JP2021532189A - 液相pに存在するアクリル酸の望ましくないラジカル重合を抑制するための方法 - Google Patents

液相pに存在するアクリル酸の望ましくないラジカル重合を抑制するための方法 Download PDF

Info

Publication number
JP2021532189A
JP2021532189A JP2021528479A JP2021528479A JP2021532189A JP 2021532189 A JP2021532189 A JP 2021532189A JP 2021528479 A JP2021528479 A JP 2021528479A JP 2021528479 A JP2021528479 A JP 2021528479A JP 2021532189 A JP2021532189 A JP 2021532189A
Authority
JP
Japan
Prior art keywords
acrylic acid
liquid phase
mass
range
glyoxal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021528479A
Other languages
English (en)
Other versions
JP7384519B2 (ja
Inventor
ニコル・ヤンセン
ペーター・ズロウスキー
ウルリヒ・ハモン
ジルケ・ハレムザ
Original Assignee
ベーアーエスエフ・エスエー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベーアーエスエフ・エスエー filed Critical ベーアーエスエフ・エスエー
Publication of JP2021532189A publication Critical patent/JP2021532189A/ja
Application granted granted Critical
Publication of JP7384519B2 publication Critical patent/JP7384519B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/50Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

液相Pに存在するアクリル酸の望ましくないフリーラジカル重合を抑制するための方法であって、Pの前記アクリル酸の含有量が少なくとも10質量%であり、前記液相Pが、Pに存在する前記アクリル酸の質量に基づいて25から1000ppmwの範囲のグリオキサールを含み、前記液相Pは、Pに存在する前記アクリル酸の質量に基づいて25から1000ppmwの範囲のフルフラールの含有量をもたらす量のフルフラールと混合される、方法。Pのアクリル酸の含有量が少なくとも10質量%であり、それぞれの場合においてPに存在する前記アクリル酸の質量に基づいて、25から1000ppmwの範囲のグリオキサール及び25から1000ppmwの範囲のフルフラールを含む、液相P。

