ステーション38B内での焼結中、上記凸状曲面の周りで曲げられる。
テープ36Bをローラ1642B等の湾曲構造体の周りで曲げることによって提供される平坦化について、図63に関連して更に詳細に説明する。図63に示すように、ローラ1642Bの上流に位置するテープ36Bの一部分1640Bは、湾曲した破線1644Bで表される幅横断方向の屈曲として示される、折れ、又は平坦性の歪みを有し得る。この欠陥は上述のように、焼結中にテープ36B内で生成される複雑な2軸応力によって引き起こされ得る。テープ36Bが焼結ステーション38Bを通して搬送されるに従って、テープ36Bは、曲率半径ρを有するローラ1642Bに近づく。テープ36Bはローラ1642Bの周りで曲がり、平坦な形状となる。テープ36Bは、この平坦な構成において、テープ36Bが幅横断方向の屈曲1644Bを有する場合の剛性よりも低い剛性を有し得る。その効果は、逆折れの形成であるか、又は折れの変化を低減する。曲げられた状態において、幅横断方向の屈曲1644Bを有するテープ36Bは、その表面において、搬送方向に対して垂直な方向に、応力σを受け、これは、幅横断方向の屈曲1644Bの曲率κに正比例するため、以下のようになる:
Figure 2024023809000002
ここでtはテープの厚さであり、Eは弾性率である。この技法は、縁部の反り又は気泡形成といった他の平坦性の歪みの低減を補助し、その結果、局所的な応力は局所的な曲率に比例したものとなり得る。よって、上述のようなローラ1642Bの周りでの、又は表面1604Bに沿った曲げは、多数の欠陥タイプにわたって平坦化を支援する。図65を参照して以下で更に詳細に説明されるように、曲げによる平坦化は、それに対抗してテープが牽引される表面を必要としないため、フリーループ構成による曲げによっても平坦化を達成できる。
しかしながら、上述のようなローラ1642Bの外面又は表面1604B等の曲面を利用することは、荷重付きダンサー1680B(図58)のようなデバイスによってテープに外から引張力を印加できる点で有利である。このような実施形態では、力F(図63)が、テープを、ローラ1642Bの外面又は表面1604Bに対抗して牽引して、テープの平坦化を支援するための第2の応力を生成する。曲面の周りでの曲げの間に印加された引張力に由来する応力σは:
Figure 2024023809000003
によって定義され、ここでwはテープの幅であり、θは、曲面(ローラ1642Bの外面又は表面1604Bのいずれであってもよい)とテープ36Bとの間の接触の角度であり、これはラップ角度(wrap angle)と呼ばれる場合もある。
様々な実施形態において、ローラ1642Bを固定し、回転できないようにすることができる。他の実施形態では、ローラ1642Bは自由に回転してよい。更に他の実施形態では、ローラ1642Bの回転の速度を制御して、テープの搬送速度を一致させる、又は搬送を駆動する若しくは遅延させることができる。様々な実施形態において、ローラ1642Bは、ラップ角度を変更するために、テープに対して垂直に上下移動するよう、構成してもよい。
図64に示すように、いくつかの実施形態では、曲げシステム1602Bは複数のローラを含んでよく、焼結中にテープ36Bをこれらのローラに対抗して牽引して、平坦化を提供する。図64に示す具体的実施形態では、曲げシステム1602Bは、1対の上側ローラ1650Bと、単一の下側ローラ1652Bとを含む。このローラ構成を通してテープ36Bを牽引するに従って、テープ36Bは、ローラ1650B及び1652Bの外面との接触により、長手方向に曲げられる。同様の気体軸受の構成を使用してよく、この場合、図64に示すローラ‐テープ間の境界面のうちの1つ以上は、図62に示すような、各気体軸受の外向きに吹き付ける表面に対応する。
図65を参照すると、様々な実施形態において、テープ36Bが焼結ステーション38Bを通過する湾曲又は曲げ形成経路は、フリーループセグメント1660Bによって形成される。この実施形態では、テープ36Bのあるセクションが、重力の影響下で吊り下がり、本明細書に記載されているような長手方向の曲げを生成する。このような実施形態では、曲げシステム1602Bは、互いから離間した1つ以上の支持体1662Bを含む。支持体1662Bの間隔は、支持体の間で重力によってテープ36Bを下向きに吊り下げることができる間隙を画定し、これにより、上述のような曲率半径R1B’’を有するフリーループセグメント1660Bが形成される。この特定の実施形態では、非接触のフリーループセグメント1660Bによって形成される曲率半径R1B’’は、本明細書に記載の様々な接触に基づく曲げシステムに比べて、最終焼結済みテープ40Bの表面品質を改善できる。例えば、フリーループセグメント1660Bを利用することにより、接触に基づくシステムで形成され得る擦過傷が排除又は削減される。別の例として、フリーループセグメント1660Bを利用することにより、接触に基づくシステム内で焼結中のテープが接触し得る表面に由来する化学成分の拡散が排除又は低減される。
出願人は、様々な連続テープ材料の焼結中の長手方向の曲げが、平坦性の歪みを低減することを実証する試験を実施した。これらの試験からのいくつかの結果を図66に示す。例えば図66に示すように、3モルパーセントのイットリアドープジルコニア(左)及び酸化チタン(右)の、厚さ40μmのテープを、焼結中に曲げた。これらのテープを平坦な表面上にキャスティングし、アルミナロッド上で湾曲した形状に再成形した。より具体的には、テープを、直径9.5mmのアルミナロッドをまたぐように掛け、100℃/時間で1150℃まで加熱した。滞留時間は5分であった。アルミナロッドをまたいで曲げられたテープの領域は、(幅方向に)ある縁部から隣の縁部まで局所的に平坦である。対照的に、ロッドの曲面によって支持されていないテープの領域は、収縮のミスマッチ及び平坦性の歪みの形成に対して自由に反応した。具体的には、ジルコニアテープのしわが視認でき、これは黒色の点線で強調されている。画像はテープの可塑性も示し、ここでロッド上への応力平坦化を誘発する。
ここで図67A及び67Bを参照すると、上述の製品の例が示されている。より具体的には、多結晶質セラミックテープのロールは、ZrO及び3モル%Yという成分を含む1体積%のイットリア安定化ジルコニアを含む、アルミナを含む。多結晶質セラミックテープは、厚さ70マイクロメートル、幅36ミリメートル、及び長さ8.5m以上である。このテープを、1650℃の焼結温度、及び製造ラインに沿って約10cm/分の速度で、上述の設備を用いて上述のプロセスで焼結した。ロールは、直径3~6インチ(7.62~15.24cm)のコアを有する。テープは平坦であるか、又は上述のように平坦化可能である。
図68は、百万分の300部の酸化マグネシウムを含むアルミナである、多結晶質セラミックテープのロールの例を示す。図68のテープは、厚さ77マイクロメートル、幅36mm、及び長さ8m超である。このテープを、1650℃の焼結温度、及び製造ラインに沿って約10cm/分の速度で、上述の設備を用いて上述のプロセスで焼結した。ロールは、直径3~6インチ(7.62~15.24cm)のコアを有する。テープは平坦であるか、又は上述のように平坦化可能である。
図69は、イットリア安定化ジルコニア(3モル%のYを含むZrO)である、多結晶質セラミックテープのロールの例を示す。図69のテープは、幅33mm、及び長さ約1メートルである。このテープを、1575℃の焼結温度、及び製造ラインに沿って約15~23cm/分の速度で、上述の設備を用いて上述のプロセスで焼結した。ロールは、直径3~6インチ(7.62~15.24cm)のコアを有する。テープは平坦であるか、又は上述のように平坦化可能である。
従って、本開示の態様は、上述のように、図67A及び67Bにおけるようなアルミナテープ等の、本明細書で開示又は記載された材料の多結晶質セラミック又は合成鉱物テープの、平坦な又は平坦化可能なロールに関し、上記テープは、多結晶質セラミック又は合成鉱物の粒体が互いに融着するよう、少なくとも部分的に焼結され、上記多結晶質セラミック又は合成鉱物テープは、500マイクロメートル以下の厚さ、上記厚さの少なくとも10倍大きな幅、及び上記幅が長さの1/10未満となるような長さを備え、ここで上記多結晶質セラミック又は合成鉱物テープの長さは、少なくとも1メートルである。いくつかのこのような実施形態では、多結晶質セラミック又は合成鉱物の幅は少なくとも5ミリメートルであり、また多結晶質セラミック又は合成鉱物テープの幅は、多結晶質セラミック又は合成鉱物テープの長さの1/20未満であり、例えばここで、多結晶質セラミック若しくは合成鉱物テープの厚さは少なくとも10マイクロメートルであり、及び/又は多結晶質セラミック若しくは合成鉱物テープの厚さは、250マイクロメートル以下であり、例えば多結晶質セラミック若しくは合成鉱物テープの厚さは100マイクロメートル以下であり、及び/又は多結晶質セラミック若しくは合成鉱物テープの厚さは50マイクロメートル以下である。いくつかのこのような実施形態では、多結晶質セラミック又は合成鉱物テープは、多結晶質セラミック又は合成鉱物テープを通過する、断面積が少なくとも1平方マイクロメートルのピンホールを、多結晶質セラミック又は合成鉱物テープの全表面にわたる平均で、表面1平方ミリメートルあたり10個未満だけ有する。いくつかのこのような実施形態では、多結晶質セラミック又は合成鉱物テープは、多結晶質セラミック又は合成鉱物テープを通過する、断面積が少なくとも1平方マイクロメートルのピンホールを、多結晶質セラミック又は合成鉱物テープの全表面にわたる平均で、表面1平方ミリメートルあたり1個未満だけ有する。いくつかのこのような実施形態では、多結晶質セラミック又は合成鉱物テープの長さは、少なくとも10メートルであり、多結晶質セラミック又は合成鉱物テープの幅は、少なくとも10ミリメートルであり、例えばここで、多結晶質セラミック若しくは合成鉱物テープの幅は20センチメートル以下であり、並びに/又は多結晶質セラミック若しくは合成鉱物テープは、上記多結晶質セラミック若しくは合成鉱物テープの第1及び第2の表面がいずれも、5マイクロメートル未満の寸法の接着又は摩擦による表面欠陥を10個未満だけ有する、少なくとも1平方センチメートルの面積を有するような、高い表面品質を有し、この高い表面品質は、焼結済み物品の強度を促進する。いくつかのこのような実施形態では、多結晶質セラミック若しくは合成鉱物テープは、1キログラム超の重量を、破断することなく支持し、及び/又は多結晶質セラミック若しくは合成鉱物テープは、約20メガパスカルの張力を、破断することなく支持し、例えばここで、多結晶質セラミック又は合成鉱物テープの幅は少なくとも50ミリメートルである。いくつかのこのような実施形態では、多結晶質セラミック若しくは合成鉱物テープは、約300nm~約800nmの波長において少なくとも30%の全透過率を有し、及び/又は多結晶質セラミック若しくは合成鉱物テープは、約300nm~約800nmの波長において、少なくとも約10%かつ最大約60%の、多結晶質セラミック若しくは合成鉱物テープを通した拡散透過率を有し、及び/又は多結晶質セラミック若しくは合成鉱物テープは、多結晶質セラミック若しくは合成鉱物テープに接触させたテキストを、この多結晶質セラミック若しくは合成鉱物テープを通して読むことができるような、半透明のものである。いくつかの実施形態では、ロールは、マンドレル又はスプールを更に備え、ここで多結晶質セラミック又は合成鉱物テープは、直径1メートル以下のマンドレル又はスプールの周りで曲げられ、例えばここで、多結晶質セラミック又は合成鉱物テープは、スプール上に巻き付けられ、例えばここで、スプールは、少なくとも0.5センチメートルかつ1メートル以下の直径を有する。いくつかのこのような実施形態では、多結晶質セラミック又は合成鉱物テープは完全に焼結され、密度が高く、1%未満の多孔率を有し、例えばここで、多結晶質セラミック又は合成鉱物テープは0.5%未満の多孔率を有する。いくつかのこのような実施形態では、多結晶質セラミック又は合成鉱物テープは、多結晶質セラミック又は合成鉱物テープがある粒体プロファイルを有するよう、略未研磨であり、例えばここで、粒体プロファイルは、各粒体間の境界における表面の凹部に対して25ナノメートル~150マイクロメートルの高さを有する粒体を含み、及び/又は粒体プロファイルは、各粒体間の境界における表面の凹部に対して25ナノメートル~100マイクロメートルの高さを有する粒体を含み、及び/又は粒体プロファイルは、各粒体間の境界における表面の凹部に対して少なくとも50ナノメートルの高さを有する粒体を含み、及び/又は粒体プロファイルは、各粒体間の境界における表面の凹部に対して80マイクロメートル以下の高さを有する粒体を含む。いくつかのこのような実施形態では、略未研磨ではあるものの、上記テープの少なくとも1つの表面は、上記表面に沿って長さ方向に1センチメートルの距離にわたり、1ナノメートル~10マイクロメートルの粗度を有する。
ある例示的実施形態によると、物品(例えば本明細書で開示されるような焼結済みセラミックのテープ)は:50マイクロメートル未満の厚さ、又は本明細書で開示される他の厚さと;全表面にわたる平均で、表面1平方ミリメートルあたり10個未満のピンホール(即ち少なくとも1平方マイクロメートル及び/又は1平方ミリメートル以下の断面積を有する、本体を第1の主表面から第2の主表面まで通過する通路又は開口)(又は表面積が1平方ミリメートル未満の場合は全表面にわたって;あるいは物品の、1メートル超、5メートル超といった長い長さにわたる平均で、10個未満のピンホール)とを有する。ピンホールは、例えば導電性材料で充填されることになる、典型的には反復的な幾何学的形状(例えば円形、直線状)のパターンで、目的に合わせて切断されたビア、又は例えばロール・ツー・ロール処理における位置合わせを基準マークとして補助できる、反復的な幾何学的形状のパターンで形成された打ち抜き孔とは区別される。
図70は、本明細書で開示されるプロセスを用いた、セラミック(例えばアルミナ)の焼結のための焼結スケジュールを、セッター及び積層された複数の素地セラミックプレートを用いた、窯内での従来のバッチ焼成と比較している。上で開示した炉システムによる、複数回のパス(例えば、2、3、4回のパス)を含む複数の焼結温度での処理に関する合計時間は、1時間未満とすることができる。従来の焼結は20時間かかり得る。出願人は、本開示の「高速」焼結と従来のものとの間の、例えば本技術によって製造されるセラミックの微小構造等に関する、測定可能かつ同定可能な差を発見した。より具体的には、出願人は、上で開示されているような、薄型の非積層テープの高速焼成では、個々の粒子又は粒体の互いに対する混合又は結合が少ないことを発見した。本技術の結果として得られる焼結済み粒体のサイズは大幅に小さく、元の素地状態の粒体サイズ又は粒子サイズに近い。従来の焼結では、元の粒子サイズの10倍の焼結済み粒子がもたらされる場合があるが、本明細書で開示される高速焼結スケジュールで製造された多結晶質セラミックの粒体は、元の素地状態の粒体又は粒子のサイズの5倍未満、例えば平均3倍未満の焼結済み粒体サイズを有することができる。更に、驚くべきことに、本技術によって製造された物品はまた、これに対応して高い密度、例えば少なくとも90%の相対密度、少なくとも95%の相対密度、少なくとも98%の相対密度も有することができ、この高い相対密度は、すぐ上に記載したような、比較的小さな粒体サイズによって達成され、この粒体サイズは、開始時の粒子のサイズ、並びに例えばアルミナ、キュービックジルコニア、フェライト、チタン酸バリウム、チタン酸マグネシウム、及び本明細書で開示されている技術を用いてテープ、シート等に加工できる他の無機材料に関する組成に応じて、平均粒子サイズ10マイクロメートル未満、例えば5マイクロメートル未満、例えば3マイクロメートル未満であってよい。
いくつかの実施形態は、同一の物品(例えばテープ)を焼結するために、1つの炉を通して複数回のパス、例えば有機結合剤を除去した後にテープの強度を増大させるための第1のパス(「素焼きパス」)、テープを部分的に焼結するための第2のパス、テープを更に焼結するための第3のパス、及び最終的な密度まで焼結するための第4のパスを使用してよい。複数回のパス、又は一連の複数の炉若しくは高温ゾーンの使用は、焼結中のテープ材料の収縮によるテープ内の応力の制御を補助できる。例えば、一部の焼結用の炉は、長さ12~14インチ(30.48~35.56cm)であってよく、他の炉は、長さ40~45インチ(101.6~114.3cm)であってよく、更に他の炉は他の長さであってよい。比較的短い炉に関しては、複数回のパス、又は複数の炉の直列配置は、収縮の程度が比較的大きな無機材料の焼結に特に有用となり得る。また、比較的長い炉、又は複数の炉の直列配置は、素地テープの移動の速度をより速くすることができるが、これは、このような比較的速い速度におけるソーク(soak)時間(即ち焼結条件への曝露)が増大するためである。
ある焼結温度(例えば1650℃)において高速(例えば4インチ(10.16cm)/分の速度)で焼結された、本明細書に記載されているように特に薄い(例えば厚さ20~77マイクロメートルの)試料を分析すると、本開示の技術で作製された、本明細書で開示されるアルミナ又は他の材料は、以下の属性を有し得る:少なくとも90体積%、例えば少なくとも95体積%、例えば少なくとも99体積%の材料純度。ここで高純度は、本明細書に記載の因子の中でも特に、空気流の狭い通路及び制御、焼結の時間の制御、結合剤除去の効率、並びに開始成分によって得ることができる;30mmの走査で測定した場合に、ツヤあり面に関して100ナノメートル未満、例えば60ナノメートル未満、例えば約40ナノメートル、及び/又はツヤ無し面に関して150ナノメートル未満、例えば100ナノメートル未満、例えば約60ナノメートルの、AFMで測定された表面粗度。ここでツヤ無し面は、焼結炉の床との接触によって、ツヤあり面より粗度が高い;断面において約1mmの粒体サイズ、又は本明細書で開示される他の粒体サイズ;焼結済み物品に関して10体積%未満、例えば5体積%未満、例えば3体積%未満、例えば1体積%未満、例えば0.5体積%未満でさえある、多孔率。これは部分的には、高速焼成プロセスによるものであり得、この高速焼成プロセスは、上で開示されているように小さな粒体/粒子サイズを維持することによって、従来のバッチ焼結及び比較的長い焼成プロセスに関する特徴的な制約となり得たような、粒体内でのガスの捕捉(本明細書で開示される焼結プロセスによって克服できる、「細孔/境界面分離」として知られる制約的な現象)の可能性を低くすることができる。本明細書で開示される技術によって製造されるアルミナテープは、以下を有する:ASTM E1269標準試験プロトコル/方法によって測定した場合に、20℃において少なくとも約0.8J/gK及び/又は約0.8J/gK以下、並びに100℃において少なくとも1.0J/gK及び/又は約1.0J/gK以下の、比熱容量;例えば少なくとも約40μm及び/若しくは約40μm以下の厚さのアルミナテープ、並びに/又は本明細書で開示されている他のテープ若しくはシートサイズにおいて、微小押込みによって測定された、少なくとも約23.5GPa及び/又は約23.5GPa以下の室温(23℃)での硬度;例えば空隙の制御及び比較的小さな粒体サイズを少なくとも部分的な原因とする、少なくとも約630MPa及び/又は約630MPa以下の2点曲げ強度;3点曲げに関する動的機械分析(DMA)で測定した場合に、少なくとも約394GPa及び/又は約394GPa以下の弾性率;25~300℃の範囲にわたる平均で少なくとも約6.7ppm/℃及び/又は約6.7ppm/℃以下、25~600℃の範囲にわたる平均で少なくとも約7.6ppm/℃及び/又は約7.6ppm/℃以下、25~300℃の範囲にわたる平均で少なくとも約8.0ppm/℃及び/又は約8.0ppm/℃以下の、熱膨張係数;例えば少なくとも約40μm及び/又は約40μm以下の厚さのアルミナテープにおいて、ASTM D149標準試験プロトコル/方法による、25℃で少なくとも約124.4kV/mmの絶縁耐力;ASTM D2520標準試験プロトコル/方法による、5GHzにおいて少なくとも約9.4及び/又は約9.4以下、並びに10GHzにおいて少なくとも約9.3及び/又は約9.3以下の誘電率(Dk);ASTM標準試験プロトコル/方法(D2520)による、5GHzにおいて少なくとも約8×10-5及び/又は約8×10-5以下、並びに10Gzにおいて少なくとも約1×10-4及び/又は約1×10-4以下の、誘電損失/誘電正接;D257による、25において少なくとも約3×1015オーム・センチメートル及び/若しくは約3×1015オーム・センチメートル以下、D1829による、300において少なくとも約4×1014オーム・センチメートル及び/若しくは約4×1014オーム・センチメートル以下、並びに/又はD1829による、500において少なくとも約1×1013オーム・センチメートル及び/若しくは約1×1013オーム・センチメートル以下の、体積抵抗;例えば少なくとも約40μm及び/若しくは約40μm以下の厚さのアルミナテープ、並びに/又は本明細書で開示される他のテープ若しくはシートサイズにおいて、約400~700ナノメートルのうちの1つ、ほとんど、及び/又は全ての波長に関して少なくとも約50%、例えば少なくとも約60%、例えば少なくとも約70%の透過率;例えば少なくとも約40μm及び/若しくは約40μm以下の厚さのアルミナテープ、並びに/又は本明細書で開示される他のテープ若しくはシートサイズにおいて、約2~7マイクロメートル及び/又は約2~7ミリメートルのうちの1つ、ほとんど、及び/又は全ての波長に関して少なくとも約50%、例えば少なくとも約65%、例えば少なくとも約80%の透過率;並びに200℃においてGC‐MSで測定した場合に100ppm未満、例えば50ppm未満、例えば10ppm未満の脱ガス。
ここで図71A及び71Bを参照すると、焼結時間及び温度の影響を実証するために、アルミナの2つの試料が横に並べて示されている。図71Aのアルミナは、上で開示された製造システムによって、4インチ(10.16cm)/分の速度で、1650℃の焼結温度に対する4分の高温「ソーク」又は曝露を用いて処理され、図71Bのアルミナは、8インチ(20.32cm)/分の速度で、1600℃での2分のソークを用いて製造された。確認できるように、粒体サイズは焼結時間が増大するに従って大幅に増大しているが、多孔率は両方の図において低く、例えば5体積%未満である。図72A及び72Bは、対応するプロセス:図72Aでは1650℃において8インチ(20.32cm)、並びに図72Bでは1600℃において4インチ(10.16cm)/分で作製された、セラミックテープの断面デジタル画像を示す。
図73A、73B、及び73Cは、本技術によって製造されたアルミナの粒界を、倍率を増大させて示す。関心対象となるのは、本技術によって製造された物品の粒界が特に無傷であることである。図73Cに示すように、隣接する結晶粒体(結晶格子)の分子のアレイは、5nm未満の中間非晶質材料、例えば3nm未満の中間非晶質材料、例えば1nm未満の中間非晶質材料しか存在しないように、基本的には互いに直接接触する。出願人は、この結晶粒体の境界面は、本明細書で開示される高速焼結、ガス流の制御、及び結合剤燃焼技術に、少なくとも部分的に帰することができると考えている。図74及び75は、本技術による多結晶質セラミック又は合成鉱物の物品の他の粒界を示す。出願人は、このような物品の気密性及び/又は強度が、粒体間にある程度以上の非晶質材料を有するセラミックに対して特に有利となり得ると考えている。図73~75の画像は、透過電子顕微鏡によって集められたものである。
図76及び77は、異なる材料に関する同様の微小構造を示す。図76は、4インチ(10.16cm)/分及び1650℃で処理された、1体積%のイットリア安定化ジルコニア(3モル%のYを含むZrO)を含むアルミナに対応する。同様に、図77は、4インチ(10.16cm)/分及び1550℃で処理された、1体積%の酸化チタン(TiO)を含むアルミナの研磨済み断面を示す。
図78は、本明細書で開示される素地テープ中で結合した緩いシリカ粒子から製造された、高純度溶融シリカのリボンのデジタル画像である。シリカ粒子は無機物であるが、結晶質又は合成鉱物でなくてよい。従って、出願人は、本明細書で開示される技術を用いて、多結晶質セラミック及び合成鉱物に関して本明細書で開示される幾何学的形状を有するものの、非晶質であってよい無機材料(例えば少なくとも1000℃のガラス転移点等の高い融点及び/又は高い粘度を有するシリカ又は他のガラスといった、フロート成形又はフュージョン成形プロセスでの製造が困難なガラス)を含む、上記無機材料から本質的になる、又は上記無機材料からなる、テープを製造できることを発見した。
図79A及び79Bは、粒体プロファイルを有するシリカの焼結済みテープの研磨済み断面を示す。図79A及び79Bのテープは、1150℃の焼結温度で製造された。個々の粒子、即ちシリカを一体に融着させて、テープを形成した。図79Bに示すように、粒子は概ね球形であり、1マイクロメートル未満の断面を有する。対照的に、図80は、1250℃で焼結させた、本明細書で開示される技術によって製造されたシリカテープを示す。粒体プロファイルは依然として存在するものの、図79Bのシリカに比べて目立たない。図81は、本開示に従って1300℃で焼結させた、完全に高密度化された非晶質シリカを示す。出願人は、粒体プロファイルを有するシリカテープが、光の散乱又は他の用途において有用となり得ると考えている。従って、図79~81は、本開示の組成物が、十分に高い温度で処理される場合には、テープ等の非晶質物品の形態であってよいことを実証している。そうは言っても、出願人は、テープを加熱しすぎると、テープの取り扱いが困難になり得、及び/又はテープが形状を失い得ることを発見した。
ここで図82を参照すると、無機テープ等の高速熱処理及び連続焼結を用いて、リチウムバッテリの薄型カソード構造体として使用する等のために、上述のようにリチウム含有材料を生産できる。例えば出願人は、マンガン酸リチウムスピネル(LiMn)、LiCoO又はLiFePOといったリチウム含有材料が、カソード構造体の良好な候補であると考えている。予想外に、出願人は、本開示の技術が、高い蒸気圧によるリチウムの損失を軽減し、並びに/又は加熱時の遷移金属酸化物の価数の還元の変化及び酸素の放出を軽減することを発見した。例えば図82は、本開示の技術を用いて1250℃で6分間にわたって高速焼結されたLiMn粉体(Novarials、Sigma Aldrich、Gelon、Mtixtl、及び/又はその他から市販)、並びに1250℃で4時間にわたって従来の方法で焼結されたLiMn粉体を含有する、同様の30μmの厚さのテープに関する、粉体X線回折トレースを示す。図82に示すように、高速焼結済み材料は依然として、LiMnのピーク強度及び位置を有する、単相のスピネルである。リチウムは保持され、従ってマンガン酸イオンに関して3.5の平均価数を有する。従って、本開示の技術によって焼結された、このようなリチウム含有物品(例えばテープ、シート)は、カソードで支持されるバッテリに関する最小限の化学的要件及び相に関する要件を満たすことができる。対照的に、従来の方法で焼結されたテープは、図82に示すように大半がMnであり、LiMnの残存量が少ない。リチウムの大量の損失が発生しており、マンガン酸の平均価数は2.67まで下降した。
また出願人は、本開示の焼結システムが、例えばLiMn等のリチウム含有無機材料及び/又は揮発性成分の気化を起こしやすい他の材料の高速焼結時に、焼結中の細孔の除去に有利となり得ることも発見した。従来の焼結技法の場合、粒体の成長は、細孔を比較的大きな粒体内に捕捉する等により、細孔の除去を制限し得る。
比較を目的として、出願人は、1300℃で焼結された、ダイ成形LiMnのピルを製造した。表面張力を増強して細孔の除去を促進するために、このピルの作製に用いた粉体の平均粒子直径は0.5μmであった。リチウムの損失及びMn価数の変化は、3つの方法で制御した、又は遅延させた。第1に、余剰材料を提供するために、ピルのサイズを、直径25mm超及び厚さ5mmという大きなものとした。第2に、焼結をカバーの下で実施した。第3に、ピルを白金上で支持した。粉体X線回折により、得られたピルが単相のマンガン酸リチウムスピネルであることが確認され、化学分析は、最初の材料に対して無視できる程度のリチウムの損失、及びMnの平均価数が3.5であることを示す。焼結済みピルの平均粒体サイズは約40μmであり、多孔率は15%超である。
本開示の技術に戻ると、焼結済み材料の多孔率は制限でき、又は特に低くすることができ、また粒体は特に小さくすることができ、これはカソード支持体等の用途において有益となり得る。対照的に、過剰な多孔率及び大きな粒体は、大半のセラミックの強度にとって有害となり得る。更に出願人は、本明細書で開示される技法及び設備を用いた高速熱焼結が、粒体の成長にわたる細孔の除去を促進することを発見した。図83及び84を参照すると、高速焼結済みLiMnテープ(図83:1250℃で6分間焼結;及び図84:1350℃で3分間焼結)の、焼結後すぐの表面が示されている。初期の平均粒子直径は、上述のピルの例と同様に、0.5μmであった。細孔の量は、従来の方法で焼結されたピルの例よりはるかに低い。より具体的には、細孔は閉鎖され、5%未満の量となっているように見える。粒体もまた、上述のピルの例より小さい。より具体的には、粒体は、図83及び84においてそれぞれ約10μm及び25μmである。換言すれば、リチウム含有焼結済み材料(例えばマンガン酸リチウム)の多孔率は、15%未満、例えば10%未満、例えば7%未満、例えば5%未満であり、及び/又は粒体は40μm未満、例えば30μm未満である。これもまたリチウム含有材料の従来の焼結とは異なり、本技術は、体積が大きなピル又はブールではなく、本明細書で開示される薄いシート又はテープを使用し、これは:高速焼結;周囲の蒸気圧の制御を伴う又は伴わない焼結時間の削減による揮発性成分の損失の制御を促進する。出願人は、高速熱焼結を含む本開示の焼結システムが、低温においてさえ、焼結を促進でき、及び/又は本明細書で開示される連続プロセスにおけるアルミナ若しくは他の低コストの支持体上での焼結を促進できると考えている。
LiCO及びLiFePOは、本開示の技術を用いて焼結でき、かつカソード材料として、又は他の用途のために有用となり得る、リチウム含有無機材料の他の例である。より一般的には、本開示の技術を用いて、酸素の損失を最小とした、他の遷移金属酸化物の焼結が可能である。
