JP2020124030A - パワー半導体モジュールおよびそれを用いた電力変換装置 - Google Patents

パワー半導体モジュールおよびそれを用いた電力変換装置 Download PDF

Info

Publication number
JP2020124030A
JP2020124030A JP2019013947A JP2019013947A JP2020124030A JP 2020124030 A JP2020124030 A JP 2020124030A JP 2019013947 A JP2019013947 A JP 2019013947A JP 2019013947 A JP2019013947 A JP 2019013947A JP 2020124030 A JP2020124030 A JP 2020124030A
Authority
JP
Japan
Prior art keywords
main electrode
wiring pattern
conductor
semiconductor module
power semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019013947A
Other languages
English (en)
Other versions
JP6962945B2 (ja
Inventor
大介 五十嵐
Daisuke Igarashi
大介 五十嵐
徹 増田
Toru Masuda
徹 増田
早川 誠一
Seiichi Hayakawa
誠一 早川
高柳 雄治
Yuji Takayanagi
雄治 高柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Power Semiconductor Device Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Power Semiconductor Device Ltd filed Critical Hitachi Power Semiconductor Device Ltd
Priority to JP2019013947A priority Critical patent/JP6962945B2/ja
Priority to DE112019006529.7T priority patent/DE112019006529T5/de
Priority to PCT/JP2019/040229 priority patent/WO2020158057A1/ja
Publication of JP2020124030A publication Critical patent/JP2020124030A/ja
Application granted granted Critical
Publication of JP6962945B2 publication Critical patent/JP6962945B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Abstract

【課題】上下アーム間のLC共振によるゲート電圧振動の抑制と低損失化の両立が可能なハーフブリッジ回路を構成する2in1パワー半導体モジュールおよびそれを用いた電力変換装置を提供する。【解決手段】パワー半導体モジュールは、第一の主電極用配線パターン9と第三の主電極用配線パターン11との間のインピーダンス値と、第五の主電極用配線パターン13と第七の主電極用配線パターン15との間のインピーダンス値と、第六の主電極14と第八の主電極16との間のインピーダンス値のうち、最小のインピーダンス値よりも、第二の主電極10と第四の主電極12との間のインピーダンス値が大きい。【選択図】図1

