JP2019074385A - 被処理物の温度測定装置及び温度測定方法並びに攪拌・脱泡方法 - Google Patents

被処理物の温度測定装置及び温度測定方法並びに攪拌・脱泡方法 Download PDF

Info

Publication number
JP2019074385A
JP2019074385A JP2017199844A JP2017199844A JP2019074385A JP 2019074385 A JP2019074385 A JP 2019074385A JP 2017199844 A JP2017199844 A JP 2017199844A JP 2017199844 A JP2017199844 A JP 2017199844A JP 2019074385 A JP2019074385 A JP 2019074385A
Authority
JP
Japan
Prior art keywords
temperature
unit
container
stirring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017199844A
Other languages
English (en)
Other versions
JP6388992B1 (ja
Inventor
文彦 高岡
Fumihiko Takaoka
文彦 高岡
亮輔 衛藤
Ryosuke Eto
亮輔 衛藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shashin Kagaku Co Ltd
Original Assignee
Shashin Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63518883&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2019074385(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shashin Kagaku Co Ltd filed Critical Shashin Kagaku Co Ltd
Priority to JP2017199844A priority Critical patent/JP6388992B1/ja
Priority to KR1020187037690A priority patent/KR101992300B1/ko
Priority to US16/651,321 priority patent/US11486766B2/en
Priority to PCT/JP2018/033667 priority patent/WO2019073738A1/ja
Priority to CN201880002565.XA priority patent/CN109923386B/zh
Priority to DE112018005502.7T priority patent/DE112018005502T5/de
Publication of JP6388992B1 publication Critical patent/JP6388992B1/ja
Application granted granted Critical
Publication of JP2019074385A publication Critical patent/JP2019074385A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0037Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0052Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0063Regulation, control including valves and floats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/02Foam dispersion or prevention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/10Mixers with rotating receptacles with receptacles rotated about two different axes, e.g. receptacles having planetary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/90Mixers with rotating receptacles with stirrers having planetary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2115Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2115Temperature
    • B01F35/21151Temperature using infrared radiation thermometer or pyrometer or infrared sensors for temperature measurement without contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/2201Control or regulation characterised by the type of control technique used
    • B01F35/2202Controlling the mixing process by feed-back, i.e. a measured parameter of the mixture is measured, compared with the set-value and the feed values are corrected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2214Speed during the operation
    • B01F35/22142Speed of the mixing device during the operation
    • B01F35/221422Speed of rotation of the mixing axis, stirrer or receptacle during the operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/026Control of working procedures of a pyrometer, other than calibration; Bandwidth calculation; Gain control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/027Constructional details making use of sensor-related data, e.g. for identification of sensor parts or optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Accessories For Mixers (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Radiation Pyrometers (AREA)

Abstract

【課題】容器に収容された被処理物を、容器を公転及び自転運動することにより被処理物を攪拌・脱泡等の回転処理をする工程において、被処理物の温度をリアルタイムで正確に測定することを可能とする温度測定装置を提供する。
【解決手段】容器2の上部に送信ユニットを備え、送信ユニットは、回転処理時に、放射温度計6により非接触で被処理物の温度をリアルタイムで測定する。温度測定値は、送信ユニットから送信され、送信された測定値は、容器外部に設置された受信ユニットで受信し、記録される。また、記録された測定値は予め記録されている参照データと比較し、攪拌・脱泡処理の異常の有無の判定に利用することも可能となる。さらに、測定されたデータにより、攪拌・脱泡処理の最適化も可能となる。
【選択図】図1

