WO2014050142A1 - 固体酸化物形燃料電池用電解質シート、並びに、その製造方法及びそれを備えた固体酸化物形燃料電池用単セル - Google Patents

固体酸化物形燃料電池用電解質シート、並びに、その製造方法及びそれを備えた固体酸化物形燃料電池用単セル Download PDF

Info

Publication number
WO2014050142A1
WO2014050142A1 PCT/JP2013/005776 JP2013005776W WO2014050142A1 WO 2014050142 A1 WO2014050142 A1 WO 2014050142A1 JP 2013005776 W JP2013005776 W JP 2013005776W WO 2014050142 A1 WO2014050142 A1 WO 2014050142A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
peripheral edge
electrolyte
solid oxide
green
Prior art date
Application number
PCT/JP2013/005776
Other languages
English (en)
French (fr)
Inventor
秦 和男
坂本 勝彦
相川 規一
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2014538204A priority Critical patent/JP6085304B2/ja
Priority to EP13840447.0A priority patent/EP2903066B1/en
Priority to US14/431,246 priority patent/US9698443B2/en
Priority to CN201380049950.7A priority patent/CN104685685B/zh
Publication of WO2014050142A1 publication Critical patent/WO2014050142A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrolyte sheet for a solid oxide fuel cell, a method for producing the electrolyte sheet, and a single cell for a solid oxide fuel cell including the electrolyte sheet.
  • SOFC solid oxide fuel cells
  • SOFC a single cell in which an electrode is provided on an electrolyte sheet is stacked to be used in a stacked structure (stack).
  • stack a stacked structure
  • advanced quality control is required for each electrolyte sheet.
  • burr in which the height changes at the periphery of the sheet, for example. If burrs are present at the peripheral edge of the sheet, there will be problems such as cracking during printing of the electrode, and the printing itself will not be successful and the electrode will become non-uniform or will be easily peeled off.
  • the SOFC is configured by stacking a plurality of unit cells including an electrolyte sheet and electrodes and connecting them in series. Therefore, the stress may concentrate on the burrs on the periphery of the electrolyte sheet when the single cells are stacked or when the SOFC generates power, and the electrolyte sheet may be damaged.
  • Patent Document 1 proposes a ceramic sheet that can be used as an electrolyte sheet for SOFC and has a burr height at the periphery of the sheet suppressed to 100 ⁇ m or less.
  • an object of the present invention is to provide an SOFC electrolyte sheet that is less prone to problems such as cracking during the production of SOFC single cells and the stacking of SOFC single cells, and a method for producing the same. It is another object of the present invention to provide a single cell for SOFC provided with such an SOFC electrolyte sheet.
  • the present invention relates to an electrolyte sheet for SOFC having a thickness of 50 to 300 ⁇ m, on at least one main surface, (1)
  • the sheet peripheral edge and the sheet peripheral edge which are obtained by using a laser optical three-dimensional shape measuring apparatus, irradiating the sheet surface with laser light at a pitch of 0.01 mm and analyzing the reflected light three-dimensionally.
  • the burr height [ ⁇ H (0-3)] of the first section between the inner position and the position 3 mm inside is 100 ⁇ m or less
  • the sheet peripheral edge and the sheet peripheral edge which are obtained by using the laser optical three-dimensional shape measuring apparatus, irradiating the sheet surface with laser light at a pitch of 0.01 mm and analyzing the reflected light three-dimensionally.
  • the present invention also provides A green sheet manufacturing step of obtaining a green sheet for an electrolyte sheet for SOFC by cutting a green body obtained by forming a slurry containing ceramic raw material powder, a binder and a dispersion medium into a sheet and drying the slurry, A plate having an average surface roughness (Ra) of the green sheet facing the surface of the green sheet of 0.001 to 0.1 ⁇ m and a normal peel strength in the range of 10 to 1000 mN / cm.
  • the manufacturing method of the electrolyte sheet for SOFC containing is provided.
  • the present invention also provides a single cell for SOFC comprising a fuel electrode, an air electrode, and the SOFC electrolyte sheet of the present invention disposed between the fuel electrode and the air electrode.
  • the SOFC single cell of the present invention it is possible to provide an SOFC electrolyte sheet in which defects such as cracks are unlikely to occur at the peripheral edge of the sheet when the SOFC single cell is manufactured and when the SOFC single cells are stacked.
  • the SOFC single cell of the present invention since the SOFC single cell of the present invention is equipped with such an SOFC electrolyte sheet, the SOFC single cell of the present invention can realize a highly reliable SOFC in which the power generation performance is hardly lowered.
  • FIG. 3 is an example of a displacement curve by laser beam scanning of the peripheral edge of the sheet of Example 1.
  • FIG. FIG. 3 is an enlarged view of a displacement curve by laser beam scanning of the peripheral edge portion of the sheet of Example 1.
  • 6 is an example of a displacement curve obtained by laser beam scanning of a peripheral edge portion of a sheet of Example 4.
  • 10 is an example of a displacement curve by laser beam scanning of a peripheral edge portion of a sheet in Example 6.
  • 6 is an example of a displacement curve by laser beam scanning of a sheet peripheral edge portion of Comparative Example 1.
  • 6 is an example of a displacement curve by laser beam scanning of a peripheral edge of a sheet of Comparative Example 2.
  • the SOFC electrolyte sheet of the present embodiment has the following characteristics (1) and (2) on at least one main surface.
  • the burr height [ ⁇ H (0-3)] in the first section between the inner position and the position 3 mm inside is 100 ⁇ m or less.
  • the sheet peripheral edge and the sheet peripheral edge which are obtained by using a laser optical three-dimensional shape measuring apparatus, irradiating the sheet surface with laser light at a pitch of 0.01 mm and analyzing the reflected light three-dimensionally.
  • the sheet peripheral edge is defined as follows. When the laser beam is irradiated from the outside of the sheet to the top of the sheet and the data is sampled at a pitch of 0.01 mm, it is obtained from the displacement curve of the sheet surface within a scanning length of 0.05 mm. The point at which the displacement becomes 80% of the actual sheet thickness is determined as the 0 (zero) point, that is, the sheet peripheral edge.
  • the definition of 80% of the sheet thickness is that the electrolyte sheet having a thickness of 50 to 300 ⁇ m according to the present invention has a peripheral edge surface of the electrolyte sheet (due to warpage and undulation generated in the electrolyte sheet).
  • the in-plane direction of the (circumferential side surface) is not necessarily along the vertical direction, and may be an oblique direction deviated from the vertical direction. This tends to be prominent especially when the thickness of the electrolyte sheet is a thin film of about 50 to 150 ⁇ m, and it may be difficult to uniquely determine the peripheral edge. Therefore, in the present invention, the 0 (zero) point is defined as 80% of the actual sheet thickness based on the sheet thickness.
  • the thickness of the electrolyte sheet is measured with a U-shaped micrometer (manufactured by Mitutoyo Corporation) at any four locations in the area inside 5 mm from the peripheral edge of the sheet (that is, the sheet center area), It is an average value calculated from the measured values obtained.
  • the burr height referred to in the present invention is within each predetermined section specified from the outer peripheral edge of the sheet toward the center of the sheet (for example, in the case of the first section). In the range from the outer peripheral edge of the sheet to a position 3 mm inward), the displacement difference between the highest point of the displacement in the section and the lowest point on the side from the highest point toward the center of the sheet.
  • burrs are generated near the outer peripheral edge of the sheet and near the inner peripheral edge (the peripheral edge of the hole). Therefore, in each predetermined section specified from the outer peripheral edge of the sheet toward the center of the sheet, together with the displacement difference between the highest point of displacement in the section and the lowest point on the side from the highest point toward the center of the sheet In each predetermined section specified from the inner peripheral edge of the sheet toward the outer peripheral edge of the sheet, the difference in displacement between the highest point of displacement in that section and the lowest point on the side from the highest point toward the outer peripheral edge of the sheet Also, burr height.
  • the characteristic (1) is that the burr height [ ⁇ H (0-3)] in this first section is 100 ⁇ m or less, with the range from the sheet peripheral edge to the position 3 mm inside as the first section.
  • the burr height [ ⁇ H (0-3)] in the first section is a difference in height between the highest point and the lowest point of the sheet surface in the first section.
  • the burr height in another set section is also the difference in height between the highest point and the lowest point of the sheet surface in that section.
  • the burr height [ ⁇ H (0-3)] in the first section may be referred to as “burr height at the sheet peripheral edge”.
  • the burr height [ ⁇ H (0-3)] in the first section is desirably 90 ⁇ m or less, more desirably 80 ⁇ m or less, still more desirably 70 ⁇ m or less, and particularly desirably 60 ⁇ m or less.
  • the first section is divided into the second section (section between the sheet peripheral edge and a position 0.6 mm inside from the sheet peripheral edge), and the third section (0. 0 from the sheet peripheral edge).
  • Burr height in each section that is, burr height in the second section [ ⁇ H (0 ⁇ 0.6)].
  • the burr height [ ⁇ H (0.61-3)] in the third section is obtained.
  • the characteristic of (2) is that the ratio [ ⁇ H (0... 3) of the burr height [ ⁇ H (0.61-3)] in the third section to the burr height [ ⁇ H (0 ⁇ 0.6)] in the second section. 61-3) / ⁇ H (0-0.6)] satisfies 0.5 or more and 2.0 or less.
  • the present inventors have examined the structural characteristics of the electrolyte sheet that is liable to cause defects such as cracks at the periphery of the sheet during fabrication of the SOFC single cell and during stacking of the SOFC single cells. It can be seen that the highest and lowest points of the sheet surface that determine [ ⁇ H (0-3)] often exist in a section between the sheet peripheral edge and a position 0.6 mm inside from the sheet peripheral edge. It was issued. This has also been confirmed in examples described later. That is, the present inventors have found that an electrolyte sheet having a large warpage near the peripheral edge of the sheet is likely to cause defects such as cracks in the peripheral edge of the sheet when the SOFC single cell is manufactured and when the SOFC single cells are stacked. It was.
  • the first section is divided by a position 0.6 mm inside from the sheet peripheral edge, and the position relative to the height of the burr generated outside the position, that is, the section (second section) on the sheet peripheral edge side.
  • the ratio of the burr height occurring in the inner section (third section) beyond the range of 0.5 to 2.0 the warpage of the sheet peripheral edge near the sheet peripheral edge can be reduced.
  • An electrolyte sheet having a small degree and a comparatively gentle slope of the burr shape at the sheet peripheral edge (range from the sheet peripheral edge to a position 3 mm inside) was identified. According to this electrolyte sheet, defects such as cracks are less likely to occur at the peripheral edge of the sheet when the SOFC single cell is manufactured and when the SOFC single cell is stacked.
  • ⁇ H (0.61-3) / ⁇ H (0-0.6) may be in the range of 0.5 or more and 2.0 or less.
  • ⁇ H (0.61-3) / ⁇ H (0-0.6) is preferably 0.55 or more, and more preferably 0.6 or more.
  • ⁇ H (0.61-3) / ⁇ H (0-0.6) is desirably 1.8 or less, more desirably 1.5 or less, still more desirably 1.3 or less, and particularly desirably 1.0 or less.
  • the sheet surface is irradiated with laser light at a pitch of 0.01 mm, and the reflected light is obtained by three-dimensional analysis, from the sheet peripheral edge and the sheet peripheral edge.
  • ⁇ H (0.31-3) / ⁇ H (0-0.3) is preferably 0.55 or more, and more preferably 0.6 or more.
  • ⁇ H (0.31-3) / ⁇ H (0-0.3) is desirably 1.8 or less, more desirably 1.5 or less, still more desirably 1.3 or less, and particularly desirably 1.0 or less.
  • the sheet surface is irradiated with laser light at a pitch of 0.01 mm, and the reflected light is obtained by three-dimensional analysis, from the sheet peripheral edge and the sheet peripheral edge.
  • ⁇ H (0.11-3) / ⁇ H (0-0.1) is preferably 0.55 or more, and more preferably 0.6 or more.
  • ⁇ H (0.11-3) / ⁇ H (0-0.1) is desirably 1.8 or less, more desirably 1.5 or less, still more desirably 1.3 or less, and particularly desirably 1.0 or less.
  • the burr height is measured using a laser optical three-dimensional shape measuring apparatus, and can be obtained by irradiating the sheet surface with laser light and analyzing the reflected light in a three-dimensional shape.
  • a laser optical three-dimensional shape measuring device is used to irradiate an electrolyte sheet surface to be measured with laser light to focus on the sheet surface, and to form an image of the reflected light evenly on the photodiode.
  • the resolution is usually 1 ⁇ m or less, preferably 0.1 ⁇ m or less. In this embodiment, a resolution of 0.01 ⁇ m is used to accurately detect the burr height in each section.
  • the laser optical three-dimensional shape measuring apparatus will be described in more detail with reference to FIG.
  • the laser measuring instrument 11 is provided with a red semiconductor laser having a wavelength of 670 nm and a spot diameter of about 2 ⁇ m as a light source, and the resolution can be set to 0.01 ⁇ m and the scan width can be set in 6 steps between 0 to 1100 ⁇ m.
  • the laser measuring instrument 11 is preferably attached with a microscope function using an infrared LED having a wavelength of 870 nm as an illumination light source.