Description

本発明は、パワー半導体モジュールおよびそれを用いた電力変換装置に関する。
電力変換装置は、電力の交流−直流変換、直流−交流変換あるいは交流電力の周波数変換や直流電力の電圧変換などの機能を備える。このような変換機能を果たすために、電力変換装置は、スイッチング機能を備えたパワー半導体モジュールのON、OFF動作により電力を変換する電力変換回路を備える。
電力変換装置に用いられるパワー半導体モジュールは、一般的に、放熱用の金属ベースの上に、配線パターンを形成した絶縁基板をはんだ等で接合し、その絶縁基板の配線パターンの上に複数のスイッチング素子(半導体素子)を並列接続することで構成される。
絶縁基板は、大型化すると熱による反りの問題が発生するためサイズに限界がある。そのため、大電力用パワー半導体モジュールでは複数のスイッチング素子(半導体素子)を搭載した絶縁基板をさらに並列接続することで、電流定格を増加させている。
本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1では「1in1モジュールにおいて並列接続したスイッチング素子の容量と配線インダクタンス間のLC共振の対策として、スイッチング素子の主電極間を導体部材により電気的に接続する方法」が提案されている。ここで、1in1モジュールとは、1つのパワー本導体モジュール内に、1つのスイッチング素子もしくは逆並列接続された1つのスイッチング素子と1つのダイオードを搭載したものである。
一方、電力変換回路のさらなる小形化のために、例えば、特許文献2に開示されているような2in1モジュールの要求が高まっている。2in1モジュールは、1つのモジュールでハーフブリッジ回路を構成したもので、絶縁基板をモジュール内部で2直列接続し、一方を上アーム、他方を下アームとしたものである。
特許第5637944号公報 特開2009−278772号公報
上記特許文献2のような2in1モジュールは、1in1モジュールと比較して、上下アーム間の配線距離を短縮できるため、小形化や低インダクタンス化等の利点がある。
しかしながら、上下アーム間のインダクタンスが小さくなると上下アーム間のLC共振による共振電流Irが発生しやすくなり、その共振電流Irがゲート配線に通流するとゲート電圧振動が発生してしまう。このゲート電圧振動はスイッチング素子の内蔵ゲート抵抗値を高めることでダンピング抵抗の強化により抑制できるが、内蔵ゲート抵抗値を高めるとスイッチング速度が遅くなり、その結果、スイッチング損失が増加する問題がある。
そこで、本発明の目的は、ハーフブリッジ回路を構成する2in1パワー半導体モジュールにおいて、上下アーム間のLC共振によるゲート電圧振動の抑制と低損失化の両立が可能なパワー半導体モジュールおよびそれを用いた電力変換装置を提供することにある。
上記課題を解決するために、本発明は、第一の絶縁基板上に搭載され、第一の主電極と第二の主電極とゲート電極を備える第一のスイッチング素子と、第二の絶縁基板上に搭載され、第三の主電極と第四の主電極とゲート電極を備える第二のスイッチング素子と、第三の絶縁基板上に搭載され、第五の主電極と第六の主電極とゲート電極を備える第三のスイッチング素子と、第四の絶縁基板上に搭載され、第七の主電極と第八の主電極とゲート電極を備える第四のスイッチング素子と、前記第一の主電極と電気的に接続される第一の主端子と、前記第二の主電極と電気的に接続される第二の主端子と、前記第三の主電極と電気的に接続される第三の主端子と、前記第四の主電極と電気的に接続される第四の主端子と、前記第五の主電極と電気的に接続される第五の主端子と、前記第七の主電極と電気的に接続される第六の主端子と、前記第一のスイッチング素子のゲート電極と電気的に接続された第一の配線パターンと、前記第二のスイッチング素子のゲート電極に電気的に接続された第二の配線パターンと、前記第三のスイッチング素子のゲート電極と電気的に接続された第三の配線パターンと、前記第四のスイッチング素子のゲート電極に電気的に接続された第四の配線パターンと、前記第一のスイッチング素子のゲート電極と前記第一の配線パターンを電気的に接続する第一の導体と、前記第二のスイッチング素子のゲート電極と前記第二の配線パターンを電気的に接続する第二の導体と、前記第三のスイッチング素子のゲート電極と前記第三の配線パターンを電気的に接続する第三の導体と、前記第四のスイッチング素子のゲート電極に前記第四の配線パターンを電気的に接続する第四の導体と、前記第二の主電極に電気的に接続された第五の配線パターンと、前記第四の主電極に電気的に接続された第六の配線パターンと、前記第六の主電極に電気的に接続された第七の配線パターンと、前記第八の主電極に電気的に接続された第八の配線パターンと、前記第二の主電極と前記第五の配線パターンを電気的に接続する第五の導体と、前記第四の主電極と前記第六の配線パターンを電気的に接続する第六の導体と、前記第六の主電極と前記第七の配線パターンを電気的に接続する第七の導体と、
前記第八の主電極と前記第八の配線パターンを電気的に接続する第八の導体と、前記第一の配線パターンおよび前記第二の配線パターンと電気的に接続された第一の補助端子と、前記第三の配線パターンおよび前記第四の配線パターンと電気的に接続された第二の補助端子と、前記第五の配線パターンおよび前記第六の配線パターンと電気的に接続された第三の補助端子と、前記第七の配線パターンおよび前記第八の配線パターンと電気的に接続された第四の補助端子と、前記第一の主電極と前記第六の主電極を電気的に接続する第九の導体と、前記第三の主電極と前記第八の主電極を電気的に接続する第十の導体と、を備えたパワー半導体モジュールにおいて、前記第一の主電極と前記第三の主電極との間のインピーダンス値と、前記第五の主電極と前記第七の主電極との間のインピーダンス値と、前記第六の主電極と前記第八の主電極との間のインピーダンス値のうち、最小のインピーダンス値よりも、前記第二の主電極と前記第四の主電極との間のインピーダンス値が大きいこと特徴とする。
また、本発明は、上記のパワー半導体モジュールを搭載したことを特徴とする電力変換装置である。
本発明によれば、ハーフブリッジ回路を構成する2in1パワー半導体モジュールにおいて、上下アーム間のLC共振によるゲート電圧振動の抑制と低損失化を両立することができる。
これにより、高効率な電力変換装置を提供することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の第一の実施形態の構成を示した平面図 本発明の第一の実施形態の等価回路図および外部回路との接続例 LC共振電流Ir経路を示した図 従来技術の構成を示した平面図 従来技術によるパワー半導体モジュールの等価回路図 従来技術と本発明の第一の実施形態における2回目ターンオン時の波形のシミュレーション結果を比較した図 本発明の第二の実施形態の構成を示した平面図 本発明の第三の実施形態の構成を示した平面図 本発明の第三の実施形態の等価回路図とLC共振電流Ir経路を示した図 従来技術と本発明の第三の実施形態における2回目ターンオン時の波形のシミュレーション結果を比較した図 本発明の第四の実施形態の構成を示した平面図 本発明の第四の実施形態の等価回路図および外部回路との接続例 本発明の第五の実施形態の構成を示した平面図 本発明の第五の実施形態の等価回路図および外部回路との接続例 本発明の第六の実施形態の構成を示した平面図
以下、図面を用いて本発明の実施例を説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。また、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
本発明の第一の実施形態を図1から図6に基づき詳細に説明する。まず、図1で本発明の第一の実施形態の構成について説明する。次に、図2で本発明の第一の実施形態の等価回路図とその動作(作用)を説明する。そして、図3で本発明の第一の実施形態によるゲート電圧振動の抑制効果について説明する。また、図4と図5で上下アームのゲート配線に対して平等に(均等に)ゲート電圧振動の対策を講じた構成とその等価回路を説明し、図6で図4や図5で示した構成と本発明の第一の実施形態とのゲート電圧波形を比較する。