ここで図85A及び85Bを参照すると、素地テープの断面が2つの異なる倍率で示されている。より具体的には、素地テープのためのスリップを:約47.35重量%の、組成Li6.5LaZr1.5Ta0.512を有するガーネット粉体;6.45重量%の炭酸リチウム;31.74重量%のプロピオン酸n‐プロピル;1.30重量%のトリオレイン酸グリセリル;3.56重量%のステアリン酸n‐ブチル;及び9.60重量%のLucite International Elvacite 2046(高分子量イソブチル/n‐ブチルメタクリレートコポリマー)で作製した。スリップの混合物を18時間にわたって振動粉砕した。スリップを、10ミルのブレードを用いてテフロン(登録商標)キャリアフィルム上にキャスティングし、一晩乾燥させた。得られた乾燥済みテープは、厚さが約85~90μmであり、粒子は平均0.6μmであった。図85A及び85Bでは、素地テープはキャリアフィルムからはがされている。
この例では続いて、図85A及び85Bの素地テープから結合剤を400℃で燃焼させたが、ここでこの燃焼のための環境は、アルゴンガスとなるように制御され、また結合剤の燃焼のための時間は30分であった。次に、燃焼/炭化させた結合剤を含むテープを、本明細書で開示される連続焼結炉内で、空気中において1200℃で15分間焼成した。焼成済みテープは、図86A及び86Bに示すように、少なくとも約50~55μm及び/又は約50~55μm以下の厚さであり、また粒体サイズの平均は少なくとも約2~3μm及び/又は約2~3μm以下であった。得られたテープは、少なくとも約3.7×10-4~3.8×10-4S/cm及び/又は約3.7×10-4~3.8×10-4S/cm以下の導電率を有し、ここでSはシーメンスである。焼成済みの試料は、少なくとも約96~98重量%及び/又は約96~98重量%以下の立方晶ガーネット相であった。
本開示の技術を用いる場合、いくつかの実施形態は、特に密度が高いガーネットテープ又は他の物品を形成するための、高いリチウム含有量の使用を含む。素地テープ中の過剰なリチウム(「過剰(excess)」とは、焼結済み物品の化学量論に従ったリチウムよりも多い:例えば焼結済み物品中の化学量論的量より少なくとも1体積%過剰、少なくとも10体積%過剰、少なくとも20体積%過剰、少なくとも50%体積%、及び/又は100体積%以下だけ多いという意味である)により、密度が高いガーネットテープの焼結を促進でき、及び/又は焼結中のリチウムの損失を補償できることを発見した。素地テープ中で使用するための、このような高リチウム含有量粉体は、ガーネット粉体の調製において原材料中の過剰量のリチウム前駆物質をバッチ処理することによって、及び/又は化学量論的に過剰な、若しくはわずかに過剰な(最終的な物品の化学量論に対して50体積%以下だけ過剰な)リチウムガーネット粉体を作製し、テープのキャスティングのためのスリップの調製中に、より多くのリチウム前駆物質中に添加することによって、調製してよい。後者のアプローチのいくつかの利点としては、リチウム含有量が高いと吸湿性となって粉砕が困難となり得るため、リチウム含有量が低いバッチはより容易に調製できること、及び/又は異なる複数の処理条件を補償するために、過剰なリチウムの量を容易に調製できることが挙げられる。スリップ調製中にこのような過剰なリチウムを添加するためのリチウム前駆物質の例としては、LiCO、LiOH、LiNO、LiCl等が挙げられる。すぐ上に記載したような、過剰なリチウムを添加する方法としては、リチウム前駆物質とガーネット粉体との混合物を約1~5時間にわたって約900~約950℃まで加熱すること等によって、リチウム前駆物質をガーネット粉体と予備反応させることが挙げられる。あるいは、予備反応を行うことなく、過剰なリチウムを、前駆物質の微小粉体として、及び/又はセラミック中に細孔が残るのを防止するために、粒子サイズを、例えば3マイクロメートル未満、例えば1マイクロメートル未満の前駆物質粉体粒子サイズまで低減するための十分な粉砕を提供することによって、添加してもよい。出願人は、過剰なリチウムの量が、上述の技術による焼結に十分なものであるものの、焼結済み物品中に過剰なリチウムを残す、又は正方晶相の形成を引き起こすほど多すぎないものとなることを発見した。従って:少なくとも約1000℃及び/又は約1000℃以下で少なくとも約3分及び/又は約3分以下だけ焼結されるガーネット(例えば、低リチウム含有量ガーネット)に関して、ガーネット1モルあたり少なくとも約5.8~9モル及び/又は約5.8~9モル以下の合計リチウム;少なくとも約1150℃及び/又は約1150℃以下で少なくとも約3分及び/又は約3分以下だけ焼結されるガーネットに関して、ガーネット1モルあたり少なくとも約7~9モル及び/又は約7~9モル以下の合計リチウムとなる。そうは言っても、ガーネット、特にテープキャスティング用スリップ中で使用される有機物に対する反応性が高い場合がある高リチウム含有量ガーネットに関して、ガーネットを安定化するために、粉体を:過酢酸(ペルオキシ酢酸、PAA)、クエン酸、ステアリン酸、塩酸、酢酸等の酸処理を用いて;イソプロピルアルコール、PA、PPといった非水含有溶媒等の溶媒を用いて;上で開示されているように過剰なリチウム前駆物質と予備反応したガーネット粉体であってもよいガーネット粉体を、固体装入率約50%で、1~5重量%の酸/溶媒溶液に2時間浸漬した後、溶媒を乾燥させる処理によって、事前に処置してよい。あるいは、低リチウム含有量ガーネット粉体に、LiCO等の不活性リチウム前駆物質を加えたものを、キャスティング用スリップの作製に直接使用してよい。
酸処理の少なくとも1つの実施形態は、100グラムのMAA(Li5.39LaZr1.70.3Ga0.5、リチウムガーネット又は立方晶LLZO(例えばLiLaZr12)、低リチウム含有量ガーネット粉体)に、10.7グラムのLiCO、2.2グラムのクエン酸、及び100グラムのイソプロピルアルコールを加えたものの、3時間にわたるボールミル粉砕、及び60℃でのオーブン乾燥を含む。テープキャスティング用スリップの製造の少なくとも1つの実施形態は、100グラムの酸処理済みMAAに、10.7重量%のLiCO、84.67グラムの酢酸メトキシプロピル溶媒、12.14グラムのPVB Butvar B‐79結合剤、及び2.4グラムのフタル酸ジブチル可塑化剤を加えたものの、2時間にわたる摩擦粉砕を含む。テープキャスティング用スリップの製造の別の実施形態は、100グラムの酸処理済みMAAに、30分間の乱流混合及び900℃での1時間のか焼で予備反応させた8.4重量%のLiCO、66.67グラムのエタノール及び33.33グラムのブタノール溶媒、12グラムのPVB Butvar B‐79結合剤、並びに10グラムのフタル酸ジブチル可塑化剤を加えたものの、2時間にわたる摩擦粉砕を含む。テープキャスティング用スリップの製造の別の実施形態は、100グラムのGP(Li6.1LaZrAl0.312、リチウムガーネット又は立方晶LLZO)に、予備反応させた(30分間混合し、1時間にわたって900℃まで加熱された)8.4重量%のLiCO、66.67グラムのエタノール及び33.33グラムのブタノール溶媒、12グラムのPVB Butvar B‐79結合剤、並びに10グラムのフタル酸ジブチル可塑化剤を加えたものを含む。出願人は、上述のような過剰なリチウムの前駆物質としてのLiCOを含む、低リチウム含有量ガーネットは、酸処理;例えば、100グラムのMAAと、10.7%のLiCO、84.67グラムの酢酸メトキシプロピル溶媒、2.08グラムの魚油(Z1)分散剤、12.14グラムのPVB Butvar B‐79結合剤、及び2.4グラムのフタル酸ジブチル可塑化剤との、2時間にわたる摩擦粉砕を必要としないものとすることができることを発見した。あるいは、例えば100グラムのMAAと、10.7%のLiCO、2:1の比の104グラムのEtOH及びBuOH溶媒、分散剤としての1グラムのクエン酸、結合剤としての16グラムのPVB B‐79、並びに可塑化剤としての14グラムのフタル酸ジブチルとの、2時間にわたるアップミリング(up‐milling)等によって、酸系分散剤をスリップに添加してよい。
本開示の態様は、粘度が比較的高く、かつ処理温度が比較的高いガラス、例えば溶融シリカ又は超低膨張(非晶質)ガラス組成物の焼結に関し、これらは、フュージョンドロー、フロートガラス、又は他の通常のガラスタンク溶融器といった他の方法で、高粘度ガラステープのロールとして製造すること、及び/又はシートへと切断することが、困難又は不可能であり得る。従って、本明細書で開示される幾何学的形状(例えば厚さ、ロールのフォーマット、長さ、幅)及び属性(例えば平坦性、小さな焼結ひずみ)を有する無機材料は、本技術で製造される、粘度が比較的高く、かつ処理温度が比較的高いガラスを含む。本技術の更なる便益としては、異なる複数の規模の組成のばらつきにつながり得る火炎堆積技法ではなく、焼結中の制御された空気流、テープの張力制御、及びスラリー中で混合された粉体の使用による、短い長さの規模(ミリメートル未満)及び長い長さの規模(ミリメートルから数センチメートルまで変動)における組成の均質性が挙げられる。更に、粘度が比較的高く、かつ処理温度が比較的高いガラスの、ロール又はシートを、アニーリングしてよい。出願人は、高温ゾーンを有する炉を含む本開示の技法が、焼結を可能とするだけでなく、ガラステープを、その形成中に、及び/又は1つ以上の比較的低温の炉のセットによって、連続的にアニーリングする能力も実現できることを発見した。アニーリングされたガラス内の、上記に対応する低く均一な応力場は、後焼成中の均一な寸法変化を促進し、これは、アニーリングされていない物品に比べて、薄型で後処理済みのアニーリングされたシートの焼結ひずみを少なくする。更に、(典型的には2100℃超の温度での火炎堆積に比べて)比較的低温での処理、及び(バッチ焼結に比べて)高速の焼結を含む、本明細書で開示される技術は、ホウ素及びリンといった揮発性ドーパントの、これらの無機材料(例えば粘性かつ高温の非晶質ガラス)の0.5重量%超のレベルでの組み込みも促進し、上記揮発性ドーパントは、火炎堆積された材料では添加が困難又は不可能となり得る。そうは言っても、本明細書で開示される設備は、素地又は部分焼結済み材料を、従来の焼結プロセスで典型的に使用される比較的高い温度まで加熱するために使用してもよく、この場合、ソーク時間が短いことにより、粒体の成長が制限され、細孔の除去が加速される。
出願人は、素地テープを、ゾルゲル、押出成形、又はキャスティングプロセス等において、スラリー形態で混合されたガラス粉体を用いて作製し、焼結を上述のように実施した場合に、粘性かつ高温の非晶質ガラス物品において高いレベルの組成均質性を発見した。より具体的には、出願人は、1mmの空間変動で±2.5ppm未満、及び3cm以内の距離で±5ppm未満の、水酸化物(OH)、重水素(OD)、塩素(Cl)及びフッ素(F)の変動を発見し、これらは例えば、1mm未満の周波数で±1ppm未満、及び3cm未満の周波数で±3ppm未満の変動を有する。いくつかの実施形態では、組成の均質性は、チタニア含有ガラスにおいて1mmの距離で±0.2重量%未満、例えば±0.1重量%未満のチタニアの化学的変動、及びゲルマニア含有ガラスにおいて1mmの距離で10重量%未満のゲルマニアレベルの変動を伴う。いくつかの実施形態では、混合成分ガラスを使用する場合、XRF技法(重量%金属)によって測定した場合に10ppm未満、例えば5ppm未満の屈折率変動が発生する。
ここで図87を参照すると、本技術で作製された粘性かつ高温の非晶質ガラスの例は実線で示されており、従来の技法で作製されたものは点線で示されており(ソーダライムガラス(SLG)及び混合バリウムボロシリケートガラス)、これらは粘度が低く、またこれらのガラスは、通常の窓ガラス等の多数のソーダライムガラスを生産する場合のフロートガラスプロセスといった、従来のガラスに関する方法によって処理してよい。図87はまた、7.5重量%のチタニアを含むシリカ、溶融シリカ、百万分の約60部のOHを含むシリカ、約14重量%のGeOを含むシリカ、約1ppmのOHを含むシリカ、約150ppmのClを含むシリカ、3.1重量%のB及び10.7重量%のTiOを含むシリカといった、多くの高温ガラスの粘度の挙動(実線)を同定する。本明細書で開示される技術で独自に処理できるガラスの特性は:800℃超のアニール点(1013ポアズの粘度)及び/又は85重量%超のシリカ(SiO)含有量であり、例えば95体積%超の非晶質若しくは5堆積%未満の結晶が存在し、例えば結晶が存在しない(非晶質である)。このようなガラスは、高温アニーリング済みガラスのロールの形態とすることができる。いくつかのこのような実施形態に関して、約400μm未満(例えば200μm未満)のガラス厚さは、数メートル未満、例えば1m未満、例えば0.5m未満の直径にガラスを巻くことができるようにするのを促進する。
出願人は、空気流の差、空気流の乱流、及び周囲の炉の環境又は部品構成からの放射冷却又は加熱の差に起因する、冷却速度の差により、ガラスをアニール点未満の温度まで冷却する際に、ガラス内に局在化した応力の差異が生成される場合があり、これはガラス内に固定される。組成のばらつきは、ガラスの粘度にも影響を及ぼす場合があり、これらの組成の差異は、異なる応力、仮想温度、屈折率、熱膨張をもたらし得る。続いてガラスを、自立したガラスが変形し得る温度まで再加熱する場合、制限されていないガラスの焼結ひずみが発生し得る。このような再加熱は、例えば薄膜堆積等のための下流の処理において必要となり得、しわの形成は望ましくない場合がある。しかしながら、出願人は、本明細書で開示されるプロセスによって製造されたガラスを、複数ゾーン型の炉内での制御された冷却によって、又は(結合剤バーンアウトシステムとは異なり)焼結の後にアニーリング用の炉を通過することによって、アニーリングすると、ガラスが巻かれている間の物品(例えばシート)の幅にわたる張力の差異の軽減が補助され、及び/又はガラス内に捕捉されて残っている異なる複数の応力レベルのインスタンスの軽減が補助されることを発見した。ロールから取り出して自立させたままとしたガラスでは、低く均一な応力レベルが同定される。より具体的には、テープを平坦な表面上に自由な状態で載置した場合、物品(例えばシート又はテープ)にわたる変動が±5MPa未満の、10MPa未満の絶対応力レベル、例えば変動が±2MPa未満の、5MPa未満の絶対応力レベル、例えば変動が±1MPa未満の、2MPa未満の絶対応力場が同定される。本開示のいくつかの実施形態は、仮想温度に関して比較的均一な構造を有する上述のようなガラスを含み、例えば各物品の幅にわたってFTIRで測定した場合に、変動は±20℃未満、例えば±10°未満、例えば±5°未満である。仮想温度に関して均一な構造は、ガラスの光又は熱膨張等のガラスの特性に影響を及ぼし得、例えばここで、より良好な膨張性は、均一でより低い仮想温度によって得ることができる。
上述のように、本技術は、粘性かつ高温の非晶質ガラスの薄いリボン又はシートを処理するために独自に適したものとなり得る。このようなガラスは:900℃を超える温度においてのみ、12.5ポアズの粘度を有することができ、より低い温度では粘度は12.5より高く;例えば図87に示すように、900℃を超える温度においてのみ、例えば1000℃を超える温度においてのみ、13ポアズの粘度を有することができる。他の実施形態では、(粘性かつ高温の非晶質ガラスに限定されない)ガラスを、本明細書で開示されるプロセスによって、粒体プロファイルを有するように製造でき、例えばここで、焼結温度は、上で図79A、79B及び80においてシリカについて示されているように、個々の粒体又はその部分が残るように十分に低い。粒体プロファイルは、例えば光の散乱に有用となり得る。更に他の実施形態は、カルコゲナイド等のガラス、即ちシリカをほとんど又は全く含まないガラスを含んでよく、これは粘性かつ高温のガラスであってよい。
素地テープのスラリー及び本明細書で開示される焼結システムの使用により、精製プロセスによる低い固体包有レベル、及び低いシード又は低いガス包有レベルを有するガラスの作製を補助できる。例えばキャスティング前のスラリーの液体ろ過は、1つのこのようなプロセスであり、例えばここで、溶媒中で混合されたサブミクロンレベルの(例えば22m/g)粉体を、異なるサイズの複数のフィルタ例えば40~200μmのふるい)を通してろ過することにより、固体酸化物デブリ又は毛髪等の有機デブリといった、比較的大きなサイズの固体欠陥を捕捉できる。また、懸濁液中の異なる沈降速度によってデブリを除去してよく、例えばここで、密度が高い凝集した粒子は、分散したシリカより速く沈降し、比較的軽い有機不純物は表面に浮上する。そして、中間の80%等の中間パーセンテージをキャスティングに使用してよい。遠心分離によって沈降又は浮上プロセスを加速してもよい。
極めて均一で一貫したテープを形成するために、キャスティング前に完全に脱ガス(又は脱気)された、均一で一貫したろ過済みのスラリーは、シードのレベルの最小化を支援できる。屈折率適合テープもまた、シード及び固体包有物両方の検出を促進できる。有機物を除去するための上述の結合剤バーンアウトステップは、700℃未満の温度で行ってよく、昇温下の酸素は、炭素の最終的な残留物(これは捕捉され、又はシリカと反応して、CO若しくはCO等のガスとSiOとを生成し得る)の除去を補助できる。
本明細書に記載の少なくともいくつかの物品の、特に薄い形態は、ガスの短い浸透経路を有し、これは、空気を使用した場合であっても、極めて少量のガスの捕捉しかもたらさない。アルゴン、窒素、及び(程度は低いものの)酸素といった不溶性ガスの捕捉を更に最小化するために、空気非含有雰囲気中、例えば真空及び/又はヘリウム若しくは水素を含む真空、又は雰囲気ヘリウム若しくは水素若しくはこれらの混合物中での固結を使用してよい。固結したガラスがこれらのガス(ヘリウム又は水素)を捕捉した場合、これらのガスは、1000℃超のいずれの合理的な温度において、数分又は数秒以内に構造体の外へと浸透して、ガスが存在しない真空又はシードを残すことができる。そしてシードは、ガラスの変形が発生する温度において、大気圧と毛細管応力との組み合わせによって崩壊し得る。ほとんどの場合、シードの最小化は、好ましくはアニーリングの前の固結操作中に発生する。しかしながら、ガラスを再加熱することによって、捕捉されたガスを脱ガスし、シードを破壊した後、アニーリングしてもよい。従って、少なくともいくつかの実施形態は、捕捉されたガスをほとんど又は全く、例えば5体積%未満、3体積%未満、1体積%未満しか含まない、ガラス物品(例えばロール、テープ、シート)を含む。
上で開示されているような、本発明のいくつかの実施形態は、焼結中の物品(例えばテープ又はリボン)の張力、速度、変形又は他の属性を制御するために、焼結炉内でローラを使用してよい。いくつかの実施形態によると、ローラは、例えば各物品の収縮に応じて、互いに異なる速度で回転する。例えば少なくとも1つの実施形態では、炉は少なくとも2つのローラを含み、第1のローラは、物品の、焼結の程度が低い部分に接触し、第2のローラは、物品の、焼結の程度が高い部分に接触する。第2のローラは、第1のローラより遅い速度で回転する。いくつかのこのような実施形態では、炉内での1つ以上のローラの回転は、焼結されている各物品の自由体焼結速度に対応するか、又は物品の平坦化若しくはしわの制御等のために物品中に張力を印加するよう、わずかに速い速度を有する。ローラは、耐火材料製であってよい。静止型の支持体(例えば炉の床)は、炉内のローラの間に位置してよい。考えられる実施形態では、出力を増大させるため、及び/又は炉内の空気流を制御するために、炉内の異なる複数のレベルにある、ローラの複数の列を使用してよい。このようなローラは、ロッド又はシートといった、長さのある剛性材料と共に使用できる。
図88A~88Bは、このような焼結システムのある実施形態を示す。より具体的には、図88Aは、イットリア安定化ジルコニアを焼結するための図88Bの炉を通る距離に対する、焼結温度を示す。物品(例えばリボン、テープ)は、炉を通って左から右へと、未焼成シート(又は焼結の程度が低いシート)としての第1のロールから、焼結済みセラミックシート(又は焼結の程度が高いシート)としての第2のロールまで移動する。炉を通して、ローラの形態の複数の回転表面が存在し、これらローラは、イットリア安定化ジルコニアの収縮の速度に応じて、1.0~0.78という正規化された速度で回転する。図89は、中間ローラを、図88A及び88Bに示したように、ただし複数のレベルに有する炉を示す。いくつかの実施形態では、本明細書で開示される焼結ステーション又は他の炉は、炉を同時に通過する2つ以上のテープ又はリボンを含む。図90A及び90Bを参照すると、他の考えられる実施形態では、上で開示されているローラ以外の、炉内の移動(例えば回転)表面として、ベルト、トラック、又は他の要素が挙げられる。いくつかの実施形態は、単一のベルト、又はトラックのループを含んでよい。
図91A及び91Bを参照すると、物品(例えば上述のようなテープ、シート等)は、リチウム含有セラミック、具体的には上で開示されている技術を用いて製造された焼結済みのLi6.1LaZrAl0.312を含む。(例えばElvacite製の)アクリル結合剤に6ミルでキャスティングされた6.7重量%のLiCOの形態の、過剰なリチウムの源を、それぞれ180、225、280、350、及び425℃の温度の5つの高温ゾーンを有する結合剤バーンアウト炉内で、4インチ(10.16cm)/分の速度で処理した。次に物品を1125℃で焼結した。図91A及び91Bに示すような、得られた焼結済み物品は、X線回折で測定した場合に80重量パーセント(重量%)超の立方晶リチウムガーネット結晶、例えば90重量%超、例えば95重量%超、例えば約99重量%の立方晶リチウムガーネット結晶からなっていた。密閉されたるつぼ内でのバッチ焼結といった、リチウムガーネットの焼結の従来のアプローチは、典型的には、より高いパーセンテージの非立方晶結晶をもたらす。図91A及び91Bに示すような、得られた焼結済み物品は、複素インピーダンス解析によって測定した場合に、5×10-5S/cm超、例えば1×10-5S/cm超、例えば約1.72×10-5S/cm超のイオン伝導度を有していた。図91A及び91Bに示すような、得られた焼結済み物品は、10体積パーセント(体積%)未満の多孔率、例えば5体積%未満の多孔率、及び/又は少なくともある程度、ほとんど、少なくとも80%、少なくとも90%の閉鎖気孔率(これは細孔が完全に密閉されていることを意味する)に対応する多孔率を有していた。出願人は、このような特徴が、高速焼成、張力制御、空気流制御、及び本明細書で開示される他の技術によるものであると考えている。
図92を参照すると、物品は、リチウム含有セラミック、具体的には、アクリル結合剤に12ミル(「ミル」は1インチの1/1000である)でキャスティングされた10.7重量%のLiCOに由来する「過剰な」リチウムを含み、かつ上述の技術によって1050℃で焼結させた、焼成済みのLi5.39LaZr1.70.3Ga0.5を含む。図92の画像は研磨されていないが、閉鎖気孔率、及び「プル・アウト(pull‐out)」粒体を示す。出願人は、密閉されたるつぼ内での「ピル」の従来の焼結と比較した場合、本開示の焼結システムによって、焼結済みリチウム含有セラミック(ガーネット)中においてより小さな粒体を得ることができることを観察した。例えば、本開示のリチウム含有ガーネットのいくつかの物品は、5μm以下、例えば3μm以下の粒体サイズを有する。出願人は、「粒体サイズ(grain size)」という語によって、基本的な線形切断法(第12、13及び19節)を用いた、並びに平均粒体サイズは粒体形状を球形と想定した場合の平均切断長の1.5倍であるという等式A2.9(段落A2.3.1)を用いた、ASTM E‐112‐13「平均粒体サイズを決定するための標準試験方法(Standard Test Methods for Determining Average Grain Size)」を参照している。粒体のサイズが小さいほど、テープ又は他の物品の強度が高くなり、これらのテープ又は他の物品は、本明細書で開示されるコアの直径上に、破断することなく巻き付けることができる。そうは言っても、例えばより大きな粒体を用いて開始する、又は焼結時間を増加させることにより、本明細書で開示される技術を用いて、リチウム含有セラミックのテープ又は他の物品を、より大きな粒体サイズで生産できる。
いくつかの実施形態では、本開示のリチウム含有ガーネット物品(例えばシート、テープ)を、電子機器、例えばソリッドステートリチウムバッテリに、アノードとカソードとの間に位置決めされる電解質として組み込むことができ、これは例えば図93に示されているように、例えばアノード及び/又はカソードを経由して、リチウム含有ガーネット物品に連結された(例えば結合された、重ねられた)導電性金属集電体を有する。パッケージ化された部品構成等の、他の電子機器では、金属層を、上で開示されているセラミック物品に、直接接触させて直接結合してよい。考えられる実施形態では、アノード及び/又はカソードは、素地テープとしてテープキャストして、電解質と共に同時焼成してよく、これは、電解質とアノード及び/又はカソードとの(1つ以上の)境界面を増強することにより、電子機器の性能を改善できる。従って、本明細書で開示される物品は、素地テープから焼結され、互いに直接接触して重なり、上で開示されているように例えば薄型同時焼成済みテープとして焼成された、本明細書で開示される2つ以上の異なる無機材料の各層に関して上述の厚さ(例えば1層あたり100μm以下)を有する、複数の層を備えてよい。電子機器内のリチウム含有ガーネットは、閉鎖された細孔を有し、(上で開示されているように)欠陥が少なく、ピンホールが少ないか若しくは存在せず、(上で開示されているような)イオン伝導度を有し、及び/又は(上で開示されているような)小さな粒体サイズを有する。
図94及び95を参照すると、リチウム含有セラミックのための2つの例示的な焼成サイクルが示されている。このような温度対時間のプロファイルは、本明細書で開示されているような、本開示の焼結システムを通して物品を移動させる速度によって、及びこのような加熱を提供するためにシステム内の高温ゾーンを制御することによって、実装できる。あるいは、長さが比較的短い物品を、本明細書で開示される炉内へ及び炉から外へと移動させることができ、また例えば焼結時間を制御するために上記炉内で静止状態に保持できる。図93及び94に示すように、焼結時間(即ち焼結を誘発する温度となっている時間)は、1サイクルあたり2000秒未満といった、比較的短いものである。いくつかの実施形態では、1つの物品を複数のサイクルで、例えば第1のレベルの張力及び第1のピーク温度の、第1のサイクルと、これに続く、異なる張力、温度及び/又はサイクル時間の第2のサイクルとで焼結してよく、これにより、焼結中の収縮による物品の歪みの制御を補助できる。
出願人は、「過剰な」揮発性成分(例えばリチウム)を素地材料中に使用することにより、結果として得られるセラミックテープが大幅に改善されることを発見した。例えば過剰なリチウムを用いない場合、気化によってガーネットから失われたリチウムは、LaZr「パイロクロア」等の第2相材料をもたらす場合があり、これは絶縁体として機能して、焼結を妨げる恐れがある。従って、パイロクロアを含むセラミックは、多孔率が高く、機械的に弱く、及び/又は導電率が低い、材料をもたらし得る。換言すれば、出願人は、立方晶相、焼結の程度及び密度(多孔率の逆数)、強度、並びにイオン伝導度の全てが、リチウムの損失等に由来するパイロクロア相の増大に従って低下すると考えている。
図96及び97は、図94に示すように3分の焼結時間、又は図95に示すように15分の焼結時間を用いた、予備反応(「PR」)させた又はさせていない、上述のように過剰なリチウムの源として10.7重量%のLiCOを含むLi5.39LaZr1.70.3Ga0.5に関する、イオン伝導度(図96)、及び立方晶ガーネットの重量パーセンテージを示す。図96の白丸は、内挿されたものである。図96の各例は、5×10-5S/cm超のイオン伝導度を有し、また一部は2×10-4S/cm超、例えば3×10-4S/cm超のイオン伝導度を有していた。驚くべきことに、焼結時間が短いほど、一般に高いイオン伝導度が得られ、これは、生産効率と相乗的となり得る。図97を参照すると、各例は、90重量%超の立方晶ガーネット、例えば93重量%超の立方晶ガーネットを有し、一部は95重量%超の立方晶ガーネットを有していた。比較すると、アクリル結合剤に6ミルでキャスティングされ、1030℃で焼結された、6.7重量%のLiCOを過剰なリチウムの源として含むAl0.312は、33重量%の立方晶及び3.84×10-6S/cmの導電率をもたらした。
他の例では、10ミルのブレードでキャスティングしたテープキャストのスリップに11.98重量%のLiCOを添加したLi6.5LaZr1.5Ta0.512を、アルゴン雰囲気下で結合剤を燃焼させ、その後、本明細書で開示される技術を用いて、空気中で15又は8分間焼結した。図85A及び85Bは、11.98重量%LiCOを含むLi6.5LaZr1.5Ta0.512の素地テープを示し、ここで、未焼成の中央粒子サイズ(D50)は約0.60マイクロメートルであり、テープ厚さは約85~88マイクロメートル、スリップは約18体積%の固体であった。図98及び99は、約1200℃で15分間焼結した後の、対応する焼結済みテープの顕微鏡写真を示す。図98及び99の焼結済みテープは、約37~38%の収縮により、厚さが約54マイクロメートルである。図99で確認できるように、テープは、いくつかの閉鎖された細孔を含むものの、ピンホールは含まない。図100A及び100Bは、図98及び99の焼結済みテープの第1の主表面の顕微鏡写真を示し、図101A及び101Bは第2の主表面を示す。これらの表面は、粒体プロファイルを有する。粒体サイズは平均約1~5マイクロメートルであり、一部の粒体は約10マイクロメートルもの大きさである。イオン伝導度は、標準的な複素インピーダンス解析を用いて、3.83×10-4S/cmであるものと測定された。相の定量化により、96重量%の立方晶ガーネットが示された。これと同様であるが8分間焼結した試料に関しては、約100重量%の立方晶ガーネットが示された。6.7%の過剰なLiCOを添加して1150℃で3分間焼結した、別のLi6.5LaZr1.5Ta0.512の試料では、導電率は約1.18×10-4S/cmであった。いくつかのリチウム含有セラミックは、素地テープに添加されたシリコーンを含み、これは焼成済み物品中ではシリカとなり、出願人は、これが焼結済み物品を強化でき、例えば2重量%のM97Eシリコーン(SILRES(登録商標))を10.7重量%のLiCOを含むMMAに添加して、1050℃で3分間焼結すると、2.38×10-4S/cmの導電率が得られると考えている。1100℃で3分間焼結すると、同一の材料の組み合わせは、2.59×10-4S/cmの導電率を有した。別の例では、7重量%のLiOH過剰リチウム源をMMAに添加し、1200℃で3分間焼成して、1.97×10-4S/cmの導電率を得た。