  • An example of a suitable measuring instrument 11 is a double scan high precision laser measuring instrument LT series manufactured by Keyence Corporation.
  • the laser measuring instrument controller 12 has a minimum display unit of 0.01 ⁇ m, a display cycle of 10 times / second, and a control I / O of no-voltage input and NPN open collector output.
  • the laser measuring instrument controller 12 is connected to the monitor 13 with a PIN connector.
  • the XY-axis automatic stage 15 on which the test sample 14 is placed is controlled by a position controller 16 having two axes and a driving speed of 1 pps to 500 Kpps. Positioning, data collection from the laser measuring instrument 11 and creation of a data file are possible by the Excel-compatible position measurement software of the data processing personal computer 17. Further, the analog controller 18 can collect the DC analog voltage from the laser measuring instrument controller 12 synchronized with the movement of the automatic stage 15.
  • EMS2002AD-3D manufactured by COMMS.
  • the electrolyte sheet of this embodiment has a thickness of 50 to 300 ⁇ m because it is used for a single cell for SOFC.
  • a desirable thickness is 80 to 250 ⁇ m, and a more desirable thickness is 100 to 200 ⁇ m.
  • the size of the electrolyte sheet of the present embodiment is not particularly limited, but for example, a sheet having a planar area of 50 cm 2 to 900 cm 2 , preferably 80 cm 2 to 500 cm 2 is preferably used.
  • the shape of the sheet may be any of a circle, an ellipse, and a square with R (R).
  • These sheets may have one or two or more holes such as a similar circular shape, an elliptical shape, and a rectangular shape having R (R).
  • the said plane area means the area (area determined by sheet
  • the sheet peripheral edge and the sheet peripheral edge generally refer to the outer peripheral edge and the outer peripheral part of the electrolyte sheet, respectively. However, in the case of an electrolyte sheet in which a hole is formed, the peripheral edge and peripheral edge of the hole are further included. included.
  • An example of the manufacturing method of the electrolyte sheet of this embodiment is A green sheet manufacturing step of obtaining a green sheet for an electrolyte sheet for SOFC by cutting a green body obtained by forming a slurry containing ceramic raw material powder, a binder and a dispersion medium into a sheet and drying the slurry, A plate having an average surface roughness (Ra) of the green sheet facing the surface of the green sheet of 0.001 to 0.1 ⁇ m and a normal peel strength in the range of 10 to 1000 mN / cm.
  • a firing step of firing the green sheet that has undergone the pressing step including.
  • the ceramic raw material powder of the electrolyte component of the electrolyte sheet is prepared.
  • the electrolyte component can be appropriately selected from known materials used as the electrolyte component of the SOFC electrolyte sheet.
  • zirconia stabilized with yttria, ceria, scandia, ytterbia, etc . ceria doped with yttria, samaria, gadolinia, etc .
  • a lanthanum gallate perovskite structure oxide substituted with aluminum, indium, cobalt, iron, nickel, copper, or the like can be used. These may be used alone or in combination of two or more.
  • zirconia-based materials are desirable, and zirconia stabilized with yttria, scandia, ytterbia, etc. is particularly desirable.
  • a green sheet for an electrolyte sheet is prepared using the prepared ceramic raw material powder.
  • a tape forming method is preferably used, and in particular, a doctor blade method and a calendar method are preferably used.
  • a binder and a dispersion medium are added to the ceramic raw material powder, and additives and the like are further added as necessary to prepare a slurry.
  • This slurry is spread on a carrier film made of a polymer film such as a polyethylene terephthalate (PET) film, formed into a sheet shape, dried, and the dispersion medium is volatilized to obtain a green tape (green body).
  • PET polyethylene terephthalate
  • the green tape is made into an appropriate size by cutting and / or punching or the like to produce a green sheet for an electrolyte sheet.
  • the binder, dispersion medium, additive, etc. which are used for the preparation of the slurry can be a known binder, dispersion medium, additive, etc. which are used for the production of the electrolyte sheet for SOFC.
  • the polymer film used as the carrier film a known polymer film used for the production of an SOFC electrolyte sheet can be used.
  • the green sheet cut for the electrolyte sheet is peeled off from the carrier film.
  • the green sheet peeled off from the carrier film is sandwiched between plate-like bodies and pressed in the thickness direction.
  • a case where a pressurizing polymer film is used as the plate-like body will be described as an example.
  • the temperature of pressurization may be room temperature, but may be controlled to 100 ° C. or less.
  • the applied pressure is desirably 10 to 40 MPa, and more desirably 15 to 30 MPa.
  • the pressure is less than 10 MPa, the effect of pressurization is difficult to obtain, and the stress relaxation at the green sheet peripheral portion is not sufficient, so the effect of reducing the burr height is reduced.
  • the pressure exceeds 40 PMa, the green sheet itself may be deformed to greatly change the dimensions after firing.
  • the pressure applied to the green sheet is, for example, a film in which the pressed portion develops red color (Fuji Film, “Prescale”), and a pressure image analysis system (Fuji Film, “Pre-Scale”) that can analyze the pressure distribution. It can be measured by using a scale pressure image analysis system FPD-9270 ").
  • the polymer film for pressurization desirably has an average surface roughness (Ra) of 0.001 ⁇ m or more and 0.1 ⁇ m on the surface facing the surface of the green sheet.
  • Ra average surface roughness
  • the Ra of the surface facing the surface of the green sheet is more preferably 0.001 to 0.05 ⁇ m, still more preferably 0.001 to 0.02 ⁇ m, and 0.001 to A thickness of 0.01 ⁇ m is particularly desirable.
  • the pressure-sensitive polymer film has a normal peel force of 10 to 1000 mN / cm on the surface facing the surface of the green sheet.
  • the pressing polymer film preferably has a normal peel force of 10 to 600 mN / cm on the surface facing the surface of the green sheet, more preferably 10 to 400 mN / cm, and more preferably 10 to 200 mN / cm. It is particularly desirable to be.
  • the normal peel force here is an index for evaluating the peel force of the polymer film for pressurization, and is a value measured as follows.
  • a single-sided double-sided adhesive tape (“No. 502” manufactured by Nitto Denko Corporation) is attached to the surface to be measured of the pressure-sensitive polymer film sample, cut into a size of 50 mm ⁇ 300 mm, and left at room temperature for 1 hour.
  • the peel force is measured.
  • the peeling force is obtained by 180 ° peeling under a condition of a tensile speed of 300 mm / min using a tensile tester (manufactured by Intesco, “Intesco Model 2001”). *
  • the polymer film for pressurization has a static elimination layer for static elimination.
  • static electricity is generated when the green sheet is peeled off from the pressurizing polymer film, and dust can be prevented from adhering to the green sheet or the polymer film.
  • the surface resistivity of the pressurizing polymer film is preferably 10 13 ⁇ / ⁇ or less, and more preferably 10 10 ⁇ / ⁇ or less.
  • the pressurizing polymer film preferably has a release layer on the surface facing the surface of the green sheet.
  • the release layer is not particularly limited as long as it contains a material having releasability. Among such materials, it is desirable to use a curable silicone resin because the releasability is particularly good.
  • a curable silicone resin a type mainly composed of a curable silicone resin may be used, or a modified silicone type by graft polymerization with an organic resin such as a urethane resin, an epoxy resin and an alkyd resin may be used. Also good.
  • any of the curing reaction types such as an addition type, a condensation type, an ultraviolet curable type, an electron beam curable type, and a solventless type can be used.
  • Specific examples of the curable silicone resin include KS-772, KS-774, KS-775, KS-778, KS-779H, KS-856, X-62-2422 and X made by Shin-Etsu Chemical Co., Ltd. -62-2461, DKQ3-202, DKQ3-203, DKQ3-204, DKQ3-205, DKQ3-210 and FSQK-2560 manufactured by Dow Corning Asia Co., Ltd., YSR-3022 manufactured by Toshiba Silicone Co., Ltd.
  • the coating amount of the material constituting the release layer (Si) is desirably 0.01 ⁇ 5g / m 2, 0.01 ⁇ 2g / m 2 Gayori Desirably, 0.01-1 g / m 2 is more desirable.
  • the coating amount is less than 0.01 g / m 2 , the coated surface may lack stability and it may be difficult to obtain a uniform coating film.
  • the coating amount exceeds 5 g / m 2 , the coating film adhesion and curability of the release layer itself may decrease.
  • the green sheet is pressed in the thickness direction while being sandwiched between the pressurizing polymer films as described above.
  • a green sheet obtained by cutting a green tape obtained by applying slurry on a carrier sheet and drying it into a predetermined shape has a tensile stress especially on the periphery of the green sheet by peeling off from the carrier sheet. It has occurred. However, the generated tensile stress can be relaxed by the pressurization step.
  • the material of the pressurizing polymer film is not particularly limited, and examples thereof include acrylic resin, polycarbonate resin, polyethylene resin, polyester resin, vinyl chloride resin, and vinylidene chloride resin. Among these, PET is preferable from the viewpoint of repeated use.
  • the thickness of the pressurizing polymer film is preferably 0.05 to 2 mm.
  • the method of pressing the green sheet between the pressurizing polymer film is not particularly limited, but a method using a uniaxial press machine, a biaxial press machine, a 4-axis press machine, a roll press machine or the like can be adopted.
  • the pressure-sensitive polymer film When pressurizing, the pressure-sensitive polymer film may be stacked and pressed on both sides of one green sheet, or a plurality of green sheets and the pressure-sensitive polymer film may be alternately stacked and pressed. .
  • the green sheet to be pressed preferably has a tensile elongation at break of 5% to 50% and a tensile yield strength of 2.0 MPa to 20 MPa in order to effectively relieve stress. . More desirably, the tensile fracture elongation is 8% or more and 30% or less, and the tensile yield strength is 3.0 MPa or more and 15 MPa or less.
  • the green sheet for the electrolyte sheet is fired.
  • the green sheet for an electrolyte sheet obtained through the above pressurization step is placed on a porous setter on a shelf board.
  • the porous setter and the green sheet for the electrolyte sheet produced as described above are alternately stacked on the shelf so that the porous setter is disposed in the lowermost layer and the uppermost layer, You may arrange
  • the green sheet thus arranged is heated and fired at a temperature of about 1200 to 1500 ° C., preferably about 1250 to 1425 ° C. for about 1 to 5 hours.
  • the firing temperature exceeds 1500 ° C, rhombohedral crystals and monoclinic crystals are likely to be formed in the sintered body, and the strength at normal temperature (room temperature strength) and high temperature durability of the electrolyte sheet are both poor. There is a case.
  • the firing temperature is less than 1200 ° C., it becomes difficult to obtain a dense sheet due to insufficient sintering, and not only the electrolyte sheet becomes insufficient in strength but also gas may pass therethrough.
  • firing in the above temperature range suppresses the formation of monoclinic crystals and rhombohedrons, and the relative density of the obtained sheet can be 97% or more, preferably 99% or more.
  • the relative density is a relative value of density measured by Archimedes method with respect to theoretical density (density measured by Archimedes method / theoretical density).
  • the well-known porous setter used for manufacture of the electrolyte sheet for SOFC can be used for the porous setter used for baking of a green sheet.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of the SOFC single cell according to the present embodiment.
  • the single cell 21 for SOFC of the present embodiment includes a fuel electrode 22, an air electrode 23, and an SOFC electrolyte sheet 24 disposed between the fuel electrode 22 and the air electrode 23.
  • the electrolyte sheet 24 the electrolyte sheet for SOFC described in the first embodiment is used.
  • the fuel electrode 22 and the air electrode 23 a fuel electrode and an air electrode used in a known SOFC can be applied.
  • the fuel electrode 22 is formed on one main surface of the electrolyte sheet obtained by the method described in the first embodiment, and the air electrode 23 is formed on the other main surface.
  • a binder and a solvent are added to the powder of the material constituting the fuel electrode 22 or the air electrode 23, and a dispersant is added as necessary to prepare a slurry.
  • the slurry is applied to one or the other main surface of the electrolyte sheet 24 with a predetermined thickness, and the coating film is dried, whereby a green layer for the fuel electrode 22 or the air electrode 23 is formed. By firing the green layer, the fuel electrode 22 or the air electrode 23 is obtained.
  • the firing conditions such as the firing temperature may be appropriately determined according to the type of each material used for the fuel electrode 22 and the air electrode 23.
  • materials constituting the fuel electrode 21 and the air electrode 23 materials used for the fuel electrode and air electrode of a known SOFC can be used, respectively.
  • binders and solvents used in the preparation of the slurry for the fuel electrode 21 and the air electrode 23 and binders and solvents known in the SOFC fuel electrode and air electrode manufacturing method are known. Can be selected as appropriate.