Description

本発明は、液相Pに存在するアクリル酸の望ましくないフリーラジカル重合を抑制するための方法及び本方法を実行する間に製造される液相に関する。
アクリル酸は、その塩の形態で及び/又はそのエステル(例えばアルキルエステル)の形態で、例えば接着剤として又は水に対する高吸水性材料として使用されるポリマー(例えば、WO 02/055469 A及びWO 03/078378 A参照)を製造するために使用される、重要なモノマーである。
アクリル酸の製造は、例えば、気相内でのC−前駆体化合物(例えば、プロピレン、プロパン、アクロレイン、プロピオンアルデヒド、プロピオン酸、プロパノール及び/又はグリセロール)の不均一触媒部分酸化によって行われ得る(例えば、WO 2010/012586 A, US 5,198,578 A, EP 1 710 227 A, EP 1 015 410 A, EP 1 484303 A, EP 1 484 308 A, EP 1 484 309 A, US 2004/0242826 A, WO 2006/136336 A, DE 10 028 582 A and WO 2007/074044 A参照)。
この不均一触媒部分気相酸化では、通常、純粋なアクリル酸が得られず、むしろアクリル酸だけでなく、アクリル酸とは異なる成分も含むアクリル酸含有生成物ガス混合物が得られるだけであり、それからアクリル酸が分離されなければならない。
生成物ガス混合物中のアクリル酸と異なる成分のタイプ及び量的画分(quantitative fraction)は、とりわけ、C−前駆体化合物の選択によって、使用される触媒によって、不均一触媒部分気相酸化が行われる反応条件によって、原料として使用されるC−前駆体化合物中に存在するC−前駆体化合物と異なる不純物成分のタイプ及び量によって並びに通常反応ガス混合物中で反応物を希釈する希釈ガスの選択によって、影響され得る(例えば、DE 10 131 297 A, DE 10 2005 0529 17 A, WO 2007/074044 A及びDE 10 028 582 A参照)。
−前駆体化合物の不均一触媒部分気相酸化の生成物ガス混合物からのアクリル酸の分離は、一般的に、その後のその使用目的に適したアクリル酸の純度を得るために、可能な限り最も経済的な方法で、様々な分離方法の組み合わせを用いる。したがって、特定の場合において使用される組み合わせは、とりわけ、生成物ガス混合物中に存在するアクリル酸と異なる成分のタイプ及び量に依存する。
−前駆体化合物の不均一触媒部分気相酸化の生成物ガス混合物からアクリル酸を分離するための分離方法の全ての可能な組み合わせに本質的に共通している特徴は、任意選択で直接的に及び/又は間接的に前述の生成物ガス混合物を冷却した後、主要な分離工程において、生成物ガス混合物中に存在するアクリル酸が、凝縮された相、特に液相にもたらされることである。
これは、例えば、適切な溶媒(例えば、水、高沸点有機溶媒、水性溶液)中への吸収によって及び/又は部分的若しくは実質的に完全な凝縮(例えば、分別凝縮)によって達成され得る(この点については、例えば、EP 1 388 533 A, EP 1 388 532 A, DE 10 235 847 A, EP 792 867 A, WO 98/01415 A, US 7,332,624 B2, US 6,888,025 B2, US 7,109,372 B2, EP 1 015 411 A, EP 1 015 410 A, WO 99/50219 A, WO 00/53560 A, WO 02/09839 A, DE 10 235 847 A, WO 03/041832 A, DE 10 223 058 A, DE 10 243 625 A, DE 10 336 386 A, EP 854 129 A, US 7,319,167 B2,US 4,317,926 A, DE 1 983 752 0 A, DE 1 960 687 7 A, DE 1 905 013 25 A, DE 10 247 240 A,DE 1 974 025 3 A, EP 695 736 A, EP 982 287 A, EP 1 041 062 A, EP 117 146 A, DE 4 308 087 A, DE 4 335 172 A, DE 4 436 243 A, DE 19 924 532 A, DE 10 332 758 A及びDE 19 924 533 Aの明細書参照)。アクリル酸の分離は、EP 982 287 A, EP 982 289 A, DE 10 336 386 A, DE 10 115 277 A, DE 19 606 877 A, DE 19 740 252 A, DE 19 627 847 A, EP 920 408 A, EP 10 681 74 A, EP 10 662 39 A, EP 10 662 40 A, WO 00/53560 A, WO 00/53561 A, DE 10 053 086 A及びEP 982 288 Aのとおりに行ってもよい。分離の有利な形式には、WO 2004/063138 A, WO 2008/090190 A, WO 2004/035514 A, DE 10 243 625 A及びDE 10 235 847 Aの明細書に記載された方法も含まれる。
不均一触媒部分気相酸化の生成物ガス混合物中に存在するアクリル酸と異なる成分も、通常は、アクリル酸を有する凝縮相にもたらされる。
DE 10 2009 0274 01 A, DE 10 2008 041 573 A, DE 10 2008 040 799 A, EP 1 298 120 A及びEP 1 396 484 Aの明細書は、アクリル酸へのC−前駆体化合物の不均一触媒部分気相酸化からの反応混合物が、C−不純物、例えばエチレンを含む場合、不均一触媒部分気相酸化という状況下では、副生成物としてのアルデヒド(単量体)グリオキサールの増加量は、通常生成物ガス混合物内で起こり、その(単量体)グリオキサールが、典型的には、生成物ガス混合物からのアクリル酸の前述した主要な分離において、かなりの割合でアクリル酸を有する凝縮相にもたらされることを開示している。
−前駆体化合物(例えばプロピレン)の不均一触媒部分気相酸化からの反応ガス混合物が、前述のC−不純物及びC−不純物の両方を含む場合、不均一触媒部分気相酸化の生成物ガス混合物からのアクリル酸の前述した主要な分離は、通常、アクリル酸だけでなくプロピオン酸及びグリオキサールも含む凝縮相を生成する。
ほんの少しの量のアクリル酸中に存在する例えばグリオキサール等のアルデヒド不純物が、アクリル酸の特性を著しく損なうことがEP 770592 Aから公知である。したがって、EP 770592 Aは、特に、例えば超吸収ポリマー、又は油田掘削泥用の分散剤として又は凝集剤として有効なポリマーの製造のためのフリーラジカル重合反応におけるアクリル酸などの使用の状況下において、最適な製造物の品質を得るために、アクリル酸中の個々のアルデヒドの割合を1ppm未満にするべきであるということを教えている。
前述の主要な分離の工程で得られ、目的生成物のアクリル酸及び望ましくない副生成物のグリオキサール及びプロピオン酸を含む液相から、望ましい純度でアクリル酸を分離するために使用される分離工程は、例えば、吸着、抽出、脱離(desorptive)、蒸留、ストリッピング、精留、共沸蒸留(azeotropically distillative)、共沸精留(azeotropically rectificative)及び結晶化のプロセスの非常に広範囲の組み合わせであってもよく、この組み合わせは目的並びに他に追加的に存在する望ましくない第二の成分のタイプ及び量に依存する。
目的生成物のアクリル酸並びに望ましくない副生成物のグリオキサール及びプロピオン酸を含む液相は、前述の分離方法の過程において、非常に幅広い種類のタイプで及び様々な量的画分を有して得られてもよく、その液相は中間貯留(intermediate storage)及び/又は例えば加熱による熱応力に供され必要がある。
このことは、長い滞留時間及び熱応力によって、液相に存在するアクリル酸の望ましくないフリーラジカル重合の可能性を高めるため、不利である。
後者は、アクリル酸及びいくつかの第二の成分の物理的類似性が、分離装置内での長い滞留時間の使用を必要とするため、非結晶性熱的分離方法を用いてかなりの分離効果を達成する場合にさらに適用し、単量体グリオキサールは、他のあり得る不純物よりも著しく広い範囲でアクリル酸の望ましくないフリーラジカル重合を受ける傾向を促進する(DE 102008041573 A, DE 102008040799 A及びDE 102009027401 A参照)。
液相に存在するアクリル酸への抑制剤の添加が、滞留時間及び熱応力の重合を促進する影響に抵抗できることが公知である(例えば、“Polymerisationsinhibierung von (Meth−)Acrylaten” [Inhibition of polymerization of (meth)acrylates]、Dipl.−Ing. Holger Becker、論文、Technische Universitat Darmstadt、2003年参照)。
この点に関して、先行技術で推奨されている抑制剤の種類は多種多様であり(例えば、これらの抑制剤のほんの一部を認めているEP 765 856 A及びDE 69 701 590 T2参照)、例えば元素の銅の化合物も含んでいる(例えば、特開2001348359号公報参照)。
しかし、EP 1 396 484 A(特に列2の16行および17行)によると、公知の抑制剤系のどれも満足のいく結果を有するものはない。さらに、EP 1 396 484 A(例えば、列7の段落[0024]及び列1の40行から44行)によると、先行技術で推奨されている抑制剤の多様性は、明らかな好ましさを含まない。
特に、EP 1 396 484 Aは、列3の5行から10行において、公知の抑制剤がそれらへの熱応力によるアクリル酸の望ましくないフリーラジカル重合を比較的効果的に抑制する一方で、グリオキサール等のその中に存在する不純物によるアクリル酸の望ましくないフリーラジカル重合の原因及び/又は促進に関する、特に前述の抑制剤の抑制作用は不十分である。
記載した困難を克服する一つの方法は、(例えば、適切な触媒の選択によって(例えば、特開11−35519号公報参照)、又は高純度C−前駆体原料の使用によって(したがって、例えばC−不純物、n−プロパン、及びシクロプロパンのいずれも含まない反応ガス混合物を製造することによって;DE 3521458 Aは、例えば、n−プロパンから製造された精製プロピレンの可能性を記載しており、WO 2004/018089 A及びWO 01/92190 Aは、例えば、メタノール(改変された原料ベース)からプロピレンを製造することを記載している))アクリル酸のC−前駆体化合物(これらは3個の炭素原子を有する前駆体化合物である)の不均一触媒部分気相酸化でのプロピオン酸及びグリオキサール等の望ましくない副生成物の形成を防ぐことである。しかしながら、これに関して必要となる費用はアクリル酸の製造の節約を損なうため、これは不利である。
US 9,212,122 B2に対応する、WO 2012/045738 A(BASF SE)は、液相Pに存在するアクリル酸の望ましくないフリーラジカル重合を抑制するための方法であって、アクリル酸含有量が少なくとも10質量%であり、その中に存在するアクリル酸の質量に基づいて、少なくとも100ppmwのプロピオン酸及び少なくとも100ppmwのグリオキサールを追加的に含み、液相Pが元素の銅の少なくとも1つの化合物と混合される、方法が記載されている。
EP 1 110 940 A2(日本触媒)は、アクリル酸の蒸留において、100以下のフルフラール:アクロレインの質量比(furfural:acrilein≦100)となるようなアクリル酸の精製方法に関する。
WO 02/055469 A WO 03/078378 A WO 2010/012586 A US 5,198,578 A EP 1 710 227 A EP 1 015 410 A EP 1 484 303 A EP 1 484 308 A EP 1 484 309 A US 2004/0242826 A WO 2006/136336 A DE 10 028 582 A WO 2007/074044 A DE 10 131 297 A DE 10 2005 0529 17 A EP 1 388 533 A EP 1 388 532 A DE 10 235 847 A EP 792 867 A WO 98/01415 A US 7,332,624 B2 US 6,888,025 B2 US 7,109,372 B2 EP 1 015 411 A EP 1 015 410 A WO 99/50219 A WO 00/53560 A WO 02/09839 A WO 03/041832 A DE 10 223 058 A DE 10 243 625 A DE 10 336 386 A EP 854 129 A US 7,319,167 B2 US 4,317,926 A DE 1 983 752 0 A DE 1 960 687 7 A DE 1 905 013 25 A DE 10 247 240 A DE 1 974 025 3 A EP 695 736 A EP 982 287 A EP 1 041 062 A EP 117 146 A DE 4 308 087 A DE 4 335 172 A DE 4 436 243 A DE 19 924 532 A DE 10 332 758 A DE 19 924 533 A EP 982 289 A DE 10 336 386 A DE 10 115 277 A DE 19 606 877 A DE 19 740 252 A DE 19 627 847 A EP 920 408 A EP 10 681 74 A EP 10 662 39 A EP 10 662 40 A WO 00/53561 A DE 10 053 086 A EP 982 288 A WO 2004/063138 A WO 2008/090190 A WO 2004/035514 A DE 10 243 625 A DE 10 235 847 A DE 10 2009 0274 01 A DE 10 2008 041 573 A DE 10 2008 040 799 A EP 1 298 120 A EP 1 396 484 A EP 770592 A DE 102008041573 A DE 102008040799 A DE 102009027401 A EP 765 856 A DE 69 701 590 T2 JP 2001348359 A JP 11−35519 A DE 3521458 A WO 2004/018089 A WO 01/92190 A WO 2012/045738 A US 9,212,122 B2 EP 1 110 940 A2
"Polymerisationsinhibierung von (Meth−)Acrylaten" [Inhibition of polymerization of (meth)acrylates]、Dipl.−Ing. Holger Becker、論文、Technische Universitat Darmstadt、2003年
本発明の目的は、液相Pに存在するアクリル酸の望ましくないフリーラジカル重合を抑制するための改善された方法を提供することである。本方法は、特に技術的に簡潔に実行でき、経済的であるべきであり、製造物の品質、すなわちアクリル酸の品質に悪影響を及ぼすべきでない。
したがって、本発明者らは、液相Pに存在するアクリル酸の望ましくないフリーラジカル重合を抑制するための方法であって、Pのアクリル酸の含有量が少なくとも10質量%であり、液相Pが、Pに存在するアクリル酸の質量に基づいて25から1000ppmwの範囲のグリオキサールを含み、液相Pは、Pに存在するアクリル酸の質量に基づいて25から1000ppmwの範囲のフルフラールの含有量をもたらす量のフルフラールと混合される、方法を見出した。
本発明者らは、さらに、Pのアクリル酸の含有量が少なくとも10質量%であり、それぞれの場合においてPに存在するアクリル酸の質量に基づいて、25から1000ppmwの範囲のグリオキサール及び25から1000ppmwの範囲のフルフラールを含む、液相Pを見出した。
本方法は、液相Pが、Pに存在するアクリル酸の質量に基づいて液相が50から500ppmwの範囲のグリオキサールを含み、液相Pが、Pに存在するアクリル酸の質量に基づいて50から500ppmwの範囲のフルフラールの含有量をもたらす量のフルフラールと混合されるという特定の特性を有する。
