JP2023159378A - 窒素を固定する操作された微生物を改良するための方法および組成物 - Google Patents

窒素を固定する操作された微生物を改良するための方法および組成物 Download PDF

Info

Publication number
JP2023159378A
JP2023159378A JP2023137168A JP2023137168A JP2023159378A JP 2023159378 A JP2023159378 A JP 2023159378A JP 2023137168 A JP2023137168 A JP 2023137168A JP 2023137168 A JP2023137168 A JP 2023137168A JP 2023159378 A JP2023159378 A JP 2023159378A
Authority
JP
Japan
Prior art keywords
sequence
group
seq
genetically engineered
nos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023137168A
Other languages
English (en)
Other versions
JP2023159378A5 (ja
Inventor
アルヴィン タムシル
Tamsir Alvin
サラ ブロク
Bloch Sarah
ダグラス ヒギンズ
Higgins Douglas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pivot Bio Inc
Original Assignee
Pivot Bio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pivot Bio Inc filed Critical Pivot Bio Inc
Publication of JP2023159378A publication Critical patent/JP2023159378A/ja
Publication of JP2023159378A5 publication Critical patent/JP2023159378A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • C12N15/8227Root-specific
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0095Oxidoreductases (1.) acting on iron-sulfur proteins as donor (1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y118/00Oxidoreductases acting on iron-sulfur proteins as donors (1.18)
    • C12Y118/06Oxidoreductases acting on iron-sulfur proteins as donors (1.18) with dinitrogen as acceptor (1.18.6)
    • C12Y118/06001Nitrogenase (1.18.6.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03012Trehalose-phosphatase (3.1.3.12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/011414-Alpha-D-{(1->4)-alpha-D-glucano} trehalose trehalohydrolase (3.2.1.141)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nutrition Science (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

【課題】エーカーあたり20ポンドを超える窒素で施肥されている農業システムにおいて空中窒素を固定する、少なくとも1つの遺伝子操作された細菌株を含む細菌組成物を生成および利用するための方法およびシステムを提供する。【解決手段】特定の配列を有する遺伝子群から選択される配列に対して少なくとも約80%の配列同一性を有する挿入配列を含む、遺伝子操作された細菌を提供する。【選択図】なし