  • the SOFC single cell 21 of the present embodiment includes the electrolyte sheet described in the first embodiment, which is less likely to cause defects such as cracks at the periphery of the sheet when the SOFC single cell is manufactured and when the SOFC single cells are stacked. Yes. Therefore, according to the single cell 21 for SOFC, it is possible to realize a highly reliable SOFC in which the power generation performance is hardly lowered.
  • a mixed solvent disersion medium
  • the obtained slurry was transferred to a jacketed round bottom cylindrical vacuum degassing vessel equipped with a bowl-shaped stirrer and having an internal volume of 50 L. While rotating the stirrer at a speed of 30 rpm, the jacket temperature was reduced to 40 ° C. (about 4 ° C.). -21 kPa), and the viscosity at 25 ° C. is adjusted to 3 Pa ⁇ s, and is continuously applied onto a PET film by the doctor blade method as a slurry for coating. A long 10Sc1CeSZ green tape (green body) was produced by drying at 100 ° C.
  • this green tape was used to cut approximately 160 mm ⁇ 10Sc1CeSZ green sheet (green for electrolyte sheet for SOFC). Sheet).
  • the upper B-shaped mold is lowered to cut the green tape, and at the same time, the lower B-shaped mold is interlocked. After the lowering, the square-shaped mold and the upper center mold were raised, and a green sheet cut to about 160 mm ⁇ by the square-shaped mold was obtained.
  • the green sheet was sandwiched between commercially available PET films (plates).
  • This PET film is a film that has been release-treated on one side, and has a normal peel strength of 22 mN / cm, a surface roughness Ra of 0.005 ⁇ m, and a surface resistance value of 6 ⁇ 10 7 ⁇ / side. It was ⁇ .
  • an approximately 170 mm square PET film is placed on a smooth acrylic plate having a thickness of 10 mm and a 200 mm square, with the PET surface subjected to the release treatment as described above facing up, and then a suction pad.
  • the approximately 160 mm ⁇ green sheet was moved onto the PET surface and placed.
  • a PET film was prepared, and the PET film was placed on a green sheet with the release-treated PET side down, and then an acrylic plate similar to the acrylic plate was placed. That is, a laminate of an acrylic plate, a PET film, a green sheet, a PET film, and an acrylic plate was configured. The laminate was placed on a sample stage of a four-axis pressure molding machine and pressed at room temperature for 1 second with a gauge pressure of 9.8 MPa.
  • a laminate having the same configuration as the above laminate is prepared, and a prescale for medium pressure ("Prescale MW” manufactured by Fuji Film Co., Ltd.) is sandwiched between the PET film and the green sheet in the laminate.
  • Prescale MW a prescale for medium pressure
  • region namely, sheet
  • U-shaped micrometer made by Mitutoyo Corporation
  • Example 2 An electrolyte sheet was produced in the same manner as in Example 1 except that the pressing process was different.
  • a PET film having both surfaces released from the release process is placed on a green sheet placed on the PET film, and then the green sheet and PET having both sides released from the release process are placed on the PET film.
  • a laminate including five green sheets was formed. This laminate was placed on a sample stage of a four-axis pressure molding machine and pressed at room temperature with a gauge pressure of 9.8 MPa for 3 seconds.
  • the PET surface subjected to the release treatment in Example 2 has a normal peeling force of 22 mN / cm, a surface roughness Ra of 0.005 ⁇ m, and a surface resistance value of 6 ⁇ 10 7 ⁇ . / ⁇ .
  • the green sheets included in the laminated body subjected to the pressure treatment two sheets, the green sheet located at the top and the green sheet located at the bottom, were fired.
  • the electrolyte sheet obtained by firing the uppermost green sheet was designated as Example 2-1
  • the electrolyte sheet obtained by firing the lowermost green sheet was designated as Example 2-2.
  • Example 3 An electrolyte sheet was produced in the same manner as in Example 1 except that the PET film used and the pressurizing conditions were different in the pressurizing step.
  • the PET film used in Example 3 is a film that has been subjected to a release treatment on one side, and has a normal peel force of 40 mN / cm, a surface roughness Ra of 0.005 ⁇ m, and a surface resistance value of 6 on the release-treated surface. ⁇ 10 7 ⁇ / ⁇ .
  • pressurization conditions were 2 seconds at 21.1 MPa at room temperature.
  • Example 4 An electrolyte sheet was produced in the same manner as in Example 1 except that the PET film used and the pressurizing conditions were different in the pressurizing step.
  • the PET film used in Example 4 is a film that has been release-treated on one side, and has a normal peel strength of 136 mN / cm, a surface roughness Ra of 0.01 ⁇ m, and a surface resistance value of 6 on the surface that has been subjected to the release treatment. ⁇ 10 7 ⁇ / ⁇ .
  • the pressurization conditions were normal temperature, 29.4 MPa, and 2 seconds.
  • Example 5 An electrolyte sheet was produced in the same manner as in Example 1 except that the PET film used and the pressurizing conditions were different in the pressurizing step.
  • the PET film used in Example 5 is a film that has been release-treated on one side, and has a normal peel force of 380 mN / cm, a surface roughness Ra of 0.03 ⁇ m, and a surface resistance value of 6 on the release-treated side. ⁇ 10 7 ⁇ / ⁇ .
  • the pressurization conditions were normal temperature and 32.4 MPa for 10 seconds.
  • Example 6 An electrolyte sheet was produced in the same manner as in Example 1 except that the material used in the green sheet production process, the size of the obtained green sheet, the PET film used in the pressure process, and the pressure conditions were different. .
  • 3 mol% yttrium oxide stabilized zirconia powder manufactured by Daiichi Rare Element Chemical Co., Ltd., trade name “3YSZ”, d 50 : 0.4 ⁇ m
  • 3YSZ trade name “3YSZ”, d 50 : 0.4 ⁇ m
  • the PET film used in Example 6 is a film that has been subjected to a release treatment on one side, and has a normal peeling force of 470 mN / cm, a surface roughness Ra of 0.04 ⁇ m, and a surface resistance value.
  • the pressurization conditions were normal temperature, 44.1 MPa, and 30 seconds.
  • the electrolyte sheet of Example 6 obtained after firing was a 3YSZ electrolyte sheet having a diameter of 100 mm and a thickness of 0.1 mm.
  • Comparative Example 1 An electrolyte sheet was produced in the same manner as in Example 1 except that the PET film used was different in the pressing step.
  • the PET film used in Comparative Example 1 is a film that has been subjected to a release treatment on one side, and has a normal peeling force of 1080 mN / cm, a surface roughness Ra of 0.13 ⁇ m, and a surface resistance value of 6 on the release-treated surface. ⁇ 10 7 ⁇ / ⁇ .
  • Comparative Example 2 In the pressurizing step, an electrolyte sheet was prepared in the same manner as in Example 1 except that the PET film used and the pressurizing conditions were different.
  • the PET film used in Comparative Example 2 is a film having a diameter of about 170 mm ⁇ and one surface of which has been subjected to a release treatment.
  • the normal release force of the release treatment surface is 4 mN / cm, the surface roughness Ra is 0.0008 ⁇ m, the surface The resistance value was 6 ⁇ 10 7 ⁇ / ⁇ .
  • the 10Sc1CeSZ green tape obtained by the same method as in Example 1 is attached to a continuous punching machine (trade name “865B”, manufactured by Sakamoto Engineering Co., Ltd.), and has a press stroke of 40 mm, a press speed of 80 spm, and about 160 mm ⁇ . Cut into green sheets.
  • the blade type used was a new one with a cutting edge shape of a single-edged blade (manufactured by Nakayama Paper Equipment Co., Ltd.), a cutting edge angle ⁇ of 57.5 °, ⁇ 1 of 26.5 °, ⁇ 2 of 31 ° and a shape of about 160 mm ⁇ .
  • the cutter blade was attached to a plywood board, and hard green rubber (trade name “KSA-17” manufactured by Nakayama Paper Equipment Co., Ltd.) was attached as a spongy sponge.
  • the obtained green sheet was subjected to the firing process as it was without being subjected to pressure treatment with the release-treated PET film.
  • the firing step was performed in the same manner as in Example 1.
  • the burr height measuring device described in the embodiment double scan high-precision laser measurement manufactured by Keyence Corporation
  • the LT series and the high-speed three-dimensional shape measurement system “EMS2002AD-3D” manufactured by Coms Co., Ltd. The sheet was scanned from the outside to the length of about 5 mm from the peripheral edge to obtain a displacement curve of the sheet surface, and the burr height was measured from the displacement curve.
  • the burr height was measured for all of the first to seventh sections.
  • the displacement curves of the sheet peripheral edge portions of Example 1, Example 4, Example 6, Comparative Example 1 and Comparative Example 2 are as shown in FIGS. 3, 5, 6, 7 and 8, respectively. became.
  • the highest and lowest points of the sheet surface that determine the burr height [ ⁇ H (0-3)] of the first section are the sections between the sheet peripheral edge and the position 0.6 mm inside from the sheet peripheral edge.
  • ⁇ H (0-0.7) and ⁇ H (0.71-3) were also measured to confirm that they are often present in FIG. 4 is an enlarged view of the displacement curve of the first embodiment.
  • the burr heights of the first to third, sixth and seventh sections, and ⁇ H (0-0.08), ⁇ H (0.09-3) , ⁇ H (0-0.05) and ⁇ H (0.06-3) were measured.
  • the same measurement was performed also at 0.1 mm pitch and 0.001 mm pitch.
  • the value with the largest ⁇ H (0-3) value was taken as the maximum burr height of the electrolyte sheet, and the burr height of each section at that position was defined as the section maximum burr height.
  • ⁇ H (0-0.08), ⁇ H (0.09-3), ⁇ H (0-0.05), ⁇ H (0.06-3), ⁇ H (0-0.7), and ⁇ H (0 .71-3) is as follows.
  • the burr height of the electrolyte sheet of the reference example is shown in Table 1, and the thickness and burr height of the electrolyte sheets of Examples 1 to 6 and Comparative Examples 1 and 2 are shown in Table 2.
  • the electrolyte sheet is composed of 60 parts by mass of nickel oxide powder (d 50 : 0.9 ⁇ m) obtained by thermally decomposing basic nickel carbonate and 40 parts by mass of commercially available 8 mol yttria stabilized zirconia powder on one surface of the electrolyte sheet.
  • the fuel electrode paste was applied to an area of about 110 mm ⁇ excluding the 5 mm width area of each electrolyte sheet by screen printing and dried. Further, on the other side of the electrolyte sheet, from 80 parts by mass of a commercially available strontium doplantan manganate (La 0.6 Sr 0.4 MnO 3 ) powder and 20 parts by mass of a commercially available 20 mol% gadolinia dope ceria powder.
  • the air electrode paste was applied by screen printing in the same manner as the fuel electrode paste, and dried.
  • the screen printing conditions were squeegee hardness 70, squeegee pressure 0.38 MPa, squeegee speed 4.5 cm / s, and squeegee angle 70 °.
  • Tetron 200 mesh was used for the screen. And the result of having observed visually the crack and chip
  • a single cell having a three-layer structure in which an electrolyte sheet without cracks and chips printed with electrodes on both sides is baked at 1300 ° C. for 3 hours to form a fuel electrode having a thickness of 40 ⁇ m and an air electrode having a thickness of 30 ⁇ m. was made.
  • ⁇ Simulated 5-cell stacking test> "Evaluation of cracks / chips in electrolyte sheet after screen printing during single cell fabrication" on separators (model “LCO” manufactured by Nikkato Co., Ltd.) with air channel grooves made of lanthanum chromite of 120mm ⁇ and 3mm thickness
  • the air electrode side of the single cell produced in the above was joined and sealed to produce 5 separator-integrated cells (5 in each example, comparative example and reference example).
  • Nickel felt is affixed on the nickel current collector plate built in the manifold, and on top of that, separator-integrated cells, nickel mesh, and separator-integrated cells are placed in this order, with the fuel electrode facing upward.
  • a nickel felt was stuck thereon, and a nickel current collector plate incorporated in a manifold was placed on the uppermost portion to form a 5-cell stack.
  • This 5-cell stack was incorporated into a 120 mm ⁇ 5-cell stack power generation test apparatus.
  • Table 1 shows the burr height of the electrolyte sheet of the reference example that was manufactured without performing the pressure treatment using the polymer film.
  • Each burr height measured at a pitch of 0.1 mm is measured at a location 0.1 mm or more inside from the peripheral edge (0 point) of the sheet. Therefore, as shown in Table 1, when the measurement pitch is 0.1 mm, ⁇ H (0-3) is 27 ⁇ m, but the burr height ( ⁇ (0-0.05)), 0 0.08 mm inner burr height ( ⁇ (0-0.08)) is not measured.
  • the measurement pitch is specified as 0.01 mm.
  • the measurement pitch is specified as 0.01 mm.
  • the burr height ratio ⁇ H (0.61-3) / ⁇ H (0-0.6) or ⁇ H (0.11-3) / ⁇ H ( 0-0.1) was less than 0.5. This is due to the stress when peeling the green sheet after cutting from the PET film, and the warpage near the edge of the sheet ( ⁇ H (0-0.6), ⁇ H (0-0.1)) increases. It turns out that it depends.
  • the electrolyte sheet satisfying the characteristics specified in the present invention has excellent characteristics with respect to load strength because the burr height at the sheet peripheral edge is small and the warpage near the edge of the sheet is small. It can be seen that the SOFC single cell electrolyte sheet is excellent and highly reliable.
  • the electrolyte sheet for SOFC of the present invention has highly reliable strength characteristics, it can contribute to the improvement of SOFC reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明の固体酸化物形燃料電池用電解質シートは、少なくとも一方の主面において、(1)レーザー光学式三次元形状測定装置を使用し、シート面にレーザー光を0.01mmピッチで照射することにより求められる、シート周縁端と前記シート周縁端から3mm内側の位置との間の第1区間のバリ高さ[ΔH(0-3)]が100μm以下であり、(2)前記装置を使用し、シート面にレーザー光を0.01mmピッチで照射することにより求められる、シート周縁端と前記シート周縁端から0.6mm内側の位置との間の第2区間のバリ高さ[ΔH(0-0.6)]に対する、シート周縁端から0.61mm内側の位置と前記シート周縁端から3mm内側の位置との間の第3区間のバリ高さ[ΔH(0.61-3)]の比[ΔH(0.61-3)/ΔH(0-0.6)]が、0.5以上2.0以下である。