図1は本発明の第一の実施形態の構成を示した平面図である。図1を用いて本発明の第一の実施形態の構成について説明する。第一の実施形態では、放熱用金属板100上に第一から第四の絶縁基板4枚(1,2,3,4)と、第一と第二の絶縁子基板2枚(98,99)が配置される。そして、底面の放熱用金属板部分以外を樹脂筐体101で囲っている。樹脂筐体101と放熱用金属板100で囲われたパワー半導体モジュール内は、ゲルや硬質樹脂などの絶縁材が充填され、内部の絶縁性を保っている。
第一から第四の絶縁基板(1,2,3,4)には、第一から第四のスイッチング素子(5,6,7,8)と第一から第四のダイオード(72,73,74,75)が一つずつ搭載されている。スイッチング素子は2つの主電極と1つのゲート電極を備えている。ダイオードはカソード電極とアノード電極を備えている。
第一から第四のスイッチング素子(5,6,7,8)の第一の主電極、第三の主電極、第五の主電極、第七の主電極は、はんだ接合や金属焼結接合などによりそれぞれ、第一の主電極用配線パターン9、第三の主電極用配線パターン11、第五の主電極用配線パターン13、第七の主電極用配線パターン15と電気的に接続される。
なお、以後説明する配線パターンも含め、配線パターンの材料には銅やアルミニウムなどの導電材料を用いる。また、以後説明する「接続」とは、特に断りがなければ全て電気的な接続を意味する。
第一から第四のダイオード(72,73,74,75)のカソード電極も同様にそれぞれ、第一の主電極用配線パターン9、第三の主電極用配線パターン11、第五の主電極用配線パターン13、第七の主電極用配線パターン15と接続される。
第一から第四のスイッチング素子(5,6,7,8)の第二の主電極10、第四の主電極12、第六の主電極14、第八の主電極16は、第一から第四のダイオードのアノード電極(76,77,78,79)と配線(80,81,82,83)により接続される。つまり、各絶縁基板において、スイッチング素子とダイオードは並列接続される。
なお、以後説明する配線や導体も含め、配線や導体にはアルミニウムワイヤ、銅ワイヤ、銅リードなどを用いる。また、スイッチング素子には、Si−IGBT(Insulated Gate Bipolar Transistor)やSiC−MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などを用いる。ダイオードには、Si−pnダイオードやSiC−SBD(Schottky Barrier Diode)などを用いる。
第一から第四のスイッチング素子のゲート電極(17,18,19,20)は、第一から第四の導体(43,44,45,46)により、第一から第四の配線パターン(27,28,29,30)と接続される。
第一の配線パターン27と第二の配線パターン28は、配線56と配線57により第一の下アーム共通配線パターン35に接続される。第一の下アーム共通配線パターン35は、配線64により第一の補助端子39と接続され、樹脂筐体101の外部へと引き出される。
第三の配線パターン29と第四の配線パターン30も同様に、配線58と配線59により第一の上アーム共通配線パターン37に接続される。第一の上アーム共通配線パターン37も、配線65により第二の補助端子40と接続され、樹脂筐体101の外部へと引き出される。
第一から第四のスイッチング素子の第二の主電極10、第四の主電極12、第六の主電極14、第八の主電極16は、第五から第八の導体(47,48,49,50)により、第五から第八の配線パターン(31,32,33,34)と電気的に接続される。
第五の配線パターン31と第六の配線パターン32は、配線60と配線61により第二の下アーム共通配線パターン36に電気的に接続される。第二の下アーム共通配線パターン36は、配線66により第三の補助端子41と接続され、樹脂筐体101の外部へと引き出される。
第七の配線パターン33と第八の配線パターン34も同様に、配線62と配線63により第二の上アーム共通配線パターン38に電気的に接続される。第二の上アーム共通配線パターン38も、配線67により第四の補助端子42と接続され、樹脂筐体101の外部へと引き出される。
第五の主電極用配線パターン13と第七の主電極用配線パターン15は、配線70と配線71により、それぞれ第五の主端子25と第六の主端子26と接続され、樹脂筐体101の外部へと引き出される。
第一の主電極用配線パターン9と第三の主電極用配線パターン11はそれぞれ接合面114と接合面115で、超音波金属接合により第一の主端子21と第三の主端子23と接続され、樹脂筐体101の外部へと引き出される。
第二の主電極10と第四の主電極12は配線68と配線69によりそれぞれ第二の主端子22と第四の主端子24と接続され、樹脂筐体101の外部へと引き出される。
原理については図3を用いて後述するが、実施例1では、スイッチング時のゲート電圧振動を抑制するために、第六の主電極14と第八の主電極16を第十二の導体54で接続する。
図2に本発明の第一の実施形態の等価回路図および外部回路との接続例を示す。まず、図2の回路の構成を説明して、次に図2を用いて本発明の第一の実施形態の動作例について説明する。なお、本発明はスイッチング時の高周波現象を対象にしているため、図2の等価回路図では配線、導体、配線パターンをすべてインダクタンスの回路記号で表記する。
本発明によるパワー半導体モジュールでは、第五の主端子25と第六の主端子26の間、第一の主端子21と第三の主端子23の間、第二の主端子22と第四の主端子24の間は、それぞれ外部の配線(87,88,94,95,91,92)で接続されて使用することを想定している。
つまり、第一の絶縁基板1に搭載された第一のスイッチング素子5および第一のダイオード72と、第二の絶縁基板2に搭載された第二のスイッチング素子6および第二のダイオード73は並列接続される。また、第三の絶縁基板3に搭載された第三のスイッチング素子7および第三のダイオード74と、第四の絶縁基板4に搭載された第四のスイッチング素子8および第四のダイオード75も並列接続される。
スイッチング素子とダイオードをそれぞれ複数並列接続することで、パワー半導体モジュールの定格電流容量を増加させることができる。しかし、上述したように、熱による反りの問題から絶縁基板のサイズには限界があるため、本発明では、スイッチング素子とダイオードを搭載した絶縁基板を並列接続することで定格電流容量を増加している。
第一の絶縁基板1と第二の絶縁基板2に搭載されたスイッチング素子とダイオードの並列回路と、第三の絶縁基板3と第四の絶縁基板4に搭載されたスイッチング素子とダイオードの並列回路は、第九の導体51と第十の導体52によって直列接続される。
このように、本発明はパワー半導体モジュール内部で2つのスイッチング素子が直列接続され、その高電位端子(第五の主端子25と第六の主端子26)と中間電位端子(第一の主端子21と第三の主端子23)と低電位端子(第二の主端子22と第四の主端子24)の3つの電位の端子を設けて、ハーフブリッジ回路を構成した2in1モジュール144である。
上述したように、2in1モジュールは、1in1モジュールと比較して、上下アーム間の配線接続を短縮できるため、小形化や低インダクタンス化等の利点がある。
また、図示していないが、通流する電流の極性が逆である高電位端子(第五の主端子25と第六の主端子26)と低電位端子(第二の主端子22と第四の主端子24)を平行、且つ近接した配置とすることで、両者の間の相互インダクタンスを増加することができる。その結果、高電位端子(第五の主端子25と第六の主端子26)と低電位端子(第二の主端子22と第四の主端子24)の配線インダクタンスを低減でき、2in1モジュールの配線インダクタンスをさらに低減することできる。
高電位端子(第五の主端子25と第六の主端子26)と中間電位端子(第一の主端子21と第三の主端子23)間に接続された第三のスイッチング素子7、第四のスイッチング素子8、第三のダイオード74および第四のダイオード75を上アーム、中間電位端子(第一の主端子21と第三の主端子23)と低電位端子(第二の主端子22と第四の主端子24)間に接続された第一のスイッチング素子5、第二のスイッチング素子6、第一のダイオード72および第二のダイオード73を下アームと呼ぶ。
図2では、一例として中間電位端子(第一の主端子21と第三の主端子23)と低電位端子(第二の主端子22と第四の主端子24)の間に配線(91,92,94,95)を介してインダクタンス負荷96を接続した上アーム駆動のハーフブリッジ回路の構成を示している。
高電位端子(第五の主端子25と第六の主端子26)と低電位端子(第二の主端子22と第四の主端子24)の間には配線(87,88,89,91,92,93)を介してコンデンサ85が接続される。また、コンデンサ85には配線86と配線90を介して、直流電源84が接続される。