Description

相互参照
本出願は、2017年10月25日に出願された米国仮特許出願第62/577,148号の優先権を主張し、これは参照により全体が本明細書に組み込まれる。
連邦政府による資金提供を受けた研究に関する声明
本発明は、全米科学財団から授与されたSBIR助成金1520545に基づく米国政府の支援を受けて行われた。政府は、開示された主題について一定の権利を有する。
発明の背景
植物は、共有メタボロームを介してマイクロバイオームにリンクされている。特定の作物の形質とその基礎となるメタボロームとの間の多次元関係は、多数の極大値を伴うランドスケープを特徴とする。メタボロームに対するマイクロバイオームの影響を変えることによって、下極大値からより良い形質を表す別の極大値に最適化することは、作物の最適化などの様々な理由から望ましい場合がある。増加する世界人口のニーズを満たすために、農業および食糧生産への経済的、環境的、および社会的に持続可能なアプローチが必要である。2050年までに、国連食糧農業機関は、増加する人口のニーズを満たすために総食糧生産量を70%増加させる必要があると予測している。この課題は、淡水資源の減少、農耕地の競争の激化、エネルギー価格の上昇、増加する投入コスト、および作物がより乾燥した、より暑い、より極端な地球気候のストレスに適応する必要可能性を含む、多くの要因によって悪化している。
目的の1つの領域は、窒素固定の向上である。窒素ガス(N)は、地球の大気の主成分である。さらに、元素窒素(N)は、生物を構成する多くの化合物の重要な成分である。しかしながら、多くの生物は、Nを直接使用して、成長および生殖などの生理学的プロセスで使用される化学物質を合成することができない。Nを利用するために、Nは、水素と組み合わされなければならない。水素とNとの組み合わせは、窒素固定と呼ばれる。化学的に達成されたか、または生物学的に達成されたかにかかわらず、窒素固定は、大量のエネルギーの投資を必要とする。生物系では、ニトロゲナーゼとして知られている酵素が、窒素固定をもたらす反応を触媒する。窒素固定研究の重要な目標は、この表現型を非マメ科植物、特に小麦、稲、トウモロコシなどの重要な農業用草に拡大することである。根粒菌とマメ科植物との間の窒素固定共生の発達を理解する上での大きな進歩にもかかわらず、非マメ科作物に窒素固定結節を誘導するためにその知識を使用する道筋はまだ明確ではない。その一方で、肥料などの十分な補足的窒素源を提供するという課題は、食糧生産の増加の必要性とともに高まり続けるであろう。
いくつかの実施形態では、本開示は、配列番号1~72からなる群から選択される配列に対して少なくとも約80%の配列同一性を有する挿入配列を含む遺伝子操作された細菌を提供する。場合によっては、挿入配列は、天然のプロモーター配列に置き換わる。場合によっては、挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約85%の配列同一性を含む。場合によっては、挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約90%の配列同一性を含む。場合によっては、挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約95%の配列同一性を含む。場合によっては、挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約97%の配列同一性を含む。場合によっては、当該挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約98%の配列同一性を含む。場合によっては、挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約99%の配列同一性を含む。
いくつかの実施形態では、本開示は、配列番号1~72からなる群から選択される配列に対して少なくとも80%の配列同一性を有する挿入配列に作動可能に連結された天然のコード配列を含む、遺伝子操作された細菌を提供する。場合によっては、挿入配列は、天然のプロモーター配列に置き換わる。場合によっては、挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約85%の配列同一性を含む。場合によっては、配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約90%の配列同一性を含む。場合によっては、挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約95%の配列同一性を含む。場合によっては、挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約97%の配列同一性を含む。場合によっては、当該挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約98%の配列同一性を含む。場合によっては、挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約99%の配列同一性を含む。場合によっては、天然のコード配列は、cysZ、otsB、bcs遺伝子、およびtreZからなる群から選択される。場合によっては、天然のコード配列は、トランスポーター遺伝子、イオントランスポーター遺伝子、エキソポリサッカライド生合成遺伝子、セルロース生合成遺伝子、およびトレハロース生合成遺伝子からなる群から選択される。
いくつかの実施形態では、本開示は、配列番号1~72からなる群から選択される配列に対して少なくとも約80%の配列同一性を有する挿入配列に作動可能に連結された窒素固定または窒素同化コード配列を含む、遺伝子操作された細菌を提供する。場合によっては、配列番号1~72からなる群から選択される配列に対して少なくとも約80%の配列同一性を有する挿入配列は、天然のプロモーター配列に置き換わる。場合によっては、挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約85%の配列同一性を含む。場合によっては、挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約90%の配列同一性を含む。場合によっては、挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約95%の配列同一性を含む。場合によっては、挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約97%の配列同一性を含む。場合によっては、挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約98%の配列同一性を含む。場合によっては、挿入配列は、配列番号1~72からなる群から選択される配列に対して少なくとも約99%の配列同一性を含む。場合によっては、窒素固定または窒素同化コード配列が、nifA、nifL、ntrB、ntrC、グルタミンシンテターゼをコードするポリヌクレオチド、glnA、glnB、glnK、drat、amtB、グルタミナーゼをコードするポリヌクレオチド、glnD、glnE、nifJ、nifH、nifD、nifK、nifY、nifE、nifN、nifU、nifS、nifV、nifW、nifZ、nifM、nifF、nifB、nifQ、およびニトロゲナーゼ酵素の生合成に関連する遺伝子からなる群から選択される。場合によっては、遺伝子操作された細菌は、遺伝子操作されたジアゾ栄養細菌である。場合によっては、遺伝子操作された細菌は、非属間である。場合によっては、遺伝子操作された細菌は、属間である。場合によっては、遺伝子操作された細菌は、非窒素制限条件下で空中窒素を固定する。場合によっては、遺伝子操作された細菌は、同じ種の操作されていない細菌よりも多くの空中窒素を固定する。場合によっては、遺伝子操作された細菌は、ラーニア・アクアティリス(Rahnella aquatilis)、クレブシエラ・バリコラ(Klebsiella variicola)、コサコニア・シュードサッカリ(Kosakonia pseudosacchari)、クルイベラ・インテルメディア(Kluyvera intermedia)、クレブシエラ(Klebsiella)sp.、エンテロバクター(Enterobacter)sp.、およびコサコニア・サッカリ(Kosakonia sacchari)からなる群から選択される。場合によっては、遺伝子操作された細菌は、ラーニア(Rahnella)属のものであり、当該挿入配列は、配列番号41~59および63~66からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む。場合によっては、遺伝子操作された細菌は、Rahnella aquatilisであり、当該挿入配列は、配列番号41~59および63~66からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む。場合によっては、遺伝子操作された細菌は、Kosakonia属のものであり、当該挿入配列は、配列番号1~10からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む。場合によっては、遺伝子操作された細菌は、Kosakonia sacchariであり、当該挿入配列は、配列番号1~10からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む。場合によっては、遺伝子操作された細菌は、Klebsiella属のものであり、当該挿入配列は、配列番号11~40からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む。場合によっては、当該遺伝子操作された細菌は、Klebsiella variicolaであり、当該挿入配列は、配列番号11~40からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む。場合によっては、遺伝子操作された細菌は、Kluyvera属のものであり、当該挿入配列は、配列番号60に対して少なくとも約80%の配列同一性を含む。場合によっては、遺伝子操作された細菌は、Kluyvera intermediaであり、当該挿入配列は、配列番号60に対して少なくとも約80%の配列同一性を含む。場合によっては、遺伝子操作された細菌は、Kosakonia pseudosacchariであり、当該挿入配列は、配列番号61および70~72からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む。場合によっては、遺伝子操作された細菌は、Enterobacter種であり、当該挿入配列は、配列番号62に対して少なくとも約80%の配列同一性を含む。場合によっては、遺伝子操作された細菌は、Klebsiella種であり、当該挿入配列は、配列番号67~69からなる群から選択された配列に対して少なくとも約80%の配列同一性を含む。場合によっては、挿入配列は、非天然の状況で挿入された天然の配列である。
いくつかの実施形態では、本開示は、植物種子および本明細書に記載の遺伝子操作された細菌を含む組成物を提供する。場合によっては、植物種子は、トウモロコシ種子、小麦種子、稲種子、大麦種子、大豆種子、モロコシ種子、およびライ麦種子からなる群から選択される。
いくつかの実施形態では、本開示は、植物および本明細書で提供される遺伝子操作された細菌を含む、組成物を提供する。場合によっては、植物は、苗である。場合によっては、植物は、トウモロコシ、小麦、稲、大麦、ライ麦、大豆、およびモロコシからなる群から選択される。
いくつかの実施形態では、本開示は、微生物遺伝子の天然のプロモーター配列を、配列番号1~72からなる群から選択される配列に対して少なくとも80%の配列同一性を含むプロモーター配列で置き換えることによって、微生物における微生物遺伝子の発現を増加させる方法を提供する。場合によっては、プロモーター配列は、配列番号1~72からなる群から選択される配列に対して少なくとも85%の配列同一性を含む。場合によっては、プロモーター配列は、配列番号1~72からなる群から選択される配列に対して少なくとも90%の配列同一性を含む。場合によっては、プロモーター配列は、配列番号1~72からなる群から選択される配列に対して少なくとも95%の配列同一性を含む。場合によっては、プロモーター配列は、配列番号1~72からなる群から選択される配列に対して少なくとも97%の配列同一性を含む。場合によっては、プロモーター配列は、配列番号1~72からなる群から選択される配列に対して少なくとも98%の配列同一性を含む。場合によっては、プロモーター配列は、配列番号1~72からなる群から選択される配列に対して少なくとも99%の配列同一性を含む。場合によっては、当該微生物遺伝子の発現を増加させると、当該微生物によるアンモニウム排泄が増加する。場合によっては、当該微生物遺伝子の発現を増加させると、当該微生物による窒素固定が増加する。場合によっては、当該微生物遺伝子の発現を増加させると、当該微生物による植物のコロニー形成が増加する。
いくつかの実施形態では、本開示は、窒素の固定または同化に関連するタンパク質のコード配列、および配列番号1~72からなる群から選択される配列に対して少なくとも80%の配列同一性を含む配列を含む、ポリヌクレオチドを提供する。場合によっては、窒素の固定または同化に関連するタンパク質のコード配列は、nifA、nifL、ntrB、ntrC、グルタミンシンテターゼをコードするポリヌクレオチド、glnA、glnB、glnK、drat、amtB、グルタミナーゼをコードするポリヌクレオチド、glnD、glnE、nifJ、nifH、nifD、nifK、nifY、nifE、nifN、nifU、nifS、nifV、nifW、nifZ、nifM、nifF、nifB、nifQ、およびニトロゲナーゼ酵素の生合成に関連する遺伝子からなる群から選択される。
いくつかの実施形態では、本開示は、目的のタンパク質のコード配列、および配列番号1~72からなる群から選択される配列に対して少なくとも80%の配列同一性を含む配列を含む、ポリヌクレオチドを提供する。場合によっては、目的のタンパク質は、トランスポーター遺伝子、イオントランスポーター遺伝子、エキソポリサッカライド生合成遺伝子、セルロース生合成遺伝子、およびトレハロース生合成遺伝子からなる群から選択される。場合によっては、目的のタンパク質は、CysZ遺伝子、bcs遺伝子、treZ遺伝子、およびotsB遺伝子からなる群から選択される。場合によっては、ポリヌクレオチドは、配列番号1~72からなる群から選択される配列に対して少なくとも85%の配列同一性を有する配列を含む。場合によっては、ポリヌクレオチドは、配列番号1~72からなる群から選択される配列に対して少なくとも90%の配列同一性を有する配列を含む。場合によっては、ポリヌクレオチドは、配列番号1~72からなる群から選択される配列に対して少なくとも95%の配列同一性を有する配列を含む。場合によっては、ポリヌクレオチドは、配列番号1~72からなる群から選択される配列に対して少なくとも97%の配列同一性を有する配列を含む。場合によっては、ポリヌクレオチドは、配列番号1~72からなる群から選択される配列に対して少なくとも98%の配列同一性を有する配列を含む。場合によっては、ポリヌクレオチドは、配列番号1~72からなる群から選択される配列に対して少なくとも99%の配列同一性を有する配列を含む。
いくつかの実施形態では、本開示は、植物中の大気由来窒素の量を増加させる方法であって、当該植物を遺伝子操作された細菌と接触させることを含み、当該遺伝子操作された細菌が、配列番号1~72からなる群から選択される配列に対して少なくとも80%の配列同一性を含むプロモーターに作動可能に連結された窒素固定コード配列を含む、方法を提供する。場合によっては、プロモーターは、配列番号1~72からなる群から選択される配列に対して少なくとも85%の配列同一性を含む。場合によっては、プロモーターは、配列番号1~72からなる群から選択される配列に対して少なくとも90%の配列同一性を含む。場合によっては、プロモーターは、配列番号1~72からなる群から選択される配列に対して少なくとも95%の配列同一性を含む。場合によっては、プロモーターは、配列番号1~72からなる群から選択される配列に対して少なくとも97%の配列同一性を含む。場合によっては、プロモーターは、配列番号1~72からなる群から選択される配列に対して少なくとも98%の配列同一性を含む。場合によっては、当該微生物遺伝子の発現を増加させると、当該微生物によるアンモニウム排泄が増加する。場合によっては、当該微生物遺伝子の発現を増加させると、当該微生物による窒素固定が増加する。場合によっては、当該微生物遺伝子の発現を増加させると、当該微生物による植物のコロニー形成が増加する。
場合によっては、プロモーターは、配列番号1~72からなる群から選択される配列に対して少なくとも99%の配列同一性を含む。場合によっては、遺伝子操作された細菌は、Rahnella aquatilis、Klebsiella variicola、アクロモバクター・スピリチヌス(Achromobacter spiritinus)、アクロモバクター・マープラテンシス(Achromobacter marplatensis)、マイコバクテリウム・ムラレ(Microbacterium murale)、Kluyvera intermedia、Kosakonia pseudosacchari、Enterobacter sp.、アゾスピリルム・リポフェルム(Azospirillum lipoferum)、およびKosakonia sacchariからなる群から選択される。
いくつかの実施形態では、本開示は、作物の植え付けと収穫との間に必要な窒素肥料の量を減少させる方法を提供し、この方法は、本明細書に記載の遺伝子操作された細菌を当該作物に接種することを含む。
[本発明1001]
配列番号1~72からなる群から選択される配列に対して少なくとも約80%の配列同一性を有する挿入配列を含む、遺伝子操作された細菌。
[本発明1002]
前記挿入配列が、天然のプロモーター配列に置き換わる、本発明1001の遺伝子操作された細菌。
[本発明1003]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約85%の配列同一性を含む、本発明1001の遺伝子操作された細菌。
[本発明1004]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約90%の配列同一性を含む、本発明1001の遺伝子操作された細菌。
[本発明1005]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約95%の配列同一性を含む、本発明1001の遺伝子操作された細菌。
[本発明1006]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約97%の配列同一性を含む、本発明1001の遺伝子操作された細菌。
[本発明1007]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約98%の配列同一性を含む、本発明1001の遺伝子操作された細菌。
[本発明1008]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約99%の配列同一性を含む、本発明1001の遺伝子操作された細菌。
[本発明1009]
配列番号1~72からなる群から選択される配列に対して少なくとも80%の配列同一性を有する挿入配列に作動可能に連結された天然のコード配列を含む、遺伝子操作された細菌。
[本発明1010]
前記挿入配列が、天然のプロモーター配列に置き換わる、本発明1009の遺伝子操作された細菌。
[本発明1011]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約85%の配列同一性を含む、本発明1009の遺伝子操作された細菌。
[本発明1012]
前記配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約90%の配列同一性を含む、本発明1009の遺伝子操作された細菌。
[本発明1013]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約95%の配列同一性を含む、本発明1009の遺伝子操作された細菌。
[本発明1014]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約97%の配列同一性を含む、本発明1009の遺伝子操作された細菌。
[本発明1015]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約98%の配列同一性を含む、本発明1009の遺伝子操作された細菌。
[本発明1016]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約99%の配列同一性を含む、本発明1009の遺伝子操作された細菌。
[本発明1017]
前記天然のコード配列が、cysZ、otsB、bcs遺伝子、およびtreZからなる群から選択される、本発明1009~1016のいずれかの遺伝子操作された細菌。
[本発明1018]
前記天然のコード配列が、トランスポーター遺伝子、イオントランスポーター遺伝子、エキソポリサッカライド生合成遺伝子、セルロース生合成遺伝子、およびトレハロース生合成遺伝子からなる群から選択される、本発明1009~1016のいずれかの遺伝子操作された細菌。
[本発明1019]
配列番号1~72からなる群から選択される配列に対して少なくとも約80%の配列同一性を有する挿入配列に作動可能に連結された窒素固定または窒素同化コード配列を含む、遺伝子操作された細菌。
[本発明1020]
配列番号1~72からなる群から選択される配列に対して少なくとも約80%の配列同一性を有する前記挿入配列が、天然のプロモーター配列に置き換わる、本発明1019の遺伝子操作された細菌。
[本発明1021]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約85%の配列同一性を含む、本発明1019の遺伝子操作された細菌。
[本発明1022]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約90%の配列同一性を含む、本発明1019の遺伝子操作された細菌。
[本発明1023]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約95%の配列同一性を含む、本発明1019の遺伝子操作された細菌。
[本発明1024]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約97%の配列同一性を含む、本発明1019の遺伝子操作された細菌。
[本発明1025]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約98%の配列同一性を含む、本発明1019の遺伝子操作された細菌。
[本発明1026]
前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約99%の配列同一性を含む、本発明1019の遺伝子操作された細菌。
[本発明1027]
前記窒素固定または窒素同化コード配列が、nifA、nifL、ntrB、ntrC、グルタミンシンテターゼをコードするポリヌクレオチド、glnA、glnB、glnK、drat、amtB、グルタミナーゼをコードするポリヌクレオチド、glnD、glnE、nifJ、nifH、nifD、nifK、nifY、nifE、nifN、nifU、nifS、nifV、nifW、nifZ、nifM、nifF、nifB、nifQ、およびニトロゲナーゼ酵素の生合成に関連する遺伝子からなる群から選択される、本発明1019~1026のいずれかの遺伝子操作された細菌。
[本発明1028]
遺伝子操作されたジアゾ栄養細菌である、本発明1001~1027のいずれかの遺伝子操作された細菌。
[本発明1029]
非属間である、本発明1001~1028のいずれかの遺伝子操作された細菌。
[本発明1030]
属間である、本発明1001~1028のいずれかの遺伝子操作された細菌。
[本発明1031]
非窒素制限条件下で空中窒素を固定する、本発明1001~1030のいずれかの遺伝子操作された細菌。
[本発明1032]
同じ種の遺伝子操作されていない細菌よりも多くの空中窒素を固定する、本発明1001~1031のいずれかの遺伝子操作された細菌。
[本発明1033]
ラーニア・アクアティリス(Rahnella aquatilis)、クレブシエラ・バリコラ(Klebsiella variicola)、コサコニア・シュードサッカリ(Kosakonia pseudosacchari)、クルイベラ・インテルメディア(Kluyvera intermedia)、クレブシエラ(Klebsiella)sp.、エンテロバクター(Enterobacter)sp.、およびコサコニア・サッカリ(Kosakonia sacchari)からなる群から選択される、本発明1001~1032のいずれかの遺伝子操作された細菌。
[本発明1034]
前記遺伝子操作された細菌が、ラーニア(Rahnella)属のものであり、前記挿入配列が、配列番号41~59および63~66からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、本発明1001~1032のいずれかの遺伝子操作された細菌。
[本発明1035]
前記遺伝子操作された細菌が、ラーニア・アクアティリス(Rahnella aquatilis)であり、前記挿入配列が、配列番号41~59および63~66からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、本発明1001~1032のいずれかの遺伝子操作された細菌。
[本発明1036]
前記遺伝子操作された細菌が、コサコニア(Kosakonia)属のものであり、前記挿入配列が、配列番号1~10からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、本発明1001~1032のいずれかの遺伝子操作された細菌。
[本発明1037]
前記遺伝子操作された細菌が、コサコニア・サッカリ(Kosakonia sacchari)であり、前記挿入配列が、配列番号1~10からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、本発明1001~1032のいずれかの遺伝子操作された細菌。
[本発明1038]
前記遺伝子操作された細菌が、クレブシエラ(Klebsiella)属のものであり、前記挿入配列が、配列番号11~40からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、本発明1001~1032のいずれかの遺伝子操作された細菌。
[本発明1039]
前記遺伝子操作された細菌が、クレブシエラ・バリコラ(Klebsiella variicola)であり、前記挿入配列が、配列番号11~40からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、本発明1001~1032のいずれかの遺伝子操作された細菌。
[本発明1040]
前記遺伝子操作された細菌が、クルイベラ(Kluyvera)属のものであり、前記挿入配列が、配列番号60に対して少なくとも約80%の配列同一性を含む、本発明1001~1032のいずれかの遺伝子操作された細菌。
[本発明1041]
前記遺伝子操作された細菌が、クルイベラ・インテルメディア(Kluyvera intermedia)であり、前記挿入配列が、配列番号60に対して少なくとも約80%の配列同一性を含む、本発明1001~1032のいずれかの遺伝子操作された細菌。
[本発明1042]
前記遺伝子操作された細菌が、コサコニア・シュードサッカリ(Kosakonia pseudosacchari)であり、前記挿入配列が、配列番号61および70~72からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、本発明1001~1032のいずれかの遺伝子操作された細菌。
[本発明1043]
前記遺伝子操作された細菌が、エンテロバクター(Enterobacter)種であり、前記挿入配列が、配列番号62に対して少なくとも約80%の配列同一性を含む、本発明1001~1032のいずれかの遺伝子操作された細菌。
[本発明1044]
前記遺伝子操作された細菌が、クレブシエラ(Klebsiella)種であり、前記挿入配列が、配列番号67~69からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、本発明1001~1032のいずれかの遺伝子操作された細菌。
[本発明1045]
前記挿入配列が、非天然の状況で挿入された天然の配列である、本発明1001~1044のいずれかの遺伝子操作された細菌。
[本発明1046]
植物種子および本発明1001~1045のいずれかの遺伝子操作された細菌を含む、組成物。
[本発明1047]
前記植物種子が、トウモロコシ種子、小麦種子、稲種子、大麦種子、大豆種子、モロコシ種子、およびライ麦種子からなる群から選択される、本発明1046の組成物。
[本発明1048]
植物および本発明1001~1045のいずれかの遺伝子操作された細菌を含む、組成物。
[本発明1049]
前記植物が、苗である、本発明1048の組成物。
[本発明1050]
前記植物が、トウモロコシ、小麦、稲、大麦、ライ麦、大豆、およびモロコシからなる群から選択される、本発明1048の組成物。
[本発明1051]
微生物遺伝子の天然のプロモーター配列を、配列番号1~72からなる群から選択される配列に対して少なくとも80%の配列同一性を含むプロモーター配列で置き換えることによって、微生物における微生物遺伝子の発現を増加させる方法。
[本発明1052]
前記プロモーター配列が、配列番号1~72からなる群から選択される配列に対して少なくとも85%の配列同一性を含む、本発明1051の方法。
[本発明1053]
前記プロモーター配列が、配列番号1~72からなる群から選択される配列に対して少なくとも90%の配列同一性を含む、本発明1051の方法。
[本発明1054]
前記プロモーター配列が、配列番号1~72からなる群から選択される配列に対して少なくとも95%の配列同一性を含む、本発明1051の方法。
[本発明1055]
前記プロモーター配列が、配列番号1~72からなる群から選択される配列に対して少なくとも97%の配列同一性を含む、本発明1051の方法。
[本発明1056]
前記プロモーター配列が、配列番号1~72からなる群から選択される配列に対して少なくとも98%の配列同一性を含む、本発明1051の方法。
[本発明1057]
前記プロモーター配列が、配列番号1~72からなる群から選択される配列に対して少なくとも99%の配列同一性を含む、本発明1051の方法。
[本発明1058]
前記微生物遺伝子の発現を増加させることが、前記微生物によるアンモニウム排泄を増加させる、本発明1051~1057のいずれかの方法。
[本発明1059]
前記微生物遺伝子の発現を増加させることが、前記微生物による窒素固定を増加させる、本発明1051~1057のいずれかの方法。
[本発明1060]
前記微生物遺伝子の発現を増加させることが、前記微生物による植物のコロニー形成を増加させる、本発明1051~1057のいずれかの方法。
[本発明1061]
窒素の固定または同化に関連するタンパク質のコード配列、および配列番号1~72からなる群から選択される配列に対して少なくとも80%の配列同一性を含む配列を含む、ポリヌクレオチド。
[本発明1062]
窒素の固定または同化に関連するタンパク質の前記コード配列が、nifA、nifL、ntrB、ntrC、グルタミンシンテターゼをコードするポリヌクレオチド、glnA、glnB、glnK、drat、amtB、グルタミナーゼをコードするポリヌクレオチド、glnD、glnE、nifJ、nifH、nifD、nifK、nifY、nifE、nifN、nifU、nifS、nifV、nifW、nifZ、nifM、nifF、nifB、nifQ、およびニトロゲナーゼ酵素の生合成に関連する遺伝子からなる群から選択される、本発明1061のポリヌクレオチド。
[本発明1063]
目的のタンパク質のコード配列、および配列番号1~72からなる群から選択される配列に対して少なくとも80%の配列同一性を含む配列を含む、ポリヌクレオチド。
[本発明1064]
前記目的のタンパク質が、トランスポーター遺伝子、イオントランスポーター遺伝子、エキソポリサッカライド生合成遺伝子、セルロース生合成遺伝子、およびトレハロース生合成遺伝子からなる群から選択される、本発明1063のポリヌクレオチド。
[本発明1065]
前記目的のタンパク質が、CysZ遺伝子、bcs遺伝子、treZ遺伝子、およびotsB遺伝子からなる群から選択される、本発明1063のポリヌクレオチド。
[本発明1066]
配列番号1~72からなる群から選択される配列に対して少なくとも85%の配列同一性を有する配列を含む、本発明1061~1065のいずれかのポリヌクレオチド。
[本発明1067]
配列番号1~72からなる群から選択される配列に対して少なくとも90%の配列同一性を有する配列を含む、本発明1061~1065のいずれかのポリヌクレオチド。
[本発明1068]
配列番号1~72からなる群から選択される配列に対して少なくとも95%の配列同一性を有する配列を含む、本発明1061~1065のいずれかのポリヌクレオチド。
[本発明1069]
配列番号1~72からなる群から選択される配列に対して少なくとも97%の配列同一性を有する配列を含む、本発明1061~1065のいずれかのポリヌクレオチド。
[本発明1070]
配列番号1~72からなる群から選択される配列に対して少なくとも98%の配列同一性を有する配列を含む、本発明1061~1065のいずれかのポリヌクレオチド。
[本発明1071]
配列番号1~72からなる群から選択される配列に対して少なくとも99%の配列同一性を有する配列を含む、本発明1061~1065のいずれかのポリヌクレオチド。
[本発明1072]
植物中の大気由来窒素の量を増加させる方法であって、前記植物を遺伝子操作された細菌と接触させる工程を含み、前記遺伝子操作された細菌が、配列番号1~72からなる群から選択される配列に対して少なくとも80%の配列同一性を含むプロモーターに作動可能に連結された窒素固定コード配列を含む、方法。
[本発明1073]
前記プロモーターが、配列番号1~72からなる群から選択される配列に対して少なくとも85%の配列同一性を含む、本発明1072の方法。
[本発明1074]
前記プロモーターが、配列番号1~72からなる群から選択される配列に対して少なくとも90%の配列同一性を含む、本発明1072の方法。
[本発明1075]
前記プロモーターが、配列番号1~72からなる群から選択される配列に対して少なくとも95%の配列同一性を含む、本発明1072の方法。
[本発明1076]
前記プロモーターが、配列番号1~72からなる群から選択される配列に対して少なくとも97%の配列同一性を含む、本発明1072の方法。
[本発明1077]
前記プロモーターが、配列番号1~72からなる群から選択される配列に対して少なくとも98%の配列同一性を含む、本発明1072の方法。
[本発明1078]
前記プロモーターが、配列番号1~72からなる群から選択される配列に対して少なくとも99%の配列同一性を含む、本発明1072の方法。
[本発明1079]
前記遺伝子操作された細菌が、ラーニア・アクアティリス(Rahnella aquatilis)、クレブシエラ・バリコラ(Klebsiella variicola)、アクロモバクター・スピリチヌス(Achromobacter spiritinus)、アクロモバクター・マープラテンシス(Achromobacter marplatensis)、マイコバクテリウム・ムラレ(Microbacterium murale)、クルイベラ・インテルメディア(Kluyvera intermedia)、コサコニア・シュードサッカリ(Kosakonia pseudosacchari)、エンテロバクター(Enterobacter)sp.、アゾスピリルム・リポフェルム(Azospirillum lipoferum)、およびコサコニア・サッカリ(Kosakonia sacchari)からなる群から選択される、本発明1072~1078のいずれかの方法。
[本発明1080]
作物の植え付けと収穫の間に必要とされる窒素肥料の量を減少させる方法であって、本発明1001~1045のいずれかの遺伝子組み換え細菌を前記作物に接種する工程を含む、方法。
参照による組み込み
本明細書で言及されるすべての出版物、特許、および特許出願は、個々の出版物、特許、または特許出願が参照により組み込まれることが具体的かつ個別に示されている場合と同じ程度に、参照により本明細書に組み込まれる。
本発明の新規の特徴は、添付の特許請求の範囲に詳細に記載されている。本発明の特徴および利点のより良い理解は、本発明の原理が利用される例示的な実施形態を記載する以下の詳細な説明および添付の図面を参照することによって得られるであろう。
図1A~Bは、窒素固定細菌の濃縮および分離を示す。(A)Nfb寒天プレートを使用して、窒素固定細菌の単一コロニーを分離した。(B)半固体Nfb寒天をBalchチューブに入れた。矢印は、濃縮された窒素固定細菌のペリクルを指す。 代表的なnifH PCRスクリーニングを示す。このスクリーニングでは、2つのコロニーについて約350bpで陽性のバンドが観察された。下のバンドは、プライマーダイマーを表す。 CRISPR-Casで選択した突然変異誘発からのコロニーのPCRスクリーニングの例を示す。CI006コロニーを、nifL遺伝子座に特異的なプライマーでスクリーニングした。野生型PCR産生物は、約2.2kbで予想されるが、突然変異体は、約1.1kbで予想される。スクリーニングした10個のコロニーのうち7個は、望ましい欠失を明確に示す。 図4A~Dは、様々な菌株のインビトロ表現型を示す。0~10mMグルタミンで補足した窒素固定培地で増殖させた株CI010の突然変異体(図4A)および株CI006の突然変異体(図4B)のアセチレン還元アッセイ(ARA)活性。追加の株のARA活性を図4Cに示し、2つの株の経時的なアンモニウム排泄プロファイルを図4Dに示す。 図4Aの説明を参照のこと。 図4Aの説明を参照のこと。 図4Aの説明を参照のこと。 ジアゾ栄養性窒素固定に関与する株CI006の9個の異なる遺伝子の培養発現プロファイルを示す。数字は、各転写産物の数を表す。様々な条件(0、1、10mMのグルタミンおよびN2中0%、10%、20%の大気)が表示される。 トウモロコシの根のCI006コロニー形成を示す。トウモロコシの苗に、RFP発現プラスミドを内包するCI006を接種した。適切な抗生物質を散水して2週間増殖させ、プラスミドを維持した後、根を採取し、蛍光顕微鏡で画像化した。根の細胞間空間のコロニー形成が観察される。 WT(CI050)および最適化(CM002)株の微生物レベルに由来する窒素を示す。 Micro-Tom着果質量分析の実験装置を示す。 Micro-Tom植物の果実質量を増加させるための10株のスクリーニングを示す。6つの複製の結果を表示する。列3の場合、p=0.07。列7の場合、p=0.05。 図10A~Cは、0~10mMのグルタミンで補足した窒素固定培地で増殖させた候補微生物および対応する候補突然変異体のARA活性の追加の結果を示す。 図10A~Cは、0~10mMのグルタミンで補足した窒素固定培地で増殖させた候補微生物および対応する候補突然変異体のARA活性の追加の結果を示す。 図10A~Cは、0~10mMのグルタミンで補足した窒素固定培地で増殖させた候補微生物および対応する候補突然変異体のARA活性の追加の結果を示す。 元の単一突然変異体よりも高いアンモニア排泄量を呈する二重突然変異体を示す。 施肥条件でトウモロコシ植物のNDFAを測定するための15Nガス取り込み実験(曝露日数を使用して外挿)から得られたNDFAを示す。 施肥条件でセタニア(Setaria)植物のNDFAを測定するための15Nガス取り込み実験(曝露日数を用いて外挿)から得られたNDFA値を示す。 15Nガスの取り込み率を示す。進化した株を接種した植物は、接種していない植物と比較して、15Nガスの取り込みの増加を示した。 植え付けから4週間後、進化した株を接種した植物の窒素の最大7%が、微生物的に固定された窒素に由来することを示す。 非接種または野生型接種植物と比較したときに、進化した株を接種した植物では葉面積(および他のバイオマス測定、データは示さず)が増加していることを示す。 図15Aは、植物体トランスクリプトーム研究で測定されるように、根組織において著しく高いnifH産生を示す進化した株を示す。図15Bは、植物組織に見られる固定窒素の割合が、その特定の植物がHoME最適化株によってコロニー形成される割合と相関していることを示す。 図16Aは、コロニー形成について試験された様々な畑地土壌の土質マップを示す。いくつかの微生物がもともと由来した土壌は、星として示される。図16Bは、4つの異なる土壌タイプ(円)で試験した株1および株5のコロニー形成率を示す。どちらの株も、多様な土壌タイプで比較的強いコロニー形成プロファイルを示した。 図16Cは、生育期間にわたる畑地実験で試験された株1のコロニー形成を示す。株1は、植え付け後12週間までトウモロコシ組織中で持続し、その後コロニー形成の低下を示し始める。 実施形態による、微生物育種の概略図を示す。 図17に示されるマイクロバイオーム組成の測定の拡大図を示す。 Kosakonia sacchariにおけるnifA転写の増加を示すプロモーター挿入のいくつかの例を示す。いくつかの実施形態に従って、qPCRによって、3つの複製を用いて、および転写産物数の正規化のためのハウスキーピング遺伝子としてhelDを使用して、NifA転写を測定した。細胞は、最小限の無窒素培地で培養した。 Kosakonia sacchariにおけるニトロゲナーゼ活性の増加につながる、nifA遺伝子の上流へのプロモーター挿入のいくつかの例を示す。いくつかの実施形態に従って、唯一のN源として5mMグルタミンで補足した最小培地中のARAアッセイで活性を測定した。 図20Aは、Klebsiella variicolaにおけるnifA転写の増加を示すプロモーター挿入の例を示す。いくつかの実施形態に従って、qPCRによって、転写産物数の正規化のためのハウスキーピング遺伝子としてhelDを使用して、NifA転写を測定した。細胞は、唯一のN源として10mMグルタミンで補足した最小培地で培養した。図20Bは、図20Aの修飾が、Klebsiella variicolaにおけるニトロゲナーゼ活性の増加につながることを示す。いくつかの実施形態に従って、唯一のN源として10mMグルタミンで補足した最小培地中のARAアッセイで活性を測定した。 Klebsiella variicolaにおけるnifA転写の増加を示すプロモーター挿入のさらなる例を示す。いくつかの実施形態に従って、qPCRによって、転写産物数の正規化のためのハウスキーピング遺伝子としてhelDを使用して、NifA転写を測定した。細胞は、唯一のN源として10mMグルタミンで補足した最小培地で培養した。 Klebsiella variicolaにおけるnifA転写の増加を示すプロモーター挿入のさらなる例を示す。いくつかの実施形態に従って、qPCRによって、転写産物数の正規化のためのハウスキーピング遺伝子としてhelDを使用して、NifA転写を測定した。細胞は、唯一のN源として10mMグルタミンで補足した最小培地で培養した。 図22の修飾が、Klebsiella variicolaにおけるニトロゲナーゼ活性の増加につながることを示す。いくつかの実施形態に従って、唯一のN源として10mMグルタミンで補足した最小培地中のARAアッセイで活性を測定した。エラーバーは、平均の標準偏差を表す。 図24Aおよび図24Bは、いくつかの実施形態による、Klebsiella variicolaにおけるニトロゲナーゼ活性の増加につながる、nifA遺伝子の上流のプロモーター挿入の例を示す。5mMリン酸アンモニウムで補足した最小培地でのARAアッセイで測定された2つの生物学的複製の散布図を示す。 図25Aは、いくつかの実施形態による、Rahnella aquatilisにおけるニトロゲナーゼ活性の増加につながる、nifA遺伝子の上流のプロモーター挿入の例を示す。活性は、5mMリン酸アンモニウムで補足した最小培地でのARAアッセイで測定した。図25Bは、いくつかの実施形態による、Rahnella aquatilisにおけるニトロゲナーゼ活性の増加につながる、nifA遺伝子の上流のプロモーター挿入の例を示す。活性は、10mMリン酸アンモニウムで補足した最小培地でのARAアッセイで測定した。 いくつかの実施形態による、Kosakonia pseudosacchariにおけるニトロゲナーゼ活性の増加につながる、nifA遺伝子の上流のプロモーター挿入の例を示す。活性は、5mMグルタミンで補足した最小培地でのARAアッセイで測定した。 いくつかの実施形態による、Enterobacter種におけるニトロゲナーゼ活性の増加につながる、nifA遺伝子の上流のプロモーター挿入の例を示す。活性は、5mMリン酸アンモニウムで補足した最小培地でのARAアッセイで測定した。 いくつかの実施形態による、Klebsiella種におけるニトロゲナーゼ活性の増加につながる、nifA遺伝子の上流のプロモーター挿入の例を示す。活性は、5mMリン酸アンモニウムで補足した最小培地でのARAアッセイで測定した。 いくつかの実施形態による、ニトロゲナーゼ活性の増加につながる、nifA遺伝子の上流のプロモーター挿入の2つの例を示す。活性は、5mMグルタミンで補足した最小培地でのARAアッセイで測定した。 Kosakonia sacchariにおけるbcsI転写の増加を示すプロモーター挿入の例を示す。いくつかの実施形態に従って、qPCRによって、転写産物数の正規化のためのハウスキーピング遺伝子としてhelDを使用して、BcsI転写を測定した。細胞は、最小限の無窒素培地で培養した。 図31Aは、Kosakonia sacchariにおけるcysZ転写の増加を示すプロモーター挿入の例を示す。いくつかの実施形態に従って、qPCRによって、転写産物数の正規化のためのハウスキーピング遺伝子としてhelDを使用して、CysZ転写を測定した。細胞は、5mMグルタミンで補足した最小培地で培養した。図31Bは、Kosakonia sacchariにおけるotsB転写の増加を示すプロモーター挿入の例を示す。いくつかの実施形態に従って、qPCRによって、転写産物数の正規化のためのハウスキーピング遺伝子としてhelDを使用して、OtsB転写を測定した。細胞は、5mMグルタミンで補足した最小培地で培養した。図31Cは、Kosakonia sacchariにおけるtreZ転写の増加を示すプロモーター挿入の例を示す。いくつかの実施形態に従って、qPCRによって、転写産物数の正規化のためのハウスキーピング遺伝子としてhelDを使用して、treZ転写を測定した。細胞は、5mMグルタミンで補足した最小培地で培養した。 図32Aは、図20A~23で使用されるプロモーター挿入方法を示す。図32Bは、図19A、19B、および24A~31Cで使用されるプロモーター挿入方法を示す。
発明の詳細な説明
「ポリヌクレオチド」、「ヌクレオチド」、「ヌクレオチド配列」、「核酸」、および「オリゴヌクレオチド」という用語は、互換的に使用される。それらは、デオキシリボヌクレオチドもしくはリボヌクレオチドのいずれか、またはそれらの類似体である、任意の長さのヌクレオチドのポリマー形態を指す。ポリヌクレオチドは、任意の三次元構造を有し得、既知または未知の任意の機能を果たし得る。以下は、ポリヌクレオチドの非限定的な例である:遺伝子または遺伝子フラグメントのコード領域または非コード領域、連鎖解析から定義された遺伝子座(複数可)、エクソン、イントロン、メッセンジャーRNA(mRNA)、トランスファーRNA(tRNA)、リボソームRNA(rRNA)、低分子干渉RNA(siRNA)、短鎖ヘアピンRNA(shRNA)、マイクロRNA(miRNA)、リボザイム、cDNA、組み換えポリヌクレオチド、分岐ポリヌクレオチド、プラスミド、ベクター、任意の配列の単離DNA、任意の配列の単離RNA、核酸プローブ、およびプライマー。ポリヌクレオチドは、メチル化ヌクレオチドおよびヌクレオチド類似体などの1つ以上の修飾ヌクレオチドを含み得る。存在する場合、ヌクレオチド構造への修飾は、ポリマーの組み立ての前または後に与えられてもよい。ヌクレオチドの配列は、非ヌクレオチド成分によって中断されている可能性がある。ポリヌクレオチドは、例えば標識成分とのコンジュゲーションによって、重合後にさらに修飾することができる。
「ハイブリダイゼーション」は、1つ以上のポリヌクレオチドが反応して、ヌクレオチド残基の塩基間の水素結合を介して安定化されている複合体を形成する反応を指す。水素結合は、ワトソン・クリック塩基対対合、フーグスタイン結合によって、または塩基相補性に従って任意の他の配列特異的な方法で起こり得る。複合体は、二重鎖構造を形成する2本の鎖、多重鎖複合体を形成する3本以上の鎖、単一の自己ハイブリダイズ鎖、またはこれらの任意の組み合わせを含み得る。ハイブリダイゼーション反応は、PCRの開始、またはエンドヌクレアーゼによるポリヌクレオチドの酵素的切断などのより広範なプロセスにおけるステップを構成し得る。第1の配列に相補的である第2の配列は、第1の配列の「補体」と呼ばれる。ポリヌクレオチドに適用される「ハイブリダイズ可能」という用語は、ポリヌクレオチドが、ハイブリダイゼーション反応におけるヌクレオチド残基の塩基間の水素結合を介して安定化される複合体を形成する能力を指す。
「相補性」は、伝統的なワトソン・クリックまたは他の非伝統的なタイプのいずれかによって、核酸が別の核酸配列と水素結合(複数可)を形成する能力を指す。相補性パーセントは、第2の核酸配列(例えば、10のうち5、6、7、8、9、10がそれぞれ50%、60%、70%、80%、90%、および100%相補的である)と水素結合(例えば、ワトソン・クリック塩基対合)を形成することができる核酸分子の残基のパーセンテージを示す。「完全に相補的」とは、核酸配列の隣接するすべての残基が、第2の核酸配列における同じ数の隣接する残基と水素結合することを意味する。本明細書で使用される「実質的に相補的」とは、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、30、35、40、45、50、もしくはそれ以上のヌクレオチドの領域全体で少なくとも60%、65%、70%、75%、80%、85%、90%、95%、97%、98%、99%、もしくは100%の相補性の程度を指すか、またはストリンジェントな条件下でハイブリダイズする2つの核酸を指す。配列同一性は、例えば相補性のパーセントを評価する目的で、Needleman-Wunschアルゴリズム(例えば、www.ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.htmlで入手可能なEMBOSS Needleアライナーを参照、任意にデフォルト設定で)、BLASTアルゴリズム(例えば、blast.ncbi.nlm.nih.gov/Blast.cgiで入手可能なBLASTアラインメントツールを参照、任意にデフォルト設定で)、またはSmith-Watermanアルゴリズム(例えば、www.ebi.ac.uk/Tools/psa/emboss_water/nucleotide.htmlで入手可能なEMBOSS Waterアライナーを参照、任意にデフォルト設定で)を含むが、これらに限定されない任意の好適なアラインメントアルゴリズムによって測定することができる。最適なアライメントは、デフォルトのパラメーターを含む、選択したアルゴリズムの任意の好適なパラメーターを使用して評価することができる。
一般に、ハイブリダイゼーションの「ストリンジェントな条件」とは、標的配列に対して相補性を有する核酸が主に標的配列とハイブリダイズし、非標的配列には実質的にハイブリダイズしない条件を指す。ストリンジェントな条件は、一般に配列に依存し、いくつかの要因によって異なる。一般に、配列が長いほど、配列がその標的配列に特異的にハイブリダイズする温度が高くなる。ストリンジェントな条件の非限定的な例は、Tijssen(1993),Laboratory Techniques In Biochemistry And Molecular Biology-Hybridization With Nucleic Acid Probes Part I,Second Chapter″Overview of principles of hybridization and the strategy of nucleic acid probe assay″,Elsevier,N.Yに詳細に記載されている。
一般に、「配列同一性」は、2つのポリヌクレオチドまたはポリペプチド配列それぞれの正確なヌクレオチド対ヌクレオチドまたはアミノ酸対アミノ酸の対応を指す。典型的には、配列同一性を決定するための技法は、ポリヌクレオチドのヌクレオチド配列を決定すること、および/またはそれによってコードされるアミノ酸配列を決定すること、ならびにこれらの配列を第2のヌクレオチドまたはアミノ酸配列と比較することを含む。2つ以上の配列(ポリヌクレオチドまたはアミノ酸)は、それらの「同一性パーセント」を決定することによって比較され得る。核酸配列であろうとアミノ酸配列であろうと、2つの配列の同一性パーセントは、2つの整列した配列間の正確な一致数を短い配列の長さで割って100を掛けたものとして計算することができる。場合によっては、テスト配列および参照配列の同一性パーセントは、核酸配列であろうとアミノ酸配列であろうと、2つの整列した配列間の正確な一致数を参照配列の長さで割って100を掛けたものとして計算することができる。同一性パーセントはまた、例えば、国立衛生研究所から入手可能なバージョン2.2.9を含む、高度なBLASTコンピュータープログラムを使用して配列情報を比較することによって決定することができる。BLASTプログラムは、Karlin and Altschul,Proc.Natl.Acad.Sci.USA 87:2264-2268(1990)のアラインメント方法に基づいており、Altschul,et al.,J.Mol.Biol.215:403-410(1990)、Karlin And Altschul,Proc.Natl.Acad.Sci.USA 90:5873-5877(1993)、およびAltschul et al.,Nucleic Acids Res.25:3389-3402(1997)において考察されるとおりである。簡単に言えば、BLASTプログラムは、同一性を、整列した同一のシンボル(一般にヌクレオチドまたはアミノ酸)の数を、2つの配列の短い方のシンボルの総数で割ったものとして定義する。このプログラムを使用して、比較するタンパク質の全長にわたって同一性パーセントを決定することができる。デフォルトパラメーターは、短いクエリシーケンス、例えば、blastpプログラムを用いて検索を最適化するために提供される。このプログラムはまた、Wootton and Federhen,Computers and Chemistry 17:149-163(1993)のSEGプログラムによって決定されるクエリシーケンスのマスクオフセグメントに対するSEGフィルターの使用を可能にする。望ましい程度の配列同一性の範囲は、およそ80%~100%およびそれらの間の整数値である。典型的には、開示された配列と主張された配列との間の同一性パーセントは、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも98%、または少なくとも99%である。
本明細書で使用される場合、「発現」は、ポリヌクレオチドがDNAテンプレートから(mRNAもしくは他のRNA転写産物などに)転写されるプロセス、および/または転写されたmRNAがその後ペプチド、ポリペプチド、もしくはタンパク質に翻訳されるプロセスを指す。転写産物およびコードされたポリペプチドは、まとめて「遺伝子産物」と呼ばれる場合がある。ポリヌクレオチドがゲノムDNAに由来する場合、発現は真核細胞におけるmRNAのスプライシングを含み得る。
「ポリペプチド」、「ペプチド」、および「タンパク質」という用語は、本明細書では互換的に使用され、任意の長さのアミノ酸のポリマーを指す。ポリマーは、線状または分枝状であり得、修飾アミノ酸を含み得、非アミノ酸によって中断され得る。この用語はまた、修飾されたアミノ酸ポリマーを包含する。例えば、ジスルフィド結合形成、グリコシル化、脂質化、アセチル化、リン酸化、または標識成分とのコンジュゲーションなどの任意の他の操作。本明細書で使用される場合、「アミノ酸」という用語は、グリシンおよびDまたはL光学異性体の両方を含む天然および/もしくは非天然または合成アミノ酸、ならびにアミノ酸類似体およびペプチド模倣体を含む。
本明細書で使用される場合、「約」という用語は、「およそ」という用語と同義的に使用される。例示的に、量に関して「約」という用語の使用は、引用された値のわずかに外側の値、例えば、プラスまたはマイナス0.1%~10%であることを示す。
「生物学的に純粋な培養物」または「実質的に純粋な培養物」という用語は、培養物の複製を妨げる、または通常の細菌学的技法によって検出されるのに十分な量の他の細菌種を含有しない、本明細書に記載の細菌種の培養物を指す。
「植物生産性」とは、一般に、植物が成長する理由である植物の成長または発達の任意の局面を指す。穀物または野菜などの食用作物の場合、「植物生産性」とは、特定の作物から収穫された穀物または果実の収量を指し得る。本明細書で使用される場合、植物生産性の向上とは、様々な目的で収穫された穀物、果実、花、または他の植物部分の収量の向上、茎、葉、および根を含む植物部分の成長の向上、植物成長の促進、葉の高いクロロフィル含有量の維持、果実または種子の数の増加、果実または種子の単位重量の増加、窒素肥料の使用量の減少によるNO排出の削減、ならびに植物の成長および発達の同様の向上を指す。
食用作物内およびその周辺の微生物は、それらの作物の形質に影響を与え得る。微生物の影響を受ける可能性のある植物の形質としては、収量(例えば、穀物産生、バイオマス生成、果実発育、着花)、栄養(例えば、窒素、リン、カリウム、鉄、微量栄養素の獲得)、非生物的ストレス管理(例えば、干ばつ耐性、耐塩性、耐熱性)、および生物的ストレス管理(例えば、害虫、雑草、昆虫、菌類、および細菌)が挙げられる。作物の形質を変化させるための戦略としては、主要な代謝産物濃度を増加させること、主要な代謝産物に対する微生物の影響の時間的ダイナミクスを変化させること、微生物代謝産物の産生/分解を新しい環境の手がかりにリンクさせること、負の代謝産物を減少させること、および代謝産物または基礎となるタンパク質のバランスを改良することが挙げられる。
本明細書で使用される場合、「制御配列」は、オペレーター、プロモーター、サイレンサー、またはターミネーターを指す。
いくつかの実施形態では、本開示の遺伝子の天然のまたは内因性制御配列は、1つ以上の遺伝子内制御配列で置き換えられる。
本明細書で使用される場合、「導入された」とは、自然発生的な導入ではなく、現代のバイオテクノロジーによる導入を指す。
いくつかの実施形態では、本開示の細菌は、自然発生の細菌ではないように修飾されている。
いくつかの実施形態では、本開示の細菌は、植物の新鮮重量または乾燥重量1グラムあたり少なくとも10cfu、10cfu、10cfu、10cfu、10cfu、10cfu、10cfu、1010cfu、1011cfu、または1012cfuの量で植物中に存在する。いくつかの実施形態では、本開示の細菌は、植物の新鮮重量または乾燥重量1グラムあたり少なくとも約10cfu、約10cfu、約10cfu、約10cfu、約10cfu、約10cfu、約10cfu、約1010cfu、約1011cfu、または約1012cfuの量で植物中に存在する。いくつかの実施形態では、本発明の細菌は、植物の新鮮重量または乾燥重量1グラムあたり少なくとも10~10、10~10、10~10、10~10、10~10、10~1010、10~10cfuの量で植物中に存在する。
本開示の肥料および外因性窒素は、以下の窒素含有分子:アンモニウム、硝酸塩、亜硝酸塩、アンモニア、グルタミン等を含み得る。本開示の窒素源は、無水アンモニア、硫酸アンモニア、尿素、リン酸二アンモニウム、尿素形態、リン酸一アンモニウム、硝酸アンモニウム、窒素溶液、硝酸カルシウム、硝酸カリウム、硝酸ナトリウム等を含み得る。
本明細書で使用される場合、「外因性窒素」とは、アンモニア、アンモニウム、硝酸塩、亜硝酸塩、尿素、尿酸、アンモニウム酸等を含む、非窒素制限条件下で存在する土壌、畑地、または成長培地で容易に利用できる非空中窒素を指す。
本明細書で使用される場合、「非窒素制限条件」は、参照により本明細書に組み込まれる、Kant et al.(2010.J.Exp.Biol.62(4):1499-1509)によって開示されるように、約4mM窒素を超える濃度で土壌、畑地、培地で利用できる非空中窒素を指す。
本明細書で使用される場合、「導入された遺伝物質」は、レシピエントのゲノムに追加され、その構成要素として残る遺伝物質を意味する。
いくつかの実施形態では、窒素固定および同化遺伝子調節ネットワークは、微生物の窒素固定および/または同化を指示、調整、および/または調節する遺伝子および非コード配列をコードするポリヌクレオチドを含み、nifクラスター(例えば、nifA、nifB、nifC、……nifZ)のポリヌクレオチド配列、窒素調節タンパク質Cをコードするポリヌクレオチド、窒素調節タンパク質Bをコードするポリヌクレオチド、glnクラスター(例えば、glnAおよびglnD)のポリヌクレオチド配列、draT、およびアンモニアトランスポーター/透過酵素を含み得る。場合によっては、Nifクラスターは、NifB、NifH、NifD、NifK、NifE、NifN、NifX、hesa、およびNifVを含み得る。場合によっては、Nifクラスターは、NifB、NifH、NifD、NifK、NifE、NifN、NifX、hesa、およびNifVのサブセットを含み得る。
いくつかの実施形態では、本開示の肥料は、少なくとも5重量%、6重量%、7重量%、8重量%、9重量%、10重量%、11重量%、12重量%、13重量%、14重量%、15重量%、16重量%、17重量%、18重量%、19重量%、20重量%、21重量%、22重量%、23重量%、24重量%、25重量%、26重量%、27重量%、28重量%、29重量%、30重量%、31重量%、32重量%、33重量%、34重量%、35重量%、36重量%、37重量%、38重量%、39重量%、40重量%、41重量%、42重量%、43重量%、44重量%、45重量%、46重量%、47重量%、48重量%、49重量%、50重量%、51重量%、52重量%、53重量%、54重量%、55重量%、56重量%、57重量%、58重量%、59重量%、60重量%、61重量%、62重量%、63重量%、64重量%、65重量%、66重量%、67重量%、68重量%、69重量%、70重量%、71重量%、72重量%、73重量%、74重量%、75重量%、76重量%、77重量%、78重量%、79重量%、80重量%、81重量%、82重量%、83重量%、84重量%、85重量%、86重量%、87重量%、88重量%、89重量%、90重量%、91重量%、92重量%、93重量%、94重量%、95重量%、96重量%、97重量%、98重量%、99重量%の窒素を含む。
いくつかの実施形態では、本開示の肥料は、少なくとも約5重量%、約6重量%、約7重量%、約8重量%、約9重量%、約10重量%、約11重量%、約12重量%、約13重量%、約14重量%、約15重量%、約16重量%、約17重量%、約18重量%、約19重量%、約20重量%、約21重量%、約22重量%、約23重量%、約24重量%、約25重量%、約26重量%、約27重量%、約28重量%、約29重量%、約30重量%、約31重量%、約32重量%、約33重量%、約34重量%、約35重量%、約36重量%、約37重量%、約38重量%、約39重量%、約40重量%、約41重量%、約42重量%、約43重量%、約44重量%、約45重量%、約46重量%、約47重量%、約48重量%、約49重量%、約50重量%、約51重量%、約52重量%、約53重量%、約54重量%、約55重量%、約56重量%、約57重量%、約58重量%、約59重量%、約60重量%、約61重量%、約62重量%、約63重量%、約64重量%、約65重量%、約66重量%、約67重量%、約68重量%、約69重量%、約70重量%、約71重量%、約72重量%、約73重量%、約74重量%、約75重量%、約76重量%、約77重量%、約78重量%、約79重量%、約80重量%、約81重量%、約82重量%、約83重量%、約84重量%、約85重量%、約86重量%、約87重量%、約88重量%、約89重量%、約90重量%、約91重量%、約92重量%、約93重量%、約94重量%、約95重量%、約96重量%、約97重量%、約98重量%、または約99%の窒素を含む。
いくつかの実施形態では、本開示の肥料は、約5重量%~50重量%、約5重量%~75重量%、約10重量%~50重量%、約10重量%~75重量%、約15重量%~50重量%、約15重量%~75重量%、約20重量%~50重量%、約20重量%~75重量%、約25重量%~50重量%、約25重量%~75重量%、約30重量%~50重量%、約30重量%~75重量%、約35重量%~50重量%、約35重量%~75重量%、約40重量%~50重量%、約40重量%~75重量%、約45重量%~50重量%、約45重量%~75重量%、または約50重量%~75重量%の窒素を含む。
いくつかの実施形態では、植物における窒素固定の増加および/または1%以上の窒素の産生は、本開示の細菌に曝露されていない対照植物と比較して測定される。細菌におけるすべての増加または減少は、対照細菌と比較して測定される。植物におけるすべての増加または減少は、対照植物と比較して測定される。
本明細書で使用される場合、「構成的プロモーター」は、ほとんどの条件下でおよび/またはほとんどの発達段階中に活性であるプロモーターである。バイオテクノロジーで使用される発現ベクターで構成的プロモーターを使用することには、トランスジェニック細胞または生物を選択するために使用されるタンパク質の高レベルの産生、レポータータンパク質またはスコアリング可能なマーカーの高レベルの発現、容易な検出および定量化を可能にする、調節転写系の一部である転写因子の高レベルの産生、生物においてユビキタス活性を必要とする化合物の産生、すべての発達段階中に必要とされる化合物の産生などのいくつかの利点がある。非限定的な例示の構成的プロモーターとしては、CaMV 35Sプロモーター、オピンプロモーター、ユビキチンプロモーター、アルコールデヒドロゲナーゼプロモーター等が挙げられる。
本明細書で使用される場合、「非構成的プロモーター」は、ある特定の条件下、ある特定のタイプの細胞において、および/またはある特定の発達段階中に活性であるプロモーターである。例えば、組織特異的、組織優先、細胞型特異的、細胞型優先、誘導性プロモーター、および発達制御下のプロモーターは、非構成的プロモーターである。発達制御下にあるプロモーターの例としては、ある特定の組織において優先的に転写を開始するプロモーターが挙げられる。
本明細書で使用される場合、「誘導性」または「抑制性」プロモーターは、化学的または環境的要因の制御下にあるプロモーターである。誘導性プロモーターによる転写に影響を与える可能性のある環境条件の例としては、嫌気性条件、ある特定の化学物質、光の存在、酸性または塩基性条件等が挙げられる。
本明細書中で使用される場合、「組織特異的」プロモーターは、ある特定の組織においてのみ転写を開始するプロモーターである。遺伝子の構成的発現とは異なり、組織特異的発現は、いくつかの相互作用する遺伝子調節レベルの結果である。したがって、当技術分野では、特定の組織における導入遺伝子の効率的かつ信頼性の高い発現を達成するために、相同種または近縁種からのプロモーターを使用することが好ましい場合がある。これは、科学文献および特許文献の両方に見られる特定の組織から分離された大量の組織特異的プロモーターの主な理由の1つである。
本明細書で使用される場合、「作動可能に連結された」という用語は、一方の機能が他方によって調節されるような、単一の核酸フラグメント上の核酸配列の会合を指す。例えば、プロモーターは、そのコード配列の発現を調節することができる場合(すなわち、コード配列がプロモーターの転写制御下にある場合)、コード配列と作動可能に連結されている。コード配列は、センスまたはアンチセンス配向で調節配列に作動可能に連結することができる。別の例では、本開示の相補的RNA領域は、直接的または間接的に、標的mRNAに対して5’もしくは標的mRNAに対して3’、または標的mRNA内に作動可能に連結され得るか、あるいは第1の相補領域は5’であり、その補体は標的mRNAに対して3’である。
窒素固定の調節
本明細書に記載の方法による調節の標的となり得る1つの形質は、窒素固定である。窒素肥料は、農場での最大の運営経費であり、トウモロコシおよび小麦などの連作作物のより高い収量の最大の推進力である。非マメ科作物に再生可能な形態の窒素を供給することができる微生物産物が、本明細書に記載されている。一部のエンドファイトは、純粋培養で窒素を固定するために必要な遺伝学を有するが、基本的な技術的課題は、穀物および草の野生型エンドファイトが、施肥した畑地で窒素の固定を停止することである。化学肥料の適用および畑地土壌中の残留窒素レベルは、微生物に窒素固定のための生化学的経路を遮断するように合図する。
窒素固定調節ネットワークの転写レベルおよび翻訳後レベルの変更は、肥料の存在下で窒素を固定し、トウモロコシに移すことができる微生物を開発するために必要である。そのために、本明細書では、調節ネットワークを正確に進化させ、新しい表現型を引き出す宿主-微生物進化(HoME)技術について説明する。また本明細書では、トウモロコシから分離された窒素固定エンドファイトの独自の独占的ライブラリーを、窒素ストレスおよび過剰などの異なる環境条件下での微生物と宿主植物の相互作用を取り巻く広範なオーミクスデータと組み合わせて説明する。この技術は、エンドファイトの遺伝子調節ネットワークの正確な進化を可能にし、畑地に肥料が存在する場合でも窒素を積極的に固定する微生物を産生する。また本明細書では、トウモロコシの根組織にコロニーを形成し、施肥した植物に窒素を産生する微生物を進化させる技術的可能性の評価、および微生物を現代の窒素管理戦略に統合する実現可能性を決定するための標準的な配合慣行および多様な土壌とのエンドファイトの適合性の評価についても説明する。
元素窒素(N)を化学合成に利用するために、生命体は、大気中で利用可能な窒素ガス(N)と水素とを、窒素固定として知られるプロセスで組み合わせる。生物学的窒素固定のエネルギー集約的な性質のため、ジアゾ栄養生物(空中窒素ガスを固定する細菌および古細菌)は、環境酸素および利用可能な窒素に応答して、nif遺伝子クラスターの洗練された厳密な調節を進化させてきた。Nif遺伝子は、窒素固定に関与する酵素(ニトロゲナーゼ複合体など)および窒素固定を調節するタンパク質をコードする。Shamseldin(2013.GlobalJ.Biotechnol.Biochem.8(4):84-94)は、nif遺伝子およびそれらの産生物の詳細な説明を開示しており、参照により本明細書に組み込まれる。本明細書では、第1の植物から細菌を分離すること、分離された細菌のnif遺伝子に遺伝的変異を導入すること、第2の植物を変異体細菌に曝露すること、第1の植物と比較して形質が改良された第2の植物から細菌を分離すること、および第2の植物から分離された細菌でこれらのステップを繰り返すことを含む、形質が改良された植物を産生する方法が説明される。
プロテオバクテリアでは、窒素固定の調節は、nifクラスターの正の転写調節因子であるσ54依存性エンハンサー結合タンパク質NifAに集中する。活発なNifAの細胞内レベルは、2つの主要な要因:nifLAオペロンの転写およびNifLとのタンパク質間相互作用によるNifA活性の阻害によって制御される。これらのプロセスはどちらも、PIIタンパク質シグナル伝達カスケードを介して細胞内グルタミンレベルに応答する。このカスケードは、グルタミンを直接感知し、結合したグルタミンの有無に応じて、2つのPII調節タンパク質(GlnBおよびGlnK)それぞれのウリジリル化または脱ウリジリル化を触媒するGlnDによって媒介される。窒素過剰の条件下では、未修飾のGlnBは、nifLAプロモーターの非活性化を合図する。ただし、窒素制限の条件下では、GlnBは、翻訳後に修飾され、これがその活性を阻害し、nifLAオペロンの転写につながる。このようにして、nifLA転写は、PIIタンパク質シグナル伝達カスケードを介して、環境窒素に応答して厳密に制御される。NifA調節の翻訳後レベルでは、細胞内の遊離GlnKの全体的なレベルに依存する問題において、GlnKは、NifL/NifA相互作用を阻害する。
NifAは、そのプロモーターがリン酸化NtrCによって活性化される、別のσ54依存性調節因子であるnifLAオペロンから転写される。NtrCのリン酸化状態は、脱ウリジリル化GlnBと相互作用するが、ウリジリル化GlnBとは相互作用しないヒスチジンキナーゼNtrBによって媒介される。窒素過剰の条件下では、グルタミンの細胞内レベルが高いとGlnBの脱ウリジリル化につながり、次いでGlnBは、NtrBと相互作用してそのリン酸化活性を非活性化させ、そのホスファターゼ活性を活性化し、NtrCの脱リン酸化およびnifLAプロモーターの非活性化をもたらす。ただし、窒素制限の条件下では、低レベルの細胞内グルタミンは、GlnBのウリジリル化をもたらし、NtrBとの相互作用を阻害し、NtrCのリン酸化およびnifLAオペロンの転写を可能にする。このようにして、nifLA発現は、PIIタンパク質シグナル伝達カスケードを介して、環境窒素に応答して厳密に制御される。nifA、ntrB、ntrC、およびglnBはすべて、本明細書に記載の方法で突然変異させることができる遺伝子である。これらのプロセスはまた、アンモニア、尿素、または硝酸塩の細胞内または細胞外レベルに応答し得る。
NifAの活性はまた、最も典型的にはNifLを介したNifA活性の阻害を通じて、環境窒素に応答して翻訳後に調節される。一般に、NifLとNifAとの相互作用は、GlnKを介したPIIタンパク質シグナル伝達カスケードの影響を受けるが、GlnKとNifL/NifAとの間の相互作用の性質は、ジアゾ栄養生物間で著しく異なる。クレブシエラ・ニューモニエ(Klebsiella pneumoniae)では、GlnKの両方の形態が、NifL/NifA相互作用を阻害し、GlnKとNifL/NifAとの間の相互作用は、細胞内の遊離GlnKの全体的なレベルによって決定される。窒素過剰条件下で、脱ウリジリル化GlnKは、AmtBによるアンモニウムの取り込みをブロックし、GlnKを膜に隔離するのに役立つアンモニウムトランスポーターAmtBと相互作用し、NifLによるNifAの阻害を可能にする。一方、アゾトバクター・ビネランジイ(Azotobacter vinelandii)では、NifL/NifA相互作用およびNifA阻害には脱ウリジリル化GlnKとの相互作用が必要であるが、GlnKのウリジリル化は、NifLとの相互作用を阻害する。nifL遺伝子を欠くジアゾ栄養生物では、NifA活性が窒素過剰条件下でGlnKおよびGlnBの両方の脱ウリジリル化型との相互作用によって直接阻害されるという証拠がある。一部の細菌では、Nifクラスターは、glnRによって調節され得、さらに場合によっては、これは負の調節を含み得る。機序に関係なく、NifAの翻訳後阻害は、最も知られているジアゾ栄養生物のnifクラスターの重要な調節因子である。さらに、nifL、amtB、glnK、およびglnRは、本明細書に記載の方法で突然変異させることができる遺伝子である。
nif遺伝子クラスターの転写を調節することに加えて、多くのジアゾ栄養生物は、直接の翻訳後修飾、およびニトロゲナーゼ遮断として知られるニトロゲナーゼ酵素自体の阻害のための機序を進化させてきた。これは、MoFeタンパク質複合体(NifDK)との相互作用を破壊し、ニトロゲナーゼ活性を廃止する窒素過剰条件下でのFeタンパク質(NifH)のADPリボシル化によって媒介される。DraTは、Feタンパク質のADPリボシル化およびニトロゲナーゼの遮断を触媒し、DraGは、ADPリボースの除去およびニトロゲナーゼの再活性化を触媒する。nifLA転写およびNifA阻害と同様に、ニトロゲナーゼ遮断もまた、PIIタンパク質シグナル伝達カスケードを介して調節される。窒素過剰条件下では、脱ウリジリル化GlnBは、DraTと相互作用して活性化するが、脱ウリジリル化GlnKは、DraGおよびAmtBの両方と相互作用して複合体を形成し、DraGを膜に隔離する。窒素制限条件下では、GlnBおよびGlnKのウリジリル化型は、それぞれDraTおよびDraGと相互作用せず、DraTの不活性化およびDraGのFeタンパク質への拡散につながり、ADPリボースを除去してニトロゲナーゼを活性化する。本明細書に記載の方法はまた、nifH、nifD、nifK、およびdraT遺伝子に遺伝的変異を導入することを企図する。
一部のエンドファイトは、インビトロで窒素を固定する能力を有するが、多くの場合、遺伝学は、高レベルの外因性化学肥料によって畑地ではサイレンシングされる。外因性窒素の感知をニトロゲナーゼ酵素の発現から切り離して、畑地ベースの窒素固定を促進することができる。時間をかけてニトロゲナーゼ活性の統合を向上させることは、作物による利用のための窒素の産生をさらに増強するのに役立つ。本明細書に記載の方法を使用して畑地ベースの窒素固定を容易にする遺伝的変異の特定のターゲットとしては、nifA、nifL、ntrB、ntrC、glnA、glnB、glnK、draT、amtB、glnD、glnE、nifJ、nifH、nifD、nifK、nifY、nifE、nifN、nifU、nifS、nifV、nifW、nifZ、nifM、nifF、nifB、およびnifQからなる群から選択される1つ以上の遺伝子が挙げられる。
本明細書に記載の方法を使用して畑地ベースの窒素固定を促進するための遺伝的変異の追加の標的は、NifAタンパク質である。NifAタンパク質は、通常、窒素固定遺伝子の発現のためのアクチベーターである。NifAの産生を(構成的にまたは高アンモニア条件下のいずれかで)増加させることで、天然のアンモニア感知経路を回避する。さらに、NifAの既知の阻害剤であるNifLタンパク質の産生を低減することは、自由に活動するNifAのレベルの増加にもつながる。さらに、nifALオペロンの転写レベルを(構成的にまたは高アンモニア条件下のいずれかで)増加させることは、より高いNifAタンパク質の全体レベルにもつながる。nifALの発現レベルの上昇は、プロモーター自体を変化させることによって、またはNtrB(本来は高窒素条件下でnifALオペロンの遮断をもたらすntrBおよびntrCシグナル伝達カスケードの一部)の発現を低減することによって達成される。本明細書に記載のこれらまたは任意の他の方法によって達成される高レベルのNifAは、エンドファイトの窒素固定活性を増加させる。
本明細書に記載の方法を使用して畑地ベースの窒素固定を促進するための遺伝的変異の別の標的は、GlnD/GlnB/GlnK PIIシグナル伝達カスケードである。細胞内グルタミンレベルは、GlnD/GlnB/GlnK PIIシグナル伝達カスケードを通じて感知される。GlnDのウリジリル除去活性を無効にするGlnDの活性部位突然変異は、窒素感知カスケードを破壊する。さらに、GlnB濃度の低減は、グルタミン感知カスケードを短絡させる。これらの突然変異は、細胞を「だまして」窒素制限状態を知覚させ、それによって窒素固定レベルの活性を増加させる。これらのプロセスはまた、アンモニア、尿素、または硝酸塩の細胞内または細胞外レベルに応答し得る。
amtBタンパク質もまた、本明細書に記載の方法を使用して畑地ベースの窒素固定を促進するための遺伝的変異の標的である。amtBタンパク質の発現レベルを低下させることによって、環境からのアンモニアの取り込みを低減することができる。細胞内アンモニアがないと、エンドファイトは、高レベルのアンモニアを感知することができず、窒素固定遺伝子の下方調節を防げる。細胞内区画に入ったいかなるアンモニアも、グルタミンに変換される。細胞内グルタミンレベルは、窒素感知の主要通貨である。細胞内グルタミンレベルを低下させると、細胞は環境内の高いアンモニウム濃度を感知できなくなる。この効果は、グルタミンをグルタミン酸に変換する酵素であるグルタミナーゼの発現レベルを増加させることによって達成され得る。さらに、グルタミンシンターゼ(アンモニアをグルタミンに変換する酵素)を減少させることによって、細胞内のグルタミンを低減することもできる。ジアゾ栄養生物では、固定アンモニアは、細胞プロセスに使用されるグルタミンおよびグルタミン酸にすばやく同化される。アンモニア同化に対する破壊は、アンモニアとして細胞から排出されるように固定窒素の転換を可能にし得る。固定されたアンモニアは、主にグルタミンシンテターゼ(GS)によってグルタミンに同化され、glnAによってコードされ、その後、グルタミンオキソグルタル酸アミノトランスフェラーゼ(GOGAT)によってグルタミンに同化される。いくつかの例では、glnSは、グルタミンシンテターゼをコードする。GSは、それぞれそのアデニリルトランスフェラーゼ(AT)およびアデニリル除去(AR)ドメインの活性を介してGSのアデニリル化および脱アデニリル化の両方を触媒するglnEによってコードされる二機能性酵素である、GSアデニリルトランスフェラーゼ(GlnE)によって翻訳後に調節される。窒素制限条件下では、glnAが発現され、GlnEのARドメインは、GSを脱アディニリル化し、GSを活性にする。窒素過剰の条件下では、glnA発現はオフになり、GlnEのATドメインは、グルタミンによってアロステリックに活性化され、GSのアデニリル化および非活性化を引き起こす。
さらに、draT遺伝子はまた、本明細書に記載の方法を使用して畑地ベースの窒素固定を容易にするための遺伝的変異の標的であり得る。窒素固定酵素が細胞によって産生されると、ニトロゲナーゼの遮断は、細胞が高窒素条件で固定活性を下方調節する別のレベルを表す。この遮断は、DraTの発現レベルを低下させることによって取り除くことができる。
新しい微生物の表現型を付与するための方法は、転写、翻訳、および翻訳後のレベルで行うことができる。転写レベルには、プロモーターでの変化(シグマ因子の親和性またはプロモーターのすべてもしくは一部の削除を含む、転写因子の結合部位の変更など)あるいは転写ターミネーターおよびアテニュエーターの変更が含まれる。翻訳レベルには、リボソーム結合部位の変更およびmRNA分解シグナルの変更が含まれる。翻訳後レベルには、酵素の活性部位の突然変異およびタンパク質間相互作用の変更が含まれる。これらの変更は、様々な方法で達成され得る。発現レベルの低減(または完全な廃止)は、天然のリボソーム結合部位(RBS)またはプロモーターを、強度/効率の低い別のものと交換することによって達成され得る。ATG開始部位は、GTG、TTG、またはCTG開始コドンに交換することができ、これがコード領域の翻訳活性の低減をもたらす。遺伝子のコード領域をノックアウト(削除)することによって、発現の完全な廃止を行うことができる。オープンリーディングフレーム(ORF)をフレームシフトすると、ORFに沿って未成熟終止コドンが発生し、それによって機能しない切り詰められた産生物が作成される。フレーム内終止コドンの挿入も同様に、機能しない切り詰められた産生物を作成する。特定の遺伝子の有効濃度を低減するために、NまたはC末端での分解タグの付加を行うこともできる。
逆に、本明細書に記載の遺伝子の発現レベルは、より強力なプロモーターを使用することによって達成することができる。高窒素レベル条件(または任意の他の条件)で高いプロモーター活性を確保するには、高窒素レベル条件でのゲノム全体の転写プロファイルを取得し、そのデータセットから望ましい転写レベルの活発なプロモーターを選択して、弱いプロモーターと置き換えることができる。より良い翻訳開始効率のために、弱い開始コドンをATG開始コドンと交換することができる。弱いリボソーム結合部位(RBS)は、翻訳開始効率が高い異なるRBSと交換することもできる。さらに、部位特異的突然変異誘発を行って、酵素の活性を変化させることもできる。
本明細書に記載されるような遺伝子の発現を駆動するために使用され得るプロモーターの例には、表8のプロモーターが含まれる。これらの配列についてのさらなる詳細を表9に示す。表9は、各配列が派生した種、および天然の遺伝子、およびいくつかの配列の天然の遺伝子機能を示す。さらに、配列のいくつかは、インビトロ転写アッセイ、植物体内転写アッセイ、またはその両方のいずれかでプロモーターとして検証されている。実施例8を参照されたい。
植物で発生する窒素固定のレベルを増加させると、作物の産生に必要な化学肥料の量の低減につながり、温室効果ガスの排出量(例えば、亜酸化窒素)を低減し得る。
細菌集団の生成
細菌の分離
本明細書に開示される方法および組成物において有用な微生物は、天然の植物の表面または組織から微生物を抽出することによって得ることができる。微生物は、種を粉砕して微生物を分離することによって得ることができる。微生物は、様々な土壌試料に種を植え、組織から微生物を回収することによって得ることができる。さらに、微生物は、植物に外因性微生物を接種し、どの微生物が植物組織に現れるかを決定することによって得ることができる。植物組織の非限定的な例には、種子、苗、葉、切穂、植物、球根、または塊茎が含まれ得る。
微生物を得る方法は、土壌から細菌を分離することによるものであり得る。細菌は、様々な種類の土壌から収集され得る。いくつかの例では、土壌は、肥沃度の高低、水分レベル、ミネラルレベル、および様々な作付けなどの形質によって特徴付けられ得る。例えば、土壌は、異なる作物が連続する植え付け期に同じ土壌に植えられる場合、輪作に関与している可能性がある。同じ土壌で異なる作物を順次栽培すると、ある特定のミネラルの不均衡な枯渇を防ぐことができる。選択した土壌で育つ植物から細菌を分離することができる。実生植物は、成長の2~6週で収穫することができる。例えば、1回の収穫で少なくとも400の分離株を収集することができる。土壌および植物のタイプは、植物の表現型と、ある特定の表現型の下流の濃縮を可能にする条件とを明らかにする。