Description

固体酸化物形燃料電池用電解質シート、並びに、その製造方法及びそれを備えた固体酸化物形燃料電池用単セル
 本発明は、固体酸化物形燃料電池用電解質シートと、当該電解質シートの製造方法と、当該電解質シートを備えた固体酸化物形燃料電池用単セルとに関する。
 近年、燃料電池は、クリーンエネルギー源として注目されている。燃料電池のうち、電解質に固体のセラミックを使用している固体酸化物形燃料電池(以下、「SOFC」と記載する。)は、作動温度が高いため排熱を利用でき、さらに高効率で電力を得ることができる等の長所を有しており、家庭用電源から大規模発電まで幅広い分野での活用が期待されている。
 SOFCでは、電解質シート上に電極が設けられた単セルを、複数積み重ねて積層構造(スタック)にして使用する。SOFCとして安定した発電性能を長期にわたって維持するために、電解質シート一枚一枚に高度な品質管理が要求される。
 電解質シートの品質管理項目として重要な項目の1つに、例えばシート周縁部において高さが変化する、いわゆる「バリ」と呼ばれるものがある。シート周縁部にバリが存在すると、電極の印刷時に割れが生じる、また、印刷自体がうまくいかずに電極が不均一になったり剥離しやすくなったりする、等の問題が生じる。さらに、SOFCは、電解質シートと電極とを含む単セルが複数積層されて直列に接続されることによって構成されている。したがって、単セルの積層時やSOFCの発電時等に、応力が電解質シートの周縁部のバリに集中して、電解質シートが破損する場合がある。
 そこで、SOFC用電解質シートに関し、シート周縁部のバリに着目した技術が種々開発されている。例えば特許文献1には、SOFC用電解質シートとして使用できる、シート周縁部のバリ高さが100μm以下に抑えられたセラミックシートが提案されている。
特許第4653135号公報
 しかし、シート周縁部のバリ高さが100μm以下を満たす電解質シートを用いて、当該電解質シートのシート面に燃料極及び空気極をスクリーン印刷で塗布する際、その電解質シートが耐荷重試験に合格していたとしても、印刷条件(例えば生産性向上のために印刷速度を速める)等によっては電解質シートに割れが発生する場合があった。さらに、作製されたSOFC用単セルをスタックにする際に電解質シートに割れが発生することがあり、そのスタックを実際の燃料電池発電装置に組み込んで発電すると、初期の段階で発電性能が急速に低下する場合もあった。
 そこで、本発明は、SOFC用単セルの作製時及びSOFC用単セルの積層時に割れ等の不具合がより生じにくいSOFC用電解質シートと、その製造方法とを提供することを目的とする。さらに、そのようなSOFC用電解質シートを備えたSOFC用単セルを提供することも目的とする。
 本発明は、50~300μmの厚さを有するSOFC用電解質シートであって、少なくとも一方の主面において、
(1)レーザー光学式三次元形状測定装置を使用し、シート面にレーザー光を0.01mmピッチで照射してその反射光を三次元解析することにより求められる、シート周縁端と前記シート周縁端から3mm内側の位置との間の第1区間のバリ高さ[ΔH(0-3)]が100μm以下であり、
かつ、
(2)前記レーザー光学式三次元形状測定装置を使用し、シート面にレーザー光を0.01mmピッチで照射してその反射光を三次元解析することにより求められる、シート周縁端と前記シート周縁端から0.6mm内側の位置との間の第2区間のバリ高さ[ΔH(0-0.6)]に対する、シート周縁端から0.61mm内側の位置と前記シート周縁端から3mm内側の位置との間の第3区間のバリ高さ[ΔH(0.61-3)]の比[ΔH(0.61-3)/ΔH(0-0.6)]が、0.5以上2.0以下を満たす、
SOFC用電解質シートを提供する。
 本発明は、また、
 セラミック原料粉末、バインダー及び分散媒を含むスラリーをシート状に成形して乾燥させたグリーン体を、所定の形状に切断してSOFC用電解質シート用のグリーンシートを得る、グリーンシート作製工程と、
 前記グリーンシートを、当該グリーンシートの表面に対峙する面の平均表面粗さ(Ra)が0.001~0.1μmであって、かつ、常態剥離力が10~1000mN/cmの範囲である板状体に挟んで加圧する加圧工程と、
 前記加圧工程を経た前記グリーンシートを焼成する焼成工程と、
を含む、SOFC用電解質シートの製造方法を提供する。
 本発明は、また、燃料極と、空気極と、前記燃料極と前記空気極との間に配置された上記本発明のSOFC用電解質シートと、を備えたSOFC用単セルを提供する。
 本発明によれば、SOFC用単セルの作製時及びSOFC用単セルの積層時にシート周縁部に割れ等の不具合が生じにくいSOFC用電解質シートを提供できる。また、本発明のSOFC用単セルはそのようなSOFC用電解質シートを備えているので、本発明のSOFC用単セルによれば、発電性能の低下が起こりにくく信頼性の高いSOFCを実現できる。
バリ高さを測定する際に用いられるレーザー光学式三次元形状測定装置の具体例を示すブロック図である。 本発明のSOFC用単セルの一実施形態を示す断面図である。 実施例1のシート周縁部のレーザー光走査による変位曲線の一例である。 実施例1のシート周縁部のレーザー光走査による変位曲線の拡大図である。 実施例4のシート周縁部のレーザー光走査による変位曲線の一例である。 実施例6のシート周縁部のレーザー光走査による変位曲線の一例である。 比較例1のシート周縁部のレーザー光走査による変位曲線の一例である。 比較例2のシート周縁部のレーザー光走査による変位曲線の一例である。
 (実施の形態1)
 本発明のSOFC用電解質シートの実施形態について、具体的に説明する。
 本実施形態のSOFC用電解質シートは、少なくとも一方の主面において、以下の(1)及び(2)の特性を備える。
(1)レーザー光学式三次元形状測定装置を使用し、シート面にレーザー光を0.01mmピッチで照射してその反射光を三次元解析することにより求められる、シート周縁端と前記シート周縁端から3mm内側の位置との間の第1区間のバリ高さ[ΔH(0-3)]が100μm以下である。
(2)レーザー光学式三次元形状測定装置を使用し、シート面にレーザー光を0.01mmピッチで照射してその反射光を三次元解析することにより求められる、シート周縁端と前記シート周縁端から0.6mm内側の位置との間の第2区間のバリ高さ[ΔH(0-0.6)]に対する、シート周縁端から0.61mm内側の位置と前記シート周縁端から3mm内側の位置との間の第3区間のバリ高さ[ΔH(0.61-3)]の比[ΔH(0.61-3)/ΔH(0-0.6)]が、0.5以上2.0以下を満たす。
 ここで、シート周縁端とは、次のように定義される。シート周縁部付近についてシート外からシート上へ向かってレーザー光を照射し、0.01mmピッチでデータをサンプリングしたときに、走査長さが0.05mmの範囲において、シート面の変位曲線から求められる変位が実際のシート厚さの80%になるポイントが0(ゼロ)ポイント、すなわちシート周縁端と決定される。なお、ここで、シート厚さの80%と定義したのは、本発明の50~300μmの厚さを有する電解質シートでは、電解質シートに発生する反りやうねりの影響によって、電解質シートの周縁端面(周側面)の面内方向は必ずしも鉛直方向に沿っておらず、鉛直方向からずれた斜め方向になっている場合がある。これは、特に電解質シートの厚さが50~150μm程度の薄膜になると顕著に表れる傾向にあり、一義的に周縁端を決定することは困難となるおそれがある。そこで本発明では、シート厚さをベースとし、0(ゼロ)ポイントを実際のシート厚さの80%と定義した。
 なお、電解質シートの厚さとは、シートの周縁端から5mmより内側の領域(すなわちシート中央部領域)の任意の4箇所の厚さを、U字形マイクロメータ(株式会社ミツトヨ製)で測定し、得られた測定値から算出される平均値のことである。
 また、本発明で言うバリ高さとは、シート内部に穴の無い電解質シートの場合は、シート外周縁端からシート中央部に向かって特定される各所定区間内(例えば、第1区間の場合はシート外周縁端から3mm内側の位置までの範囲内)において、その区間内の変位の最高点と、その最高点からシート中央部に向かう側の最低点との変位差とした。
 シート内部に穴を有する電解質シートの場合には、シート外周縁端付近と内周縁端(穴の周縁端)付近にバリが発生する。そこで、シート外周縁端からシート中央部に向かって特定される各所定区間内において、その区画内の変位の最高点と、その最高点からシート中央部に向かう側の最低点との変位差とともに、シート内周縁端からシート外周縁端に向かって特定される各所定区間内において、その区間内の変位の最高点と、その最高点からシート外周縁端に向かう側の最低点との変位差も、バリ高さとする。
 上記(1)の特性は、シート周縁端から3mm内側の位置までの範囲を第1区間とし、この第1区間におけるバリ高さ[ΔH(0-3)]が100μm以下となることである。ここで、第1区間におけるバリ高さ[ΔH(0-3)]とは、第1区間におけるシート面の最高点と最低点との高さの差である。以下、設定された他の区間におけるバリ高さも、同様に、その区間におけるシート面の最高点と最低点との高さの差である。なお、以下、第1区間におけるバリ高さ[ΔH(0-3)]を、「シート周縁部のバリ高さ」と記載することがある。第1区間におけるバリ高さ[ΔH(0-3)]は、望ましくは90μm以下、より望ましくは80μm以下、さらに望ましくは70μm以下、特に望ましくは60μm以下である。
 上記(2)の特性では、第1区間が、第2区間(シート周縁端と前記シート周縁端から0.6mm内側の位置との間の区間)と、第3区間(シート周縁端から0.61mm内側の位置と前記シート周縁端から3mm内側の位置との間の区間)とに分けられて、各区間におけるバリ高さ、すなわち第2区間のバリ高さ[ΔH(0-0.6)]及び第3区間のバリ高さ[ΔH(0.61-3)]が求められる。上記(2)の特性は、第2区間のバリ高さ[ΔH(0-0.6)]に対する第3区間のバリ高さ[ΔH(0.61-3)]の比[ΔH(0.61-3)/ΔH(0-0.6)]が、0.5以上2.0以下を満たすことである。
 本発明者らが、SOFC用単セルの作製時及びSOFC用単セルの積層時にシート周縁部に割れ等の不具合が生じやすい電解質シートの構造的特徴を検討したところ、第1区間のバリ高さ[ΔH(0-3)]を決定するシート面の最高点と最低点が、シート周縁端と前記シート周縁端から0.6mm内側の位置との間の区間に存在することが多いことが見出された。なお、このことは、後述の実施例でも確認されている。すなわち、本発明者らは、シート周縁端付近で反り上がりが大きい電解質シートは、SOFC用単セルの作製時及びSOFC用単セルの積層時にシート周縁部に割れ等の不具合が生じやすいことを見出した。そこで、第1区間をシート周縁端から0.6mm内側の位置で区切って、その位置よりも外側、すなわちシート周縁端側の区間(第2区間)で生じているバリの高さに対する、その位置を超えた内側の区間(第3区間)で生じているバリ高さの比を0.5以上2.0以下の範囲内に特定することによって、シート周縁部におけるシート周縁端付近の反り上がりの程度が小さく、シート周縁部(シート周縁端から3mm内側の位置までの範囲)でバリの形状が比較的なだらかな傾斜となっている電解質シートを特定した。この電解質シートによれば、SOFC用単セルの作製時及びSOFC用単セルの積層時にシート周縁部に割れ等の不具合が生じにくくなる。
 上記のとおり、本実施形態の電解質シートでは、ΔH(0.61-3)/ΔH(0-0.6)が0.5以上2.0以下の範囲内であればよい。ΔH(0.61-3)/ΔH(0-0.6)は、0.55以上が望ましく、0.6以上がより望ましい。ΔH(0.61-3)/ΔH(0-0.6)は、1.8以下が望ましく、1.5以下がより望ましく、1.3以下がさらに望ましく、1.0以下が特に望ましい。
 よりシート周縁端側における電解質シートの反り上がりの程度を小さく抑えることにより、SOFC用単セルの作製時及びSOFC用単セルの積層時にシート周縁部に割れ等の不具合が発生することを、確実に抑えることができる。したがって、レーザー光学式三次元形状測定装置を使用し、シート面にレーザー光を0.01mmピッチで照射してその反射光を三次元解析することにより求められる、シート周縁端と前記シート周縁端から0.3mm内側の位置との間の第4区間のバリ高さ[ΔH(0-0.3)]に対する、シート周縁端から0.31mm内側の位置と前記シート周縁端から3mm内側の位置との間の第5区間のバリ高さ[ΔH(0.31-3)]の比[ΔH(0.31-3)/ΔH(0-0.3)]が、0.5以上2.0以下を満たすことが望ましい。ΔH(0.31-3)/ΔH(0-0.3)は、0.55以上が望ましく、0.6以上がより望ましい。ΔH(0.31-3)/ΔH(0-0.3)は、1.8以下が望ましく、1.5以下がより望ましく、1.3以下がさらに望ましく、1.0以下が特に望ましい。