上述のように、本技術(例えば複数の高温ゾーン及び空気流制御、張力制御等を備えた、結合剤バーンオフ、焼結ステーション)を用いて、素地材料(テープ又は他の物品)を焼結することにより、本明細書で開示される構造、幾何学的形状及び特性/属性を得ることができ、上記素地材料は例えば、有機結合剤(例えばポリビニルブチラール、フタル酸ジブチル、カルボン酸ポリアルキル、アクリルポリマー、ポリエステル、シリコーン等)を含む素地材料であり、上記有機結合剤は、無機材料の粒子を支持し、上記無機材料は例えば、多結晶質セラミック、合成鉱物、ロール・ツー・ロール製造に関して薄いテープ又はリボン構造体への加工が困難であり得る粘性ガラス、又は他の無機材料(例えば金属、粘性が低いガラス)である。例えば無機材料は:ジルコニア(例えばイットリア安定化ジルコニア、ニッケル‐イットリア安定化ジルコニアサーメット(NiO/YSZ));アルミナ;スピネル(例えばMgAl、亜鉛フェライト、NiZnスピネルフェライト、又は立方晶として結晶化でき、かつA2+ 3+ 2-という配合を含む他の無機物(ここでA及びBは陽イオンであり、マグネシウム、亜鉛、アルミニウム、クロム、チタン、ケイ素であってよく、またここで酸素は、チオスピネル等のカルコゲナイドを除いて陰イオンである));ガーネット(例えば式X(TO(ここでXはCa、Fe等であり、ZはAl、Cr等であり、TはSi、As、V、Fe、Alである)のリチウムガーネット又はリチウム含有ガーネット)、リチウム‐ランタン‐ジルコニウム酸化物(LLZO)、コーディエライト、ムライト、ペロブスカイト(例えば多孔質ペロブスカイト構造セラミック)、パイロクロアといった、ケイ酸塩鉱物;炭化ケイ素;窒化ケイ素;炭化ホウ素;チタン酸ビスマスナトリウム;チタン酸バリウム(例えばドープチタン酸バリウム);酸化チタンマグネシウム;チタン酸バリウムネオジム;二ホウ化チタン;窒化ケイ素アルミナ;窒化アルミニウム;窒化ケイ素;酸窒化アルミニウム;反応性セラム化ガラスセラミック(ガラスフリットと1つ以上の反応物粉体との間のその場での反応を含む、化学反応と失透との組み合わせによって形成されたガラスセラミック);シリカ;ドープシリカ;フェライト(例えば、NiCuZnFeOフェライト、BaCOフェライト)マンガン酸リチウム、酸化リチウムを含む、リチウム含有セラミック;高融点ガラス、標準大気圧において1000℃超のTgを有するガラスといった、粘性ガラス;高純度溶融シリカ;SiO含有量が少なくとも99体積%のシリカ;粒体プロファイルを備えるシリカ;テープの幅にわたって延在する波又は線条の反復パターンを有しない、シリカテープ;硫化鉄;圧電セラミック;ニオブ酸カリウム;炭化ケイ素;サファイア;イットリア;サーメット;ステアタイト;フォルステライト;リチウム含有セラミック(例えばγ‐LiAlO);遷移金属酸化物(例えばスピネルであってもよいマンガン酸リチウム、フェライト);上述の揮発性成分を含む材料(例えば(ここでもまた)マンガン酸リチウム);酸化鉛;ガーネット;アルカリ含有材料;酸化ナトリウム;ガラスセラミック粒子(例えばLAS(リチウムアルミノシリケート))、並びに本明細書又は他で開示されている他の無機材料を含む。
考えられる実施形態では、例えばテープを強化するために、コロイド状シリカ、アルミナ、ジルコニア、及びこれらの水和物といった無機結合剤を、本明細書で開示される有機結合剤の代わりに、又は本明細書で開示される有機結合剤と組み合わせて、使用してよい。出願人は、テープが強いほど、安定性に関して、またより高い張力といった、より広いプロセス空間へのアクセスに関して、焼結プロセスはより堅牢になることを発見した。いくつかの実施形態では、本明細書で使用される素地材料(例えば素地テープ)は、無機結合剤を含む。例えば、テープ材料のソースは、素地テープ、及び上記素地テープを支持するキャリアウェブを備えてよく、上記素地テープは、無機材料及び無機結合剤の粒体を有機結合剤中に含む。いくつかの実施形態では、無機結合剤等の無機粒子は、D50粒子サイズで約5nm~約100マイクロメートルの粒子を含む。
考えられる実施形態では、本明細書で開示されるセラミック等の材料を焼成することにより、20体積%超、例えば50%超、例えば70%超という高い程度の多孔率を得ることができ、及び/又は材料をその後、ポリマー充填剤で充填できる。本明細書で開示されるような部分焼結済み無機材料の使用は、複合材料中の緩い無機材料を上回る利点を有することができる。というのは、部分焼結済み無機材料は、ポリマー充填剤が軟化する温度において複合材料の形状を保持するための剛性の骨格として機能できるためである。従っていくつかの実施形態は、部分焼結済みセラミックの、上で開示されている寸法を有する複合材料テープを含み、ここで(少なくともいくつかの、ほとんどの、略全ての)セラミックの粒子は、互いに対して焼結され、及び/又はセラミックの細孔は、少なくとも部分的に、ほとんど、若しくは全て、ポリマー充填剤によって充填される。
上述のように、いくつかの実施形態では、本明細書で開示される技術を用いて、異なる複数の無機材料、例えば異なる無機材料の個別の層(例えばソリッドステートバッテリのアノード及び電解質)を同時焼成してよく、又は他の構成では、2つ以上の無機材料の均一に分布した混合物を同時焼成してよく、これにより、結果として得られる物品の熱膨張係数、強度、又は他の特性に影響を及ぼすことができる。いくつかの実施形態では、ガラス及びセラミックを同時焼成してよく、例えばこの場合、ガラス相をセラミックの粒子と混合する。例えば、図102は、テープが炉の壁/床と直接接触することなく焼成されるように空気軸受を備える焼結ステーションを用いて1000℃で焼結された、低温同時焼成済みセラミックテープ(ガラス及びアルミナ)を示す。
本開示のいくつかの実施形態は、例えばアルミナ又はジルコニア等のセラミックといった無機材料の、物品(例えばシート、テープ又はリボン)を含み、これは粒体プロファイルと、例えば上記物品の1つの以上の主表面上の、上記粒体プロファイルの粗度を低減するために上記粒体プロファイルに重なった層(又はコーティング)とを有する。上記層は、スピンコート、スロットダイコート、スプレーコート、ディップコート又は他のプロセスにより、液体の形態で塗布できる。いくつかの実施形態では、上記層は、ガラス等の非晶質及び無機物であってよく、又は熱アニーリング若しくは硬化時に固体ガラスに変換できる。いくつかのこのような実施形態では、上記層は、大半がケイ素及び酸素であり、例えば多少のリン、ホウ素、炭素、窒素又は他の成分を含む。上記層は、Ti、Hf、及び/又はAlの酸化物も含んでよい。このような層は、結合剤バーンアウト及び焼結と同一の製造ラインの一部として塗布して硬化させてよく、結果として得られた物品(例えばテープ)はロールに巻くことができ、ロールに巻かれた場合に上記層を含むことができる。いくつかの実施形態では、上記層は、850℃以上の温度でアニーリングされ、極めて薄く、例えば1マイクロメートル未満、例えば560nm未満の実際の厚さを有する。いくつかの実施形態では、上記層の粗度は、粒体プロファイルの1/2未満、例えば1/3未満である。いくつかの実施形態では、上記層の粗度は、単一の軸に沿った1cmの距離にわたって、15nm未満、例えば約5nm未満の平均粗度(Ra又はRq)である。
イットリア安定化ジルコニア及びアルミナ物品を、30×30mm四方にレーザ切断し、スピン・オン・ガラス、スピンコーティング技法によってコーティングした。純シリカ溶液(Desert Silicon NDGシリーズ)を、軽く(1021原子/cm)ドープされたリンドープシリカ溶液(Desert Silicon P‐210)と共に試験した。溶液を液体形態で塗布し、硬化時に固化させた。最終的なアニーリングによってガラスフィルムを高密度化した。溶液はスピンコーティングを用いて塗布した。次に試料を、150℃~200℃のホットプレートで、又は170℃~250℃の真空オーブンで硬化させた。初期硬化後、試料を850℃~1000℃の窒素雰囲気下でアニーリングした。1インチ(2.54cm)四方のケイ素片をセラミック片と並列して処理して、「証拠(witness)」試料を提供し、これを、光学エリプソメータを用いてガラスフィルムの厚さを正確に測定するために使用した。
ある例では、厚さ40μmのアルミナのシートを、1500回転/分(rpm)で60秒間、133rpm/秒の加速を伴うスピンによって、リンドープシリカ(Desert Silicon P210)でコーティングし、厚さが約320nm、片側のRaが15.3nm、Rqが12.1nm、Zmaxが130nm、並びにもう片側のRaが25.9nm、Rqが20nm、及びZmaxが197nmのコーティングが得られ、コーティングされた層は、850℃において炉でアニーリングした後、割れがなく、良好なフィルム品質を有していた。別の例では、厚さ40μmのアルミナのシートを、1500回転/分(rpm)で60秒間、133rpm/秒の加速を伴うスピンによって、非ドープシリカ(Desert Silicon NDG‐2000)でコーティングし、厚さが約444nm、片側のRaが11nm、Rqが8.8nm、Zmaxが79.4nm、並びにもう片側のRaが22.6nm、Rqが17nm、及びZmaxが175nmのコーティングが得られ、ここでもまた、コーティングされた層は、850℃において炉でアニーリングした後、割れがなく、良好なフィルム品質を有していた。対照的に、別の例では、厚さ40μmのアルミナのシートを、4000回転/分(rpm)で60秒間、399rpm/秒の加速を伴うスピンによって、非ドープシリカ(Desert Silicon P210)でコーティングし、厚さが約946nm、片側のRaが5.1nm、Rqが6.5nm、Zmaxが48nm、並びにもう片側のRaが10.8nm、Rqが14nm、及びZmaxが89nmのコーティングが得られ、ここでは、コーティングされた層は、850℃において炉でアニーリングした後、顕著な割れを有していた。
ある例では、厚さ40μmのイットリア安定化ジルコニアのシートを、2000回転/分(rpm)で60秒間、1995rpm/秒の加速を伴うスピンによって、非ドープシリカ(Desert Silicon NDG‐2000)でコーティングし、厚さが約258nm、片側のRaが5.9nm、Rqが4.7nm、Zmaxが92nmのコーティングが得られ、コーティングされた層は、1000℃において60分間にわたって炉でアニーリングした後、割れがなく、良好なフィルム品質を有していた。別の例では、厚さ40μmのイットリア安定化ジルコニアのシートを、1500回転/分(rpm)で60秒間、133rpm/秒の加速を伴うスピンによって、リンドープシリカ(Desert Silicon P210)でコーティングし、厚さが約320nm、片側のRaが8.9nm、Rqが11.7nm、Zmaxが135nmのコーティングが得られ、ここでもまた、コーティングされた層は、850℃において30分間にわたって炉でアニーリングした後、割れがなく、良好なフィルム品質を有していた。対照的に、別の例では、厚さ40μmのイットリア安定化ジルコニアのシートを、1500回転/分(rpm)で60秒間、133rpm/秒の加速を伴うスピンによって、非ドープシリカ(Desert Silicon P210)でコーティングし、厚さが約444nm、片側のRaが7.7nm、Rqが9.5nm、Zmaxが75nmのコーティングが得られ、ここでは、コーティングされた層は、850℃において炉でアニーリングした後、多少の割れを有していた。試料の表面形態を、10マイクロメートルの視野において、原子間力顕微鏡を用いて測定した。例えば図103は、純シリカ(Desert Silicon NDG‐2000)でコーティングされたイットリア安定化ジルコニアの電子顕微鏡画像を示す。シリカの層は厚さ約250nmである。このような層は、テープの誘電特性を改善でき、及び/又は下層の材料への/下層の材料からの不純物の伝達を防止するためのバリア層として機能できる。例えばこのような層は、上で開示されているようにLEDと、若しくは他の電子機器及びパッケージと共に使用してよく、並びに/又は焼結済みテープに適用して、本明細書で開示されているようにテープのロールとして巻いてよい。他の考えられる実施形態では、上記層は、例えば異なる用途のために、別の無機材料、又はポリマー材料であってよい。
本開示の態様は、(1)第1の主表面、(2)上記第1の主表面と反対側の第2の主表面、及び(3)上記第1の表面と上記第2の表面との間に延在する本体を備える、焼結済み物品に関し、ここで上記本体は焼結済み無機材料を含み、上記本体は:上記第1の主表面と上記第2の主表面との間の距離として定義される厚さ(t);上記厚さに対して垂直な上記第1又は第2の表面のうちの一方の第1の寸法として定義される、幅;並びに上記厚さ及び上記幅に対して垂直な、上記第1又は第2の表面のうちの一方の第2の寸法として定義される、長さを有し、上記幅は約5mm以上であり、上記厚さは約3μm~約1mmであり、上記長さは約300cm以上である。この焼結済み物品は、上記無機材料が、約1mm未満の主境界面寸法を有する境界面を含み、上記境界面は化学的不均質性及び結晶構造の不均質性のうちの一方又は両方を含み、また任意に、上記無機材料が、セラミック材料若しくはガラスセラミック材料を含み、及び/又は上記無機材料が、圧電材料、熱電材料、焦電材料、可変抵抗材料、又は光電材料のうちのいずれの1つを含むようなものであってよい。いくつかのこのような実施形態では、上記無機材料は、ジルコニア、アルミナ、スピネル、ガーネット、リチウム‐ランタン‐ジルコニウム酸化物(LLZO)、コーディエライト、ムライト、ペロブスカイト、パイロクロア、炭化ケイ素、窒化ケイ素、炭化ホウ素、チタン酸ビスマスナトリウム、バリウムチタン酸、二ホウ化チタン、窒化ケイ素アルミナ、酸窒化アルミニウム、又は反応性セラム化ガラスセラミックのうちの1つを含む。上述の焼結済み物品のうちのいずれの1つにおいて:上記焼結済み物品は、長さに沿って、ある組成を有する少なくとも10平方センチメートルの面積を含んでよく、上記組成の少なくとも1つの成分は、上記面積にわたって、約3重量%未満のばらつきを有し;並びに/又は上記焼結済み物品は、長さに沿って、ある結晶構造を有する少なくとも10平方センチメートルの面積を含み、上記結晶構造は、上記面積にわたって、百分率にして約5未満のばらつきを有する重量パーセントを有する少なくとも1つの相を有し;並びに/又は焼結済み物品は、長さに沿って、約20%未満のばらつきを有する多孔率を有する少なくとも10平方センチメートルの面積を含み;並びに/又は上記第1の主表面及び上記第2の主表面のうちの一方若しくは両方は、粒体間の境界の各表面の凹状部分に対して25nm~150μmの高さを有する粒体を含む、粒体プロファイルを有し;並びに/又は上記第1の主表面及び上記第2の主表面のうちの一方若しくは両方は、上記長さ若しくは上記幅に沿った1センチメートルの距離にわたって、100nm~50μmの平坦性を有し;並びに/又は上記第1の主表面及び上記第2の主表面のうちの一方若しくは両方は、寸法が5μm超の接着若しくは摩擦に由来する表面欠陥を100個未満だけ有する、少なくとも10平方センチメートルの面積を含み、例えばここで任意に、上記第1の主表面及び上記第2の主表面のうちのもう一方は、寸法が5μm超の接着若しくは摩擦に由来する表面欠陥を備え;及び/若しくは幅寸法に沿った線条付きプロファイルを更に備え、ここで上記厚さは約0.9t~約1.1tであり、例えばここで上記線条付きプロファイルは、上記幅に沿って2回以上のうねりを含み、及び/若しくは上記線条付きプロファイルは、上記幅に沿って20回未満のうねりを含む。
本開示の態様は、(1)第1の主表面、(2)上記第1の主表面と反対側の第2の主表面、及び(3)上記第1の表面と上記第2の表面との間に延在する本体を備える、焼結済み物品に関し、ここで上記本体は焼結済み無機材料を含み、上記本体は:上記第1の主表面と上記第2の主表面との間の距離として定義される厚さ(t);上記厚さに対して垂直な上記第1又は第2の表面のうちの一方の第1の寸法として定義される、幅;並びに上記厚さ及び上記幅に対して垂直な、第1又は第2の表面のうちの一方の第2の寸法として定義される、長さを有し、上記焼結済み物品の(少なくとも)一部分は平坦化可能である。いくつかのこのような焼結済み物品では、上記物品は、平坦化されると、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力(薄板曲げ応力の方程式によって測定した場合の応力の絶対値)を示し;及び/又は上記物品は、平坦化されると、上記物品のヤング率の1%以下の最大面内応力(薄板曲げ応力の方程式によって測定した場合の応力の絶対値)を示す。いくつかのこのような実施形態では、上記物品が約80μmの厚さ及び0.03m超の曲げ半径を有する場合、上記物品は、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力(薄板曲げ応力の方程式によって測定した場合の応力の絶対値)を示し;又は上記物品が約40μmの厚さ及び0.015m超の曲げ半径を有する場合、上記物品は、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力(薄板曲げ応力の方程式によって測定した場合の応力の絶対値)を示し;又は上記物品が約20μmの厚さ及び0.0075m超の曲げ半径を有する場合、上記物品は、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力(薄板曲げ応力の方程式によって測定した場合の応力の絶対値)を示す。いくつかのこのような実施形態では、上記焼結済み物品の上記幅は約5mm以上であり、上記厚さは約3μm~約1mmであり、上記長さは約300cm以上であり、及び/又は平坦化可能な上記焼結済み物品の上記部分は、約10cmの長さを備える。いくつかのこのような実施形態では、上記第1の主表面及び上記第2の主表面のうちの一方又は両方は、上記長さ又は上記幅に沿った1センチメートルの距離にわたって、100nm~50μmの平坦性を有する。いくつかのこのような実施形態では、上記無機材料は、セラミック材料若しくはガラスセラミック材料を含み、;上記無機材料は、圧電材料、熱電材料、焦電材料、可変抵抗材料、若しくは光電材料のうちのいずれの1つを含み;及び/又は上記無機材料は、ジルコニア、アルミナ、スピネル、ガーネット、リチウム‐ランタン‐ジルコニウム酸化物(LLZO)、コーディエライト、ムライト、ペロブスカイト、パイロクロア、炭化ケイ素、窒化ケイ素、炭化ホウ素、チタン酸ビスマスナトリウム、バリウムチタン酸、二ホウ化チタン、窒化ケイ素アルミナ、酸窒化アルミニウム、若しくは反応性セラム化ガラスセラミックのうちの1つを含む。いくつかのこのような実施形態では:上記焼結済み物品は、長さに沿って、ある組成を有する少なくとも10平方センチメートルの面積を含み、上記組成の少なくとも1つの成分は、上記面積にわたって、約3重量%未満のばらつきを有し;並びに/又は上記焼結済み物品は、長さに沿って、ある結晶構造を有する少なくとも10平方センチメートルの面積を含み、上記結晶構造は、上記面積にわたって、百分率にして約5未満のばらつきを有する重量パーセントを有する少なくとも1つの相を有し;並びに/又は焼結済み物品は、長さに沿って、ある多孔率を有する少なくとも10平方センチメートルの面積を含み、上記多孔率は、上記面積にわたって、約20%未満のばらつきを有し;並びに/又は上記第1の主表面及び上記第2の主表面のうちの一方若しくは両方は、粒体間の境界の各表面の凹状部分に対して25nm~150μmの高さを有する粒体を含む、粒体プロファイルを有し;並びに/又は上記第1の主表面及び上記第2の主表面のうちの一方若しくは両方は、上記長さ若しくは上記幅に沿った1センチメートルの距離にわたって、100nm~50μmの平坦性を有し;並びに/又は上記第1の主表面及び上記第2の主表面のうちの一方若しくは両方は、寸法が5μm超の接着若しくは摩擦に由来する表面欠陥を100個未満だけ有する、少なくとも10平方センチメートルの面積を含み、例えばここで、上記第1の主表面及び上記第2の主表面のうちのもう一方は、寸法が5μm超の接着若しくは摩擦に由来する表面欠陥を備え;並びに/又は上記焼結済み物品は、幅寸法に沿った線条付きプロファイルを更に備え、ここで上記厚さは約0.9t~約1.1tであり、例えばここで上記物品はサドル形状を備え;及び/又は上記物品は、長さに沿って凹状のC字型を備える。
本開示の態様は、(1)60cm未満の直径を有するコア、及び(2)上記コアの周りに巻き付けられた連続焼結済み物品を含む、ロール化済み焼結済み物品に関し、上記連続焼結済み物品は、(2a)第1の主表面、(2b)上記第1の主表面と反対側の第2の主表面、(2c)上記第1の表面と上記第2の表面との間に延在する本体を備え、ここで上記本体は焼結済み無機材料を含み、上記本体は:上記第1の主表面と上記第2の主表面との間の距離として定義される厚さ(t);上記厚さに対して垂直な上記第1又は第2の表面のうちの一方の第1の寸法として定義される、幅;並びに上記厚さ及び上記幅に対して垂直な、第1又は第2の表面のうちの一方の第2の寸法として定義される、長さを有し、上記幅は約5mm以上であり、上記厚さは約3μm~約1mmであり、上記長さは約30cm以上である。いくつかのこのような実施形態では、上記連続焼結済み物品は層間支持材料上に配置され、上記連続焼結済み物品及び上記層間支持材料を上記コアの周りに巻くことにより、上記連続焼結済み物品の連続的な複数の巻きがそれぞれ、上記層間支持材料によって互いから隔てられ、例えばここで上記層間支持材料は:第1の主表面、及び上記第1の主表面の反対側の第2の主表面;上記第1の主表面と上記第2の主表面の間の距離として定義される、層間厚さ(t);上記層間厚さに対して垂直な上記第1若しくは第2の表面のうちの一方の第1の寸法として定義される、層間幅;並びに上記層間支持材料の上記層間厚さ及び上記層間幅の両方に対して垂直な、上記第1及び第2の表面のうちの一方の第2の寸法として定義される、層間長さを備え、上記層間厚さは、上記焼結済み物品の厚さより大きく、並びに/又は上記層間支持材料は、ロードセルによって測定した場合に、上記連続焼結済み物品に対する張力より大きな張力を含み、並びに/又は上記ロール化済み物品は、略一定である直径及び側壁幅を備え、並びに/又は上記コアは、周と、上記周に沿ったコア中心線とを備え、上記連続焼結済み物品は、長さ方向に沿った物品中心線を備え、上記コア中心線と上記物品中心線との間の距離は、上記連続焼結済み物品の長さに沿って2.5mm以下であり、並びに/又は上記物品中心線は適合性であり、並びに/又は上記層間幅は、上記連続焼結済み物品の幅より大きく、並びに/又は上記層間支持材料は、ポリマー及び紙のうちのいずれの一方若しくは両方を含み、例えば上記ポリマーは発泡ポリマーを含み、例えば上記発泡ポリマーは閉鎖セルである。
本開示の態様は、(1)第1の主表面、(2)上記第1の主表面と反対側の第2の主表面、及び(3)上記第1の表面と上記第2の表面との間に延在する本体をそれぞれ備える、複数の焼結済み物品に関し、ここで上記本体は焼結済み無機材料を含み、上記本体は:上記第1の主表面と上記第2の主表面との間の距離として定義される厚さ(t);上記厚さに対して垂直な上記第1又は第2の表面のうちの一方の第1の寸法として定義される、幅;並びに上記厚さ及び上記幅に対して垂直な、第1又は第2の表面のうちの一方の第2の寸法として定義される、長さを有し、上記複数の焼結済み物品はそれぞれ、平坦化可能である。いくつかのこのような実施形態では、各上記物品は、平坦化されると、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力(薄板曲げ応力の方程式によって測定した場合の応力の絶対値)を示し;及び/又は各上記物品は、平坦化されると、上記物品のヤング率の1%以下の最大面内応力(薄板曲げ応力の方程式によって測定した場合の応力の絶対値)を示す。いくつかのこのような実施形態では、各上記物品が約80μmの厚さ及び0.03m超の曲げ半径を有する場合、上記物品は、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力(薄板曲げ応力の方程式によって測定した場合の応力の絶対値)を示し;並びに/又は各上記物品が約40μmの厚さ及び0.015m超の曲げ半径を有する場合、上記物品は、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力(薄板曲げ応力の方程式によって測定した場合の応力の絶対値)を示し;並びに/又は上記物品が約20μmの厚さ及び0.0075m超の曲げ半径を有する場合、上記物品は、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力(薄板曲げ応力の方程式によって測定した場合の応力の絶対値)を示す。いくつかの実施形態では、上記複数の焼結済み物品の上記厚さは、約0.7t~約1.3tであり;並びに/又は上記焼結済み物品の少なくとも50%は、ある面積及びある組成であって、上記組成の少なくとも1つの成分が上記面積にわたって約3重量%未満だけ変動する、面積及び組成を備え;並びに/又は上記焼結済み物品の少なくとも50%は、ある面積と、上記面積にわたって百分率にして約5未満だけ変動する重量パーセントを有する少なくとも1つの相を有する結晶構造とを備え;並びに/又は上記焼結済み物品の少なくとも50%は、ある面積と、上記面積にわたって約20%未満だけ変動する多孔率とを備える。
本開示の態様は、2つの材料を分離するための分離システムに関し、ここで上記分離システムは:素地テープ材料と、上記素地テープ材料を支持するキャリアウェブとを備える、連続テープ材料のソース;連続テープ材料の上記ソース付近に位置決めされ、上記ソースから連続材料を受け取って剥離器へと搬送するよう構成された、真空ドラムであって、上記真空ドラムは、連続ロールが上記剥離器へと搬送される際に、上記素地テープに印加される張力より大きな張力を、上記分離システムによって上記キャリアウェブに印加するのを促進するための、複数の真空孔を備える、真空ドラム;及び上記キャリアウェブを巻き戻し方向に配向し、上記素地テープ材料を、上記巻き戻し方向とは異なる下流処理方向に配向するための、剥離器を備える。いくつかのこのような実施形態では、連続テープ材料の上記ソースは、スプール又はベルトを備え、これはその上に巻き付けられた連続材料を含む。いくつかの実施形態では、上記巻き戻し方向及び上記下流処理方向は、その間に約90°超の角度を形成する。このような実施形態のうちの少なくともいくつかにおいて、上記分離システムは、上記素地テープ材料に対して、(上記素地テープ自体の重量を除いて)張力を実質的に印加しない。このような実施形態のうちの少なくともいくつかにおいて、キャリアウェブに印加される上記張力は、上記素地テープ材料に印加される上記張力の少なくとも2倍大きい。このような実施形態のうちの少なくともいくつかにおいて、上記剥離器は、上記キャリアウェブを上記巻き戻し方向に配向し、上記素地テープ材料を、上記巻き戻し方向とは異なる上記下流処理方向に配向する前に、上記キャリアウェブを上記素地テープ材料から分離する、先端を備える。このような実施形態のうちの少なくともいくつかにおいて、上記剥離器は、上記キャリアウェブを上記巻き戻し方向に配向し、上記素地テープ材料を、上記巻き戻し方向とは異なる上記下流処理方向に配向するのと同時に、上記キャリアウェブを上記素地テープ材料から分離する、先端を備え、上記先端は、約0.05インチ(1.27mm)以下の半径を備えてよい。このような実施形態のうちの少なくともいくつかにおいて、上記分離システムは更に、上記素地テープ材料を焼結するための炉、上記キャリアウェブを巻き取るための取り込み用リール、及び/又は上記キャリアウェブの上記張力を維持するための荷重コントローラを備える。
本開示の他の態様は、2つの材料を分離するための分離システムに関し、ここで上記分離システムは:キャリアウェブ上に配置された素地テープ材料を備える、連続テープ材料のソースであって、上記キャリアウェブは第1の張力を含む、連続テープ材料のソース;上記ソース付近に位置決めされ、上記連続材料を剥離器に搬送する際に、上記キャリアウェブに上記第1の張力より大きな第2の張力を印加するよう構成された、張力遮断器;及び上記キャリアウェブを巻き戻し方向に配向し、上記素地テープ材料を、上記巻き戻し方向とは異なる下流処理方向に配向するための、剥離器を備える。このような実施形態のうちの少なくともいくつか(上述の実施形態のいずれの1つ以上)において、上記ソースは、上記連続材料を含むスプール又はベルトを備える。このような実施形態のうちの少なくともいくつかにおいて、上記巻き戻し方向及び上記下流処理方向は、その間に約90°超の角度を形成する。このような実施形態のうちの少なくともいくつかにおいて、上記第2の張力は、幅1直線インチあたり約2.5ポンド(446.45g/cm)以下である。このような実施形態のうちの少なくともいくつかにおいて、上記第1の張力は、上記第2の張力の約50%以下である。このような実施形態のうちの少なくともいくつかにおいて、上記剥離器は、上記キャリアウェブを上記巻き戻し方向に配向し、上記素地テープ材料を、上記巻き戻し方向とは異なる上記下流処理方向に配向する前に、上記キャリアウェブを上記素地テープ材料から分離する、先端;及び/又は上記キャリアウェブを上記巻き戻し方向に配向し、上記素地テープ材料を、上記巻き戻し方向とは異なる上記下流処理方向に配向するのと同時に、上記キャリアウェブを上記素地テープ材料から分離する、先端を備え;このような実施形態のいずれか又は両方において、上記先端は、約0.05インチ(1.27mm)以下の半径を備えても備えなくてもよい。このような実施形態のうちの少なくともいくつかにおいて、上記張力遮断器は、上記第2の張力を上記キャリアウェブに印加する複数の真空孔を備える、真空ドラムを備える。このような実施形態のうちの少なくともいくつかにおいて、上記分離システムは更に、上記素地テープ材料を焼結するための炉、上記キャリアウェブを巻き取るための取り込み用リール、及び/又は上記キャリアウェブの上記張力を維持するための荷重コントローラを備える。