微生物を植物組織から分離して、微生物の形質を評価することができる。組織試料を処理するためのパラメーターを変化させて、根粒菌、着生植物、またはエンドファイトなどの異なるタイプの関連微生物を分離することができる。分離株を無窒素培地で培養して、窒素固定を行う細菌を濃縮することができる。あるいは、世界的な株バンクから微生物を入手することもできる。
植物体において分析を行い、微生物の形質を評価する。いくつかの実施形態では、植物組織は、DNAおよびRNAのハイスループット処理によるスクリーニングのために処理することができる。さらに、非侵襲的測定を使用して、コロニー形成などの植物の特性を評価することができる。野生微生物の測定値は、植物ごとに得ることができる。野生微生物の測定値は、ミディアムスループット法を使用して畑地で得ることもできる。時間の経過とともに連続して測定を行うことができる。Setariaを含むがこれに限定されないモデル植物系を使用することができる。
植物系の微生物は、植物系の微生物の転写プロファイリングを介してスクリーニングすることができる。転写プロファイリングによるスクリーニングの例は、定量的ポリメラーゼ連鎖反応(qPCR)、転写産物検出のための分子バーコード、次世代シーケンシング、および蛍光マーカーによる微生物タグ付けの方法を使用することである。マイクロバイオーム、非生物要因、土壌条件、酸素、水分、温度、接種条件、および根の局在化を含むが、これらに限定されない影響因子を測定して、温室でのコロニー形成を評価することができる。本明細書に記載されるように、IRMSまたはNanoSIMSを用いて15Nガス/肥料(希釈)を測定することによって、細菌内の窒素固定を評価することができる。NanoSIMSは、高解像度の二次イオン質量分析技法である。NanoSIMS技法は、生体試料から化学活性を調査する方法である。微生物の代謝を促進する酸化反応の還元の触媒作用は、細胞、細胞内、分子、および元素レベルで調査することができる。NanoSIMSは、0.1μmを超える高い空間分解能を提供することができる。NanoSIMSは、13C、15N、18Oなどの同位体トレーサーの使用を検出することができる。したがって、NanoSIMSを使用して、細胞内の窒素固定の活性を測定することができる。
自動温室を植物体分析に使用することができる。微生物への曝露に応じた植物指標には、バイオマス、葉緑体分析、CCDカメラ、容積測定断層撮影が含まれるが、これらに限定されない。
微生物集団を濃縮する1つの方法は、遺伝子型によるものである。例えば、標的化プライマーまたは特異的プライマーを用いたポリメラーゼ連鎖反応(PCR)アッセイ。ジアゾ栄養生物は、窒素固定の過程でnifH遺伝子を発現するため、nifH遺伝子用に設計されたプライマーを使用してジアゾ栄養生物を同定することができる。微生物集団はまた、単一細胞培養に依存しないアプローチおよび走化性誘導分離アプローチを介して濃縮することもできる。あるいは、微生物の標的分離は、選択培地で微生物を培養することによって行うことができる。望ましい形質のために微生物集団を濃縮する計画的なアプローチは、バイオインフォマティクスデータによって導き出すことができ、本明細書で説明する。
バイオインフォマティクスを使用した窒素固定能力による微生物の濃縮
バイオインフォマティクスツールを使用して、植物成長促進根圏細菌(PGPR)を同定し、分離することができ、これらは、窒素固定を行う能力に基づいて選択される。高い窒素固定能力を持つ微生物は、植物の好ましい形質を促進することができる。PGPRの同定のための分析のバイオインフォマティクスモードには、ゲノミクス、メタゲノミクス、標的分離、遺伝子シーケンシング、トランスクリプトームシーケンシング、およびモデリングが含まれるが、これらに限定されない。
ゲノミクス分析を使用して、PGPRを同定し、本明細書に記載の次世代シーケンシングの方法および微生物のバージョン管理で突然変異の存在を確認することができる。
メタゲノミクスを使用して、コロニー形成の予測アルゴリズムを用いてPGPRを同定し、分離することができる。メタデータを使用して、環境および温室試料における操作された株の存在を同定することもできる。
トランスクリプトームシーケンシングを使用して、PGPR表現型につながる遺伝子型を予測することができる。さらに、トランスクリプトームデータを使用して、遺伝子発現を変化させるためのプロモーターを同定する。トランスクリプトームデータを、全ゲノムシーケンス(WGS)と組み合わせて分析して、代謝および遺伝子調節ネットワークのモデルを生成することができる。
微生物の馴化
自然から分離された微生物は、微生物が遺伝的に追跡可能で同定可能な形態に変換される馴化プロセスを受け得る。微生物を馴化する1つの方法は、抗生物質耐性で微生物を操作することである。抗生物質耐性を操作するプロセスは、野生型微生物株の抗生物質感受性を決定することから始めることができる。細菌が抗生物質に感受性である場合、抗生物質は、抗生物質耐性操作の良い候補となり得る。その後、抗生物質耐性遺伝子または対抗選択可能な自殺ベクターを、組み換え法を使用して微生物のゲノムに組み込むことができる。対抗選択可能な自殺ベクターは、目的の遺伝子、選択可能なマーカー、および対抗選択可能なマーカーsacBの欠失から構成され得る。対抗選択を使用して、抗生物質耐性遺伝子と天然の微生物DNA配列を交換することができる。ミディアムスループット法を使用して、複数の微生物を同時に評価して、並行馴化を可能にすることができる。馴化の代替方法には、自殺ベクター配列がループアウトすること、または介在ベクター配列を得ることを防ぐためのホーミングヌクレアーゼの使用が含まれる。
DNAベクターは、エレクトロポレーションおよび化学的形質転換を含むいくつかの方法によって細菌に導入することができる。ベクターの標準ライブラリーを変換に使用することができる。遺伝子編集の方法の一例は、CRISPRであり、微生物中のCas9の活性を確認するCas9試験が先行する。
微生物の非トランスジェニック操作
指向性進化を介して、好ましい形質を持つ微生物集団を得ることができる。指向性進化は、自然選択のプロセスを模倣して、ユーザー定義の目標に向けてタンパク質または核酸を進化させるアプローチである。指向性進化の例は、ランダムな突然変異が微生物集団に導入され、最も好ましい形質を持つ微生物が選択され、選択された微生物の増殖が継続する場合である。成長促進根圏細菌(PGPR)の最も好ましい形質は、窒素固定にあり得る。指向性進化の方法は、各反復後の選択プロセスに基づいて、反復的かつ適応的であり得る。
窒素固定能力の高い植物成長促進根圏細菌(PGPR)を生成することができる。PGPRの進化は、遺伝的変異の導入を介して実行することができる。遺伝的変異は、ポリメラーゼ連鎖反応突然変異誘発、オリゴヌクレオチド指向性突然変異誘発、飽和突然変異誘発、フラグメントシャフリング突然変異誘発、相同組み換え、CRISPR/Cas9系、化学突然変異誘発、およびそれらの組み合わせを介して導入することができる。これらのアプローチは、微生物集団にランダムな突然変異を導入することができる。例えば、突然変異体は、オリゴヌクレオチド指向性突然変異誘発を介して、合成DNAまたはRNAを使用して生成することができる。突然変異体は、後に硬化されるプラスミドに含まれているツールを使用して生成することができる。
場合によっては、宿主細胞に外因性のいかなる配列も導入することなく、宿主細胞に内因性の突然変異体または異種配列を導入することができる。場合によっては、宿主細胞の種に外因性のいかなる配列も導入することなく、宿主細胞と同じ種の細胞からの異種配列を導入することができる。次いで、そのような細胞を構築するために使用される任意のプラスミドを硬化させて、細胞に外因性の遺伝物質を含む遺伝子操作された細胞を産生することができる。場合によっては、宿主細胞の属に外因性のいかなる配列も導入することなく、宿主細胞と同じ属の細胞からの異種配列を導入することができる。次いで、そのような細胞を構築するために使用される任意のプラスミドは、宿主細胞の属に外因性の遺伝物質を含む遺伝子操作された細胞を産生するために硬化され得、それにより非属間細胞を作成する。
目的の遺伝子は、PGPR特性の向上、穀物のコロニー形成の向上、酸素感受性の増加、窒素固定の増加、およびアンモニア排泄の増加を含むが、これらに限定されない形質が改良された他の種からのライブラリーを使用して同定することができる。GeneiousまたはPlatypusデザインソフトウェアなどのソフトウェアを使用して、これらのライブラリーに基づいて属内遺伝子を設計することができる。突然変異は、機械学習を利用して設計することができる。突然変異は、代謝モデルを利用して設計することができる。突然変異の自動設計は、Platypusを使用して行うことができ、Cas指向性突然変異誘発のためにRNAを誘導する。
属内遺伝子を、宿主微生物に移入することができる。さらに、レポーター系を微生物に移入することもできる。レポーター系は、プロモーターを特徴付け、形質転換の成功を決定し、突然変異体をスクリーニングし、ネガティブスクリーニングツールとして機能する。
突然変異を有する微生物は、連続継代を介して培養することができる。微生物コロニーは、微生物の単一変異体を含む。自動コロニーピッカーおよびリキッドハンドラーを用いて、微生物コロニーをスクリーニングする。遺伝子の重複および増加したコピー数を持つ突然変異体は、望ましい形質のより高い遺伝子型を発現する。
窒素固定に基づく植物成長促進微生物の選択
微生物のコロニーは、窒素固定を評価するための様々なアッセイを使用してスクリーニングすることができる。窒素固定を測定する1つの方法は、窒素排泄を測定する単一の発酵アッセイによるものである。代替方法は、経時的なインラインサンプリングによるアセチレン還元アッセイ(ARA)である。ARAは、マイクロチューブアレイのハイスループットプレートで行うことができる。ARAは、生きている植物および植物組織で行うことができる。培地配合および培地酸素濃度は、ARAアッセイにおいて変えることができる。微生物変異体をスクリーニングする別の方法は、バイオセンサーを使用することによるものである。NanoSIMSおよびラマン顕微分光法の使用によって、微生物の活性を調査することができる。場合によっては、バイオリアクターでの発酵方法を使用して、細菌を培養し、拡大することもできる。バイオリアクターは、細菌の成長の堅牢性を向上させ、酸素に対する細菌の感受性を低下させるように設計されている。中~高TPプレートベースのマイクロ発酵槽を使用して、酸素感受性、栄養ニーズ、窒素固定、および窒素排泄を評価する。細菌はまた、潜在的な経路を解明するために、競合的または有益な微生物と共培養することができる。フローサイトメトリーを使用して、化学的、比色分析、または蛍光指示薬を使用して、高レベルの窒素を産生する細菌をスクリーニングすることができる。細菌は、窒素源の存在下または不在下で培養することができる。例えば、細菌は、グルタミン、アンモニア、尿素、または硝酸塩とともに培養され得る。
微生物育種
微生物育種は、作物のマイクロバイオーム内の種の役割を体系的に同定して改良する方法である。この方法は、3つのステップ:1)植物-微生物相互作用をマッピングし、特定の表現型にリンクされた調節ネットワークを予測することによる候補種の選択、2)調節ネットワークおよび遺伝子クラスターの種内交雑による微生物表現型の実用的かつ予測可能な改良、ならびに3)望ましい作物の表現型を産生する新しい微生物の遺伝子型のスクリーニングおよび選択を含む。株の改良を体系的に評価するために、微生物群集のコロニー形成動態を主要な種による遺伝的活性にリンクするモデルが作成される。このモデルを使用して、遺伝的標的の繁殖を予測し、農業的関連性のマイクロバイオームでコードされた形質の改良を選択する頻度を向上させる。
植物形質(例えば、窒素固定)を改良するための細菌の産生は、継代培養によって達成することができる。この細菌の産生は、1つ以上の植物に1つ以上の改良された形質を与えることができる細菌および/または組成物を同定することに加えて、微生物叢によって影響を受ける特定の改良された形質を有する植物を選択することによって行うことができる。植物形質を改良するために細菌を産生する1つの方法は、以下のステップを含む。(a)第1の植物の組織または土壌から細菌を分離すること、(b)1つ以上の細菌に遺伝的変異を導入して、1つ以上の変異体細菌を産生すること、(c)複数の植物を変異体細菌に曝露すること、(d)複数の植物のうちの1つの組織または土壌から細菌を分離すること(ここで、細菌が分離される植物は、複数の植物の他の植物と比較して改良された形質を有する)、(e)形質が改良された植物から分離された細菌を用いてステップ(b)~(d)を繰り返す(ステップ(d))。ステップ(b)~(d)は、植物の改良された形質が望ましいレベルに達するまで、任意の回数(例えば、1回、2回、3回、4回、5回、10回、またはそれ以上)繰り返すことができる。さらに、複数の植物は、2つよりも多い植物、例えば、10~20個の植物、または20個以上、50個以上、100個以上、300個以上、500個以上、または1000個以上の植物であり得る。
形質が改良された植物を得ることに加えて、1つ以上の遺伝子(例えば、窒素固定を調節する遺伝子)に導入された1つ以上の遺伝的変異を含む細菌を含む細菌集団が得られる。上記のステップを繰り返すことによって、目的の植物の形質と相関する集団の最も適切なメンバーを含む、細菌の集団を得ることができる。この集団の細菌を同定し、それらの有益な特性を、遺伝子および/または表現型分析などによって決定することができる。ステップ(a)で分離された細菌の遺伝子分析を行うことができる。表現型および/または遺伝子型の情報は、植物起源の化学成分のハイスループットスクリーニング、遺伝物質のハイスループットシーケンシングを含むシーケンシング技法、ディファレンシャルディスプレイ技法(DDRT-PCRおよびDD-PCRを含む)、核酸マイクロアレイ技法、RNAシーケンシング(全トランスクリプトームショットガンシーケンシング)、およびqRT-PCR(定量的リアルタイムPCR)を含む技法を使用して得ることができる。得られた情報を使用して、rRNAオペロンまたは他の分類学的に有益な遺伝子座の構成要素をコードする核酸の系統発生分析またはマイクロアレイベースのスクリーニングなど、存在する細菌の識別および活性に関する群集プロファイリング情報を得ることができる。分類学的に有益な遺伝子座の例としては、16S rRNA遺伝子、23S rRNA遺伝子、5S rRNA遺伝子、5.8S rRNA遺伝子、12S rRNA遺伝子、18S rRNA遺伝子、28S rRNA遺伝子、gyrB遺伝子、rpoB遺伝子、fusA遺伝子、recA遺伝子、coxl遺伝子、nifD遺伝子が挙げられる。集団に存在する分類群を決定するための分類学的プロファイリングのプロセス例は、US2014/0155283に記載されている。細菌同定は、窒素固定経路に関連する遺伝子などの、1つ以上の遺伝子または1つ以上のシグナル伝達経路の活性を特徴付けることを含み得る。異なる細菌種間の相乗的相互作用(2つの成分が、それらの組み合わせによって、望ましい効果を添加量よりも多く増加させる場合)も、細菌集団に存在する可能性がある。
遺伝的変異は、nifA、nifL、ntrB、ntrC、glnA、glnB、glnK、draT、amtB、glnD、glnE、nifJ、nifH、nifD、nifK、nifY、nifE、nifN、nifU、nifS、nifV、nifW、nifZ、nifM、nifF、nifB、およびnifQからなる群から選択される遺伝子であり得る。遺伝的変異は、グルタミンシンテターゼ、グルタミナーゼ、グルタミンシンテターゼアデニリルトランスフェラーゼ、転写アクチベーター、抗転写アクチベーター、ピルビン酸フラボドキシン酸化還元酵素、フラボドキシン、またはNAD+-ジナイトロゲン-レダクターゼaDP-D-リボシルトランスフェラーゼからなる群から選択される機能性を有するタンパク質をコードする遺伝子における変異であり得る。遺伝的変異は、NifAまたはグルタミナーゼの発現または活性の増加;NifL、NtrB、グルタミンシンテターゼ、GlnB、GlnK、DraT、AmtBの発現または活性の低下;GlnEのアデニリル除去活性の低下;またはGlnDのウリジリル除去活性の低下のうちの1つ以上をもたらす突然変異であり得る。遺伝的変異の導入は、1、2、3、4、5、10、25、50、100、250、500、またはそれ以上のヌクレオチドなど、標的部位での1つ以上のヌクレオチドの挿入および/または削除を含み得る。本明細書に開示される方法のうちの1つ以上の細菌に導入される遺伝的変異は、ノックアウト突然変異(例えば、プロモーターの削除、未成熟終止コドンを産生するための挿入または削除、遺伝子全体の削除)であり得るか、またはそれがタンパク質ドメインの活性の排除もしくは廃止(例えば、活性部位に影響を与える点突然変異、もしくはタンパク質産物の関連部分をコードする遺伝子の一部の削除)であり得るか、またはそれは標的遺伝子の調節配列を変えるもしくは廃止する可能性がある。遺伝的変異が導入される細菌に対応する細菌種または属のゲノム内に見られる異種調節配列および調節配列を含む、1つ以上の調節配列を挿入することもできる。さらに、調節配列は、細菌培養物中または植物組織内の遺伝子の発現レベルに基づいて選択され得る。場合によっては、挿入される調節配列は、配列番号1~72から選択され得る。遺伝的変異は、標的部位に特異的に導入される所定の遺伝的変異であり得る。遺伝的変異は、標的部位内のランダムな突然変異であり得る。遺伝的変異は、1つ以上のヌクレオチドの挿入または欠失であり得る。場合によっては、複数の異なる遺伝的変異(例えば、2、3、4、5、10、またはそれ以上)が、形質改良を評価するために植物に細菌を曝露する前に、分離された細菌のうちの1つ以上に導入される。複数の遺伝的変異は、上記のタイプのうちのいずれか、同じまたは異なるタイプ、および任意の組み合わせであり得る。場合によっては、複数の異なる遺伝的変異が連続して導入され、第1の分離ステップの後に第1の遺伝的変異を導入し、第2の分離ステップの後に第2の遺伝的変異を導入するなどして、進行的に改良された形質を関連する植物に付与する細菌に複数の遺伝的変異を蓄積する。
いくつかの実施形態では、微生物は、調節配列を導入することによって遺伝的に変更され得る。例えば、配列番号1~72から選択される配列、または配列番号1~72のうちの1つのフラグメントを含む配列、または配列番号1~72から選択される配列に対して少なくとも約60%、70%、80%、85%、90%、95%、97%、98%、もしくは99%の配列同一性を有する配列。場合によっては、調節配列は、配列番号1~72から選択される配列のフラグメントに対して少なくとも約60%、70%、80%、85%、90%、95%、97%、98%、または99%の配列同一性を有する配列を含み得る。
場合によっては、遺伝子操作された微生物は、本明細書に記載されるように、挿入配列を含み得る。場合によっては、当該挿入配列は、非天然の状況で挿入された天然の配列を含み得る。例えば、当該挿入配列は、当該微生物の第2の遺伝子のプロモーターの位置に挿入された当該遺伝子操作された微生物の第1の遺伝子からのプロモーターを含み得る。場合によっては、当該挿入配列は、非天然の状況で挿入された変性プロモーターを含み得る。場合によっては、当該挿入配列は、その天然の状況と同等の位置に挿入された変性プロモーターを含み得る。例えば、第1の種の当該微生物は、第2の種の当該遺伝子の天然のプロモーターに作動可能に連結された遺伝子を含み得る。
場合によっては、調節配列は、遺伝子に作動可能に連結されるように、当該遺伝子の上流に挿入され得る。場合によっては、遺伝子の上流に調節配列を挿入することは、当該遺伝子の天然の調節配列を削除することも含み得る。場合によっては、調節配列は、Nifクラスター遺伝子を制御するために、当該Nifクラスター遺伝子の上流に挿入され得る。場合によっては、調節配列は、トランスポーター遺伝子を制御するために、当該トランスポーター遺伝子の上流に挿入され得る。場合によっては、調節配列は、イオントランスポーター遺伝子を制御するために、当該イオントランスポーター遺伝子の上流に挿入され得る。場合によっては、調節配列は、CysZ遺伝子を制御するために、当該CysZ遺伝子の上流に挿入され得る。場合によっては、調節配列は、エキソポリサッカライド生合成遺伝子を制御するために、当該エキソポリサッカライド生合成遺伝子の上流に挿入され得る。場合によっては、調節配列は、セルロース生合成遺伝子を制御するために、当該セルロース生合成遺伝子の上流に挿入され得る。場合によっては、調節配列は、bcs遺伝子を制御するために、当該bcs遺伝子の上流に挿入され得る。場合によっては、調節配列は、トレハロース生合成遺伝子を制御するために、当該トレハロース生合成遺伝子の上流に挿入され得る。場合によっては、調節配列は、treZ遺伝子を制御するために、当該treZ遺伝子の上流に挿入され得る。場合によっては、調節配列は、所望の表現型を有する遺伝子の発現を増加させるために挿入され得る。望ましい表現型には、窒素固定、アンモニウム排泄、ニトロゲナーゼ酵素補因子に必要な成分の輸送、バイオフィルム形成、植物の定着、根圏での適合性または競争力、活性酸素種のスカベンジング、植物細胞壁分解酵素の発現、および根の付着が含まれ得る。
場合によっては、調節配列は、調節配列の起源の微生物の属が、それが挿入される微生物の属と同じになるように選択されてもよい。場合によっては、調節配列は、調節配列の起源の種が、それが挿入される種と同じになるように選択されてもよい。例えば、第1のKosakonia sacchari細菌で同定された調節要素を、第2のKosakonia sacchari細菌の新しい場所に挿入して、属間DNA配列を含まない遺伝子操作されたKosakonia sacchari細菌を作成する。別の例では、Kosakonia pseudosacchari細菌で同定された調節要素を、Kosakonia sacchari細菌に挿入し、それによって属間DNA配列を含まない遺伝子操作されたKosakonia sacchari細菌を作成する。場合によっては、Rahnella aquatilis細菌は、配列番号41~59、および63~66からなる群から選択される配列を使用して修飾される。場合によっては、Kosakonia sacchari細菌は、配列番号1~10からなる群から選択される配列を使用して修飾される。場合によっては、Kosakonia sacchari細菌は、配列番号61および70~72からなる群から選択される配列を使用して修飾される。場合によっては、Klebsiella variicola細菌は、配列番号11~40からなる群から選択される配列を使用して修飾される。場合によっては、Kluyvera intermedia細菌は、配列番号60を使用して修飾される。場合によっては、Kosakonia pseudosacchari細菌は、配列番号1~10からなる群から選択される配列を使用して修飾される。場合によっては、Kosakonia pseudosacchari細菌は、配列番号61および70~72からなる群から選択される配列を使用して修飾される。場合によっては、Enterobacter種の細菌は、配列番号62を使用して修飾される。場合によっては、Klebsiella種の細菌は、配列番号67~69からなる群から選択される配列を使用して修飾される。場合によっては、調節配列は、調節配列の起源の種が、それが挿入される種と同じであるように選択され得るが、調節配列は、1つ以上の突然変異を含み得る。
場合によっては、調節配列は、調節配列の起源の種が、それが挿入される種と同じでないように選択されてもよい。例えば、Kosakonia sacchari細菌で同定された調節要素を、Klebsiella variicola細菌に挿入し、それによって属間DNA配列を含む遺伝子操作されたKlebsiella variicola細菌を作成する。
一般に、「遺伝的変異」という用語は、参照ゲノムもしくはその一部、または参照遺伝子もしくはその一部などの参照ポリヌクレオチドと比較してポリヌクレオチド配列に導入される任意の変化を指す。遺伝的変異は、「突然変異」と呼ばれる場合があり、遺伝子変異を含む配列または生物は、「遺伝的変異体」または「突然変異体」と呼ばれる場合がある。遺伝的変異は、遺伝子発現、代謝、および細胞シグナル伝達を含む、いくつかの生物学的活性の増加または減少など、いくつもの効果を有し得る。遺伝的変異は、標的部位に特異的に導入され得るか、またはランダムに導入され得る。遺伝的変異を導入するために、様々な分子ツールおよび方法が利用可能である。例えば、遺伝的変異は、ポリメラーゼ連鎖反応突然変異誘発、オリゴヌクレオチド指向性突然変異誘発、飽和突然変異誘発、フラグメントシャフリング突然変異誘発、相同組み換え、組み換え、ラムダレッド媒介組み換え、CRISPR/Cas9系、化学突然変異誘発、およびそれらの組み合わせを介して導入され得る。遺伝的変異を導入する化学的方法には、化学的突然変異原、例えば、メタンスルホン酸エチル(EMS)、メタンスルホン酸メチル(MMS)、N-ニトロソウレア(EN U)、N-メチル-N-ニトロ-N’-ニトロソグアニジン、4-ニトロキノリンN-オキシド、硫酸ジエチル、ベンゾピレン、シクロホスファミド、ブレオマイシン、トリエチルメラミン、アクリルアミドモノマー、ナイトロジェンマスタード、ビンクリスチン、ジエポキシアルカン(例えば、ジエポキシブタン)、ICR-170、ホルムアルデヒド、塩酸プロカルバジン、酸化エチレン、ジメチルニトロソアミン、7,12ジメチルベンズ(a)アントラセン、クロラムブシル、ヘキサメチルホスホルアミド、ビススルファン等へのDNAの曝露が含まれる。放射線突然変異誘発剤には、紫外線、γ線、X線、および高速中性子衝撃が含まれる。遺伝的変異はまた、例えば、紫外線を伴うトリメチルソラレンを使用して核酸に導入され得る。可動性DNA要素、例えば、転位性要素のランダム挿入または標的化挿入は、遺伝的変異を生成するための別の好適な方法である。遺伝的変異は、無細胞インビトロ系での増幅中に、例えば、エラーが発生しやすいPCRなどのポリメラーゼ連鎖反応(PCR)技法を使用して、核酸に導入することができる。遺伝的変異は、DNAシャッフリング技法(例えば、エクソンシャッフリング、ドメインスワッピング等)を使用して、インビトロで核酸に導入することができる。遺伝的変異はまた、細胞内のDNA修復酵素の欠損の結果として核酸に導入され得る。例えば、細胞内の突然変異体DNA修復酵素をコードする突然変異体遺伝子の存在は、細胞のゲノム中で高頻度の突然変異(すなわち、約1突然変異/100遺伝子~1突然変異/10,000遺伝子)を生成することが予想される。DNA修復酵素をコードする遺伝子の例には、Mut H、Mut S、Mut L、およびMut U、ならびに他の種におけるそれらのホモログ(例えば、MSH 1 6、PMS 1 2、MLH 1、GTBP、ERCC-1等)が含まれるが、これらに限定されない。遺伝的変異を導入するための様々な方法の例示的な説明は、例えば、Stemple(2004)Nature 5:1-7、Chiang et al.(1993)PCR Methods Appl 2(3):210-217、Stemmer(1994)Proc.Natl.Acad.Sci.USA 91:10747-10751、および米国特許第6,033,861号および同第6,773,900号に提供されている。
微生物に導入された遺伝的変異は、トランスジェニック、シスジェニック、ゲノム内、属内、属間、合成、進化型、再配置、またはSNPとして分類することができる。
上記の形質の改良を引き出すために、微生物内の多くの代謝経路に遺伝的変異を導入することができる。代表的な経路には、硫黄取り込み経路、グリコーゲン生合成、グルタミン調節経路、モリブデン取り込み経路、窒素固定経路、アンモニア同化、アンモニアの排泄または分泌、窒素取り込み、グルタミン生合成、アナモックス、リン酸可溶化、有機酸輸送、有機酸産生、凝集素産生、活性酸素ラジカルスカベンジング遺伝子、インドール酢酸生合成、トレハロース生合成、植物細胞壁分解酵素または経路、根付着遺伝子、エキソポリサッカライド分泌、グルタミン酸シンターゼ経路、鉄取り込み経路、シデロフォア経路、キチナーゼ経路、ACCデアミナーゼ、グルタチオン生合成、リンシグナル伝達遺伝子、クオラムクエンチング経路、チトクローム経路、ヘモグロビン経路、細菌ヘモグロビン様経路、小RNA rsmZ、リゾビトキシン生合成、lapA接着タンパク質、AHLクオラムセンシング経路、フェナジン生合成、環状リポペプチド生合成、および抗生物質産生が含まれる。
CRISPR/Cas9(クラスター化された定期的に間隔を空けた短いパリンドロームの繰り返し)/CRISPR関連(Cas)系を使用して、望ましい突然変異を導入することができる。CRISPR/Cas9は、CRISPR RNA(crRNA)を使用して侵入する核酸のサイレンシングを誘導することによって、細菌および古細菌にウイルスおよびプラスミドに対する適応免疫を提供する。Cas9タンパク質(またはその機能的同等物および/もしくは変異体、すなわち、Cas9様タンパク質)は、タンパク質と、crRNAおよびtracrRNAと呼ばれる(ガイドRNAとも呼ばれる)2つの天然に存在するRNA分子または合成RNA分子との会合に依存するDNAエンドヌクレアーゼ活性を自然に含んでいる。場合によっては、2つの分子が共有結合して、単一分子(単一ガイドRNA(「sgRNA」)とも呼ばれる)を形成する。したがって、Cas9またはCas9様タンパク質は、DNA標的化RNA(この用語は、2分子ガイドRNA構成および単一分子ガイドRNA構成の両方を包含する)と会合し、これがCas9またはCas9様タンパク質を活性化して、タンパク質を標的核酸配列に誘導する。Cas9またはCas9様タンパク質が、その本来の酵素機能を保持している場合、標的DNAを切断して二本鎖切断を作成し、これがゲノム変化(すなわち、編集:削除、挿入(ドナーポリヌクレオチドが存在する場合)、置換等)につながる可能性があり、それによって遺伝子発現を変化させる。Cas9のいくつかの変異体(これらの変異体は、Cas9様という用語によって包含される)は、DNA切断活性が低下するように変化している(場合によっては、標的DNAの両方の鎖ではなく一本鎖を切断し、場合によっては、DNA切断活性をなくなるまで大幅に低減する)。遺伝的変異を導入するためのCRISPR系のさらなる例示的な説明は、例えばUS8795965に見られ得る。
周期的増幅技法として、ポリメラーゼ連鎖反応(PCR)突然変異誘発は、突然変異誘発プライマーを使用して、望ましい突然変異を導入する。PCRは、変性、アニーリング、および伸長のサイクルによって行われる。PCRによる増幅後、突然変異したDNAの選択および親プラスミドDNAの除去は、1)PCR中のヒドロキシメチル化dCTPによるdCTPの置換、続いて非ヒドロキシメチル化親DNAのみを除去するための制限酵素による消化;2)抗生物質耐性遺伝子および研究された遺伝子の両方の同時突然変異誘発(プラスミドを異なる抗生物質耐性に変更し、新しい抗生物質耐性は、その後の望ましい突然変異の選択を容易にする);3)望ましい突然変異を導入した後、メチル化DNAのみを切断する制限酵素DpnIによる親メチル化テンプレートDNAの消化(これによって、突然変異した非メチル化鎖が回収される);または4)突然変異したDNAの形質転換効率を高めるための追加のライゲーション反応での突然変異したPCR産物の環状化によって達成され得る。例示的な方法のさらなる説明は、例えば、US7132265、US6713285、US6673610、US6391548、US5789166、US5780270、US5354670、US5071743、およびUS2010/0267147に見出すことができる。
部位指向性突然変異誘発とも呼ばれるオリゴヌクレオチド指向性突然変異誘発は、典型的に、合成DNAプライマーを利用する。この合成プライマーは、望ましい突然変異を含み、目的の遺伝子においてDNAとハイブリダイズできるように、突然変異部位の周囲のテンプレートDNAに相補的である。突然変異は、単一の塩基変化(点突然変異)、複数の塩基変化、削除、もしくは挿入、またはこれらの組み合わせであり得る。次いで、DNAポリメラーゼを使用して一本鎖プライマーを伸長し、これが残りの遺伝子をコピーする。このようにしてコピーされた遺伝子は、突然変異部位を含み、次いでベクターとして宿主細胞に導入され、クローン化され得る。最後に、DNAシーケンシングによって突然変異体を選択して、それらが望ましい突然変異を含んでいることを確認することができる。
遺伝的変異は、エラーが発生しやすいPCRを使用して導入することができる。この技法では、配列の複製の忠実度が不足している条件下で、DNAポリメラーゼを使用して目的の遺伝子を増幅させる。その結果、増幅産物は、シーケンス内に少なくとも1つのエラーを含有する。遺伝子が増幅され、反応の結果として生じる産生物(複数可)が、テンプレート分子と比較して1つ以上のシーケンスの変化を含む場合、結果として生じる産生物は、テンプレートと比較して突然変異誘発される。ランダム突然変異を導入する別の方法は、ニトロソグアニジンまたはメタンスルホン酸エチルなどの化学的突然変異原に細胞を曝露することであり(Nestmann,Mutat Res 1975 June;28(3):323-30)、次いで、遺伝子を含むベクターが宿主から分離される。
飽和突然変異誘発は、ランダム突然変異誘発の別の形態であり、特定の部位、または遺伝子の狭い領域で、起こり得るすべてまたはほぼすべての突然変異を生成しようとする。一般的な意味では、飽和突然変異誘発は、突然変異誘発される定義されたポリヌクレオチド配列(突然変異誘発される配列は、例えば、15~100,000塩基長である)における突然変異誘発カセットの完全なセット(各カセットは、例えば、1~500塩基長である)を突然変異誘発することを含む。従って、突然変異の群(例えば、1~100突然変異の範囲)が、突然変異誘発される各カセットに導入される。1つのカセットに導入される突然変異の群は、1回の飽和突然変異誘発の適用中に第2のカセットに導入される突然変異の第2の群とは異なり得るか、または同じであり得る。そのような分類は、特定のコドンの欠失、付加、分類、および特定のヌクレオチドカセットの分類によって例示される。
DNAシャフリングとも呼ばれるフラグメントシャフリング突然変異誘発は、有益な突然変異を迅速に伝播させる方法である。シャフリングプロセスの例では、DNAseを使用して、親遺伝子のセットを、例えば、長さ約50~100bpの切片に断片化する。次いで、プライマーなしのポリメラーゼ連鎖反応(PCR)が続き、相同配列が十分に重複しているDNAフラグメントは互いにアニールし、DNAポリメラーゼによって伸長される。DNA分子の一部が親遺伝子のサイズに達した後、このPCR伸長が数回起こる。次いで、今回は鎖の末端を補完するように設計されたプライマーを付加して、これらの遺伝子を別のPCRで増幅させることができる。プライマーは、クローニングベクターへのライゲーションに必要な制限酵素認識部位の配列など、5’末端に付加された追加の配列を有し得る。シャフリング技法のさらなる例は、US2005/0266541に提供されている。
相同組み換え突然変異誘発は、外因性DNAフラグメントと標的ポリヌクレオチド配列との間の組み換えを伴う。二本鎖切断が発生した後、切除と呼ばれるプロセスで切断の5’端の周りのDNAの一部が切り取られる。次の鎖侵入ステップでは、切断したDNA分子のオーバーハング3’末端が、切断されていない類似または同一のDNA分子に「侵入」する。この方法を使用して、遺伝子を削除し、エクソンを削除し、遺伝子を付加し、点突然変異を導入することができる。相同組み換え突然変異誘発は、永続的または条件付きであり得る。典型的に、組み換えテンプレートも提供される。組み換えテンプレートは、別のベクターの構成要素であり得るか、別のベクターに含まれ得るか、または別個のポリヌクレオチドとして提供され得る。いくつかの実施形態では、組み換えテンプレートは、部位特異的ヌクレアーゼによって切れ目が入れられるか、または切断される標的配列内またはその近くなどの相同組み換えにおいてテンプレートとして機能するように設計される。テンプレートポリヌクレオチドは、任意の好適な長さ、例えば約10、15、20、25、50、75、100、150、200、500、1000、またはそれ以上のヌクレオチド長であり得る。いくつかの実施形態では、テンプレートポリヌクレオチドは、標的配列を含むポリヌクレオチドの一部に相補的である。最適に整列すると、テンプレートポリヌクレオチドは、標的配列の1つ以上のヌクレオチド(例えば、約1、5、10、15、20、25、30、35、40、45、50、60、70、80、90、100以上のヌクレオチド)と重複し得る。いくつかの実施形態では、テンプレート配列および標的配列を含むポリヌクレオチドが最適に整列される場合、テンプレートポリヌクレオチドの最も近いヌクレオチドは、標的配列から約1、5、10、15、20、25、50、75、100、200、300、400、500、1000、5000、10000、またはそれ以上のヌクレオチド内にある。相同組み換えの方法において有用な部位指向性ヌクレアーゼの非限定的な例には、ジンクフィンガーヌクレアーゼ、CRISPRヌクレアーゼ、TALEヌクレアーゼ、およびメガヌクレアーゼが含まれる。そのようなヌクレアーゼの使用のさらなる説明については、例えば、US8795965およびUS2014/0301990を参照されたい。
化学的突然変異原または放射線を含む、主に点突然変異および短い欠失、挿入、塩基転換、および/または遷移を作成する突然変異原を使用して、遺伝的変異を作成することができる。突然変異原としては、メタンスルホン酸エチル、メタンスルホン酸メチル、N-エチル-N-ニトロソウレア、トリエチルメラミン、N-メチル-N-ニトロソウレア、プロカルバジン、クロラムブシル、シクロホスファミド、硫酸ジエチル、アクリルアミドモノマー、メルファラン、ナイトロジェンマスタード、ビンクリスチン、ジメチルニトロソアミン、N-メチル-N’-ニトロ-ニトロソグアニジン、ニトロソグアニジン、2-アミノプリン、7,12ジメチル-ベンズ(a)アントラセン、エチレンオキシド、ヘキサメチルホスホルアミド、ビススルファン、ジエポキシアルカン(ジエポキシオクタン、ジエポキシブタン等)、2-メトキシ-6-クロロ-9[3-(エチル-2-クロロエチル)アミノプロピルアミノ]アクリジン二塩酸塩、およびホルムアルデヒドが挙げられるが、これらに限定されない。
遺伝的変異の導入は、不完全なプロセスであり得、それにより処理された細菌集団の一部の細菌は望ましい突然変異を保有するが、保有しないものもある。場合によっては、望ましい遺伝的変異を保有する細菌を濃縮するように選択圧を印加することが望ましい。伝統的に、成功した遺伝的変異体の選択には、抗生物質耐性遺伝子を挿入する、または非致死性化合物を致死性代謝産物に変換することができる代謝活性を廃止する場合など、遺伝的変異によって付与または廃止されるいくつかの機能性に対する選択が含まれていた。望ましい遺伝的変異のみを導入する必要があるように(例えば、選択可能なマーカーも必要とせずに)、ポリヌクレオチド配列自体に基づいて選択圧を印加することも可能である。この場合、選択ストレスは、標的部位に導入された遺伝的変異を欠くゲノムを切断することを含み得、それにより選択は、遺伝的変異が導入されることが求められる参照配列に対して効果的に指向される。典型的には、切断は、標的部位の100ヌクレオチド以内で起こる(例えば、標的部位での切断または標的部位内での切断を含む、標的部位から75、50、25、10またはそれ以下のヌクレオチド内)。切断は、ジンクフィンガーヌクレアーゼ、CRISPRヌクレアーゼ、TALEヌクレアーゼ(TALEN)、またはメガヌクレアーゼからなる群から選択された部位特異的ヌクレアーゼによって指向され得る。そのようなプロセスは、相同組み換えのテンプレートが提供されないことを除いて、標的部位での相同組み換えを強化するためのプロセスと同様である。結果として、望ましい遺伝的変異を欠く細菌は、切断され、修復されずに放置されると、細胞死をもたらす可能性が高くなる。次いで、改良された形質の付与を評価するため、植物に曝露する際に使用するために細菌生存選択を分離することができる。
CRISPRヌクレアーゼを部位特異的ヌクレアーゼとして使用して、切断を標的部位に指向することができる。Cas9を使用して非突然変異細胞を殺すことによって、突然変異微生物の選択を改良することができる。次いで、植物に突然変異微生物を接種して共生を再確認し、効率的な共生生物を選択するための進化ストレスを生み出す。次いで、微生物を植物組織から再分離することができる。非変異体に対する選択に用いられるCRISPRヌクレアーゼ系は、相同組み換えのテンプレートが提供されていないことを除いて、遺伝的変異の導入に関して上記のものと同様の要素を用いることができる。したがって、標的部位に指向された切断は、影響を受けた細胞の死を促進する。
ジンクフィンガーヌクレアーゼ、TALEヌクレアーゼ(TALEN)系、およびメガヌクレアーゼなど、標的部位での切断を特異的に誘導する他のオプションが利用可能である。ジンクフィンガーヌクレアーゼ(ZFN)は、ジンクフィンガーDNA結合ドメインをDNA切断ドメインに融合することによって生成される人工DNAエンドヌクレアーゼである。ZFNは、望ましいDNA配列を標的とするように操作することができ、これにより、ジンクフィンガーヌクレアーゼが固有の標的配列を切断できる。細胞に導入されたとき、ZFNは、二本鎖切断を誘導することによって、細胞(例えば、細胞のゲノム)内の標的DNAを編集することができる。転写アクチベーター様エフェクターヌクレアーゼ(TALEN)は、TAL(転写アクチベーター様)エフェクターDNA結合ドメインをDNA切断ドメインに融合することによって生成される人工DNAエンドヌクレアーゼである。TALENは、事実上あらゆる望ましいDNA配列に結合するように迅速に操作することができ、細胞に導入されたとき、TALENを使用して、二本鎖切断を誘導することによって細胞(例えば、細胞のゲノム)中の標的DNAを編集することができる。メガヌクレアーゼ(ホーミングエンドヌクレアーゼ)は、大きな認識部位(12~40塩基対の二本鎖DNA配列)を特徴とするエンドデオキシリボヌクレアーゼである。メガヌクレアーゼを使用して、高度に標的化した方法で配列を置換、排除、または修飾することができる。タンパク質工学を介してそれらの認識配列を修飾することによって、標的配列を変更することができる。メガヌクレアーゼを使用して、細菌、植物、または動物を問わず、すべてのゲノム型を修飾することができ、一般に4つのファミリー:LAGLIDADGファミリー、GIY-YIGファミリー、His-Cystボックスファミリー、およびHNHファミリーに分類される。例示的なホーミングエンドヌクレアーゼとしては、I-SceI、I-CeuI、PI-PspI、PI-Sce、I-SceIV、I-CsmI、I-PanI、I-SceII、I-PpoI、I-SceIII、I-CreI、I-TevI、I-TevII、およびI-TevIIIが挙げられる。
本開示の方法は、様々な望ましい形質のうちの1つ以上を導入または改良するために用いられ得る。導入または改良され得る形質の例としては、根のバイオマス、根の長さ、高さ、苗条の長さ、葉の数、水の利用効率、全体のバイオマス、収量、果実のサイズ、粒径、光合成率、干ばつ耐性、耐熱性、塩耐性、線虫ストレスに対する耐性、真菌性病原体に対する耐性、細菌性病原体に対する耐性、ウイルス性病原体に対する耐性、代謝産物のレベル、およびプロテオームの発現が挙げられる。高さ、全体のバイオマス、根および/または苗条のバイオマス、種子の発芽、苗の生存、光合成効率、蒸散率、種子/果実の数または質量、植物の穀粒または果実の収量、葉のクロロフィル含有量、光合成率、根の長さ、またはそれらの任意の組み合わせを含む、望ましい形質を使用して成長を測定し、同一の条件下で栽培された参照農業植物(例えば、形質が改良されていない植物)の成長速度と比較することができる。
導入または改良される好ましい形質は、本明細書に記載されるように、窒素固定である。場合によっては、本明細書に記載の方法から得られる植物は、同じ条件下、土壌で栽培された参照農業植物よりも少なくとも約5%大きい、例えば少なくとも約5%、少なくとも約8%、少なくとも約10%、少なくとも約15%、少なくとも約20%、少なくとも約25%、少なくとも約30%、少なくとも約40%、少なくとも約50%、少なくとも約60%、少なくとも約75%、少なくとも約80%、少なくとも約80%、少なくとも約90%、または少なくとも100%、少なくとも約200%、少なくとも約300%、少なくとも約400%、またはそれ以上大きい形質の差を呈する。さらなる例では、本明細書に記載の方法から得られる植物は、同様の条件下、土壌で栽培された参照農業植物よりも少なくとも約5%大きい、例えば少なくとも約5%、少なくとも約8%、少なくとも約10%、少なくとも約15%、少なくとも約20%、少なくとも約25%、少なくとも約30%、少なくとも約40%、少なくとも約50%、少なくとも約60%、少なくとも約75%、少なくとも約80%、少なくとも約80%、少なくとも約90%、または少なくとも100%、少なくとも約200%、少なくとも約300%、少なくとも約400%、またはそれ以上大きい形質の差を呈する。
改良される形質は、1つ以上の生物的または非生物的ストレッサーの適用を含む条件下で評価され得る。ストレッサーの例としては、非生物的ストレス(熱ストレス、塩ストレス、干ばつストレス、寒冷ストレス、低栄養ストレスなど)および生物的ストレス(線虫ストレス、昆虫植食性ストレス、真菌性病原体ストレス、細菌性病原体ストレス、ウイルス性病原体など)が挙げられる。
本開示の方法および組成物によって改良される形質は、窒素固定であり得、以前は窒素固定ができなかった植物におけるものを含む。場合によっては、本明細書に記載の方法に従って分離された細菌は、1%以上(例えば、2%、3%、4%、5%、6%、7%、8%、9%、10%、15%、20%、またはそれ以上)の植物の窒素を産生し、これは任意の遺伝的変異を導入する前に第1の植物から分離された細菌と比較して、少なくとも2倍(例えば、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、20倍、50倍、100倍、1000倍、またはそれ以上)の窒素固定能力の増加を表し得る。場合によっては、細菌は、植物の窒素の5%以上を産生する。遺伝的変異を導入するステップ、複数の植物に曝露するステップ、および形質が改良された植物から細菌を分離するステップを1回以上(例えば、1、2、3、4、5、10、15、25回、またはそれ以上)繰り返した後、望ましいレベルの窒素固定が達成され得る。場合によっては、グルタミン、アンモニア、または他の化学的窒素源で補足した肥料の存在下で、窒素固定レベルの向上が達成される。窒素固定の程度を評価する方法は知られており、その例は本明細書に記載されている。
微生物育種は、作物のマイクロバイオーム内の種の役割を体系的に同定して改良する方法である。この方法は、3つのステップ:1)植物-微生物相互作用をマッピングし、特定の表現型にリンクされた調節ネットワークを予測することによる候補種の選択、2)調節ネットワークおよび遺伝子クラスターの種内交雑による微生物表現型の実用的かつ予測可能な改良、ならびに3)望ましい作物の表現型を産生する新しい微生物の遺伝子型のスクリーニングおよび選択を含む。株の改良を体系的に評価するために、微生物群集のコロニー形成動態を主要な種による遺伝的活性にリンクするモデルが作成される。このモデルを使用して、遺伝的標的の繁殖を予測し、農業的関連性のマイクロバイオームでコードされた形質の改良を選択する頻度を向上させる。
窒素固定
窒素固定を調節する1つ以上の遺伝子に導入された1つ以上の遺伝的変異を含む細菌に植物を曝露することを含む、植物における窒素固定を増加させる方法が本明細書に記載されており、細菌は、植物において1%以上(例えば、2%、5%、10%、またはそれ以上)の窒素を産生し、これは細菌の不在下の植物と比較して、少なくとも2倍の窒素固定能力を表し得る。細菌は、グルタミン、尿素、硝酸塩、またはアンモニアで補足した肥料の存在下で窒素を産生することができる。遺伝的変異は、上記に提供された例を含む、任意の数および任意の組み合わせの、本明細書に記載の任意の遺伝的変異であり得る。遺伝的変異は、nifA、nifL、ntrB、ntrC、グルタミンシンテターゼ、glnA、glnB、glnK、draT、amtB、グルタミナーゼ、glnD、glnE、nifJ、nifH、nifD、nifK、nifY、nifE、nifN、nifU、nifS、nifV、nifW、nifZ、nifM、nifF、nifB、およびnifQからなる群から選択される遺伝子に導入され得る。遺伝的変異は、nifAまたはグルタミナーゼの発現または活性の増加;nifL、ntrB、グルタミンシンテターゼ、glnB、glnK、draT、amtBの発現または活性の低下;GlnEのアデニリル除去活性の低下;またはGlnDのウリジリル除去活性の低下のうちの1つ以上をもたらす突然変異であり得る。本明細書に開示される方法のうちの1つ以上の細菌に導入される遺伝的変異は、ノックアウト突然変異であり得るか、または標的遺伝子の調節配列を廃止し得るか、または異種調節配列の挿入、例えば、同じ細菌種または属のゲノム内に見られる調節配列の挿入を含み得る。調節配列は、細菌培養物または植物組織内の遺伝子の発現レベルに基づいて選択することができる。遺伝的変異は、化学的突然変異誘発によって産生され得る。ステップ(c)で生育された植物は、生物的または非生物的ストレッサーに曝露され得る。
本明細書に記載の植物で生じる窒素固定の量は、いくつかの方法で、例えばアセチレン還元(AR)アッセイによって測定することができる。アセチレン還元アッセイは、インビトロまたはインビボで行うことができる。特定の細菌が固定窒素を植物に提供しているという証拠には、次が含まれ得る:1)植物の総Nは、接種時に著しく増加し、好ましくは植物におけるN濃度も付随して増加する;2)窒素欠乏症状は、接種時のN制限条件下で軽減される(乾物の増加を含むはずである);3)N固定は、15Nアプローチ(同位体希釈実験、15還元アッセイ、または15N天然存在度アッセイ)の使用を通じて記録される;4)固定Nは、植物タンパク質または代謝産物に組み込まれる;および5)これらの効果のすべてが、非接種植物または接種株の突然変異体を接種した植物では見られない。
野生型窒素固定調節カスケードは、入力OおよびNH が、NORゲートを通過するデジタル論理回路として表すことができ、その出力は、ATPに加えてANDゲートに入る。いくつかの実施形態では、本明細書に開示される方法は、調節カスケードの複数の点で、この回路に対するNH の影響を妨害し、それにより微生物は、施肥した畑地でも窒素を産生することができる。しかしながら、本明細書に開示される方法はまた、回路に対するATPまたはOの影響を変えること、または回路を細胞内の他の調節カスケードで置き換えること、または窒素固定以外の遺伝子回路を変えることを想定する。遺伝子クラスターは、異種調節系の制御下で機能的産生物を生成するように再操作され得る。遺伝子クラスターのコード配列の外および内で天然の調節要素を排除し、それらを代替の調節系で置き換えることによって、複雑な遺伝子オペロンおよび他の遺伝子クラスターの機能的産物を制御する、および/または天然の遺伝子が由来する種以外の異なる種の細胞を含む異種細胞に移動させることができる。再操作されると、合成遺伝子クラスターは、遺伝子回路または他の誘導性調節系によって制御され得、それにより産生物の発現を必要に応じて制御する。発現カセットは、論理ゲート、パルス発生器、発振器、スイッチ、またはメモリデバイスとして機能するように設計することができる。制御発現カセットを、プロモーターに連結することができ、それにより発現カセットは、酸素、温度、接触、浸透圧ストレス、膜ストレス、または酸化還元センサーなどの環境センサーとして機能する。
例として、nifL、nifA、nifT、およびnifX遺伝子は、nif遺伝子クラスターから排除され得る。合成遺伝子は、各アミノ酸配列をコードするDNAをコドンランダム化することによって設計することができる。コドン選択は、コドン使用が天然の遺伝子のコドン使用と可能な限り異なることを指定して行われる。提案された配列は、制限酵素認識部位、トランスポゾン認識部位、反復配列、σ54およびσ70プロモーター、潜在的なリボソーム結合部位、rho独立ターミネーターなどの任意の不要な特徴について走査される。合成リボソーム結合部位は、例えば、遺伝子の開始コドン(-60~+90)を取り囲む150bpが蛍光遺伝子に融合された蛍光レポータープラスミドを構築することによって、対応する各天然のリボソーム結合部位の強度と一致するように選択される。このキメラは、Ptacプロモーターの制御下で発現し、蛍光は、フローサイトメトリーを介して測定することができる。合成リボソーム結合部位を生成するために、150bp(-60~+90)の合成発現カセットを使用したレポータープラスミドのライブラリーが生成される。簡単に言えば、合成発現カセットは、ランダムDNAスペーサー、RBSライブラリーをコードする縮重配列、および各合成遺伝子のコード配列からなり得る。複数のクローンをスクリーニングして、天然のリボソーム結合部位と最もよく一致した合成リボソーム結合部位を特定する。したがって、天然のオペロンと同じ遺伝子からなる合成オペロンが構築され、機能的相補性について試験される。合成オペロンのさらなる例示的な説明は、US2014/0329326に提供されている。
細菌種
本明細書に開示される方法および組成物において有用な微生物は、任意の供給源から入手され得る。場合によっては、微生物は、細菌、古細菌、原生動物、または真菌であり得る。本開示の微生物は、窒素固定微生物、例えば、窒素固定細菌、窒素固定古細菌、窒素固定真菌、窒素固定酵母、または窒素固定原虫であり得る。本明細書に開示される方法および組成物において有用な微生物は、芽胞形成微生物、例えば芽胞形成細菌であり得る。場合によっては、本明細書に開示される方法および組成物において有用な細菌は、グラム陽性細菌またはグラム陰性細菌であり得る。場合によっては、細菌は、フィルミクテス門(Firmicute phylum)の内生胞子形成細菌であり得る。場合によっては、細菌は、ジアザトロフであり得る。場合によっては、細菌は、ジアゾ栄養生物でない可能性がある。
本開示の方法および組成物は、例えば、メタンサーモバクター・サーモオートトロフィカス(Methanothermobacter thermoautotrophicus)などの古細菌とともに使用することができる。
場合によっては、有用であり得る細菌としては、アグロバクテリウム・ラジオバクター(Agrobacterium radiobacter)、バチルス・アシドカルダリウス(Bacillus acidocaldarius)、バチルス・アシドテレストリス(Bacillus acidoterrestris)、バチルス・アグリ(Bacillus agri)、バチルス・アイザワイ(Bacillus aizawai)、バチルス・アルボラクティス(Bacillus albolactis)、バチルス・アルカロフィルス(Bacillus alcalophilus)、バチルス・アルベイ(Bacillus alvei)、バチルス・アミノグルコシディカス(Bacillus aminoglucosidicus)、バチルス・アミノボランス(Bacillus aminovorans)、バチルス・アミロリティカス(Bacillus amylolyticus)(パエニバシラス・アミロリティカス(Paenibacillus amylolyticus)としても知られる)、バチルス・アミロリクエファシエンス(Bacillus amyloliquefaciens)、バチルス・アネウリノリティカス(Bacillus aneurinolyticus)、バチルス・アトロファエウス(Bacillus atrophaeus)、バチルス・アゾトフォーマンス(Bacillus azotoformans)、バチルス・バディウス(Bacillus badius)、バチルス・セレウス(Bacillus cereus)(同義語:バチルス・エンドリトモス(Bacillus endorhythmos)、バチルス・メドゥサ(Bacillus medusa))、バチルス・キチノスポルス(Bacillus chitinosporus)、バチルス・サーキュランス(Bacillus circulans)、バチルス・コアグランス(Bacillus coagulans)、バチルス・エンドパラシチカス(Bacillus endoparasiticus)、バチルス・ファスティディオスス(Bacillus fastidiosus)、バチルス・フィルムス(Bacillus firmus)、バチルス・クルスターキ(Bacillus kurstaki)、バチルス・ラクチコラ(Bacillus lacticola)、バチルス・ラクチモルバス(Bacillus lactimorbus)、バチルス・ラクチス(Bacillus lactis)、バチルス・ラテロスポラス(Bacillus laterosporus)(ブレビバチルス・ラテロスポラス(Brevibacillus laterosporus)としても知られる)、バチルス・ロータス(Bacillus lautus)、バチルス・レンチモルブス(Bacillus lentimorbus)、バチルス・レンタス(Bacillus lentus)、バチルス・リケニホルミス(Bacillus licheniformis)、バチルス・マロカヌス(Bacillus maroccanus)、バチルス・メガテリウム(Bacillus megaterium)、バチルス・メチエンス(Bacillus metiens)、バチルス・ミコイデス(Bacillus mycoides)、バチルス・ナットー(Bacillus natto)、バチルス・ネマトキダ(Bacillus nematocida)、バチルス・ニグリフィカンス(Bacillus nigrificans)、バチルス・ニグルム(Bacillus nigrum)、バチルス・パントテンチカス(Bacillus pantothenticus)、バチルス・ポピリエ(Bacillus popillae)、バチルス・サイクロサッカロリチカス(Bacillus psychrosaccharolyticus)、バチルス・プミルス(Bacillus pumilus)、バチルス・シアメンシス(Bacillus siamensis)、バチルス・スミティ(Bacillus smithii)、バチルス・スファエリクス(Bacillus sphaericus)、バチルス・サブチリス(Bacillus subtilis)、バチルス・チューリンゲンシス(Bacillus thuringiensis)、バチルス・ウニフラゲラツス(Bacillus uniflagellatus)、ブラディリゾビウム・ジャポニクム(Bradyrhizobium japonicum)、ブレビバチルス・ブレビス(Brevibacillus brevis)、ブレビバチルス・ラテロスポルス(Brevibacillus laterosporus)(以前はバチルス・ラテロスポルス(Bacillus laterosporus))、クロモバクテリウム・スプトスガエ(Chromobacterium subtsugae)、デルフチア・アシドボランス(Delftia acidovorans)、ラクトバチルス・アシドフィルス(Lactobacillus acidophilus)、リソバクテル・アンティビオティクス(Lysobacter antibioticus)、リソバクテル・エンジモゲネス(Lysobacter enzymogenes)、パエニバチルス・アルベイ(Paenibacillus alvei)、パエニバチルス・ポリミクサ(Paenibacillus polymyxa)、パエニバチルス・ポピリアエ(Paenibacillus popilliae)(以前はバチルス・ポピリアエ(Bacillus popilliae))、パントエア・アグロメランス(Pantoea agglomerans)、パスツリア・ペネトランス(Pasteuria penetrans)(以前はバチルス・ペネトランス(Bacillus penetrans))、パスツリア・ウスガエ(Pasteuria usgae)、ペクトバクテリウム・カロトボラム(Pectobacterium carotovorum)(以前はエルウィニア・カロトボラム(Erwinia carotovora))、シュードモナス・エルギノーザ(Pseudomonas aeruginosa)、シュードモナス・アウレオファキエンス(Pseudomonas aureofaciens)、シュードモナス・セパシア(Pseudomonas cepacia)(以前はバークホルデリア・セパシア(Burkholderia cepacia)として知られる)、シュードモナス・クロロラピス(Pseudomonas chlororaphis)、シュードモナス・フルオレッセンス(Pseudomonas fluorescens)、シュードモナス・プロラディクス(Pseudomonas proradix)、シュードモナス・プチダ(Pseudomonas putida)、シュードモナス・シリンゲ(Pseudomonas syringae)、セラチア・エントモフィラ(Serratia entomophila)、セラチア・マルセッセンス(Serratia marcescens)、ストレプトマイセス・コロムビエンシス(Streptomyces colombiensis)、ストレプトマイセス・ガルブス(Streptomyces galbus)、ストレプトマイセス・ゴシキエンシス(Streptomyces goshikiensis)、ストレプトマイセス・グリセオビリディス(Streptomyces griseoviridis)、ストレプトマイセス・ラベンジュレ(Streptomyces lavendulae)、ストレプトマイセス・プラシヌス(Streptomyces prasinus)、ストレプトマイセス・サラケティクス(Streptomyces saraceticus)、ストレプトマイセス・ベネズエラエ(Streptomyces venezuelae)、ザントモナス・カンペストリス(Xanthomonas campestris)、ゼノラブダス・ルミネスケンス(Xenorhabdus luminescens)、ゼノラブダス・ネマトフィラ(Xenorhabdus nematophila)、ロドコッカス・グロベルルス(Rhodococcus globerulus)AQ719(NRRL受託番号B-21663)、バチルス種(Bacillus sp.)AQ175(ATCC受託番号55608)、Bacillus sp.AQ 177(ATCC受託番号55609)、Bacillus sp.AQ178(ATCC受託番号53522)、およびストレプトマイセス種(Streptomyces sp.)株NRRL受託番号B-30145が挙げられるが、これらに限定されない。場合によっては、細菌は、アゾトバクター・クロオコッカム(Azotobacter chroococcum)、メタノサルシナ・バルケリ(Methanosarcina barkeri)、クレシエラ・ニューモニエ(Klesiella pneumoniae)、Azotobacter vinelandii、ロドバクター・スフェロイデス(Rhodobacter spharoides)、ロドバクター・カプスラータス(Rhodobacter capsulatus)、ロドバクター・パルストリス(Rhodobcter palustris)、ロドスピリラム・ルブラム(Rhodosporillum rubrum)、リゾビウム・レグミノサルム(Rhizobium leguminosarum)、またはリゾビウム・エトリー(Rhizobium etli)であり得る。
場合によっては、細菌は、クロストリジウム属(Clostridium)の種、例えばクロストリジウム・パストゥリアヌム(Clostridium pasteurianum)、クロストリジウム・ベイジェリンキ(Clostridium beijerinckii)、クロストリジウム・パーフリンジェンス(Clostridium perfringens)、クロストリジウム・テタニ(Clostridium tetani)、クロストリジウム・アセトブチリクム(Clostridium acetobutylicum)であり得る。
場合によっては、本開示の方法および組成物で使用される細菌は、シアノバクテリアであり得る。シアノバクテリア属の例としては、アナベナ属(Anabaena)(例えば、Anagaena種PCC7120)、ネンジュモ属(Nostoc)(例えば、ノストック・パンクテフォルメ(Nostoc punctiforme))、またはシネコシスティス属(Synechocystis)(例えば、Synechocystis種PCC6803)が挙げられる。
場合によっては、本開示の方法および組成物で使用される細菌は、クロロビウム属(Chlorobi)、例えばクロロビウム・テピダム(Chlorobium tepidum)に属し得る。
場合によっては、本開示の方法および組成物で使用される微生物は、既知のNifH遺伝子に相同な遺伝子を含み得る。既知のNifH遺伝子の配列は、例えば、Zehr lab NifHデータベース、(wwwzehr.pmc.ucsc.edu/nifH_Database_Public/、2014年4月4日)またはBuckley lab NifHデータベース(www.css.cornell.edu/faculty/buckley/nifh.htmおよびGaby,John Christian,and Daniel H.Buckley.″A comprehensive aligned nifH gene database:a multipurpose tool for studies of nitrogen-fixing bacteria.″Database 2014(2014):bau001.)に見られ得る。場合によっては、本開示の方法および組成物で使用される微生物は、Zehr lab NifHデータベースからの配列に対して少なくとも60%、70%、80%、85%、90%、95%、96%、96%、98%、99%、または99%以上の配列同一性を有するポリペプチドをコードする配列を含み得る(wwwzehr.pmc.ucsc.edu/nifH_Database_Public/、2014年4月4日)。場合によっては、本開示の方法および組成物で使用される微生物は、Buckley lab NifHデータベースからの配列に対して少なくとも60%、70%、80%、85%、90%、95%、96%、96%、98%、99%、または99%以上の配列同一性を有するポリペプチドをコードする配列を含み得る(Gaby, John Christian, and Daniel H. Buckley.″A comprehensive aligned nifH gene database:a multipurpose tool for studies of nitrogen-fixing bacteria.″Database 2014(2014):bau001.)。
本明細書に開示される方法および組成物において有用な微生物は、天然の植物の表面または組織から微生物を抽出すること、種を粉砕して微生物を分離すること、多様な土壌試料に種子を植え、組織から微生物を回収すること、または植物に外因性微生物を接種し、どの微生物が植物組織に現れるかを決定することによって得ることができる。植物組織の非限定的な例には、種子、苗、葉、切穂、植物、球根、または塊茎が含まれる。場合によっては、細菌は、種子から分離される。試料を処理するためのパラメーターを変化させて、根粒菌、着生植物、またはエンドファイトなどの異なる種類の関連微生物を分離することができる。細菌は、第1の植物から最初に分離する代わりに、環境菌株コレクションなどのリポジトリから調達することもできる。微生物は、分離された微生物のゲノムをシーケンシングすること、植物体の群集の構成をプロファイリングすること、群集または分離された微生物のトランスクリプトーム機能を特徴付けること、または選択培地もしくは表現型培地(例えば、窒素固定もしくはリン酸塩可溶化表現型)を使用して微生物の特徴をスクリーニングすることによって遺伝子型および表現型を決定することができる。選択された候補株または集団は、配列データ、表現型データ、植物データ(例えば、ゲノム、表現型、および/もしくは収量データ)、土壌データ(例えば、pH、N/P/K含有量、および/もしくはバルク土壌生物群集)、またはこれらの任意の組み合わせを介して入手することができる。
本明細書に記載される細菌および細菌を産生する方法は、損傷を与える植物防御反応を誘導することなく、葉表面、根表面、または植物組織内で効率的に自己増殖することができる細菌、または植物防御応答に耐性の細菌に適用することができる。本明細書に記載の細菌は、植物組織抽出物または葉の表面洗浄物を、窒素を添加していない培地で培養することによって分離することができる。しかしながら、細菌は培養不可能であり得る、すなわち、当該技術分野で既知の標準的な方法を使用して培養可能であることが知られていないか、または培養が困難であり得る。本明細書に記載の細菌は、エンドファイトまたは着生植物または植物根圏に生息する細菌(根圏細菌)であり得る。遺伝的変異を導入するステップ、複数の植物に曝露するステップ、および形質が改良された植物から細菌を分離するステップを1回以上(例えば、1、2、3、4、5、10、15、25回、またはそれ以上)繰り返した後に得られる細菌は、内生性、着生性、または根圏性であり得る。エンドファイトは、病気の症状を引き起こしたり、共生構造の形成を誘発したりすることなく植物の内部に侵入する生物であり、植物の成長を促進し、植物の栄養を改良できるため(例えば、窒素固定を通じて)、農業的に興味深い。細菌は、種子伝染性エンドファイトであり得る。種子伝染性エンドファイトには、草または植物の種子に関連または由来する細菌、例えば成熟、乾燥した損傷のない(例えば、割れ、目に見える真菌感染、または未成熟の発芽がない)種子に見られる種子伝染性細菌エンドファイトが含まれる。種子伝染性細菌エンドファイトは、種子の表面に関連または由来し得るか、あるいはさらに、(例えば、表面滅菌された種子の)内部種子区画に関連または由来し得る。場合によっては、種子伝染性細菌エンドファイトは、植物組織内、例えば、種子の内部で複製することができる。また、場合によっては、種子伝染性細菌エンドファイトは、乾燥に耐えることができる。
本開示の方法に従って分離された、または本開示の方法もしくは組成物で使用される細菌は、複数の異なる細菌分類群を組み合わせて含むことができる。例として、細菌としては、プロテオバクテリア(Proteobacteria)(例えば、シュードモナス(Pseudomonas)、エンテロバクター(Enterobacter)、ステノトロホモナス(Stenotrophomonas)、バークホルデリア(Burkholderia)、リゾビウム(Rhizobium)、ヘルバスピリラム(Herbaspirillum)、パントエア(Pantoea)、セラチア(Serratia)、ラーニア(Rahnella)、アゾスピリルム(Azospirillum)、アゾリゾビウム(Azorhizobium)、アゾトバクター(Azotobacter)、デュガネラ(Duganella)、デルフチア(Delftia)、ブラディリゾビウム(Bradyrhizobiun)、シノリゾビウム(Sinorhizobium)およびハロモナス(Halomonas))、フィルミクテス(Firmicutes)(例えば、Bacillus、パエニバシラス(Paenibacillus)、ラクトバチルス(Lactobacillus)、マイコプラズマ(Mycoplasma)、およびアセトバクテリウム(Acetabacterium))、ならびにアクチノバクテリア(Actinobacteria)(例えば、ストレプトマイセス(Streptomyces)、ロドコッカス(Rhodacoccus)、ミクロバクテリウム(Microbacterium)、およびクルトバクテリウム(Curtobacterium))を挙げることができる。本開示の方法および組成物で使用される細菌は、2つ以上の種の窒素固定細菌共同体を含み得る。場合によっては、細菌共同体の1つ以上の細菌種が、窒素固定可能であり得る。場合によっては、細菌共同体の1つ以上の種が、他の細菌が窒素を固定する能力を促進または強化し得る。窒素を固定する細菌および他の細菌が窒素を固定する能力を強化する細菌は、同じでも異なっていてもよい。いくつかの例では、細菌株は、異なる細菌株と組み合わせた場合、またはある特定の細菌共同体で窒素を固定することができても、単一培養では窒素を固定できない場合がある。窒素固定細菌共同体に見られ得る細菌属の例には、Herbaspirillum、Azospirillum、Enterobacter、およびBacillusが含まれるが、これらに限定されない。
本明細書に開示された方法によって産生され得る細菌には、Azotobacter sp.、ブラディリゾビウム(Bradyrhizobium)sp.、クレブシエラ(Klebsiella)sp.、およびSinorhizobium sp.が含まれる。場合によっては、細菌は、Azotobacter vinelandii、Bradyrhizobium japonicum、Klebsiella pneumoniae、およびシノリゾビウム・メリロティ(Sinorhizobium meliloti)からなる群から選択することができる。場合によっては、細菌は、Enterobacter属またはRahnella属であり得る。場合によっては、細菌は、フランキア(Frankia)属またはClostridium属であり得る。Clostridium属の細菌の例としては、クロストリジウム・アセトブチリクム(Clostridium acetobutilicum)、Clostridium pasteurianum、Clostridium beijerinckii、Clostridium perfringens、およびClostridium tetaniが挙げられるが、これらに限定されない。場合によっては、細菌は、Paenibacillus属、例えば、パエニバチルス・アゾトフィクサンス(Paenibacillus azotofixans)、パエニバチルス・ボレアリス(Paenibacillus borealis)、パエニバチルス・デュラス(Paenibacillus durus)、パエニバチルス・マセランス(Paenibacillus macerans)、Paenibacillus polymyxa、Paenibacillus alvei、Paenibacillus amylolyticus、パエニバチルス・キャンピナセンシス(Paenibacillus campinasensis)、パエニバチルス・チベンシス(Paenibacillus chibensis)、パエニバチルス・グルカノリティカス(Paenibacillus glucanolyticus)、パエニバチルス・イリノイセンシス(Paenibacillus illinoisensis)、パエニバチルス・ラルバエ(Paenibacillus larvae)subsp. ラルバエ(Larvae)、Paenibacillus larvae subsp. プルビファシエンス(Pulvifaciens)、パエニバチルス・ラウタス(Paenibacillus lautus)、Paenibacillus macerans、パエニバチルス・マッカリエンシス(Paenibacillus macquariensis)、Paenibacillus macquariensis、パエニバチルス・パブリ(Paenibacillus pabuli)、パエニバチルス・ペオリアエ(Paenibacillus peoriae)、またはPaenibacillus polymyxaであり得る。
いくつかの例では、本開示の方法に従って分離された細菌は、以下の分類群のうちの1つ以上のメンバーであり得る:アクロモバクター(Achromobacter)、アシドチオバチルス(Acidithiobacillus)、アシドボラックス(Acidovorax)、アシドボラズ(Acidovoraz)、アシネトバクター(Acinetobacter)、アクチノプラネス(Actinoplanes)、アドレクルーツィア(Adlercreutzia)、アエロコッカス(Aerococcus)、エロモナス(Aeromonas)、アフピア(Afipia)、アグロマイセス(Agromyces)、アンキロバクター(Ancylobacter)、アルスロバクター(Arthrobacter)、アトポスティペス(Atopostipes)、Azospirillum、Bacillus、ブデロビブリオ(Bdellovibrio)、ベイエリンキア(Beijerinckia)、ボセア(Bosea)、Bradyrhizobium、ブレビバチルス(Brevibacillus)、ブレバンディモナス(Brevundimonas)、Burkholderia、カンジダツス・ハロレディビバス(Candidatus Haloredivivus)、カウロバクター(Caulobacter)、セルロモナス(Cellulomonas)、セルビブリオ(Cellvibrio)、クリセオバクテリウム(Chryseobacterium)、シトロバクター(Citrobacter)、Clostridium、コラリオマルガリータ(Coraliomargarita)、コリネバクテリウム(Corynebacterium)、カプリアビダス(Cupriavidus)、Curtobacterium、カービバクター(Curvibacter)、デイノコッカス(Deinococcus)、Delftia、デセムジア(Desemzia)、デボシア(Devosia)、ドクドネラ(Dokdonella)、ディエラ(Dyella)、エンヒドロバクター(Enhydrobacter)、Enterobacter、エンテロコッカス(Enterococcus)、エルウィニア(Erwinia)、エスケリキア(Escherichia)、Escherichia/シゲラ(Shigella)、エキシグオバクテリウム(Exiguobacterium)、フェログロバス(Ferroglobus)、フィリモナス(Filimonas)、フィネゴルディア(Finegoldia)、フラビソリバクター(Flavisolibacter)、フラボバクテリウム(Flavobacterium)、フリゴリバクテリウム(Frigoribacterium)、グルコナセトバクター(Gluconacetobacter)、ハフニア(Hafnia)、ハロバクラム(Halobaculum)、Halomonas、ハロシンプレックス(Halosimplex)、Herbaspirillum、ハイメノバクター(Hymenobacter)、Klebsiella、コクリア(Kocuria)、Kosakonia、Lactobacillus、レクレシア(Leclercia)、レントジア(Lentzea)、ルテイバクター(Luteibacter)、ルテイモナス(Luteimonas)、マッシリア(Massilia)、メソリゾビウム(Mesorhizobium)、メチロバクテリウム(Methylobacterium)、Microbacterium、マイクロコッカス(Micrococcus)、マイクロビルガ(Microvirga)、マイコバクテリウム(Mycobacterium)、ナイセリア(Neisseria)、ノカルディア(Nocardia)、オセアニバクラム(Oceanibaculum)、オクロバクテリウム(Ochrobactrum)、オキバクテリウム(Okibacterium)、オリゴトロファ(Oligotropha)、オリジフムス(Oryzihumus)、オキサロファガス(Oxalophagus)、Paenibacillus、パントエア(Panteoa)、Pantoea、ペロモナス(Pelomonas)、ペルルシジバカ(Perlucidibaca)、プラチバクター(Plantibacter)、ポリヌクレオバクター(Polynucleobacter)、プロピオニバクテリウム(Propionibacterium)、プロピオニシクラバ(Propioniciclava)、シュードクラビバクター(Pseudoclavibacter)、Pseudomonas、シュードノカルディア(Pseudonocardia)、シュードザントモナス(Pseudoxanthomonas)、サイクロバクター(Psychrobacter)、ラルストニア(Ralstonia)、ラインハイメラ(Rheinheimera)、Rhizobium、Rhodococcus、ロドシュードモナス(Rhodopseudomonas)、ロセアテレス(Roseateles)、ルミノコッカス(Ruminococcus)、セバルデラ(Sebaldella)、セディミニバシラス(Sediminibacillus)、セディミニバクテリウム(Sediminibacterium)、Serratia、Shigella、シネラ(Shinella)、Sinorhizobium、シノスポランギウム(Sinosporangium)、スフィンゴバクテリウム(Sphingobacterium)、スフィンゴモナス(Sphingomonas)、スフィンゴピクシス(Sphingopyxis)、スフィンゴシニセラ(Sphingosinicella)、スタフィロコッカス(Staphylococcus)、25 Stenotrophomonas、ストレノトロホモナス(Strenotrophomonas)、ストレプトコッカス(Streptococcus)、Streptomyces、スチギオロブス(Stygiolobus)、スルフリスパエラ(Sulfurisphaera)、テイタメラ(Tatumella)、テピディモナス(Tepidimonas)、サーモモナス(Thermomonas)、チオバチルス(Thiobacillus)、バリオボラックス(Variovorax)、WPS-2 属の所属不明(genera incertae sedis)、ザントモナス(Xanthomonas)、およびジマーマンネラ(Zimmermannella)。
細菌は、土壌、植物、菌類、動物(無脊椎動物を含む)、ならびに湖および川の堆積物、水、生物相を含む他の生物相を含む、あらゆる一般的な陸地環境から;海洋環境、その生物相、および堆積物(例えば、海水、海洋泥、海洋植物、海洋無脊椎動物(例えば、海綿動物)、海洋脊椎動物(例えば、魚))から;陸地および海洋の地圏(レゴリスおよび岩、例えば砕かれた地下の岩、砂、および粘土);雪氷圏およびその融水;大気(例えば、ろ過された空気中のほこり、雲、および雨のしずく);都市、産業、および他の人工環境(例えば、コンクリート、道端の側溝、屋根の表面、および路面に蓄積した有機物および鉱物)から得ることができる。
細菌が得られる植物は、1つ以上の望ましい形質を有する植物、例えば、特定の環境またはある特定の目的の条件下で自然に成長する植物であってよい。例として、ある特定の植物は、砂質土壌もしくは高塩分の砂、または極端な温度下、または水がほとんどない状態で自然に成長し得るか、あるいは環境に存在するある特定の害虫または病気に耐性がある可能性があり、特にそれらが、例えば、特定の地理的場所で利用可能な唯一の条件である場合、そのような条件で栽培される商業作物にとって望ましい場合がある。さらなる例として、細菌は、そのような環境で栽培された商業作物から、またはより具体的には、任意の特定の環境で栽培された作物の中で目的の形質を最もよく示す個々の作物植物から、例えば、生理食塩水が制限された土壌で栽培された作物、または深刻な虫害もしくは病気の流行にさらされた作物の中で最も被害の少ない植物、またはある特定の代謝産物および繊維含有量、油含有量等を含む他の化合物の望ましい量を有する植物、または望ましい色、味、もしくは匂いを示す植物から収集することができる。細菌は、目的の植物、または真菌および他の動物および植物の生物相、土壌、水、堆積物、ならびに以前に言及した環境の他の要素を含む、目的の環境で発生する任意の物質から収集することができる。
細菌は、植物組織から分離することができる。この分離は、例えば根、茎、および葉、ならびに植物生殖組織を含む、植物中の任意の適切な組織から起こり得る。例として、植物からの分離のための従来の方法は、典型的に、目的の植物材料の無菌切除(例えば、根または茎の長さ、葉)、適切な溶液(例えば、2%次亜塩素酸ナトリウム)による表面滅菌を含み、その後、植物材料は、微生物の成長のために栄養培地に置かれる。あるいは、表面が滅菌された植物材料は、好適な固体寒天培地(複数可)の表面全体に広がった粉砕植物材料の小片を含む滅菌液体(通常は水)および液体懸濁液で粉砕することができ、これは選択的であってもなくてもよい(例えば、リン源としてフィチン酸のみを含有する)。このアプローチは、分離されたコロニーを形成し、個別に取り除いて栄養培地のプレートを分離し、周知の方法によって単一種にさらに精製することができる細菌に特に有用である。あるいは、植物の根または葉の試料を表面滅菌せず、単に軽く洗浄することができるため、分離プロセスにおいて表面に生息する着生微生物が含まれるか、または植物の根、幹、もしくは葉の小片を寒天培地の表面に押し付けて引き上げ、次いで上記のように個々のコロニーを分離することによって、着生微生物を別々に分離することができる。このアプローチは、例えば、細菌に特に有用である。あるいは、根に付着した少量の土壌を洗い落とすことなく、根を処理することができるため、植物根圏にコロニーを形成する微生物が含まれる。それ以外では、根に付着した土壌を取り除き、希釈し、好適な選択培地および非選択培地の寒天上に広げて、根圏細菌の個々のコロニーを分離することができる。
Rahnella aquatilisおよびエンテロバクターサッカリ(Enterobacter sacchari)の生物学的に純粋な培養物は、2015年7月14日にアメリカ培養細胞系統保存機関(American Type Culture Collection(ATCC);国際寄託機関)(Manassas,VA,USA)に寄託され、それぞれATTC特許寄託指定番号PTA-122293およびPTA-122294が割り当てられた。これらの寄託は、特許手続上の微生物の寄託の国際承認に関するブダペスト条約および規則(ブダペスト条約)の規定に基づいて行われた。
組成物
本明細書に記載の方法に従って産生された、および/または本明細書に記載のような特性を有する細菌または細菌集団を含む組成物は、液体、泡、または乾燥製品の形態であり得る。いくつかの例では、細菌集団を含む組成物は、乾燥粉末、粉末および水のスラリー、または流動可能な種子処理剤の形態であり得る。
組成物は、連続撹拌タンク反応器、バッチ反応器などのバイオリアクターで、および農場で製造することができる。いくつかの例では、組成物は、水差しなどの容器またはミニバルクで保管することができる。いくつかの例では、組成物は、ボトル、瓶、アンプル、パッケージ、容器、バッグ、ボックス、ビン、封筒、カートン、コンテナ、サイロ、輸送コンテナ、トラックベッド、および/またはケースからなる群から選択される物体内で保管され得る。