 より一層シート周縁端側における電解質シートの反り上がりの程度を小さく抑えることにより、SOFC用単セルの作製時及びSOFC用単セルの積層時にシート周縁部に割れ等の不具合の発生をより一層確実に抑えることができる。したがって、レーザー光学式三次元形状測定装置を使用し、シート面にレーザー光を0.01mmピッチで照射してその反射光を三次元解析することにより求められる、シート周縁端と前記シート周縁端から0.1mm内側の位置との間の第6区間のバリ高さ[ΔH(0-0.1)]に対する、シート周縁端から0.11mm内側の位置と前記シート周縁端から3mm内側の位置との間の第7区間のバリ高さ[ΔH(0.11-3)]の比[ΔH(0.11-3)/ΔH(0-0.1)]が、0.5以上2.0以下を満たすことが望ましい。ΔH(0.11-3)/ΔH(0-0.1)は、0.55以上が望ましく、0.6以上がより望ましい。ΔH(0.11-3)/ΔH(0-0.1)は、1.8以下が望ましく、1.5以下がより望ましく、1.3以下がさらに望ましく、1.0以下が特に望ましい。
 上記のとおり、バリ高さは、レーザー光学式三次元形状測定装置を用いて測定され、シート面にレーザー光を照射してその反射光を三次元形状解析することによって求めることができる。即ちレーザー光学式三次元形状測定装置とは、被測定対象となる電解質シート面にレーザー光を照射してシート面でフォーカスを結び、その反射光をフォトダイオード上に均等に結像させるとき、シート面が変位に対し像に不均等が生じると、即座にこれを解消する信号を発して対物レンズの焦点を常にシート面に合う様にレンズが制御される構造を備えた非接触式の微小三次元形状解析装置であり、その移動量を検出することによって、被測定対象となるシート面の凹凸を非接触的に検出することができる。その分解能は通常1μm以下、望ましくは0.1μm以下のものが使用されるが、本実施形態では各区間におけるバリ高さを正確に検知するために、0.01μmの分解能が使用される。
 レーザー光学式三次元形状測定装置について、具体的な例を挙げて、図1を参照しながらより詳しく説明する。レーザー測定器11は、波長670nm、スポット径が約2μmの赤色半導体レーザーを光源として備え、分解能は0.01μm、スキャン幅は0~1100μmの間で6段階に設定可能である。レーザー測定器11は、さらに波長870nmの赤外LEDを照明光源とするマイクロスコープ機能も附属されているものが好ましい。好適な測定器11の一例としては、キーエンス社製のダブルスキャン高精度レーザー測定器LTシリーズが挙げられる。レーザー測定器コントローラ12は、最小表示単位が0.01μm、表示周期は10回/秒で、コントロールI/Oは無電圧入力、NPNオープンコレクタ出力となっている。また、レーザー測定器コントローラ12は、PINコネクタでモニタ13に接続される。
 供試サンプル14を載置するXY軸自動ステージ15は、2軸で駆動速度1pps~500Kppsのポジションコントローラ16で制御される。データ処理用パソコン17のエクセル対応ポジション計測ソフトにより、位置決めと、レーザー測定器11からのデータ収集及びデータファイル化とが可能となる。また、アナログコントローラ18で、自動ステージ15の移動に同期したレーザー測定器コントローラ12からのDCアナログ電圧の収集が可能となる。これらのシステムの好適な一例としては、コムス社製の高速3次元形状測定システム「EMS2002AD-3D」が挙げられる。
 本実施形態の電解質シートは、SOFC用単セルに用いられるので、50~300μmの厚さを有する。望ましい厚さは80~250μmであり、より望ましい厚さは100~200μmである。
 本実施形態の電解質シートの大きさは、特に制限されないが、例えば50cm以上900cm以下、好ましくは80cm以上500cm以下の平面面積を有するシートが、好適に用いられる。
 上記電解質シートの場合、シートの形状としては、円形、楕円形及びR(アール)を持った角形など何れでもよい。これらのシート内に、同様の円形、楕円形、R(アール)を持った角形などの穴を1つもしくは2つ以上有するものであってもよい。なお、上記平面面積とは、シートが穴を有する場合は、当該穴の面積を含んだシート表面の面積(シート外形によって決定される面積)を意味する。なお、シート周縁端及びシート周縁部は、一般には、それぞれ電解質シートの外周端及び外周部のことを指すが、穴が形成されている電解質シートの場合はその穴の周縁端及び周縁部もさらに含まれる。
 次に、本実施形態の電解質シートの製造方法の一例について説明する。
 本実施形態の電解質シートの製造方法の一例は、
 セラミック原料粉末、バインダー及び分散媒を含むスラリーをシート状に成形して乾燥させたグリーン体を、所定の形状に切断してSOFC用電解質シート用のグリーンシートを得る、グリーンシート作製工程と、
 前記グリーンシートを、当該グリーンシートの表面に対峙する面の平均表面粗さ(Ra)が0.001~0.1μmであって、かつ、常態剥離力が10~1000mN/cmの範囲である板状体に挟んで加圧する加圧工程と、
 前記加圧工程を経た前記グリーンシートを焼成する焼成工程と、
を含む。
 <グリーンシート作製工程>
 まず、電解質シートの電解質成分のセラミック原料粉末が準備される。電解質成分は、SOFC用電解質シートの電解質成分として用いられる公知の材料の中から適宜選択できる。例えば、イットリア、セリア、スカンジア、イッテルビア等で安定化されたジルコニア;イットリア、サマリア、ガドリニア等でドープされたセリア;ランタンガレート、及びランタンガレートのランタン又はガリウムの一部がストロンチウム、カルシウム、バリウム、マグネシウム、アルミニウム、インジウム、コバルト、鉄、ニッケル、銅等で置換されたランタンガレート型ペロブスカイト構造酸化物、等を使用することができる。これらは単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、ジルコニア系の材料が望ましく、イットリア、スカンジア、イッテルビア等で安定化されたジルコニアが特に望ましい。
 次に、準備されたセラミック原料粉末を用いて、電解質シート用のグリーンシートを作製する。電解質シート用のグリーンシートの作製には、テープ成形法が好適に用いられ、特にドクターブレード法及びカレンダー法が好適に用いられる。具体的には、まず、セラミック原料粉末に、バインダー及び分散媒を添加し、さらに必要に応じて添加剤等を添加して、スラリーを調製する。このスラリーを、ポリエチレンテレフタレート(PET)フィルム等の高分子フィルムからなるキャリヤフィルム上に敷き延べてシート状に成形し、これを乾燥させて分散媒を揮発させて、グリーンテープ(グリーン体)を得る。このグリーンテープを切断及び/又はパンチング等により適切なサイズに揃えて、電解質シート用のグリーンシートを作製する。なお、スラリーの作製に用いられるバインダー、分散媒及び添加剤等には、SOFC用電解質シートの製造に用いられる公知のバインダー、分散媒及び添加剤等が使用できる。また、キャリヤフィルムとして用いられる高分子フィルムについても、SOFC用電解質シートの製造に用いられる公知の高分子フィルムが使用できる。
 <加圧工程>
 まず、電解質シート用に切断されたグリーンシートを、キャリヤフィルムから剥がす。キャリヤフィルムから剥がされたグリーンシートを、板状体に挟んで厚さ方向に加圧する。ここでは、板状体として加圧用高分子フィルムを用いる場合を例に挙げて説明する。
 加圧の温度は、室温でもよいが、100℃以下に加温制御してもよい。また、印加される圧力は、10~40MPaが望ましく、15~30MPaがより望ましい。圧力が10MPa未満の場合は、加圧の効果が得られにくく、グリーンシート周縁部の応力緩和が十分でないので、バリ高さ低減の効果が小さくなる。一方、圧力が40PMaを超える場合は、グリーンシート自体が変形して焼成後の寸法が大きく変化してしまうことがある。
 さらに、グリーンシートの全面にかかる圧力の分布が、グリーンシートにかかる圧力の平均値に対して±15%以内の範囲になるように、グリーンシートにかけられる圧力が調整されることが望ましい。±15%以内の範囲に調整することによって、焼成後のバリ高さを低減できると共に、うねり発生も低減できる。望ましい圧力分布は、平均値に対して±7.5%以内、より望ましくは±5%以内に調整されることである。グリーンシートにかかる圧力分布は、例えば、加圧された箇所が赤く発色するフィルム(富士フィルム社製、「プレスケール」)と、圧力分布として解析できる圧力画像解析システム(富士フィルム社製、「プレスケール圧力画像解析システム FPD-9270」)とを用いることにより測定できる。
 加圧用高分子フィルムは、グリーンシートの表面に対峙する面の平均表面粗さ(Ra)が0.001μm以上0.1μmであることが望ましい。Raが0.1μmを超えると、加圧用高分子フィルムからグリーンシートをスムーズに剥離することが困難になる。加圧用高分子フィルムは、グリーンシートの表面に対峙する面のRaが0.001~0.05μmであることがより望ましく、0.001~0.02μmであることがさらに望ましく、0.001~0.01μmであることが特に望ましい。 
 加圧用高分子フィルムは、グリーンシートの表面に対峙する面の常態剥離力が10~1000mN/cmの範囲であることが望ましい。常態剥離力が10~1000mN/cmの範囲内であることにより、加圧用高分子フィルムからグリーンシートをスムーズに剥がすことができ、グリーンシート周縁部に発生する応力を緩和することができる。加圧用高分子フィルムは、グリーンシートの表面に対峙する面の常態剥離力が10~600mN/cmであることがより望ましく、10~400mN/cmであることがさらに望ましく、10~200mN/cmであることが特に望ましい。
 ここでの常態剥離力とは、加圧用高分子フィルムの剥離力を評価するための指標であり、次のように測定される値である。加圧用高分子フィルム試料の測定対象面に、両面粘着テープ(日東電工社製、「No.502」)の片面を貼り付けて、50mm×300mmのサイズにカットし、室温にて1時間放置後に剥離力が測定される。剥離力は、引張試験機((株)インテスコ製、「インテスコモデル2001型」)を使用して、引張速度300mm/分の条件下での、180°剥離によって求められる。 
 加圧用高分子フィルムは、除電する除電層を有することが好ましい。除電層を有することにより、加圧用高分子フィルムからグリーンシートを剥離する際に静電気が発生してグリーンシートや高分子フィルムに埃が付着することを防止できる。
 加圧用高分子フィルムの表面抵抗率は、1013Ω/□以下であることが望ましく、1010Ω/□以下であることがより望ましい。
 加圧用高分子フィルムは、グリーンシートの表面に対峙する面に離型層を有していることが望ましい。離型層は、離型性を有する材料を含有していればよく、特に限定されるものではない。そのような材料の中でも、硬化型シリコーン樹脂を用いることにより、離型性が特に良好となるので望ましい。硬化型シリコーン樹脂として、硬化型シリコーン樹脂を主成分とするタイプを使用してもよいし、ウレタン樹脂、エポキシ樹脂及びアルキッド樹脂等の有機樹脂とのグラフト重合等による変性シリコーンタイプ等を使用してもよい。硬化型シリコーン樹脂の種類としては、付加型、縮合型、紫外線硬化型、電子線硬化型及び無溶剤型等、何れの硬化反応タイプでも用いることができる。硬化型シリコーン樹脂の具体例を挙げると、信越化学工業(株)製のKS-772、KS-774、KS-775、KS-778、KS-779H、KS-856、X-62-2422及びX-62-2461、ダウ・コーニング・アジア(株)製のDKQ3-202、DKQ3-203、DKQ3-204、DKQ3-205、DKQ3-210及びFSXK-2560、東芝シリコーン(株)製のYSR-3022、TPR-6700、TPR-6720及びTPR-6721、東レ・ダウ・コーニング(株)製のSD7220、SD7226及びSD7229等が挙げられる。さらに離型層の剥離性等を調整するために、剥離コントロール剤を併用してもよい。加圧用高分子フィルムに離型層が設けられる場合、離型層を構成する材料の塗布量(Si)は、0.01~5g/mが望ましく、0.01~2g/mがより望ましく、0.01~1g/mがさらに望ましい。塗布量が0.01g/m未満の場合、塗工面の安定性に欠け、均一な塗膜を得るのが困難な場合がある。一方、塗工量が5g/mを超える場合、離型層自体の塗膜密着性及び硬化性等が低下する場合がある。
 グリーンシートは、上記のような加圧用高分子フィルムに挟まれた状態で、厚さ方向に加圧される。キャリヤシート上にスラリーを塗工して乾燥させることによって得られるグリーンテープを所定形状に切断して得られるグリーンシートには、キャリヤシートから剥離されることによって、特にグリーンシート周縁部に引張応力が発生している。しかし、その発生した引張応力を、上記の加圧工程によって緩和することができる。