本発明による方法は、フルフラールの存在下でのグリオキサールが、アクリル酸の望ましくないフリーラジカル重合を促進するのではなく、むしろ遅延させるという、先行技術の現在の知識と比較して驚くべき実験的発見に基づいている。
フルフラール=2−フルアルデヒド=フラン−2−カルボキシアルデヒド、CAS番号98−01−1。
例えば、ヒドロキシル基を含む第二の成分(例えば、HO、エタノール等のアルコール)との反応により、単量体グリオキサールが、
Figure 2021532189
ヘミアセタール及び/又はアセタールを生成することができる。このようなヘミアセタール及び/又はアセタールは、通常、単量体グリオキサールにとって一般的な重合促進効果をもはや示さない、又は、いずれの場合においても、それらと比較すると非常に減少された範囲でのみ示す。
しかし、グリオキサールのヘミアセタール/アセタールの場合において、生成反応は素早い可逆的反応であることが多く、そのために、高温の影響下で又は対応する平衡からグリオキサールを取り除く際に、これらのヘミアセタール/アセタールが単量体グリオキサールを再生成し、その後望ましくないフリーラジカル重合への対応する影響を有する。
ヒドロキシル基を含む第二の成分としての水の場合において、以下の素早い可逆的アセタール生成反応が公知である(この場合、グリオキサールの水和物について参照されてもよい)。
Figure 2021532189
両方の前述したグリオキサール水和物が、比較的穏やかな条件下(低温、制限された水含有量が、十分である)であっても生成される。
「単量体」グリオキサール一水和物及び「単量体」グリオキサール二水和物という用語は、本明細書においては、「ポリグリオキサール」水和物及び「オリゴグリオキサール」水和物と区別するために使用される。
以下に例として示されるものは、ジグリオキサール水和物及びトリグリオキサール水和物である:
Figure 2021532189
ポリグリオキサール水和物の形成は、中間体として単量体グリオキサール二水和物を介して進行すると考えられている(DE−A 102008041573, DE−A 102008040799及びDE−A 102009027401参照)。
単量体グリオキサール水和物の形成とは対照的に、ポリグリオキサール水和物の形成には高温(その形成は、通常、50℃よりも高い温度において相当な範囲で起こる)及び/又はより長い反応時間が必要である。
したがって、前述した理由より、本明細書における「グリオキサール」という用語は、(別段の記載がない限り及び「グリオキサール」という用語が、少なくとも一つの付加的な特徴、例えば「単量体」グリオキサール又は「ジ」グリオキサール「水和物」又は「単量体」グリオキサール「一水和物」等を明確に含まない限り、)単量体グリオキサールだけでなく、例えば単量体グリオキサールのアセタール及び/又はヘミアセタールの形態で可逆的に化学結合しているグリオキサールも含むと理解されるべきである。
したがって、本明細書における「グリオキサール」という一般用語は、常に、単量体グリオキサール及び可逆的に結合したグリオキサールの全体量を意味すると理解されるべきである。
したがって、本明細書において「質量%」及び「ppmw」で記載されるグリオキサールの含有量は、常に、例えば、単量体グリオキサール一水和物中に及び単量体グリオキサール二水和物中に存在する単量体グリオキサール及び可逆的に結合したグリオキサールの全体量を意味すると理解されるべきであるが、常に「単量体グリオキサール」として計算される(すなわち、これらは、全体的に存在するH単位の量の質量分率(weight fraction)を指している)。
これは、水が、通常、アクリル酸を得るためのアクリル酸のC−前駆体化合物の不均一触媒部分気相酸化の主要な副生成物であるため、本発明による方法の形式に特に関連する。さらに、例えばその比較的高いモル熱容量のために、アクリル酸を得るためのC−前駆体化合物の不均一触媒部分気相酸化に対する反応ガス混合物において、蒸気が希釈ガスとして共に使用されることが多い(例えばEP 253 409 A参照)。したがって、アクリル酸を得るためのC−前駆体化合物の不均一触媒部分気相酸化の生成物ガス混合物からのアクリル酸の主要な分離は、アクリル酸、プロピオン酸及びグリオキサールだけでなく水も含む液相をそれに通過させることが多い。しかし、グリオキサール水和物が、原則として、さらにアクリル酸のC−前駆体化合物の不均一触媒部分気相酸化の生成物ガス混合物中でも形成されてもよい。
さらに、先行技術は、C−前駆体化合物の気相部分酸化の生成物ガス混合物からの吸収による主要な分離のために、吸収剤として水又は水性溶液を推奨していることも多い(例えば、EP−A 1 298 120、及びUS 7,332,624 B2参照)。
本発明の文脈において、本発明によって取り扱われる液相P中の(又は別の液相中の)グリオキサールの含有量は(すなわち、液相P中の、単量体グリオキサール並びに単量体グリオキサール一水和物及び単量体グリオキサール二水和物等の化合物に可逆的に結合したグリオキサールの全体含有量(例えば、単量体グリオキサールが、エタノール等のアルコールでヘミアセタール及び/又はアセタールを可逆的に形成することもできる))、以下のように測定される。
最初に、誘導体化溶液Dが製造される。この目的のために、2.0gの2,4−ジニトロフェニルヒドラジン(製造業者:Aldrich、純度:≧97%)の50質量%溶液を、25℃の温度で、62mlの37.0質量%の水性塩酸(製造業者:Aldrich、純度:≧99.999%)中に溶解する。次に、得られた溶液を、335gの希釈水中に(同様に25℃の温度で)攪拌する。25℃での攪拌の1時間後、ろ過によって、生じるろ液として誘導体化溶液Dを得る。
液相P中のグリオキサールの含有量を測定するために、1gの誘導体化溶液D(必要に応じて、この量は相応に増加され得る)を10mlの容量を有するスクリュートップボトル(中に秤量する。次に、この満たされたスクリュートップボトル中に、液相Pの試料を秤量し、試料の量を0.15から2.0gの範囲とする。
次に、スクリュートップボトルの全内容物を、振動することで混合し、次に10分間にわたって25℃の温度で静置する。この時間の間に、スクリュートップボトル中に存在する単量体グリオキサールは、2,4−ジニトロフェニルヒドラジンと化学反応を起こし、単量体グリオキサールの対応するヒドラゾンHを形成する。しかし、この時間の間に、2,4−ジニトロフェニルヒドラジンは、スクリュートップボトル中に存在する単量体グリオキサール一水和物及びグリオキサール二水和物から、ヒドラゾンHの形態でそこに結合している単量体グリオキサール結合も除去する(一方で、スクリュートップボトル中に存在するポリグリオキサール水和物からの単量体グリオキサールの対応する除去は基本的には起こらない)。
次に、スクリュートップボトル中に0.5gの氷酢酸(製造業者:Aldrich、純度:≧99.8%)の添加が、起きているヒドラゾンの形成を凍結する。酢酸の添加と同時に固体沈殿物が形成される場合、さらに酢酸を連続的に添加し形成された沈殿を再び溶解させる(しかし、添加された酢酸の全体量が1.0gを超えてはいけない)。許容された全体の酢酸の最大限度(1.0g)に達した時であっても溶液中の形成された沈殿が消えない場合は、追加の0.5gのジメチルフタレートを秤量する。この添加でも形成された沈殿を溶解できない場合は、この溶解をもたらすためにジメチルフタレートの添加量を連続的に増加させる(しかし、添加されたジメチルフタレートの全体量が1.0gを超えてはいけない)。許容された全体のジメチルフタレートの最大限度(1.0g)に達した時であっても溶液中の形成された沈殿が消えない場合は、9gのアセトニトリル及び1gのジメチルフタレートからなる混合物Gを2g添加する。この添加でも沈殿物を溶解できない場合は、この溶解をもたらすために混合物Gの添加量を連続的に増加させる。沈殿物の溶解をもたらすために添加される混合物Gの量は、通常、全体で5gを超えない(全ての前述した溶解試験は25℃で行われる)。
スクリュートップボトル内で前述のとおりに製造されたヒドラゾンHの溶液は、続いて、HPLC(高速液体クロマトグラフィー)によって、以下の操作条件(そのモル量は液相Pに存在するグリオキサールのモル量を直接指定する)を用いてそのヒドラゾン含有量が分析される。
使用されるクロマトグラフィーカラム:Waters Symmetry C18、150×4.6mm、5μm(Waters Associates社、ミルフォード、マサチューセッツ州、米国)
分析される溶液の注入量:50μl(時間t=0)
温度:40℃
溶離液流量:1.5ml/分
分析時間:17分
平衡時間:8分
溶離液:
0分超から15分までの期間、30質量%のアセトニトリル、50質量%の水及び20質量%のテトラヒドロフランの混合物(全てHPLCグレード);
15分超から17分までの期間、65質量%のアセトニトリル、30質量%の水及び5質量%のテトラヒドロフランの混合物;
17分超から25分までの期間、30質量%のアセトニトリル、50質量%の水及び20質量%のテトラヒドロフランの混合物(その後、カラムは平衡化され、次の分析のために再び準備される)。
ヒドラゾンHとしてのグリオキサールの反応時間は、前述の条件下で7.613分である。
分析は、365nmの波長を有する単色放射線を用いて行われる。
使用される分析方法は、吸収分光法である。
溶出時間の間の溶離液の変化は、高められた分離効果を確実にする(液相Pは、通常、グリオキサールだけでなく他の副生成物アルデヒド及び/又は副生成物ケトンも含み、これらは、それぞれ2,4−ジニトロフェニルヒドラジンと対応するヒドラゾンを形成する)。
HPLC法の有利な用途に特有の較正は、有利には、50ppmwの単量体グリオキサールを含むメタノール中で、単量体グリオキサールの溶液を用いて実行される(DE−A 10 2008 041 573及びDE−A 10 2008 040 799参照)。
この目的のために、それは、前述した誘導体化溶液Dで処理され、続いて前述したHPLC分析に供される。
本発明によると、フルフラールが、その物質だけで(in pure form)又は例えばアクリル酸などの適切な溶媒中の溶液として使用されてもよい。例えば、アクリル酸溶媒中のフルフラールの濃度は、0.1質量%から10質量%の範囲、詳細には1質量%から2質量%の範囲であってもよい。
本発明による方法において、液相Pは、少なくとも10質量%、又は少なくとも20質量%、詳細には少なくとも30質量%、又は少なくとも40質量%、より詳細には少なくとも50質量%、又は少なくとも60質量%、又は少なくとも70質量%、又は少なくとも80質量%、より詳細には少なくとも90質量%、又は少なくとも95質量%、極めて詳細には少なくとも98質量%、又は少なくとも99質量%の、アクリル酸を含むことが多い(それぞれの場合において液相Pの質量に基づく)。
本発明による方法において、液相Pは、水を含むことも多い。本発明による方法において、液相Pの水の含有量は、原則として、少なくとも1質量%、又は少なくとも5質量%、又は少なくとも10質量%、又は少なくとも20質量%、又は少なくとも30質量%、又は少なくとも40質量%、又は少なくとも60質量%、又は少なくとも80質量%であってもよい。
しかし、本発明による方法は、とりわけ、本発明により扱われる液相Pが、30質量%未満の、例えば29質量%以下、又は27質量%以下、又は25質量%以下、又は20質量%以下、又は15質量%以下、又は10質量%以下、又は5質量%以下の、水を含む場合にも関連する(より低い水の含有量がグリオキサール水和物の形成を減少させる)。しかし、液相Pの水の含有量は、0.1質量%以上、又は0.5質量%以上、又は1質量%以上である(例えば、グリオキサール水和物の水の含有量が前述で記載した量で含まれる)ことが多い。
液相Pは、高沸点吸着媒体(high−boiling absorption medium)を含むことが多く、その中でアクリル酸が、例えばC−前駆体化合物の不均一触媒部分気相酸化の生成物ガス混合物から吸収される(DE−A 102009027401参照)。
本明細書において、高沸点吸着媒体は、標準気圧でアクリル酸の沸点を上回る沸点を有する吸着媒体を意味すると理解されるべきである。標準圧力(1atm=約10Pa)での吸着媒体の沸点は、通常、同じ圧力でのアクリル酸の沸点(1atmで141℃;同じ圧力において141.35℃のプロピオン酸の沸点と比較;WO 2007/074045参照)よりも、少なくとも20℃、好ましくは少なくとも50℃、特に好ましくは少なくとも75℃及び極めて特に好ましくは少なくとも100℃又は少なくとも125℃、高い。標準圧力での前述の吸着媒体の沸点は、400℃以下であることが多く、350℃以下であることが多く、300℃以下又は280℃以下であることも多い。吸着媒体の沸点が、(標準圧力に基づいて)200℃から350℃の範囲である場合、特に有利である。この種類の考えられる吸着媒体には、例えば、DE−A 10336386, DE−A 02449780, DE−A 19627850, DE−A 19810962, DE−A 04308087, EP−A 0722926及びDE−A 04436243並びにさらにDE−A 102009027401の、明細書において推奨されているものの全てが含まれる。
高沸点吸収媒体は、通常、有機液体である。それらは、少なくとも70質量%の範囲の外部活性(externally active)極性基を含んでいない有機分子で構成されていることが多く、したがって、例えば水素結合を形成することができない。特に有利な吸着媒体には、例えばジフェニルエーテル、ジフェニル(ビフェニル)、Diphyl(登録商標)として公知のジフェニルエーテル(70質量%から75質量%)及びジフェニル(25質量%から30質量%)の混合物が含まれ、ジメチルフタレート、ジエチルフタレート、並びにDiphyl及びジメチルフタレートの混合物又はDiphyl及びジエチルフタレートの混合物、又はDiphyl、ジメチルフタレート及びジエチルフタレートの混合物も含まれる。吸収の目的のために極めて特に好適である混合物の一つの群は、75質量%から99.9質量%のDiphyl及び0.1質量%から25質量%のジメチルフタレート及び/又はジエチルフタレートで構成されるものである。
本明細書の文脈において、高沸点吸着媒体は、イオン性液体であってもよい。
本発明による方法において、液相Pは、例えば少なくとも1質量%、又は少なくとも5質量%、又は少なくとも10質量%、又は少なくとも20質量%、又は少なくとも30質量%、又は少なくとも40質量%、又は少なくとも60質量%、又は少なくとも80質量%の、高沸点吸着媒体を含んでもよい。
本発明による方法による方法の形式は、特に、液相Pが、その中に存在するアクリル酸の質量に基づいて、25から1000ppmwの範囲の、特に50から500ppmwの範囲のグリオキサールを含む場合に、その有利な効果を示す。
全ての前述した場合において、対応するベースでの(存在するアクリル酸の質量に基づく)液相P中のプロピオン酸の含有量は、同時に、150ppmw以上、又は200ppmw以上、又は250ppmw以上、又は300ppmw以上、又は350ppmw以上、又は400ppmw以上、又は500ppmw以上、又は600ppmw以上、又は700ppmw以上、又は800ppmw以上、又は1000ppmw以上、又は1500ppmw以上、又は2000ppmw以上、又は2500ppmw以上であってもよい。
全ての前述した場合において、前述のベースの液相Pのプロピオン酸の含有量は、通常、5質量%以下であり、4質量%以下、又は3質量%以下であることが多く、2質量%以下、又は1質量%以下であることが多い。
液相Pが、グリオキサール及びプロピオン酸だけでなく、さらなる第二の成分として及びアクリル酸を得るためのC−前駆体化合物の不均一触媒部分気相酸化の代表的な副反応生成物として、ホルムアルデヒド、アクロレイン、クロトンアルデヒド、ベンズアルデヒド、プロピオンアルデヒド、プロトアネモニン、アリルアクリレート、ギ酸、酢酸、マレイン酸、安息香酸及び/又は無水マレイン酸等の化合物を、(例えば、WO 2006/002713 A, WO 2008/090190 A, DE−A 10 2007 004960及びDE−A 10 2009 027401で、特に、その実施例の様々な液体物質混合物において詳細に記載されている量的画分中で、)含んでもよいことが理解されるべきである。
前述のとおり、本発明によって扱われる液相Pは、長期間にわたって保存される必要があることが多い。この期間の間に、ある程度のアクリル酸はそれ自身と反応し、またマイケル付加によって制限された量のジアクリル酸を形成する(例えば、WO 98/01414 A及びWO 2005/035478 A参照)。