続いて、図1および図2を用いて、本発明の第一の実施形態の動作(作用)について、電力変換回路に搭載された際に繰り返されるスイッチング動作順を例に説明する。まず、初期状態は上下アームのスイッチング素子は全てOFFの状態である。上アームの第三のスイッチング素子7と第四のスイッチング素子8は並列動作させるために、第二の補助端子40と第四の補助端子42を介して共通のゲート駆動電源102に接続される。また、下アームも同様に第一のスイッチング素子5と第二のスイッチング素子6は並列動作させるために、第一の補助端子39と第三の補助端子41を介して共通のゲート駆動電源102に接続される。
ゲート駆動電源102から負電圧を補助端子に印加することで、スイッチング素子をOFFの状態に制御できる。例えばスイッチング素子がIGBTの場合、OFF時に−15V程度を補助端子に印加する。図2の回路において、上下アームのスイッチング素子が全てOFFの状態の時には直流電源電圧Vccは上アームに印加され、インダクタンス負荷96には直流電源電圧Vccは印加されないため、電流は流れない。
次に、初期状態から上アームのスイッチング素子をON状態(1回目のターンオン)にする。ゲート駆動電源102から正電圧を補助端子に印加することで、スイッチング素子をONの状態に制御できる。例えばスイッチング素子がIGBTの場合、ON時に+15V程度のゲート電圧を補助端子に印加する。
上アームのスイッチング素子がON状態となると、インダクタンス値がLload[H]のインダクタンス負荷96に直流電源電圧Vccが印加され、Vcc/Lloadの傾きで増加する電流が上アームのスイッチング素子を介してインダクタンス負荷96に通流する。
そして、上アームのスイッチング素子をON状態からOFF状態にすると、上アームのスイッチング素子の電流Ic_Hは遮断され、電流はインダクタンス負荷96と下アームのダイオードの間の経路に転流する。そこから、再び上アームのスイッチング素子をOFF状態からON状態(2回目のターンオン)にすると、電流は上アームのスイッチング素子とインダクタンス負荷96の間の経路に転流する。
この2回目のターンオン時を例に、ゲート電圧振動の発生原理を説明する。2回目のターンオン時に理想的には上アームの第三のスイッチング素子7と第四のスイッチング素子8には電流が均等に流れる。しかし、スイッチング素子間の特性ばらつきやゲート配線インピーダンスのばらつき等で第三のスイッチング素子7と第四のスイッチング素子8の電流が不均等になると、並列接続された絶縁基板間で電位差が生じ、電位差を減らす方向に電流が流れる。このときに下アームのスイッチング素子とダイオードの空乏層容量と回路の配線インダクタンスとの間でLC共振が発生することがある。特に、Si(シリコン)デバイスと比較して空乏層容量の大きいSiC(炭化シリコン)デバイスにおいて、当該LC共振が発生しやすい。
図3にLC共振電流Ir経路を示す。図3に示すように、下アームのスイッチング素子とダイオードを境に逆相の共振電流Irが流れる。このとき、駆動側の上アームのゲート配線である3GL−4GL間(3GL:第三のスイッチング素子7のゲート電極19から第一の上アーム共通配線パターン37と配線65の接続点までの配線、4GL:第四のスイッチング素子8のゲート電極20から第一の上アーム共通配線パターン37と配線65の接続点までの配線)と3EL−4EL間(3EL:第六の主電極14から第二の上アーム共通配線パターン38と配線67の接続点までの配線、4EL: 第八の主電極16から第二の上アーム共通配線パターン38と配線67の接続点までの配線)に共振電流Irが流れると、上アームのゲート電圧Vge_Hが振動する。
ON状態の上アームスイッチング素子はゲート電圧で制御される電流源として動作するため、上アームゲート電圧Vge_Hが振動すると上アームスイッチング素子の電流もそれと同期して振動し、並列接続された絶縁基板間での電位差がさらに拡大する自励振動に至る。自励振動に至ると上アームゲート電圧Vge_H振動がさらに増加し、ゲート酸化膜が絶縁破壊に至る恐れがある。
また、動作状態によって変動しやすい中点電位を基準電位としている上アームゲート電圧は下アームゲート電圧より振動しやすく、本課題の解決には上アームのゲート電圧振動抑制がボトルネックとなっていた。
そこで、本発明の第一の実施形態では、この自励振動による上アームゲート電圧振動を抑制するために、第六の主電極14と第八の主電極16を第十二の導体54で接続する。第十二の導体54の配線インダクタンスは、上アームのゲート配線である3GL−4GL間の配線インダクタンスや3EL−4EL間の配線インダクタンスより小さい。これは、後述する第十三の導体55の配線インダクタンスも同様である。そして、第十二の導体54はそれらの上アームのゲート配線と並列接続されるため、共振電流Irをバイパスし、上アームのゲート配線に流れる共振電流Irを低減する効果がある。
そのため、第十二の導体54の接続により、自励振動による上アームゲート電圧振動を抑制することができる。また、第五の主電極と第七の主電極との間や実施例2で詳細は後述する第一の主電極と第三の主電極との間を導体で接続しても実施例1と同様の効果が得られる。
一方、図4の平面図と図5の等価回路図に示すように、第六の主電極14と第八の主電極16を第十二の導体54で接続したことに加えて、第二の主電極10と第四の主電極12を第十四の導体105で接続して、上下アームのゲート配線に対して平等に(均等に)ゲート電圧振動の対策を講じることも考えられる。しかし、内部を低インダクタンス化した2in1モジュールでは上下アームトータルの配線インダクタンスが10nH程度と小さく、前述のLC共振による上下アーム間の共振電流Irが発生しやすい。そのため、図4や図5に示した構成ではゲート電圧振動の抑制が不十分だった。
そこで、本発明では、問題となる上アームゲート電圧振動の抑制を優先して対策する構成とした。具体的には、第十二の導体54は接続するが、第十四の導体105は接続しない構成とした。
その理由を以下で説明する。図3に示すように、当該LC共振電流Irは下アームのスイッチング素子とダイオードを境に逆相で流れるため、第二の主電極10と第四の主電極12を第十四の導体105は上アームのゲート配線である3GL−4GLの経路と3EL−4ELの経路と並列ではない。このため、上アームのゲート配線に対して、第十四の導体105は共振電流Irをバイパスする効果はない。
一方、第十四の導体105により共振経路のインピーダンスは減少し、上アームのゲート配線を流れる共振電流Irは増加してしまう。そのため、上アームゲート電圧振動抑制のためには第十四の導体105は接続しないほうがよい。
本発明の構成を主電極間のインピーダンス値の大小関係で記述すると、第一の主電極と記第三の主電極との間のインピーダンス値と、第五の主電極と第七の主電極との間のインピーダンス値と、第六の主電極14と第八の主電極16との間のインピーダンス値のうち、最小のインピーダンス値よりも、第二の主電極10と第四の主電極12との間のインピーダンス値を大きくするとよい、と言える。
また、第二の主電極10と第四の主電極12との間のインピーダンス値は、第六の主電極14から第七の導体49、第七の配線パターン33、第七の配線パターン33と第八の配線パターン34との間の配線と前記第四の補助端子42との接続点、第八の配線パターン34、第八の導体50を通り、第八の主電極16に至る経路のインピーダンス値以上とするとよい。
このとき、各インピーダンス値は、外部配線(87,88,91,92,94,95)が接続されていない状態でのインピーダンス値のことを指している。また、当該インピーダンス値は、インピーダンス絶対値つまり、実部と虚部の自乗和の平方根から計算される値のことを指している。そして、当該インピーダンス値は、LC共振周波数でのインピーダンス値を指している。
第一の主電極と第三の主電極との間のインピーダンス値は、第九の導体51、第十の導体52、第一の導体43、第二の導体44、第五の導体47、第六の導体48を切断した状態で、第一の主電極用配線パターン9と第三の主電極用配線パターン11間のインピーダンス値をインピーダンスアナライザやLCRメータなどの測定器で測定する、もしくは計算式や計算ツールで計算することで得られる。