本開示の態様は、2つの材料を分離するための方法に関し、上記方法は、必ずしも以下の順序でなくてよい以下のステップを含む:(1)連続材料を張力遮断器に供給するステップであって、上記連続材料は、キャリアウェブ上に配置された素地テープ材料を含む、ステップ;(2)上記張力遮断器によって上記素地テープ材料に印加される張力よりも大きな張力を、上記キャリアウェブに印加するステップ;及び(3)上記キャリアウェブを、巻き戻し方向に移動するよう配向し、上記素地テープ材料を、上記巻き戻し方向とは異なる下流処理方向に配向するステップ。少なくともいくつかのこのような実施形態では、上記方法は、上記キャリアウェブを上記巻き戻し方向に配向し、上記素地テープ材料を、上記巻き戻し方向とは異なる上記下流処理方向に配向する前に、上記キャリアウェブを上記素地テープ材料から分離するステップ、及び/又は上記キャリアウェブを上記巻き戻し方向に配向し、上記素地テープ材料を、上記巻き戻し方向とは異なる上記下流処理方向に配向するのと同時に、上記キャリアウェブを上記素地テープ材料から分離するステップを更に含み、ここで上記巻き戻し方向及び上記下流処理方向は、約90°超の角度を形成する。少なくともいくつかのこのような実施形態では、上記方法は、上記素地テープ材料に張力を実質的に印加しないステップを更に含み、例えばここで、上記キャリアウェブに印加される上記張力は、上記素地テープ材料に印加される上記張力の少なくとも2倍大きい。少なくともいくつかのこのような実施形態では、上記方法は、上記素地テープ材料を少なくとも部分的に焼結するステップを更に含む。少なくともいくつかのこのような実施形態では、上記方法は、上記キャリアウェブを取り込み用リールに巻き取るステップを更に含む。少なくともいくつかのこのような実施形態では、上記方法は、上記キャリアウェブの上記張力を維持するステップを更に含む。
本開示の態様は、2つの材料を分離するための方法に関し、上記方法は、必ずしも以下の順序でなくてよい以下のステップを含む:(1)キャリアウェブ上に支持された素地テープを含む連続テープ材料を、張力遮断器に供給し、第1の張力を上記キャリアウェブに印加するステップ;(2)上記第1の張力よりも大きな第2の張力を、上記キャリアウェブに印加するステップ;及び(3)上記キャリアウェブを、巻き戻し方向に移動するよう配向し、上記素地テープ材料を、上記巻き戻し方向とは異なる下流処理方向に配向するステップ。少なくともいくつかのこのような実施形態では、上記方法は、上記キャリアウェブを上記巻き戻し方向に配向し、上記素地テープ材料を、上記巻き戻し方向とは異なる上記下流処理方向に配向する前に、上記キャリアウェブを上記素地テープ材料から分離するステップ、及び/又は上記キャリアウェブを上記巻き戻し方向に配向し、上記素地テープ材料を、上記巻き戻し方向とは異なる上記下流処理方向に配向するのと同時に、上記キャリアウェブを上記素地テープ材料から分離するステップを更に含み、ここで上記巻き戻し方向及び上記下流処理方向は、約90°超の角度を形成する。少なくともいくつかのこのような実施形態では、第1の張力を印加する上記ステップは、張力を実質的に印加しない(即ち本明細書で開示されるように、極めてわずかな張力を印加する)ステップを含む。少なくともいくつかのこのような実施形態では、上記第2の張力は、幅1直線インチあたり約2.5ポンド(446.45g/cm)以下である。少なくともいくつかのこのような実施形態では、上記第1の張力は、上記第2の張力の約50%以下である。少なくともいくつかのこのような実施形態では、上記方法は、上記素地テープ材料を少なくとも部分的に焼結するステップ、上記キャリアウェブを取り込み用リールに巻き取るステップ、及び/又は上記キャリアウェブの上記張力を維持するステップを更に含む。
本開示の態様は、ロール・ツー・ロール方式テープ焼結システムに関し、上記システムは:(1)無機材料の粒体を含むある長さのテープ材料の入力ロールであって、上記入力ロール上の上記テープ材料の上記無機材料は、第1の多孔率を有する、入力ロール;(2)焼結ステーションであって、(2a)入口、(2b)出口、(2c)上記入口と上記出口との間に延在するチャネル、及び(2d)上記チャネルを500℃超の温度まで加熱するヒータを備え、上記焼結ステーションの上記出口、上記入口、及び上記チャネルは、略水平な平面内にあり、従って、水平面に対して上記出口と上記入口との間に画定される角度は10°未満となり、上記テープ材料は、上記入力ロールから、上記焼結ステーションの上記入口に入り、上記焼結ステーションの上記チャネルを通り、上記焼結ステーションの上記出口から出て、上記チャネル内の熱が上記テープ材料の上記無機材料を焼結する、焼結ステーション;並びに(3)上記焼結ステーションから出た後の上記テープ材料の上記長さを巻き取る、取り込み用ロールであって、上記取り込み用ロール上の上記テープ材料の上記無機材料は、上記第1の多孔率より低い第2の多孔率を有する、取り込み用ロールを備える。少なくともいくつかのこのような実施形態では、水平面に対して上記出口と上記入口との間に画定される上記角度は、1°未満である。少なくともいくつかのこのような実施形態では、上記入力ロール上の上記テープ材料は、5mm超の幅及び10m超の長さを有する。少なくともいくつかのこのような実施形態では、上記入力ロール上の上記テープ材料は、3マイクロメートル~1ミリメートルの厚さを有する。少なくともいくつかのこのような実施形態では、上記テープ材料は、6インチ(15.24cm)/分を超える高速で、上記焼結ステーションを通って移動する。少なくともいくつかのこのような実施形態では、上記入力ロール上の上記テープ材料は、無機材料の上記粒体を支持する有機結合剤材料を含み、また上記システムは、(4)上記入力ロールと上記焼結ステーションとの間に位置する結合剤除去ステーションを更に備え、上記結合剤除去ステーションは、(4a)入口、(4b)出口、(4c)上記入口と上記出口との間に延在するチャネル、及び(4d)上記チャネルを200℃~500℃の温度まで加熱するヒータを備え上記結合剤ステーションの上記出口、上記結合剤ステーションの上記入口、及び上記結合剤ステーションの上記チャネルは、略水平な平面内にあり、従って、水平面に対して上記結合剤ステーションの上記出口と上記結合剤ステーションの上記入口との間に画定される角度は10°未満となり、上記結合剤ステーションの上記チャネルは、上記焼結ステーションの上記チャネルと位置合わせされ、これにより、上記テープ材料は、略水平な方向に移動する間に、上記入力ロールから、上記結合剤除去ステーションの上記入口に入り、上記結合剤除去ステーションの上記チャネルを通り、上記結合剤除去ステーションの上記出口から出て、上記焼結ステーションの上記入口に入り、上記結合剤除去ステーションの上記チャネル内の熱は、上記テープ材料が上記焼結ステーションに入る前に、上記有機結合剤材料の少なくとも一部を化学的に変化させ、及び/又は除去する。少なくともいくつかのこのような実施形態では、上記焼結ステーションの上記ヒータは、少なくとも2つの独立して制御される加熱素子を含み、上記加熱素子は、上記焼結ステーションの上記チャネルの長さに沿って、上記チャネルに沿って上記入口から上記出口に向かう方向に上昇する温度プロファイルを生成し;いくつかのこのような実施形態では上記温度プロファイルは、焼結中の上記テープ材料の縁部における応力が、縁部応力閾値未満のままとなるよう、及び焼結中の上記テープ材料の中心線における応力が、中心線応力閾値未満のままとなるよう、成形され、ここで上記縁部応力閾値及び上記中心線応力閾値は、それを超えると上記テープ材料が上記縁部及び上記中心線それぞれにおいて1mm超の面外変形を起こす応力として定義され、例えばここで、上記縁部応力閾値は300MPa未満であり、上記中心線応力閾値は100MPa未満である。少なくともいくつかのこのような実施形態では、上記焼結ステーションの上記チャネルの長さは少なくとも1mである。少なくともいくつかのこのような実施形態では、上記焼結ステーションは:(2d‐i)第1の焼結炉であって、上記焼結ステーションの上記入口から上記第1の焼結炉の出口開口まで延在する、上記焼結ステーションチャネルの第1の部分を画定する、第1の焼結炉;(2d‐ii)第2の焼結炉であって、上記第2の焼結炉の入口開口から上記焼結ステーションの上記出口まで延在する、上記焼結ステーションチャネルの第2の部分を画定する、第2の焼結炉;及び(2e)上記第1の焼結炉と上記第2の焼結炉との間に位置する張力制御システムであっって、上記張力制御システムは、上記第1の焼結炉と上記第2の焼結炉との間で張力を分離するのを補助する、張力制御システムを備え、ここで上記第2の焼結炉内における上記テープ材料の張力は、上記第1の焼結炉内における上記テープ材料の張力より大きい。少なくともいくつかのこのような実施形態では、上記焼結ステーションは、(2f)上記チャネルの下側表面を画定する上向きチャネル表面、及び(2g)上記チャネルの上側表面を画定する下向きチャネル表面を備え、上記テープ材料の下側表面は、上記テープ材料が上記焼結ステーションの上記入口から上記出口へと移動する際に、上記上向き表面に接触して、上記上向き表面に沿って摺動し、上記下向きチャネル表面は、上記テープ材料の上側表面に近接して位置決めされ、これにより、上記テープ材料の上記上側表面と上記下向きチャネル表面との間の間隙は、0.5インチ(1.27cm)未満となり、上記上向きチャネル表面の少なくとも一部分は、上記焼結ステーションの上記入口と上記出口との間で上記方向に測定した場合に、略水平であり、これにより、上記上向きチャネル表面の上記一部分は、上記水平面に対して3°未満の角度を形成する。少なくともいくつかのこのような実施形態では、上記テープの上記無機材料は、多結晶質セラミック材料及び合成鉱物のうちの少なくとも一方である。
本開示の態様は、製造用炉を含み、上記製造用炉は、以下を備える:(1)上流面及び下流面を有するハウジング;(2)上記上流面に形成された入口開口;(3)上記下流面内に画定された出口開口;(4)上記入口開口と上記出口開口との間に位置する、上向き表面;(5)上記入口開口と上記出口開口との間に位置する下向き平坦表面;(6)上記入口開口と上記出口開口との間に延在し、上記上向き表面と上記下向き表面との間に画定された、加熱用チャネル;(7)上記入口開口に入り、上記加熱用チャネルを通って上記出口開口から出るように延在する、ある連続した長さのテープであって、上記連続した長さのテープは(7a)無機材料の粒体、(7b)上記加熱用チャネルを通って上記入口開口と上記出口開口との間の距離全体にわたって延在する、左側縁部、(7c)上記加熱用チャネルを通って上記入口開口と上記出口開口との間の距離全体にわたって延在する、右側縁部、並びに(7d)上記左側縁部及び上記右側縁部に対して平行であり、かつ上記左側縁部と上記右側縁部との間に位置する、中心線を備える、連続した長さのテープ;並びに(8)上記加熱用チャネルの長さに沿って温度プロファイルを生成する上記加熱用チャネルに熱を送達する、複数の独立して制御される加熱素子であって、上記温度プロファイルは、上記テープが上記加熱用チャネルを通って移動する際に上記テープの上記無機材料の収縮を引き起こすために十分な、500℃超の温度を有し、上記温度プロファイルは、上記加熱用チャネルの長さの少なくとも一部分に沿って漸増し、これにより、上記左側及び右側縁部における、収縮中の上記テープ内の応力は、上記加熱用チャネルの全長に沿って、縁部応力閾値未満のままとなり、又は上記中心線において測定された、上記テープ材料内の応力は、上記加熱用チャネルの全長に沿って、中心線応力閾値未満のままとなる、複数の独立して制御される加熱素子。少なくともいくつかのこのような実施形態では、上記縁部応力閾値は100MPa未満であり、上記中心線応力閾値は100MPa未満である。少なくともいくつかのこのような実施形態では、上記連続した長さのテープは、5mm超の平均幅を有する。少なくともいくつかのこのような実施形態では、上記入口開口及び上記出口開口は、垂直方向において互いに位置合わせされ、これにより、上記上向き表面に沿って配置された直線が、水平面に対して10°未満の角度を形成する。少なくともいくつかのこのような実施形態では、上記連続した長さのテープは、上記入口から上記出口への方向に移動し、上記テープの上記下側表面は、上記上向き表面に対して移動し、例えばここで、上記テープの上記下側表面は、上記上向き表面に接触し、上記上向き表面に対して摺動する。少なくともいくつかのこのような実施形態では、上記温度プロファイルは、第1の平均勾配を有する第1のセクション、第2の平均勾配を有する第2のセクション、及び第3の平均勾配を有する第3のセクションを含み、上記第1の平均勾配は上記第2の平均勾配より大きく、上記第1及び第2の平均勾配は正の勾配であり、上記第3の平均勾配は負の勾配であり、例えばここで、上記第1、第2及び第3のセクションは、互いに直接隣接し、この数字の順であり、また上記温度プロファイルのほとんど又は全体であり;例えば、少なくともいくつかのこのような実施形態では、上記第2のセクションは、500℃超の最低温度及び3200℃未満の最高温度を有し、上記最低温度から上記最高温度まで、少なくとも50インチ(127cm)の長さにわたって延在する。少なくともいくつかのこのような実施形態では、上記加熱用チャネルは幅が狭く、従って、その長さに沿った断面において、上記上向き表面と上記下向き表面との間の最大垂直距離は、1インチ(2.54cm)未満となる。少なくともいくつかのこのような実施形態では、上記加熱用チャネルは、少なくとも第1の加熱セクション及び第2の加熱セクションに分割され、張力制御システムが、上記第1の加熱セクションと上記第2の加熱セクションとの間に位置し、上記張力制御システムは、上記テープ内の張力を少なくとも部分的に分離させ、これにより、上記第2の加熱セクション内における上記テープ材料の張力が、上記第1の加熱セクションにおける上記テープ材料内の張力より大きくなる。少なくともいくつかのこのような実施形態では、上記テープの上記無機材料は、多結晶質セラミック材料及び合成鉱物のうちの少なくとも一方である。
本開示の態様は、焼結済みテープ材料のスプールを形成するためのプロセスに関し、上記プロセスは、必ずしも以下の順序でなくてよい以下のステップを含む:(1)テープを入力リールから解くステップであって、上記テープは、無機材料の粒体を含み、5mm超の幅を備える、ステップ;(2)上記テープの解かれた長さを、加熱ステーションを通して移動させるステップ;(3)上記テープを上記加熱ステーション内で500℃超まで加熱することにより、上記テープが上記加熱ステーションを通って移動する際に、上記テープの上記無機材料が焼結されるステップ;並びに(4)加熱及び焼結語に、上記テープを取り込み用リール上に巻くステップ。少なくともいくつかのこのような実施形態では、上記テープ材料は、加熱中、略水平な位置に保持される。少なくともいくつかのこのような実施形態では、上記入力リール上の上記テープ材料は、上記無機材料の粒体を支持する有機結合剤材料を更に含み、上記プロセスは、上記テープ材料を500℃超まで加熱する上記ステップの前に、上記テープ材料を200℃~500℃の温度まで加熱して、上記結合剤材料を除去するステップを更に含む。少なくともいくつかのこのような実施形態では、上記テープ材料の幅は10mm超であり、上記テープ材料の長さは10m超である。少なくともいくつかのこのような実施形態では、上記テープ材料は、少なくとも6インチ(15.24cm)/分の速度で解かれる。少なくともいくつかのこのような実施形態では、上記無機材料は、多結晶質セラミック材料及び合成鉱物のうちの少なくとも一方である。
本開示の態様は、製造システムに関し、上記製造システムは:上記製造システムを通って前進するテープであって、上記テープは、有機結合剤によって結合された無機材料の粒体を有する第1の部分を含む、テープ;及び上記テープの上記第1の部分を受承し、上記テープを焼結のために準備する、上記製造システムのステーションを備え、ここで、上記有機結合剤を化学的に変化させること、及び/又は上記有機結合剤を上記テープの上記第1の部分から除去して、上記無機材料の上記粒体を残すことによって、上記テープの第2の部分を形成し、これによって少なくとも部分的に、上記テープを焼結のために準備する。少なくともいくつかのこのような実施形態では、ある瞬間において、上記テープは同時に、上記ステーションに向かって、上記ステーションを通って、及び上記ステーションから延在し、これにより、上記瞬間において、上記テープは、上記第2の部分に連続的に接続された上記第1の部分を含む。少なくともいくつかのこのような実施形態では、上記ステーションは、上記無機材料の上記粒体を実質的に焼結することなく、上記テープの上記第1の部分から、重量で少なくともほとんどの上記有機結合剤を炭化又は燃焼させる。少なくともいくつかのこのような実施形態では、上記ステーションは、上記テープが上記ステーションと接触して、上記テープの上記第2の部分を形成する際に、上記テープの上記第1の部分から上記有機結合剤の少なくともほとんどを炭化又は燃焼させるための、アクティブヒータを備え、例えばここで、上記アクティブヒータは、温度が異なる複数の加熱ゾーンを含み、例えばここで、上記テープが受ける熱エネルギの量は、上記テープが上記ステーションを通って前進するに従って増大する。少なくともいくつかのこのような実施形態では、上記ステーションは第1のステーションであり、上記製造システムは、第2のステーションを更に備え、上記第2のステーションは、上記テープの上記第2の部分の上記無機材料を少なくとも部分的に焼結して、上記テープの第3の部分を形成し、例えばここで、ある瞬間において、上記テープは、上記第2の部分を経由して上記第3の部分に連続的に接続された上記第1の部分を含み、及び/又は上記第1のステーションは、上記第1のステーションと上記第2のステーションとの間の距離が10m未満となるよう、上記第2のステーションに近接し、これにより、上記テープの上記第2の部分のサーマルショックが軽減される。少なくともいくつかのこのような実施形態では、上記テープの上記第2の部分は、上記テープが前進する際、正の長さ方向張力下にあり、例えばここで、上記テープの上記第2の部分の上記長さ方向張力は、断面1mmあたり500重量グラム未満である。少なくともいくつかのこのような実施形態では、上記製造システムは、上記テープが上記ステーションを通って前進する際に、上記テープ上にガスを吹き付け、及び/又はガスを引き込み、例えばここで、上記ステーションは、上記テープを、上記テープ上に上記ガスを吹き付ける及び/若しくは引き込むことなく上記有機結合剤に着火する温度より高い温度まで加熱し、これにより上記有機結合剤は炭化若しくは燃焼するが、上記テープは着火せず、並びに/又は例えばここで、上記テープが上記ステーションを通って前進する際に上記テープ上に吹き付けられる及び/若しくは引き込まれる上記ガスの流れは、少なくとも上記テープの上記第2の部分上において層状となる。少なくともいくつかのこのような実施形態では、上記テープは上記ステーションを通って水平に前進し、いくつかのこのような実施形態では上記テープは、気体軸受及び/又は下層の表面によって直接支持され、上記テープが上記ステーションを通って前進する際に、上記表面に対して移動する。少なくともいくつかのこのような実施形態では、上記テープの上記第1の部分は、上記第2の部分よりも大幅に曲がりやすく、従って、上記第1の部分の、破断しない最小曲げ半径は、上記第2の部分の破断しない最小曲げ半径の半分未満である。
本技術の態様は、素地テープを焼結のために準備するための炉に関し、上記炉は、通路を画定する壁部を備え、上記通路は、上記通路の対向する端部に入口開口及び出口開口を有し、上記通路は、上記入口開口と上記出口開口との間に、少なくとも5cmの長さを有し、上記出口開口は狭くかつ細長く、高さと、上記高さに対し垂直な幅とを有し、上記高さは上記幅の1/5未満であり、上記高さは2cm未満であり;上記炉は、上記通路に熱エネルギをアクティブに供給するためのヒータを更に含み、上記ヒータは、少なくとも200℃の温度に達する。少なくともいくつかのこのような実施形態では、上記炉は、上記通路を通してガスを吹き付ける及び/又は引き込むガスモチベータを更に備え、例えばここで、上記ガスモチベータは、上記通路を通して少なくとも1リットル/分のガスを送達する。少なくともいくつかのこのような実施形態では、上記通路は、上述のように水平に配向される。少なくともいくつかのこのような実施形態では、上記ヒータは、上記入口から上記出口までの距離を有する上記通路に沿って温度が上昇する、複数の高温ゾーンを備える。
本技術の態様は、テープを処理するための方法に関し、上記方法は、以下のステップを含む:(1)製造システムを通してテープを前進させるステップであって、上記テープは、有機結合剤によって結合された無機材料の粒体を有する第1の部分を含む、ステップ;並びに(2)上記有機結合剤を化学的に変化させること、及び/又は上記テープの上記第1の部分から上記有機をを除去して、上記無機材料の上記粒体を残すことによって、上記製造システムのステーションにおいて、上記テープの第2の部分を形成することにより、上記テープを焼結のために準備するステップ。少なくともいくつかのこのような実施形態では、ある瞬間において、上記テープは、上記ステーションに向かって、上記ステーションを通って、及び上記ステーションから延在し、これにより、上記瞬間において、上記テープは、上記第2の部分に連続的に接続された上記第1の部分を含む。少なくともいくつかのこのような実施形態では、上記テープを焼結のために準備する上記ステップは、上記無機材料の上記粒体を(実質的に)焼結することなく、上記有機結合剤の少なくともほとんどを、上記テープの上記第1の部分から炭化又は燃焼させるステップを更に含む。少なくともいくつかのこのような実施形態では、上記テープの上記第1の部分は、上記第2の部分よりも大幅に曲がりやすく、従って、上記第1の部分の、破断しない最小曲げ半径は、上記第2の部分の破断しない最小曲げ半径の半分未満である。少なくともいくつかのこのような実施形態では、上記製造システムの上記ステーションは第1のステーションであり、上記処理方法は:第2のステーションにおいて上記テープの上記第2の部分を受承するステップ;及び上記第2のステーションにおいて上記テープの上記第2の部分の上記無機材料を少なくとも部分的に焼結して、上記テープの第3の部分を形成するステップを更に含み、例えばここで、少なくともいくつかのこのような実施形態では、ある瞬間において、上記テープは、上記第2の部分を経由して上記第3の部分に連続的に接続された上記第1の部分を含む。少なくともいくつかのこのような実施形態では、上記プロセスは、上記テープが前進する際に、上記テープの上記第2の部分に正の張力を印加するステップを更に含み、例えばここで、正の張力を印加する上記ステップは、上記テープの上記第2の部分の長さ方向の張力が、断面1mmあたり500重量グラム未満となるようなものである。少なくともいくつかのこのような実施形態では、上記プロセスは、上記テープが上記ステーションを通って前進する際に、上記テープ上にガスを吹き付ける及び/又は引き込むステップを更に含む。少なくともいくつかのこのような実施形態では、上記テープを前進させる上記ステップは、上記ステーションを通して上記テープを水平に前進させるステップを更に含む。少なくともいくつかのこのような実施形態では、上記プロセスは、上記テープを気体軸受及び/又は下層の表面によって直接支持し、上記表面に対して上記テープを移動させるステップを更に含む。
本開示の態様は、パッケージに関し、上記パッケージは:基板;第1の主表面と第2の主表面との間に延在する本体を備える焼結済み物品を備え、上記本体は焼結済み無機材料を含み、また:上記第1の主表面と上記第2の主表面との間の距離として定義される厚さ(t);上記厚さに対して垂直な上記第1又は第2の表面のうちの一方の第1の寸法として定義される、幅;並びに上記厚さ及び上記幅に対して垂直な、第1又は第2の表面のうちの一方の第2の寸法として定義される、長さを備え;上記焼結済み物品は上記基板に直接的又は間接的に接合される。いくつかのこのような実施形態では、上記本体の幅は約5mm以上、上記本体の厚さは約3μm~約1mmであり、上記本体の長さは約300cm以上である。いくつかのこのような実施形態では、上記焼結済み物品の一部分は平坦化可能であり、例えばここで、上記焼結済み物品は、平坦化されると、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力(薄板曲げ応力の方程式によって測定した場合の応力の絶対値)を示し;及び/又は例えばここで、上記焼結済み物品は、平坦化されると、上記物品のヤング率の1%以下の最大面内応力(薄板曲げ応力の方程式によって測定した場合の応力の絶対値)を示す。いくつかのこのような実施形態では、上記物品は、約80μmの厚さ及び0.03m超の曲げ半径を有し、上記物品は、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力(薄板曲げ応力の方程式によって測定した場合の応力の絶対値)を示し;又は上記物品は、約40μmの厚さ及び0.015m超の曲げ半径を有し、上記物品は、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力(薄板曲げ応力の方程式によって測定した場合の応力の絶対値)を示し;又は上記物品は、約20μmの厚さ及び0.0075m超の曲げ半径を有し、上記物品は、上記物品の(2点曲げ強度によって測定された)曲げ強度の25%以下の最大面内応力(薄板曲げ応力の方程式によって測定した場合の応力の絶対値)を示す。いくつかのこのような実施形態では、平坦化可能な上記焼結済み物品の上記部分は、約10cmの長さを備える。いくつかのこのような実施形態では、上記焼結済み物品の上記第1の主表面及び上記第2の主表面のうちの一方又は両方は、上記長さ又は上記幅に沿った1センチメートルの距離にわたって、100ナノメートル~50マイクロメートルの平坦性を有する。いくつかのこのような実施形態では、上記焼結済み無機材料は、約1mm未満の主境界面寸法を有する境界面を含み、上記境界面は、化学的不均質性及び結晶構造の不均質性のうちの一方又は両方を含む。いくつかのこのような実施形態では、上記焼結済み無機材料は、セラミック材料又はガラスセラミック材料を含む。いくつかのこのような実施形態では、上記焼結済み無機材料は、圧電材料、熱電材料、焦電材料、可変抵抗材料、又は光電材料のうちのいずれの1つを含む。いくつかのこのような実施形態では、上記焼結済み無機材料は、ジルコニア、アルミナ、イットリア安定化ジルコニア(YSZ)、スピネル、ガーネット、リチウム‐ランタン‐ジルコニウム酸化物(LLZO)、コーディエライト、ムライト、ペロブスカイト、パイロクロア、炭化ケイ素、窒化ケイ素、炭化ホウ素、チタン酸ビスマスナトリウム、バリウムチタン酸、二ホウ化チタン、窒化ケイ素アルミナ、酸窒化アルミニウム、若しくは反応性セラム化ガラスセラミックのうちの1つを含む。いくつかのこのような実施形態では:上記焼結済み物品は、長さに沿って、ある組成を有する少なくとも10平方センチメートルの面積を含み、上記組成の少なくとも1つの成分は、上記面積にわたって、約3重量%未満のばらつきを有する。いくつかのこのような実施形態では、焼結済み物品は、長さに沿って、ある結晶構造を有する少なくとも10平方センチメートルの面積を含み、上記結晶構造は、上記面積にわたって、百分率にして約5未満のばらつきを有する重量パーセントを有する少なくとも1つの相を有する。いくつかのこのような実施形態では、焼結済み物品は、長さに沿って、ある多孔率を有する少なくとも10平方センチメートルの面積を含み、上記多孔率は、約20%未満のばらつきを有する。いくつかのこのような実施形態では、上記焼結済み物品の上記第1の主表面及び上記第2の主表面のうちの一方又は両方は、粒体間の境界の各表面の凹状部分に対して25nm~150μmの高さを有する粒体を含む、粒体プロファイルを有する。いくつかのこのような実施形態では、上記焼結済み物品の上記第1の主表面及び上記第2の主表面のうちの一方又は両方は、上記長さ又は上記幅に沿った1センチメートルの距離にわたって、100nm~50μmの平坦性を有する。いくつかのこのような実施形態では、上記焼結済み物品の上記第1の主表面及び上記第2の主表面のうちの一方又は両方は、寸法が5μm超の接着又は摩擦に由来する表面欠陥を100個未満だけ有する、少なくとも10平方センチメートルの面積を含む。いくつかのこのような実施形態では、上記焼結済み物品の上記第1の主表面及び上記第2の主表面のうちのもう一方は、焼結中に上記炉の表面に沿って摺動したこと等を原因とする、寸法が5μm超の接着若しくは摩擦に由来する表面欠陥を備える。いくつかのこのような実施形態では、上記基板は、導電性金属を含む。いくつかのこのような実施形態では、上記基板は、アルミニウム、銅、又はこれらの組み合わせを含む。いくつかのこのような実施形態では、上記基板は、適合性ポリマー材料を含む。いくつかのこのような実施形態では、上記基板は、ポリイミドを含む。いくつかのこのような実施形態では、上記基板に直接的又は間接的に接合された上記焼結済み物品は、コアの周りに少なくとも1回巻き付けられ、上記コアは、60cm未満の直径を有する。いくつかのこのような実施形態では、上記パッケージは、上記焼結済み物品と上記基板とを接合する中間層を更に備え、例えばここで、上記中間層は40μm未満の厚さを有し、及び/又は上記基板は、上記中間層に接触する溝を備える。いくつかのこのような実施形態では、上記パッケージは、上記焼結済み物品の上記第1の主表面及び上記第2の主表面のうちの一方又は両方の少なくとも一部分の上に、金属ベース層を更に備え、例えばここで、上記金属ベース層は、銅、ニッケル、金、銀、真ちゅう、鉛、スズ、若しくはこれらの組み合わせを含み、並びに/又は上記金属ベース層及び上記基板は、上記焼結済み物品の同一の主表面に接合され、並びに/又は上記金属ベース層は、上記基板内のアパーチャを通して、上記焼結済み物品に接合される。いくつかのこのような実施形態では、上記パッケージは、上記金属ベース層に電気的に接続された半導体デバイスを更に備え、例えばここで、上記半導体デバイス上のLEDから発せられた光は、上記焼結済み物品の上記本体の厚さを通して伝達され、及び/又は上記焼結済み物品は、8W/m・K超の熱伝導率を有する。