組成物を使用して、植物の形質を改良することもできる。いくつかの例では、1つ以上の組成物を種子にコーティングすることができる。いくつかの例では、1つ以上の組成物を苗にコーティングすることができる。いくつかの例では、1つ以上の組成物を種子の表面にコーティングすることができる。いくつかの例では、1つ以上の組成物を種子の表面の上の層としてコーティングすることができる。いくつかの例では、種子にコーティングされる組成物は、液体の形態、乾燥製品の形態、泡の形態、粉末および水のスラリーの形態、または流動性の種子処理剤であり得る。いくつかの例では、1つ以上の組成物は、1つ以上の組成物で種子および/または苗に噴霧、浸漬、コーティング、カプセル化、および/または散布することによって種子および/または苗に適用することができる。いくつかの例では、複数の細菌または細菌集団を、植物の種子および/または苗にコーティングすることができる。いくつかの例では、細菌の組み合わせの少なくとも2、少なくとも3、少なくとも4、少なくとも5、少なくとも6、少なくとも7、少なくとも8、少なくとも9、少なくとも10、または10以上の細菌は、以下の属:Acidovorax、アグロバクテリウム(Agrobacterium)、Bacillus、Burkholderia、Chryseobacterium、Curtobacterium、Enterobacter、Escherichia、Methylobacterium、Paenibacillus、Pantoea、Pseudomonas、Ralstonia、サッカリバチルス(Saccharibacillus)、Sphingomonas、およびStenotrophomonasのうちの1つから選択され得る。
いくつかの例では、エンドファイトの組み合わせの少なくとも2、少なくとも3、少なくとも4、少なくとも5、少なくとも6、少なくとも7、少なくとも8、少なくとも9、少なくとも10、または10以上の細菌および細菌集団は、以下のファミリー:バシラス科(Bacillaceae)、バークホルデリア科(Burkholderiaceae)、コマモナス科(Comamonadaceae)、腸内細菌科(Enterobacteriaceae)、フラボバクテリウム科(Flavobacteriaceae)、メチルバクテリア科(Methylobacteriaceae)、マイクロバクテリウム科(Microbacteriaceae)、パエニバシラス科(Paenibacillileae)、シュードモナス科(Pseudomonnaceae)、リゾビウム科(Rhizobiaceae)、スフィンゴモナス科(Sphingomonadaceae)、キサントモナス科(Xanthomonadaceae)、クラドスポリウム科(Cladosporiaceae)、グノモニア科(Gnomoniaceae)、所属不明(Incertae sedis)、ラシオスパエリア科(Lasiosphaeriaceae)、ベニアワツブタケ科(Netriaceae)、およびプレオスポラ科(Pleosporaceae)のうちの1つから選択される。
いくつかの例では、エンドファイトの組み合わせの少なくとも2、少なくとも3、少なくとも4、少なくとも5、少なくとも6、少なくとも7、少なくとも8、少なくとも夜、少なくとも10、または10以上の細菌および細菌集団は、以下のファミリー:Bacillaceae、Burkholderiaceae、Comamonadaceae、Enterobacteriaceae、Flavobacteriaceae、Methylobacteriaceae、Microbacteriaceae、Paenibacillileae、Pseudomonnaceae、Rhizobiaceae、Sphingomonadaceae、Xanthomonadaceae、Cladosporiaceae、Gnomoniaceae、Incertae sedis、Lasiosphaeriaceae、Netriaceae、およびPleosporaceaeのうちの1つから選択される。
組成物の例には、商業的に重要な農作物、例えば、モロコシ、キャノーラ、トマト、イチゴ、大麦、稲、トウモロコシ、および小麦のための種子コーティングが含まれ得る。組成物の例には、トウモロコシ、大豆、キャノーラ、モロコシ、ジャガイモ、稲、野菜、穀物、および油糧種子のための種子コーティングも含まれ得る。本明細書で提供される種子は、遺伝子組み換え生物(GMO)、非GMO、有機物、または従来のものであり得る。いくつかの例では、組成物は、植物の空中部分に噴霧するか、または植物種子が植えられている溝に挿入する、土壌に散水する、または組成物の懸濁液に根を浸すことによって根に適用することができる。いくつかの例では、組成物は、細胞生存率および宿主植物に人工的に接種してコロニーを形成する能力を維持する好適な方法で脱水されてもよい。細菌種は、10~1010CFU/mLの濃度で組成物中に存在してもよい。いくつかの例では、組成物は、モリブデンイオン、鉄イオン、マンガンイオン、またはこれらのイオンの組み合わせなどの微量金属イオンで補足されてもよい。本明細書に記載の組成物の例におけるイオンの濃度は、約0.1mM~約50mMであってよい。組成物のいくつかの例はまた、β-グルカン、カルボキシルメチルセルロース(CMC)、細菌の細胞外ポリマー物質(EPS)、糖、動物乳、または他の好適な担体などの担体とともに配合されてもよい。いくつかの例では、泥炭または植栽材料を担体として使用することができ、または組成物が生体高分子に封入されている生体高分子を担体として使用することができる。
本明細書に記載の細菌集団を含む組成物は、種子の表面にコーティングされてもよい。したがって、本明細書に記載の1つ以上の細菌でコーティングされた種子を含む組成物もまた企図される。種のコーティングは、細菌集団を多孔性で化学的に不活性な粒状担体と混合することによって形成することができる。あるいは、組成物は、種子が植えられている溝に直接挿入するか、または植物の葉に噴霧するか、または組成物の懸濁液に根を浸すことによって適用することができる。有効量の組成物を使用して、植物の根に隣接する亜土壌領域に生菌成長を定着させるか、または植物の葉に生菌成長を定着させることができる。一般に、有効量は、改良された形質(例えば、望ましいレベルの窒素固定)を有する植物をもたらすのに十分な量である。
本明細書に記載の細菌組成物は、農業的に許容される担体を使用して配合することができる。これらの実施形態に有用な製剤は、粘着付与剤、微生物安定剤、殺菌剤、抗菌剤、防腐剤、安定剤、界面活性剤、抗錯化剤、除草剤、殺線虫剤、殺虫剤、植物成長調節剤、肥料、殺鼠剤、乾燥剤、殺菌剤、栄養素、またはそれらの任意の組み合わせからなる群から選択される少なくとも1つのメンバーを含み得る。いくつかの例では、組成物は、貯蔵安定性であり得る。例えば、本明細書に記載の組成物のうちのいずれも、農業上許容される担体(例えば、非天然に存在する肥料などの肥料、非天然に存在する付着剤などの付着剤、および非天然に存在する農薬などの農薬のうちの1つ以上)を含み得る。非天然に存在する付着剤は、例えば、ポリマー、コポリマー、または合成ワックスであり得る。例えば、本明細書に記載のコーティングされた種子、苗、または植物のうちのいずれも、種子コーティング中にそのような農業的に許容される担体を含有し得る。本明細書に記載の組成物または方法のうちのいずれにおいても、農業的に許容される担体は、非天然に存在する化合物(例えば、非天然に存在する肥料、ポリマー、コポリマー、もしくは合成ワックスなどの非天然に存在する付着剤、または非天然に存在する農薬)であり得るか、あるいはそれを含み得る。農業的に許容される担体の非限定的な例を以下に説明する。農業的に許容される担体のさらなる例は、当該技術分野で知られている。
場合によっては、細菌は、農業上許容される担体と混合される。担体は、固体担体または液体担体であり得、ミクロスフェア、粉末、乳濁液等を含む様々な形態であり得る。担体は、増加した安定性、湿潤性、または分散性などの様々な特性を付与するいくつかの担体のうちの任意の1つ以上であってよい。非イオン性もしくはイオン性界面活性剤であり得る天然もしくは合成界面活性剤などの湿潤剤、またはそれらの組み合わせを組成物に含めることができる。油中水型エマルジョンを使用して、分離された細菌を含む組成物を配合することもできる(例えば、米国特許第7,485,451号を参照)。調製することができる好適な製剤としては、水和剤、顆粒、ゲル、寒天ストリップまたはペレット、増粘剤等、マイクロカプセル化粒子等、液体、例えば水性流動性物質、水性懸濁液、油中水型エマルジョン等が挙げられる。製剤は、穀物または豆類製品、例えば、粉砕された穀物または豆、穀物または豆に由来するブロスまたは小麦粉、デンプン、砂糖、または油を含み得る。
いくつかの実施形態では、農業用担体は、土壌または植物成長培地であってよい。使用できる他の農業用担体には、水、肥料、植物ベースの油、保湿剤、またはそれらの組み合わせが含まれる。あるいは、農業用担体は、珪藻土、ローム、シリカ、アルギン酸塩、粘土、ベントナイト、バーミキュライト、果皮、他の植物および動物製品、または顆粒、ペレット、または懸濁剤を含む組み合わせなどの固体であってもよい。前述の成分のうちのいずれかの混合物も、ペスタ(小麦粉およびカオリン粘土)、寒天、またはローム、砂、もしくは粘土等の小麦粉ベースのペレットなどの担体として企図されている。製剤は、大麦、稲などの細菌の食物源、または種子、植物の部分、サトウキビのバガス、穀物加工からの殻もしくは茎、建設現場のごみからの粉砕された植物材料もしくは木材、紙のリサイクルからのおがくずもしくは小さな繊維、生地、または木を含み得る。
例えば、肥料を使用して、成長の促進を助けるか、または種子、苗、もしくは植物に栄養素を供給することができる。肥料の非限定的な例としては、窒素、リン、カリウム、カルシウム、硫黄、マグネシウム、ホウ素、塩化物、マンガン、鉄、亜鉛、銅、モリブデン、およびセレン(またはその塩)が挙げられる。肥料の追加の例としては、1つ以上のアミノ酸、塩、炭水化物、ビタミン、グルコース、NaCl、酵母エキス、NHPO、(NHSO、グリセロール、バリン、L-ロイシン、乳酸、プロピオン酸、コハク酸、リンゴ酸、クエン酸、KH酒石酸、キシロース、リキソース、およびレシチンが挙げられる。一実施形態では、製剤は、他の活性剤を物質(例えば、種子の表面)に結合するのを助ける粘着付与剤または付着剤(接着剤と呼ばれる)を含むことができる。そのような薬剤は、細菌を他の化合物(例えば、生物学的でない防除剤)を含み得る担体と組み合わせて、コーティング組成物を生成するのに有用である。そのような組成物は、植物または種子の周りにコーティングを作成して、微生物および他の薬剤と植物または植物部分との接触を維持するのに役立つ。一実施形態では、接着剤は、アルギン酸塩、ガム、デンプン、レシチン、ホルモノネチン、ポリビニルアルコール、ホルモノネチン酸アルカリ、ヘスペレチン、ポリ酢酸ビニル、セファリン、アラビアゴム、キサンタンガム、鉱物油、ポリエチレングリコール(PEG)、ポリビニルピロリドン(PVP)、アラビノガラクタン、メチルセルロース、PEG 400、キトサン、ポリアクリルアミド、ポリアクリレート、ポリアクリロニトリル、グリセロール、トリエチレングリコール、酢酸ビニル、ジェランガム、ポリスチレン、ポリビニル、カルボキシメチルセルロース、ガティガム、およびポリオキシエチレン-ポリオキシブチレンブロックコポリマーからなる群から選択される。
いくつかの実施形態では、接着剤は、例えば、カルナバワックス、蜜蝋、チャイニーズワックス、シェラックワックス、スペルマセチワックス、キャンデリラワックス、キャスターワックス、オウリキュリーワックス、および米ぬかワックスなどのワックス、多糖類(例えば、デンプン、デキストリン、マルトデキストリン、アルギン酸塩、およびキトサン)、脂肪、油、タンパク質(例えば、ゼラチンおよびゼイン)、耕作用ゴム、ならびにシェラックであり得る。接着剤は、非天然に存在する化合物、例えば、ポリマー、コポリマー、およびワックスであり得る。例えば、接着剤として使用できるポリマーの非限定的な例としては、ポリ酢酸ビニル、ポリ酢酸ビニルコポリマー、エチレン酢酸ビニル(EVA)コポリマー、ポリビニルアルコール、ポリビニルアルコールコポリマー、セルロース(例えば、エチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、およびカルボキシメチルセルロース)、ポリビニルピロリドン、塩化ビニル、塩化ビニリデンコポリマー、リグノスルホン酸カルシウム、アクリル系コポリマー、ポリビニルアクリレート、ポリエチレンオキシド、アシルアミドポリマーおよびコポリマー、ポリヒドロキシエチルアクリレート、メチルアクリルアミドモノマー、ならびにポリクロロプレンが挙げられる。
いくつかの例では、付着剤、抗真菌剤、成長調節剤、および農薬(例えば、殺虫剤)のうちの1つ以上は、(例えば、任意の組み合わせで)非天然に存在する化合物である。農業的に許容される担体の追加の例としては、分散剤(例えば、ポリビニルピロリドン/酢酸ビニルPVPIVA S-630)、界面活性剤、結合剤、および充填剤が挙げられる。
製剤はまた、界面活性剤を含み得る。界面活性剤の非限定的な例としては、Prefer 28(Cenex)、Surf-N(US)、Inhance(Brandt)、P-28(Wilfarm)、およびPatrol(Helena)などの窒素-界面活性剤ブレンドが挙げられる。エステル化種油としては、Sun-It II(AmCy)、MSO(UAP)、Scoil(Agsco)、Hasten(Wilfarm)、およびMes-100(Drexel)が挙げられる。オルガノ-シリコーン界面活性剤としては、Silwet L77(UAP)、Silikin(Terra)、Dyne-Amic(Helena)、Kinetic(Helena)、Sylgard 309(Wilbur-Ellis)、およびCentury(Precision)が挙げられる。一実施形態では、界面活性剤は、0.01% v/v~10% v/vの間の濃度で存在する。別の実施形態では、界面活性剤は、0.1% v/v~1% v/vの間の濃度で存在する。
ある特定の場合において、製剤は、微生物安定剤を含む。そのような薬剤は、乾燥剤を含むことができ、これは、化合物(複数可)が実際に液体接種剤に対して乾燥効果を有するような濃度で使用されるかどうかにかかわらず、乾燥剤として分類できる任意の化合物または化合物の混合物を含むことができる。そのような乾燥剤は、使用される細菌集団と理想的に適合し、微生物集団が種子への適用を生き延び、乾燥を生き延びる能力を促進するはずである。好適な乾燥剤の例としては、トレハロース、スクロース、グリセロール、およびメチレングリコールのうちの1つ以上が挙げられる。他の好適な乾燥剤としては、非還元糖および糖アルコール(例えば、マンニトールまたはソルビトール)が挙げられるが、これらに限定されない。製剤に導入される乾燥剤の量は、重量/容量で約5%~約50%、例えば、約10%~約40%、約15%~約35%、または約20%~約30%の範囲であり得る。場合によっては、製剤が、殺菌剤、抗菌剤、除草剤、殺線虫剤、殺虫剤、植物成長調節剤、殺鼠剤、殺菌剤、または栄養素などの薬剤を含むことが有利である。いくつかの例では、薬剤は、種子表面伝染性病原体に対する保護を提供する保護剤を含み得る。いくつかの例では、保護剤は、土壌伝染性病原体のある程度の防除を提供することができる。いくつかの例では、保護剤は、主に種子表面で有効であり得る。
いくつかの例では、殺菌剤は、化学的であろうと生物学的であろうと、真菌の成長を阻害するかまたは真菌を殺すことができる化合物または薬剤を含み得る。いくつかの例では、殺菌剤は、静真菌性または殺真菌性であり得る化合物を含み得る。いくつかの例では、殺菌剤は、保護剤、または主に種子表面で有効である薬剤であり、種子表面伝染性病原体に対する保護を提供し、土壌伝染性病原体のある程度の防除を提供する。保護剤殺菌剤の非限定的な例としては、キャプタン、マネブ、チラム、またはフルジオキソニルが挙げられる。
いくつかの例では、殺菌剤は、浸透性殺菌剤であり得、これは、出現する苗に吸収され、宿主植物組織内の真菌を阻害または殺すことができる。種子処理剤に使用される浸透性殺菌剤としては、アゾキシストロビン、カルボシン、メフェノキサム、メタラキシル、チアベンダゾール、トリフロキシストロビン、ならびにジフェノコナゾール、イプコナゾール、テブコナゾール、およびトリチコナゾールを含む様々なトリアゾール殺菌剤が挙げられるが、これらに限定されない。メフェノキサムおよびメタラキシルは、主に水カビ真菌のフハイカビ(Pythium)およびエキビョウキン(Phytophthora)を標的にするために使用される。病原菌種の感受性の微妙な違いのため、または殺菌剤の分布または植物の感受性の違いのため、植物種によっては、いくつかの殺菌剤が他のものよりも優先される。いくつかの例では、殺菌剤は、細菌または真菌などの生物的防除剤であり得る。そのような生物は、病原菌に対して寄生性であるか、または菌類を殺すか、それ以外では菌類の成長を妨げることができる毒素または他の物質を分泌し得る。任意のタイプの殺菌剤、特に植物で一般的に使用される殺菌剤は、種子組成物中の防除剤として使用することができる。
いくつかの例では、種子コーティング組成物は、抗菌特性を有する防除剤を含む。一実施形態では、抗菌特性を有する防除剤は、本明細書の他の場所に記載されている化合物から選択される。別の実施形態では、化合物はストレプトマイシン、オキシテトラサイクリン、オキソリン酸、またはゲンタマイシンである。種子コーティング組成物の一部として使用できる抗菌化合物の他の例としては、ジクロロフェンおよびベンジルアルコールヘミホルマール(ICIのProxel(登録商標)またはThor ChemieのActicide(登録商標)RSおよびRohm&HaasのKathon(登録商標)MK 25)、ならびにアルキルイソチアゾリノンおよびベンズイソチアゾリノン(Thor ChemieのActicide(登録商標)MBS)などのイソチアゾリノン誘導体が挙げられる。
いくつかの例では、成長調節剤は、アブシジン酸、アミドクロル、アンシミドール、6-ベンジルアミノプリン、ブラシノライド、ブトラリン、クロルメクアット(クロルメクアットクロリド)、塩化コリン、シクラニリド、ダミノジド、ジケグラック、ジメチピン、2,6-ジメチルプリジン、エテホン、フルメトラリン、フルルプリミドール、フルチアセット、フォルクロルフェヌロン、ジベレリン酸、イナベンフィド、インドール-3-酢酸、マレイン酸ヒドラジド、メフルイジド、メピコート(メピコートクロライド)、ナフタレン酢酸、N-6-ベンジルアデニン、パクロブトラゾール、プロヘキサジオンホスホロトリチオエート、2,3,5-トリヨード安息香酸、トリネキサパック-エチル、およびウニコナゾールからなる群から選択される。成長調節剤の追加の非限定的な例としては、ブラシノステロイド、サイトカイニン(例えば、キネチンおよびゼアチン)、オーキシン(例えば、インドリル酢酸およびアスパラギン酸インドリルアセチル)、フラボノイドおよびイソフラバノイド(例えば、ホルモノネチンおよびジオスメチン)、フィトアイキシン(例えば、グリセオリン)、およびフィトアレキシン誘導性オリゴ糖(例えば、ペクチン、キチン、キトサン、ポリガラクロン酸、およびオリゴガラクツロン酸)、およびジベレリンが挙げられる。そのような薬剤は、製剤が適用される農業用種子または苗と理想的に適合する(例えば、それは植物の成長または健康に有害であってはならない)。さらに、この薬剤は、理想的には、人間、動物、または産業での使用に安全上の懸念を引き起こさないものである(例えば、安全性の問題がない、または化合物が十分に不安定であるため、植物に由来する商品植物製品に微量の化合物が含まれている)。
線虫拮抗生物防除剤のいくつかの例としては、ARF18;30 アルツロボトリス(Arthrobotrys)spp.;ケトミウム(Chaetomium)spp.;シリンドロカルポン(Cylindrocarpon)spp.;エキソフィラ(Exophilia)spp.;フザリウム(Fusarium)spp.;グリオクラディウム(Gliocladium)spp.;ヒルステラ(Hirsutella)spp.;レカニシリウム(Lecanicillium)spp.;モナクロスポリウム(Monacrosporium)spp.;ミロセシウム(Myrothecium)spp.;ネオコスモスポラ(Neocosmospora)spp.;パエシロミセス(Paecilomyces)spp.;ポコニア(Pochonia)spp.;スタゴノスポラ(Stagonospora)spp.;のう状樹枝状菌根菌、Burkholderia spp.;パスツリア(Pasteuria)spp.、Brevibacillus spp.;Pseudomonas spp.;および根圏細菌(Rhizobacteria)が挙げられる。特に好ましい線虫拮抗生物防除剤としては、ARF18、アルツロボトリス・オリゴスポラ(Arthrobotrys oligospora)、アルツロボトリス・ダクチロイデス(Arthrobotrys dactyloides)、ケトミウム・グロブサム(Chaetomium globosum)、シリンドロカルポン・ヘテロネマ(Cylindrocarpon heteronema)、エキソフィラ・ジェンセルメイ(Exophilia jeanselmei)、エキソフィラ・ピシフィラ(Exophilia pisciphila)、フザリウム・アスペルギルス(Fusarium aspergilus)、フザリウム・ソラニ(Fusarium solani)、グリオクラディウム・カテヌラタム(Gliocladium catenulatum)、グリオクラディウム・ロセウム(Gliocladium roseum)、グリオクラディウム・ビキセンス(Gliocladium vixens)、ヒルステラ・ロシリエンシス(Hirsutella rhossiliensis)、ヒルステラ・ミネソテンシス(Hirsutella minnesotensis)、レカニシリウム・レカニ(Lecanicillium lecanii)、モナクロスポリウム・ドレクスレリ(Monacrosporium drechsleri)、モナクロスポリウム・ゲフィロパグム(Monacrosporium gephyropagum)、ミロテシウム・ベルカリア(Myrotehcium verrucaria)、ネオコスモスポラ・バシンフェクタ(Neocosmospora vasinfecta)、パエシロミセス・リラシナス(Paecilomyces lilacinus)、ポコニア・クラミドスポリア(Pochonia chlamydosporia)、スタゴノスポラ・ヘテロデラエ(Stagonospora heteroderae)、スタゴノスポラ・ファセオリ(Stagonospora phaseoli)、のう状樹枝状菌根菌、Burkholderia cepacia、Pasteuria penetrans、パスツリア・ソルネイ(Pasteuria thornei)、パスツリア・ニシザワエ(Pasteuria nishizawae)、パスツリア・ラモサ(Pasteuria ramosa)、パスツリア・ウサゲ(Pastrueia usage)、Brevibacillus laterosporus株G4、Pseudomonas fluorescens、およびRhizobacteriaが挙げられる。
栄養素のいくつかの例は、尿素、硝酸アンモニウム、硫酸アンモニウム、非加圧窒素溶液、アンモニア水、無水アンモニア、チオ硫酸アンモニウム、硫黄被覆尿素、尿素-ホルムアルデヒド、IBDU、ポリマー被覆尿素、硝酸カルシウム、尿素ホルムおよびメチレン尿素を含むが、これらに限定されない窒素肥料、リン肥料(リン酸二アンモニウム、リン酸一アンモニウム、ポリリン酸アンモニウム、濃リン酸三リン酸塩、および重過りん酸石灰など)、およびカリウム肥料(塩化カリウム、硫酸カリウム、カリウム-硫酸マグネシウム、硝酸カリウムなど)からなる群から選択され得る。そのような組成物は、種子被覆組成物内に遊離塩またはイオンとして存在し得る。あるいは、栄養素/肥料を複合化またはキレート化して、長期にわたる徐放を実現することができる。
殺鼠剤のいくつかの例には、2-イソバレリリンダン-1,3-ジオン、4-(キノキサリン-2-イルアミノ)ベンゼンスルホンアミド、α-クロロヒドリン、リン化アルミニウム、アンツー、ヒ素三酸化物、炭酸バリウム、ビスチオセミ、ブロジファクム、ブロマジオロン、ブロメタリン、シアン化カルシウム、クロラロース、クロロファシノン、コレカルシフェロール、クマクロル、クマフリル、クマテトラリル、クリミジン、ジフェナクム、ジフェチアロン、ジファシノン、エルゴカルシフェロール、フロクマフェン、フルオロアセトアミド、フルプロパジン、フルプロパジン塩酸塩、シアン化水素、ヨードメタン、リンダン、リン化マグネシウム、臭化メチル、ノルボルミド、ホサセチム、ホスフィン、リン、ピンドン、亜ヒ酸カリウム、ピリヌロン、シリロサイド、亜ヒ酸ナトリウム、シアン化ナトリウム、フルオロ酢酸ナトリウム、ストリキニーネ、硫酸タリウム、ワルファリン、およびリン化亜鉛からなる物質群から選択されるものが含まれ得る。
液体形態、例えば、溶液または懸濁液では、細菌集団を水または水溶液に混合または懸濁することができる。好適な液体希釈剤または担体には、水、水溶液、石油留分、または他の液体担体が含まれる。
固体組成物は、泥炭、小麦、ふすま、バーミキュライト、粘土、タルク、ベントナイト、珪藻土、フラー土、低温殺菌土壌等の適切に分割された固体担体の中および上に細菌集団を分散させることによって調製することができる。そのような製剤を水和剤として使用する場合、非イオン性、アニオン性、両性、またはカチオン性の分散剤および乳化剤などの生体適合性のある分散剤を使用することができる。
配合時に使用される固体担体には、例えば、カオリンクレー、パイロフィライト、ベントナイト、モンモリロナイト、珪藻土、酸性白土、バーミキュライト、およびパーライトなどの鉱物担体、ならびに硫酸アンモニウム、リン酸アンモニウム、硝酸アンモニウム、尿素、塩化アンモニウム、および炭酸カルシウムなどの無機塩が含まれる。また、小麦粉、小麦ふすま、米ぬかなどの有機微粉末を使用してもよい。液体担体には、大豆油および綿実油などの植物油、グリセロール、エチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール等が含まれる。
作物への細菌集団の適用
本明細書に記載の細菌または細菌集団の組成物は、溝、タルクで、または種子処理剤として適用することができる。組成物は、バルク、ミニバルク、バッグ、またはタルクで種子包装体に適用することができる。
プランターは、処理された種子を植え、従来の方法、ツインロー、または耕起を必要としない方法に従って作物を育てることができる。種子は、制御ホッパーまたは個別ホッパーを使用して分配され得る。種子は、加圧空気を使用して、または手動で分配され得る。種子の配置は、可変速技術を使用して行うことができる。さらに、本明細書に記載の細菌または細菌集団の適用は、可変速技術を使用して適用され得る。いくつかの例では、細菌は、トウモロコシ、大豆、キャノーラ、モロコシ、ジャガイモ、稲、野菜、穀物、偽穀物、および油糧種子の種子に適用され得る。穀物の例としては、大麦、フォニオ、オート麦、パーマー草、ライ麦、パールミレット、モロコシ、スペルト、テフ、ライ小麦、および小麦を挙げることができる。偽穀物の例としては、ブレッドナッツ、ソバ、ガマ、チア、亜麻、アマランス子実、ハンザ、キノア、およびゴマを挙げることができる。いくつかの例では、種子は、遺伝子組み換え生物(GMO)、非GMO、有機または従来のものであり得る。
マイクロ肥料、PGR、除草剤、殺虫剤、および殺菌剤などの添加剤をさらに使用して作物を処理することができる。添加剤の例としては、殺虫剤、殺線虫剤、殺菌剤などの作物保護剤、着色剤、ポリマー、ペレット化剤、プライミング、消毒剤などの強化剤、および接種剤、PGR、軟化剤、微量栄養素などの他の薬剤が挙げられる。PGRは、根の成長、顕花、または茎の伸長に影響を与える天然または合成の植物ホルモンであり得る。PGRは、オーキシン、ジベレリン、サイトカイニン、エチレン、およびアブシジン酸(ABA)を含み得る。
この組成物は、液体肥料と組み合わせて溝に適用することができる。いくつかの例では、液体肥料は、タンクに保持されてもよい。NPK肥料は、ナトリウム、リン、およびカリウムの主要栄養素を含有する。
組成物は、植物の成長を促進し、葉の高いクロロフィル含有量を維持し、果実または種子の数を増やし、果実または種子の単位重量を増やすなど、植物の形質を改良することができる。本開示の方法は、様々な望ましい形質のうちの1つ以上を導入または改良するために用いられ得る。導入または改良され得る形質の例としては、根のバイオマス、根の長さ、高さ、苗条の長さ、葉の数、水の利用効率、全体のバイオマス、収量、果実のサイズ、粒径、光合成率、干ばつ耐性、耐熱性、塩耐性、低窒素ストレスに対する耐性、窒素利用効率、線虫ストレスに対する耐性、真菌性病原体に対する耐性、細菌性病原体に対する耐性、ウイルス性病原体に対する耐性、代謝産物のレベル、代謝産物のレベルの調整、プロテオームの発現が挙げられる。高さ、全体のバイオマス、根および/または苗条のバイオマス、種子の発芽、苗の生存、光合成効率、蒸散率、種子/果実の数または質量、植物の穀粒または果実の収量、葉のクロロフィル含有量、光合成率、根の長さ、またはそれらの任意の組み合わせを含む、望ましい形質を使用して成長を測定し、同一の条件下で成長した参照農業植物(例えば、形質が導入および/または改良されていない植物)の成長速度と比較することができる。いくつかの例では、高さ、全体のバイオマス、根および/または苗条のバイオマス、種子の発芽、苗の生存、光合成効率、蒸散率、種子/果実の数または質量、植物の穀粒または果実の収量、葉のクロロフィル含有量、光合成率、根の長さ、またはそれらの任意の組み合わせを含む、望ましい形質を使用して成長を測定し、同様の条件下で成長した参照農業植物(例えば、形質が導入および/または改良されていない植物)の成長速度と比較することができる。
宿主植物に対する農業的形質には、前述の種子処理製剤を含まない種子から成長した同質遺伝子系統植物と比較して、油含有量の変化、タンパク質含有量の変化、種子炭水化物組成の変化、種子油組成の変化、種子タンパク質組成の変化、化学的耐性、耐寒性、遅延老化、耐病性、干ばつ耐性、穂の重量、成長向上、健康強化4、熱耐性、除草剤耐性、草食動物耐性、窒素固定の向上、窒素利用の向上、根の構造の改良、水利用効率の向上、バイオマスの増加、根の長さの増加、種子重量の増加、苗条の長さの増加、収量の増加、水分制限条件下での収量の増加、穀粒の質量、穀粒の含水率、金属耐性、穂数、穂ごとの穀粒数、鞘の数、栄養強化、病原菌耐性、害虫耐性、光合成能力の向上、耐塩性、緑の維持、活力の向上、成熟種子の乾燥重量の増加、成熟種子の新鮮重量の増加、植物あたりの成熟種子の数の増加、クロロフィル含有量の増加、植物あたりの鞘の数の増加、植物あたりの鞘の長さの増加、植物あたりのしおれた葉の数の減少、植物あたりの深刻にしおれた葉の数の減少、および植物あたりのしおれていない葉の数の増加、代謝産物のレベルの検出可能な変調、転写産物のレベルの検出可能な調整、およびプロテオームの検出可能な調整が含まれ得るが、これらに限定されない。
場合によっては、植物は、接種された植物の植物要素と同じ種の植物から分離された細菌または細菌集団を接種される。例えば、ある種のZea mays(トウモロコシ)に通常見られる細菌または細菌集団は、その自然の状態では当該細菌および細菌集団を欠く別の種のZea maysの植物の植物要素と関連している。一実施形態では、細菌および細菌集団は、接種された植物の植物要素としての関連する種の植物に由来する。例えば、ジーア・ディプロペレンニス・イルティス(Zea diploperennis Iltis)等(ディプロペレンニアル・テオシント(diploperennial teosinte))に通常見られる細菌および細菌集団は、Zea mays(トウモロコシ)に適用される、またはその逆である。場合によっては、植物は、接種された植物の植物要素に対して異種である細菌および細菌集団を接種される。一実施形態では、細菌および細菌集団は、別の種の植物に由来する。例えば、双子葉植物で通常見られる細菌および細菌集団は、単子葉植物に適用される(例えば、大豆由来の細菌および細菌集団をトウモロコシに接種する)、またはその逆である。他の場合では、植物に接種される細菌および細菌集団は、接種されている植物の関連種に由来する。一実施形態では、細菌および細菌集団は、関連する分類群、例えば、関連する種に由来する。別の種の植物は、農業植物であり得る。別の実施形態では、細菌および細菌集団は、任意の宿主植物要素に接種される設計された組成物の一部である。
いくつかの例では、細菌または細菌集団は外因性であり、細菌および細菌集団は、接種された植物とは異なる植物から分離される。例えば、一実施形態では、細菌または細菌集団は、接種された植物と同じ種の異なる植物から分離することができる。場合によっては、細菌または細菌集団は、接種された植物に関連する種から分離することができる。
いくつかの例では、本明細書に記載の細菌および細菌集団は、ある組織タイプから別の組織タイプに移動することができる。例えば、種子の外側にコーティングした後の植物の成熟組織内の細菌および細菌集団の本発明の検出および分離は、種子の外側から成熟している植物の栄養組織に移動するそれらの能力を実証する。したがって、一実施形態では、細菌の集団および細菌集団は、種子の外部から植物の栄養組織に移動することができる。一実施形態では、植物の種子にコーティングされた細菌および細菌集団は、種子が栄養状態に発芽すると、植物の異なる組織に局在化することができる。例えば、細菌および細菌集団は、根、不定根、種子5根、根毛、苗条、葉、花、つぼみ、房、分裂組織、花粉、雌しべ、子房、雄しべ、果実、走根、根茎、根粒、塊茎、毛状突起、孔辺細胞、排水組織、花弁、がく片、苞穎、花軸、維管束形成層、師部、および木部を含む、植物の組織のうちのいずれか1つに局在化することができる。一実施形態では、細菌および細菌集団は、植物の根および/または根毛に局在化することができる。別の実施形態では、細菌および細菌集団は、光合成組織、例えば、植物の葉および苗条に局在化することができる。他の場合では、細菌および細菌集団は、植物の維管束組織、例えば、木部および師部に局在化している。さらに別の実施形態では、細菌および細菌集団は、植物の生殖組織(花、花粉、雌しべ、子房、雄しべ、果実)に局在化することができる。別の実施形態では、細菌および細菌集団は、植物の根、苗条、葉、および生殖組織に局在化することができる。さらに別の実施形態では、細菌および細菌集団は、植物の果実または種子組織にコロニーを形成する。さらに別の実施形態では、細菌および細菌集団は、それが植物の表面に存在するように(すなわち、その存在が植物の外部または植物のエピスフィアに検出可能に存在するように)、植物にコロニーを形成することができる。さらに他の実施形態では、細菌および細菌集団は、植物の実質的にすべて、またはすべての組織に局在化することができる。ある特定の実施形態では、細菌および細菌集団は、植物の根に局在化されない。他の場合では、細菌および細菌集団は、植物の光合成組織に局在化されない。
組成物の有効性は、作物の相対的成熟度または作物暖房ユニット(CHU)を測定することによって評価することもできる。例えば、細菌集団をトウモロコシに適用することができ、トウモロコシ粒の相対的成熟度またはトウモロコシ粒が最大重量にある時間に従って、トウモロコシの成長を評価することができる。作物暖房ユニット(CHU)を使用して、トウモロコシの成熟度を予測することもできる。CHUは、作物の成長に関する1日の最高気温を測定することによって蓄熱量を決定する。
例では、細菌は、根、不定根、種子根、根毛、苗条、葉、花、つぼみ、房、分裂組織、花粉、雌しべ、子房、雄しべ、果実、走根、根茎、根粒、塊茎、毛状突起、孔辺細胞、排水組織、花弁、がく片、苞穎、花軸、維管束形成層、師部、および木部を含む、植物の組織のうちのいずれか1つに局在化することができる。別の実施形態では、細菌または細菌集団は、光合成組織、例えば、植物の葉および苗条に局在化することができる。他の場合では、細菌および細菌集団は、植物の維管束組織、例えば、木部および師部に局在化している。さらに別の実施形態では、細菌または細菌集団は、植物の生殖組織(花、花粉、雌しべ、子房、雄しべ、または果実)に局在化することができる。別の実施形態では、細菌および細菌集団は、植物の根、苗条、葉、および生殖組織に局在化することができる。別の実施形態では、細菌または細菌集団は、植物の果実または種子組織にコロニーを形成する。さらに別の実施形態では、細菌または細菌集団は、植物の表面に存在するように植物にコロニーを形成することができる。別の実施形態では、細菌または細菌集団は、植物の実質的にすべて、またはすべての組織に局在化することができる。ある特定の実施形態では、細菌または細菌集団は、植物の根に局在化されない。他の場合では、細菌および細菌集団は、植物の光合成組織に局在化されない。
作物に適用される細菌組成物の有効性は、植栽密度、播種力、根の強さ、干ばつ耐性、植物の高さ、乾燥、および試験重量を含むがこれらに限定されない作物の成長の様々な特徴を測定することによって評価することができる。
植物種
本明細書に記載の方法および細菌は、オオムギ(Hordeum)属、イネ(Oryza)属、トウモロコシ(Zea)属、およびムギ(Triticeae)属などの様々な植物のうちのいずれにも適している。好適な植物の他の非限定的な例には、コケ、地衣類、および藻類が含まれる。場合によっては、これらの植物は、食用作物、繊維作物、油糧作物、林業またはパルプおよび製紙産業の植物、バイオ燃料産生用の原料、および/または観賞植物などの経済的、社会的、および/または環境的価値を有する。いくつかの例では、植物を使用して、穀物、小麦粉、デンプン、シロップ、ミール、油、フィルム、包装、栄養補助食品、パルプ、動物飼料、魚の飼料、工業用化学品のバルク材料、シリアル製品、人間用加工食品、砂糖、アルコール、および/またはタンパク質などの経済的に価値のある製品を生産することができる。作物植物の非限定的な例には、トウモロコシ、稲、小麦、大麦、モロコシ、キビ、オート麦、ライ麦ライ小麦、そば、スイートコーン、サトウキビ、タマネギ、トマト、イチゴ、およびアスパラガスが含まれる。
いくつかの例では、本明細書に開示される方法および組成物を使用して取得または改良され得る植物は、農業、園芸、バイオ燃料分子および他の化学物質の産生のためのバイオマス、および/または林業にとって重要または興味深い植物を含み得る。これらの植物のいくつかの例としては、パイナップル、バナナ、ココナッツ、ユリ、グラスピー、アルファルファ、トマティロ、メロン、ひよこ豆、チコリ、クローバー、ケール、レンズ豆、大豆、タバコ、ジャガイモ、サツマイモ、大根、キャベツ、セイヨウアブラナ、リンゴの木、ブドウ、綿、ヒマワリ、シロイヌナズナ、キャノーラ、柑橘類(オレンジ、マンダリン、キンカン、レモン、ライム、グレープフルーツ、タンジェリン、タンジェロ、シトロン、およびザボンを含む)、コショウ、豆、レタス、パニクム・ウィルガツム(Panicum virgatum)(スイッチ)、モロコシ(Sorghum bicolor)(モロコシ、スーダン)、ジャイアントミスカンサス(Miscanthus giganteus)(ススキ)、サトウキビ(Saccharum)sp.(エネルギー用サトウキビ)、バルサムポプラ(Populus balsamifera)(ポプラ)、Zea mays(トウモロコシ)、ダイズ(Glycine max)(大豆)、セイヨウアブラナ(Brassica napus)(キャノーラ)、パンコムギ(Triticum aestivum)(小麦)、ゴシピウム・ヒルスツム(Gossypium hirsutum)(綿)、オリザ・サティバ(Oryza sativa)(米)、ヘリアンサス・アヌス(Helianthus annuus)(ヒマワリ)、メディカゴ・サティバ(Medicago sativa)(アルファルファ)、ベータ・バルガリス(Beta vulgaris)(テンサイ)、ペニセツム・グラウクム(Pennisetum glaucum)(パールミレット)、キビ(Panicum)spp.、モロコシ(Sorghum)spp.、ススキ(Miscanthus)spp.、Saccharum spp.、エリアンサス(Erianthus)spp.、ポプラ(Populus)spp.、セカル・セレアレ(Secale cereale)(ライ麦)、サリックス(Salix)spp.(柳)、ユーカリプタス(Eucalyptus)spp.(ユーカリ)、ライコムギ(Triticosecale)spp.(小麦-25小麦Xライ麦)、バンブー(Bamboo)、カルサムス・チンクトリウス(Carthamus tinctorius)(ベニバナ)、ナンヨウアブラギリ(Jatropha curcas)(ヤトロファ)、トウゴマ(Ricinus communis)(キャスター)、ギニアアブラヤシ(Elaeis guineensis)(オイルヤシ)、ナツメヤシ(Phoenix dactylifera)(デーツヤシ)、アルコントフェニックス・カンニンガミアナ(Archontophoenix cunninghamiana)(キングヤシ)、サイアグラス・ロマンゾフィアナ(Syagrus romanzoffiana)(クイーンヤシ)、リヌム・ウシタチッシマム(Linum usitatissimum)(亜麻)、ブラシッカ・ジュンセア(Brassica juncea)、マニホット・エスクレンタ(Manihot esculenta)(カッサヤ)、リコペルシコン・エクスレンタム(Lycopersicon esculentum)(トマト)、ラクツカ・サティバ(Lactuca saliva)(レタス)、ムサ・パラディシアカ(Musa paradisiaca)(バナナ)、ソラヌム・ツベロスム(Solanum tuberosum)(ジャガイモ)、ブラシカ・オレラセア(Brassica oleracea)(ブロッコリー、カリフラワー、芽キャベツ)、チャノキ(Camellia sinensis)(茶)、フラガリア・アナナッサ(Fragaria ananassa)(イチゴ)、テオブロマ・カカオ(Theobroma cacao)(ココア)、アラビカコーヒーノキ(Coffea arabica)(コーヒー)、ヴィティス・ヴィニフェラ(Vitis vinifera)(ブドウ)、アナナス・コモサス(Ananas comosus)(パイナップル)、カプシカム・アンニュウム(Capsicum annum)(トウガラシおよびピーマン)、アリウム・セパ(Allium cepa)(タマネギ)、キューカミス・メロ(Cucumis melo)(メロン)、キューカミス・サティバ(Cucumis sativus)(キュウリ)、セイヨウカボチャ(Cucurbita maxima)(カボチャ)、ニホンカボチャ(Cucurbita moschata)(カボチャ)、スピナシア・オレラセア(Spinacea oleracea)(ホウレンソウ)、シトルラス・ラナタス(Citrullus lanatus)(スイカ)、アベルモスクス・エスクレンタス(Abelmoschus esculentus)(オクラ)、ソラナム・メロンゲナ(Solanum melongena)(ナス)、パパヴェル・ソムニフェルム(Papaver somniferum)(ケシ)、オニゲシ(Papaver orientale)、ヨーロッパイチイ(Taxus baccata)、太平洋イチイ(Taxus brevifolia)、クソニンジン(Artemisia annua)、カンナビス・サティバ(Cannabis saliva)、カンレンボク(Camptotheca acuminate)、ニチニチソウ(Catharanthus roseus)、ニチニチソウ(Vinca rosea)、キナノキ(Cinchona officinalis)、イヌサフラン(Coichicum autumnale)、カリフォルニアバイケイソウ(Veratrum californica)、ジギタリスラナタ(Digitalis lanata)、ジギタリス・パープレア(Digitalis purpurea)、ヤマノイモ(Dioscorea)spp.、アンドログラフィス・パニキュラータ(Andrographis paniculata)、ベラドンナ(Atropa belladonna)、シロバナヨウシュチョウセンアサガオ(Datura stomonium)、バーベリー(Berberis)spp.、イヌガヤ(Cephalotaxus)spp.、シナマオウ(Ephedra sinica)、マオウ(Ephedra)spp.、コカノキ(Erythroxylum coca)、マツユキソウ(Galanthus wornorii)、ハシリドコロ(Scopolia)spp.、Lycopodium serratum(トウゲシバ)、ヒカゲノカズラ(Lycopodium)spp.、インドジャボク(Rauwolfia serpentina)、ラウオルフィア(Rauwolfia)spp.、サンギナリア・カナデンシス(Sanguinaria canadensis)、ヒヨス(Hyoscyamus)spp.、キンセンカ(Calendula officinalis)、ナツシロギク(Chrysanthemum parthenium)、コレウス・フォルスコリ(Coleus forskohlii)、ナツシロギク(Tanacetum parthenium)、パルテニウム・アルゲンタトゥム(Parthenium argentatum)(グアユール)、パラゴムノキ(Hevea.)spp.(ゴム)、スペアミント(Mentha spicata)(ミント)、ペパーミント(Mentha piperita)(ミント)、ベニノキ(Bixa orellana)、アルストロメリア(Alstroemeria spp.)、ロサ(Rosa)spp.(バラ)、ジアンタス・カリオフィルス(Dianthus caryophyllus)(カーネーション)、ペチュニア(Petunia)spp.(ペチュニア)、ポインセチア・プルケリマ(Poinsettia pulcherrima)(ポインセチア)、ニコチアナ・タバクム(Nicotiana tabacum)(タバコ)、ルピナス・アルバス(Lupinus albus)(ハウチワマメ)、ユニオラ・パニキュラタ(Uniola paniculata)(オート麦)、ホルデウム・ブルガレ(Hordeum vulgare)(大麦)、およびロリウム(Lolium)spp.(ライ麦)が挙げられる。
いくつかの例では、単子葉植物を使用することができる。単子葉植物は、オモダカ(Alismatales)、サトイモ(Arales)、ヤシ(Arecales)、パイナップル(Bromeliales)、ツユクサ(Commelinales)、パナマソウ(Cyclanthales)、カヤツリグサ(Cyperales)、ホシクサ(Eriocaulales)、トチカガミ(Hydrocharitales)、イグサ(Juncales)、ユリ(Lilliales)、イバラモ(Najadales)、ラン(Orchidales)、タコノキ(Pandanales)、イネ(Poales)、サンアソウ(Restionales)、ホンゴウソウ(Triuridales)、ガマ(Typhales)、およびショウガ(Zingiberales)目に属する。裸子植物(Gymnospermae)のクラスに属する植物は、ソテツ(Cycadales)、イチョウ(Ginkgoales)、グネツム(Gnetales)、およびマツ(Pinales)である。いくつかの例では、単子葉植物は、トウモロコシ、稲、小麦、大麦、およびサトウキビからなる群から選択することができる。
いくつかの例では、ウマノスズクサ(Aristochiales)、キク(Asterales)、バティス(Batales)、キキョウ(Campanulales)、フウチョウソウ(Capparales)、ナデシコ(Caryophyllales)、モクマオウ(Casuarinales)、ニシキギ(Celastrales)、ミズキ(Cornales)、イワウメ(Diapensales)、ビワモドキ(Dilleniales)、マツムシソウ(Dipsacales)、カキノキ(Ebenales)、ツツジ(Ericales)、トチュウ(Eucomiales)、トウダイグサ(Euphorbiales)、マメ(Fabales)、ブナ(Fagales)、リンドウ(Gentianales)、フウロソウ(Geraniales)、アリノトウグサ(Haloragales)、マンサク(Hamamelidales)、ミドレス(Middles)、クルミ(Juglandales)、シソ(Lamiales)、クスノキ(Laurales)、サガリバナ(Lecythidales)、レイトネリア(Leitneriales)、モクレン(Magniolales)、アオイ(Malvales)、ヤマモモ(Myricales)、フトモモ(Myrtales)、スイレン(Nymphaeales)、アワ(Papeverales)、コショウ(Piperales)、オオバコ(Plantaginales)、イソマツ(Plumbaginales)、カワゴケソウ(Podostemales)、ナス(Polemoniales)、ヒメハギ(Polygalales)、タデ(Polygonales)、サクラソウ(Primulales)、ヤマモガシ(Proteales)、ラフレシア(Rafflesiales)、キンポウゲ(Ranunculales)、クロウメモドキ(Rhamnales)、バラ(Rosales)、アカネ(Rubiales)、ヤナギ(Salicales)、ビャクダン(Santales)、ムクロジ(Sapindales)、サラセニア(Sarraceniaceae)、ゴマノハグサ(Scrophulariales)、ツバキ(Theales)、ヤマグルマ(Trochodendrales)、セリ(Umbellales)、イラクサ(Urticales)、およびスミレ(Violates)目に属するものを含む、双子葉植物を使用することができる。いくつかの例では、双子葉植物は、綿、大豆、コショウ、およびトマトからなる群から選択することができる。
場合によっては、改良される植物は、実験条件に容易に対応することができない。例えば、作物植物が十分に成長するのに時間がかかりすぎて、実際に改良された形質を複数回反復して連続的に評価することができない場合がある。したがって、細菌が最初に分離される第1の植物、および/または遺伝子操作された細菌が適用される複数の植物は、望ましい条件下での評価にさらに従順な植物などのモデル植物であり得る。モデル植物の非限定的な例には、Setaria、ミナトカモジグサ(Brachypodium)、およびシロイヌナズナ(Arabidopsis)が含まれる。次いで、モデル植物を使用して本開示の方法に従って分離された細菌の能力を、別のタイプの植物(例えば、作物植物)に適用して、改良された形質の付与を確認することができる。
本明細書に開示される方法によって改良され得る形質には、例えば、成長速度、高さ、体重、色、味、臭い、植物による1つ以上の化合物の産生の変化を含む(例えば、代謝産物、タンパク質、薬物、炭水化物、油、および任意の他の化合物を含む)、植物の任意の観察可能な特性が含まれる。遺伝子型情報に基づいて植物を選択することも考えられる(例えば、細菌に応答する植物遺伝子発現のパターンを含む、または窒素固定の増加に関連するものなどの遺伝子マーカーの存在を識別する)。植物はまた、ある特定の特徴または形質(望ましい特徴または形質など)の存在とは対照的に、ある特定の特徴または形質(望ましくない特徴または形質など)の不在、抑制、または阻害に基づいて選択されてもよい。
本明細書で提供される実施例は、細菌の分離、細菌および植物の分析、ならびに植物の形質改良の方法を説明している。これらの実施例は、例示のみを目的としており、決して限定するものとして解釈されるべきではない。
実施例1:植物組織からの微生物の分離
表土は、中央カリフォルニアの様々な農業地域から得た。重粘土、泥炭粘土ローム、シルト粘土、および砂ロームを含む、多様なテクスチャー特性を持つ20の土壌を収集した。表1に示すように、様々なトウモロコシ、スイートコーン、ヘリテージコーン、およびトマトの種子を各土壌に植えた。
Figure 2023159378000001
(表1)多様な特性を持つ土壌に植えられた作物の種類および品種
植物を、2~4週間の成長後に根から抜き、根表面の余分な土壌を脱イオン水で除去した。土壌を除去した後、植物を漂白剤で表面殺菌し、滅菌水で激しくすすいだ。きれいにした根の1cmの切片を植物から切り取り、3mmのスチールビーズを含むリン酸緩衝生理食塩水に入れた。Qiagen TissueLyser IIで溶液を激しく振とうすることによって、スラリーを生成した。
根および生理食塩水のスラリーを希釈し、様々な種類の成長培地に接種して、根圏、内生、着生、および他の植物関連微生物を分離した。R2AおよびNfb寒天培地を使用して、単一コロニーを得て、半固体Nfb培地斜面を使用して、窒素固定細菌の集団を得た。図1A~Bに示すように、半固体Nfb培地斜面で2~4週間インキュベートした後、微生物集団を収集し、画線してR2A寒天上に単一コロニーを得た。単一コロニーをR2Aおよびグリセロールの混合物に再懸濁し、PCR分析にかけ、後の分析のために-80℃で凍結した。およそ1,000の単一コロニーが得られ、「分離された微生物」と指定した。
次いで、分離株をコロニーPCRスクリーニングにかけて、ジアゾ栄養生物を同定するためにnifH遺伝子の存在を検出した。スクリーニングでジアゾ栄養生物の90%以上を検出することが示されている前述のプライマーセットUeda 19F/388Rを使用して、各分離株のnifクラスターの存在を調べた(Ueda et al.1995;J.Bacteriol.177:1414-1417)。図2に示すように、精製された分離株の単一コロニーを選び、PBSに再懸濁し、コロニーPCRのテンプレートとして使用した。陽性のPCRバンドを示した分離株のコロニーを再度画線し、コロニーPCRおよび再画線プロセスを2回繰り返して、ジアゾ栄養生物の偽陽性の同定を防止した。次いで、精製された分離株を「候補微生物」と指定した。
実施例2:分離された微生物の特徴付け
シーケンシング、分析、および系統学的特徴付け
515f-806rプライマーセットを用いた16S rDNAのシーケンシングを使用して、分離された微生物および候補微生物の予備的な系統学的同定を行った(例えば、Vernon et al.;BMC Microbiol.2002 Dec 23;2:39.)。表2に示すように、微生物は、Enterobacter、Burkholderia、Klebsiella、Bradyrhizobium、Rahnella、Xanthomonas、ラオウルテラ(Raoultella)、Pantoea、Pseudomonas、Brevundimonas、Agrobacterium、およびPaenibacillusを含む多様な属を含む。
Figure 2023159378000002
(表2)ディープ16S rDNAシーケンシングによって決定されたトマト植物から分離された微生物の多様性。
その後、39の候補微生物のゲノムを、Illumina Miseqプラットフォームを使用してシーケンシングした。純粋培養物からのゲノムDNAを、QIAmp DNAミニキット(QIAGEN)を使用して抽出し、シーケンシング用の全DNAライブラリーは、第三販売者(SeqMatic,Hayward)を通じて準備した。次いで、ゲノムアセンブリをA5パイプラインを介して実行した(Tritt et al.2012;PLoS One 7(9):e42304)。遺伝子を同定し、注釈を付け、窒素固定の調節および発現に関連するものを突然変異誘発の標的として注目した。
候補微生物のトランスクリプトームプロファイリング
株CI010のトランスクリプトームプロファイリングを行って、環境窒素の存在下で活性であるプロモーターを同定した。株CI010は、10mMグルタミンで補足した定義された無窒素培地で培養した。全RNAをこれらの培養物から抽出し(QIAGEN RNeasyキット)、Illumina HiSeq(SeqMatic,Fremont CA)を介してRNAseqシーケンシングにかけた。シーケンシング読み取り値を、Geneiousを使用してCI010ゲノムデータにマッピングし、近位転写プロモーターの制御下にある高度に発現された遺伝子を同定した。表3A~Cは、全RNAのRNASeqシーケンシングによって測定された遺伝子およびそれらの相対的発現レベルの一覧である。nif経路、窒素利用関連経路、または望ましい発現レベルの他の遺伝子の突然変異誘発で使用するために、近位プロモーターの配列を記録した。
遺伝的扱いやすさの評価
候補微生物を、形質転換性および遺伝的扱いやすさに基づいて特徴付けた。最初に、最適な炭素源の利用率を、関連する培地の小さなパネルでの成長、ならびに無窒素培地および富栄養培地の両方での成長曲線によって決定した。二番目に、各菌株の自然な抗生物質耐性を、突然変異誘発の選択マーカーとして使用される抗生物質のパネルを含む液体培養でのスポット播種および増殖を通じて決定した。三番目に、各菌株を、プラスミドの集団のエレクトロポレーションを介してその形質転換性について試験した。プラスミド集団は、7つの複製起点、すなわち、p15a、pSC101、CloDF、colA、RK2、pBBR1、およびpRO1600と、4つの抗生物質耐性マーカー、すなわち、CmR、KmR、SpecR、およびTetRとの組み合わせによる拡大を含む。起源および耐性マーカーの適合性とのこの体系的な評価を使用して、候補微生物におけるプラスミドベースの突然変異誘発のためのベクターを同定した。
実施例3:候補微生物の突然変異誘発
ラムダレッド媒介ノックアウト
候補微生物のいくつかの突然変異体を、プラスミドpKD46またはカナマイシン耐性マーカーを含む誘導体を使用して生成した(Datsenko et al.2000;PNAS 97(12):6640-6645)。ノックアウトカセットを、標的遺伝子に隣接する250bpのホモロジーで設計し、オーバーラップ伸長PCRによって生成した。候補微生物をpKD46で形質転換し、アラビノースの存在下で培養してラムダレッド機械的発現を誘導し、エレクトロポレーション用に準備し、ノックアウトカセットで形質転換して候補突然変異株を産生した。表4に示すように、4つの候補微生物および1つの実験室株クレブシエラ・オキシトカ(Klebsiella oxytoca)M5A1を使用して、窒素固定調節遺伝子nifL、glnB、およびamtBの13の候補突然変異体を生成した。
Figure 2023159378000003
(表4)ラムダレッド突然変異誘発によって作成された単一ノックアウト突然変異体の一覧
Cas9選択によるオリゴ指向性突然変異誘発
オリゴ指向性突然変異誘発を用いて、大腸菌(E.coli)DH10BのrpoB遺伝子へのゲノム変化を標的化し、CRISPR-Casシステムを用いて突然変異体を選択した。突然変異誘発性オリゴ(ss1283:
Figure 2023159378000004
*は、ホスホロチオエート結合を表す)は、rpoB遺伝子に4bpの突然変異を介してリファンピシン耐性を付与するように設計した。Cas9をコードするプラスミドを含有する細胞を、Cas9発現のために誘導し、エレクトロポレーション用に準備し、次いで突然変異誘発性オリゴ、およびWT rpoB配列のCas9切断を標的とするガイドRNA(gRNA)の構成的発現をコードするプラスミドの両方でエレクトロポレーションした。エレクトロポレーションした細胞を非選択培地で一晩回収して、得られた突然変異染色体を十分に分離できるようにした。gRNAをコードするプラスミドの選択時にプレーティングした後、スクリーニングされた10コロニーのうち2コロニーに望ましい突然変異が含まれていることが示され、残りはgRNAプラスミドのプロトスペーサー突然変異またはCas9プラスミド喪失によって生成されたエスケープ突然変異体であることが示された。
Cas9選択によるラムダレッド突然変異誘発
候補微生物CI006およびCI010の突然変異体は、CRISPR-Casによる選択を伴うラムダレッド突然変異誘発を介して生成された。ノックアウトカセットには、転写プロファイリング(実施例2に記載され、表3に示されている)によって同定された内因性プロモーター、および削除標的に隣接する約250bpの相同領域が含まれていた。CI006およびCI010は、アラビノース誘導性プロモーターの制御下でラムダレッド組み換えシステム(exo、β、gam遺伝子)をコードするプラスミドにより形質転換され、IPTG誘導性プロモーターの制御下でCas9により形質転換された。Red組み換えおよびCas9系は、得られた形質転換体において誘導され、株は、エレクトロポレーションのために調製された。ノックアウトカセットおよびプラスミドでコードされた選択gRNAは、その後、コンピテント細胞に形質転換された。Cas9プラスミドおよびgRNAプラスミドの両方に選択的な抗生物質をプレーティングした後、スクリーニングされた10コロニーのうち7コロニーは、図3に示すように、意図したノックアウト突然変異を示した。
実施例4:候補分子のインビトロ表現型決定
外因性窒素がニトロゲナーゼ生合成および様々な突然変異体における活性に及ぼす影響を評価した。アセチレン還元アッセイ(ARA)(Temme et.al.2012;109(18):7085-7090)を使用して、純粋培養条件でのニトロゲナーゼ活性を測定した。株を気密試験管で培養し、アセチレンからエチレンへの還元を、Agilent 6890ガスクロマトグラフで定量化した。0~10mMのグルタミンで補足した窒素固定培地中で増殖させた候補微生物および対応する候補突然変異体のARA活性を図4A~Bおよび図10A~Cに示す。
嫌気性培養条件下で、グルタミンおよびアンモニア濃度の範囲を試験して、窒素固定活性への影響を定量化した。野生型細胞では、グルタミン濃度が増加するにつれて、活性は急速に減少した。ただし、一連の初期ノックアウト突然変異では、それ以外では野生型の活性を遮断するグルタミンの濃度下で、窒素固定遺伝子の発現を可能にする突然変異のクラスを検証した。このプロファイルは、図4Cに示すように、4種の異なるジアゾ栄養生物において生成された。さらに、同定された遺伝的部分を使用して調節ネットワークを再配線することによって、窒素固定活性レベルが予測通りに調整された。これは、株CM023、CM021、CM015、およびCI006を示す図4Bに見られる。株CM023は、低度に進化した株であり、株CM021は、高度に進化した株であり、株CM015は、中度に進化した株であり、株CI006は、野生型(株2)である。培養上清に排泄されたアンモニアは、酵素ベースのアッセイ(MEGAZYME)を使用して試験した。このアッセイは、340nmの吸光度で消費されるNADPHの量を測定する。アッセイは、1E9 CFU/mLの開始密度で、無窒素嫌気性環境で育成された細菌培養物に対して行った。図4Dに示すように、6つの進化した株のパネル全体で、1つの株は、48時間にわたって最大100μMのアンモニアを排泄した。さらに、図11に示すように、二重突然変異体は、それが由来する単一突然変異体よりも高いアンモニア排泄を示した。これは、生理的必要量を超えるアンモニアを産生する微生物の能力を示す。
純粋培養物の転写プロファイリング
CI006の転写活性は、Nanostring Elementsプラットフォームを使用して測定した。細胞を無窒素培地で増殖させ、4時間のインキュベーション後に10E8細胞を収集した。Qiagen RNeasyキットを使用して、全RNAを抽出した。図5に示すように、精製されたRNAを、プローブハイブリダイゼーションおよびデジタルアナライザー分析のために、Core Diagnostics(Palo Alto,CA)に提出した。
実施例5:候補微生物の植物体表現型決定
候補微生物による植物のコロニー形成
候補微生物による望ましい宿主植物のコロニー形成を、短期間の植物成長実験を通じて定量化した。トウモロコシ植物に、プラスミドまたはTn5統合RFP発現カセットのいずれかからRFPを発現する株を接種した。植物は、滅菌砂および非滅菌泥炭培地の両方で育成し、発芽後3日目に、新興の植物子葉鞘に直接1mLの細胞培養物を分注することによって接種を行った。プラスミドは、適切な抗生物質を含む溶液とともに植物に散水することによって維持された。3週間後、植物の根を収集し、滅菌水で3回すすぎ、目に見える土壌を取り除き、2つの試料に分けた。1つの根試料を蛍光顕微鏡で分析して、候補微生物の局在化パターンを特定した。図6に示すように、長さ10mmの最も細い無傷の植物の根で顕微鏡検査を行った。
コロニー形成を評価するための第2の定量的方法が開発された。エンドファイトを接種した植物の根からの全DNA調製物に対して、定量的PCRアッセイを行った。トウモロコシの種子(Dekalb DKC-66-40)を、2.5インチ×2.5インチ×10インチのポット内で予めオートクレーブ処理した砂で発芽させた。植え付けの1日後、1mLのエンドファイト一晩培養物(SOB培地)を、種子が置かれた場所のすぐ右で濡らした。1mLのこの一晩培養物は、約10^9cfuとほぼ同等であり、使用している株によって互いに3倍以内で異なる。各苗は、2.5mMまたは0.25mMの硝酸アンモニウムで補足した50mLの修飾Hoagland溶液で週3回施肥した。植え付けの4週間後、DNA抽出のために根試料を収集した。土壌片は、加圧水スプレーを使用して洗い流した。次いで、これらの組織試料をQIAGEN Tissuelyzerを使用して均質化し、推奨されるプロトコルに従って、QIAmp DNAミニキット(QIAGEN)を使用してDNAを抽出した。qPCRアッセイは、これらのDNA抽出物に対してStratagene Mx3005P RT-PCRを使用し、エンドファイトの各ゲノム内の遺伝子座に特異的になるように(NCBIのPrimer BLASTを使用して)設計されたプライマーを使用して行った。エンドファイトのゲノムコピーの存在を定量化した。エンドファイトの同一性をさらに確認するために、PCR増幅産物の配列を決定し、正しい配列を有することを確認した。候補微生物からの株CI006およびCI008のコロニー形成プロファイルの概要を表5に提示する。10^7x cfu/gfwもの高い根のコロニー形成率が、株CI008において示された。
Figure 2023159378000005
(表5)qPCRによって測定したトウモロコシのコロニー形成
植物体内RNAプロファイリング
植物体のnif経路成分の生合成は、nif遺伝子の転写を測定することによって推定された。全RNAは、CI006接種植物の根の植物組織から得た(前述の植え付け方法)。RNA抽出は、RNEasyミニキットを使用し、推奨プロトコル(QIAGEN)に従って行った。次いで、これらの植物組織からの全RNAを、株CI006のゲノム内のnif遺伝子に特異的なプローブを使用して、Nanostring Elementsキット(NanoString Technologies,Inc.)を使用してアッセイした。植物体におけるnif遺伝子発現のデータを表6にまとめる。CM013株を接種した植物では、nifH遺伝子の発現が検出されたが、CI006を接種した植物ではnifHの発現は検出できなかった。株CM013は、nifL遺伝子がノックアウトされている株CI006の派生物である。
100万キロベースあたりの転写産物(TPM)によってランク付けされたCM011の高度に発現された遺伝子を、施肥条件下の植物体で測定した。これらの高度に発現された遺伝子のいくつかの発現を制御するプロモーターを、標的化窒素固定および同化遺伝子座への相同組み換えのテンプレートとして使用した。温室栽培したCM011接種植物からのRNA試料を抽出し、Ribo-Zeroキットを使用してrRNAを除去し、IlluminaのTruseqプラットフォームを使用してシーケンシングし、CM011のゲノムに再度マッピングした。CM011からの高度に発現された遺伝子を表7に列挙する。
Figure 2023159378000006
(表6)植物体におけるnifHの発現
Figure 2023159378000007
Figure 2023159378000008
(表7)
15Nアッセイ
固定を実証するための主な方法は、窒素同位体15Nを使用し、これは14Nに対して設定された割合で大気中に見られる。肥料または大気のいずれかを15Nの濃縮レベルで補充することによって、15N2ガスで補足した大気から固定された15Nの高濃度で固定を直接観察するか(Yoshida 1980)、または逆に、植物組織中の大気N2ガスによる濃縮肥料の希釈によって固定を観察することができる(Iniguez 2004)。希釈法は、植物の成長過程で累積した固定窒素の観察を可能にするが、15Nガス法は、植物が閉じ込められた雰囲気で成長できる短い間隔で発生する固定の測定に制限される(速度測定)。したがって、ガス法は、特異性に優れているが(大気圧を超える植物の15Nレベルの上昇は、明らかに固定に起因し得るため)、累積的な活性を示すことはできない。
両方のタイプのアッセイを行って、野生型および無接種のトウモロコシ植物と比較して、改良された株の固定活性を測定したところ、改良された株のいくつかについて植物体で高い固定率が観察された(図12、図14A、および図14B)。これらのアッセイは、インビトロで観察された株の活性がインビボの結果につながることを示すのに役立つ。さらに、これらのアッセイは、肥料が株活性に及ぼす影響を測定できるため、農業環境での好適な機能を示唆している。setaria植物に野生型および改良株を接種した場合にも同様の結果が観察された(図13)。図14A~14Cに示される植物体内固定活性は、トランスクリプトームデータによってさらに裏付けられている。進化した株は、野生型の対応物と比較して増加したnifH転写レベルを呈する。さらに、植物体中の微生物由来の窒素レベルは、植物ごとのコロニー形成レベルとも相関している。これらの結果(図12、図13、図14A~14C、図15A、および図15B)は、微生物が、nif遺伝子クラスターの調節の改良を通じて、植物組織において大気由来窒素の増加が見られるもっともな理由であるという仮説を裏付けている。固定を直接測定することに加えて、窒素ストレス植物バイオマスアッセイにおいて改良株を植物に接種した場合の影響を測定した。植物バイオマスは、微生物と植物との多くの考えられる相互作用に関連し得るが、窒素が制限されている場合、固定窒素の追加が植物の表現型に影響を与えると予想される。接種した植物は、完全な窒素の不在下で育てられ、未処理の対照と比較して、接種した植物では葉面積、苗条の新鮮重量および乾燥重量、根の新鮮重量および乾燥重量の有意な増加が観察された(図14C)。これらの違いは、窒素固定のみに起因するものではないが、改良された株が植物に積極的に窒素を供給しているという結論を裏付けている。上記のようにトウモロコシおよびsetaria植物を成長させ、接種した。15Nを1.2%含む肥料を、散水によって定期的に植物に供給した。微生物による窒素固定は、植物組織の15Nレベルを測定することによって定量化した。植え付け後4週間で4枚目の葉組織を収集し、乾燥させた。乾燥した葉の試料をビーズ(QIAGEN Tissuelyzer)を使用して均質化し、IRMS(The Ecosystems CenterのMBL Stable Isotope Laboratory,Woods Hole,MA)に分注した。大気由来の窒素(NDFA)を計算し、CI050およびCM002による窒素産生を図7に示す。
植物ホルモン産生アッセイ
ドワーフトマト(Solanum lycopersicum)品種「Micro-Tom」は、インビトロアッセイを通じて果実の成熟に対するインドール-3-酢酸の影響を研究するために以前に使用されている(Cohen 1996;J Am Soc Hortic Sci 121:520-524)。候補微生物による植物ホルモンの産生および分泌を評価するために、未熟なMicro-Tom果実を使用したプレートベースのスクリーニングアッセイが開発された。図8に示すように、12ウェルの組織培養試験プレートは、ウェルに寒天培地を入れて固化させ、10μLの一晩微生物培養物を寒天表面にスポットすることによって調製した。増加する量のジベレリン酸(GA)を含むが、細菌培養物を含まない寒天を含むウェルを、陽性対照および標準として使用した。成長中のMicro-Tom植物から切除された開花後1日の花を、茎を先にして、細菌スポット培養のポイントで寒天に挿入した。これらの花を2~3週間監視した後、果実を収穫して計量した。図9に示すように、いくつかの複製にわたって植物果実の量が増加していることは、接種微生物による植物ホルモンの産生を示している。
実施例6:循環型宿主微生物の進化
トウモロコシ植物にCM013を接種し、4週間でほぼV5成長期まで成長させた。15N分析による微生物源からの窒素蓄積の向上を示すものを根から抜き、加圧水を使用して根を洗浄して、大量の土壌を除去した。0.25gの根の切片を切り取り、PBS溶液ですすいで、微細な土壌粒子および非付着性微生物を除去した。QIAGEN TissueLyser IIの3mmスチールビーズを使用して、組織試料を均質化した。ホモジネートを希釈し、SOB寒天培地上に置いた。単一コロニーを液体培地に再懸濁し、16s rDNAのPCR分析および接種株に固有の突然変異を行った。微生物の分離、突然変異誘発、接種、および再分離のプロセスは、微生物の形質、植物の形質、および微生物のコロニー形成能力を向上させるために反復的に繰り返すことができる。
実施例7:地理間の互換性
改良された微生物が接種された植物にコロニー形成する能力は、畑地条件下での植物の成功にとって重要である。説明されている分離方法は、トウモロコシなどの作物植物と密接な関係を有し得る土壌微生物から選択するように設計されているが、多くの株は、一連の植物の遺伝子型、環境、土壌タイプ、または接種条件にわたって効果的にコロニー形成しない場合がある。コロニー形成は、一連の微生物株と宿主植物との間の相互作用を必要とする複雑なプロセスであるため、コロニー形成能力のスクリーニングは、さらなる開発のための優先株を選択するための中心的な方法となっている。コロニー形成を評価するための初期の取り組みでは、菌株の蛍光標識を使用した。これは有効であるが、時間がかかり、株ベースで拡張可能ではなかった。コロニー形成の活性は、単純な改良を受け入れられないため、潜在的な製品候補が自然の生着菌である株から選択されることが不可欠である。
アッセイは、qPCRおよびコミュニティ試料中で株特異的になるように設計されたプライマーを使用して、任意の所与の宿主植物における野生型株の堅牢なコロニー形成を試験するために設計された。このアッセイは、トウモロコシ組織試料からの微生物のコロニー形成率を迅速に測定することを意図している。蛍光顕微鏡法およびプレートベースの技法を使用して可能性がある生着菌として評価された株を使用した初期試験では、qPCRアプローチが定量的かつ拡張可能であることが示された。
典型的なアッセイは、次のように行われる:植物、主にトウモロコシおよび小麦の品種を、温室の泥炭鉢植えミックスで1株あたり6回複製して栽培する。植え付け後4日または5日で、OD590が0.6~1.0(およそ5E+08CFU/mL)に希釈された細菌の1mL潅注の初期定常期培養液を、現れた子葉鞘の上に分注する。植物に水道水だけをまき、試料採取前に4週間育てる。この時点で、植物を根から抜き、根を徹底的に洗浄して泥炭残留物をほとんど取り除く。きれいな根の試料を切り取り、均質化して、植物細胞片および関連する細菌細胞のスラリーを作成する。qPCRのテンプレートとして使用する植物および細菌DNAの混合物を効果的に産生するハイスループットDNA抽出プロトコルを開発した。細菌細胞スパイクイン実験に基づいて、このDNA抽出プロセスは、根の新鮮重量と比較して定量的な細菌DNA試料を提供する。各株を、プライマーBLAST(Ye 2012)を使用して設計された株特異的プライマーを使用して評価し、接種されていない植物からのバックグラウンド増幅と比較する。一部のプライマーは、接種されていない植物ではオフターゲット増幅を示すため、コロニー形成は、増幅の存在またはバックグラウンドレベルと比較した正しい産生物の増幅の増加のいずれかによって決定される。
このアッセイを使用して、異なる土壌地理にわたる微生物産物の適合性を測定した。畑地土壌の質および畑地条件は、微生物産物の効果に大きな影響を与え得る。土壌のpH、保水能力、および競合微生物は、接種菌の生存およびコロニー形成能力に影響を与え得る土壌の要因のほんの数例である。コロニー形成アッセイは、カリフォルニアの農地から試料採取された3種類の土壌タイプを植物成長培地として使用して行った(図16A)。中間の接種密度を使用して、現実的な農業条件を概算した。3週間以内に、株5はすべての植物に1E+06~1E+07CFU/g FQでコロニー形成した。植物成長の7週間後、株1の進化版は、すべての土壌タイプで高いコロニー形成率(1E+06CFU/g FW)を呈した(図16B)。
さらに、畑地条件の複雑さにおけるコロニー形成を評価するために、2015年6月にSan Luis Obispoで1エーカーの畑地試験を開始して、2種類の畑地トウモロコシにおける7つの野生型株の影響およびコロニー形成を評価した。農業設計および試験の実施は、契約実地研究機関であるPacific Ag Researchが行った。接種には、接種方法実験で試験された同じ泥炭栽培種子コーティング技法を用いた。成長期の過程で、植物試料を収集して、根および茎の内部のコロニー形成を評価した。植え付け後4週間および8週間で各処理の3つの複製プロットから、16週間で収穫直前に各処理の6つすべての複製プロットから試料を収集した。12週目に、株1および株2を接種した処理の6つすべての複製プロット、ならびに未処理の対照から追加の試料を収集した。洗浄した根の新鮮重量1グラムあたりの細胞数を、qPCRおよび株特異的プライマーを用いた他のコロニー形成アッセイと同様に評価した。2つの株、株1および株2は、一貫して広範囲の根のコロニー形成を示し、12週間でピークに達し、その後急激に減少した(図16C)。株2は、株1よりも1桁少ない数で存在するように思われたが、植物間でより一貫した数で見られた。茎内部に効果的にコロニー形成する株は出現しなかった。qPCRコロニー形成データを裏付けるために、プレートおよび16Sシーケンシングを使用して根試料から両方の株を正常に再分離し、一致するシーケンスの分離株を同定した。
微生物の繁殖の例は、図17および図18の概略図にまとめることができる。図17は、微生物の繁殖を示しており、そこでは、マイクロバイオームの組成を最初に測定することができ、目的の種が同定される。マイクロバイオームの代謝をマッピングし、遺伝学にリンクさせることができる。その後、コンジュゲーションおよび組み換え、化学的突然変異誘発、適応進化、および遺伝子編集を含むがこれらに限定されない方法を使用して、標的化遺伝的変異を導入することができる。派生微生物は、作物に接種するために使用される。いくつかの例では、最良の表現型を持つ作物が選択される。
図17に示すように、マイクロバイオームの組成を最初に測定し、目的の種を同定することができる。マイクロバイオームの代謝をマッピングし、遺伝学にリンクさせることができる。窒素の代謝には、AmtBトランスポーターを介して、根圏から細菌のサイトゾルへのアンモニア(NH )の流入が含まれ得る。アンモニアおよびL-グルタミン酸(L-Glu)は、グルタミンシンテターゼおよびATPによってグルタミンに触媒される。グルタミンは、バイオマスの形成(植物の成長)につながる可能性があり、nifオペロンの発現を阻害する可能性もある。その後、コンジュゲーションおよび組み換え、化学的突然変異誘発、適応進化、および遺伝子編集を含むがこれらに限定されない方法を使用して、標的化遺伝的変異を導入することができる。派生微生物は、作物に接種するために使用される。最良の表現型を持つ作物が選択される。
本発明を説明する文脈において(特に、以下の特許請求の範囲の文脈において)「a」および「an」および「the」という用語、ならびに類似の指示対象の使用は、本明細書に別段の指示がない限り、または文脈によって明らかに矛盾しない限り、単数および複数の両方をカバーするものと解釈されるべきである。「備える(comprising)」、「有する(having)」、「含む(including)」、および「含有する(containing)」という用語は、特に断りのない限り、制限のない用語(すなわち、「含むがこれに限定されない」を意味する)として解釈されるべきである。本明細書での値の範囲の列挙は、本明細書に別段の指示がない限り、範囲内に含まれる各個別の値を個別に参照する簡略法として機能することのみを意図し、各個別の値は、本明細書で個別に列挙されているかのように本明細書に組み込まれる。例えば、10~15の範囲が開示されている場合、11、12、13、および14も開示されている。本明細書に記載のすべての方法は、本明細書で別段の指示がない限り、または文脈によって明らかに矛盾しない限り、任意の好適な順序で行うことができる。本明細書で提供されるありとあらゆる例、または例示的な言語(例えば、「など」)の使用は、単に本発明をよりよく明らかにすることを意図し、別段の請求がない限り、本発明の範囲を限定するものではない。本明細書中の言語は、請求されていない要素を本発明の実施に不可欠であると示すものと解釈されるべきではない。
実施例8 プロモーターの検証
選択された各プロモーターについて、nifL遺伝子が削除され、nifLの不在下でのニトロゲナーゼ発現の転写アクチベーターである、nifA遺伝子の上流に挿入されたプロモーターで置き換えられた株を生成した。これらの突然変異体の各々を、アセチレン還元アッセイで試験した。ここで、嫌気性培養物がアセチレンガスに曝露され、ニトロゲナーゼ酵素がエチレンガスに還元し、ガスクロマトグラフィーを介して検出され得る。アセチレン還元の速度は、試料に存在するニトロゲナーゼの量に対応するため、nifA転写の読み取り値として機能した。場合によっては、アセチレン還元アッセイからの試料をRNA抽出にかけ、nifAおよびニトロゲナーゼ遺伝子の転写をqPCRを介して測定した。結果を表6に示す。
さらなる結果を図19~31Cに示す。図19A、19B、および24Aでは、図に示されているように、NifL遺伝子が削除され、異種プロモーターで置換されている。宿主細胞に外因性のDNA配列は、このプロセスによってゲノムに導入されなかった。図19A、20A、21、および22に示すように、nifAが配列番号1、5、9、11~24、26、27、30、33~37、および40のうちのいずれかに作動可能に連結されている場合、nifA発現は、野生型レベルと比較して増加する。図19B、20B、23、24A、24B、25A、25B、26、27、28、および29に示すように、nifAが配列番号1、2、5~7、9~12、26~28、32~38、40、42、45、50~51、61~63、67、および70のうちのいずれかに作動可能に連結されている場合、野生型レベルと比較して、ニトロゲナーゼ活性が増加する。図24A、24B、25B、および26~29に示される遺伝子操作された株を硬化させて、すべての変性プロモーター配列を除去した。図19A~23、25A、30、および31に示される遺伝子操作された株は、アッセイの前に硬化されなかった。
図30~31Cは、本開示の異種プロモーターを使用して、NifAを超えて他の遺伝子を上方調節することもできることを示す。図30~31Cでは、bcsI、otsB、CysZ、またはtreZの天然のプロモーター配列が、本開示の異種配列で置き換えられた。図30に示されるように、遺伝子が配列番号2に作動可能に連結された場合、bcsIの発現が増加した。図31Aに示されるように、遺伝子が配列番号1に作動可能に連結された場合、CysZの発現が増加した。図31Bに示されるように、遺伝子が配列番号1または配列番号2のいずれかに作動可能に連結された場合、otsBの発現が増加した。最後に、図31Cに示されるように、遺伝子が配列番号2に作動可能に連結された場合、treZの発現が増加した。
本発明の好ましい実施形態を本明細書に示して説明してきたが、そのような実施形態が例としてのみ提供されていることは当業者には明らかであろう。当業者は、本発明から逸脱することなく、多数の変形、変更、および置換を思いつくであろう。本明細書に記載されている本発明の実施形態の様々な代替形態が、本発明を実施する際に用いられ得ることを理解されたい。以下の特許請求の範囲が本発明の範囲を定義し、これらの特許請求の範囲内の方法および構造、ならびにそれらの等価物がそれによってカバーされることが意図されている。
(表3A)
Figure 2023159378000009
(表3B)
Figure 2023159378000010
(表4)株の表
Figure 2023159378000011
Figure 2023159378000012
Figure 2023159378000013
Figure 2023159378000014
Figure 2023159378000015
Figure 2023159378000016
Figure 2023159378000017
株の表(続き)
Figure 2023159378000018
(表8)プロモーター配列
Figure 2023159378000019
Figure 2023159378000020
Figure 2023159378000021
Figure 2023159378000022
Figure 2023159378000023
Figure 2023159378000024
Figure 2023159378000025
Figure 2023159378000026
Figure 2023159378000027
Figure 2023159378000028
Figure 2023159378000029
Figure 2023159378000030
(表9)インビトロおよび植物体でのプロモーター活性
Figure 2023159378000031
Figure 2023159378000032
Figure 2023159378000033
Figure 2023159378000034
(表10)本明細書に開示されるプロモーター配列の種の起源
Figure 2023159378000035
配列情報
SEQUENCE LISTING
<110> PIVOT BIO, INC.
<120> METHODS AND COMPOSITIONS FOR IMPROVING ENGINEERED MICROBES THAT
FIX NITROGEN
<150> US 62/577,148
<151> 2017-10-25
<160> 73
<170> PatentIn version 3.5