第五の主電極と第七の主電極との間のインピーダンス値は、第九の導体51、第十の導体52、第三の導体45、第四の導体46、第七の導体49、第八の導体50を切断した状態で、第五の主電極用配線パターン13と第七の主電極用配線パターン15間のインピーダンス値をインピーダンスアナライザやLCRメータなどの測定器で測定する、もしくは計算式や計算ツールで計算することで得られる。
第六の主電極14と第八の主電極16との間のインピーダンス値は、第九の導体51、第十の導体52、第三の導体45、第四の導体46を切断した状態で、第六の主電極14と第八の主電極16間のインピーダンス値をインピーダンスアナライザやLCRメータなどの測定器で測定する、もしくは計算式や計算ツールで計算することで得られる。
第二の主電極10と第四の主電極12との間のインピーダンス値は、第九の導体51、第十の導体52、第一の導体43、第二の導体44を切断した状態で、第二の主電極10と第四の主電極12間のインピーダンス値をインピーダンスアナライザやLCRメータなどの測定器で測定する、もしくは計算式や計算ツールで計算することで得られる。
第六の主電極14から第七の導体49、第七の配線パターン33、第七の配線パターン33と第八の配線パターン34との間の配線と前記第四の補助端子42との接続点、第八の配線パターン34、第八の導体50を通り、第八の主電極16に至る経路のインピーダンス値の測定もしくは計算には、まず、第九の導体51、第十の導体52、第三の導体45、第四の導体46を切断する。次に、第六の主電極14から第七の導体49、第七の配線パターン33、第七の配線パターン33と第八の配線パターン34との間の配線と前記第四の補助端子42との接続点、第八の配線パターン34、第八の導体50を通り、第八の主電極16に至る経路以外の第六の主電極14と第八の主電極16を接続する配線を切断する。その後、第六の主電極14と第八の主電極16間のインピーダンス値をインピーダンスアナライザやLCRメータなどの測定器で測定する、もしくは計算式や計算ツールで計算することで得られる。
図6に図4と図5に示した構成と図1と図2に示した本発明の第一の実施形態における2回目のターンオン時の波形のシミュレーション結果を比較した図を示す。従来技術(図4と図5に示した構成)では、自励振動による上アームゲート電圧振動Vge_Hが大きく、上アームスイッチング素子電流Ic_Hや上アームスイッチング素子電圧Vce_Hも大きく振動していることがわかる。
それに対して、本発明の実施形態1では自励振動による上アームゲート電圧振動Vge_Hを抑制し、上アームスイッチング素子電流Ic_Hや上アームスイッチング素子電圧Vce_Hの振動も抑制できていることがわかる。
ここで、ゲート電圧振動の抑制とは、IGBTであればゲート電圧に振動が重畳してもゲート電圧を+20Vから−20Vの範囲内に抑えることを指す。
なお、第十二の導体54は、できるだけ低インピーダンス化したほうが、より共振電流Irのバイパス効果が高いため、短距離の複数導体によって実現することが好ましい。また、第十二の導体54は、アルミニウムワイヤや銅ワイヤ、銅リード等の電極間を電気的に接続できる導体であればよい。
図7を用いて本発明の第二の実施形態の構成を説明する。図7は本発明の第二の実施形態の構成を示した平面図である。図1と図7の違いは、第十二の導体54と第十三の導体55の有無のみである。本発明の第二の実施形態では、第一の主電極用配線パターン9と第三の主電極用配線パターン11間を第十三の導体55で接続する。第一の主電極用配線パターン9と第三の主電極用配線パターン11の電位は、第六の主電極14と第八の主電極16と同様に本発明の2in1モジュールの中点電位である。そのため、図7の構成でも図1の第六の主電極14と第八の主電極16を第十二の導体54で接続した構成と同等のゲート電圧振動抑制効果を得ることができる。
実施例1と比較して、実施例2は接続する主電極間の距離が短いため、主電極間を接続する導体の配線インダクタンスを小さくすることができる。また、接続する主電極の面積も実施例1より実施例2の方が広いため導体の並列数や太さを増加させて、より導体の配線インダクタンスを小さくし易い。前述の通り、主電極間を接続する導体はできるだけ低インピーダンス化したほうが、より共振電流Irのバイパス効果が高い。
図8から図10を用いて本発明の第三の実施形態の構成を説明する。図8は本発明の第三の実施形態の構成を示した平面図である。図1と図8の違いは、第十二の導体54と抵抗器106の有無のみである。本発明の第三の実施形態では、第二の主電極10から第五の導体47、第五の配線パターン31、第五の配線パターン31と第六の配線パターン32の間の配線と第三の補助端子41との接続点、第六の配線パターン32、第六の導体48を通り、第四の主電極12に至る経路の間に抵抗器106を接続する。抵抗器106の接続の目的は、第二の主電極10と第四の主電極12の間のインピーダンス値を高め、前記LC共振電流Irを抑制することである。
図9に本発明の第三の実施形態の等価回路図とLC共振電流Ir経路を示す。前述の図6で示したように、上アーム駆動時において、上アームのゲート配線である3GL−4GL間の経路と3EL−4EL間の経路と並列とならない第二の主電極10と第四の主電極12の間のインピーダンス値を減少させると上アームゲート電圧振動は増加してしまう。
そこで、本実施例では、図8に示すように、逆に第二の主電極10と第四の主電極12の間に抵抗器106を接続し、インピーダンス値を増加させることで上アームゲート電圧振動を抑制する。図9に示すように抵抗器106はLC共振電流Ir経路に挿入されるため、LC共振電流Irを低減し、上アームのゲート配線に流れる共振電流Irを低減することで上アームゲート電圧振動を抑制できる。
図10に図4と図5で示した構成と本発明の第三の実施形態における2回目ターンオン時の波形のシミュレーション結果を比較した図を示す。本発明の第三の実施形態においても、従来技術(図4と図5で示した構成)と比較して、自励振動による上アームゲート電圧振動Vge_Hを抑制し、上アームスイッチング素子電流Ic_Hや上アームスイッチング素子電圧Vce_Hの振動も抑制できていることがわかる。
なお、抵抗器106によって増加したゲート抵抗値分は、図示しないスイッチング素子の内蔵ゲート抵抗値やパワー半導体モジュールの外付けゲート抵抗値を下げることで、抵抗器106の挿入によるスイッチング損失の増加なしにゲート電圧振動を抑制できる。
また、抵抗器106の代わりにインダクタを挿入したり、第五の配線パターン31と第六の配線パターン32の間の配線長を意図的に長くするなどして第二の主電極10と第四の主電極12の間のインピーダンス値を増加させてもよい。
実施例3では、主電極間を接続する導体が不要なため、絶縁基板上のスイッチング素子やダイオードなどの実装レイアウトの影響を受けずに実施することができる。
図11と図12を用いて本発明の第四の実施形態の構成を説明する。図11に本発明の第四の実施形態の構成を示した平面図を示す。本発明の第四の実施形態は、第一の実施形態と第二の実施形態を組み合わせた構成である。
但し、第十三の導体55の並列数を増加し、導体の配線インダクタンスの低減を図っている。図11では3本の第十三の導体55を設けた例を示している。また、第十二の導体54を用いて直接第六の主電極14と第八の主電極16との間を接続せずに、配線107、配線パターン109、配線パターン110、配線108を介して接続した。
これは実装上、第六の主電極14と第八の主電極16の間に構造物があり、直接第六の主電極14と第八の主電極16の間を第十二の導体54で接続することができない場合を想定した構成である。
図12に本発明の第四の実施形態の等価回路図および外部回路との接続例を示す。本発明の第四の実施形態では、上アームのゲート配線である3GL−4GL間の経路と3EL−4EL間の経路と並列に第十二の導体54と第十三の導体55による2つの経路を追加した。それにより、それぞれの導体を単独で接続した場合と比較して、よりアームのゲート配線に流れる共振電流Irを低減し、上アームゲート電圧振動の抑制効果を高めることができる。
本発明によるパワー半導体モジュールの製作工数を極力減らすために、主電極間の接続導体は最小限とすることが望ましいが、図6、図10のシミュレーション条件と比較してよりゲート電圧振動が発生しやすい条件では、第四の実施形態のように主電極間の接続導体を増加させることで、対策するのが効果的である。