本開示の更なる態様は、すぐ上に記載した上記パッケージの一部又は全体を作製する方法に関し、上記方法は、基板を焼結済み物品の第1又は第2の主表面に直接的又は間接的に接合するステップを含む。いくつかのこのような実施形態では、上記基板は、適合性ポリマー材料を含む。いくつかのこのような実施形態では、上記基板は、導電性金属を含む。いくつかのこのような実施形態では、上記方法は、前駆物質中間層を上記基板及び上記焼結済み物品のうちの一方又は両方に適用するステップを更に含み、上記前駆物質中間層は、上記基板と上記焼結済み物品とを接合する。いくつかのこのような実施形態では、上記方法は、上記基板を上記焼結済み物品から分離するために、一時的接着剤を熱によって不活性化するステップを更に含む。いくつかのこのような実施形態では、上記方法は、金属ベース層を、上記焼結済み物品の上記第1の主表面及び上記第2の主表面のうちの一方又は両方の少なくとも一部分に結合させるステップを更に含み、上記方法は、半導体デバイスを上記金属ベース層に電気的に接続するステップを更に含んでよい。
本開示の態様は、焼結済みテープ材料を形成するためのプロセスに関し、上記プロセスは:(1)テープを加熱ステーションに向かって移動させるステップであって、上記テープは無機材料の粒体を含む、ステップ;(2)スレッディング材料の第1のセクションを、上記テープの前端セクションに連結するステップ;(3)上記加熱ステーションの外側に位置する上記スレッディング材料の第2のセクションに力を印加することによって、上記スレッディング材料の上記第1のセクション及び上記テープの上記前端セクションの両方を、上記加熱ステーションを通して牽引するステップ;並びに(4)上記加熱ステーション内にある上記テープの少なくとも一部分を、500℃超の温度まで加熱することにより、上記テープが上記加熱ステーションを通って移動する際に上記テープの上記無機材料を焼結するステップを含む。いくつかのこのような実施形態では、上記加熱ステーションは入口及び出口を有し、上記プロセスは、上記スレッディング材料が上記加熱ステーションを通って延在し、上記スレッディング材料の上記第1のセクションが上記入口の上流に位置し、上記スレッディング材料の上記第2のセクションが上記出口の下流に位置するように、上記スレッディング材料を位置決めするステップを更に含み、上記連結するステップは、この位置決めするステップの後に実施される。いくつかのこのような実施形態では、上記スレッディング材料は、上記テープの上記無機材料とは異なる材料の、細長いストリップであり、例えばここで、上記スレッディング材料と上記テープの上記無機材料との間の違いは、材料のタイプの違い及び焼結の程度の違いのうちの少なくとも一方であり、並びに/又は上記テープの上記前端セクションは、上記テープの下側表面が上記スレッディング材料の上側表面に接触するように、上記スレッディング材料の上記第1のセクションに重なる。いくつかのこのような実施形態では、上記連結するステップは、接着材料を介して上記スレッディング材料を上記テープに結合するステップを含み、例えばここで、上記スレッディング材料の熱膨張係数は、上記テープの上記無機材料の熱膨張係数の±50%以内であり、かつ上記接着材料の熱膨張係数の±50%以内であり、並びに/又は上記テープの上記無機材料は、多結晶質セラミック材料及び合成鉱物のうちの少なくとも一方であり、上記接着材料はセラミック含有接着材料であり、上記スレッディング材料は、焼結済みセラミック材料及び金属材料のうちの少なくとも一方である。いくつかのこのような実施形態では、上記テープを上記加熱ステーションに向かって移動させる上記ステップは、上記テープを入力リールから解くステップを含み、上記スレッディング材料の上記第2のセクションは、取り込み用リールに連結され、上記力は、上記取り込み用リールの回転によって生成される。いくつかのこのような実施形態では、上記プロセスは:上記入力リールから解く上記ステップの後に、加熱ステーションを通して上記テープを移動させ続け、ある長さの上記テープの焼結済み無機材料を形成するステップ;並びに加熱及び焼結後に上記テープを取り込み用リールに巻き付ける別のステップを更に含み、例えばここで、上記テープは加熱中、略水平な位置に保持され、例えばここで、上記入力リール上の上記テープは、上記無機材料の粒体を支持する有機結合剤材料を更に含み、また上記プロセスは、上記テープを500℃超の温度まで加熱する上記ステップの前に、上記結合剤材料を除去するために、上記テープを200℃~500℃の温度まで加熱するステップを更に含む。
本開示の態様は、焼結済みテープ材料のスプールを形成するためのプロセスに関し、上記プロセスは、以下のステップを含む:(1)テープを入力リールから解くステップであって、上記テープは無機材料の粒体を含む、ステップ;(2)スレッディング材料を、加熱ステーションのチャネルを通して、上記加熱ステーションの出口から上記加熱ステーションの入口に向かう方向に移動させることにより、スレッディング材料の第1のセクションを上記加熱ステーションの上記入口から外に延在させるステップ;(3)上記スレッディング材料の上記第1のセクションを、上記テープに連結するステップ;(4)上記スレッディング材料の第2のセクションを、上記加熱ステーションの上記出口の下流に位置する取り込み用リールに連結するステップ;(5)上記取り込み用リールによって上記スレッディング材料に張力を印加し、続いて上記張力が上記テープに印加されて、上記加熱ステーションを通して上記テープを牽引するよう、上記取り込み用リールを回転させるステップ;(6)上記加熱ステーション内の上記テープの少なくとも一部分を、500℃超の温度まで加熱することにより、上記テープが上記加熱ステーションを通って移動する際に上記テープの上記無機材料を焼結するステップ;並びに(7)加熱及び焼結後に上記テープを取り込み用リールに巻き付けるステップ。いくつかのこのような実施形態では、以下のうちの少なくとも一方が成り立つ:(i)上記スレッディング材料と、上記テープの上記無機材料とは、互いに異なっている;及び(ii)上記スレッディング材料の焼結の程度は、上記入力リール上の上記テープの上記無機材料の焼結の程度より高い。いくつかのこのような実施形態では、上記テープの上記前端セクションは、上記テープの下側表面が上記スレッディング材料の上側表面に接触するように、上記スレッディング材料の上記第1のセクションに重なり、また上記連結するステップは、接着材料を介して上記スレッディング材料を上記テープに結合するステップを含む。
本技術の態様は、ロール・ツー・ロール方式テープ焼結システムに関し、上記システムは:(1)無機材料の粒体を含むある長さのテープ材料の入力ロールであって、上記入力ロール上の上記テープ材料の上記無機材料は、第1の多孔率を有する、入力ロール;(2)焼結ステーションであって、(2a)入口、(2b)出口、(2c)上記入口と上記出口との間に延在するチャネル、及び(2d)上記チャネルを500℃超の温度まで加熱するヒータを備え、上記テープ材料は、上記入力ロールから、上記焼結ステーションの上記入口に向かって延在し、上記チャネル内の熱は、上記テープ材料の上記無機材料の焼結を引き起こす、焼結ステーション;(3)上記焼結ステーションから出た後の上記テープ材料の上記長さを巻き取る、取り込み用ロール;並びに(4)上記焼結ステーションの上記出口を通って上記入口の外へと延在する、ある長さのスレッディング材料を備え、上記スレッディング材料の第1の端部セクションは、上記焼結ステーションに入る前に、上記テープ材料の端部セクションに連結され、上記スレッディング材料の第2の端部セクションは、上記取り込み用ロールの周りに巻き付けられ、これにより、上記取り込み用ロールの巻きによって上記スレッディング材料に印加される張力が、上記テープ材料に印加される。いくつかのこのような実施形態では、以下のうちの少なくとも一方が成り立つ:(i)上記スレッディング材料と、上記テープの上記無機材料とは、互いに異なっている;及び(ii)上記スレッディング材料の焼結の程度は、上記入力ロール上の上記テープの上記無機材料の焼結の程度より高い。いくつかのこのような実施形態では、上記テープの上記前端セクションは、上記テープの下側表面が上記スレッディング材料の上側表面に接触するように、上記スレッディング材料の上記第1のセクションに重なり、また上記スレッディング材料は、接着材料によって形成された結合を介して上記テープ材料に連結され、例えばここで、上記無機材料は、多結晶質セラミック材料及び合成鉱物のうちの少なくとも一方であり、上記接着材料はセラミック接着材料であり、上記スレッディング材料は、焼結済みセラミック材料及び金属材料のうちの少なくとも一方である。いくつかのこのような実施形態では、上記焼結ステーションの上記出口、上記入口、及び上記チャネルは、略水平な平面内にあり、従って、水平面に対して上記出口と上記入口との間に画定される角度は10°未満である。
本開示の態様は、焼結済みテープ材料を形成するためのプロセスに関し、上記プロセスは、以下のステップを含む:(1)テープを入力リールから解くステップであって、上記テープは無機材料の粒体を含み、上記入力リール上の上記テープは、1マイクロメートル~1ミリメートルの平均厚さを有する、ステップ;(2)上記テープの解かれた長さを、第1の湾曲セクションを有する経路に沿って、加熱ステーションを通して移動させることにより、上記テープが、0.01m~13,000mの曲率半径に曲げられるステップ;(3)上記テープの解かれた長さを上記曲率半径に曲げたまま、上記加熱ステーション内の上記テープを500℃超の温度まで加熱するステップであって、上記テープの上記無機材料は、上記テープが上記加熱ステーションを通って移動する際に焼結される、ステップ;並びに(4)加熱及び焼結の後に、上記テープを取り込み用リール上に巻き付けるステップ。考えられる実施形態では、このようなプロセスは更に幅広くてよく、上記解くステップ及び/又は巻き付けるステップを含まなくてもよい。いくつかのこのような実施形態では、上記加熱ステーションは、上記加熱ステーションの入口と出口との間に延在するチャネルを画定する、下側表面及び上側表面を含み、上記下側表面は、上記入口と上記出口との間に長手方向に延在する凸状曲面を含み、上記凸状曲面は、上記経路の上記第1の湾曲セクションを画定する。いくつかのこのような実施形態では、上記上側表面は、上記下側表面の上記凸状曲面に一致する凹状曲面を含み、これにより、上記チャネルの高さは、上記チャネルの長さの少なくとも一部分に沿って、一定のままとなる。いくつかのこのような実施形態では、上記凸状曲面は、気体軸受の上側表面であり、上記気体軸受は、加圧ガスを上記チャネルに送達することにより、上記テープが上記加熱ステーションを通って移動する際に、上記テープを上記凸状曲面の上方において支持する。いくつかのこのような実施形態では、上記凸状曲面は、上記入口と上記出口との間の長手方向長さ全体にわたって延在する連続した曲面であり、上記凸状曲面の最大隆起は1mm~10cmである。いくつかのこのような実施形態では、上記加熱ステーションを通る上記経路は、0.01m~13,000mの曲率半径を有する第2の湾曲セクションを有し、上記テープは、上記テープの解かれた長さを上記第2の湾曲セクションの上記曲率半径に曲げたまま、上記加熱ステーション内において500℃超の温度まで加熱され、例えばここで、上記テープは、上記テープが上記第1の湾曲セクションを通過する際には第1の温度まで加熱され、上記テープが上記第2の湾曲セクションを通過する際には、上記第1の温度とは異なる上記第2の温度まで加熱される。いくつかのこのような実施形態では、上記経路の上記第1の湾曲セクションは、上記テープが重力下で1対の支持体の間に吊り下がることによって上記テープ内に上記曲率半径が形成される、フリーループセグメントによって画定される。いくつかのこのような実施形態では、上記加熱ステーションは、上記経路の上記第1の湾曲セクションを画定する、上記加熱ステーション内に位置する凸状曲面を有し、上記プロセスは、上記テープを上記凸状曲面と一致するように曲げるように、上記テープに張力を印加するステップを更に含み、例えばここで、上記凸状曲面は、マンドレル及びローラのうちの少なくとも一方の外面である。いくつかのこのような実施形態では、上記テープは、1分あたりテープの長さ1インチ(2.54cm)~100インチ(254cm)の速度で、上記加熱ステーションを通して移動される。いくつかのこのような実施形態では、張力は上記テープに長手方向に印加され、上記テープはある幅を有し、上記張力は、上記テープの幅1直線インチあたり少なくとも0.1重量グラムである。いくつかのこのような実施形態では、上記テープの上記無機材料は、多結晶質セラミック材料及び合成鉱物のうちの少なくとも一方である。
本開示の態様は、焼結済みテープ材料を形成するためのプロセスに関し、上記プロセスは:(1)連続した長さのテープの第1の部分が加熱ステーションの入口の上流に位置し、上記連続した長さのテープの第2の部分が上記加熱ステーションの出口の下流に位置し、上記連続した長さのテープの第3の部分が上記第1の部分と上記第2の部分との間に位置するように、上記連続した長さのテープを、上記加熱ステーションを通して移動させるステップであって上記連続した長さのテープは、無機材料の粒体を含む、ステップ;(2)上記加熱ステーション内の、上記連続した長さのテープの上記第3の部分を、500℃超の温度まで加熱することによって、上記無機材料を上記加熱ステーション内で焼結するステップ;及び(3)上記加熱ステーション内を500℃超の温度にしたまま、上記連続した長さのテープの上記第3の部分を、0.01m~13,000mの曲率半径まで曲げるステップを含む。少なくともいくつかのこのような実施形態では、上記曲げるステップは、上記第3の部分が、上記加熱ステーション内に位置する曲面の周りで曲げられるように、上記連続した長さのテープに対して長手方向の力を印加するステップを含む。少なくともいくつかの実施形態では、上記連続した長さのテープを、入力リールから解き、上記連続した長さのテープを、上記加熱ステーションを通して連続的にかつ順次移動させることにより、上記連続した長さのテープ全体が、上記加熱ステーションを通って移動する間に、0.01m~13,000mの曲率半径までの曲げを受け、上記連続した長さのテープは、上記曲げるステップ及び上記加熱するステップの後、取り込み用リール上に巻き付けられる。
本開示の態様は、ロール・ツー・ロールテープ焼結システムに関し、上記システムは以下を備える:(1)無機材料の粒体を含むある長さのテープ材料の入力ロールであって、上記入力ロール上の上記テープ材料の上記無機材料は、第1の多孔率を有する、入力ロール;(2)焼結ステーションであって、(2a)入口;(2b)出口;(2c)上記入口と上記出口との間に延在するチャネル;(2d)上記チャネルを500℃超の温度まで加熱するヒータを備え;上記テープ材料は、上記入力ロールから、上記焼結ステーションの上記入口に入り、上記焼結ステーションの上記チャネルを通って、上記焼結ステーションの上記出口の外へと通過し、上記チャネル内の熱は、上記テープ材料の上記無機材料の焼結を引き起こす、焼結ステーション;(3)上記テープ材料が上記加熱ステーションを通過する際に、上記テープ材料の長手方向軸に沿ってある曲率半径を誘発する、上記焼結ステーション内に位置する曲げシステムであって、上記曲率半径は0.01m~13,000mである、曲げシステム;及び(4)上記焼結ステーションから出た後の上記長さのテープ材料を巻き取る、取り込み用ロールであって、上記取り込み用ロール上の上記テープ材料の上記無機材料は、上記第1の多孔率未満の第2の多孔率を有する、取り込み用ロール。いくつかのこのような実施形態では、上記出口及び上記入口は、略水平な平面内にあり、従って、水平面に対して上記出口と上記入口との間に画定される角度は10°未満であり、上記曲げシステムは、上記入口と上記出口との間の経路に沿って配置された凸状曲面を含み、上記テープは、上記テープが上記加熱ステーションを通って移動する際に、上記凸状曲面の周りで曲げられ、上記凸状曲面は上記曲率半径を画定し、かつ上記テープ材料の幅方向の軸に対して平行な軸の周りで湾曲する。いくつかのこのような実施形態では、上記凸状曲面は、マンドレル及びローラのうちの少なくとも一方の外面であり、並びに/又は上記凸状曲面は、上記焼結ステーションの上記チャネルを画定する上記焼結ステーションの下側表面であり、例えばここで、上記凸状曲面は、上記焼結ステーションの上記入口から上記出口まで、上記チャネルの全長にわたって延在する、連続した曲線を形成する。いくつかのこのような実施形態では、上記凸状曲面は、上記チャネルにガスを送達する気体軸受の上側表面であり、上記テープを、上記凸状曲面に接触させることなく、上記チャネル内で支持する。他のこのような実施形態では、上記曲げシステムは、上記焼結ステーションと共に配置された1対の支持構造体を含み、上記支持構造体は互いから離間して空隙を形成し、上記テープは、重力によって上記支持構造体の間に下向きに垂れ下がって、上記曲率半径を形成する。
本開示の態様は、ロール・ツー・ロールテープ焼結システムに関し、上記システムは以下を備える:(1)無機材料の粒体を含むある長さのテープ材料の入力ロールであって、上記入力ロール上の上記テープ材料の上記無機材料は、第1の多孔率を有する、入力ロール;(2)焼結ステーションであって、(2a)入口;(2b)出口;(2c)長手方向長さLを有する、上記入口と上記出口との間に延在するチャネルであって、上記チャネルの下側表面は、上記長手方向長さLにわたって延在する連続した曲面によって画定され、曲率半径R及び最大隆起Hを有し、R=H+(L^2)/Hであり、0.1mm<H<100mm及び0.1m<L2<100mである、チャネル;(3)上記チャネルを500℃超の温度まで加熱するヒータであって、上記テープ材料は、上記入力ロールから、上記焼結ステーションの上記入口に入り、上記焼結ステーションの上記チャネルを通って、上記焼結ステーションの上記出口の外へと通過し、上記チャネル内の熱は、上記テープ材料の上記無機材料の焼結を引き起こす、ヒータ;並びに(4)上記焼結ステーションから出た後の上記長さのテープ材料を巻き取る、取り込み用ロールであって、上記取り込み用ロール上の上記テープ材料の上記無機材料は、上記第1の多孔率未満の第2の多孔率を有する、取り込み用ロール。
本開示のいくつかの態様は、上で開示され、かつ例えば図3、4、6、8に関して説明されているように、テープの部分を互いから分離させることによる、焼結準備のためのテープ分離システムに関する。より具体的には、上記テープ分離システムは、素地テープ及び上記素地テープを支持するキャリアウェブ(例えばポリマー基板)を備える、テープ材料のソース(例えば事前に作製されたロール、事前に作製された長いストリップ、インラインでの素地テープの製造)を含む。上記素地テープは、結合剤(例えば上で開示されている有機結合剤;無機結合剤を更に含んでもよい)中に、無機材料の粒体を含む。上記テープ分離システムは更に:上記キャリアウェブを巻き戻し方向に配向し、上記素地テープを、例えば図8の角度Cだけ上記巻き戻し方向とは異なる下流処理方向に配向するための、剥離器(図8を参照)と;上記テープ材料を上記ソースから受承し、上記テープ材料を上記剥離器へと搬送するよう、位置決め及び構成された、真空ドラムとを含む。上記真空ドラムは、上記キャリアウェブへの張力の印加を促進するために上記キャリアウェブに吸引力を印加するための孔を備える。例えば、上記真空ドラムの吸引は、上記テープに、上記重力及び摩擦力を超える引力を印加する。代替実施形態では、例えば磁性キャリアウェブに作用する磁力、静電気力等の、他の引力のソースを用いてよく、上記真空ドラムは、引力ドラムとしてより広く特徴づけることができる。ある例示的実施形態によると、断面積あたりの力としての上記キャリアウェブの張力は、上記テープ材料が上記真空ドラムから上記剥離器へと搬送される際の上記素地テープの張力より高く、これにより、上記素地テープを上記キャリアウェブから分離する間の、上記素地テープの変形が軽減される。上記キャリアウェブは、上記テープを移動させて制御するために使用される力を受ける。同様に、キャリアウェブを除去する上記剥離器は、上記素地テープの形状を保護するよう作用し、これは、幾何学的形状の一貫性に関して特に高品質な焼結済み物品の製造を容易にする。
本開示の他の態様は、例えば図9、10、及び12に示し、これらに関して説明したような、焼結準備のためにテープを処理するためのシステムに関する。上記システムは:テープであって、上記テープの素地部分を備え、上記素地部分は、有機結合剤中の無機材料の粒体を有する、テープと;アクティブヒータを備える結合剤バーンアウトステーションとを備える。上記テープは、上記結合剤バーンアウトステーションを通って前進し、これにより、上記結合剤バーンアウトステーションが、上記テープの上記素地部分を受承して、上記テープの上記素地部分が上記ヒータからの熱に接する際に上記有機結合剤を炭化又は燃焼し、これにより、上記テープの上記無機材料の焼結のための準備ができた上記テープの第2の部分が形成される。いくつかの実施形態では、ある瞬間において、上記テープは同時に、上記結合剤バーンアウトステーションに向かって、上記結合剤バーンアウトステーションを通って、及び上記結合剤バーンアウトステーションから延在し、これにより、上記瞬間において、上記テープは、上記第2の部分に連続して接続された上記素地部分を含み、例えばここで、上記結合剤バーンアウトステーションは、上記無機材料の上記粒体を実質的に焼結することなく、上記テープの上記素地部分から、重量で少なくともほとんどの上記有機結合剤を炭化又は燃焼する。このようなシステムは特に、有機結合剤が除去又は炭化され、またこれに関連して上記処理中にテープの寸法が変化したテープの、知覚される弱さを理由として、当業者にとって驚くべきものとなり得る。いくつかの実施形態では、焼結準備のためにテープを処理するためのシステムは更に、超低張力ダンサーを含み、これは、上記テープに有意な張力を印加することなく上記テープを再配向するための、軽量かつ低慣性のローラを含み、これにより、上記テープの上記第2の部分の張力は、断面1mmあたり500重量グラム未満となり、これにより、上記テープの上記第2の部分の破断の可能性が低減され、焼結のための上記テープの長い連続した長さを促進する。いくつかの実施形態では、焼結準備のためにテープを処理するためのシステムは、上記テープが上記結合剤バーンアウトステーションを通って前進する際に、上記テープ上にガスを吹き付け、及び/又は引き込み、上記結合剤バーンアウトステーションは、上記テープ上に吹き付けられる及び/又は引き込まれる上記ガスを用いずに上記有機結合剤が発火する温度より高い温度で、上記テープを加熱し、これにより、上記有機結合剤は炭化又は燃焼されるものの、上記テープは引火しない。
本開示の更なる態様は、テープを処理するための上記システムを備える製造ラインに関し、ここで、上記結合剤バーンアウトステーションは第1のステーションであり、上記製造ラインは更に、上記第1のステーションから離間した第2のステーションを備える。上記第2のステーションは、図12に示すように、上記第1のステーションから離間していてよく、及び/又は共通のハウジングが存在してよく、離間は、例えばこれら2つのステーションに対する空気流を制御する中間換気システムによるものであってよい。上記第2のステーションは、上記テープの上記第2の部分の無機材料を少なくとも部分的に焼結して、上記テープの第3の部分を形成し、ここである瞬間において、上記テープは、上記第2の部分を経由して上記第3の部分に連続して接続された素地部分を含む。いくつかの実施形態では、上記テープの上記第3の部分は、上記第2の部分より大幅に曲がりやすく、これにより、上記第3の部分の非破断最小曲げ半径は、上記第2の部分の非破断最小曲げ半径の半分未満となり、また上記素地部分は、上記第2の部分より大幅に曲がりやすく、これにより、上記素地部分の非破断最小曲げ半径は、上記第2の部分の上記非破断最小曲げ半径の半分未満となる。他の実施形態では、上記焼結システムを用いて、より短い長さの物品しか処理しない場合等には、上記テープ又は他の物品は、このような3つの異なる部分を備えなくてよい。上記製造ラインは更に、例えば剥離器及び真空ドラムを用いた、上述のテープ分離システムを含んでよい。
本開示のいくつかの態様は、例えば図3に示し、これに関して上で説明したような、無機材料の粒体を含むテープ材料と、焼結ステーションとを備える、焼結システムに関する。上記焼結ステーションは、入口、出口、及び上記入口と上記出口との間に延在するチャネルを含む。ある瞬間において、上記テープ材料は、上記焼結ステーションの上記入口内へ、上記チャネルを通って、そして上記出口から外へと延在する。上記チャネル内の熱によって上記無機材料は焼結され、これにより、上記無機材料は、上記入口における第1の多孔率と、上記出口における、上記第1の多孔率未満である、例えば少なくとも10体積%だけ低い、第2の多孔率とを有する。更に、上記テープ材料には、例えば上記低張力ダンサー、リールの巻き上げ/解き、方向性空気軸受、ローラ速度の変更、又は重力及び摩擦力を超える正の張力を上記テープ材料に印加するための、上記システムの他の構成部品によって印加された張力によって、上記テープ材料が上記焼結ステーションの上記チャネルを通過する際に正の張力が印加され、これにより、焼結ひずみが軽減される。いくつかの実施形態では、上記テープ材料は、少なくとも1インチ(2.54cm)/分、例えば少なくとも10インチ(25.4cm)、少なくとも20インチ(50.8cm)、少なくとも40インチ(101.6cm)/分の速度で、上記焼結ステーションを通って移動する。本明細書で開示される長いテープではなく、個別の物品に関して、上記物品は、上記焼結ステーション内で停止若しくは滞留してよく、又は異なる複数の速度で移動してよい。いくつかの実施形態では、上記焼結ステーションの上記チャネルは、少なくとも2つの、独立して制御される加熱素子によって加熱され、上記加熱素子は、上記チャネルの温度が、上記焼結ステーションの上記入口から上記出口に向かう方向において、上記チャネルの長さに沿って上昇するような温度プロファイルを生成し、上記チャネル内の焼結温度は800℃超である(例えば図19及び関連する上述の記述を参照)。いくつかの実施形態では、上記焼結システムは更に、上記焼結ステーションの上記チャネルに沿って配置された曲面を含み(例えば図58及び関連する上述の記述を参照)、ここで上記テープ材料は、上記テープ材料が上記焼結ステーションを通って移動する際に、上記曲面の周囲において、上記テープ材料の幅方向軸に関して曲がり、これによって上記テープ材料の形状に影響を及ぼし、例えばテープ材料を平坦化する、及び/又は膨らみ若しくは他の歪みを防止する(例えば図1を参照)。いくつかの実施形態では、上記焼結ステーションの上記出口及び上記入口は、1つの略水平な平面内にあり、従って、上記焼結ステーションの上記出口と上記入口との間に画定される、水平面に対する角度は、10°未満となり、これにより、上記チャネルに対するガスの流れが少なくとも部分的に制御される。出願人は、その代わりに、又はこれに加えて、通気口及びファンによって、並びに/又は上記テープを狭い空間に閉じ込めることによって、ガスの流れを制御できることを発見した。例えばいくつかのこのような実施形態では、上記焼結ステーションは更に、上記チャネルの下側表面を画定する、上向きチャネル表面と、上記チャネルの上側表面を画定する、下向きチャネル表面とを備え、ここで上記下向きチャネル表面は、上記テープ材料の上側表面付近に位置決めされ、これにより、上記テープ材料の上記上側表面と上記下向きチャネル表面との間の間隙は、0.5インチ(1.27cm)未満となり、これによって上記チャネル内のガスの流れが少なくとも部分的に制御される。上記テープ材料は特に、幅が広く、長さが長く、また厚さが薄いものであってよく、5ミリメートル超の幅、30センチメートル超の長さ、及び3マイクロメートル~1ミリメートルの厚さを有し、また上記テープの上記無機材料は、多結晶質セラミック材料及び合成鉱物のうちの少なくとも1つであってよい。他の実施形態では、上記テープ又は他の物品は、より狭い、より短い、及び/又はより厚い場合があるが、例えば、焼結は、焼結時間/エネルギコストに関して効率的でない場合があり、上記テープは上で開示されているように巻かれない、及び/又は平坦化されない場合がある。
本開示の他の態様は、セラミックテープを製造するためのプロセスに関し、上記プロセスは、多結晶質セラミックを含むテープを、上記多結晶質セラミックの粒子を熱源に曝露して上記粒子間の焼結を誘発することにより、上記多結晶質セラミックの多孔率が20体積%未満となるまで焼結するステップを含む。上記テープは特に薄型であり、上記テープの厚さは500μm未満であり、これにより、熱浸透による高速焼結を促進する。更に、上記テープは、幅が少なくとも5mm、及び長さが少なくとも300cmである。いくつかの実施形態では、上記プロセスは更に、上記焼結するステップ中に上記テープに正の長さ方向の張力を印加するステップを含む。いくつかのこのような実施形態では、上記プロセスは更に、上記焼結するステップ中に、例えば上記焼結ステーションの上記チャネルを通して、上記テープを、上記熱源に向かって、及びその後上記熱源から離すように、移動させるステップを含む。いくつかの実施形態では、上記焼結するステップの時間量は特に短く、上記テープのいずれの特定の部分に関して合計2時間未満であり、これにより、上記セラミックテープ内での小さな粒体サイズの維持が補助され、強度が改善され、多孔率が低減され、エネルギが節約され;例えばいくつかのこのような実施形態では、上記焼結するステップの合計時間は、例えば従来のバッチ焼結の20時間に比べて1時間未満であり、上記焼結するステップ後の上記多結晶質セラミックの密度は、体積で95%超の密度であり、及び/又は上記テープは、上記焼結するステップの後、例えば閉鎖された細孔を備え、ピンホールを全く備えず、表面の欠陥が少なく、幾何学的一貫性を備える。いくつかの実施形態では、上記テープは、リチウム等の、上記焼結するステップ中に気化する揮発性成分を含み、上記揮発性成分は無機性であり、また上記テープは、上記焼結するステップの後に比べて、上記焼結するステップの前に、上記揮発性成分を少なくとも1体積%(例えば少なくとも5%、少なくとも10%、及び/又は200%以下、例えば100体積%以下だけ)多く含む。上記揮発性成分の一部は気化され得るものの、出願人は、本発明の焼結技術は、高い蒸気圧による上記揮発性成分の放出を防止するために、焼結されている材料を、上記揮発性成分を含有する砂の中で取り囲む、密閉されたるつぼを使用する従来のプロセスよりも、はるかに効率的であると考えている。出願人は、上記物品の焼結の速度及び幾何学的形状を用いて、このような揮発性材料を、上記揮発性成分があまりに多く逃げてしまう前に、迅速に焼結でき、また上で開示されているように、過剰な揮発性成分のソースを素地テープに添加して、結果として得られる焼結済み物品の特性を、立方晶結晶のパーセンテージ、小さな粒体サイズ、より低い多孔率、及びより高いイオン伝導度、気密性、強度等に関して大幅に改善できることを発見した。