Description

本発明は、容器に収容した被攪拌・脱泡等の被処理物の温度測定装置及び温度測定方法並びに攪拌・脱泡方法に関する。
被攪拌・脱泡処理物(以下、単に「被処理物」という。)を収容した容器を公転及び自転させることによって、被処理物を攪拌・脱泡する攪拌・脱泡装置が知られている。
このような攪拌・脱泡装置は、例えば異なる液体材料が混合された液や粉体材料と液体材料の混合材料等の被処理物を、公転させ遠心力を加えながら自転させることにより攪拌及び脱泡するものである。
被処理物は、回転運動を加えられ、容器との摩擦等により、一般に温度が上昇する傾向がある。このような温度変化は、被処理物の粘度、比熱、熱容量等に依存する。
しかし、被処理物によっては、温度の上昇によって化学変化したり、特性が変質したりすることがあり、温度が管理された条件下で攪拌・脱泡処理を行う必要がある。
特許文献1には、被処理物を収容する容器の底部に設定された温度センサによって被処理物の温度測定を行う装置が開示されている。
特許文献2には、非接触で容器の上方から被処理物の温度を測定する方法が開示されている。
特許文献3には、容器(試料ホルダー)の上部から感温抵抗素子を延ばし、被処理物の温度を測定する方法が開示されている。
特開2016−159186号公報 特許3627220号公報 特開2006−305512号公報
しかしながら、特許文献1のように間接的に被処理物の温度測定を行う方法では、熱伝導率の低い容器を使用した場合、温度変化に対して敏感に温度測定ができないという問題がある。
特許文献2のように非接触で容器の上方から、筐体に固定された放射温度計により温度測定を行う装置では、容器の自転軸の延長線上に、正確に温度センサを設置し、公転周期に同期して容器中の被処理物の温度測定をするという高度な技術が必要となる。
特許文献3のように容器内に感温抵抗素子を挿入する方法では、感温抵抗素子によって攪拌・脱泡処理の流れが遮られたり、感温抵抗素子の自己発熱により被処理物の温度が上昇したりする点で問題がある。さらに、この方法では、回転運動の遠心力により被処理物の中心軸部が窪むために検知部分を容器底部近傍に配置する必要があり、容器の底部近傍の局所的な温度しか測定できない。また、被処理物は攪拌・脱泡処理の際に感温抵抗素子の周囲に気泡が存在すると、被処理物から感温抵抗素子への熱流が阻害され測定温度は実際の温度より低く表示されることもある。そして、被処理物の局所的な温度を測定する感温抵抗素子では、攪拌による被処理物の流れの影響を強く受けるため、被処理物の全体的な温度変化を正確に測定することができない。
また、特許文献3は、容器の温度を赤外線温度センサで検出する方法も開示しているが、この場合、特許文献1と同様の問題がある。
上記課題を鑑み、本発明は、攪拌・脱泡処理の実行中に、精度よく容易に、リアルタイムで攪拌・脱泡被処理物の温度モニタが可能な温度測定装置及び温度測定方法を提供するとともに、本温度測定装置を用いて温度制御する攪拌・脱泡方法を提供することを課題とする。
本発明にかかる温度測定装置は、
公転及び/又は自転運動中の被処理物の温度を測定する温度測定装置であって、
送信ユニットと受信ユニットとを備え
前記送信ユニットは、非接触で前記被処理物の温度を測定し、前記被処理物の温度の測定値を含むデータを送信し、
前記受信ユニットは、前記データを受信し、
前記送信ユニットは、前記被処理物を収容し公転運動する容器の上方に設置され、前記容器とともに公転可能である
ことを特徴とする。
本発明にかかる温度測定装置は、
前記送信ユニットは、
前記被処理物の温度を非接触で測定するセンサ部と、
前記センサ部へ電力を供給する電源部と
前記測定値を含む前記データを前記受信ユニットへ送信する演算処理部とを有し、
前記受信ユニットは、
前記測定値を含む前記データを受信する受信部と、
前記測定値を記録する記録部とを有することを特徴とする。
このような構成とするにより、公自転運動(公転及び自転運動)処理中の被処理物の温度をリアルタイムで、正確に測定することができる。
なお、処理中とは、被処理物を収容する容器を攪拌・脱泡装置の容器ホルダーに載置した時点から容器を容器ホルダーから取り外した時点までをいう。