<210> 1
<211> 348
<212> DNA
<213> Kosakonia sacchari
<400> 1
cgtcctgtaa taataaccgg acaattcgga ctgattaaaa aagcgccctt gtggcgcttt 60
ttttatattc ccgcctccat ttaaaataaa aaatccaatc ggatttcact atttaaactg 120
gccattatct aagatgaatc cgatggaagc tcgctgtttt aacacgcgtt ttttaacctt 180
ttattgaaag tcggtgcttc tttgagcgaa cgatcaaatt taagtggatt cccatcaaaa 240
aaatattctc aacctaaaaa agtttgtgta atacttgtaa cgctacatgg agattaactc 300
aatctagagg gtattaataa tgaatcgtac taaactggta ctgggcgc 348

<210> 2
<211> 333
<212> DNA
<213> Kosakonia sacchari
<400> 2
tcaccacggc gataaccata ggttttcggc gtggccacat ccatggtgaa tcccactttt 60
tccagcacgc gcgccacttc atcgggtctt aaatacatag attttcctcg tcatctttcc 120
aaagcctcgc caccttacat gactgagcat ggaccgtgac tcagaaaatt ccacaaacga 180
acctgaaagg cgtgattgcc gtctggcctt aaaaattatg gtctaaacta aaatttacat 240
cgaaaacgag ggaggatcct atgtttaaca aaccgaatcg ccgtgacgta gatgaaggtg 300
ttgaggatat taaccacgat gttaaccagc tcg 333