本開示の更に他の態様は、互いに対して焼結された無機材料(セラミック、ガラスセラミック、ガラス、金属)の粒体を含む本体を備える、テープ(例えば図67A、67B、68、69、及び関連する記述を参照;図29及び78、並びに上述の関連する記述も参照)又は他の物品(例えばシート)に関し、例えばここで、上記無機材料の粒子中の原子は、上記粒子の境界にわたって分散し、上記粒子を液体状態へと完全に融解させる等することなく、上記粒子を一体に融着させて1つの固体片を生成する。そうは言っても、実施形態は、非晶質の又は非晶質に近い材料の物品を含む(例えば図81)。上記本体は、第1の主表面と第2の主表面との間に延在し、ここで上記本体は、上記第1の主表面と上記第2の主表面との間の距離として定義される厚さ、上記厚さに対して垂直な上記第1の主表面の第1の寸法として定義される幅、並びに上記厚さ及び上記幅の両方に対して垂直な上記第1の主表面の第2の寸法として定義される長さを有する。上記テープは長く、約300cm以上の長さを有する。上記テープは薄く、約3μm~約1mmの厚さを有する。上記テープは特に幅が広く、約5mm以上の幅を有する。他の実施形態では、上記テープ又は他の物品は、本明細書で開示されるような他の寸法を有してよい。
ある例示的実施形態によると、上記テープの幾何学的一貫性は、以下のようなものである:長さ方向においてある距離、例えば10cm、50cm、1m、2m、10mだけ離間した複数の場所で測定した場合の上記テープの幅の差は、極めて小さな量、例えば200μm未満、例えば100μm未満、例えば50μm未満、例えば10μm未満であり;及び/又は上記テープの幅方向の中央に沿った(即ち上記テープの長さにわたって延在する中心線に沿った)、長さ方向においてある距離、例えば10cm、50cm、1m、2m、10mだけ離間した複数の場所で測定した場合の、上記テープの厚さの差は、極めて小さな値、例えばいくつかのこのような実施形態では50μm未満、例えば20μm未満、例えば10μm未満、例えば5μm未満、例えば3μm未満、例えば1μm未満である。レーザトリミングによって、上記テープの幅の幾何学的一貫性の改善を補助してよい。上記粒体プロファイルに重なった、図103に示すような層(例えばシリカ、500℃超、800℃超、1000℃超の融点を有する材料)は、厚さの幾何学的一貫性を改善でき、及び/又は研磨されてよく、若しくは研磨の代替案を提供できる。
いくつかの実施形態では、上述のように、上記テープは平坦であるか、又は平坦化でき、従って、平行な平坦表面の間で押圧された長さ10cmの上記テープは、破断することなく、上記平行な平坦表面と接触するよう、又は上記平行な平坦表面との接触から0.25mm以内、例えば0.10mm以内、例えば0.05mm以内、例えば0.03mm以内、例えば0.0mm以内まで平坦化され;例えばいくつかのこのような実施形態では、上記平行な平坦表面との接触から0.05mm以内まで平坦化された場合、上記テープは、そのヤング率の10%以下、例えばそのヤング率の5%以下、例えばそのヤング率の2%以下、例えばそのヤング率の1%以下、例えばそのヤング率の0.5%以下の最大面内応力を示す。いくつかの実施形態では、上記テープの上記第1の主表面及び上記第2の主表面は粒体プロファイルを有し、例えばここで上記粒体はセラミックであり(例えば図30B及び関連する記述を参照)、またここで、上記セラミックの少なくともいくつかの独立した粒体が、中間の非晶質材料がほとんど又は全く存在しない状態で、互いに隣接し、従って2つの隣接する粒体の間の非晶質材料の厚さは、50nm未満、例えば10nm未満、例えば5nm未満、例えば2nm未満となり、例えばここで、例えば透過電子顕微鏡で観察されるように(例えば図73C、74、75及び関連する記述を参照)、隣接する粒体の結晶格子は互いに直接当接する。
いくつかの実施形態では、上記本体は、10体積%未満の多孔率を有し、及び/又は上記本体は、例えば図86B、99B、102に示すように、閉鎖された細孔を有する。いくつかの実施形態では、上記粒体はリチウム及び/又は別の揮発性成分を含み、上記本体は、5×10-5S/cm超のイオン伝導度、例えば1×10-4S/cm超のイオン伝導度、例えば2×10-4S/cm超のイオン伝導度、例えば3×10-4S/cm超のイオン伝導度を有する。いくつかの実施形態では、上記本体は、上述のようにASTM規格で測定した場合に、15μm以下、例えば10μm以下、例えば5μm以下、例えば2μm以下である、特に微細な粒体サイズ(平均)を有する。
いくつかの実施形態では、上記テープは更に、上記本体の上記第1の主表面に連結された導電性金属を含み、いくつかのこのような実施形態では、上記本体は、反復パターンのビアを備え、上記導電性金属は反復パターンで配設される(全体として図51及び104を参照)。いくつかの実施形態では、上記第1の主表面及び上記第2の主表面は、粒体プロファイルを有し、上記テープは更に、上記第1の主表面の上記粒体プロファイルの上に重なるコーティングを含み、上記コーティングの外向き表面は、上記第1の表面の上記粒体プロファイルより粗度が低く、例えば少なくとも半分であり(例えば図103を参照)、ここで、上記第1の主表面に連結された上記導電性金属は、上記コーティングの上記外向き表面への結合を介して連結される。いくつかの実施形態では、上記無機材料は、900℃超の温度において12.5ポアズの粘度を有する(例えば図78及び87を参照)。
本開示の更なる態様は、上述の実施形態のうちのいずれか1つのテープのロールに関し(例えば図67A、67B、68、69を参照)、ここで上記テープは、それ自体の周りに巻かれてそれ自体の上に例えば渦巻き状に重なり、1m未満、例えば30cm未満、例えば20cm未満、例えば10cm未満の半径まで曲げられる。上記ロールのコアは、断面が円形であってよく、又は他の形状であってもよい。
本開示の更に他の態様は、上述の実施形態のうちのいずれか1つのテープから切断された複数のシートに関する(全体として図93、104を参照)。ある例示的実施形態によると、上記シートは、上記シートが本明細書で開示される技術を用いて製造されたことを判定するために検出できる、互いに共通の属性を有する。例えば、上記共通の属性は、以下のうちの少なくとも1つであってよい:(a)共通の位置の表面の溝(b)共通の溝のパターン;(c)長さ方向に延在する、共通して存在する応力プロファイルの不規則性;(d)共通の組成の不調和;及び(e)共通の非対称な結晶相分布又は共通の結晶濃度パターン。
本開示のいくつかの態様は、互いに対して焼結されたセラミック粒体を含む本体を備える、テープに関し、上記本体は、第1の主表面と第2の主表面との間に延在し、ここで上記本体は、上記第1の主表面と上記第2の主表面との間の距離として定義される厚さ、上記厚さに対して垂直な上記第1の主表面の第1の寸法として定義される幅、並びに上記厚さ及び上記幅の両方に対して垂直な上記第1の主表面の第2の寸法として定義される長さを有し;ここでは上記テープは薄く、約3μm~約1mmの厚さを有し;またここでは、上記テープの上記第1の主表面及び上記第2の主表面は、粒体プロファイルを有し、上記セラミックの少なくともいくつかの独立した粒体が、中間の非晶質材料がほとんど又は全く存在しない状態で、互いに隣接し、従って2つの隣接する粒体の間の非晶質材料の厚さは5nm未満となる。
本開示のいくつかの態様は、互いに対して焼結されたセラミック粒体を含む本体を備える、テープ又は他の焼結済み物品(例えばファイバ、チューブ、シート、ディスク)に関し、上記本体は、第1の主表面と第2の主表面との間に延在し、ここで上記本体は、上記第1の主表面と上記第2の主表面との間の距離として定義される厚さ、上記厚さに対して垂直な上記第1の主表面の第1の寸法として定義される幅、並びに上記厚さ及び上記幅の両方に対して垂直な上記第1の主表面の第2の寸法として定義される長さを有し;上記テープは薄く、約3μm~約1mmの厚さを有し;上記テープの上記第1の主表面及び上記第2の主表面は、粒体プロファイルを有し;ここでは上記粒体はリチウムを含み、上記本体は、上で記載したように、5×10-5S/cm超又はそれより高いイオン伝導度を有する。このような物品は、2つの隣接する粒体の間に、ある厚さの非晶質材料を有してよく、上記厚さは5nm未満である。いくつかの実施形態では、上記物品は、少なくとも95%の密度及び10μm未満の粒体サイズを有し、例えば少なくとも97%の密度及び5μm未満の粒体サイズを有する。上記物品は、例えばソリッドステートバッテリの部品としてのアノード及び/又はカソード材料と共に同時焼成してよい。
特段の記載がない限り、本明細書に記載されたいずれの方法が、その複数のステップを特定の順序で実施することを要求するものとして解釈されることは、全く意図されていない。従って、ある方法クレームが、その複数のステップが従うべき順序を実際に記載していない場合、又はこれらのステップがある特定の順序に限定されるべきであることを、上記クレーム若しくは説明中で具体的に言明していない限り、いずれの特定の順序が推定されることは、全く意図されていない。更に、本明細書中で使用される場合、冠詞「a」は、1つ以上の構成要素又は要素を含むことを意図しており、ただ1つを意味するものとして解釈されることは意図されていない。同様に、本明細書で開示されている設備及びプロセスステップは、連続テープ以外の材料と共に使用できる。例えば、連続テープは、ロール・ツー・ロール方式の処理に関して特に効率的であり得るが、出願人は、ジルコニア又は他の耐火材料のスレッドを用いて、本明細書で開示される設備によって、材料の個別のシート又は他の物品をドロー加工できることを実証している。
本開示の実施形態の精神又は範囲から逸脱することなく、様々な修正及び変形を行うことができることは、当業者には明らかであろう。これらの実施形態の精神及び実体を組み込んだ、本開示の実施形態の修正、組み合わせ、部分的組み合わせ及び変形は、当業者には想起され得るものであるため、本開示の実施形態は、添付の請求項及びその均等物の範囲内の全てを含むものとして解釈されるものとする。
以下、本発明の好ましい実施形態を項分け記載する。
実施形態1
焼結準備のためのテープ分離システムであって、
上記システムは:
素地テープ及び上記素地テープを支持するキャリアウェブを備える、テープ材料のソースであって、上記素地テープは、結合剤中に、無機材料の粒体を含む、テープ材料のソース;
上記キャリアウェブを巻き戻し方向に配向し、上記素地テープを上記巻き戻し方向とは異なる下流処理方向に配向するための、剥離器;及び
上記テープ材料を上記ソースから受承し、上記テープ材料を上記剥離器へと搬送するよう、位置決め及び構成された、真空ドラム
を備え、
上記真空ドラムは、上記キャリアウェブへの張力の印加を促進するために上記キャリアウェブに吸引力を印加するための孔を備え、
断面積あたりの力としての上記キャリアウェブの張力は、上記テープ材料が上記真空ドラムから上記剥離器へと搬送される際の上記素地テープの張力より高く、これにより、上記素地テープを上記キャリアウェブから分離する間の、上記素地テープの変形が軽減される、テープ分離システム。
実施形態2
焼結準備のためにテープを処理するためのシステムであって、
上記システムは:
テープであって、上記テープの素地部分を備え、上記素地部分は、有機結合剤中の無機材料の粒体を有する、テープ;及び
アクティブヒータを備える結合剤バーンアウトステーション
を備え、
上記テープは、上記結合剤バーンアウトステーションを通って前進し、これにより、上記結合剤バーンアウトステーションが、上記テープの上記素地部分を受承して、上記テープの上記素地部分が上記ヒータからの熱に接する際に上記有機結合剤を炭化又は燃焼し、これにより、上記テープの上記無機材料の焼結のための準備ができた上記テープの第2の部分が形成される、システム。
実施形態3
ある瞬間において、上記テープは同時に、上記結合剤バーンアウトステーションに向かって、上記結合剤バーンアウトステーションを通って、及び上記結合剤バーンアウトステーションから延在し、これにより、上記瞬間において、上記テープは、上記第2の部分に連続して接続された上記素地部分を含む、実施形態2に記載のシステム。
実施形態4
上記結合剤バーンアウトステーションは、上記無機材料の上記粒体を実質的に焼結することなく、上記テープの上記素地部分から、重量で少なくともほとんどの上記有機結合剤を炭化又は燃焼する、実施形態3に記載のシステム。
実施形態5
超低張力ダンサーを更に備え、上記超低張力ダンサーは、上記テープに有意な張力を印加することなく上記テープを再配向するための、軽量かつ低慣性のローラを含み、これにより、上記テープの上記第2の部分の張力は、断面1mmあたり500重量グラム未満となり、これにより、上記テープの上記第2の部分の破断の可能性が低減され、焼結のための上記テープの長い連続長さを促進する、実施形態2に記載のシステム。
実施形態6
上記システムは、上記テープが上記結合剤バーンアウトステーションを通って前進する際に、上記テープ上にガスを吹き付け、及び/又は引き込み、
上記結合剤バーンアウトステーションは、上記テープ上に吹き付けられる及び/又は引き込まれる上記ガスを用いずに上記有機結合剤が発火する温度より高い温度で、上記テープを加熱し、これにより、上記有機結合剤は炭化又は燃焼されるものの、上記テープは引火しない、実施形態2に記載のシステム。
実施形態7
実施形態2~6のいずれか1つに記載のシステムを備える、製造ラインであって、
結合剤バーンアウトステーションは第1のステーションであり、上記製造ラインは更に、上記第1のステーションから離間した第2のステーションを備え、
上記第2のステーションは、テープの第2の部分の無機材料を少なくとも部分的に焼結して、上記テープの第3の部分を形成し、
ある瞬間において、上記テープは、上記第2の部分を経由して上記第3の部分に連続して接続された素地部分を含む、製造ライン。
実施形態8
上記テープの上記第3の部分は、上記第2の部分より大幅に曲がりやすく、これにより、上記第3の部分の非破断最小曲げ半径は、上記第2の部分の非破断最小曲げ半径の半分未満となり、
上記素地部分は、上記第2の部分より大幅に曲がりやすく、これにより、上記素地部分の非破断最小曲げ半径は、上記第2の部分の上記非破断最小曲げ半径の半分未満となる、実施形態7に記載の製造ライン。
実施形態9
実施形態1に記載のシステムを更に備える、実施形態8に記載の製造ライン。
実施形態10
無機材料の粒体を含むテープ材料;
焼結ステーション
を備える、焼結システムであって、
上記焼結ステーションは、入口、出口、及び上記入口と上記出口との間に延在するチャネルを備え、
ある瞬間において、上記テープ材料は、上記焼結ステーションの上記入口内へ、上記チャネルを通って、そして上記出口から外へと延在し、
上記チャネル内の熱によって上記無機材料は焼結され、これにより、上記無機材料は、上記入口における第1の多孔率と、上記出口における、上記第1の多孔率未満である第2の多孔率とを有し、
上記テープ材料には、上記テープ材料が上記焼結ステーションの上記チャネルを通過する際に正の張力が印加され、これにより、焼結ひずみが軽減される、焼結システム。
実施形態11
上記テープ材料は、少なくとも1インチ(2.54cm)/分の速度で、上記焼結ステーションを通って移動する、実施形態10に記載の焼結システム。
実施形態12
上記焼結ステーションの上記チャネルは、少なくとも2つの、独立して制御される加熱素子によって加熱され、
上記加熱素子は、上記チャネルの温度が、上記焼結ステーションの上記入口から上記出口に向かう方向において、上記チャネルの長さに沿って上昇するような温度プロファイルを生成し、
上記チャネル内の焼結温度は800℃超である、実施形態10に記載の焼結システム。
実施形態13
上記焼結ステーションの上記チャネルに沿って配置された曲面を更に備え、
上記テープ材料は、上記テープ材料が上記焼結ステーションを通って移動する際に、上記曲面の周囲において、上記テープ材料の幅方向軸に関して曲がり、これによって上記テープ材料の形状に影響を及ぼす、実施形態10に記載の焼結システム。
実施形態14
上記焼結ステーションの上記出口及び上記入口は、1つの略水平な平面内にあり、従って、上記焼結ステーションの上記出口と上記入口との間に画定される、水平面に対する角度は、10°未満となり、これにより、上記チャネルに対するガスの流れが少なくとも部分的に制御される、実施形態10に記載の焼結システム。
実施形態15
上記焼結ステーションは更に、上記チャネルの下側表面を画定する、上向きチャネル表面と、上記チャネルの上側表面を画定する、下向きチャネル表面とを備え、
上記下向きチャネル表面は、上記テープ材料の上側表面付近に位置決めされ、これにより、上記テープ材料の上記上側表面と上記下向きチャネル表面との間の間隙は、0.5インチ(1.27cm)未満となり、これによって上記チャネル内のガスの流れが少なくとも部分的に制御される、実施形態14に記載の焼結システム。
実施形態16
上記テープ材料は、特に幅が広く、長さが長く、また厚さが薄いものであり、5ミリメートル超の幅、30センチメートル超の長さ、及び3マイクロメートル~1ミリメートルの厚さを有し、
上記テープの上記無機材料は、多結晶質セラミック材料及び合成鉱物のうちの少なくとも1つである、実施形態10~15のいずれか1つに記載の焼結システム。
実施形態17
セラミックテープを製造するためのプロセスであって、
上記プロセスは:
多結晶質セラミックを含むテープを、上記多結晶質セラミックの粒子を熱源に曝露して上記粒子間の焼結を誘発することにより、上記多結晶質セラミックの多孔率が20体積%未満となるまで焼結するステップ
を含み、
上記テープは特に薄型であり、上記テープの厚さは500μm未満であり、これにより、熱浸透による迅速な焼結を促進し、
上記テープは、幅が少なくとも5mm、及び長さが少なくとも300cmである、プロセス。
実施形態18
上記焼結するステップ中に上記テープに正の長さ方向の張力を印加するステップを更に含む、実施形態17に記載のプロセス。
実施形態19
上記焼結するステップ中に、上記テープを、上記熱源に向かって、及びその後上記熱源から離すように、移動させるステップを更に含む、実施形態17に記載のプロセス。
実施形態20
上記焼結するステップの時間量は特に短く、合計2時間未満であり、これにより、上記セラミックテープ内での小さな粒体サイズの維持が補助される、実施形態17~19のいずれか1つに記載のプロセス。
実施形態21
上記焼結するステップの合計時間は1時間未満であり、
上記焼結するステップ後の上記多結晶質セラミックの密度は、体積で95%超の密度である、実施形態20に記載のプロセス。
実施形態22
上記テープは、上記焼結するステップの後、閉鎖された細孔を備える、実施形態20に記載のプロセス。
実施形態23
上記テープは、上記焼結するステップ中に気化する揮発性成分を含み、上記揮発性成分は無機性であり、
上記テープは、上記焼結するステップの後に比べて、上記焼結するステップの前に、上記揮発性成分を少なくとも1体積%多く含む、実施形態17に記載のプロセス。
実施形態24
テープであって、
上記テープは:
互いに対して焼結された無機材料の粒体を含む本体であって、上記本体は、第1の主表面と第2の主表面との間に延在する、本体
を備え、
上記本体は、上記第1の主表面と上記第2の主表面との間の距離として定義される厚さ、上記厚さに対して垂直な上記第1の主表面の第1の寸法として定義される幅、並びに上記厚さ及び上記幅の両方に対して垂直な上記第1の主表面の第2の寸法として定義される長さを有し、
上記テープは長く、約300cm以上の長さを有し、
上記テープは薄く、約3μm~約1mmの厚さを有し、
上記テープは特に幅が広く、約5mm以上の幅を有する、テープ。
実施形態25
上記テープの幾何学的一貫性は:
長さ方向において1m離間した複数の場所で測定した場合の上記テープの幅の差は、100μm未満であり;
上記テープの幅方向の中央に沿った、長さ方向において1m離間した複数の場所で測定した場合の、上記テープの厚さの差は、10μm未満である
というものである、実施形態24に記載のテープ。
実施形態26
上記テープは平坦であるか、又は平坦化でき、従って、平行な平坦表面の間で押圧された長さ10cmの上記テープは、破断することなく、上記平行な平坦表面と接触するよう、及び/又は上記平行な平坦表面との接触から0.05mm以内となるように平坦化される、実施形態24に記載のテープ。
実施形態27
上記平行な平坦表面と接触するよう、及び/又は上記平行な平坦表面との接触から0.05mm以内となるように平坦化された場合、上記テープは、上記テープのヤング率の1%以下の最大面内応力を示す、実施形態26に記載のテープ。
実施形態28
上記テープの上記第1の主表面及び上記第2の主表面は、粒体プロファイルを有し、
上記粒体はセラミックであり、
上記セラミックの少なくともいくつかの独立した粒体は、中間の非晶質材料がほとんど又は全く存在しない状態で、互いに隣接し、従って2つの隣接する粒体の間の非晶質材料の厚さは5nm未満となる、実施形態24に記載のテープ。
実施形態29
上記本体は、体積で10%未満の多孔率を有する、実施形態24に記載のテープ。
実施形態30
上記本体は、閉鎖された細孔を有する、実施形態29に記載のテープ。
実施形態31
上記粒体はリチウムを含み、上記本体は、5×10-5S/cm超のイオン伝導度を有する、実施形態29に記載のテープ。
実施形態32
上記本体は、5μm以下という特に微細な粒体サイズを有する、実施形態24に記載のテープ。
実施形態33
上記テープは、上記本体の上記第1の主表面に連結された導電性金属を更に備える、実施形態24に記載のテープ。
実施形態34
上記本体は、反復パターンのビアを備え、
上記導電性金属は反復パターンで配設される、実施形態33に記載のテープ。
実施形態35
上記第1の主表面及び上記第2の主表面は、粒体プロファイルを有し、
上記テープは、上記第1の主表面の上記粒体プロファイルの上に重なるコーティングを更に備え、
上記コーティングの外向き表面は、上記第1の表面の上記粒体プロファイルより粗度が低く、
上記第1の主表面に連結された上記導電性金属は、上記コーティングの上記外向き表面への結合を介して連結される、実施形態33に記載のテープ。
実施形態36
上記無機材料は、900℃超の温度において12.5ポアズの粘度を有する、実施形態24に記載のテープ。
実施形態37
実施形態24~36のいずれか1つに記載のテープのロールであって、
上記テープは、上記テープ自体の周りに巻かれて上記テープ自体の上に重なり、30cm未満の半径まで曲げられる、ロール。
実施形態38
実施形態24~36のいずれか1つに記載のテープから切断された、複数のシート。
実施形態39
テープであって、
上記テープは:
互いに対して焼結されたセラミック粒体を含む本体であって、上記本体は、第1の主表面と第2の主表面との間に延在する、本体
を備え、
上記本体は、上記第1の主表面と上記第2の主表面との間の距離として定義される厚さ、上記厚さに対して垂直な上記第1の主表面の第1の寸法として定義される幅、並びに上記厚さ及び上記幅の両方に対して垂直な上記第1の主表面の第2の寸法として定義される長さを有し;
上記テープは薄く、約3μm~約1mmの厚さを有し;
上記テープの上記第1の主表面及び上記第2の主表面は、粒体プロファイルを有し、
上記セラミックの少なくともいくつかの独立した粒体は、中間の非晶質材料がほとんど又は全く存在しない状態で、互いに隣接し、従って2つの隣接する粒体の間の非晶質材料の厚さは5nm未満となる、テープ。
実施形態40
テープであって、
上記テープは:
互いに対して焼結されたセラミック粒体を含む本体であって、上記本体は、第1の主表面と第2の主表面との間に延在する、本体
を備え、
上記本体は、上記第1の主表面と上記第2の主表面との間の距離として定義される厚さ、上記厚さに対して垂直な上記第1の主表面の第1の寸法として定義される幅、並びに上記厚さ及び上記幅の両方に対して垂直な上記第1の主表面の第2の寸法として定義される長さを有し;
上記テープは薄く、約3μm~約1mmの厚さを有し;
上記テープの上記第1の主表面及び上記第2の主表面は、粒体プロファイルを有し;ここでは
上記粒体はリチウムを含み、上記本体は、5×10-5S/cm超のイオン伝導度を有する、テープ。
実施形態41
ソリッドステートバッテリ用に構成された材料のシートであって、
互いに焼結されたセラミック粒子を含む本体であって、前記粒体がリチウム、ランタン、ジルコニウムおよび酸素を含み、前記本体の重量の95%超が立方晶リチウムガーネット結晶からなるものであり、
前記本体の第1の主面と第2の主面の間の厚さは3μm~50μmの範囲であり、前記本体の幅は5mm以上であり、
前記本体の前記第1の主面及び前記第2の主面は、研磨されていない粒体プロファイルを有し、前記粒体プロファイルは、各粒体間の境界における前記第1の主面及び前記第2の主面の凹状部分に対して、25nm~150μmの高さを有する前記第1の主面及び前記第2の主面から外向きに突出する粒体を含み、
前記互いに焼結された粒体の平均粒体サイズが3μm以下であり、かつ前記本体はイオン伝導度が1×10-4S/cmより大きいことを特徴とする、シート。
実施形態42
前記本体は、閉鎖された多孔質を有する、実施形態41に記載のシート。
実施形態43
前記本体が、体積で10%未満の多孔率を有する、実施形態41に記載のシート。
実施形態44
前記本体は、23℃で前記本体を剛性のある平行な2つの面の間で押圧することにより、前記本体が平坦面に重なるか、平坦面から0.05mm以内の距離となるように、破断することなく平坦化されている、実施形態41に記載のシート。
実施形態45
前記粒体がアルミニウムをさらに含む、実施形態41に記載のシート。
実施形態46
前記本体は、少なくとも10mの長さを有する、実施形態41に記載のシート。
実施形態47
スプールに巻き付けられた、実施形態46に記載のシートのロール。
7 真空孔
8 軸方向溝
10 システム
12 分離システム
12A 分離システム
14 処理方向
14A 処理方向
15 センサ
16 ソース
16A ソースリール
17 第1の張力ゾーン
18 連続テープ材料、連続テープ
19 第2の張力ゾーン
20 素地テープ材料、素地テープ、自立型素地テープ
20A 素地テープ、素地テープ材料
21 荷重コントローラ
22 キャリアウェブ、裏張り層
23 アイドルローラ
24 キャリアウェブ除去ステーション
25 真空ドラム
26 取り込み用リール
27 駆動モータ入力
28 張力遮断器
29 軸受ハウジング
30 剥離器
31 先端
32 張力制御システム
32A 張力制御システム
33 超低張力ダンサー
34 結合剤除去ステーション
34A 結合剤除去ステーション
36 非結合テープ、非結合テープ材料
36B 非結合テープ、焼結されていないテープ
38 焼結ステーション
38A 焼結ステーション
38B 焼結ステーション
40 焼結済みテープ材料、テープ、焼結済みテープ
40B 最終焼結済みテープ、焼結済みテープ、焼結済み部分
42 取り込みシステム
42A 取り込みシステム
44 取り込み用リール、リール
44A 取り込み用リール
46 層間支持材料、支持材料
48 リール
50 支持された焼結済みテープ材料のロール又はスプール、ロール化済み焼結済み材料
100 焼結炉
102 断熱ハウジング
104 チャネル、焼結用チャネル
104B チャネル、焼結ステーションチャネル
106 入口開口
106B 入口
108 出口開口
108B 出口
110 結合剤バーンアウト炉
112 断熱ハウジング
114 チャネル、結合剤バーンアウト炉チャネル
116 開口、入口、入口開口、結合剤バーンアウト炉入口
116A 入口開口
118 開口、出口、出口開口、結合剤バーンアウト炉出口
120 上向き表面、表面
122 下向き表面、表面
124 上側表面
126 下側表面
130 縁部、左側縁部
132 縁部、右側縁部
140 加熱素子
142 制御システム
144 温度センサ
160 温度プロファイル
162 第1のセクション
164 第2のセクション
166 第3のセクション
170 温度プロファイル
172 ゾーン
180 炉
182 炉、第2の炉
184 部分焼結済みテープ
186 張力制御システム
190 温度プロファイル
192 温度プロファイル
200 高スループット焼結システム、システム
810 積層構成
812 セラミックシート
814 ビア
815 金属層
1000 焼結済み物品
1010 第1の主表面
1020 第2の主表面
1030 本体
1032 境界
1034 粒体
1040 小面
1100 コア
1200 焼結済み物品、ロール化済み焼結済み物品
1220 直径
1230 側壁幅
1240 コア1100の直径
1299 中間層先行物
1300 中間層
1325 溝
1350 金属ベース層
1375 シード層
1400 半導体デバイス、チップ
1401 構成部品
1405 レンズ
1450 リード
1475 燐光体材料、燐光体
1480 反射材
1485 容積
1490 孔
1499 キャリア又は仮基板
1500 基板
1500A システム
1501 アパーチャ
1502A リーダ
1504A 端部セクション
1506A 前端セクション
1508A 第2の端部、下流端部
1510 第1の主表面
1510A 接着材料、接着剤
1512A 重なりセクション
1520 第2の主表面
1530 本体
1540 小面
1600B システム
1602B 曲げシステム
1604B 上向きの凸状曲面
1606B テープ部分
1608B チューブ
1610B 部品、インサート
1612B 下向きの凹状曲面
1614B インサート
1620B 湾曲セクション
1622B 湾曲セクション
1624B 湾曲セクション
1630B 気体軸受
1632B ガス供給チャネル
1640B テープ36Bの一部分
1642B ローラ
1644B 幅横断方向の屈曲
1650B 上側ローラ
1652B 下側ローラ
1660B フリーループセグメント
1662B 支持体
1680B 荷重付きダンサー
1999 パッケージ先行物
2000 パッケージ
2001 セグメント
5120 アクティブヒータ
5120A 加熱ゾーン
5120B 加熱ゾーン
5120C 加熱ゾーン
5120D 加熱ゾーン
5126 壁部
5128 通路、開口
5130 入口開口
5132 出口開口