図13と図14を用いて本発明の第五の実施形態の構成を説明する。図13に本発明の第五の実施形態の構成を示した平面図を示す。本発明の第五の実施形態は、第三の実施形態と第四の実施形態を組み合わせた構成である。図13は図11に抵抗器106を追加した図である。前述の通り、抵抗器106を追加することで、第二の主電極10と第四の主電極12の間のインピーダンス値を高めることができる。
図14に本発明の第五の実施形態の等価回路図および外部回路との接続例を示す。抵抗器106を追加することにより、第四の実施形態と比較してさらにLC共振電流Irを低減し、上アームのゲート配線に流れる共振電流Irを低減することで上アームゲート電圧振動の抑制効果を高めることができる。
なお、導体による主電極間の接続や抵抗器の挿入についての全ての組み合わせについての説明は省略するが、第一の実施形態から第三の実施形態の3つの実施形態の中から1つ実施形態を選択した組合せ、2つ実施形態を選択した組合せ、3つ実施形態を選択した組合せの全てにおいてゲート電圧振動を抑制する効果が得られるのは言うまでもない。
図15に本発明の第六の実施形態の構成を示す。本発明の第六の実施形態は、本発明によるパワー半導体モジュール144を搭載した電力変換システム(電力変換装置)152である。図15では、直流電源84を電源として3台の本発明によるパワー半導体モジュール144で三相インバータを構成している。
本発明によるパワー半導体モジュール144の中点電位端子は、負荷であるモータ146とそれぞれ接続させる。制御装置145は、電流センサ(147,148,149)により検出するモータ146の三相電流(Iu,Iv,Iw)と速度検出器150により検出するモータ146の回転速度(ω)の情報を元に3台のパワー半導体モジュール144に印加するゲート電圧値を演算し、各パワー半導体モジュール144の補助端子へ出力する。
本発明によるパワー半導体モジュール144は、ゲート抵抗値の増加なしにゲート電圧振動を抑制できるため、従来技術と比較してパワー半導体モジュールのスイッチング損失を低減することができる。従って、本発明によるパワー半導体モジュール144を電力変換システム(電力変換装置)152の電力変換回路151に搭載することで、従来と比較してより高効率な電力変換システム(電力変換装置)を構成することができる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記の実施例は本発明に対する理解を助けるために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1…第一の絶縁基板
2…第二の絶縁基板
3…第三の絶縁基板
4…第四の絶縁基板
5…第一のスイッチング素子
6…第二のスイッチング素子
7…第三のスイッチング素子
8…第四のスイッチング素子
9…第一の主電極用配線パターン
10…第二の主電極
11…第三の主電極用配線パターン
12…第四の主電極
13…第五の主電極用配線パターン
14…第六の主電極
15…第七の主電極用配線パターン
16…第八の主電極
17…第一のスイッチング素子のゲート電極
18…第二のスイッチング素子のゲート電極
19…第三のスイッチング素子のゲート電極
20…第四のスイッチング素子のゲート電極
21…第一の主端子
22…第二の主端子
23…第三の主端子
24…第四の主端子
25…第五の主端子
26…第六の主端子
27…第一の配線パターン
28…第二の配線パターン
29…第三の配線パターン
30…第四の配線パターン
31…第五の配線パターン
32…第六の配線パターン
33…第七の配線パターン
34…第八の配線パターン
35…第一の下アーム共通配線パターン
36…第二の下アーム共通配線パターン
37…第一の上アーム共通配線パターン
38…第二の上アーム共通配線パターン
39…第一の補助端子
40…第二の補助端子
41…第三の補助端子
42…第四の補助端子
43…第一の導体
44…第二の導体
45…第三の導体
46…第四の導体
47…第五の導体
48…第六の導体
49…第七の導体
50…第八の導体
51…第九の導体
52…第十の導体
54…第十二の導体
55…第十三の導体
56…第一の配線パターン27と第一の下アーム共通配線パターン35との間の第一の配線
57…第二の配線パターン28と第一の下アーム共通配線パターン35との間の第二の配線
58…第三の配線パターン29と第一の上アーム共通配線パターン37との間の第一の配線
59…第四の配線パターン30と第一の上アーム共通配線パターン37との間の第二の配線
60…第五の配線パターン31と第二の下アーム共通配線パターン36との間の第一の配線
61…第六の配線パターン32と第二の下アーム共通配線パターン36との間の第二の配線
62…第七の配線パターン33と第二の上アーム共通配線パターン38との間の第一の配線
63…第八の配線パターン34と第二の上アーム共通配線パターン38との間の第二の配線
64…第一の下アーム共通配線パターン35と第一の補助端子39との間の配線
65…第一の上アーム共通配線パターン37と第二の補助端子40との間の配線
66…第二の下アーム共通配線パターン36と第三の補助端子41との間の配線
67…第二の上アーム共通配線パターン38と第四の補助端子42との間の配線
68…第二の主電極10と第二の主端子22との間の配線
69…第四の主電極12と第四の主端子24との間の配線
70…第五の主電極用配線パターン13と第五の主端子25との間の配線
71…第七の主電極用配線パターン15と第六の主端子26との間の配線
72…第一のダイオード
73…第二のダイオード
74…第三のダイオード
75…第四のダイオード
76…第一のダイオードのアノード電極
77…第二のダイオードのアノード電極
78…第三のダイオードのアノード電極
79…第四のダイオードのアノード電極
80…第二の主電極10と第一のダイオードのアノード電極76との間の配線
81…第四の主電極12と第二のダイオードのアノード電極77との間の配線
82…第六の主電極14と第三のダイオードのアノード電極78との間の配線
83…第八の主電極16と第四のダイオードのアノード電極79との間の配線
84…直流電源
85…コンデンサ
86…直流電源84とコンデンサ85の間の第一の配線
87…第五の主端子25と第六の主端子26の間の第一の配線
88…第五の主端子25と第六の主端子26の間の第二の配線
89…第五の主端子25と第六の主端子26の間の第一の配線87と第五の主端子25と第六の主端子26の間の第二の配線88の中点とコンデンサ85との間の配線
90…直流電源84とコンデンサ85の間の第二の配線
91…第二の主端子22と第四の主端子24の間の第一の配線
92…第二の主端子22と第四の主端子24の間の第二の配線
93…第二の主端子22と第四の主端子24の間の第一の配線91と第二の主端子22と第四の主端子24の間の第二の配線92の中点とコンデンサ85との間の配線
94…第一の主端子21と第三の主端子23の間の第一の配線
95…第一の主端子21と第三の主端子23の間の第二の配線
96…負荷インダクタンス(インダクタンス負荷)
98…第一の絶縁子基板
99…第二の絶縁子基板
100…放熱用金属板
101…樹脂筐体
102…ゲート駆動電源
103…ゲート配線インダクタンス
105…第十四の導体
106…抵抗器
107…配線
108…配線
109…配線パターン
110…配線パターン
111…第一の主電極と第二の主電極10間の静電容量
112…第一の主電極と第一のスイッチング素子のゲート電極17間の静電容量
113…第一のスイッチング素子のゲート電極17と第二の主電極10間の静電容量
114…接合面
115…接合面
121…第三の主電極と第四の主電極12間の静電容量
122…第三の主電極と第二のスイッチング素子のゲート電極18間の静電容量
123…第三のスイッチング素子のゲート電極19と第四の主電極12間の静電容量
131…第五の主電極と第六の主電極14間の静電容量
132…第五の主電極と第三のスイッチング素子のゲート電極19間の静電容量
133…第三のスイッチング素子のゲート電極19と第六の主電極14間の静電容量
141…第七の主電極と第八の主電極16間の静電容量
142…第七の主電極と第四のスイッチング素子のゲート電極20間の静電容量
143…第四のスイッチング素子のゲート電極20と第八の主電極16間の静電容量
144…本発明によるパワー半導体モジュール(2in1モジュール)
145…制御装置
146…モータ
147…電流センサ
148…電流センサ
149…電流センサ
150…速度検出器
151…電力変換回路
152…電力変換システム(電力変換装置)