したがって、本発明による方法は、液相Pに存在するアクリル酸の質量に基づいて、前述の量のグリオキサール、プロピオン酸、及びアクリル酸だけでなく、100ppmw以上の、又は200ppmw以上の、又は300ppmw以上の、又は400ppmw以上の、又は500ppmw以上の、又は600ppmw以上の、又は800ppmw以上の、又は1000ppmw以上の、又は1500ppmw以上の、又は2000ppmw以上の、又は3000ppmw以上の、又は5000ppmw以上の、又は7500ppmw以上の、又は10000ppmw以上の、ジアクリル酸も含む、液相Pに対しても好適である。
本発明によって扱われる液相P中のジアクリル酸の含有量は、その中存在するアクリル酸の質量に基づいて、通常、20質量%以下であり、15質量%以下又は10質量%以下であることが多く、5質量%以下であることが多い。
液相Pのジアクリル酸含有量は、高分解能H−NMRによって簡単な方法で測定される(“Polymerisationsinhibierung von (Meth−)Acrylaten” [Inhibition of polymerization of (meth)acrylates]、Dipl.−Ing. Holger Becker、論文、Technische Universitat Darmstadt、2003年参照)。この方法は、関連するH共鳴線の特異的なシグナルの形、シグナルの位置及びシグナルの面積を評価する。液相Pのプロピオン酸含有量は、通常、ガスクロマトグラフィーによって測定される。それらのアクリル酸含有量は、同様にH−NMRによって、ガスクロマトグラフィーによって又はHPLCによって測定されてもよい。
本発明による方法は、それらの保存の間に及びそれらの方法に関する処理の間に、液相Pに存在するアクリル酸の望ましくないフリーラジカル重合を抑制するのに好適である。
後者の場合は、特に、液相Pが非結晶性の(noncrystallizative)熱分解方法(関連する温度が、通常、50℃以上であり、大抵60℃若しくは70℃を上回り、又は90℃若しくは110℃を上回り、好ましくは150℃以下である)に供される場合に適用される。前述の方法は、通常、分離内部装置(internals)を含む分離カラム内で、気体(上昇)流れ及び液体(下降)流れ、すなわち2つの液体の流れが向流して流れ、両方の流れの間に存在する勾配の結果として熱及び物質の移動が起こり、したがって最終的に分離カラム内で望ましい分離効果をもたらす、熱分解方法である。この非結晶性の熱分解方法の例は、精留法、共沸精留法、抽出法、脱着法、ストリッピング法、蒸留法、共沸蒸留法及び吸着法である。本発明によって扱われる液相Pは、とりわけ、アクリル酸を得るためのC−前駆体化合物の不均一触媒部分気相酸化の生成物ガス混合物が、吸着法、又は分別凝縮、又は生成物ガス混合物からのアクリル酸の基本的除去のための部分凝縮に供される場合に形成されるため、本発明による方法は、この熱分解方法の過程で起こる液相Pの重合を抑制するためにも好適である。重合を抑制するための本発明による方法は、液相Pが結晶性の(crystallizative)熱分解方法に供される場合でも好適であることが、理解されるべきである。
「熱分解方法」という用語は、望ましい分離効果を得るために、熱が系に供給されなければならない又は熱が系から取り除かれなければならないことを表すことを意味する(DE−A 10 2008 041573及びDE−A 10 2008 8040799参照)。
方法によって扱われる液相Pは、本発明により添加されるフルフラールを、早ければ熱分解方法の開始から含んでもよい(すなわち、それは、本発明に従って既に処理された熱方法に供給されてもよい)。しかし、フルフラールは熱分解方法の過程(例えば、還流液に溶解した精留において、又は吸着媒体に溶解した吸収において、又は還流液に溶解した分留濃縮において、又は直接冷却に使用される急冷液体(quench liquid)に溶解したC−前駆体化合物の不均一触媒部分気相酸化の生成物ガス混合物の直接冷却において)でのみ添加されてもよいことが理解されるべきである。
本発明による液相Pに添加されるフルフラールは、液相Pに添加される唯一の抑制系であるとは限らない。それどころか、液相Pは、ニトロキシルラジカル(N−オキシルラジカルとしても公知である)(例えば、4−ヒドロキシ−2,2,6,6−テトラメチル−ピペリジン1−オキシル又は1,4−ジヒドロキシ−2,2,6,6−テトラメチルピペリジン等のDE−A 19734171に記載されたもの)、例えばジベンゾ−1,4−チアジン(フェノチアジン)等のフェノチアジン、ヒドロキノン、2,4−ジメチル−6−t−ブチルフェノール及びヒドロキノンモノメチルエーテル等のフェノール類、分子酸素、セリウム(III)塩等のセリウム塩、マンガン塩(例えば、酢酸マンガン(III)二水和物及びジ−n−ブチルジチオカルバミン酸マンガン(III)(manganese(III) di−n−butyldithiocarbamate)等のマンガン(III)塩)、p−フェニレンジアミン(例えば、DE−A 19734171に記載されているもの)、4−ニトロソフェノール(及びDE−A 19734171に記載されている他のもの)等の有機ニトロソ化合物、メチレンブルー並びに例えばEP−A 765856に記載されている全ての他の抑制剤、を含む群からの一種以上の抑制剤をさらに含んでもよい。前述の抑制剤は、適切に効果的な量で、すなわち、例えば(Pに存在するアクリル酸の質量に基づいて)5から1000ppmwの範囲で、液相Pに添加されてもよい。
取り付けられた分離内部装置(例えば、デュアルフロートレー等の分離トレー)を含む分離カラム内で、本発明に従って扱われる液相Pで非結晶性の熱分解方法を行う場合、追加の抑制方法として、例えば、DE−A 102009027401またはDE−A 102007004960の実施例で実行されているように、空気又は窒素富化ガス(希薄空気)を分離カラム(例えば、精留塔又は吸収塔)に分子酸素源として通過することができる。
この熱分解方法(例えばWO 2011/000808 A2, DE−A 10336386, DE−A 19924532, DE−A 19924533、及びDE−A 102007004960に記載された全ての熱分解方法)は、好ましくはUS 6441228 B2及びUS 6966973 B2の推奨に適合する装置において、本発明に従って実行される。
アクリル酸を製造するための不均一触媒部分気相酸化は、例えば、その中に存在する使用されるC−前駆体化合物(例えば、プロパン、プロピレン、アクロレイン、プロピオン酸、プロピオンアルデヒド、プロパノール及び/又はグリセロール、好ましくはプロピレン及びアクロレイン)のモル量に基づいて、100モルppm以上、又は200モルppm以上、又は300モルppm以上、又は400モルppm以上、又は500モルppm以上、又は750モルppm以上、又は1000モルppm以上、又は2000モルppm以上、又は3000モルppm以上の、C−化合物(例えば、エタン、エチレン、アセチレン、アセトアルデヒド、酢酸及び/又はエタノール)のモル全体量を含む反応ガス出発混合物を使用してもよい。
前述の、アクリル酸(又は同じベース)を得るためのC−前駆体化合物の不均一触媒部分気相酸化の反応ガス出発混合物中のC−化合物のモル全体量は、通常10000モルppm以下である。
さらに、アクリル酸を製造するための不均一触媒部分気相酸化に使用される反応ガス出発混合物は、例えば、C−前駆体化合物としてのプロピレン又はアクロレインの場合において(また、n−プロパンと異なる他のC−前駆体化合物の場合においても)、存在するプロピレン/アクロレイン(n−プロパンと異なるC−前駆体化合物)の質量に基づいて、0.05質量%以上のn−プロパン、又は0.2質量%以上のn−プロパン、又は0.5質量%以上のn−プロパン、又は1質量%以上のn−プロパン、又は3質量%以上のn−プロパン、又は5質量%以上のn−プロパン、又は10質量%以上のn−プロパン、又は20質量%以上のn−プロパンを含んでもよい。しかし、アクリル酸を得るためのプロピレン及び/又はアクロレイン(n−プロパンと異なるC−前駆体化合物)の不均一触媒部分気相酸化の反応ガス出発混合物中は、一般的には80体積%以下のn−プロパンを含み、70体積%以下のn−プロパンを含むことが多く、60体積%以下(しかし、通常0.1体積%以上)のn−プロパンを含むことが多い。
「反応ガス出発混合物」という用語は、全ての前述の場合において、アクリル酸を得るためのその中に存在するC−前駆体化合物の部分酸化の目的のための触媒床に供給されるガス混合物を意味すると理解されるべきである。C−前駆体化合物、望ましくない不純物及び酸化剤としての分子酸素に加えて、反応ガス出発混合物も、通常、N、CO、HO、希ガス、分子水素等の不活性希釈ガスを含む。それぞれの不活性希釈ガスは、通常、不均一触媒部分酸化の過程において、少なくとも95モル%のその出発量が変化しないままであるように構成される。
反応ガス出発混合物中のC−前駆体化合物の割合は、例えば、4体積%から20体積%、又は5体積%から15体積%、又は6体積%から12体積%の範囲である。
アクリル酸を得るためのC−前駆体化合物の部分酸化反応の化学両論に基づいて、反応ガス出発混合物は、一般的に、過剰の分子酸素を含み、通常、酸化物触媒(oxidic catalysts)を再び酸化させる。
酸素の過剰量(excess)が増加すると、通常、望ましくないグリオキサールの第二の成分の形成の増加も同時に起こるため、本発明による方法の形式の後に続く適用の場合、この過剰量は特に高く設定されてもよい。
同様に、部分酸化の後に続いて本発明による方法が使用される場合、アクリル酸を得るためのC−前駆体化合物の不均一触媒部分気相酸化において、触媒床に行き渡る最大の反応温度が、比較的高い値で設定されてもよい。この理由の一つは、最大温度が高くなると、通常、望ましくないグリオキサールの第二の成分の形成の増加も同時に起こることである。しかし、高い最大温度の使用は、通常、比較的低い活性を有する触媒の使用を可能にするため、触媒の耐用年数を延ばす可能性を高める。しかし、比較的低い活性の触媒を使用する場合、C−前駆体化合物の転換が増加することは、その望ましくない完全燃焼にもますます頻繁に関連する。グリオキサールは、一例としては、同様に、中間体として形成されてもよい。
本発明による方法の形式の文脈において、触媒床上のC−前駆体化合物の空間速度の選択をより寛大に(genorously)進めることも同様に可能である。
グリオキサール副生成物の形成が、反応ガス混合物中の高い蒸気含有量によって支持されることがさらに見いだされている。したがって、本発明による方法は、特に、C−前駆体化合物の不均一触媒部分気相酸化に使用される反応ガス出発混合物が、1質量%以上、又は3質量%以上、又は5質量%以上、又は9質量%以上、又は15質量%以上、又は20質量%以上の、蒸気を含む場合、適切である。しかし、反応ガス出発混合物の蒸気含有量は、通常、40質量%以下であり、30質量%以下であることが多い。
アクリル酸を製造するための不均一触媒部分気相酸化の方法は、あるいは、先行技術で記載されているそれ自体が公知の方法で実行されてもよい。
−前駆体化合物が例えばプロピレン及び/又はアクロレインである場合、不均一触媒部分気相酸化は、例えばWO 2005/042459 A, WO 2005/047224 A及びWO 2005/047226 Aの明細書に記載されているとおりに実行されてもよい。
−前駆体化合物が例えばプロパンである場合、アクリル酸を製造するための不均一触媒部分気相酸化は、例えばEP−A 608 838, DE−A 198 35 247, DE−A 102 45 585及びDE−A 102 46 119の明細書に記載されているとおりに実行されてもよい。
−前駆体化合物が例えばグリセロールである場合、アクリル酸を製造するための不均一触媒部分気相酸化は、例えばWO 2007/090991 A, WO 2006/114506 A, WO 2005/073160 A, WO 2006/114506 A, WO 2006/092272 A又はWO 2005/073160 Aの明細書に記載されているとおりに実行されてもよい。
部分気相酸化の上流側に配置されたプロパンの部分脱水素化及び/又はオキシ脱水素化によってC−前駆体化合物としてプロピレンを得ることも、以前に提案されている(例えば、WO 076370, WO 01/96271, EP−A 117146, WO 03/011804及びWO 01/96270)。
本発明による方法は、液相Pに存在するグリオキサールが、少なくとも20モル%の範囲、又は少なくとも30モル%の範囲、又は少なくとも50モル%の範囲、又は少なくとも70モル%の範囲、又は少なくとも90モル%の範囲、又は少なくとも95質量%であり、単量体グリオキサール一水和物及び/又は単量体グリオキサール二水和物の形態で液相Pに存在する場合においても、特に有利に使用できる。
本発明による方法は、本発明に従って扱われる液相Pが、アクリル酸のC−前駆体の不均一触媒部分気相酸化からの生成物ガス混合物から得られる場合に有利であり、この生成物ガス混合物が、生成物ガス混合物に存在するアクリル酸のモル量に基づいて、25から1000ppmwの範囲のグリオキサール、特に50から500ppmwの範囲のグリオキサールを含む場合に特に有利である(存在するアクリル酸のモル量に基づいた、生成物ガス混合物の前述のグリオキサール含有量の測定は、本明細書で液相Pに対して記載されたとおりに、後者(the latter)、少なくともその中に存在するアクリル酸、その中に存在するグリオキサールのヘミアセタール及び/又はアセタール、並びにその中に存在する単量体グリオキサールを冷却して凝縮相に変換し、その製造後できるだけ早くそのグリオキサール及びアクリル酸の含有量について後者を分析することによって達成されてもよい)。
本発明に従って扱われる液相Pは、共沸精留に供されてその中に存在する水を分離することも多い。この点に関して考えられる好適な共沸剤(entraining agent)には、特に、ヘプタン、ジメチルシクロヘキサン、エチルシクロヘキサン、トルエン、エチルベンゼン、オクタン、クロロベンゼン、キシレン又はこれらの混合物(例えば60質量%のトルエン及び40質量%のヘプタン)が含まれる。しかし、メチルイソブチルケトン又はイソプロピルアセテートも、別の共沸剤として使用されてもよい。あるいは、EP−A 778255, EP−A 695736及びUS 2004/0242826の明細書に記載されたとおりに進行することができる。したがって、本発明に従って扱われる液相Pは、特に、少なくとも一種の前述の共沸剤及び水を含む液相Pも含む。通常、この液相Pの水の含有量は少なくとも10質量%であり、共沸剤の含有量は少なくとも1質量%であり、少なくとも2質量%又は少なくとも5質量%であることが多い。
本発明による方法は、本発明に従って扱われる液相Pに存在するグリオキサール及びプロピオン酸が結晶化によってそこから分離される場合に特に関連し、ここで、グリオキサール及びプロピオン酸が残留母液内(remaining mother liquor)で豊富であり、アクリル酸が結晶化物(crystallizate)内で豊富であり、また、アクリル酸が、母液によってC−前駆体化合物の不均一触媒部分気相酸化からの生成物ガス混合物から本発明に従って扱われる液相Pが得られる(製造される)方法を用いて、少なくとも1段階過程の中にリサイクルされる。結晶性の分離方法が、DE−A 102008041573, DE−A 102008040799及びWO 2007/074044 A並びにさらにDE−A 102007029053の明細書に記載されているとおりの対応する方法で実行されてもよい。
特に明記しない限り、ppmの値は質量に基づく。
特に明記しない限り、%で記載される値は質量に基づく。
特に明記しない限り、記載される値は絶対圧力に基づく。
実施例及び比較例
<実験手順>
オイルバスを103℃に予熱する。
100.0gのアクリル酸を(適切な添加剤と一緒に)250mlガラスボトル(つり合い重り(tared))(マグネチックスターラー)に満たす。
を30分間アクリル酸に通過させる(約70 l/時間)。
30分後、N流をアクリル酸の上のみで通過させ、14〜18 l/時間に減少させる。
続いて、ボトルを予熱したオイルバス中で充填高さ(the fill height)まで浸す(内側の温度100℃)。
100℃で2時間攪拌する。その後オイルバスを下げる。
50℃の内側の温度に到達した後、残留アクリル酸を静かに移す。
初期の質量に基づく、質量%で示された重合したアクリル酸の量。
<実施例>
アクリル酸(純度>98質量%)を用いた以下の実施例を、様々な量のフルフラール及びグリオキサールを用いて、前述の実験手順と同様に実行した。それぞれの実験を、2〜6回繰り返し、得られた値の平均を記載した。
Figure 2021532189