Claims (1)

  1. 焼結準備のためのテープ分離システムであって、
    上記システムは:
    素地テープ及び上記素地テープを支持するキャリアウェブを備える、テープ材料のソースであって、上記素地テープは、結合剤中に、無機材料の粒体を含む、テープ材料のソース;
    上記キャリアウェブを巻き戻し方向に配向し、上記素地テープを上記巻き戻し方向とは異なる下流処理方向に配向するための、剥離器;及び
    上記テープ材料を上記ソースから受承し、上記テープ材料を上記剥離器へと搬送するよう、位置決め及び構成された、真空ドラム
    を備え、
    上記真空ドラムは、上記キャリアウェブへの張力の印加を促進するために上記キャリアウェブに吸引力を印加するための孔を備え、
    断面積あたりの力としての上記キャリアウェブの張力は、上記テープ材料が上記真空ドラムから上記剥離器へと搬送される際の上記素地テープの張力より高く、これにより、上記素地テープを上記キャリアウェブから分離する間の、上記素地テープの変形が軽減される、テープ分離システム。
JP2023216668A 2016-12-21 2023-12-22 焼結システム及び焼結済み物品 Pending JP2024023809A (ja)

Applications Claiming Priority (21)

Application Number Priority Date Filing Date Title
US201662437157P 2016-12-21 2016-12-21
US62/437,157 2016-12-21
US201662439609P 2016-12-28 2016-12-28
US201662439613P 2016-12-28 2016-12-28
US201662439598P 2016-12-28 2016-12-28
US62/439,609 2016-12-28
US62/439,598 2016-12-28
US62/439,613 2016-12-28
US201762470550P 2017-03-13 2017-03-13
US62/470,550 2017-03-13
US201762483726P 2017-04-10 2017-04-10
US62/483,726 2017-04-10
US201762484106P 2017-04-11 2017-04-11
US62/484,106 2017-04-11
US201762526806P 2017-06-29 2017-06-29
US62/526,806 2017-06-29
US201762556712P 2017-09-11 2017-09-11
US62/556,712 2017-09-11
JP2019533152A JP7068309B2 (ja) 2016-12-21 2017-12-19 焼結システム及び焼結済み物品
PCT/US2017/067376 WO2018118964A1 (en) 2016-12-21 2017-12-19 Sintering system and sintered articles
JP2021197031A JP7410921B2 (ja) 2016-12-21 2021-12-03 焼結システム及び焼結済み物品