 加圧用高分子フィルムの材質は、特に限定されないが、例えばアクリル樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、ポリエステル樹脂、塩化ビニル樹脂及び塩化ビニリデン樹脂等が挙げられる。中でも、繰り返し使用の点から、PETが好適である。加圧用高分子フィルムの厚さは、0.05~2mmであることが望ましい。
 また、加圧用高分子フィルムにグリーンシートを挟んで加圧する方法も、特に限定されないが、一軸プレス機、二軸プレス機、四軸プレス機、ロールプレス機などを使用する方法を採用できる。
 加圧する際には、1枚のグリーンシートの両面に加圧用高分子フィルムを重ねて加圧してもよいし、複数のグリーンシートと加圧用高分子フィルムとを交互に重ねて加圧してもよい。
 加圧されるグリーンシートとしては、効果的に応力緩和されるために、引張試験における引張破壊伸びが5%以上50%以下、かつ引張降伏強さが2.0MPa以上20MPa以下であることが望ましい。さらに望ましくは、引張破壊伸びが8%以上30%以下、かつ引張降伏強さが3.0MPa以上15MPa以下である。
 本実施形態では、加圧用の板状体として高分子フィルムを用いる例を説明した。しかし、グリーンシートの表面に対峙する面のRaが0.001μm以上0.1μmであって、かつ、常態剥離力が10~1000mN/cmの範囲を満たすものであれば、平滑処理が施された紙類、及び、表面が研磨又はテフロン(登録商標)加工された超硬タングステン、ステンレス鋼、ダイス鋼、ステライト、特殊鋼及び超硬合金などの板状金属体も使用できる。
 <焼成工程>
 次に、電解質シート用のグリーンシートを焼成する。上記の加圧工程を経て得られた電解質シート用のグリーンシートを、棚板上の多孔質セッター上に載置する。例えば、棚板上に、多孔質セッターと、上記のように作製された電解質シート用のグリーンシートとを、最下層及び最上層に多孔質セッターが配置されるように交互に積み重ねて、多孔質セッターとグリーンシートとからなる積層体を配置してもよい。このように配置されたグリーンシートを、例えば1200~1500℃、好ましくは1250~1425℃程度の温度で、1~5時間程度加熱焼成する。焼成時の温度が1500℃を超えると、焼結体中に菱面体晶や単斜晶が生成しやすくなるためか、電解質シートの常温での強度(常温強度)と高温耐久性とが共に悪くなる場合がある。一方、焼成温度が1200℃未満では、焼結不足となって緻密質のシートが得られ難くなり、電解質シートが強度不足になるだけでなく、ガスを透過してしまう場合もある。しかし、上記温度範囲で焼成を行うと、単斜晶や菱面体の生成が抑制されると共に、得られるシートの相対密度を97%以上、好ましくは99%以上とすることができるので、常温強度と高温耐久性とに優れた焼結体シートが得られる。なお、相対密度とは、理論密度に対するアルキメデス法で測定した密度の相対値(アルキメデス法で測定した密度/理論密度)である。なお、グリーンシートの焼成に用いられる多孔質セッターには、SOFC用電解質シートの製造に用いられる公知の多孔質セッターが使用できる。
 以上の方法により、上記(1)及び(2)の特性を備えたSOFC用電解質シートを得ることができる。
 (実施の形態2)
 本発明のSOFC用単セルの実施形態について、具体的に説明する。図2は、本実施形態のSOFC用単セルの構成の一例を示す断面図である。
 本実施形態のSOFC用単セル21は、燃料極22と、空気極23と、燃料極22と空気極23との間に配置されたSOFC用電解質シート24とを備えている。電解質シート24には、実施の形態1で説明したSOFC用電解質シートが用いられる。燃料極22及び空気極23には、公知のSOFCに用いられる燃料極及び空気極が、それぞれ適用できる。
 本実施形態のSOFC用単セル21は、実施の形態1で説明した方法で得られる電解質シートの一方の主面上に燃料極22を形成し、他方の主面上に空気極23を形成することによって製造できる。まず、燃料極22又は空気極23を構成する材料の粉体に、バインダー及び溶剤を添加し、さらに必要に応じて分散剤等を添加してスラリーを調製する。このスラリーを、電解質シート24の一方又は他方の主面上に所定の厚さで塗布し、その塗膜を乾燥させることによって、燃料極22用又は空気極23用のグリーン層が形成される。そのグリーン層を焼成することによって、燃料極22又は空気極23が得られる。焼成温度等の焼成条件は、燃料極22及び空気極23に用いられるそれぞれの材料の種類等に応じて、適宜決定すればよい。燃料極21及び空気極23を構成する材料には、公知のSOFCの燃料極及び空気極に用いられる材料を、それぞれ用いることができる。また、燃料極21及び空気極23用のスラリーの作製に用いられるバインダー及び溶媒等の種類には特に制限がなく、SOFCの燃料極及び空気極の製造方法で公知となっているバインダー及び溶剤等の中から適宜選択できる。
 本実施形態のSOFC用単セル21は、実施の形態1で説明した、SOFC用単セルの作製時及びSOFC用単セルの積層時にシート周縁部に割れ等の不具合が生じにくい電解質シートを備えている。したがって、SOFC用単セル21によれば、発電性能の低下が起こりにくく信頼性の高いSOFCを実現できる。
 次に、本発明について、実施例を用いて具体的に説明する。なお、本発明は、以下に示す実施例によって何ら限定されるものではない。
 (実施例1)
 <グリーンシート作製工程>
 セラミック原料粉末として、10モル%酸化スカンジウム1モル%酸化セリウム安定化ジルコニア粉末(第一稀元素化学社製、商品名「10Sc1CeSZ」、d50:0.6μm)100質量部に対し、メタクリル系共重合体からなるバインダー(数平均分子量:100,000、ガラス転移温度:-8℃)を固形分換算で16質量部、分散剤としてソルビタン酸トリオレート2質量部、可塑剤としてジブチルフタレート3質量部、溶剤としてトルエン/イソプロパノール(質量比=3/2)の混合溶剤(分散媒)50質量部を、ジルコニアボールが装入されたナイロンミルに入れ、40時間ミリングしてスラリーを調製した。得られたスラリーを、碇型の攪拌機を備えた内容積50Lのジャケット付丸底円筒型減圧脱泡容器へ移し、攪拌機を30rpmの速度で回転させながら、ジャケット温度:40℃で減圧(約4~21kPa)下に濃縮脱泡し、25℃での粘度を3Pa・sに調整して塗工用スラリーとして、ドクターブレード法によりPETフィルム上に連続的に塗工し、次いで、40℃、80℃、110℃と乾燥して長尺の10Sc1CeSZグリーンテープ(グリーン体)を作製し、このグリーンテープを4組の切断用金型を用いて約160mmφの10Sc1CeSZグリーンシート(SOFC用電解質シート用のグリーンシート)に連続的に切断した。具体的には、上側中央部金型と下側中央部金型とでグリーンテープを固定した後、上側ロの字形金型を下ろしてグリーンテープを切断すると同時に下側ロの字形金型が連動して下降してから、ロの字形金型と上側中央部金型が上昇し、ロの字形金型により約160mmφに切断されたグリーンシートを得た。
 <加圧工程>
 上記グリーンシートの上下を、市販のPETフィルム(板状体)で挟んだ。このPETフィルムは、片面が離型処理されたフィルムであり、離型処理された面の常態剥離力が22mN/cm、表面粗さRaが0.005μm、表面抵抗値が6×10Ω/□であった。具体的には、厚さ10mmで200mm角の平滑なアクリル板上に、約170mm角のPETフィルムを、上記のように離型処理されたPET面を上にして載置し、次いで、吸着パッドで約160mmφグリーンシートをPET面上に移動させて、載置した。さらにPETフィルムを準備して、そのPETフィルムを離型処理されたPET面を下にしてグリーンシート上に載置し後、前記アクリル板と同様のアクリル板を載置した。すなわち、アクリル板、PETフィルム、グリーンシート、PETフィルム、アクリル板の積層体を構成した。この積層体を、四軸加圧成型機の試料台上に置き、ゲージ圧9.8MPaで1秒間、常温で加圧した。
 別途、上記積層体と同様の構成の積層体を準備して、当該積層体中のPETフィルムとグリーンシートとの間に中圧用のプレスケール(富士フィルム社製、「プレスケールMW」)を挟み、同様に加圧して、グリーンシート中の任意の50個所について、0.5mmの測定領域でピンポイント圧力を測定し、平均圧力値及び最大圧力値を圧力画像解析システム(富士フィルム社製、「プレスケール圧力画像解析システム FPD-9270」)を用いて解析した。
 <焼成工程>
 次いで、加圧処理後のグリーンシートの上下を、ウネリ最大高さが10μmの99.5%アルミナ多孔質板(気孔率:30%)で挟んで、グリーンシート5枚を含む積層体を作製した。脱脂後、グリーンシートを1420℃で3時間加熱焼成し、120mmΦ、厚さ280μmの10Sc1CeSZ電解質シートを得た。なお、得られた電解質シートの周縁端から5mmより内側の領域(すなわちシート中央部領域)の任意の4箇所の厚さを、U字形マイクロメータ(株式会社ミツトヨ製)で測定し、その平均値を算出してシート厚さとした。
 (実施例2)
 加圧工程が異なる以外は、実施例1と同様の方法で電解質シートを作製した。実施例2の加圧工程では、PETフィルム上に載置したグリーンシート上に、両面が離型処理されたPETフィルムを載置し、さらにその上にグリーンシート、両面が離型処理されたPETフィルムの順で繰り返し載置した後、グリーンシートを5枚含む積層体を構成した。この積層体を四軸加圧成型機の試料台上に置き、ゲージ圧9.8MPaで3秒間、常温で加圧した。なお、実施例2で離型処理されたPET面は、実施例1の場合と同様に、常態剥離力が22mN/cm、表面粗さRaが0.005μm、表面抵抗値が6×10Ω/□であった。加圧処理が施された積層体に含まれるグリーンシートのうち、最上部に位置していたグリーンシートと最下部に位置していたグリーシートの2枚について、焼成を行った。最上部のグリーンシートを焼成して得られた電解質シートを実施例2-1、最下部のグリーンシートを焼成して得られた電解質シートを実施例2-2とした。
 (実施例3)
 加圧工程において、用いたPETフィルムと加圧条件とが異なる以外は、実施例1と同様の方法で電解質シートを作製した。実施例3で用いたPETフィルムは、片面が離型処理されたフィルムであり、離型処理された面の常態剥離力が40mN/cm、表面粗さRaが0.005μm、表面抵抗値が6×10Ω/□であった。また、加圧条件は、常温で、21.1MPaで2秒間であった。
 (実施例4)
 加圧工程において、用いたPETフィルムと加圧条件とが異なる以外は、実施例1と同様の方法で電解質シートを作製した。実施例4で用いたPETフィルムは、片面が離型処理されたフィルムであり、離型処理された面の常態剥離力が136mN/cm、表面粗さRaが0.01μm、表面抵抗値が6×10Ω/□であった。また、加圧条件は、常温で、29.4MPaで2秒間であった。
 (実施例5)
 加圧工程において、用いたPETフィルムと加圧条件とが異なる以外は、実施例1と同様の方法で電解質シートを作製した。実施例5で用いたPETフィルムは、片面が離型処理されたフィルムであり、離型処理された面の常態剥離力が380mN/cm、表面粗さRaが0.03μm、表面抵抗値が6×10Ω/□であった。また、加圧条件は、常温で、32.4MPaで10秒間であった。
 (実施例6)
 グリーンシートの作製工程で用いた材料及び得られたグリーンシートのサイズと、加圧工程で用いたPETフィルム及び加圧条件とが異なる以外は、実施例1と同様の方法で電解質シートを作製した。実施例6では、原料粉末として3モル%酸化イットリウム安定化ジルコニア粉末(第一希元素化学社製、商品名「3YSZ」、d50:0.4μm)を用い、厚さを約0.13mmに設定した以外は、実施例1と同様にして、3YSZグリーンシートを作製した。また、実施例6で用いたPETフィルムは、片面が離型処理されたフィルムであり、離型処理された面の常態剥離力が470mN/cm、表面粗さRaが0.04μm、表面抵抗値が6×10Ω/□であった。また、加圧条件は、常温で、44.1MPaで30秒間であった。焼成後に得られた実施例6の電解質シートは、100mmφ、厚さ0.1mmの3YSZ電解質シートであった。
 (比較例1)
 加圧工程において、用いたPETフィルムが異なる以外は、実施例1と同様の方法で電解質シートを作製した。比較例1で用いたPETフィルムは、片面が離型処理されたフィルムであり、離型処理された面の常態剥離力が1080mN/cm、表面粗さRaが0.13μm、表面抵抗値が6×10Ω/□であった。
 (比較例2)
 加圧工程において、用いたPETフィルム及び加圧条件が異なる以外は、実施例1と同様の方法で電解質シートを作製した。比較例2で用いたPETフィルムは、約170mmΦで、片面が離型処理されたフィルムであり、離型処理された面の常態剥離力が4mN/cm、表面粗さRaが0.0008μm、表面抵抗値が6×10Ω/□であった。しかし、このようなPETフィルムを用いて実施例1と同様の積層体を作製しようとした際に、該PETフィルム上に吸着パッドで約160mmΦの円形グリーンシートを載置すると、該グリーンシートが該PETフィルム上をすべってグリーンシート周縁部がPETフィルムからはみ出した。そこで、ピンセットでグリーンシート側面を押しながら積層体を構成し、61.8MPaで5秒間、常温で加圧した。