<210> 3
<211> 315
<212> DNA
<213> Kosakonia sacchari
<400> 3
atcatattgc gctccctggt tatcatttgt tactaaatga aatgttataa tataacaatt 60
ataaatacca catcgctttc aattcaccag ccaaatgaga ggagcgccgt ctgacatagc 120
cagcgctata aaacatagca ttatctatat gtttatgatt aataactgat ttttgcgttt 180
tggatttggc tgtggcatcc ttgccgctct tttcgcagcg tctgcgtttt tgccctccgg 240
tcagggcatt taagggtcag caatgagttt ttacgcaatt acgattcttg ccttcggcat 300
gtcgatggat gcttt 315

<210> 4
<211> 339
<212> DNA
<213> Kosakonia sacchari
<400> 4
tgacgaggca ggttacatca ctggtgaaac cctgcacgtc aatggcggaa tgtatatggt 60
ttaaccacga tgaaaattat ttgcgttatt agggcgaaag gcctcaaaat agcgtaaaat 120
cgtggtaaga actgccggga tttagttgca aatttttcaa cattttatac actacgaaaa 180
ccatcgcgaa agcgagtttt gataggaaat ttaagagtat gagcactatc gaagaacgcg 240
ttaagaaaat tatcggcgaa cagctgggcg ttaagcagga agaagttacc aacaatgctt 300
ccttcgttga agacctgggc gctgattctc ttgacaccg 339

<210> 5
<211> 313
<212> DNA
<213> Kosakonia sacchari
<400> 5
ggacatcatc gcgacaaaca atattaatac cggcaaccac accggcaatt tacgagactg 60
cgcaggcatc ctttctcccg tcaatttctg tcaaataaag taaaagaggc agtctacttg 120
aattaccccc ggctggttga gcgtttgttg aaaaaaagta actgaaaaat ccgtagaata 180
gcgccactct gatggttaat taacctattc aattaagaat tatctggatg aatgtgccat 240
taaatgcgca gcataatggt gcgttgtgcg ggaaaactgc ttttttttga aagggttggt 300
cagtagcgga aac 313

<210> 6
<211> 330
<212> DNA
<213> Kosakonia sacchari
<400> 6
ccatccggtt aagcgtatcg aagaagttct tgcccttgcg ctgcagaatg aaccctttgg 60
tatgcaagtc gtaacggcaa aatagtgacc ttgcgcaaag tgcgttaata aaaacaaggt 120
tggtgagtga tttcggactt gccagccttt ttttgtatag ctaatttaga ttgctggttg 180
ggtgtgccat catcaactgg tgttgtaagg gcatgacagg cctgatataa ctgctgcgcg 240
gtcgcgctgt gaaggattca ggtgcgatat aaattataaa gagaggaaga gtagagtgaa 300
taaatctcaa ctggtagaca agattgccgc 330

<210> 7
<211> 339
<212> DNA
<213> Kosakonia sacchari
<400> 7
cgcgtcaggt tgaacgtaaa aaagtcggtc tgcgcaaagc acgtcgtcgt ccgcagttct 60
ccaaacgtta attggtttct gcttcggcag aacgattggc gaaaaaaccc ggtgcgaacc 120
gggttttttt atggataaag atcgtgttat ccacagcaat ccattgatta tctcttcttt 180
ttcagcattt ccagaatccc ctcaccacaa agcccgcaaa atctggtaaa ctatcatcca 240
attttctgcc caaatggctg ggattgttca ttttttgttt gccttacaac gagagtgaca 300
gtacgcgcgg gtagttaact caacatctga ccggtcgat 339

<210> 8
<211> 345
<212> DNA
<213> Kosakonia sacchari
<400> 8
cagagccggg ttgttgatcc gcagggcgtg acggttgcgg cagcagcaga agcgccacag 60
ctgattttcg cagaggtcac gcctgaacgc gtggcgcaga cacgcgagaa actgccggta 120
ttacgcaatc gccgtttcgc tgtaccgcat ttattgtgat gtttttttaa acaatgcttg 180
attcatctcg ttacacattg ctattgtgtg cgcgcgtcga atgaccgtta atgaagtccg 240
gttataatgg cgttttatgc agcctgtttt aagaaagaag gtatctatgg gtgagattag 300
tattaccaaa ctgctggttg tggccgcact ggttgttctg ctgtt 345

<210> 9
<211> 350
<212> DNA
<213> Kosakonia sacchari
<400> 9
atattgacac catgacgcgc gtaatgctga ttggttctgt gacgctggta atgattgtcg 60
aaattctgaa cagtgccatc gaagccgtag tagaccgtat tggtgcagaa ttccatgaac 120
tttccgggcg ggcgaaggat atggggtcgg cggcggtgct gatgtccatc ctgctggcga 180
tgtttacctg gatcgcatta ctctggtcac attttcgata acgcttccag aattcgataa 240
cgccctggtt ttttgcttaa atttggttcc aaaatcgcct ttagctgtat atactcacag 300
cataactgta tatacaccca gggggcggga tgaaagcatt aacggccagg 350

<210> 10
<211> 297
<212> DNA
<213> Kosakonia sacchari
<400> 10
cctgtatgaa gatggcgtgc gcaaagatcg cctggataac agcgatatga ttagccagct 60
tgaagcccgc attcgcgcga aagcgtcaat gctggacgaa gcgcgtcgta tcgatgtgca 120
acaggtagaa aaataaggtt gctgggaagc ggcaggcttc ccgtgtatga tgaacccgcc 180
cggcgcgacc cgttgttcgt cgcggccccg agggttcatt ttttgtatta ataaagagaa 240
taaacgtggc aaaaaatatt caagccattc gcggcatgaa cgattatctg cctggcg 297

<210> 11
<211> 194
<212> DNA
<213> Klebsiella variicola
<400> 11
ttcgctaagt cttagcaata aatgagataa gcggtgtgtc ttgtggaaaa acaaggacta 60
aagcgttacc cactaaaaaa gatagcgact tttatcactt tttagcaaag ttgcactgga 120
caaaaggtac cacaattggt gtactgatac tcgacacagc attagtgtcg atttttcata 180
taaaggtaat tttg 194

<210> 12
<211> 400
<212> DNA
<213> Klebsiella variicola
<400> 12
gcccgctgac cgaccagaac ttccaccttg gactcggcta tacccttggc gtgacggcgc 60
gcgataactg ggactacatc cccattccgg tgatcttacc attggcgtca ataggttacg 120
gtccggcgac tttccagatg acctatattc ccggcaccta caataacggt aacgtttact 180
tcgcctgggc tcgtatacag ttttaattcg ctaagtctta gcaataaatg agataagcgg 240
tgtgtcttgt ggaaaaacaa ggactaaagc gttacccact aaaaaagata gcgactttta 300
tcacttttta gcaaagttgc actggacaaa aggtaccaca attggtgtac tgatactcga 360
cacagcatta gtgtcgattt ttcatataaa ggtaattttg 400

<210> 13
<211> 177
<212> DNA
<213> Klebsiella variicola
<400> 13
tcccggctgt gcgtgaggga gactgttctt aatctggcgc gcgaaggttg ctattgccct 60
gaaaatggac caccctagct gaggtcgcac aaaaaacgtg cggccgactt tgggttacat 120
ttcatccggt caccaccggg tttgcccttg aaaccagaac aggataaagg agtcaga 177

<210> 14
<211> 400
<212> DNA
<213> Klebsiella variicola
<400> 14
cccgcagcgg gtgatccctg gtcattacct cggcaccccg ccggagggag acagcgcggt 60
gcgcttcaca aaaacgtatc tccagcagtt tgagcaggcg ctgaagacgc atcaggattc 120
ggccggggtg atcaaggcca tggagacgca gtggccgggc ctggcggagt ccagctcgct 180
ggagttaagc gccaaagtta ataccggcga gatgaagtgg tgatcccggc tgtgcgtgag 240
ggagactgtt cttaatctgg cgcgcgaagg ttgctattgc cctgaaaatg gaccacccta 300
gctgaggtcg cacaaaaaac gtgcggccga ctttgggtta catttcatcc ggtcaccacc 360
gggtttgccc ttgaaaccag aacaggataa aggagtcaga 400

<210> 15
<211> 472
<212> DNA
<213> Klebsiella variicola
<400> 15
tgagtattgt cagccggaag tttgatcgga aggatgtggg aacggtattt cgccatgcgg 60
tgacctgaaa agttttgtgc cgtctggagg taaaactgac tgcagaagac agggagcagt 120
tactgtcctt aatcagtctg gtgtatcgcg ccggagagaa cgccggtagt gaacaacggg 180
cggttgaaat ccggcaggcg ctgggtttac agacagaaaa cgagtcagga ggtgtttgag 240
gatatattca gttatcaggc tgttagtcct gggtggattc gatacgacag ggtataatga 300
cgtcggcgct tgaggctttt tgcctcatga cgtaaaggtg gtttgttacc gtgttgtgcg 360
gcagaaagca gaaagccccg tagttaattt tcattaaccc acgaggcccc ctgtatgtct 420
catcaacaac agtatggcct cttaccgtgc tcaatgcaag gaggagtaaa cc 472

<210> 16
<211> 250
<212> DNA
<213> Klebsiella variicola
<400> 16
agtcaggagg tgtttgagga tatattcagt tatcaggctg ttagtcctgg gtggattcga 60
tacgacaggg tataatgacg tcggcgcttg aggctttttg cctcatgacg taaaggtggt 120
ttgttaccgt gttgtgcggc agaaagcaga aagccccgta gttaattttc attaacccac 180
gaggccccct gtatgtctca tcaacaacag tatggcctct taccgtgctc aatgcaagga 240
ggagtaaacc 250

<210> 17
<211> 100
<212> DNA
<213> Klebsiella variicola
<400> 17
acgcttcggc cgaaaaataa gcgcatcggt agcacgctca gtaaatcgcc gtctatactg 60
aaagagcctg actgaaggct aattccaagg agattgcagg 100

<210> 18
<211> 250
<212> DNA
<213> Klebsiella variicola
<400> 18
gagcgcacgc cgccgctggc gagcgccgag gtcacggcgg cctggatgaa tcagattatc 60
gaacagtgca tcctgatggc gcccgagcaa tatatgtggc tgcaccggcg ttttaagact 120
cgcccggaag gggtaccgcc gcgttactga acgcttcggc cgaaaaataa gcgcatcggt 180
agcacgctca gtaaatcgcc gtctatactg aaagagcctg actgaaggct aattccaagg 240
agattgcagg 250

<210> 19
<211> 251
<212> DNA
<213> Klebsiella variicola
<400> 19
ccagcgcgca gcggcatggg tcagtaaggg ggcttttgcc gctgcaccgt aaaaaaaagt 60
ttgctatcag gtgctgaacg tgcgttaatg ctcgcaggtt tgatgtacag accacagagc 120
agtcgaatag agcagtcctt ctaaggttat ccaaagatac ccccgtagtg aactttccct 180
ttatcgcttt aaatctgtag tccagaccgc tacgccgcaa ggctcactta tttttttaaa 240
ggtaattcac t 251

<210> 20
<211> 350
<212> DNA
<213> Klebsiella variicola
<400> 20
agtgggagtc gagacgggtt agaccgtctc ccaccgagct gaaattgatg cgcctgattc 60
aggccaatcc acagctttca cgacagttac tcgattaatc cagcgcgcag cggcatgggt 120
cagtaagggg gcttttgccg ctgcaccgta aaaaaaagtt tgctatcagg tgctgaacgt 180
gcgttaatgc tcgcaggttt gatgtacaga ccacagagca gtcgaataga gcagtccttc 240
taaggttatc caaagatacc cccgtagtga actttccctt tatcgcttta aatctgtagt 300
ccagaccgct acgccgcaag gctcacttat ttttttaaag gtaattcact 350

<210> 21
<211> 156
<212> DNA
<213> Klebsiella variicola
<400> 21
gccggcgatc aaaaaagcag cgatttaatc gttgcatagg gcgcgaaatt ggcatacaat 60
ttcgcgcctt ttgtttttat gggcctggcc cgtaaaacga tgtttaatca cggggagctt 120
ctctgaagcg ttaataccca atttgaggat ttaaga 156

<210> 22
<211> 300
<212> DNA
<213> Klebsiella variicola
<400> 22
gctaaagttc tcggctaatc gctgataaca tttgacgcaa tgcgcaataa aagggcatca 60
tttgatgccc tttttgcacg ctttcatacc agaacctggc tcatcagtga ttttttttgt 120
cataatcatt gctgagacag gctctgaaga gggcgtttat acaccaaacc attcgagcgg 180
tagcgcgacg gcaagtcagc gttctccttt gcaatagcag ggaagaggcg ccagaaccgc 240
cagcgttgaa gcagtttgaa cgcgttcagt gtataatccg aaacttaatt tcggtttgga 300

<210> 23
<211> 771
<212> DNA
<213> Klebsiella variicola
<400> 23
cttgtggctg aacgactcat cattgtttgt aaacaggatg tagcgccaga gtaactggca 60
acaaagcaga tgctgcaggc agtataaagg ctaatggcgt aaatccatac tacagaatgg 120
tgccagcggc gcgataccct ccaggaatta tcttagaatc gaagcgcaaa tgaaaccgcg 180
ccaacaacgc tgaccagtcg cgatattgac aaagtacagg cggaagaatc gcacgaaata 240
acaagacatt ggctgaataa gggcaattga caggctaatt gattgattaa tagtcgttag 300
ggaatttttt gccgtagcac agataaatta aagttgtgta aagaagggta aaaaaaaccg 360
gatgcgaggc atccggttga aataggggta aacagacatt cagaactgaa tgacggtaat 420
aaataaagtt aatgatgata gcgactgtta ttttagtcac caatgatagt tttgttttac 480
cattcagtgc tatagagtta tttgtctgta tgtgattgat tgtgaggaaa taaatatttt 540
ttttgattat tagtgcgtat ttcccagacc attttgtggt gcaaaaagtt ccgccatttt 600
tacaaattga aacatcttgt gggcattttg aaacatctta gaagttttag tatcatattc 660
ttgttggatt attctgcatt ttgcagcaca atgaaatagc cgactgatta gaagggtaat 720
cagtaagcag tggcataata aaaggcatat aacaaacaga gggttaataa c 771

<210> 24
<211> 249
<212> DNA
<213> Klebsiella variicola
<400> 24
tgaggaaata aatatttttt ttgattatta gtgcgtattt cccagaccat tttgtggtgc 60
aaaaagttcc gccattttta caaattgaaa catcttgtgg gcattttgaa acatcttaga 120
agttttagta tcatattctt gttggattat tctgcatttt gcagcacaat gaaatagccg 180
actgattaga agggtaatca gtaagcagtg gcataataaa aggcatataa caaacagagg 240
gttaataac 249

<210> 25
<211> 242
<212> DNA
<213> Klebsiella variicola
<400> 25
ttctgcgagt ttcagaaaaa ggggcctgac ggcccctttt ttcgaccggg cggcagcaat 60
tcattcaaaa ctcatgtatt gttgctagta atgatcttca tgcagaggtt cgcgcggcta 120
atgagaggct tcatccgcag gggcgggtaa aggttgtcat tagtcgcgag gatgcagagg 180
atcgggtcaa tagacgctat atctttgata tggcgtgatt tatagataaa aaggatagaa 240
tt 242

<210> 26
<211> 299
<212> DNA
<213> Klebsiella variicola
<400> 26
cgccgtcctc gcagtaccat tgcaaccgac tttacagcaa gaagtgattc tggcacgcat 60
ggaacaaatt cttgccagtc gggctttatc cgatgacgaa cgcgcacagc ttttatatga 120
gcgcggagtg ttgtatgata gtctcggtct gagggcatta gcgcgaaatg atttttcaca 180
agcgctggca atccgacccg atatgcctga agtattcaat tacttaggca tttacttaac 240
gcaggcaggc aattttgatg ctgcctatga agcgtttgat tctgtacttg agcttgatc 299

<210> 27
<211> 270
<212> DNA
<213> Klebsiella variicola
<400> 27
aaacaagggt ataaggctat cttgtttgcc attttagctc cggggtgtgc tcgaaatgct 60
cacgtactac gtgtacgctc cgctttctgc gcgcacgccg gaactaaact agctgcaccg 120
atatacgcct tctatccctt gtttaatgct cagtaccaag atgctgattg cattttcccc 180
agaaatcagt aaaattttcg ggcttttaat atgacaccgg gctccgttcc tcgatggggc 240
ccggttgttt tattcacaca agaggatgtt 270

<210> 28
<211> 300
<212> DNA
<213> Klebsiella variicola
<400> 28
tcggttcagg gcaattccat tggtctgata aagataatat gtccccgttc tcagggggaa 60
aagattgtcg ccgcattcac caaaaatgcg atattccgcg cagggcctcc atcttaatac 120
gataaaaggc cgctacaagc cgttgttaca taaccccttc attgtggatc tcgcggttaa 180
tcgccaaaaa tagcgctaaa tgacaacaaa tatcatttgc cttccattca gataatactt 240
acattcataa ctattagtaa tgttttggcg ccagggcgct ttttatattt cgaggtggat 300

<210> 29
<211> 250
<212> DNA
<213> Klebsiella variicola
<400> 29
actatcgcga agacgcgcaa atcccggtga tgattttcta aacagcgctt gcgtcgtgcc 60
agaatttgcg tataatgcgc gggcctgtca aagttgacag ccggttcgat atgaaccctg 120
atagtgcttt ttgctatcaa acaatgtccc caatcggggg actatgtaag aacggttaca 180
ctctcccatc aatcgtaatg ggtatgagga gtaatcattt cgtctataaa ataattggag 240
ctctggactc 250

<210> 30
<211> 128
<212> DNA
<213> Klebsiella variicola
<400> 30
atatcgatca ataaatttga acaatgacag caaatccttc cgctttttgt ttagcgatgt 60
gcgggctact atttaacaca tcaaggcacg gcgccttatc taaacaacta aatgaaaggg 120
tttatatc 128

<210> 31
<211> 300
<212> DNA
<213> Klebsiella variicola
<400> 31
tgaaatggtg cagaaggccg cgatgtgcgg cgtcgagatc ctgttcgcag tctcggcggc 60
cactacctta gcggtggaag tggccgagcg ctgcaatctg acgctggtgg gcttttgcaa 120
gccgggcagg gcgacagtct acacccatcc gcagcgttta attgcgggtt aaatatcgat 180
caataaattt gaacaatgac agcaaatcct tccgcttttt gtttagcgat gtgcgggcta 240
ctatttaaca catcaaggca cggcgcctta tctaaacaac taaatgaaag ggtttatatc 300