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021197031A Division JP7410921B2 (ja) 2016-12-21 2021-12-03 焼結システム及び焼結済み物品

Publications (2)

Publication Number Publication Date
JP2024023809A true JP2024023809A (ja) 2024-02-21
JP2024023809A5 JP2024023809A5 (ja) 2024-04-10

Family

ID=62627166

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019533152A Active JP7068309B2 (ja) 2016-12-21 2017-12-19 焼結システム及び焼結済み物品
JP2021197031A Active JP7410921B2 (ja) 2016-12-21 2021-12-03 焼結システム及び焼結済み物品
JP2023216668A Pending JP2024023809A (ja) 2016-12-21 2023-12-22 焼結システム及び焼結済み物品

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2019533152A Active JP7068309B2 (ja) 2016-12-21 2017-12-19 焼結システム及び焼結済み物品
JP2021197031A Active JP7410921B2 (ja) 2016-12-21 2021-12-03 焼結システム及び焼結済み物品

Country Status (8)

Country Link
US (4) US10581115B2 (ja)
JP (3) JP7068309B2 (ja)
KR (3) KR20220084429A (ja)
CN (4) CN114989733A (ja)
BR (1) BR112019012978A2 (ja)
NL (1) NL2020149B1 (ja)
TW (3) TWI763758B (ja)
WO (1) WO2018118964A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
HUE056765T2 (hu) 2013-10-07 2022-03-28 Quantumscape Battery Inc Lítiummal töltött garnet filmet tartalmazó kettõs rétegek és hármas rétegek, továbbá módszer vékony és szabadon álló, lítiummal töltött garnet film szinterezésére
CN114163219A (zh) 2015-04-16 2022-03-11 昆腾斯科普电池公司 用于固体电解质制作的承烧板和用其制备致密固体电解质的方法
CN113370365B (zh) * 2015-06-29 2022-07-12 康宁股份有限公司 生产线、方法、以及烧结制品
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
US11158880B2 (en) 2016-08-05 2021-10-26 Quantumscape Battery, Inc. Translucent and transparent separators
EP3529839A1 (en) 2016-10-21 2019-08-28 QuantumScape Corporation Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
EP3642899B1 (en) 2017-06-23 2024-02-21 QuantumScape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US11600850B2 (en) 2017-11-06 2023-03-07 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
WO2020041775A1 (en) * 2018-08-24 2020-02-27 Fisker Inc. Microscopically ordered solid electrolyte architecture manufacturing methods and processes thereof for use in solid-state and hybrid lithium ion batteries
US20200266442A1 (en) 2019-02-19 2020-08-20 Corning Incorporated Sintered electrodes for batteries and method of preparing same
CN111977626A (zh) 2019-05-24 2020-11-24 三星电子株式会社 固体导体、其制备方法、包括固体导体的固体电解质和包括固体导体的电化学装置
US11271201B2 (en) 2019-07-15 2022-03-08 Corning Incorporated Energy device with lithium
US11342649B2 (en) 2019-09-03 2022-05-24 Corning Incorporated Flexible waveguides having a ceramic core surrounded by a lower dielectric constant cladding for terahertz applications
CN110429332A (zh) * 2019-09-06 2019-11-08 深圳先进技术研究院 一种无机固态电解质片的制备方法
DE102019128198B3 (de) 2019-10-18 2021-02-25 Laser Imaging Systems Gmbh Vorrichtung zur Mustereinbringung mittels Strahlung an einem aufgewickelten Endlossubstrat
JP7136070B2 (ja) * 2019-11-29 2022-09-13 トヨタ自動車株式会社 排ガス浄化システム
US11328950B2 (en) 2020-01-22 2022-05-10 Corning Incorporated Thin glass or ceramic substrate for silicon-on-insulator technology
WO2021153077A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 二次電池用負極活物質およびその製造方法、ならびに二次電池
GB2593950A (en) 2020-04-08 2021-10-13 Corning Inc Solid state conversion of polycrystalline material
US11575152B2 (en) 2020-06-29 2023-02-07 Samsung Electronics Co., Ltd. Oxide, preparation method thereof, solid electrolyte including the oxide, and electrochemical device including the oxide
EP4001213A1 (en) 2020-11-13 2022-05-25 Samsung Electronics Co., Ltd. Oxide, method of preparing the same, solid electrolyte including the oxide, and electrochemical device including the oxide
US20230415376A1 (en) * 2021-03-09 2023-12-28 Quantumscape Battery, Inc. Rapid ceramic processing techniques and equipment
WO2023086659A2 (en) * 2021-11-15 2023-05-19 Qiao Qiao Silicon nitride stabilized interface between lithium metal and solid electrolyte for high performance lithium metal batteries
TWI818410B (zh) * 2022-01-14 2023-10-11 中國砂輪企業股份有限公司 多孔吸附器及其製法
WO2023154571A1 (en) * 2022-02-14 2023-08-17 Quantumscape Battery, Inc. Rapid thermal processing methods and apparatus
WO2024059730A1 (en) * 2022-09-14 2024-03-21 Quantumscape Battery, Inc. Processing apparatuses and methods of using
WO2024102275A1 (en) * 2022-11-07 2024-05-16 Corning Incorporated Method of processing green tape ceramic material to form ceramic ribbon and battery comprising the ceramic material of the ribbon

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223549A (en) 1964-11-09 1965-12-14 Pittsburgh Plate Glass Co Coating of glass sheet while deformable and supported on gas
JPS5096519A (ja) 1973-12-28 1975-07-31
GB1595518A (en) 1977-03-11 1981-08-12 Gen Electric Polycrystalline alumina material
US4444854A (en) 1981-09-14 1984-04-24 General Electric Company Electrochemical cell having internal short inhibitor
JPS5890468A (ja) 1981-11-16 1983-05-30 Showa Denko Kk レンズの精密研削用シ−トの製造法
US4795512A (en) 1986-02-26 1989-01-03 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a multilayer ceramic body
US5130067A (en) 1986-05-02 1992-07-14 International Business Machines Corporation Method and means for co-sintering ceramic/metal mlc substrates
US5480601A (en) 1986-06-17 1996-01-02 Sumitomo Electric Industries, Ltd. Method for producing an elongated sintered article
US5272132A (en) 1987-03-16 1993-12-21 At&T Bell Laboratories Apparatus comprising a ceramic superconductive body and method for producing such a body
DE3809693A1 (de) 1988-03-23 1989-10-12 Hoechst Ceram Tec Ag Verfahren zur herstellung von keramikfoliengiessmassen fuer duennfilmschaltungen
US5051219A (en) * 1989-07-24 1991-09-24 Aluminum Company Of America Automatic handling of green ceramic tapes
US5814262A (en) * 1989-08-11 1998-09-29 Corning Incorporated Method for producing thin flexible sintered structures
US5089455A (en) * 1989-08-11 1992-02-18 Corning Incorporated Thin flexible sintered structures
US5177260A (en) 1989-11-06 1993-01-05 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for production of acrylic acid
IE910117A1 (en) * 1990-01-18 1991-07-31 Du Pont Method for reducing shrinkage during firing of green ceramic¹bodies
US5254191A (en) 1990-10-04 1993-10-19 E. I. Du Pont De Nemours And Company Method for reducing shrinkage during firing of ceramic bodies
US5322724A (en) 1991-01-14 1994-06-21 Minnesota Mining And Manufacturing Company Laminate of heat sealable polyolefin and cured polyolefin sheeting
CA2064977C (en) 1991-04-05 1998-09-22 Eiichi Shiraishi Catalyst for purifying exhaust gas
JPH04357808A (ja) * 1991-06-04 1992-12-10 Matsushita Electric Ind Co Ltd セラミックグリーンシートの剥離方法
JPH0596519A (ja) * 1991-10-12 1993-04-20 Taiyo Yuden Co Ltd グリーンシート剥離装置
US5250243A (en) 1991-12-02 1993-10-05 Corning Incorporated Method for making ceramic matrix composites
JPH08244019A (ja) * 1995-03-13 1996-09-24 Taiyo Yuden Co Ltd セラミックグリーンシートの積層方法
EP0799795B1 (en) 1996-04-01 2000-08-09 Nippon Shokubai Co., Ltd. Vanadium-phosphorus oxide, method for production thereof, catalyst for vapor phase oxidation formed of the oxide, and method for partial vapor phase oxidation of hydrocarbon
JPH09283360A (ja) * 1996-04-16 1997-10-31 Fuji Elelctrochem Co Ltd 積層部品用グリーンシートの製造方法
US6033623A (en) 1996-07-11 2000-03-07 Philip Morris Incorporated Method of manufacturing iron aluminide by thermomechanical processing of elemental powders
AU712920B2 (en) 1997-06-13 1999-11-18 Nippon Shokubai Co., Ltd. Zirconia powder, method for producing the same, and zirconia ceramics using the same
DE69939619D1 (de) 1998-04-10 2008-11-06 Nippon Catalytic Chem Ind Keramikplatte und verfahren zum herstellen der keramikplatte
DE69912920T2 (de) 1998-05-20 2004-09-02 Nippon Shokubai Co., Ltd. Poröse keramikschicht, verfahren zum herstellen derselben, und unterlage zur verwendung in dem verfahren
US6447712B1 (en) 1998-12-28 2002-09-10 University Of Washington Method for sintering ceramic tapes
JP2000210922A (ja) 1999-01-26 2000-08-02 Noritake Co Ltd セラミックシ―トの製造方法および装置
US6218005B1 (en) 1999-04-01 2001-04-17 3M Innovative Properties Company Tapes for heat sealing substrates
AU757500B2 (en) 1999-06-24 2003-02-20 Nippon Shokubai Co., Ltd. Ceramic sheet and process for producing the same
JP2001031476A (ja) 1999-07-21 2001-02-06 Noritake Co Ltd セラミック・シートの焼成方法および焼成装置
US7056468B2 (en) 2000-06-15 2006-06-06 Paratek Microwave, Inc. Method for producing low-loss tunable ceramic composites with improved breakdown strengths
JP4050041B2 (ja) 2001-11-06 2008-02-20 株式会社日本触媒 酸化エチレン製造用触媒、その製造方法および当該触媒による酸化エチレンの製造方法
US6997015B2 (en) 2001-11-27 2006-02-14 Corning Incorporated EUV lithography glass structures formed by extrusion consolidation process
US6832493B2 (en) 2002-02-27 2004-12-21 Corning Incorporated High purity glass bodies formed by zero shrinkage casting
US7053017B2 (en) 2002-03-05 2006-05-30 Corning Incorporated Reduced striae extreme ultraviolet elements
JP2003328006A (ja) 2002-05-13 2003-11-19 Ishikawajima Harima Heavy Ind Co Ltd 耐熱合金多孔体シートの連続焼成装置及び製造方法
US7351492B2 (en) 2002-05-22 2008-04-01 Nippon Shokubai Co., Ltd. Solid oxide type fuel cell-use electrode support substrate and production method therefor
JP4357808B2 (ja) 2002-07-18 2009-11-04 本田技研工業株式会社 車載用燃料電池スタック
DE60331573D1 (de) 2002-10-11 2010-04-15 Nippon Catalytic Chem Ind Elektrolytblatt für eine festoxidbrennstoffzelle und verfahren zu seiner herstellung
US7068492B2 (en) * 2004-11-22 2006-06-27 E. I. Du Pont De Nemours And Company Process for the constrained sintering of a pseudo-symmetrically configured low temperature cofired ceramic structure
US7506522B2 (en) 2004-12-29 2009-03-24 Corning Incorporated High refractive index homogeneity fused silica glass and method of making same
JP4515281B2 (ja) 2005-02-17 2010-07-28 株式会社日本触媒 固体酸化物形燃料電池用電解質シートおよびその製法、並びに固体酸化物形燃料電池セル
JP4795949B2 (ja) 2005-03-23 2011-10-19 株式会社日本触媒 固体酸化物形燃料電池用燃料極材料およびそれを用いた燃料極、並びに燃料電池セル
US7744773B2 (en) * 2005-03-29 2010-06-29 Drexel University Freestanding films with electric field-enhanced piezoelectric coefficients
CN101228099B (zh) 2005-07-27 2013-01-16 株式会社日本触媒 固态电解质薄片的制造方法以及固态电解质薄片
US20070039684A1 (en) * 2005-08-18 2007-02-22 Nedblake Greydon W Method and apparatus for separating labels from a liner
WO2009031236A1 (ja) 2007-09-07 2009-03-12 Nippon Shokubai Co., Ltd. セラミックシートの製造方法
JP2010064255A (ja) * 2008-09-08 2010-03-25 Tdk Corp セラミックグリーンシートの剥離装置及びセラミックグリーンシートの剥離方法
JP5491085B2 (ja) * 2008-11-10 2014-05-14 日本碍子株式会社 セラミックスシートの製造方法
TW201024034A (en) 2008-12-30 2010-07-01 Saint Gobain Abrasives Inc Bonded abrasive tool and method of forming
US20100210444A1 (en) * 2009-02-19 2010-08-19 Rhoads Randy L Large refractory article and method for making
CN103877983A (zh) 2009-03-17 2014-06-25 株式会社日本触媒 制氢催化剂和使用该制氢催化剂的制氢方法
JP4729121B2 (ja) 2009-03-25 2011-07-20 株式会社日本触媒 固体酸化物形燃料電池用電解質シートならびに固体酸化物形燃料電池用セル
US8359884B2 (en) 2009-07-17 2013-01-29 Corning Incorporated Roll-to-roll glass: touch-free process and multilayer approach
US8713969B2 (en) 2009-08-31 2014-05-06 Corning Incorporated Tuning Tzc by the annealing of ultra low expansion glass
US8596094B2 (en) 2009-10-21 2013-12-03 Corning Incorporated Synthetic silica glass with uniform fictive temperature
CN104716371A (zh) 2009-10-23 2015-06-17 株式会社日本触媒 一种氧化钪稳定氧化锆烧结粉末
CN102823043B (zh) 2010-03-30 2016-03-02 株式会社日本触媒 固体氧化物型燃料电池用电解质片及其制造方法、以及固体氧化物型燃料电池用单电池和固体氧化物型燃料电池
TWI591029B (zh) 2010-05-28 2017-07-11 康寧公司 纏繞玻璃帶的方法
TWI542527B (zh) 2010-11-30 2016-07-21 康寧公司 藉由張緊交插材料捲繞玻璃帶
US9466431B2 (en) 2011-01-21 2016-10-11 Nippon Shokubai Co., Ltd. Ionic compound and process for production thereof, and electrolytic solution and electrical storage device each utilizing the ionic compound
US11561185B2 (en) 2011-03-30 2023-01-24 Nippon Shokubai Co., Ltd. Electrolyte sheet for solid oxide fuel cell, unit cell for solid oxide fuel cell and solid oxide fuel cell equipped with same, method for testing electrolyte sheet for solid oxide fuel cell, and method for manufacturing electrolyte sheet for solid oxide fuel cell
JP5742941B2 (ja) * 2011-07-20 2015-07-01 株式会社村田製作所 全固体電池およびその製造方法
US9502729B2 (en) * 2012-08-29 2016-11-22 Corning Incorporated Ion-conducting composite electrolyte comprising path-engineered particles
US8987155B2 (en) 2012-08-30 2015-03-24 Corning Incorporated Niobium doped silica titania glass and method of preparation
TWI478868B (zh) 2012-09-19 2015-04-01 鐘化股份有限公司 碳質膜之製造方法及石墨膜之製造方法
JP5890908B2 (ja) 2012-09-26 2016-03-22 株式会社日本触媒 固体酸化物形燃料電池用電解質シート、電解質支持型セル、固体酸化物形燃料電池用単セル及び固体酸化物形燃料電池
WO2014050142A1 (ja) 2012-09-28 2014-04-03 株式会社日本触媒 固体酸化物形燃料電池用電解質シート、並びに、その製造方法及びそれを備えた固体酸化物形燃料電池用単セル
EP2903067A4 (en) 2012-09-28 2016-07-13 Nippon Catalytic Chem Ind HALF CELL FOR SOLID OXYGEN CELLS AND SOLID OXIDE FUEL CELL
JP6109672B2 (ja) * 2012-11-07 2017-04-05 日本碍子株式会社 セラミック正極−固体電解質複合体
US8901019B2 (en) 2012-11-30 2014-12-02 Corning Incorporated Very low CTE slope doped silica-titania glass
CN103010838A (zh) * 2012-12-24 2013-04-03 窦其勇 一次性整经机的浮动辊反馈式纱线张力控制装置
JP6260250B2 (ja) * 2012-12-29 2018-01-17 株式会社村田製作所 固体電解質用材料
US20140214084A1 (en) 2013-01-28 2014-07-31 Roger P. Jackson Polyaxial bone anchor with receiver with spheric edge for friction fit
JP6283095B2 (ja) 2013-05-03 2018-02-21 コーニング インコーポレイテッド ガラスリボンの搬送方法及び搬送装置
JP6165546B2 (ja) * 2013-08-09 2017-07-19 株式会社日立製作所 固体電解質および全固体リチウムイオン二次電池
HUE056765T2 (hu) * 2013-10-07 2022-03-28 Quantumscape Battery Inc Lítiummal töltött garnet filmet tartalmazó kettõs rétegek és hármas rétegek, továbbá módszer vékony és szabadon álló, lítiummal töltött garnet film szinterezésére
US20160329539A1 (en) * 2014-02-27 2016-11-10 Hitachi, Ltd. Lithium Secondary Cell
US9382150B2 (en) 2014-03-14 2016-07-05 Corning Incorporated Boron-doped titania-silica glass having very low CTE slope
PT107543A (pt) * 2014-03-27 2015-09-28 Innovnano Materiais Avançados Sa Material cerâmico sinterizado, composicão em pó para a sua obtenção, processo de fabrico e respectivas peças cerâmicas
JP2015195183A (ja) * 2014-03-28 2015-11-05 富士フイルム株式会社 全固体二次電池、電池用電極シートの製造方法および全固体二次電池の製造方法
KR101592752B1 (ko) * 2014-08-18 2016-02-12 현대자동차주식회사 가넷 분말, 이의 제조방법, 핫프레스를 이용한 고체전해질 시트 및 이의 제조방법
US9446148B2 (en) 2014-10-06 2016-09-20 Mayo Foundation For Medical Education And Research Carrier-antibody compositions and methods of making and using the same
US10026990B2 (en) * 2014-10-16 2018-07-17 Corning Incorporated Lithium-ion conductive garnet and method of making membranes thereof
CN107210427A (zh) * 2015-01-23 2017-09-26 日本碍子株式会社 全固体电池用正极板、全固体电池
US20160308244A1 (en) * 2015-04-14 2016-10-20 Corning Incorporated Lithium-oxide garnet batch composition and solid electrolyte membrane thereof
CN107848247B (zh) 2015-05-20 2021-06-01 锡安能量公司 电极的保护层
US10766165B2 (en) * 2015-06-29 2020-09-08 Corning Incorporated Manufacturing line, process, and sintered article
KR102435473B1 (ko) * 2015-08-04 2022-08-23 삼성전자주식회사 다결정 소결체를 갖는 이차전지 양극, 상기 이차전지 양극을 포함하는 이차전지, 및 상기 이차전지 양극을 제조하는 방법
US10155667B2 (en) 2016-01-26 2018-12-18 Corning Incorporated System, process and related sintered article
US9966630B2 (en) * 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
US20200280093A1 (en) * 2017-11-07 2020-09-03 The Regents Of The University Of Michigan Solid-State Battery Electrolyte Having Increased Stability Towards Cathode Materials
JP7017079B2 (ja) * 2017-12-28 2022-02-08 トヨタ自動車株式会社 電極の製造方法、電極、及び、電極-電解質層接合体

Also Published As

Publication number Publication date
JP2022033901A (ja) 2022-03-02
TWI820675B (zh) 2023-11-01
TWI763758B (zh) 2022-05-11
US20230307701A1 (en) 2023-09-28
TW202245158A (zh) 2022-11-16
KR20220084429A (ko) 2022-06-21
TW201829355A (zh) 2018-08-16
CN114989733A (zh) 2022-09-02
KR20190100942A (ko) 2019-08-29
CN115189015A (zh) 2022-10-14
US20190363398A1 (en) 2019-11-28
US11411245B2 (en) 2022-08-09
CN115181502A (zh) 2022-10-14
US20220278364A1 (en) 2022-09-01
CN110869456B (zh) 2022-06-10
CN115181502B (zh) 2023-09-22
KR102586150B1 (ko) 2023-10-06
KR20230143627A (ko) 2023-10-12
TW202405248A (zh) 2024-02-01
NL2020149B1 (en) 2019-06-26
CN110869456A (zh) 2020-03-06
JP2020514215A (ja) 2020-05-21
BR112019012978A2 (pt) 2019-12-31
US20190207252A1 (en) 2019-07-04
JP7068309B2 (ja) 2022-05-16
WO2018118964A1 (en) 2018-06-28
JP7410921B2 (ja) 2024-01-10
US10581115B2 (en) 2020-03-03

Similar Documents

Publication Publication Date Title
JP7410921B2 (ja) 焼結システム及び焼結済み物品
EP3511137B1 (en) Long sintered inorganic tape, roll and method of cutting the tape
JP7343633B2 (ja) セラミックテープを製造するプロセス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240329