Claims (24)

  1. 液相Pに存在するアクリル酸の望ましくないフリーラジカル重合を抑制するための方法であって、Pの前記アクリル酸の含有量が少なくとも10質量%であり、前記液相Pが、Pに存在する前記アクリル酸の質量に基づいて25から1000ppmwの範囲のグリオキサールを含み、前記液相Pは、Pに存在する前記アクリル酸の質量に基づいて25から1000ppmwの範囲のフルフラールの含有量をもたらす量のフルフラールと混合される、方法。
  2. Pの前記アクリル酸の含有量が少なくとも30質量%である、請求項1に記載の方法。
  3. Pの前記アクリル酸の含有量が少なくとも50質量%である、請求項1に記載の方法。
  4. 前記液相Pが、Pに存在する前記アクリル酸の質量に基づいて50から500ppmwの範囲のグリオキサールを含み、前記液相Pが、Pに存在する前記アクリル酸の質量に基づいて50から500ppmwの範囲のフルフラールの含有量をもたらす量のフルフラールと混合される、請求項1から3のいずれか一項に記載の方法。
  5. 前記液相Pが、Pに存在する前記アクリル酸の質量に基づいて50から1000ppmwの範囲のフェノチアジンを含む、請求項1から4のいずれか一項に記載の方法。
  6. 前記液相Pが、Pに存在する前記アクリル酸の質量に基づいて50から1000ppmwの範囲のメチルヒドロキノンを含む、請求項1から5のいずれか一項に記載の方法。
  7. 酸素の不存在下において行われる、請求項1から6のいずれか一項に記載の方法。
  8. 前記液相Pが、50℃から150℃の範囲の温度を有する、請求項1から7のいずれか一項に記載の方法。
  9. アクリル酸の蒸留回収のためのカラム内で行われる、請求項1から8のいずれか一項に記載の方法。
  10. 前記液相Pに存在する前記アクリル酸が、アクリル酸のC−前駆体化合物の不均一触媒部分酸化の生成物であり、前記部分酸化に使用される前記C−前駆体化合物を含む出発混合物が、その中に存在する前記C−前駆体化合物のモル量に基づいて、100から10000モルppmの範囲のC−化合物のモル全体量を含む、請求項1から9のいずれか一項に記載の方法。
  11. 前記液相Pに存在する前記アクリル酸が、アクリル酸のC−前駆体化合物の不均一触媒部分酸化の前記生成物であり、前記部分酸化に使用される前記C−前駆体化合物を含む出発混合物が、80体積%以下のn−プロパンを含む、請求項1から10のいずれか一項に記載の方法。
  12. 前記C−前駆体化合物が、プロピレン、アクロレイン又はn−プロパンである、請求項10又は11に記載の方法。
  13. Pのアクリル酸の含有量が少なくとも10質量%であり、それぞれの場合においてPに存在する前記アクリル酸の質量に基づいて、25から1000ppmwの範囲のグリオキサール及び25から1000ppmwの範囲のフルフラールを含む、液相P。
  14. Pの前記アクリル酸の含有量が少なくとも30質量%である、請求項13に記載の液相P。
  15. Pの前記アクリル酸の含有量が少なくとも50質量%である、請求項13又は14に記載の液相P。
  16. それぞれの場合においてPに存在する前記アクリル酸の質量に基づいて、50から500ppmwの範囲のグリオキサール及び50から500ppmwの範囲のフルフラールを含む、請求項13から15のいずれか一項に記載の液相P。
  17. Pに存在する前記アクリル酸の質量に基づいて、50から1000ppmwの範囲のフェノチアジンを含む、請求項13から16のいずれか一項に記載の液相P。
  18. Pに存在する前記アクリル酸の質量に基づいて、50から1000ppmwの範囲のメチルヒドロキノンを含む、請求項13から17のいずれか一項に記載の液相P。
  19. 酸素を含まない、請求項13から18のいずれか一項に記載の液相P。
  20. 50℃から150℃の範囲の温度を有する、請求項13から19のいずれか一項に記載の液相P。
  21. アクリル酸の蒸留回収のためのカラム内に位置する、請求項13から20のいずれか一項に記載の液相P。
  22. 前記液相Pに存在する前記アクリル酸が、アクリル酸のC−前駆体化合物の不均一触媒部分酸化の生成物であり、前記部分酸化に使用される前記C−前駆体化合物を含む出発混合物が、その中に存在する前記C−前駆体化合物のモル量に基づいて、100から10000モルppmの範囲のC−化合物のモル全体量を含む、請求項13から21のいずれか一項に記載の液相P。
  23. 前記液相Pに存在する前記アクリル酸が、アクリル酸のC−前駆体化合物の不均一触媒部分酸化の生成物であり、前記部分酸化に使用される前記C−前駆体化合物を含む出発混合物が、80体積%以下のn−プロパンを含む、請求項13から22のいずれか一項に記載の液相P。
  24. 前記C−前駆体化合物が、プロピレン、アクロレイン又はn−プロパンである、請求項22又は23に記載の液相P。
JP2021528479A 2018-07-26 2019-07-16 液相pに存在するアクリル酸の望ましくないラジカル重合を抑制するための方法 Active JP7384519B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18185760.8 2018-07-26
EP18185760 2018-07-26
PCT/EP2019/069079 WO2020020697A1 (de) 2018-07-26 2019-07-16 Verfahren zur hemmung der unerwünschten radikalischen polymerisation von in einer flüssigen phase p befindlicher acrylsäure