<210> 32
<211> 352
<212> DNA
<213> Klebsiella variicola
<400> 32
atgaaattag gattattcct ggaatttttt ttaccgatgg taaagacaca gcgtttttca 60
gggacttttt cgcgcaatgc ctgtcacacg gggatttctg ccttttttct gcgtacgaaa 120
atcaaccata tttgttaaat attgtgtaca caaccctttt ttttcatatg cctgacagag 180
ttcacacttg taagtttcga actaagttgt agactttaca tcgccagggg tgatcggctt 240
acgctgcatg tatcagcata gttaacaaca agtcacgccc cgggtgaagg atttaaccgt 300
gaggtctttt gtaacttcat ggcgaatttt ggatgataat gaggcgcaaa aa 352

<210> 33
<211> 200
<212> DNA
<213> Klebsiella variicola
<400> 33
accctttttt ttcatatgcc tgacagagtt cacacttgta agtttcgaac taagttgtag 60
actttacatc gccaggggtg atcggcttac gctgcatgta tcagcatagt taacaacaag 120
tcacgccccg ggtgaaggat ttaaccgtga ggtcttttgt aacttcatgg cgaattttgg 180
atgataatga ggcgcaaaaa 200

<210> 34
<211> 300
<212> DNA
<213> Klebsiella variicola
<400> 34
gccgacgaag cctcgccgcg ccgcttcgtt atatacctca acaggagtac tccggttgta 60
tcgataatgc gagggctgca ggtattattt ccctgcacac agtaagttag cggtgatgtg 120
ccgtctggtt atttttaatg tgtgttgtag aattattccg aattactgct gaaagacgtc 180
gggaaaacgg aataataatt tgactaacca gcattacccg ctagagttaa atatcgaacg 240
acgagtgata cggaatattt tcgtatcgta ctgacataac cgatatacat gaggtgaaat 300

<210> 35
<211> 165
<212> DNA
<213> Klebsiella variicola
<400> 35
tagagtacgc attctcgata cggataaacg gctcagcgat gagccgttta ttttttctac 60
ccatatctgg tttgtggtgt tataatgccg cgccctcgat atggggcttt ttaacgaccc 120
taattttcgg gactcagtag tagttgacat tagcggagca ctaaa 165

<210> 36
<211> 300
<212> DNA
<213> Klebsiella variicola
<400> 36
acgaccaaac tgcacgtaca tgacgagaac aacgaatgcg gtatcggtga cgtggttgaa 60
atccgcgaat gccgtccgct gtccaagact aagtcctgga cgctggttcg cgttgtagag 120
aaagcggttc tgtaatagag tacgcattct cgatacggat aaacggctca gcgatgagcc 180
gtttattttt tctacccata tctggtttgt ggtgttataa tgccgcgccc tcgatatggg 240
gctttttaac gaccctaatt ttcgggactc agtagtagtt gacattagcg gagcactaaa 300

<210> 37
<211> 71
<212> DNA
<213> Klebsiella variicola
<400> 37
gaatttactt acattaaggc ggcgaggggc gcctatactt gatagttctg ataccagaag 60
aaggaagaac t 71

<210> 38
<211> 151
<212> DNA
<213> Klebsiella variicola
<400> 38
atgccacggc ctccccggat cgggtggtgg agcagattat gaccatgctg tgcggcgcga 60
cggcaacccc ggtaagttaa gaatttactt acattaaggc ggcgaggggc gcctatactt 120
gatagttctg ataccagaag aaggaagaac t 151

<210> 39
<211> 364
<212> DNA
<213> Klebsiella variicola
<400> 39
taactataaa cgcctatacc ctaaataatt cgagtggcag gaaggcggcg acgcagcgaa 60
tccccaggag cttactcaag taagtgactg gggtgagtga ggaaagccaa cacacaggca 120
acttgaagta tggcgggtat aggtgccgta acctcggggg aacggcacct tgcgtcataa 180
gtactgataa cgataaagtc gggttgaaat tgtgtatatc ggctaaactt aggtttaaca 240
gaatgtgatg ccatgactgc cttataccgc aaggtatttg tcatcgctta ctttttggcg 300
ttatatgatg gataatgccg ggatacgaga gtcccgactc ttttaatctt tcaaggagca 360
aaga 364

<210> 40
<211> 200
<212> DNA
<213> Klebsiella variicola
<400> 40
gcaccttgcg tcataagtac tgataacgat aaagtcgggt tgaaattgtg tatatcggct 60
aaacttaggt ttaacagaat gtgatgccat gactgcctta taccgcaagg tatttgtcat 120
cgcttacttt ttggcgttat atgatggata atgccgggat acgagagtcc cgactctttt 180
aatctttcaa ggagcaaaga 200

<210> 41
<211> 204
<212> DNA
<213> Rahnella aquatilis
<400> 41
agtattaaag gcggaaaacg agttcaaccg gcgcgtccta atcgcattaa caaagagatt 60
cgcgcgcaag aagttcgcct cacaggcgtc gatggcgagc agattggtat tgtcagtctg 120
aatgaagctc ttgaaaaagc tgaggaagcg ggcgtcgatt tagtagaaat cagtccgaat 180
gccgagccgc cagtttgtcg aatc 204

<210> 42
<211> 500
<212> DNA
<213> Rahnella aquatilis
<400> 42
tgaacatcac tgatgcacaa gctacctatg tcgaagaatt aactaaaaaa ctgcaagatg 60
caggcattcg cgttaaagcc gacttgagaa atgagaagat tggctttaaa attcgcgaac 120
acacgctacg ccgtgttcct tatatgttag tttgtggcga taaagaggtc gaagcaggca 180
aagttgctgt tcgtacccgc cgcggcaaag acttaggaag catggatgtt agcgaagtcg 240
ttgacaaact gctggcggaa atccgcagca gaagtcttca tcaactggag gaataaagta 300
ttaaaggcgg aaaacgagtt caaccggcgc gtcctaatcg cattaacaaa gagattcgcg 360
cgcaagaagt tcgcctcaca ggcgtcgatg gcgagcagat tggtattgtc agtctgaatg 420
aagctcttga aaaagctgag gaagcgggcg tcgatttagt agaaatcagt ccgaatgccg 480
agccgccagt ttgtcgaatc 500

<210> 43
<211> 120
<212> DNA
<213> Rahnella aquatilis
<400> 43
tctggcctta atctggtgct gaagaatatt cagtgccggt tttggctata gtttttttta 60
acctcgccgc aaggatctgt agcggggcat ttgaaacaac cccatccagc aggacgccag 120

<210> 44
<211> 400
<212> DNA
<213> Rahnella aquatilis
<400> 44
tgcaccggtg aagatatttc tggatgccag ttcggaagaa cgtgcaaaca gaagaatgct 60
acagttgcag gaaaaaggct ttagtgttaa ctttgaacgg cttttagccg agatcaaaga 120
acgcgatgac cgtgatcgta acaggcctat cgcgccttta gtggctgctt ccgatgcact 180
gttgctggat tcaaccagta tgtctatcga cgaagtcatc gaaaaagcac tggcttatgc 240
cacagaaatt ctaggattac cgcaaaaaca aacccggtaa tctggcctta atctggtgct 300
gaagaatatt cagtgccggt tttggctata gtttttttta acctcgccgc aaggatctgt 360
agcggggcat ttgaaacaac cccatccagc aggacgccag 400

<210> 45
<211> 170
<212> DNA
<213> Rahnella aquatilis
<400> 45
tacagtagcg cctctcaaaa atagataaac ggctcatgta cgtgggccgt ttattttttc 60
tacccataat cgggaaccgg tgttataatg ccgcgccctc atattgtggg gatttcttaa 120
tgacctatcc tgggtcctaa agttgtagtt gacattagcg gagcactaac 170

<210> 46
<211> 129
<212> DNA
<213> Rahnella aquatilis
<400> 46
tctgtaacag aagttttaca gctcctttcc atctggaaag gagctgttcg tctcacggac 60
gcaggacgcg tttgtgttaa gcaagcggat gacaggatgt tcatccaatg tttgtctccg 120
ggagtagaa 129

<210> 47
<211> 273
<212> DNA
<213> Rahnella aquatilis
<400> 47
tcaagcgagt ttcagtgtaa aggggccaat aggccccttt attctaggaa gcgcagccaa 60
atcagggtac tgtatggctg cggtttctac tgttattcta agaacatgaa cttccgttac 120
agatgttttc gcgcggctaa tgagagactt tattaccaca ttgccaggta tataaggatt 180
gtcattagtc gcgagaatgt agtgagaagc tcggatattt atcggcgtga actgctgtca 240
taacagctgc gcgtcataca aaaggatatt aca 273

<210> 48
<211> 153
<212> DNA
<213> Rahnella aquatilis
<400> 48
aaattacgaa attatttgcg ttttttgcgg taaaaaccgc aaaatagagc aaattcgtgg 60
tttgaccagc ctggatttag ttgcatcttt ttcaacattt tatacactac gaaaaccatc 120
gcgaaagcga gttttgatag gaaatttaag agt 153

<210> 49
<211> 750
<212> DNA
<213> Rahnella aquatilis
<400> 49
gaatatttag gcgaaaatgg caagggtatc atgctcaatg tggttgattc tgcatctatt 60
gagcaagtat tggcgacgat tcgagctgaa tttggcgaaa ttgatatttt agttaataat 120
gccggcatca cccgtgataa ccttctcatg cgtatgaagg atgatgagtg gcaggatatc 180
ctggatacga acctgacttc agtgtttcgg ctgtcaaaag ctgtcatgcg agctatgatg 240
aagaaacggt gtggacggat tattacaatt ggttccgttg ttggcaccat gggtaacgca 300
gggcaggcga actacgcggc ggctaaagct ggcttgattg gttttagtaa gtctttggca 360
cgtgaggtcg cttcacgtgg cattactgtc aacgtcgtgg ctcccggctt tattgagacg 420
gatatgacaa gggcgttgac agatgatcaa cgcgcaggca ttttgtcatc agttccagcc 480
aaccggttgg gcgatgccaa agaaattgcc agcgccgttg cttttttagc ctctgacgag 540
gccagctaca tcacgggtga aacattacat gtcaatggcg gcatgtatat gatttaaaaa 600
ttacgaaatt atttgcgttt tttgcggtaa aaaccgcaaa atagagcaaa ttcgtggttt 660
gaccagcctg gatttagttg catctttttc aacattttat acactacgaa aaccatcgcg 720
aaagcgagtt ttgataggaa atttaagagt 750

<210> 50
<211> 142
<212> DNA
<213> Rahnella aquatilis
<400> 50
aatttttttt cacaaagcgt agcgttattg aatcgcacat tttaaactgt tggccgctgt 60
ggaagcgaat attggtgaaa ggtgcggttt taaggccttt ttctttgact ctctgtcgtt 120
acaaagttaa tatgcgcgcc ct 142

<210> 51
<211> 293
<212> DNA
<213> Rahnella aquatilis
<400> 51
ttaaaaacgt gaccacgagc attaataaac gccacgaaat gtggcgttta tttattcaaa 60
aagtatcttc tttcataaaa agtgctaaat gcagtagcag caaaattggg ataagtccca 120
tggaatacgg ctgttttcgc tgcaattttt aactttttcg taaaaaaaga tgtttctttg 180
agcgaacgat caaaatatag cgttaaccgg caaaaaatta ttctcattag aaaatagttt 240
gtgtaatact tgtaacgcta catggagatt aacttaatct agagggtttt ata 293

<210> 52
<211> 198
<212> DNA
<213> Rahnella aquatilis
<400> 52
acaccctcct tccatcacca ttgtgattat ggttattaaa tttttataga aataacttaa 60
cgatcattat taaaaatagt tgcgcacaag tccagcggag tttattattt aattatcgag 120
cgataagaaa atcgctcaaa cccgcaaaac tgcgcagcta aaaacgcttt ttaagcatac 180
tatccaggac gtaacatc 198

<210> 53
<211> 285
<212> DNA
<213> Rahnella aquatilis
<400> 53
taaaaaattc ctgaacgggc ggtaaatgaa aaaggtttta tcaatcattc atgctgtgag 60
cacggtttgc aaggcttgca gtatgaattg atgcaacaat gtgtggtgac cagaaatcac 120
tgccggttca ttcagatagg tcaaaggtat cggactgaca ggtaattcct gctttttttt 180
atgatctgca acaggcatag tatcgacatc aaaaaggtga tgtggataac aaaaaacaaa 240
cattcccttt tcatttatct cgttggcatt aacaaaggag tctcc 285

<210> 54
<211> 224
<212> DNA
<213> Rahnella aquatilis
<400> 54
tcaatctcat cagttctgtg aaccgtcccg caattccctg caatacaaga ggttgttgtt 60
aaagaactct gagacttacg tcaaagactg atagccggat actatctgat tgattggtgc 120
gatggggttt attcacccgc agcttgcccc tatactgaca gtcgttttgt tcatcctttc 180
ctttcaccta cgacgccctc ttgggtttca taaggagtaa tatt 224

<210> 55
<211> 1256
<212> DNA
<213> Rahnella aquatilis
<400> 55
taccggcggt ttgcaaccag gtaaagacat ccggccactg ccagcttgat tcatcgataa 60
tcacctgcgt gttgtccggc aatacgcggg ggatattttc ccagaagccg ccaccggtca 120
gatggacgat gccgtgaaca tccacgtttt cgatcaggtt caggatcgat ttcacgtaaa 180
ttttggtcgg tgcgagcaaa tgatcagcca gcggtttgcc tgccagatcg gtggtttccg 240
ggtcggtctt gctgacttcc agaattttgc gcaccagaga ataaccgtta gaatgcgggc 300
cactggcggc cagaccaatc agcacatccc cgtcagccac tttgctgccg tcgatgattt 360
ctgatttttc caccacgccc acgcagaagc ctgccacgtc gtaatcttcg ccgtgataca 420
tgcccggcat ttcagcggtt tcaccgccaa ctaacgcaca gccagactgt ttacagcctt 480
ctgcgatacc cgtgatcacg ctggcagccg tatcgacgtc cagtttgccg gtagcgtaat 540
aatcgaggaa gaacaggggt tcggcgccct gaacgatcaa atcgttgacg cacatcgcga 600
ccaggtcgat accgatagta tcgtggcgtt tcaaatccat cgccagacgc agcttggtgc 660
caacgccgtc ggtacccgat accagcacgg gttcacgata tttttgcggc agcgcgcaga 720
gggcaccaaa accgcccagt ccacccatga cttcagggcg gcgagtctgt tttactacac 780
ctttaatgcg gtctaccaat gcgttaccgg catcgatatc tacgcctgcg tctttatagc 840
tgagagaggt tttgtcggtc actgcgaagt ccccacggcg gtttgggttg gtggttgaag 900
aataaagcgg ggcaattcta acagtgcaag caaacgtttg cgagcgcctt attcagagtc 960
actatctata cttaaaaata caacacttag ccgaagtcat tggagttgca gcaaggcagc 1020
aaacgagcga atcccgatga gctgacttga gtcagtgatt cgggtgagag agagcagcta 1080
acgcagctgc ggcttcaatg aagcagggta agttgatcca gatcaggcta tttggtatgg 1140
cgttcaaaaa aaatggcgtt ataatctcgc gatttttttt tgcagctcaa ccaccttagg 1200
agaataaata atgaagatcg tcgaggtgaa acacccgctg gtgaaacaca agctgg 1256

<210> 56
<211> 449
<212> DNA
<213> Rahnella aquatilis
<400> 56
cggcatcgat atctacgcct gcgtctttat agctgagaga ggttttgtcg gtcactgcga 60
agtccccacg gcggtttggg ttggtggttg aagaataaag cggggcaatt ctaacagtgc 120
aagcaaacgt ttgcgagcgc cttattcaga gtcactatct atacttaaaa atacaacact 180
tagccgaagt cattggagtt gcagcaaggc agcaaacgag cgaatcccga tgagctgact 240
tgagtcagtg attcgggtga gagagagcag ctaacgcagc tgcggcttca atgaagcagg 300
gtaagttgat ccagatcagg ctatttggta tggcgttcaa aaaaaatggc gttataatct 360
cgcgattttt ttttgcagct caaccacctt aggagaataa ataatgaaga tcgtcgaggt 420
gaaacacccg ctggtgaaac acaagctgg 449

<210> 57
<211> 312
<212> DNA
<213> Rahnella aquatilis
<400> 57
cgcggtttgg ttggtcaaat ttcacacaaa atcacgttga tcgactatac tggtttcgtc 60
gcgctgactg agaaacatgc ccagcaaaca gcatggtgaa acatcgatgt gctgtatatt 120
tcttgacacc ctcttaggtc agccctaaaa ttctgcgtcc ccatattagc taatgctttt 180
tatggggcga tttatcacgc gtttacaaag tagtttatga accaaaatcc aggagctttt 240
taatggcaac aattaatcag ctggtacgca aaccacgctc tacgaaggtt gctaaaagca 300
acgttccagc gc 312

<210> 58
<211> 489
<212> DNA
<213> Rahnella aquatilis
<400> 58
cctggttgag tctgctccag cagctctgaa agaaggcatc agcaaagatg acgctgaagc 60
tctgaaaaaa tctctggaag aagctggtgc ttctgttgaa gttaagtaag tttaacttcc 120
cggagtgcag tctgtcctaa caggctgatg gctggtgact ttttagtcac cagccttttt 180
gcgctataga gtgtcagtga tgtttcacac tgtttgagca ctgaactact ctaatatctc 240
tttctataga cgccttaata tattgttgcc tcttgctgta gctcatctac agataacgca 300
caacgaaatg atttaagagt ggtagaaaac agatattgcg gaaagcgttt ctgctttccg 360
gtcgacataa acggtgttgc atgaactgtc cttctcaggg cagacaagat tgggtcactg 420
atcagcgagc tgaggaaccc tatggtttac tcctataccg agaaaaaacg cattcgtaag 480
gattttggt 489

<210> 59
<211> 498
<212> DNA
<213> Rahnella aquatilis
<400> 59
tgaatatcac tgactcacaa gctacctatg tcgaagaatt aactaaaaaa ctgcaagatg 60
caggcattcg cgttaaagcc gacttgagaa atgagaagat tggctttaaa attcgcgaac 120
acacgctacg ccgtgttcct tatatgttag tttgtggcga taaagaggtc gaagcaggca 180
aagttgctgt tcgtactcgt cgcggcaaag acttaggaag catggatgtt agcgaagtcg 240
ttacaaactg cggcggaaat ccgcagcaga agtcttcatc aactggagga ataaagtatt 300
aaaggcggaa aacgagttca accggcgcgt cctaatcgca ttaacaaaga gattcgcgcg 360
caagaagttc gcctcaccgg cgtcgatggc gagcagattg gtattgtcag tctgaatgaa 420
gctcttgaaa aagctgagga agcgggcgtc gatttagtag aaatcagtcc gaatgccgag 480
ccgccagttt gtcgaatc 498

<210> 60
<211> 498
<212> DNA
<213> Kluyvera intermedia
<400> 60
ctggggtcac tggagcgctt tatcggcatc ctgaccgaag aatttgccgg tttcttcccg 60
acctggctgg cccctgttca ggttgtggtg atgaatatca ctgattctca agctgaatat 120
gtcaacgaat tgacccgtaa attgcaaaat gcgggcattc gtgtaaaagc ggacttgaga 180
aacgagaaga ttggctttaa aatccgcgag cacactttac gtcgtgtccc ttatatgttg 240
gtctgtggtg ataaagaggt ggaagcaggc aaagtggccg ttcgcacccg ccgcggtaaa 300
gacctgggca gcctggacgt aagtgaagtg attgagaagc tgcaacaaga gattcgcagc 360
cgcagtcttc aacaactgga ggaataaggt attaaaggcg gaaaacgagt tcaaacggca 420
cgtccgaatc gtatcaatgg cgagattcgc gcccaggaag ttcgcttaac tggtctggaa 480
ggtgagcagc tgggtatt 498

<210> 61
<211> 500
<212> DNA
<213> Kosakonia pseudosacchari
<400> 61
ttcttggttc tctggagcgc tttatcggca tcctgactga agaatttgca ggcttcttcc 60
caacctggct tgcacccgtg caggtagttg tgatgaacat cactgattcg caggctgaat 120
acgttaacga attgacccgt aaactgcaaa atgcgggcat tcgtgtaaaa gcagacttga 180
gaaacgagaa gattggcttt aaaatccgcg agcacacttt acgtcgtgtc ccttatatgc 240
tggtttgtgg tgacaaagag gtcgaagccg gcaaagttgc tgtgcgtacc cgtcgcggta 300
aagacctggg tagcctggac gtaaatgatg ttatcgagaa gctgcaacaa gagattcgca 360
gccgcagtct tcaacaactg gaggaataag gtattaaagg cggaaaacga gttcaaacgg 420
cgcgtcccaa tcgtattaat ggcgagattc gcgccacgga agttcgctta acaggtctgg 480
aaggcgagca gcttggtatt 500

<210> 62
<211> 500
<212> DNA
<213> Enterobacter sp.
<400> 62
tgaatattac cgattctcag gcggattacg ttaaagaatt gacgcagaaa cttcaaaatg 60
cgggcattcg cgtaaaagca gacttgagaa atgagaagat tggctttaaa atccgcgagc 120
acactttacg tcgtgtcccg tatatgttgg tctgtggtga taaagaggtg gaagcaggca 180
aagttgccgt tcgcacccgc cgtggtaaag acctgggcag cctggacgta agtgaagtga 240
ttgagaagct gcaacaagag attcgcagcc gcagtcttca acaactggag gaataaggta 300
ttaaaggcgg aaaacgagtt caaacggcac gtccgaatcg tatcaatggc gagattcgcg 360
cccaggaagt tcgcttaaca gatcttgaag gtgaaccact ggggattgtg agtctgagag 420
aagcgatcga aaaagctgaa gaagctggag tagatttagt tgaaatcagc cctaacgccg 480
aaccgccagt ttgtcgtatt 500

<210> 63
<211> 500
<212> DNA
<213> Rahnella aquatilis
<400> 63
tgaatatcac tgactcacaa gctacctatg tcgaagaatt aactaaaaaa ctgcaagatg 60
caggcattcg cgttaaagcc gacttgagaa atgagaagat tggctttaaa attcgcgaac 120
acacgctacg ccgtgttcct tatatgttag tttgtggcga taaagaggtc gaagcaggca 180
aagttgctgt tcgtactcgt cgcggcaaag acttaggaag catggatgtt agcgaagtcg 240
ttgacaaact gctggcggaa atccgcagca gaagtcttca tcaactggag gaataaagta 300
ttaaaggcgg aaaacgagtt caaccggcgc gtcctaatcg cattaacaaa gagattcgcg 360
cgcaagaagt tcgcctcacc ggcgtcgatg gcgagcagat tggtattgtc agtctgaatg 420
aagctcttga aaaagctgag gaagcgggcg tcgatttagt agaaatcagt ccgaatgccg 480
agccgccagt ttgtcgaatc 500

<210> 64
<211> 170
<212> DNA
<213> Rahnella aquatilis
<400> 64
tacagtagcg cctctcaaaa atagataaac ggctcatgta cgtgggccgt ttattttttc 60
tacccataat cgggaaccgg tgttataatg ccgcgccctc atattgtggg gatttcttaa 120
cgacctatcc tgggtcctaa agttgtagtt gacattagcg gagcactaac 170

<210> 65
<211> 142
<212> DNA
<213> Rahnella aquatilis
<400> 65
aatttttttt cacaaagcgt agcgttattg aatcgcacat tttaaactgt tggccgctgt 60
ggaagcgaat attggtgaaa ggtgcggttt taaggccttt ttctttgact ctctgtcgtt 120
acaaagttaa tatgcgcgcc ct 142

<210> 66
<211> 293
<212> DNA
<213> Rahnella aquatilis
<400> 66
ttaaaaacgt gaccacgagc attaatgaac gctgcgaaat gtggcgttta tttattcaaa 60
aagtatcttc tttcataaaa agtgctaaat gcagtagccg caaaattggg ataagtccca 120
tggaatacgg ctgttttcgc tgcaattttt aactttttcg taaaaaaaga tgcttctttg 180
agcgaacgat caaaatatag cgcttaccga caaaaaatta ttctcattag aaaatagttt 240
gtgtaatact tgtaacgcta catggagatt aacttaatct agagggtttt ata 293

<210> 67
<211> 500
<212> DNA
<213> Klebsiella sp.
<400> 67
agcgtcaggt accggtcatg attcaccgtg cgattctcgg ttccctggag cgcttcattg 60
gcatcctgac cgaagagttc gctggcttct tcccaacctg gattgcacca gtgcaggtag 120
tggtcatgaa tattaccgat tctcaggctg aatacgttaa cgaattgacg cgtaaactac 180
aaaatgcggg cattcgtgta aaagcagact tgagaaatga gaagattggc tttaaaatcc 240
gcgagcacac tttacgtcgt gtcccgtata tgttggtctg tggcgacaaa gaagtcgaag 300
ccggcaaagt ggccgtgcgc acccgtcgcg ggaaagacct cggcagcatg gacgtaagtg 360
aagtgattga gaagctgcaa caagagattc gcagccgcag tcttcaacaa ctggaggaat 420
aaggtattaa aggcggaaaa cgagttcaaa cggcacgtcc gaatcgtatc aatggcgaga 480
ttcgcgccct ggaagttcgc 500

<210> 68
<211> 400
<212> DNA
<213> Klebsiella sp.
<400> 68
gcccgctgac cgaccagaac ttccaccttg gactcggcta tacccttggc gtgacggcgc 60
gcgataactg ggactacatc cccattccgg tgatcttacc attggcgtca ataggttacg 120
gtccggcgac tttccagatg acctatattc ccggcaccta caataacggt aacgtttact 180
tcgcctgggc tcgtatacag ttttaattcg ctaagtctta gcaataaatg agataagcgg 240
tgtgtcttgt ggaaaaacaa ggactaaagc gttacccact aaaaaagata gcgactttta 300
tcacttttta gcaaagttgc actggacaaa aggtaccaca attggtgtac tgatactcga 360
cacagcatta gtgtcgattt ttcatataaa ggtaattttg 400

<210> 69
<211> 300
<212> DNA
<213> Klebsiella sp.
<400> 69
gctaaagttc tcggctaatc gctgataaca tttgacgcaa tgcgcaataa aagggcatca 60
tttgatgccc tttttgcacg ctttcatacc agaacctggc tcatcagtga ttttttttgt 120
cataatcatt gctgagacag gctctgaaga gggcgtttat acaccaaacc attcgagcgg 180
tagcgcgacg gcaagtcagc gttctccttt gcaatagcag ggaagaggcg ccagaaccgc 240
cagcgttgaa gcagtttgaa cgcgttcagt gtataatccg aaacttaatt tcggtttgga 300

<210> 70
<211> 333
<212> DNA
<213> Kosakonia pseudosacchari
<220>
<221> modified_base
<222> (56)..(56)
<223> a, c, t, g, unknown or other
<400> 70
tcgccacggc gataaccata ggttttcggc gtggccacat ccatggtaaa tcccantttt 60
tccagcacgc gcgccacttc atcgggtctt aaatacatag attttcctcg tcatctttcc 120
aaagcctcgc caccttacat gactgagcat ggaccgtgac tcagaaaatt ccacaaacga 180
acctgaaagg cgtgattgcc gtctggcctt aaaaattatg gtctaaacta aaattcacat 240
cgaaaacgag ggaggatcct atgtttaaca gaccgaatcg ccgtgacgta gatgaaggtg 300
ttgaggatat taaccacgat gttaaccagc tcg 333

<210> 71
<211> 339
<212> DNA
<213> Kosakonia pseudosacchari
<400> 71
cgcgtcaggt tgaacgtaaa aaagtcggtc tgcgcaaagc acgtcgtcgt ccgcagttct 60
ccaaacgtta attggtttct gcttcggcag aacgattggc gaaaaaaccc ggtgcgaacc 120
gggttttttt atggataaag atcgtgttat ccacagcaat ccattgatta tctcttcttt 180
ttcagcattt ccagaatccc ctcaccacaa agcccgcaaa atctggtaaa ctatcatcca 240
attttctgcc caaatggctg ggattgttca ttttttgttt gccttacaac gagagtgaca 300
gtacgcgcgg gtagttaact caacatctga ccggtcgat 339

<210> 72
<211> 350
<212> DNA
<213> Kosakonia pseudosacchari
<400> 72
atattgacac aatgacgcgc gtactgctga ttggttctgt gacgctggtg atgattgtcg 60
aaattctgaa cagcgccatc gaagctgtgg tagaccgtat tggtgcggaa ttccatgaac 120
tttccgggcg ggcgaaggat atggggtcgg cggcggtgct gatgtccatc ctgctggcgc 180
tgtttacctg gatcgcatta ctctggtcac attttggata acgcttccag aattcgataa 240
cgccctggtt ttttgcttaa atttggttcc aaaatcgcct ttagctgtat atactcacag 300
cataactgta tatacaccca gggggcggga tgaaagcatt aacggccagg 350

<210> 73
<211> 90
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 73
gttgatcaga ccgatgttcg gaccttccaa ggtttcgatc ggacatacgc gaccgtagtg 60
ggtcgggtgt acgtctcgaa cttcaaagcc 90

Claims (80)

  1. 配列番号1~72からなる群から選択される配列に対して少なくとも約80%の配列同一性を有する挿入配列を含む、遺伝子操作された細菌。
  2. 前記挿入配列が、未変性プロモーター配列に置き換わる、請求項1に記載の遺伝子操作された細菌。
  3. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約85%の配列同一性を含む、請求項1に記載の遺伝子操作された細菌。
  4. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約90%の配列同一性を含む、請求項1に記載の遺伝子操作された細菌。
  5. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約95%の配列同一性を含む、請求項1に記載の遺伝子操作された細菌。
  6. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約97%の配列同一性を含む、請求項1に記載の遺伝子操作された細菌。
  7. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約98%の配列同一性を含む、請求項1に記載の遺伝子操作された細菌。
  8. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約99%の配列同一性を含む、請求項1に記載の遺伝子操作された細菌。
  9. 配列番号1~72からなる群から選択される配列に対して少なくとも80%の配列同一性を有する挿入配列に作動可能に連結された未変性コード配列を含む、遺伝子操作された細菌。
  10. 前記挿入配列が、未変性プロモーター配列に置き換わる、請求項9に記載の遺伝子操作された細菌。
  11. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約85%の配列同一性を含む、請求項9に記載の遺伝子操作された細菌。
  12. 前記配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約90%の配列同一性を含む、請求項9に記載の遺伝子操作された細菌。
  13. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約95%の配列同一性を含む、請求項9に記載の遺伝子操作された細菌。
  14. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約97%の配列同一性を含む、請求項9に記載の遺伝子操作された細菌。
  15. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約98%の配列同一性を含む、請求項9に記載の遺伝子操作された細菌。
  16. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約99%の配列同一性を含む、請求項9に記載の遺伝子操作された細菌。
  17. 前記未変性コード配列が、cysZ、otsB、bcs遺伝子、およびtreZからなる群から選択される、請求項9~16のいずれか一項に記載の遺伝子操作された細菌。
  18. 前記未変性コード配列が、トランスポーター遺伝子、イオントランスポーター遺伝子、エキソポリサッカライド生合成遺伝子、セルロース生合成遺伝子、およびトレハロース生合成遺伝子からなる群から選択される、請求項9~16のいずれか一項に記載の遺伝子操作された細菌。
  19. 配列番号1~72からなる群から選択される配列に対して少なくとも約80%の配列同一性を有する挿入配列に作動可能に連結された窒素固定または窒素同化コード配列を含む、遺伝子操作された細菌。
  20. 配列番号1~72からなる群から選択される配列に対して少なくとも約80%の配列同一性を有する前記挿入配列が、未変性プロモーター配列に置き換わる、請求項19に記載の遺伝子操作された細菌。
  21. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約85%の配列同一性を含む、請求項19に記載の遺伝子操作された細菌。
  22. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約90%の配列同一性を含む、請求項19に記載の遺伝子操作された細菌。
  23. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約95%の配列同一性を含む、請求項19に記載の遺伝子操作された細菌。
  24. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約97%の配列同一性を含む、請求項19に記載の遺伝子操作された細菌。
  25. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約98%の配列同一性を含む、請求項19に記載の遺伝子操作された細菌。
  26. 前記挿入配列が、配列番号1~72からなる群から選択される配列に対して少なくとも約99%の配列同一性を含む、請求項19に記載の遺伝子操作された細菌。
  27. 前記窒素固定または窒素同化コード配列が、nifA、nifL、ntrB、ntrC、グルタミンシンテターゼをコードするポリヌクレオチド、glnA、glnB、glnK、drat、amtB、グルタミナーゼをコードするポリヌクレオチド、glnD、glnE、nifJ、nifH、nifD、nifK、nifY、nifE、nifN、nifU、nifS、nifV、nifW、nifZ、nifM、nifF、nifB、nifQ、およびニトロゲナーゼ酵素の生合成に関連する遺伝子からなる群から選択される、請求項19~26のいずれか一項に記載の遺伝子操作された細菌。
  28. 遺伝子操作されたジアゾ栄養細菌である、請求項1~27のいずれか一項に記載の遺伝子操作された細菌。
  29. 非属間である、請求項1~28のいずれか一項に記載の遺伝子操作された細菌。
  30. 属間である、請求項1~28のいずれか一項に記載の遺伝子操作された細菌。
  31. 非窒素制限条件下で空中窒素を固定する、請求項1~30のいずれか一項に記載の遺伝子操作された細菌。
  32. 同じ種の遺伝子操作されていない細菌よりも多くの空中窒素を固定する、請求項1~31のいずれか一項に記載の遺伝子操作された細菌。
  33. ラーニア・アクアティリス(Rahnella aquatilis)、クレブシエラ・バリコラ(Klebsiella variicola)、コサコニア・シュードサッカリ(Kosakonia pseudosacchari)、クルイベラ・インテルメディア(Kluyvera intermedia)、クレブシエラ(Klebsiella)sp.、エンテロバクター(Enterobacter)sp.、およびコサコニア・サッカリ(Kosakonia sacchari)からなる群から選択される、請求項1~32のいずれか一項に記載の遺伝子操作された細菌。
  34. 前記遺伝子操作された細菌が、ラーニア(Rahnella)属のものであり、前記挿入配列が、配列番号41~59および63~66からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、請求項1~32のいずれか一項に記載の遺伝子操作された細菌。
  35. 前記遺伝子操作された細菌が、ラーニア・アクアティリス(Rahnella aquatilis)であり、前記挿入配列が、配列番号41~59および63~66からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、請求項1~32のいずれか一項に記載の遺伝子操作された細菌。
  36. 前記遺伝子操作された細菌が、コサコニア(Kosakonia)属のものであり、前記挿入配列が、配列番号1~10からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、請求項1~32のいずれか一項に記載の遺伝子操作された細菌。
  37. 前記遺伝子操作された細菌が、コサコニア・サッカリ(Kosakonia sacchari)であり、前記挿入配列が、配列番号1~10からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、請求項1~32のいずれか一項に記載の遺伝子操作された細菌。
  38. 前記遺伝子操作された細菌が、クレブシエラ(Klebsiella)属のものであり、前記挿入配列が、配列番号11~40からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、請求項1~32のいずれか一項に記載の遺伝子操作された細菌。
  39. 前記遺伝子操作された細菌が、クレブシエラ・バリコラ(Klebsiella variicola)であり、前記挿入配列が、配列番号11~40からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、請求項1~32のいずれか一項に記載の遺伝子操作された細菌。
  40. 前記遺伝子操作された細菌が、クルイベラ(Kluyvera)属のものであり、前記挿入配列が、配列番号60に対して少なくとも約80%の配列同一性を含む、請求項1~32のいずれか一項に記載の遺伝子操作された細菌。
  41. 前記遺伝子操作された細菌が、クルイベラ・インテルメディア(Kluyvera intermedia)であり、前記挿入配列が、配列番号60に対して少なくとも約80%の配列同一性を含む、請求項1~32のいずれか一項に記載の遺伝子操作された細菌。
  42. 前記遺伝子操作された細菌が、コサコニア・シュードサッカリ(Kosakonia pseudosacchari)であり、前記挿入配列が、配列番号61および70~72からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、請求項1~32のいずれか一項に記載の遺伝子操作された細菌。
  43. 前記遺伝子操作された細菌が、エンテロバクター(Enterobacter)種であり、前記挿入配列が、配列番号62に対して少なくとも約80%の配列同一性を含む、請求項1~32のいずれか一項に記載の遺伝子操作された細菌。
  44. 前記遺伝子操作された細菌が、クレブシエラ(Klebsiella)種であり、前記挿入配列が、配列番号67~69からなる群から選択される配列に対して少なくとも約80%の配列同一性を含む、請求項1~32のいずれか一項に記載の遺伝子操作された細菌。
  45. 前記挿入配列が、非天然の状況で挿入された未変性配列である、請求項1~44のいずれか一項に記載の遺伝子操作された細菌。
  46. 植物種子および請求項1~45のいずれか一項に記載の遺伝子操作された細菌を含む、組成物。
  47. 前記植物種子が、トウモロコシ種子、小麦種子、稲種子、大麦種子、大豆種子、モロコシ種子、およびライ麦種子からなる群から選択される、請求項46に記載の組成物。
  48. 植物および請求項1~45のいずれか一項に記載の遺伝子操作された細菌を含む、組成物。
  49. 前記植物が、苗である、請求項48に記載の組成物。
  50. 前記植物が、トウモロコシ、小麦、稲、大麦、ライ麦、大豆、およびモロコシからなる群から選択される、請求項48に記載の組成物。
  51. 微生物遺伝子の未変性プロモーター配列を、配列番号1~72からなる群から選択される配列に対して少なくとも80%の配列同一性を含むプロモーター配列で置き換えることによって、微生物における微生物遺伝子の発現を増加させる方法。
  52. 前記プロモーター配列が、配列番号1~72からなる群から選択される配列に対して少なくとも85%の配列同一性を含む、請求項51に記載の方法。
  53. 前記プロモーター配列が、配列番号1~72からなる群から選択される配列に対して少なくとも90%の配列同一性を含む、請求項51に記載の方法。
  54. 前記プロモーター配列が、配列番号1~72からなる群から選択される配列に対して少なくとも95%の配列同一性を含む、請求項51に記載の方法。
  55. 前記プロモーター配列が、配列番号1~72からなる群から選択される配列に対して少なくとも97%の配列同一性を含む、請求項51に記載の方法。
  56. 前記プロモーター配列が、配列番号1~72からなる群から選択される配列に対して少なくとも98%の配列同一性を含む、請求項51に記載の方法。
  57. 前記プロモーター配列が、配列番号1~72からなる群から選択される配列に対して少なくとも99%の配列同一性を含む、請求項51に記載の方法。
  58. 前記微生物遺伝子の発現を増加させることが、前記微生物によるアンモニウム排泄を増加させる、請求項51~57のいずれか一項に記載の方法。
  59. 前記微生物遺伝子の発現を増加させることが、前記微生物による窒素固定を増加させる、請求項51~57のいずれか一項に記載の方法。
  60. 前記微生物遺伝子の発現を増加させることが、前記微生物による植物のコロニー形成を増加させる、請求項51~57のいずれか一項に記載の方法。
  61. 窒素の固定または同化に関連するタンパク質のコード配列、および配列番号1~72からなる群から選択される配列に対して少なくとも80%の配列同一性を含む配列を含む、ポリヌクレオチド。
  62. 窒素の固定または同化に関連するタンパク質の前記コード配列が、nifA、nifL、ntrB、ntrC、グルタミンシンテターゼをコードするポリヌクレオチド、glnA、glnB、glnK、drat、amtB、グルタミナーゼをコードするポリヌクレオチド、glnD、glnE、nifJ、nifH、nifD、nifK、nifY、nifE、nifN、nifU、nifS、nifV、nifW、nifZ、nifM、nifF、nifB、nifQ、およびニトロゲナーゼ酵素の生合成に関連する遺伝子からなる群から選択される、請求項61に記載のポリヌクレオチド。
  63. 目的のタンパク質のコード配列、および配列番号1~72からなる群から選択される配列に対して少なくとも80%の配列同一性を含む配列を含む、ポリヌクレオチド。
  64. 前記目的のタンパク質が、トランスポーター遺伝子、イオントランスポーター遺伝子、エキソポリサッカライド生合成遺伝子、セルロース生合成遺伝子、およびトレハロース生合成遺伝子からなる群から選択される、請求項63に記載のポリヌクレオチド。
  65. 前記目的のタンパク質が、CysZ遺伝子、bcs遺伝子、treZ遺伝子、およびotsB遺伝子からなる群から選択される、請求項63に記載のポリヌクレオチド。
  66. 配列番号1~72からなる群から選択される配列に対して少なくとも85%の配列同一性を有する配列を含む、請求項61~65のいずれか一項に記載のポリヌクレオチド。
  67. 配列番号1~72からなる群から選択される配列に対して少なくとも90%の配列同一性を有する配列を含む、請求項61~65のいずれか一項に記載のポリヌクレオチド。
  68. 配列番号1~72からなる群から選択される配列に対して少なくとも95%の配列同一性を有する配列を含む、請求項61~65のいずれか一項に記載のポリヌクレオチド。
  69. 配列番号1~72からなる群から選択される配列に対して少なくとも97%の配列同一性を有する配列を含む、請求項61~65のいずれか一項に記載のポリヌクレオチド。
  70. 配列番号1~72からなる群から選択される配列に対して少なくとも98%の配列同一性を有する配列を含む、請求項61~65のいずれか一項に記載のポリヌクレオチド。
  71. 配列番号1~72からなる群から選択される配列に対して少なくとも99%の配列同一性を有する配列を含む、請求項61~65のいずれか一項に記載のポリヌクレオチド。
  72. 植物中の大気由来窒素の量を増加させる方法であって、前記植物を遺伝子操作された細菌と接触させる工程を含み、前記遺伝子操作された細菌が、配列番号1~72からなる群から選択される配列に対して少なくとも80%の配列同一性を含むプロモーターに作動可能に連結された窒素固定コード配列を含む、方法。
  73. 前記プロモーターが、配列番号1~72からなる群から選択される配列に対して少なくとも85%の配列同一性を含む、請求項72に記載の方法。
  74. 前記プロモーターが、配列番号1~72からなる群から選択される配列に対して少なくとも90%の配列同一性を含む、請求項72に記載の方法。
  75. 前記プロモーターが、配列番号1~72からなる群から選択される配列に対して少なくとも95%の配列同一性を含む、請求項72に記載の方法。
  76. 前記プロモーターが、配列番号1~72からなる群から選択される配列に対して少なくとも97%の配列同一性を含む、請求項72に記載の方法。
  77. 前記プロモーターが、配列番号1~72からなる群から選択される配列に対して少なくとも98%の配列同一性を含む、請求項72に記載の方法。
  78. 前記プロモーターが、配列番号1~72からなる群から選択される配列に対して少なくとも99%の配列同一性を含む、請求項72に記載の方法。
  79. 前記遺伝子操作された細菌が、ラーニア・アクアティリス(Rahnella aquatilis)、クレブシエラ・バリコラ(Klebsiella variicola)、アクロモバクター・スピリチヌス(Achromobacter spiritinus)、アクロモバクター・マープラテンシス(Achromobacter marplatensis)、マイコバクテリウム・ムラレ(Microbacterium murale)、クルイベラ・インテルメディア(Kluyvera intermedia)、コサコニア・シュードサッカリ(Kosakonia pseudosacchari)、エンテロバクター(Enterobacter)sp.、アゾスピリルム・リポフェルム(Azospirillum lipoferum)、およびコサコニア・サッカリ(Kosakonia sacchari)からなる群から選択される、請求項72~78のいずれか一項に記載の方法。
  80. 作物の植え付けと収穫の間に必要とされる窒素肥料の量を減少させる方法であって、請求項1~45のいずれか一項に記載の遺伝子組み換え細菌を前記作物に接種する工程を含む、方法。
JP2023137168A 2017-10-25 2023-08-25 窒素を固定する操作された微生物を改良するための方法および組成物 Pending JP2023159378A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762577148P 2017-10-25 2017-10-25
US62/577,148 2017-10-25
PCT/US2018/057174 WO2019084059A2 (en) 2017-10-25 2018-10-23 METHODS AND COMPOSITIONS FOR ENHANCING GENETICALLY MODIFIED MICROBES THAT FIX NITROGEN
JP2020524148A JP7420712B2 (ja) 2017-10-25 2018-10-23 窒素を固定する操作された微生物を改良するための方法および組成物