 (参考例)
 実施例1と同様の方法で得た10Sc1CeSZグリーンテープを、連続型打抜き機(坂本造機社製、商品名「865B」)に刃型を取付けて、プレスストローク40mm、プレススピード80spmで、約160mmφのグリーンシートに切断した。用いた刃型は、刃先形状が片切り刃(中山紙器材社製)で、刃先角度θが57.5°、θが26.5°、θが31°、形状が約160mmφのニューカッター刃を、ベニヤ板に取付け、更にハネ出しスポンジとして硬質グリーンゴム(中山紙器材社製商品名「KSA-17」)を取付けたものであった。得られたグリーンシートは、離型処理したPETフィルムで加圧処理をせずに、そのまま焼成工程に供した。焼成工程は、実施例1と同様の方法で実施した。
 以上のように作製された実施例1~6と、比較例1及び2と、参考例との電解質シートを用いて、以下の「バリ高さ測定」、「電解質シート耐荷重試験」、「単セル作製時のスクリーン印刷後の電解質シートの割れ・欠けの評価」及び「模擬5セルスタッキング試験」を実施した。
 <バリ高さ測定>
 実施例1~6の電解質シートと、比較例1及び2の電解質シートと、参考例の電解質シートとについて、実施の形態で説明したバリ高さ測定装置(キーエンス社製のダブルスキャン高精度レーザー測定器LTシリーズと、コムス社製の高速3次元形状測定システム「EMS2002AD-3D」)を用いて、任意の十字の方向にレーザー光を0.01mmピッチで、シート4箇所の周縁端付近について、シート外からシート上に向かって周縁端から約5mmの長さまでスキャンさせてシート面の変位曲線を求め、その変位曲線からバリ高さを測定した。
 実施例1~6の電解質シートと、比較例1及び2の電解質シートについては、バリ高さは、第1~第7区間の全てについて測定された。そのときの実施例1、実施例4、実施例6、比較例1及び比較例2のシート周縁部の変位曲線は、それぞれ、図3、図5、図6、図7及び図8のようになった。さらに、第1区間のバリ高さ[ΔH(0-3)]を決定するシート面の最高点と最低点が、シート周縁端と前記シート周縁端から0.6mm内側の位置との間の区間に存在することが多いことを確認するために、ΔH(0-0.7)及びΔH(0.71-3)も測定した。なお、図4は実施例1の変位曲線の拡大図である。
 参考例の、加圧処理なしで作製した電解質シートについては、第1~第3、第6及び第7区間のバリ高さと、ΔH(0-0.08)、ΔH(0.09-3)、ΔH(0-0.05)及びΔH(0.06-3)とを測定した。なお、参考例の電解質シートについては、0.1mmピッチ、0.001mmピッチでも同様の測定を行った。
 得られた4箇所の測定データのうち、ΔH(0-3)値が最も大きい数値をその電解質シートの最大バリ高さとして、その位置における各区間のバリ高さを区間最大バリ高さとした。
 なお、ΔH(0-0.08)、ΔH(0.09-3)、ΔH(0-0.05)、ΔH(0.06-3)、ΔH(0-0.7)及びΔH(0.71-3)は、次のとおりである。
ΔH(0-0.08):シート周縁端とシート周縁端から0.08mm内側の位置との間の区間のバリ高さ
ΔH(0.09-3):シート周縁端から0.09mm内側の位置とシート周縁端から3mm内側の位置との間の区間のバリ高さ
ΔH(0-0.05):シート周縁端とシート周縁端から0.05mm内側の位置との間の区間のバリ高さ
ΔH(0.06-3):シート周縁端から0.06mm内側の位置とシート周縁端から3mm内側の位置との間の区間のバリ高さ
ΔH(0-0.7):シート周縁端とシート周縁端から0.7mm内側の位置との間の区間のバリ高さ
ΔH(0.71-3):シート周縁端から0.71mm内側の位置とシート周縁端から3mm内側の位置との間の区間のバリ高さ
 参考例の電解質シートのバリ高さを表1に、実施例1~6及び比較例1,2の電解質シートの厚さとバリ高さを表2に示す。
 <電解質シート耐荷重試験>
 アルミナ敷板の上に、表面が平滑で優れた平行度を保った2枚のアルミナ板(ニッカート社製、商品名「SSA-S」)に各電解質シートを挟んだ状態のものを載置し、これを電気炉内に配置した。その上に、重しとして、電解質シートへの単位面積当たりの荷重が0.8kgf/cmになるように、棚板状のアルミナを置いた。この状態で室温から1000℃まで10時間かけて昇温し、1000℃で1時間保持してから室温にまで降温する操作を繰り返して、クラック・割れの発生状況を目視とカラーチェックにより観察した。結果を表3に示す。
 <単セル作製時のスクリーン印刷後の電解質シートの割れ・欠けの評価>
 比較例2以外の電解質シートを用い、各電解質シートの一方の面に燃料極、他方の面に空気極を形成して、SOFC用単セルをそれぞれ10枚(各実施例、比較例及び参考例で10枚ずつ)作製した。詳しくは、電解質シート片面に、塩基性炭酸ニッケルを熱分解して得た酸化ニッケル粉末(d50:0.9μm)60質量部と、市販の8モルイットリア安定化ジルコニア粉末40質量部とからなる燃料極ペーストを、スクリーン印刷で各電解質シートの周縁部5mm幅の領域を除く約110mmφの領域に塗布し、乾燥させた。また、電解質シートの他方の面にも、市販のストロンチウムドープランタンマンガネート(La0.6Sr0.4MnO)粉末80質量部と、市販の20モル%ガドリニアドープセリア粉末20質量部とからなる空気極ペーストを、燃料極ペーストの場合と同様にしてスクリーン印刷で塗布し、乾燥させた。なお、スクリーン印刷の条件は、スキージ硬度70、スキージ圧0.38MPa、スキージ速度4.5cm/s、スキージ角70°であった。スクリーンには、テトロン製の200メッシュを用いた。そして、スクリーン印刷時の各電解質シートの周縁部の割れ・欠けを目視で観察した結果を表3に示す。次いで、両面に電極を印刷した割れ・欠けの無い電解質シートを、1300℃で3時間焼成して厚さが40μmの燃料極と厚さが30μmの空気極が形成された3層構造の単セルを作製した。
 <模擬5セルスタッキング試験>
 120mmφで3mm厚さのランタンクロマイトからなる空気流路用溝を形成したセパレータ(ニッカトー社製、型式「LCO」)に、「単セル作製時のスクリーン印刷後の電解質シートの割れ・欠けの評価」で作製した単セルの空気極側を接合し、シールして、セパレータ一体型セルをそれぞれ5枚(各実施例、比較例及び参考例で5枚ずつ)作製した。マニホールドに組み込んだニッケル集電板上にニッケルフェルトを貼り付け、その上に、燃料極が上向きになる向きにセパレータ一体型セル、ニッケルメッシュ、セパレータ一体型セルの順で5枚のセパレータ一体型セルを貼り付けた。さらにその上にニッケルフェルトを貼り付け、最上部にマニホールドに組み込んだニッケル集電板を載置して、5セルスタックを形成した。この5セルスタックを、120mmφ5セルスタック発電試験装置に組み込んだ。
 この状態で空気極側に空気を、燃料極側に窒素を供給しながら、室温から950℃まで10時間かけて昇温し、950℃で1時間保持してから室温にまで降温する操作を繰り返して、空気極側と燃料極側のガスもれをチェックした。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1に、高分子フィルムを使用した加圧処理が実施されずに作製された、参考例の電解質シートのバリ高さが示されている。0.1mmピッチで測定した個々のバリ高さは、シート周縁端(0ポイント)から0.1mm以上内側の箇所で測定していることになる。したがって、表1に示すように、測定ピッチ0.1mmでは、ΔH(0-3)は27μmであるが、0.05mm内側の箇所のバリ高さ(Δ(0-0.05))、0.08mm内側のバリ高さ(Δ(0-0.08))は測定されていない。
 実際、参考例の電解質シートを0.01mmピッチで測定すると、ΔH(0-3)は37μmと、0.1mmピッチで測定された場合よりも10μm大きくなった。このことは、(0-0.05)区間に最大バリ高さがあることを示している。このように、0.01mmピッチで測定すると、0.1mmピッチでは検出できなかったバリ高さが顕在化された。
 参考例の電解質シートを0.001mmピッチでさらに細かく測定すると、ΔH(0-0.05)について、0.01mmピッチでは検出できなかった39μmの最大バリ高さが顕在化された。
 以上のように、測定ピッチを小さくすれば測定箇所が増し、より正確なバリ高さが測定できるので、シート反り上がりのプロフィールが明確になった。しかし、測定ピッチが小さくなりすぎると、測定データ処理数が増してデータ処理が煩雑になるという問題も生じた。また、0.01mmピッチと0.001mmピッチとの差異は、0.1mmピッチと0.01mmピッチとの差異ほど大きくなかった。したがって、本発明では、測定ピッチを0.01mmに特定した。また、参考例では、切断後のグリーンシートを吸着パッドでPETフィルムから剥がそうとした時、やや剥がれにくかった。参考例では、その後で加圧処理を実施していないので、バリ高さ比ΔH(0.61-3)/ΔH(0-0.6)や、ΔH(0.11-3)/ΔH(0-0.1)が、0.5未満の値になっていた。これは、切断後のグリーンシートをPETフィルムから剥がすときの応力のために、シート周端部付近の反り上がり(ΔH(0-0.6)、ΔH(0-0.1))が大きくなったことによることが判る。
 表2に示すように、ΔH(0-3)、ΔH(0-0.7)及びΔH(0-0.6)を比較すると、実施例1~6において全て同じ値になっている。このことは、最大バリ高さのピークが第2区間(0-0.6mm)にあり、区間(0.61-0.7mm)には無い、すなわち第3区間(0.61-3mm)には無いことを示している。この結果から、シート周縁部に確実に最大バリ高さが存在する区間として、シート周縁端と当該シート周縁端から0.6mm内側との間の区間(第2区間)を選択し、その第2区間(0-0.6mm)に対する第3区間(0.61-3mm)のバリ高さ比を特定することによって、シート周縁端付近の反り上がり程度を規定できることが確認された。
 表2に示すように、比較例1では、加圧処理時に用いられた高分子フィルムの常態剥離力が1000mN/cm以上であったので、加圧処理後のグリーンシートが吸着パッドでスムーズに剥がれず、同様に剥がすときの応力のために図7に示すように周縁部の反りが大きくなって、ΔH(0-3)が100μmを超えていることが判る。また、剥がすときの応力により、特にシート周縁端付近の反り上がりが大きくなり、バリ高さ比ΔH(0.61-3)/ΔH(0-0.6)、ΔH(0.31-3)/ΔH(0-0.3)及びΔH(0.11-3)/ΔH(0-0.1)が0.5未満になった。
 また、比較例2では、加圧処理時に用いられた高分子フィルムの常態剥離力が10mN/cm以下であったので、高分子フィルムに載せたグリーンシートが滑りやすくなり、加圧工程でグリーンシートの一部の周縁部が高分子フィルムからはみ出て全面加圧不能となり、圧力分布も±15%以上となった。そのため、焼成後の電解質シートの周縁部のプロフィールは図8のようになり、表2に示すように、ΔH(0-3)が150μmを超えていた。周縁部に段差状のバリが生じたので、最大バリ高さ比ΔH(0.61-3)/ΔH(0-0.6)及びΔH(0.31-3)/ΔH(0-0.3)が0.5未満になった。
 表3に示すように、実施例1~6の電解質シートでは、耐荷重試験を10回繰り返し後でも割れは発生しなかった。また、実施例1~6の電解質シートには、スクリーン印刷による割れ・欠けの発生は無く、模擬スタッキング試験でもガスもれは認められなかった。従って、本発明で特定された特性を満たす電解質シートは、シート周縁部のバリ高さが小さく、且つシート周縁端付近の反り上がりも小さいので、荷重強度に対して優れた特性を有しており、SOFC用単セルの電解質シートとして高い信頼性を有する優れたものであることが判る。
 一方、比較例1、2及び参考例の電解質シートでは、耐荷重試験を10回繰り返した後で割れが発生しないものは無く、スクリーン印刷による割れ・欠けが発生した。さらに、模擬スタッキング試験でもガスもれが認められたので、スタッキング時に電解質シートに割れやクラックが発生したことが判る。
 本発明のSOFC用電解質シートは、信頼性の高い強度特性を備えているので、SOFCの信頼性向上に寄与できるものである。
11  レーザー測定器
12  レーザー測定器コントローラ
13  モニタ
14  電解質シートのサンプル
15  XY軸自動ステージ
16  ポジションコントローラ
17  データ処理用パソコン
18  アナログコントローラ
21  SOFC用単セル
22  燃料極
23  空気極
24  SOFC用電解質シート
 