Publications (2)

Publication Number Publication Date
JP2021532189A true JP2021532189A (ja) 2021-11-25
JP7384519B2 JP7384519B2 (ja) 2023-11-21

Family

ID=63207513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021528479A Active JP7384519B2 (ja) 2018-07-26 2019-07-16 液相pに存在するアクリル酸の望ましくないラジカル重合を抑制するための方法

Country Status (7)

Country Link
US (1) US11447439B2 (ja)
EP (1) EP3826987A1 (ja)
JP (1) JP7384519B2 (ja)
KR (1) KR20210038593A (ja)
CN (1) CN112469686B (ja)
SA (1) SA521421121B1 (ja)
WO (1) WO2020020697A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4126808A1 (de) 2020-03-26 2023-02-08 Basf Se Verfahren zur hemmung der unerwünschten radikalischen polymerisation von in einer flüssigen phase p befindlicher acrylsäure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001516736A (ja) * 1997-09-12 2001-10-02 ビーエーエスエフ アクチェンゲゼルシャフト アクリル酸およびメタクリル酸の製造方法
JP2007508259A (ja) * 2003-10-09 2007-04-05 ビーエーエスエフ アクチェンゲゼルシャフト アクリル酸含有液体の精留分離法
JP2008529988A (ja) * 2005-02-08 2008-08-07 シュトックハウゼン ゲゼルシャフト ミット ベシュレンクテル ハフツング プロトン性溶媒を用いて抽出することによって、(メタ)アクリル酸を含有する混合物から有機化合物を回収する方法
JP2009504565A (ja) * 2003-07-11 2009-02-05 ビーエーエスエフ ソシエタス・ヨーロピア 少なくとも1種の(メタ)アクリルモノマーを富化して含有する物質流を分離するための熱分解法
JP2010516738A (ja) * 2007-01-26 2010-05-20 ビーエーエスエフ ソシエタス・ヨーロピア アクリル酸の製造方法
US20110036704A1 (en) * 2009-07-01 2011-02-17 Basf Se Process for removal of acrylic acid from the product gas mixture of a heterogeneously catalyzed partial gas phase oxidation of at least one c3 precursor compound
JP2013542933A (ja) * 2010-10-08 2013-11-28 ビーエーエスエフ ソシエタス・ヨーロピア 液相p中に存在するアクリル酸の望ましくないラジカル重合を抑制する方法