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020524148A Division JP7420712B2 (ja) 2017-10-25 2018-10-23 窒素を固定する操作された微生物を改良するための方法および組成物

Publications (2)

Publication Number Publication Date
JP2023159378A true JP2023159378A (ja) 2023-10-31
JP2023159378A5 JP2023159378A5 (ja) 2024-04-10

Family

ID=66247426

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020524148A Active JP7420712B2 (ja) 2017-10-25 2018-10-23 窒素を固定する操作された微生物を改良するための方法および組成物
JP2023137168A Pending JP2023159378A (ja) 2017-10-25 2023-08-25 窒素を固定する操作された微生物を改良するための方法および組成物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020524148A Active JP7420712B2 (ja) 2017-10-25 2018-10-23 窒素を固定する操作された微生物を改良するための方法および組成物

Country Status (12)

Country Link
US (1) US11993778B2 (ja)
EP (1) EP3701040A4 (ja)
JP (2) JP7420712B2 (ja)
KR (1) KR20200088342A (ja)
CN (1) CN111587287A (ja)
AU (1) AU2018354221A1 (ja)
BR (1) BR112020008035A2 (ja)
CA (1) CA3079955A1 (ja)
MX (1) MX2020004343A (ja)
PH (1) PH12020550484A1 (ja)
RU (1) RU2020116764A (ja)
WO (1) WO2019084059A2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014071182A1 (en) 2012-11-01 2014-05-08 Massachusetts Institute Of Technology Directed evolution of synthetic gene cluster
MX2018000615A (es) 2015-07-13 2018-08-01 Pivot Bio Inc Metodos y composiciones para mejorar atributos de plantas.
WO2017062412A1 (en) 2015-10-05 2017-04-13 Massachusetts Institute Of Technology Nitrogen fixation using refactored nif clusters
CN110799474B (zh) 2017-01-12 2022-07-26 皮沃特生物公司 用于改良植物性状的方法及组合物
US20210163374A1 (en) * 2017-08-09 2021-06-03 Pivot Bio, Inc. Methods and compositions for improving engineered microbes
US11993778B2 (en) 2017-10-25 2024-05-28 Pivot Bio, Inc. Methods and compositions for improving engineered microbes that fix nitrogen
US11541105B2 (en) 2018-06-01 2023-01-03 The Research Foundation For The State University Of New York Compositions and methods for disrupting biofilm formation and maintenance
US11963530B2 (en) 2018-06-27 2024-04-23 Pivot Bio, Inc. Agricultural compositions comprising remodeled nitrogen fixing microbes
CN110331153B (zh) * 2019-06-24 2021-04-30 浙江工业大学 一种克吕沃尔氏菌酪氨酸酚裂解酶突变体及其应用
WO2021221690A1 (en) 2020-05-01 2021-11-04 Pivot Bio, Inc. Modified bacterial strains for improved fixation of nitrogen
BR112022013753A2 (pt) * 2020-01-13 2023-03-14 Pivot Bio Inc Composição sintética de micróbios funcionalmente otimizados, e, método
WO2021173953A1 (en) * 2020-02-26 2021-09-02 Pebble Labs, Inc. Novel plant endophytic bacteria and methods to control plant pathogens and pests
EP4143293A1 (en) 2020-05-01 2023-03-08 Pivot Bio, Inc. Measurement of nitrogen fixation and incorporation
CA3172322A1 (en) 2020-05-01 2021-11-04 Karsten TEMME Modified bacterial strains for improved fixation of nitrogen
IL302272A (en) * 2020-10-21 2023-06-01 Andes Ag Inc Compositions and methods for producing bicarbonate and minerals
WO2022155445A1 (en) * 2021-01-15 2022-07-21 Zymergen Inc. Non-naturally occurring host cells for enhanced plant growth
CN112608873A (zh) * 2021-01-19 2021-04-06 中国科学院兰州化学物理研究所 一种具有促生活性的类芽孢杆菌属细菌及其制备和应用
WO2023278804A1 (en) 2021-07-02 2023-01-05 Pivot Bio, Inc. Genetically-engineered bacterial strains for improved fixation of nitrogen
CN113817732B (zh) * 2021-08-18 2023-12-01 中国农业科学院生物技术研究所 具有固氮基因沉默功能的人工非编码rna及其应用
CN115637241B (zh) * 2022-10-11 2023-09-12 四川农业大学 一株大豆根腐病防病促生细菌RH_Pc03及其应用

Family Cites Families (243)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1520545A (en) 1924-09-04 1924-12-23 Charles K Morganroth Transmission gearing
US4832728A (en) 1981-09-25 1989-05-23 Melamine Chemicals, Inc. Fertilizer compositions, processes of making them, and pocesses of using them
US4782022A (en) 1984-06-04 1988-11-01 Lubrizol Genetics, Inc. Nitrogen fixation regulator genes
US6548289B1 (en) 1984-12-28 2003-04-15 Land O'lakes, Inc. Biological nitrogen fixation
US5229291A (en) 1985-12-30 1993-07-20 Novo Industri A/S Rhizobia transformants which symbiotically fixes nitrogen in non-legumes, a material for treating seeds of a non-legume plant, non-legume seeds, a non-legume plant and a method for producing rhizobia transconjungants
DK609885D0 (da) 1985-12-30 1985-12-30 Sven Erik Nielsen Fremgangsmaade til modifikation af organismer
CA1335366C (en) 1986-08-19 1995-04-25 Joseph Kloepper Plant growth promoting rhizobacteria for agronomic nonroot crops
EP0292984A2 (en) 1987-05-29 1988-11-30 The General Hospital Corporation Cloned rhizobium meliloti ntrA (rpoN) gene
JPH01225483A (ja) 1988-03-04 1989-09-08 Takeshi Uozumi 組換え体プラスミド
EP0339830A3 (en) 1988-04-14 1990-01-17 Biotechnica International, Inc. Improved biological nitrogen fixation
EP0413019B1 (en) 1989-02-24 2001-10-04 Monsanto Technology LLC Synthetic plant genes and method for preparation
US5188960A (en) 1989-06-27 1993-02-23 Mycogen Corporation Bacillus thuringiensis isolate active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins
US5116506A (en) 1989-06-30 1992-05-26 Oregon State University Support aerated biofilm reactor
US5071743A (en) 1989-10-27 1991-12-10 Her Majesty The Queen In Right Of Canada, As Represented By The National Research Council Of Canada Process for conducting site-directed mutagenesis
US5610044A (en) 1990-10-01 1997-03-11 Lam; Stephen T. Microorganisms with mannopine catabolizing ability
US5427785A (en) 1990-11-21 1995-06-27 Research Seeds, Inc. Rhizosheric bacteria
GB2259302A (en) 1991-09-09 1993-03-10 Anil Kumar Bali Mutant nitrogen fixing bacterium
CA2051071A1 (en) 1991-09-10 1993-03-11 Anil K. Bali Ammonia production
ATE239089T1 (de) 1991-12-24 2003-05-15 Harvard College Gezielte punkt-mutagenese von dna
HU9201218D0 (en) 1992-04-10 1992-06-29 Eotvos Lorand Tudomanyegyetem Process for the entering of non-auxotrophic bacteries -belonging to the azotobacteraceae family - into the intercellular spaces of plant tissues, for their cultivation in vitro, with the aim to create new nitrogenfixing plant-bacterium symbiosis
US5877012A (en) 1993-03-25 1999-03-02 Novartis Finance Corporation Class of proteins for the control of plant pests
FR2718750B1 (fr) 1994-04-19 1996-06-14 Pasteur Institut Protéines recombinantes de l'hémagglutinine filamenteuse de Bordetella, notamment, B. Pertussis, production et application à la production de protéines étrangères ou de principes actifs vaccinants.
KR100424844B1 (ko) 1995-03-30 2004-07-05 다카라 홀딩즈 가부시키가이샤 식물프로모터 및 이 프로모터를사용한 유전자 발현방법
US6740506B2 (en) 1995-12-07 2004-05-25 Diversa Corporation End selection in directed evolution
US5789166A (en) 1995-12-08 1998-08-04 Stratagene Circular site-directed mutagenesis
US6083499A (en) 1996-04-19 2000-07-04 Mycogen Corporation Pesticidal toxins
US5916029A (en) 1996-06-26 1999-06-29 Liphatech, Inc. Process for producing seeds coated with a microbial composition
US5780270A (en) 1996-07-17 1998-07-14 Promega Corporation Site-specific mutagenesis and mutant selection utilizing antibiotic-resistant markers encoding gene products having altered substrate specificity
JP2001500015A (ja) 1996-09-06 2001-01-09 トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア T7ポリメラーゼを利用する組換えアデノ随伴ウイルスの誘導可能な製造方法
US6114148C1 (en) 1996-09-20 2012-05-01 Gen Hospital Corp High level expression of proteins
US6063756A (en) 1996-09-24 2000-05-16 Monsanto Company Bacillus thuringiensis cryET33 and cryET34 compositions and uses therefor
US6017534A (en) 1996-11-20 2000-01-25 Ecogen, Inc. Hybrid Bacillus thuringiensis δ-endotoxins with novel broad-spectrum insecticidal activity
US6713063B1 (en) 1996-11-20 2004-03-30 Monsanto Technology, Llc Broad-spectrum δ-endotoxins
US5942664A (en) 1996-11-27 1999-08-24 Ecogen, Inc. Bacillus thuringiensis Cry1C compositions toxic to lepidopteran insects and methods for making Cry1C mutants
HUP9701446A1 (hu) 1997-08-27 1999-05-28 Phylaxia-Pharma Gyógyszer-, Oltóanyag és Agrobiológiai Készítményeket Gyártó és Forgalmazó Rt. Eljárás a talaj mikroorganizmus populációjának előnyös kialakítására
US6218188B1 (en) 1997-11-12 2001-04-17 Mycogen Corporation Plant-optimized genes encoding pesticidal toxins
US6033861A (en) 1997-11-19 2000-03-07 Incyte Genetics, Inc. Methods for obtaining nucleic acid containing a mutation
WO2000002996A2 (en) 1998-07-10 2000-01-20 Cornell Research Foundation, Inc. Recombinant constructs and systems for secretion of proteins via type iii secretion systems
AU768246B2 (en) 1998-10-23 2003-12-04 Mycogen Corporation Plant-optimized polynucleotides encoding approximately 15 kDa and approximately 45 kDa pesticidal proteins
US6489542B1 (en) 1998-11-04 2002-12-03 Monsanto Technology Llc Methods for transforming plants to express Cry2Ab δ-endotoxins targeted to the plastids
DE60029572T2 (de) 1999-03-23 2007-07-26 Biovation Ltd. Isolierung und analyse von proteinen
CN1900304A (zh) 1999-07-27 2007-01-24 食品工业发展研究所 代谢控制的工程化
US6248535B1 (en) 1999-12-20 2001-06-19 University Of Southern California Method for isolation of RNA from formalin-fixed paraffin-embedded tissue specimens
JP3859947B2 (ja) 2000-08-04 2006-12-20 独立行政法人理化学研究所 突然変異導入方法
US20020061579A1 (en) 2000-08-09 2002-05-23 Farrand Stephen K. Counter selection strategy for Gram-negative bacteria
US7879540B1 (en) 2000-08-24 2011-02-01 Promega Corporation Synthetic nucleic acid molecule compositions and methods of preparation
CN1289852A (zh) 2000-09-26 2001-04-04 国家人类基因组南方研究中心 一种人固氮基因同源蛋白及其编码序列
CN1129665C (zh) 2000-11-29 2003-12-03 中国科学院植物研究所 一种耐铵工程菌和含有这种工程菌的生物肥料
CN1132930C (zh) 2000-11-29 2003-12-31 中国科学院植物研究所 一种固氮菌和含有该固氮菌的生物肥料
AR035799A1 (es) 2001-03-30 2004-07-14 Syngenta Participations Ag Toxinas insecticidas aisladas de bacillus thuringiensis y sus usos.
JP2003033174A (ja) 2001-07-10 2003-02-04 Japan Science & Technology Corp 窒素固定能を増強した根粒菌
GB0121126D0 (en) 2001-08-31 2001-10-24 Univ Nottingham Systemic non-nodular endosymbiotic nitrogen fixation in plants
RU2230114C2 (ru) 2001-11-30 2004-06-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Мутантная глутаминсинтетаза, фрагмент днк, штамм escherichia coli - продуцент l-глутамина и способ получения l-аминокислот
US7084331B2 (en) 2002-01-15 2006-08-01 Society for Techno-Innovation of Agriculture Forestry and Fisheries Rice containing endophytic bacteria and method of producing it
AU2003279760A1 (en) 2002-06-26 2004-01-19 E. I. Du Pont De Nemours And Company Genes encoding proteins with pesticidal activity
US7462760B2 (en) 2002-06-26 2008-12-09 Pioneer Hi-Bred International, Inc. Genes encoding plant protease-resistant pesticidal proteins and method of their use
KR100990524B1 (ko) 2002-08-28 2010-10-29 아사히 가세이 파마 가부시키가이샤 신규한 4급 암모늄 화합물
WO2004020636A1 (en) 2002-08-29 2004-03-11 Monsanto Technology, Llc Nucleotide sequences encoding cry1bb proteins for enhanced expression in plants
US20050266541A1 (en) 2002-11-04 2005-12-01 Harrison F. Dillon Methods and compositions for evolving microbial hydrogen production
CN1500801A (zh) 2002-11-18 2004-06-02 中国农业科学院原子能利用研究所 可提高联合固氮菌固氮水平的基因及其应用
WO2004067727A2 (en) 2003-01-21 2004-08-12 Dow Agrosciences Llc Mixing and matching tc proteins for pest control
US20040210965A1 (en) 2003-02-20 2004-10-21 Athenix Corporation AXMI-007, a delta-endotoxin gene and methods for its use
US7351881B2 (en) 2003-02-20 2008-04-01 Athenix Corporation AXMI-008, a delta-endotoxin gene and methods for its use
US20040197917A1 (en) 2003-02-20 2004-10-07 Athenix Corporation AXMI-014, delta-endotoxin gene and methods for its use
US20040210964A1 (en) 2003-02-20 2004-10-21 Athenix Corporation AXMI-009, a delta-endotoxin gene and methods for its use
US7355099B2 (en) 2003-02-20 2008-04-08 Athenix Corporation AXMI-004, a delta-endotoxin gene and methods for its use
US20040216186A1 (en) 2003-02-20 2004-10-28 Athenix Corporation AXMI-006, a delta-endotoxin gene and methods for its use
NZ588825A (en) 2003-02-20 2011-06-30 Athenix Corp AXMI-014 delta-endotoxin
CN1254533C (zh) 2003-06-02 2006-05-03 中国农业大学 含多拷贝nifA基因的巴西固氮螺菌DraT-工程菌株
HU0301909D0 (en) 2003-06-23 2003-08-28 Someus Edward Process for solid fermentation of microorganisms bound to bone black carrier amid for production, storage and uses of granular compositions
WO2005019414A2 (en) 2003-07-07 2005-03-03 Monsanto Technology, Llc Insecticidal proteins secreted from bacillus thuringiensis and uses therefor
US7253343B2 (en) 2003-08-28 2007-08-07 Athenix Corporation AXMI-003, a delta-endotoxin gene and methods for its use
US7205450B2 (en) 2003-10-08 2007-04-17 The Regents Of The University Of California DMI1 gene encodes a protein that is required for the early steps of bacterial and fungal symbioses
US20050183161A1 (en) 2003-10-14 2005-08-18 Athenix Corporation AXMI-010, a delta-endotoxin gene and methods for its use
EP1716230A2 (en) 2004-02-20 2006-11-02 Pioneer Hi-Bred International, Inc. Lipases and methods of use
AR048747A1 (es) 2004-03-05 2006-05-24 Agrigenetics Inc Combinaciones de cry1ab y cry1fa como una herramienta para el control de la resistencia de los insectos
US20090137390A1 (en) 2004-06-30 2009-05-28 Eric Wendell Triplett Materials and methods for enhancing nitrogen fixation in plants
WO2006003026A1 (en) 2004-07-07 2006-01-12 National University Of Ireland, Galway A biofilm reactor
AU2005101078A4 (en) 2004-07-12 2009-04-30 Zebra Holdings Pty Ltd Method and system for promoting microbial nitrogen fixation activity
JP2008510186A (ja) 2004-08-10 2008-04-03 日本板硝子株式会社 Lcdミラーシステム及び方法
CN1746304A (zh) 2004-09-10 2006-03-15 中国农业科学院生物技术研究所 固氮负调节基因突变的泌铵工程菌的构建及应用
US20060096918A1 (en) 2004-11-09 2006-05-11 Semmens Michael J Biofilm wastewater treatment devices
US7485451B2 (en) 2004-11-18 2009-02-03 Regents Of The University Of California Storage stable compositions of biological materials
WO2006083891A2 (en) 2005-01-31 2006-08-10 Athenix Corporation Axmi-018, axmi-020, and axmi-021, a family of delta-endotoxin genes and methods for their use
WO2006098225A1 (ja) 2005-03-14 2006-09-21 Kagoshima University 窒素固定活性の高い根粒を着生する植物の作出法
US7601498B2 (en) 2005-03-17 2009-10-13 Biotium, Inc. Methods of using dyes in association with nucleic acid staining or detection and associated technology
MX2007012147A (es) 2005-04-01 2008-03-12 Athenix Corp Axmi-027, axmi-036 y axmi-038, una familia de genes delta-endotoxina y metodos para su uso.
US7622572B2 (en) 2005-05-02 2009-11-24 Athenix Corporation AXMI-028 and AXMI-029, a family of novel delta-endotoxin genes and methods for their use
AU2006284856B2 (en) 2005-08-31 2011-06-02 Monsanto Technology Llc Insecticidal compositions and methods for making insect-resistant transgenic plants
BRPI0620880B1 (pt) 2006-01-04 2018-10-09 Evonik Degussa Gmbh método para a produção de metionina, pelo cultivo de um microorganismo, e, microorganismo
US20070249018A1 (en) 2006-02-23 2007-10-25 Goutham Vemuri Reduced overflow metabolism and methods of use
WO2007107000A1 (en) 2006-03-22 2007-09-27 Adjuvants Plus Inc. The production and use of endophytes as novel inoculants for promoting enhanced plant vigor, health, growth, yield reducing environmental stress and for reducing dependency on chemical pesticides for pest control
US7329736B2 (en) 2006-04-14 2008-02-12 Pioneer Hi-Bred International, Inc. Bacillus thuringiensis cry gene and protein
US7449552B2 (en) 2006-04-14 2008-11-11 Pioneer Hi-Bred International, Inc. Bacillus thuringiensis cry gene and protein
EP2027275A2 (en) 2006-05-16 2009-02-25 Monsanto Technology, LLC Use of non-agrobacterium bacterial species for plant transformation
ES2397118T3 (es) 2006-06-14 2013-03-04 Athenix Corporation AXMI-031, AXMI-039 ,AXMI-040 y AXMI-049, una familia de genes de endotoxina delta y métodos para su uso
WO2007147096A2 (en) 2006-06-15 2007-12-21 Athenix Corporation A family of pesticidal proteins and methods for their use
CA2654656A1 (en) 2006-06-30 2008-01-03 Biogasol Ipr Aps Production of fermentation products in biofilm reactors using microorganisms immobilised on sterilised granular sludge
US8268584B1 (en) 2006-12-01 2012-09-18 University Of Washington Hydrogen production from microbial strains
BRPI0720135A2 (pt) 2006-12-08 2012-11-06 Pioneer Hi Bred Int molécula de ácido nucleico isolada, vetor, cassete de expressão, célula hospedeira, planta transgênica, semente, molécula de ácido nucleico, vetor, poliptìdeo, método para produzir uma planta com resistência a insetos aumentada, polinucleotìdeo isolado, cassete de expressão recombinante, polipeptìdeo isolado, célula hospedeira transformada, planta transformada, semente transformada
US8076142B2 (en) 2006-12-21 2011-12-13 Basf Plant Sciences Gmbh Rooted plant assay system
FR2910230B3 (fr) 2006-12-22 2009-01-23 Pierre Philippe Claude Methodes de biofertilisations pour ameliorer la stabilite des rendements de grandes cultures agronomiques.
CN101679491B (zh) 2007-03-28 2013-11-06 先正达参股股份有限公司 杀虫的蛋白质
US20100267147A1 (en) 2007-04-25 2010-10-21 GM Biosciences, Inc. Site-directed mutagenesis in circular methylated dna
US8609936B2 (en) 2007-04-27 2013-12-17 Monsanto Technology Llc Hemipteran-and coleopteran active toxin proteins from Bacillus thuringiensis
WO2009017124A1 (ja) 2007-07-31 2009-02-05 Nihon University バイオフィルムの生産方法
EP2020437A1 (en) 2007-08-03 2009-02-04 Commissariat A L'energie Atomique (Nife)-hydrogenases having an improved resistance to dioxygen, process for obtaining them and their applications
AR068894A1 (es) 2007-10-16 2009-12-16 Athenix Corp Proteinas delta- endotoxina axmi-066 y axmi-076 y metodos de uso de las mismas
WO2009060012A2 (en) 2007-11-06 2009-05-14 Basf Se Plant health compositions comprising a beneficial microorganism and a pesticide
US20090162477A1 (en) 2007-12-21 2009-06-25 Daniel Nadel High yield maize derivatives
BRPI0906761A2 (pt) 2008-01-15 2015-07-14 Univ Michigan State Formulações polimicrobianas para aumentar produtividade de planta
US8518685B2 (en) 2008-03-24 2013-08-27 Tsinghua University Engineered nitrile hydratase-producing bacterium with amidase gene knocked-out, the construction and the use thereof
JP2009232721A (ja) 2008-03-26 2009-10-15 Univ Of Miyazaki エンテロバクター属細菌を用いた植物栽培方法
US8401798B2 (en) 2008-06-06 2013-03-19 Dna Twopointo, Inc. Systems and methods for constructing frequency lookup tables for expression systems
AU2009262153B2 (en) 2008-06-25 2014-02-27 BASF Agricultural Solutions Seed US LLC Toxin genes and methods for their use
CN102076709B (zh) 2008-07-02 2014-10-15 阿森尼克斯公司 Axmi-il5、axmi-113、axmi-005、axmi-163和axmi-184:vip3a杀虫蛋白及其使用方法
CN101328477A (zh) 2008-07-23 2008-12-24 中国人民解放军军事医学科学院生物工程研究所 一种双向筛选系统及其应用
CN102388143A (zh) 2008-12-23 2012-03-21 阿森尼克斯公司 AXMI-150 δ-内毒素基因及其使用方法
WO2010080184A1 (en) 2009-01-09 2010-07-15 Syracuse University System and method for the heterologous expression of polyketide synthase gene clusters
BRPI0924153A2 (pt) 2009-01-23 2016-05-24 Pioneer Hi Bred Int molécula de ácido nucleico isolado, construção de dna, célula hospedeira, planta transgênica, semente transformada, polipeptídeo isolado com atividade pesticida, composição e método para controlar uma população de praga de insetos, para exterminar uma praga de insetos, para produzir um polipeptídeo com atividade pesticida e para proteger uma planta de uma praga
EA201171006A1 (ru) 2009-02-05 2012-03-30 Атеникс Корпорейшн Вариантные гены axmi-r1 дельта-эндотоксина и способы их применения
JP5662167B2 (ja) 2009-02-09 2015-01-28 協和発酵バイオ株式会社 L−アミノ酸の製造法
EP2406278A2 (en) 2009-03-11 2012-01-18 Athenix Corp. Axmi-001, axmi-002, axmi-030, axmi-035, and axmi-045: insecticidal proteins from bacillus thuringiensis and methods for their use
US8728781B2 (en) 2009-03-13 2014-05-20 University Of Washington Through Its Center Of Commercialization Endophytic yeast strains, methods for ethanol and xylitol production, methods for biological nitrogen fixation, and a genetic source for improvement of industrial strains
US20120015806A1 (en) 2009-03-25 2012-01-19 Sitaram Prasad Paikray Novel formulation of microbial consortium based bioinoculant for wide spread use in agriculture practices
US8481026B1 (en) 2009-04-17 2013-07-09 Peter J. Woodruff Bacteria with increased trehalose production and method for using the same in bioremediation
AU2010236944B2 (en) 2009-04-17 2016-07-21 Dow Agrosciences Llc DIG-3 insecticidal Cry toxins
US8334366B1 (en) 2009-04-29 2012-12-18 The United States Of America, As Represented By The Secretary Of Agriculture Mutant lycotoxin-1 peptide sequences for insecticidal and cell membrane altering properties
CN103002744A (zh) 2009-06-16 2013-03-27 陶氏益农公司 Dig-11杀虫cry毒素
WO2011002992A1 (en) 2009-07-02 2011-01-06 Athenix Corp. Axmi-205 pesticidal gene and methods for its use
BR112012004949A2 (pt) 2009-09-03 2019-09-24 Advanced Biological Marketing estripes inoculantes resistentes a herbicidas
US8551757B2 (en) 2009-09-11 2013-10-08 Valent Biosciences Corporation Bacillus thuringiensis isolate
CN102041241A (zh) 2009-10-20 2011-05-04 中国农业科学院生物技术研究所 高效泌铵的联合固氮菌株
WO2011075587A1 (en) 2009-12-16 2011-06-23 Dow Agrosciences Llc Combined use of cry1da and cry1fa proteins for insect resistance management
CA2782636A1 (en) 2009-12-16 2011-06-23 Dow Agrosciences Llc Methods and compositions comprising vip3ab and cry1fa polypeptides for c ontrol of fall armyworm
BR112012014746B1 (pt) 2009-12-16 2024-03-05 Dow Agrosciences Llc Método para controlar o desenvolvimento da resistência de um inseto à uma proteína inseticida derivada de um bacillus thuringiensis, bem como composição e método para o controle de pragas de lepidópteros
UA111936C2 (uk) 2009-12-16 2016-07-11 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі ТРАНСГЕННА РОСЛИНА, ЯКА МІСТИТЬ ДНК, ЩО КОДУЄ ІНСЕКТИЦИДНИЙ БІЛОК Vip3Ab, І ДНК, ЩО КОДУЄ ІНСЕКТИЦИДНИЙ БІЛОК Cry1Ca, ДЛЯ КЕРУВАННЯ РЕЗИСТЕНТНІСТЮ КОМАХ
WO2011075584A1 (en) 2009-12-16 2011-06-23 Dow Agrosciences Llc Insect resistance management with combinations of cry1be and cry1f proteins
CA2782627A1 (en) 2009-12-16 2011-06-23 Dow Agrosciences Llc Combined use of cry1fa and cry1i for management of spodoptera fugiperda and ostrinia nubilalis
AR079506A1 (es) 2009-12-16 2012-02-01 Dow Agrosciences Llc Uso de cry1da en combinacion de cry1be para el manejo de insectos resistentes
WO2011099024A1 (en) 2010-02-09 2011-08-18 Patel, Babubhai C. Preparation of novel bacterial based product for providing nuitrition essential for promoting plant growth
WO2011099019A1 (en) 2010-02-09 2011-08-18 Patel, Babubhai, C. Composition and method of preparation of bacterial based product that fix atmospheric nitrogen from air and makes available to plant
CA3049609C (en) 2010-02-18 2024-02-13 Athenix Corp. Axmi221z, axmi222z, axmi223z, axmi224z, and axmi225z delta-endotoxin genes and methods for their use
AU2011218130B2 (en) 2010-02-18 2016-03-03 Athenix Corp. AXMI218, AXMI219, AXMI220, AXMI226, AXMI227, AXMI228, AXMI229, AXMI230, and AXMI231 delta-endotoxin genes and methods for their use
BR112012027208A2 (pt) 2010-04-23 2015-09-15 Dow Agrosciences Llc combinações incluindo proteínas cry3aa e cry6aa para evitar o desenvolvimento de resistência em crisomelídeos do sistema radicular do milho (diabrotica spp).
CN101880676A (zh) 2010-05-20 2010-11-10 黑龙江大学 导入nifA基因的大豆根瘤菌基因工程菌株HD-SFH-01的构建方法
US9228240B2 (en) 2010-06-03 2016-01-05 California Institute Of Technology Methods for detecting and quantifying viable bacterial endo-spores
WO2011154960A1 (en) 2010-06-09 2011-12-15 Patel, Babubhai C. Advance material and method of preparation of bacterial formulation using nitrogen fixing bacteria that fix atmoshpheric nitrogen and make available to crop plant
UA111592C2 (uk) 2010-07-07 2016-05-25 Сінгента Партісіпейшнс Аг Спосіб контролю над твердокрилими комахами-шкідниками
CN101899430A (zh) 2010-07-12 2010-12-01 甘肃农业大学 一种高效固氮微生物诱变育种方法
US8802933B2 (en) 2010-08-19 2014-08-12 Pioneer Hi Bred International Inc Bacillus thuringiensis gene with lepidopteran activity
CN103154247A (zh) 2010-08-19 2013-06-12 先锋国际良种公司 对鳞翅目昆虫具有活性的新苏云金杆菌基因
WO2012088369A2 (en) 2010-12-23 2012-06-28 The Ohio State University Fertilizer composition and method
WO2012109430A2 (en) 2011-02-11 2012-08-16 Monsanto Technology Llc Pesticidal nucleic acids and proteins and uses thereof
CN102690808B (zh) 2011-03-23 2017-04-19 北京大学 为真核表达的目的构建原核基因表达岛
BR112013024609B1 (pt) 2011-03-31 2018-11-27 Novozymes Biologicals, Inc. composição, e, método para intensificar o crescimento da planta
AU2012240004B2 (en) 2011-04-07 2017-03-02 Monsanto Technology Llc Insect inhibitory toxin family active against Hemipteran and/or Lepidopteran insects
US8513494B2 (en) 2011-04-08 2013-08-20 Chunren Wu Plants and seeds of spring canola variety SCV695971
WO2012142116A2 (en) 2011-04-11 2012-10-18 Targeted Growth, Inc. Identification and use of krp mutants in wheat
WO2012154651A2 (en) 2011-05-06 2012-11-15 The Research Foundation Of State University Of New York Molecular roadblocks for rpon binding sites
WO2012162533A2 (en) 2011-05-25 2012-11-29 Sam Houston State University Bioremediation reactor systems
US20130005590A1 (en) 2011-06-06 2013-01-03 The Regents Of The University Of California Synthetic biology tools
PL2721153T3 (pl) 2011-06-16 2020-03-31 The Regents Of The University Of California Syntetyczne klastry genów
US9279139B2 (en) 2011-06-21 2016-03-08 University Of Guelph Media comprising a glutamine biosensor and methods of use thereof
MX363910B (es) 2011-07-28 2019-04-08 Athenix Corp Gen de la toxina axmi270 y sus metodos de uso.
BR112014002027A8 (pt) 2011-07-29 2022-07-05 Athenix Corp Gene pesticida axmi279 e métodos para a sua utilização
CN102417882A (zh) 2011-10-25 2012-04-18 中国农业科学院生物技术研究所 固氮斯氏假单胞菌A1501 rpoN基因的表达方法
EP2773599B1 (en) 2011-11-04 2019-06-19 Terragen Holdings Limited Microbial inoculants and fertilizer compositions comprising the same
AR083981A1 (es) 2011-11-24 2013-04-10 Consejo Nac Invest Cient Tec Cepa de bacteria recombinante fijadora de nitrogeno, inoculo que la contiene y metodos de aplicacion
CN104204211B (zh) 2012-03-03 2017-07-04 科技部生物技术局 重组固氮微生物及其用途
WO2013141815A1 (en) 2012-03-21 2013-09-26 Temasek Life Sciences Laboratory Limited Nitrogen-fixing bacterial inoculant for improvement of crop productivity and reduction of nitrous oxide emission
MX360057B (es) 2012-05-30 2018-10-19 Bayer Cropscience Ag Composiciones que comprenden un agente de control biologico y un insecticida.
NZ725224A (en) 2012-05-30 2018-04-27 Bayer Cropscience Ag Compositions comprising a biological control agent and an insecticide
WO2014042517A2 (en) 2012-09-14 2014-03-20 Universiti Putra Malaysia Biofertilizer
KR20210121271A (ko) 2012-09-19 2021-10-07 바이오디스커버리 뉴질랜드 리미티드 식물에 유익한 특성을 부여하는 미생물에 대한 스크리닝 방법
WO2014071182A1 (en) 2012-11-01 2014-05-08 Massachusetts Institute Of Technology Directed evolution of synthetic gene cluster
JP6024963B2 (ja) 2012-11-13 2016-11-16 国立大学法人東京農工大学 新規バチルス属窒素固定細菌、植物生育促進剤、及び植物の栽培方法
EP3825401A1 (en) 2012-12-12 2021-05-26 The Broad Institute, Inc. Crispr-cas component systems, methods and compositions for sequence manipulation
AU2013377774A1 (en) 2013-02-05 2015-09-17 University Of Saskatchewan Endophytic microbial symbionts in plant prenatal care
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
EP2975942B1 (en) 2013-03-21 2018-08-08 Sangamo Therapeutics, Inc. Targeted disruption of t cell receptor genes using engineered zinc finger protein nucleases
US10212943B2 (en) 2013-06-10 2019-02-26 The Regents Of The University Of California Plant growth-promoting microorganisms and methods of use thereof
CN103451130B (zh) 2013-07-25 2014-11-26 中国农业大学 一种固氮基因簇及其应用
JP6267073B2 (ja) 2013-07-26 2018-01-24 株式会社前川製作所 Escherichia属細菌の新規農業用途
JP6241916B2 (ja) 2013-08-18 2017-12-06 国立大学法人島根大学 サツマイモの栽培方法
AU2014339828B2 (en) 2013-10-25 2019-02-14 Sound Agriculture Company Strigolactone formulations and uses thereof
CN106455580B (zh) 2013-12-04 2022-09-16 新叶共生有限公司 用于改良玉米产量的方法和组合物
JP6296776B2 (ja) 2013-12-16 2018-03-20 京都府 バイオ肥料の製造方法
CA2883596A1 (en) 2014-02-26 2015-08-26 Bioponix Technologies Inc. Continuous bioprocess for organic greenhouse agriculture
JP6489676B2 (ja) 2014-03-17 2019-03-27 国立大学法人名古屋大学 生物窒素固定制御因子及びその利用
MX2016013631A (es) 2014-04-17 2017-02-28 Glycovaxyn Ag Celulas huespedes modificadas y usos de las mismas.
EP3994978A1 (en) 2014-05-23 2022-05-11 BioConsortia, Inc. Integrated plant breeding methods for complementary pairings of plants and microbial consortia
EP3149168B1 (en) 2014-05-27 2021-09-22 The Broad Institute, Inc. High-throughput assembly of genetic elements
EP3154513B1 (en) 2014-06-10 2019-11-20 Afyx Therapeutics A/S Compositions comprising electrohydrodynamically obtained fibres for administration of specific dosages of an active substance to skin or mucosa
GB201413335D0 (en) 2014-07-28 2014-09-10 Azotic Technologies Ltd Agricultural methods
GB201413333D0 (en) 2014-07-28 2014-09-10 Azotic Technologies Ltd Plant inoculation
US9800220B2 (en) 2014-09-24 2017-10-24 Intel Corporation Audio system with noise interference mitigation
WO2016100727A1 (en) 2014-12-18 2016-06-23 The Regents Of The University Of California Recombinantly engineered diazotrophs for whole cell hydrocarbon production and methods for making and using them
CN114075267A (zh) 2015-01-15 2022-02-22 先锋国际良种公司 杀昆虫蛋白及其使用方法
AU2016219488A1 (en) 2015-02-09 2017-09-14 Bioconsortia, Inc. Agriculturally beneficial microbes, microbial compositions, and consortia
US9796957B2 (en) 2015-03-11 2017-10-24 Regents Of The University Of Minnesota Genetically modified diazotrophs and methods of using same
FR3033790B1 (fr) 2015-03-19 2018-05-04 Universite Claude Bernard Lyon I Utilisation de proanthocyanidines pour limiter la denitrification
US10913939B2 (en) * 2015-04-01 2021-02-09 Monsanto Technology Llc Compositions and methods for expression of nitrogenase in plant cells
BR112017022924B1 (pt) 2015-04-24 2022-08-09 Sound Agriculture Company Métodos para aperfeiçoamento hidráulico de culturas
MX2017013864A (es) 2015-05-01 2018-04-24 Indigo Agriculture Inc Composiciones endofitas en complejo aisladas y metodos para mejorar los rasgos de plantas.
NL2014777B1 (en) 2015-05-07 2017-01-26 Ibema Biezenmortel B V Nitrifying micro-organisms for fertilisation.
US10793847B2 (en) 2015-05-11 2020-10-06 Mybiotics Pharma Ltd. Systems and methods for growing a biofilm of probiotic bacteria on solid particles for colonization of bacteria in the gut
KR20180016495A (ko) 2015-06-05 2018-02-14 서스테이너블 오가닉 솔루션즈 피티와이 엘티디 식물 성장을 증진시키기 위한 미생물 접종제, 비료 조성물, 성장 배지 및 방법
MX2018000615A (es) 2015-07-13 2018-08-01 Pivot Bio Inc Metodos y composiciones para mejorar atributos de plantas.
WO2017042833A1 (en) 2015-09-11 2017-03-16 Zydex Industries Pvt. Ltd. Bio-fertilizer composition
WO2017062412A1 (en) 2015-10-05 2017-04-13 Massachusetts Institute Of Technology Nitrogen fixation using refactored nif clusters
US10131585B2 (en) 2015-10-19 2018-11-20 California Institute Of Technology Hopanoids producing bacteria and related biofertilizers, compositions, methods and systems
TR201513059A1 (tr) 2015-10-20 2019-01-21 Ibrahim Isildak Bi̇r bi̇yogübre formülasyonu
SI3377634T1 (sl) 2015-11-19 2021-01-29 Universitaet Basel Dostava na bakterijah osnovanih proteinov
US11751515B2 (en) 2015-12-21 2023-09-12 Indigo Ag, Inc. Endophyte compositions and methods for improvement of plant traits in plants of agronomic importance
EP3231874A1 (en) 2016-04-14 2017-10-18 Curetis GmbH Using the full repertoire of genetic information from bacterial genomes and plasmids for improved genetic resistance tests
ITUA20163807A1 (it) 2016-05-25 2017-11-25 Univ Degli Studi Di Foggia Metodo per la produzione di biofilm microbici probiotici e relativi usi
CN106086042A (zh) 2016-06-30 2016-11-09 上海交通大学 固氮菌铵载体基因、突变体、固氮菌铵载体突变株及应用
BR112019008502A2 (pt) 2016-10-28 2019-07-09 Bayer Cropscience Lp mutantes de bacillus e métodos para seu uso
CN110799474B (zh) 2017-01-12 2022-07-26 皮沃特生物公司 用于改良植物性状的方法及组合物
CN106658654A (zh) 2017-01-22 2017-05-10 北京佰才邦技术有限公司 软sim的控制方法及用户终端
US20210163374A1 (en) 2017-08-09 2021-06-03 Pivot Bio, Inc. Methods and compositions for improving engineered microbes
US10525318B2 (en) 2017-09-12 2020-01-07 Edmond J. Dougherty Timing display device
MX2020004344A (es) 2017-10-25 2020-10-14 Pivot Bio Inc Objetivos genéticos para el direccionamiento de fijación de nitrógeno para mejorar los rasgos de las plantas.
US11993778B2 (en) 2017-10-25 2024-05-28 Pivot Bio, Inc. Methods and compositions for improving engineered microbes that fix nitrogen
BR112020013724B1 (pt) 2018-01-10 2022-04-05 Bayer Cropscience Lp Métodos para produzir células microbianas do solo associadas a plantas (pasm)
US11963530B2 (en) 2018-06-27 2024-04-23 Pivot Bio, Inc. Agricultural compositions comprising remodeled nitrogen fixing microbes
BR112020026676A2 (pt) 2018-06-27 2021-08-03 Pivot Bio, Inc. remodelação microbiana guiada, uma plataforma para a melhoria racional de espécies microbianas para agricultura
BR112021000268A2 (pt) 2018-07-11 2021-05-11 Pivot Bio, Inc. liberação dinâmica de nitrogênio temporalmente e espacialmente direcionada por micróbios remodelados
WO2020023630A1 (en) 2018-07-25 2020-01-30 Convergent Genomics, Inc. Urinary microbiomic profiling
MX2021003306A (es) 2018-09-21 2021-05-13 Pivot Bio Inc Metodos y composiciones para mejorar la solubilizacion de fosfato.
AR116964A1 (es) 2018-11-01 2021-06-30 Pivot Bio Inc Composiciones de biopelículas con estabilidad mejorada para fijación del nitrógeno en productos microbianos
MX2021006708A (es) 2018-12-07 2021-09-21 Pivot Bio Inc Composiciones polimericas con mayor estabilidad para productos microbianos fijadores de nitrogeno.
AU2019401485A1 (en) 2018-12-21 2021-06-24 Pivot Bio, Inc. Methods, compositions, and media for improving plant traits
CN114929874A (zh) 2019-01-07 2022-08-19 皮沃特生物股份有限公司 使用天然微生物条形码的植物定殖测定
BR112021015218A2 (pt) 2019-02-05 2022-01-11 Pivot Bio Inc Consistência aprimorada de rendimento de cultura através de fixação biológica de nitrogênio
WO2020190363A1 (en) 2019-03-19 2020-09-24 Massachusetts Institute Of Technology Control of nitrogen fixation in rhizobia that associate with cereals
AU2020261427A1 (en) 2019-04-24 2021-11-11 Pivot Bio, Inc. Gene targets for nitrogen fixation targeting for improving plant traits
CN114008221A (zh) 2019-04-25 2022-02-01 皮沃特生物股份有限公司 用于分离和表征由化学诱变产生的泌铵突变体库的高通量方法
CA3159678A1 (en) 2019-12-04 2021-06-10 Dennis HAPES System to deliver a solution with a biological product in a planter assembly
BR112022013753A2 (pt) 2020-01-13 2023-03-14 Pivot Bio Inc Composição sintética de micróbios funcionalmente otimizados, e, método
US20230257317A1 (en) 2020-05-01 2023-08-17 Pivot Bio, Inc. Modified bacterial strains for improved fixation of nitrogen
CA3172323A1 (en) 2020-05-13 2021-11-18 Pivot Bio, Inc. De-repression of nitrogen fixation in gram-positive microorganisms

Also Published As

Publication number Publication date
KR20200088342A (ko) 2020-07-22
MX2020004343A (es) 2021-01-08
CA3079955A1 (en) 2019-05-02
EP3701040A2 (en) 2020-09-02
JP2021500906A (ja) 2021-01-14
RU2020116764A (ru) 2021-11-25
AU2018354221A1 (en) 2020-05-14
RU2020116764A3 (ja) 2022-04-28
CN111587287A (zh) 2020-08-25
WO2019084059A2 (en) 2019-05-02
US11993778B2 (en) 2024-05-28
PH12020550484A1 (en) 2021-03-22
EP3701040A4 (en) 2021-08-25
BR112020008035A2 (pt) 2020-10-27
JP7420712B2 (ja) 2024-01-23
US20200308594A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP7420712B2 (ja) 窒素を固定する操作された微生物を改良するための方法および組成物
AU2018207204B2 (en) Methods and compositions for improving plant traits
AU2018354338B2 (en) Gene targets for nitrogen fixation targeting for improving plant traits
KR102197507B1 (ko) 식물 형질 개선을 위한 방법 및 조성물
BR112020002654A2 (pt) métodos e composições para melhorar micróbios modificados
US20220211048A1 (en) Gene targets for nitrogen fixation targeting for improving plant traits
WO2020132632A2 (en) Methods, compositions, and media for improving plant traits
RU2805085C2 (ru) Гены-мишени для направленного воздействия на азотфиксацию для улучшения качеств растений

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240402