Claims (15)

  1. 第一の絶縁基板上に搭載され、第一の主電極と第二の主電極とゲート電極を備える第一のスイッチング素子と、
    第二の絶縁基板上に搭載され、第三の主電極と第四の主電極とゲート電極を備える第二のスイッチング素子と、
    第三の絶縁基板上に搭載され、第五の主電極と第六の主電極とゲート電極を備える第三のスイッチング素子と、
    第四の絶縁基板上に搭載され、第七の主電極と第八の主電極とゲート電極を備える第四のスイッチング素子と、
    前記第一の主電極と電気的に接続される第一の主端子と、
    前記第二の主電極と電気的に接続される第二の主端子と、
    前記第三の主電極と電気的に接続される第三の主端子と、
    前記第四の主電極と電気的に接続される第四の主端子と、
    前記第五の主電極と電気的に接続される第五の主端子と、
    前記第七の主電極と電気的に接続される第六の主端子と、
    前記第一のスイッチング素子のゲート電極と電気的に接続された第一の配線パターンと、
    前記第二のスイッチング素子のゲート電極に電気的に接続された第二の配線パターンと、
    前記第三のスイッチング素子のゲート電極と電気的に接続された第三の配線パターンと、
    前記第四のスイッチング素子のゲート電極に電気的に接続された第四の配線パターンと、
    前記第一のスイッチング素子のゲート電極と前記第一の配線パターンを電気的に接続する第一の導体と、
    前記第二のスイッチング素子のゲート電極と前記第二の配線パターンを電気的に接続する第二の導体と、
    前記第三のスイッチング素子のゲート電極と前記第三の配線パターンを電気的に接続する第三の導体と、
    前記第四のスイッチング素子のゲート電極に前記第四の配線パターンを電気的に接続する第四の導体と、
    前記第二の主電極に電気的に接続された第五の配線パターンと、
    前記第四の主電極に電気的に接続された第六の配線パターンと、
    前記第六の主電極に電気的に接続された第七の配線パターンと、
    前記第八の主電極に電気的に接続された第八の配線パターンと、
    前記第二の主電極と前記第五の配線パターンを電気的に接続する第五の導体と、
    前記第四の主電極と前記第六の配線パターンを電気的に接続する第六の導体と、
    前記第六の主電極と前記第七の配線パターンを電気的に接続する第七の導体と、
    前記第八の主電極と前記第八の配線パターンを電気的に接続する第八の導体と、
    前記第一の配線パターンおよび前記第二の配線パターンと電気的に接続された第一の補助端子と、
    前記第三の配線パターンおよび前記第四の配線パターンと電気的に接続された第二の補助端子と、
    前記第五の配線パターンおよび前記第六の配線パターンと電気的に接続された第三の補助端子と、
    前記第七の配線パターンおよび前記第八の配線パターンと電気的に接続された第四の補助端子と、
    前記第一の主電極と前記第六の主電極を電気的に接続する第九の導体と、
    前記第三の主電極と前記第八の主電極を電気的に接続する第十の導体と、
    を備えたパワー半導体モジュールにおいて、
    前記第一の主電極と前記第三の主電極との間のインピーダンス値と、前記第五の主電極と前記第七の主電極との間のインピーダンス値と、前記第六の主電極と前記第八の主電極との間のインピーダンス値のうち、最小のインピーダンス値よりも、前記第二の主電極と前記第四の主電極との間のインピーダンス値が大きいこと特徴とするパワー半導体モジュール。
  2. 請求項1に記載のパワー半導体モジュールにおいて、
    前記第二の主電極と前記第四の主電極との間のインピーダンス値は、前記第六の主電極から前記第七の導体、前記第七の配線パターン、前記第七の配線パターンと前記第八の配線パターンとの間の配線と前記第四の補助端子との接続点、前記第八の配線パターン、前記第八の導体を通り、前記第八の主電極に至る経路のインピーダンス値以上であることを特徴とするパワー半導体モジュール。
  3. 請求項1に記載のパワー半導体モジュールにおいて、
    前記第五の主電極と前記第七の主電極間は、前記パワー半導体モジュール内部で導体により電気的に接続されていることを特徴とするパワー半導体モジュール。
  4. 請求項1に記載のパワー半導体モジュールにおいて、
    前記第六の主電極と前記第八の主電極間は、前記パワー半導体モジュール内部で導体により電気的に接続されていることを特徴とするパワー半導体モジュール。
  5. 請求項1に記載のパワー半導体モジュールにおいて、
    前記第一の主電極と前記第三の主電極間は、前記パワー半導体モジュール内部で導体により電気的に接続されていることを特徴とするパワー半導体モジュール。
  6. 請求項1に記載のパワー半導体モジュールにおいて、
    前記第二の主電極から前記第五の導体、前記第五の配線パターン、前記第五の配線パターンと前記第六の配線パターンの間の配線と前記第三の補助端子との接続点、前記第六の配線パターン、前記第六の導体を通り、前記第四の主電極に至る経路の間に抵抗器が接続されていることを特徴とするパワー半導体モジュール。
  7. 請求項1に記載のパワー半導体モジュールにおいて、
    前記第二の主電極から前記第五の導体、前記第五の配線パターン、前記第五の配線パターンと前記第六の配線パターンの間の配線と前記第三の補助端子との接続点、前記第六の配線パターン、前記第六の導体を通り、前記第四の主電極に至る経路の間にインダクタが接続されていることを特徴とするパワー半導体モジュール。
  8. 請求項1に記載のパワー半導体モジュールにおいて、
    前記第二の主電極から前記第五の導体、前記第五の配線パターン、前記第五の配線パターンと前記第六の配線パターンの間の配線と前記第三の補助端子との接続点、前記第六の配線パターン、前記第六の導体を通り、前記第四の主電極に至る経路の配線長を、前記第六の主電極から前記第七の導体、前記第七の配線パターン、前記第七の配線パターンと前記第八の配線パターンの間の配線と前記第四の補助端子との接続点、前記第八の配線パターン、前記第八の導体を通り、前記第八の主電極に至る経路の配線長より長くしたことを特徴とするパワー半導体モジュール。
  9. 請求項4に記載のパワー半導体モジュールにおいて、
    前記第五の主電極と前記第七の主電極間は、前記パワー半導体モジュール内部で導体により電気的に接続されていることを特徴とするパワー半導体モジュール。
  10. 請求項5に記載のパワー半導体モジュールにおいて、
    前記第六の主電極と前記第八の主電極間は、前記パワー半導体モジュール内部で導体により電気的に接続されていることを特徴とするパワー半導体モジュール。
  11. 請求項6に記載のパワー半導体モジュールにおいて、
    前記第一の主電極と前記第三の主電極間は、前記パワー半導体モジュール内部で導体により電気的に接続されていることを特徴とするパワー半導体モジュール。
  12. 請求項10に記載のパワー半導体モジュールにおいて、
    前記第五の主電極と前記第七の主電極間は、前記パワー半導体モジュール内部で導体により電気的に接続されていることを特徴とするパワー半導体モジュール。
  13. 請求項11に記載のパワー半導体モジュールにおいて、
    前記第六の主電極と前記第八の主電極間は、前記パワー半導体モジュール内部で導体により電気的に接続されていることを特徴とするパワー半導体モジュール。
  14. 請求項13に記載のパワー半導体モジュールにおいて、
    前記第五の主電極と前記第七の主電極間は、前記パワー半導体モジュール内部で導体により電気的に接続されていることを特徴とするパワー半導体モジュール。
  15. 請求項1から14のいずれか1項に記載のパワー半導体モジュールを搭載したことを特徴とする電力変換装置。
JP2019013947A 2019-01-30 2019-01-30 パワー半導体モジュールおよびそれを用いた電力変換装置 Active JP6962945B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019013947A JP6962945B2 (ja) 2019-01-30 2019-01-30 パワー半導体モジュールおよびそれを用いた電力変換装置
DE112019006529.7T DE112019006529T5 (de) 2019-01-30 2019-10-11 Leistungshalbleitermodul und umsetzungsvorrichtung für elektrische leistung, die es verwendet
PCT/JP2019/040229 WO2020158057A1 (ja) 2019-01-30 2019-10-11 パワー半導体モジュールおよびそれを用いた電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019013947A JP6962945B2 (ja) 2019-01-30 2019-01-30 パワー半導体モジュールおよびそれを用いた電力変換装置