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493471A (en) * 1967-12-01 1970-02-03 Dow Chemical Co Acrylic acid purification
US3517609A (en) 1968-02-19 1970-06-30 Sperry Rand Corp Feeding mechanism
DE2449780C3 (de) 1974-10-19 1987-01-22 Basf Ag, 6700 Ludwigshafen Verfahren zum Abtrennen schwer- oder nichtflüchtiger Nebenprodukte der Propylen- und/oder Acroleinoxidation von den für die Absorbtion der Acrylsäure aus den Reaktionsgasen verwendeten Lösungsmitteln
US4317926A (en) 1978-01-19 1982-03-02 Nippon Shokubai Kagaku Kogyo Co., Ltd. Process for preparing and recovering acrylic acid
EP0117146B1 (en) 1983-02-22 1986-12-30 The Halcon Sd Group, Inc. Conversion of propane to acrylic acid
NO163690C (no) 1984-06-18 1990-07-04 Air Prod & Chem Fremgangsmaate for fremstilling av to kvaliteter av propylen.
CA1299193C (en) 1986-07-17 1992-04-21 Gordon Gene Harkreader Anhydrous diluents for the propylene oxidation reaction to acrolein and acrolein oxidation to acrylic acid
US5198578A (en) 1986-07-17 1993-03-30 Union Carbide Chemicals Anhydrous diluents for the propylene oxidation reaction to acrolein and acrolein oxidation to acrylic acid
EP0608838B1 (en) 1993-01-28 1997-04-16 Mitsubishi Chemical Corporation Method for producing an unsaturated carboxylic acid
DE4308087C2 (de) 1993-03-13 1997-02-06 Basf Ag Verfahren zur Abtrennung von Acrylsäure aus den Reaktionsgasen der katalytischen Oxidation von Propylen und/oder Acrolein
DE4335172A1 (de) 1993-10-15 1995-04-20 Basf Ag Verfahren zur Reinigung von Roh-(Meth)acrylsäure
US5759358A (en) 1994-05-31 1998-06-02 Rohm And Haas Company Process for pure grade acrylic acid
US5728872A (en) 1994-06-27 1998-03-17 Lutz Riemenschneider Stabilized acrylic acid compositions
JP3937462B2 (ja) 1994-08-04 2007-06-27 三菱化学株式会社 アクリル酸精製法
DE4436243A1 (de) 1994-10-11 1996-04-18 Basf Ag Verfahren zur Abtrennung von (Meth)acrylsäure aus dem Reaktionsgasgemisch der katalytischen Gasphasenoxidation C¶3¶-/C¶4¶-Verbindungen
DE19501326A1 (de) 1995-01-18 1996-07-25 Basf Ag Verfahren der rektifikativen Abtrennung von (Meth)acrylsäure aus einem (Meth)acrylsäure als Hauptbestandteil und niedere Aldehyde als Nebenbestandteile enthaltenden Gemisch in einer aus Abtriebsteil und Verstärkerteil bestehenden Rektifiaktionskolonne
JP3028925B2 (ja) 1995-12-05 2000-04-04 株式会社日本触媒 アクリル酸の製造方法
DE19606877A1 (de) 1996-02-23 1997-08-28 Basf Ag Verfahren zur Reinigung von Acrylsäure und Methacrylsäure
CZ290225B6 (cs) 1996-05-27 2002-06-12 Mitsubishi Chemical Corporation Způsob inhibice polymerace kyseliny (meth)akrylové a jejich esterů
DE19627679A1 (de) 1996-07-10 1998-01-15 Basf Ag Verfahren zur Reinigung von Roh-Acrylsäure durch Kristallisation
DE19627850A1 (de) 1996-07-10 1998-01-15 Basf Ag Verfahren zur Herstellung von Acrylsäure und Methacrylsäure
DE19627847A1 (de) 1996-07-10 1998-01-15 Basf Ag Verfahren zur Herstellung von Acrylsäure
EP0854129B2 (de) 1997-01-17 2007-11-28 Basf Aktiengesellschaft Verfahren der kontinuierlichen destillativen Auftrennung von flüssigen Gemischen, die als Hauptbestandteil (Meth)acrylsäure enthalten
JPH1135519A (ja) 1997-07-25 1999-02-09 Mitsubishi Chem Corp アクリル酸の製造方法
DE19835247B4 (de) 1997-08-05 2022-04-28 Asahi Kasei Kabushiki Kaisha Ammonoxidationskatalysator und Verfahren zur Herstellung von Acrylnitril oder Methacrylnitril aus Propan oder Isobutan durch Ammonoxidation
DE19734171A1 (de) 1997-08-07 1999-02-11 Basf Ag Verfahren zur Stabilisierung von (Meth)acrylsäureestern gegen unerwünschte radikalische Polymerisation
DE19740253A1 (de) 1997-09-12 1999-03-18 Basf Ag Verfahren zur fraktionierten Kondensation eines heißen Gasgemisches mit einem hohen Anteil nicht kondensierbarer Komponenten
DE19810962A1 (de) 1998-03-13 1999-09-16 Basf Ag Verfahren der rektifikativen Abtrennung von (Meth)acrylsäure aus einem (Meth)acrylsäure und eine höher als (Meth)acrylsäure siedende organische Flüssigkeit als Hauptbestandteile enthaltenden Gemisch
DE19814421A1 (de) 1998-03-31 1999-10-07 Basf Ag Verfahren zur Herstellung von Acrylsäure und Acrylsäureestern
DE19814375A1 (de) 1998-03-31 1999-10-07 Basf Ag Verfahren zur Herstellung von Acrylsäure und Acrylsäureestern
DE19814387A1 (de) 1998-03-31 1999-10-07 Basf Ag Verfahren zur Herstellung von Acrylsäure und Acrylsäureestern
DE19837520A1 (de) 1998-08-19 2000-02-24 Basf Ag Verfahren zur Herstellung von Acrolein und/oder Acrylsäure aus Propan
DE19838795A1 (de) 1998-08-26 2000-03-02 Basf Ag Verfahren zur kontinuierlichen Gewinnung von (Meth)acrylsäure
DE19838817A1 (de) 1998-08-26 2000-03-02 Basf Ag Verfahren zur kontinuierlichen Gewinnung von (Meth)acrylsäure
DE19838783A1 (de) 1998-08-26 2000-03-02 Basf Ag Verfahren zur kontinuierlichen Gewinnung von (Meth)acrylsäure
DE19924532A1 (de) 1999-05-28 2000-11-30 Basf Ag Verfahren der fraktionierten Kondensation eines Acrylsäure enthaltenden Produktgasgemisches einer heterogen katalysierten Gasphasen-Partialoxidation von C3-Vorläufern der Acrylsäure mit molekularem Sauerstoff
BR0008823B1 (pt) 1999-03-06 2010-11-03 processo para a preparação de ácido acrìlico.
DE19924533A1 (de) 1999-05-28 2000-11-30 Basf Ag Verfahren zur Herstellung von Acrylsäure
MY122671A (en) 1999-03-06 2006-04-29 Basf Ag Fractional condensation of a product gas mixture containing acrylic acid
JP5073129B2 (ja) 1999-03-31 2012-11-14 株式会社日本触媒 (メタ)アクリル酸の精製方法
WO2000076370A1 (en) 1999-06-16 2000-12-21 Brice Michael F Twin-headed toothbrush
JP4361995B2 (ja) 1999-12-22 2009-11-11 株式会社日本触媒 アクリル酸の精製方法
JP4005750B2 (ja) 1999-12-28 2007-11-14 株式会社日本触媒 (メタ)アクリル酸製造用装置および(メタ)アクリル酸の製造方法
US6888025B2 (en) 2000-02-14 2005-05-03 Nippon Shokubai, Co. Ltd. Method for absorbing acrylic acid and method for purifying acrylic acid
DE10036880A1 (de) 2000-07-28 2002-02-07 Basf Ag Regelung einer Waschkolonne in einem Schmelzkristallisationsprozess
DE10117248A1 (de) 2000-05-31 2002-10-10 Mg Technologies Ag Verfahren zum Erzeugen von Propylen aus Methanol
JP2001348359A (ja) 2000-06-06 2001-12-18 Nippon Shokubai Co Ltd (メタ)アクリル酸およびそのエステルの重合防止方法ならびにこれらの製造方法
DE10028582A1 (de) 2000-06-14 2001-12-20 Basf Ag Verfahren zur Herstellung von Acrolein oder Acrylsäure oder deren Gemischen aus Propan
AU2001278449A1 (en) 2000-06-14 2001-12-24 Basf Aktiengesellschaft Method for producing acrolein and/or acrylic acid
EP1349826B1 (de) 2001-01-12 2012-06-27 Evonik Stockhausen GmbH Kontinuierliches verfahren zur herstellung und aufreinigung von (meth) acrylsäure
DE10115277A1 (de) 2001-03-28 2002-06-13 Basf Ag Verfahren zur kontinuierlichen Gewinnung von(Meth)acrylsäure
DE10211275A1 (de) 2002-03-13 2003-09-25 Basf Ag Verfahren der kontinuierlichen heterogen katalysierten partiellen Dehydrierung
DE10131297A1 (de) 2001-06-29 2003-01-09 Basf Ag Verfahren zur Herstellung von partiellen Oxidationsprodukten und/oder partiellen Ammoxidationsprodukten wenigstens eines olefinischen Kohlenwasserstoffs
JP4455790B2 (ja) 2001-09-28 2010-04-21 株式会社日本触媒 (メタ)アクリル酸の製造方法
DE10223058A1 (de) 2002-05-24 2003-12-11 Basf Ag Verfahren zum reinigenden Abtrennen von Kristallen aus ihrer Suspension in Mutterlauge
WO2003041832A1 (de) 2001-11-15 2003-05-22 Basf Aktiengesellschaft Verfahren zum reinigenden abtrennen von kristallen aus ihrer suspension in mutterlauge
DE10211686A1 (de) 2002-03-15 2003-10-02 Stockhausen Chem Fab Gmbh (Meth)Acrylsäurekristall und Verfahren zur Herstellung und Aufreinigung von wässriger (Meth)Acrylsäure
JP4440518B2 (ja) 2002-07-16 2010-03-24 株式会社日本触媒 アクリル酸の製造方法
DE10233975A1 (de) 2002-07-25 2004-02-12 Lurgi Ag Vorrichtung zur Herstellung von Propylen aus Methanol
DE10235847A1 (de) 2002-08-05 2003-08-28 Basf Ag Verfahren zur Herstellung von Acrylsäure
JP4465144B2 (ja) 2002-08-08 2010-05-19 株式会社日本触媒 アクリル酸の製造方法
JP3908118B2 (ja) 2002-08-08 2007-04-25 株式会社日本触媒 アクリル酸の製造方法
JP3905810B2 (ja) 2002-09-03 2007-04-18 株式会社日本触媒 アクリル酸製造プロセスにおける重合防止方法
DE10243625A1 (de) 2002-09-19 2004-04-01 Basf Ag Hydraulich abgedichteter Querstrom-Stoffaustauschboden
DE10246119A1 (de) 2002-10-01 2004-04-15 Basf Ag Verfahren zur Herstellung von wenigstens einem partiellen Oxidations- und/oder Ammoxidationsprodukt des Propylens
DE10245585A1 (de) 2002-09-27 2004-04-08 Basf Ag Verfahren zur Herstellung von wenigstens einem partiellen Oxidations- und/oder Ammoxidationsprodukt des Propylens
DE10247240A1 (de) 2002-10-10 2004-04-22 Basf Ag Verfahren zur Herstellung von Acrylsäure
DE10300816A1 (de) 2003-01-10 2004-07-22 Basf Ag Thermisches Trennverfahren zwischen wenigstens einem gasförmigen und wenigstens einem flüssigen Stoffstrom, von denen wenigstens einer (Meth)acrylmonomere enthält
JP3992643B2 (ja) 2003-05-09 2007-10-17 株式会社日本触媒 (メタ)アクリル酸および/またはそのエステルの蒸留方法
JP3999160B2 (ja) 2003-05-14 2007-10-31 株式会社日本触媒 易重合性物質の製造方法
JP4056429B2 (ja) 2003-06-05 2008-03-05 株式会社日本触媒 (メタ)アクリル酸の製造方法
JP3957298B2 (ja) 2003-06-05 2007-08-15 株式会社日本触媒 アクリル酸の製造方法
US7183428B2 (en) 2003-06-05 2007-02-27 Nippon Shokubai Co., Inc. Method for production of acrylic acid
DE10332758A1 (de) 2003-07-17 2004-05-27 Basf Ag Thermisches Trennverfahren zur Abtrennung wenigstens eines (Meth)acrylmonomere angereichert enthaltenden Stoffstroms
DE10336386A1 (de) 2003-08-06 2004-03-04 Basf Ag Verfahren zur absorptiven Grundabtrennung von Acrylsäure aus dem Produktgasgemisch einer heterogen katalysierten partiellen Gasphasenoxidation von Propen zu Acrylsäure
KR101110524B1 (ko) 2003-10-29 2012-01-31 바스프 에스이 아크롤레인을 형성하기 위한 프로펜의 불균질 촉매된 기체상 부분 산화의 장기 수행 방법
KR101096355B1 (ko) 2003-10-29 2011-12-20 바스프 에스이 아크릴산을 형성하기 위한 아크롤레인의 불균질 촉매된기체 상 부분 산화의 장기 수행 방법
BRPI0415989B1 (pt) 2003-10-31 2016-03-29 Basf Ag processo para operação a longo prazo de uma oxidação parcial em fase gasosa heterogeneamente catalisada de propeno a ácido acrílico
JP5006507B2 (ja) 2004-01-30 2012-08-22 株式会社日本触媒 アクリル酸の製造方法
EP1765754B1 (de) 2004-07-01 2015-12-09 Basf Se Verfahren zur herstellung von acrolein, oder acrylsäure oder deren gemisch aus propan
TWI522092B (zh) 2005-02-28 2016-02-21 贏創德固賽有限責任公司 丙烯酸和基於可再生原料之吸水聚合物結構及二者之製備方法
FR2884818B1 (fr) 2005-04-25 2007-07-13 Arkema Sa Procede de preparation d'acide acrylique a partir de glycerol
US20090068440A1 (en) 2005-06-20 2009-03-12 Gunther Bub Production of acrolein, acrylic acid and water-absorbent polymer structures made from glycerine
DE102005052917A1 (de) 2005-11-03 2007-10-11 Basf Ag Verfahren zur Herstellung von Acrolein, oder Acrylsäure oder deren Gemisch aus Propan
DE102005062010A1 (de) 2005-12-22 2007-06-28 Basf Ag Verfahren der heterogen katalysierten partiellen Gasphasenoxidation von Propylen zu Acrylsäure
DE102005062026A1 (de) 2005-12-22 2007-06-28 Basf Ag Verfahren der heterogen katalysierten partiellen Gasphasenoxidation von Propylen zu Acrylsäure
FR2897059B1 (fr) 2006-02-07 2008-04-18 Arkema Sa Procede de preparation d'acide acrylique
DE102007004960A1 (de) 2007-01-26 2008-07-31 Basf Se Verfahren zur Herstellung von Acrylsäure
MY144918A (en) 2007-01-26 2011-11-30 Basf Se Process for preparing acrylic acid
DE102007029053A1 (de) 2007-06-21 2008-01-03 Basf Ag Verfahren der heterogen katalysierten partiellen Direktoxidation von n-Propan zu Acrylsäure
KR101861855B1 (ko) 2008-07-28 2018-05-28 바스프 에스이 탄소원자 수가 3개인 아크릴산의 전구체 화합물의 기체상 생성물 혼합물로부터 주성분으로서 함유된 아크릴산과 부산물로서 함유된 글리옥살을 분리시키는 방법
DE102008041573A1 (de) 2008-08-26 2010-03-04 Basf Se Verfahren zur Auftrennung von in einem Produktgasgemisch einer partiellen heterogen katalysierten Gasphasenoxidation einer C3-Vorläuferverbindung der Acrylsäure als Hauptbestandteil enhaltener Acrylsäure und als Nebenprodukt enthaltenem Glyoxal
DE102008040799A1 (de) * 2008-07-28 2008-12-11 Basf Se Verfahren zur Auftrennung von in einem Produktgasgemisch einer partiellen heterogen katalysierten Gasphasenoxidation einer C3-Vorläuferverbindung der Acrylsäure als Hauptbestandteil enthaltener Acrylsäure und als Nebenprodukt enthaltenem Glyoxal
DE102009027401A1 (de) 2009-07-01 2010-02-18 Basf Se Verfahren der Abtrennung von Acrylsäure aus dem Produktgasgemisch einer heterogen katalysierten partiellen Gasphasenoxidation wenigstens einer C3-Vorläuferverbindung
FR3060000B1 (fr) * 2016-12-08 2020-05-01 Arkema France Procede pour eviter le depot de polymeres dans un procede de purification d'acide (meth)acrylique.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001516736A (ja) * 1997-09-12 2001-10-02 ビーエーエスエフ アクチェンゲゼルシャフト アクリル酸およびメタクリル酸の製造方法
JP2009504565A (ja) * 2003-07-11 2009-02-05 ビーエーエスエフ ソシエタス・ヨーロピア 少なくとも1種の(メタ)アクリルモノマーを富化して含有する物質流を分離するための熱分解法
JP2007508259A (ja) * 2003-10-09 2007-04-05 ビーエーエスエフ アクチェンゲゼルシャフト アクリル酸含有液体の精留分離法
JP2008529988A (ja) * 2005-02-08 2008-08-07 シュトックハウゼン ゲゼルシャフト ミット ベシュレンクテル ハフツング プロトン性溶媒を用いて抽出することによって、(メタ)アクリル酸を含有する混合物から有機化合物を回収する方法
JP2010516738A (ja) * 2007-01-26 2010-05-20 ビーエーエスエフ ソシエタス・ヨーロピア アクリル酸の製造方法
US20110036704A1 (en) * 2009-07-01 2011-02-17 Basf Se Process for removal of acrylic acid from the product gas mixture of a heterogeneously catalyzed partial gas phase oxidation of at least one c3 precursor compound
JP2013542933A (ja) * 2010-10-08 2013-11-28 ビーエーエスエフ ソシエタス・ヨーロピア 液相p中に存在するアクリル酸の望ましくないラジカル重合を抑制する方法