Claims (4)

  1.  50~300μmの厚さを有する固体酸化物形燃料電池用電解質シートであって、
     少なくとも一方の主面において、
    (1)レーザー光学式三次元形状測定装置を使用し、シート面にレーザー光を0.01mmピッチで照射してその反射光を三次元解析することにより求められる、シート周縁端と前記シート周縁端から3mm内側の位置との間の第1区間のバリ高さ[ΔH(0-3)]が100μm以下であり、
    かつ、
    (2)前記レーザー光学式三次元形状測定装置を使用し、シート面にレーザー光を0.01mmピッチで照射してその反射光を三次元解析することにより求められる、シート周縁端と前記シート周縁端から0.6mm内側の位置との間の第2区間のバリ高さ[ΔH(0-0.6)]に対する、シート周縁端から0.61mm内側の位置と前記シート周縁端から3mm内側の位置との間の第3区間のバリ高さ[ΔH(0.61-3)]の比[ΔH(0.61-3)/ΔH(0-0.6)]が、0.5以上2.0以下を満たす、
    固体酸化物形燃料電池用電解質シート。
  2.  セラミック原料粉末、バインダー及び分散媒を含むスラリーをシート状に成形して乾燥させたグリーン体を、所定の形状に切断して固体酸化物形燃料電池用電解質シート用のグリーンシートを得る、グリーンシート作製工程と、
     前記グリーンシートを、当該グリーンシートの表面に対峙する面の平均表面粗さ(Ra)が0.001~0.1μmであって、かつ、常態剥離力が10~1000mN/cmの範囲である板状体に挟んで加圧する加圧工程と、
     前記加圧工程を経た前記グリーンシートを焼成する焼成工程と、
    を含む、固体酸化物形燃料電池用電解質シートの製造方法。
  3.  前記加圧工程において、
     前記グリーンシートの全面にかかる圧力の分布が、前記グリーンシートにかかる圧力の平均値に対して±15%以内の範囲になるように、前記グリーンシートにかけられる圧力が調整される、
    請求項2に記載の固体酸化物形燃料電池用電解質シートの製造方法。
  4.  燃料極と、空気極と、前記燃料極と前記空気極との間に配置された請求項1に記載の固体酸化物形燃料電池用電解質シートと、を備えた固体酸化物形燃料電池用単セル。
PCT/JP2013/005776 2012-09-28 2013-09-27 固体酸化物形燃料電池用電解質シート、並びに、その製造方法及びそれを備えた固体酸化物形燃料電池用単セル WO2014050142A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014538204A JP6085304B2 (ja) 2012-09-28 2013-09-27 固体酸化物形燃料電池用電解質シート、並びに、その製造方法及びそれを備えた固体酸化物形燃料電池用単セル
EP13840447.0A EP2903066B1 (en) 2012-09-28 2013-09-27 Electrolyte sheet for solid oxide fuel cell and single cell for solid oxide fuel cell provided with same
US14/431,246 US9698443B2 (en) 2012-09-28 2013-09-27 Electrolyte sheet for solid oxide fuel cell, method for producing the same, and single cell for solid oxide fuel cell including the same
CN201380049950.7A CN104685685B (zh) 2012-09-28 2013-09-27 固体氧化物型燃料电池用电解质片及其制造方法和具备该电解质片的固体氧化物型燃料电池用单电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012216695 2012-09-28
JP2012-216695 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050142A1 true WO2014050142A1 (ja) 2014-04-03

Family

ID=50387573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005776 WO2014050142A1 (ja) 2012-09-28 2013-09-27 固体酸化物形燃料電池用電解質シート、並びに、その製造方法及びそれを備えた固体酸化物形燃料電池用単セル

Country Status (5)

Country Link
US (1) US9698443B2 (ja)
EP (1) EP2903066B1 (ja)
JP (1) JP6085304B2 (ja)
CN (1) CN104685685B (ja)
WO (1) WO2014050142A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111865A (ja) * 2015-12-14 2017-06-22 東洋紡株式会社 固体高分子型燃料電池部材成型用離型フィルム
US11411245B2 (en) 2014-10-16 2022-08-09 Corning Incorporated Electrolyte for a solid-state battery
JP7481900B2 (ja) 2020-05-19 2024-05-13 株式会社東芝 電解セルの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239356A1 (de) * 2016-04-25 2017-11-01 Evonik Degussa GmbH Hartstoffpartikel enthaltendes übertragungsmedium und verfahren zur oberflächenmodifizierung metallischer formkörper hiermit
US11271243B2 (en) 2017-12-18 2022-03-08 Samsung Electronics Co., Ltd. All-solid secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010866A (ja) * 1999-06-24 2001-01-16 Nippon Shokubai Co Ltd セラミックシート及びその製法
WO2003027041A1 (fr) * 2001-09-26 2003-04-03 Ngk Insulators, Ltd. Pastille fritee ceramique stratifiee, son procede de production, cellule electrochimique, element de jonction electroconducteur pour cellule electrochimique, et dispositif electrochimique
WO2004034492A1 (ja) * 2002-10-11 2004-04-22 Nippon Shokubai Co., Ltd. 固体酸化物形燃料電池用電解質シート及びその製法
JP2006049248A (ja) * 2004-08-09 2006-02-16 Dainippon Printing Co Ltd 固体酸化物形燃料電池用熱転写シート及び固体酸化物形燃料電池用積層体
WO2007013567A1 (ja) * 2005-07-27 2007-02-01 Nippon Shokubai Co., Ltd. 固体電解質シートの製造方法および固体電解質シート
JP2010517208A (ja) * 2006-10-31 2010-05-20 コーニング インコーポレイテッド マイクロ加工された電解質シート、これを利用する燃料電池デバイス、および燃料電池デバイスを作製するマイクロ加工方法
JP4653135B2 (ja) 2007-03-29 2011-03-16 株式会社日本触媒 セラミックシート
JP2011053190A (ja) * 2009-09-04 2011-03-17 Nippon Shokubai Co Ltd 固体酸化物形燃料電池の固体電解質膜用セラミックシートの検査方法および当該セラミックシートの製造方法
JP2012204149A (ja) * 2011-03-25 2012-10-22 Nippon Shokubai Co Ltd アノード支持型ハーフセル及びこれを用いたアノード支持型セル
JP2012209013A (ja) * 2011-03-29 2012-10-25 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用電解質シートおよびその製造方法、並びにそれを用いた固体酸化物形燃料電池用セル

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001761A (en) * 1994-09-27 1999-12-14 Nippon Shokubai Co., Ltd. Ceramics sheet and production method for same
JP2734425B2 (ja) * 1994-09-27 1998-03-30 株式会社日本触媒 セラミックスシートの製法
DE60014507T2 (de) 1999-06-24 2005-10-13 Nippon Shokubai Co., Ltd. Keramikfolie und Verfahren zu deren Herstellung

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010866A (ja) * 1999-06-24 2001-01-16 Nippon Shokubai Co Ltd セラミックシート及びその製法
WO2003027041A1 (fr) * 2001-09-26 2003-04-03 Ngk Insulators, Ltd. Pastille fritee ceramique stratifiee, son procede de production, cellule electrochimique, element de jonction electroconducteur pour cellule electrochimique, et dispositif electrochimique
WO2004034492A1 (ja) * 2002-10-11 2004-04-22 Nippon Shokubai Co., Ltd. 固体酸化物形燃料電池用電解質シート及びその製法
JP2006049248A (ja) * 2004-08-09 2006-02-16 Dainippon Printing Co Ltd 固体酸化物形燃料電池用熱転写シート及び固体酸化物形燃料電池用積層体
WO2007013567A1 (ja) * 2005-07-27 2007-02-01 Nippon Shokubai Co., Ltd. 固体電解質シートの製造方法および固体電解質シート
JP2010517208A (ja) * 2006-10-31 2010-05-20 コーニング インコーポレイテッド マイクロ加工された電解質シート、これを利用する燃料電池デバイス、および燃料電池デバイスを作製するマイクロ加工方法
JP4653135B2 (ja) 2007-03-29 2011-03-16 株式会社日本触媒 セラミックシート
JP2011053190A (ja) * 2009-09-04 2011-03-17 Nippon Shokubai Co Ltd 固体酸化物形燃料電池の固体電解質膜用セラミックシートの検査方法および当該セラミックシートの製造方法
JP2012204149A (ja) * 2011-03-25 2012-10-22 Nippon Shokubai Co Ltd アノード支持型ハーフセル及びこれを用いたアノード支持型セル
JP2012209013A (ja) * 2011-03-29 2012-10-25 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用電解質シートおよびその製造方法、並びにそれを用いた固体酸化物形燃料電池用セル

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11411245B2 (en) 2014-10-16 2022-08-09 Corning Incorporated Electrolyte for a solid-state battery
JP2017111865A (ja) * 2015-12-14 2017-06-22 東洋紡株式会社 固体高分子型燃料電池部材成型用離型フィルム
JP7133893B2 (ja) 2015-12-14 2022-09-09 東洋紡株式会社 固体高分子型燃料電池部材成型用離型フィルム
JP7481900B2 (ja) 2020-05-19 2024-05-13 株式会社東芝 電解セルの製造方法

Also Published As

Publication number Publication date
CN104685685A (zh) 2015-06-03
CN104685685B (zh) 2016-10-26
EP2903066A1 (en) 2015-08-05
EP2903066B1 (en) 2018-11-07
US9698443B2 (en) 2017-07-04
JP6085304B2 (ja) 2017-02-22
US20150270569A1 (en) 2015-09-24
EP2903066A4 (en) 2016-05-25
JPWO2014050142A1 (ja) 2016-08-22

Similar Documents

Publication Publication Date Title
JP6085304B2 (ja) 固体酸化物形燃料電池用電解質シート、並びに、その製造方法及びそれを備えた固体酸化物形燃料電池用単セル
JP4729121B2 (ja) 固体酸化物形燃料電池用電解質シートならびに固体酸化物形燃料電池用セル
JP4580755B2 (ja) 固体酸化物形燃料電池セル用電極支持基板およびその製法
US20140017579A1 (en) Electrolyte sheet for solid oxide fuel cell, unit cell for solid oxide fuel cell and solid oxide fuel cell equipped with same, method for testing electrolyte sheet for solid oxide fuel cell, and method for manufacturing electrolyte sheet for solid oxide fuel cell
JP4833376B2 (ja) 固体酸化物形燃料電池用電解質シートおよびその製造方法、並びに、固体酸化物形燃料電池用単セルおよび固体酸化物形燃料電池
CN112028627B (zh) 一种固体电解质片的烧制方法及产品
JP3971056B2 (ja) セラミックシートの製法
JP5484155B2 (ja) 固体酸化物形燃料電池用電解質シートおよびその製造方法、並びにそれを用いた固体酸化物形燃料電池用セル。
JP2007001860A (ja) 多孔質セラミック薄板および該薄板を用いたセラミックシートの製法
JP5704990B2 (ja) 固体酸化物形燃料電池用電解質シートおよびその製造方法、並びにそれを用いた固体酸化物形燃料電池用セル
JP2012069418A (ja) 固体酸化物形燃料電池用電解質シートおよびその製造方法ならびに固体酸化物形燃料電池用単セル
JP6031308B2 (ja) 固体酸化物形燃料電池用電解質支持型セル、並びに、それに用いられる電解質シート及びそれを備えた固体酸化物形燃料電池
JP2007323899A (ja) 固体酸化物形燃料電池用電解質シート及びその製法
JP2015069694A (ja) 燃料電池用ジルコニア系電解質シートの製造方法
JP2007246392A (ja) セラミックシート
JP5797050B2 (ja) セラミックシートの製造方法
JP6814594B2 (ja) 固体酸化物形燃料電池用電解質シート
JP7255688B2 (ja) 固体酸化物形燃料電池用電解質シート及び固体酸化物形燃料電池用単セル
WO2021025051A1 (ja) 固体酸化物形燃料電池用電解質シート、固体酸化物形燃料電池用電解質シートの製造方法及び固体酸化物形燃料電池用単セル
JP5823230B2 (ja) 燃料電池用電解質シートの製造方法
CN114175328B (zh) 固体氧化物型燃料电池用的电解质片、固体氧化物型燃料电池用的电解质片的制造方法以及固体氧化物型燃料电池用的单体电池
CN114503318B (zh) 固体氧化物型燃料电池用电解质片、固体氧化物型燃料电池用电解质片的制造方法和固体氧化物型燃料电池用单电池
JP2012074207A (ja) 燃料電池用電解質シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538204

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431246

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013840447

Country of ref document: EP