Publications (2)

Publication Number Publication Date
JP2020124030A true JP2020124030A (ja) 2020-08-13
JP6962945B2 JP6962945B2 (ja) 2021-11-05

Family

ID=71842435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019013947A Active JP6962945B2 (ja) 2019-01-30 2019-01-30 パワー半導体モジュールおよびそれを用いた電力変換装置

Country Status (3)

Country Link
JP (1) JP6962945B2 (ja)
DE (1) DE112019006529T5 (ja)
WO (1) WO2020158057A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127317A1 (ja) * 2021-12-27 2023-07-06 富士電機株式会社 半導体モジュール

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4243070A1 (en) 2022-03-11 2023-09-13 Hitachi Energy Switzerland AG Power module and method for manufacturing a power module
EP4278383A1 (en) * 2022-03-29 2023-11-22 Hitachi Energy Switzerland AG Power module and method for assembling a power module
CN115346948B (zh) * 2022-10-14 2023-04-07 吉光半导体(绍兴)有限公司 一种半桥模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234690A (ja) * 2006-02-28 2007-09-13 Hitachi Ltd パワー半導体モジュール
JP2009278772A (ja) * 2008-05-14 2009-11-26 Toyota Industries Corp インバータモジュール
JP2013012560A (ja) * 2011-06-29 2013-01-17 Hitachi Ltd パワー半導体モジュール
WO2018056213A1 (ja) * 2016-09-23 2018-03-29 三菱電機株式会社 電力用半導体モジュール及び電力用半導体装置
JP2018148745A (ja) * 2017-03-08 2018-09-20 株式会社デンソー 半導体スイッチの駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234690A (ja) * 2006-02-28 2007-09-13 Hitachi Ltd パワー半導体モジュール
JP2009278772A (ja) * 2008-05-14 2009-11-26 Toyota Industries Corp インバータモジュール
JP2013012560A (ja) * 2011-06-29 2013-01-17 Hitachi Ltd パワー半導体モジュール
WO2018056213A1 (ja) * 2016-09-23 2018-03-29 三菱電機株式会社 電力用半導体モジュール及び電力用半導体装置
JP2018148745A (ja) * 2017-03-08 2018-09-20 株式会社デンソー 半導体スイッチの駆動装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127317A1 (ja) * 2021-12-27 2023-07-06 富士電機株式会社 半導体モジュール

Also Published As

Publication number Publication date
DE112019006529T5 (de) 2021-09-16
WO2020158057A1 (ja) 2020-08-06
JP6962945B2 (ja) 2021-11-05

Similar Documents

Publication Publication Date Title
US9685879B2 (en) Power semiconductor module and power conversion device
WO2020158057A1 (ja) パワー半導体モジュールおよびそれを用いた電力変換装置
CN103782380B (zh) 半导体模块
US9865529B2 (en) Semiconductor module with conductive pin
EP1376696B1 (en) Semiconductor device
JP5533068B2 (ja) 半導体装置
JP6836201B2 (ja) 電力変換装置
JP2019029457A (ja) 半導体モジュール
JP6245377B2 (ja) 半導体装置及びバスバー
KR102039013B1 (ko) 전력 변환기
JP2021177519A (ja) 半導体装置
US8675379B2 (en) Power converting apparatus having improved electro-thermal characteristics
JP4872345B2 (ja) 電力変換装置のインバータモジュール
JP4687414B2 (ja) パワー半導体モジュール
JP2015033149A (ja) 半導体素子の駆動装置及びそれを用いた電力変換装置
JP2015033222A (ja) 半導体素子の駆動装置およびそれを用いる電力変換装置
JP2009148077A (ja) 電圧駆動型半導体モジュール及びこれを用いた電力変換器
JP2022050887A (ja) 半導体装置
JP3896940B2 (ja) 半導体装置
JP4246040B2 (ja) 半導体装置の実装体
JP2002171768A (ja) 電力変換装置
JP2013140889A (ja) パワーモジュール
JP2010016926A (ja) 電力半導体モジュールおよびこれを備えた半導体電力変換装置
JP5119741B2 (ja) スイッチングモジュール
JP7205402B2 (ja) 並列スイッチング回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211014

R150 Certificate of patent or registration of utility model

Ref document number: 6962945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150