Also Published As

Publication number Publication date
WO2020020697A1 (de) 2020-01-30
JP7384519B2 (ja) 2023-11-21
EP3826987A1 (de) 2021-06-02
CN112469686B (zh) 2024-04-05
SA521421121B1 (ar) 2024-03-28
CN112469686A (zh) 2021-03-09
US11447439B2 (en) 2022-09-20
US20210309598A1 (en) 2021-10-07
KR20210038593A (ko) 2021-04-07

Similar Documents

Publication Publication Date Title
JPH07149687A (ja) アルデヒドで汚染された(メタ)アクリル酸の精製方法
KR101861855B1 (ko) 탄소원자 수가 3개인 아크릴산의 전구체 화합물의 기체상 생성물 혼합물로부터 주성분으로서 함유된 아크릴산과 부산물로서 함유된 글리옥살을 분리시키는 방법
US9212122B2 (en) Process for inhibiting unwanted free-radical polymerization of acrylic acid present in a liquid phase P
JP7384519B2 (ja) 液相pに存在するアクリル酸の望ましくないラジカル重合を抑制するための方法
JP2002275125A (ja) (メタ)アクリル酸溶液の蒸留方法
JP2023519280A (ja) 液相pに存在するアクリル酸の望ましくないフリーラジカル重合を抑制する方法
JP4361995B2 (ja) アクリル酸の精製方法
US7705181B2 (en) Process for removing methacrylic acid from liquid phase comprising acrylic acid as a main constituent and target product, and methacrylic acid as a secondary component
JPS61218556A (ja) アクリル酸の精製方法
JP6799581B2 (ja) モノマー生成で使用するための材料の不活性度を決定する方法
KR20070107170A (ko) 표적 생성물 외에 주성분으로서 아크릴산, 및 부성분으로서메타크롤레인을 함유하는 액상으로부터의 메타크롤레인의분리 방법
US20060281947A1 (en) (Meth) acrylic acid composition and method for producing the same
JPH11269121A (ja) アクリル酸の重合防止方法
JP3997782B2 (ja) (メタ)アクリル酸の製造方法
JP4581395B2 (ja) (メタ)アクリル酸の精製方法および(メタ)アクリル酸エステルの製造方法
JP2014508738A (ja) (メタ)アクリル酸製造方法における装置ファウリングの低減方法
JP6799582B2 (ja) モノマー生成で使用するための材料の不活性度を決定する方法
KR20070113265A (ko) 주성분 및 표적 생성물로서 아크릴산, 및 2차 성분으로서메타크릴산을 함유하는 액상으로부터의 메타크릴산의 제거방법
EP2970084B1 (en) Process for purifying (meth)acrylic acid
JPS60252446A (ja) メタクリル酸の精製方法
JPH05255178A (ja) α,β−モノエチレン性不飽和カルボン酸の粗酸の精製法
RU2430906C2 (ru) Способ выделения метакриловой кислоты из жидкой фазы, содержащей акриловую кислоту в качестве основного компонента и целевого продукта, а также метакриловую кислоту в качестве побочного компонента
RU2430908C2 (ru) Способ выделения метакролеина из акриловой кислоты, представляющей собой основную компоненту и целевой продукт, и из жидкой фазы, содержащей метакролеин в качестве побочной компоненты
JPS63162652A (ja) メタクリル酸の精製方法
JP2005162743A (ja) 精製(メタ)アクリル酸の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231102

R150 Certificate of patent or registration of utility model

Ref document number: 7384519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150