また、後述するように加速度センサを用いて送信ユニットの電源のオン(ON)、オフ(OFF)を行う場合、処理中とは、容器ホルダーに回転運動が加えられた時点(加速度センサが閾値以上の加速度を検知した時点)から、容器ホルダーの回転運動が停止した時点(加速度センサが閾値以下の加速度を検知した時点)までをいう。
本発明にかかる温度測定装置は、
前記センサ部の視野角が、20°〜90°であることを特徴とする。
このような構成とすることにより、攪拌・脱泡処理に伴い、遠心力により被処理物が容器壁面に沿って競り上がった場合でも、被処理物の温度を正確に測定することができる。
本発明にかかる温度測定装置は、
前記センサ部の光入射口部に、前記センサ部の光軸方向に可動な光学素子が設置されていることを特徴とする。
本発明にかかる温度測定装置は、
前記センサ部の光軸の延長線上に、前記センサ部の光入射口部から離間した位置に光学素子が設置されていることを特徴とする。
このような構成とすることにより、容器及び被処理物に応じて、センサ部の測定視野を変更し、最適な測定視野を実現することができる。
本発明にかかる温度測定装置は、
前記送信ユニットは、前記容器の上蓋に設置されることを特徴とする。
このような構成とするにより、既存の攪拌・脱泡装置等の回転処理を行う装置に対しても、本発明の温度測定装置を容易に適用することができ、拡張性の高い温度測定装置を得ることができる。
本発明にかかる温度測定装置は、
前記送信ユニットは、前記容器と同期して公転する公転体に設置され、前記容器の上方に設置されることを特徴とする。
このような構成とするにより、容器の交換が容易となり、製品を量産する際の生産性が向上する。
本発明にかかる温度測定装置は、
前記送信ユニットが、球面軸受により揺動可能に支持されることを特徴とする。
このような構成とすることにより、常に被処理物の容器壁面に沿った競り上がりに対応した測定をすることが可能となる。
本発明にかかる温度測定装置は、
前記送信ユニットは、加速度センサをさらに備え、前記加速度センサが閾値以上の加速度を検知すると、前記送信ユニットが前記被処理物の温度の測定を開始することを特徴とする。
このような構成とすることにより、必要な時に被処理物の温度測定を自動で行うことができ、送信ユニットの省電力化が可能となる。
本発明にかかる温度測定方法は、
公転及び/又は自転運動中の被処理物の温度を測定する方法であって、
前記容器の上方に設置された送信ユニットは
前記被処理物の温度を非接触で測定する測定工程と、
前記被処理物の温度の測定値を含むデータを送信する送信工程と、
所定時間待機する待機工程と
からなる送信サイクルを繰り返し、
前記容器の外部に設置された受信ユニットは、
前記送信工程の後に前記送信ユニットから送信された前記測定値を含む前記データを受信する受信工程と、
前記測定値を記録する記録工程と、
からなる受信サイクルを繰り返す
ことを特徴とする。
このような温度測定方法とすることで、被処理物の温度をリアルタイムで測定するとともに、攪拌・脱泡処理等の回転処理中の被処理物の測定データを装置履歴として記録することで、回転処理を施すことにより得られた製品の品質管理を行うことが可能となる。
本発明にかかる温度測定方法は、
前記受信ユニットは、
前記記録工程の後に、記録された前記測定値と予め前記受信ユニットの記録部に記録されている参照データとを比較する比較工程と、
前記測定値と前記参照データとの乖離の有無を判定する判定工程と、
を繰り返すことを特徴とする。
このような温度測定方法とすることで、攪拌・脱泡処理等の回転処理が予定通りの処理であるか否かの確認や、処理異常の発生の有無を、即座に判定することができる。
本発明にかかる攪拌・脱泡方法は、
公転及び/又は自転運動する容器に収容された被処理物を攪拌・脱泡する方法であって、
前記容器の上方に設置された送信ユニットは
前記被処理物の温度を非接触で測定する測定工程と、
前記被処理物の温度の測定値を送信する送信工程と、
所定時間待機する待機工程と
からなる送信サイクルを繰り返し、
前記容器の外部に設置された受信ユニットは、
前記送信工程の後に前記送信ユニットから送信された前記測定値を受信する受信工程と、
前記測定値を記録する記録工程と、
前記記録工程の後に、記録された前記測定値と予め前記受信ユニットの記録部に記録されている参照データとを比較する比較工程と、
前記測定値と前記参照データとの乖離値を算出する工程と
からなる受信サイクルを繰り返し、
前記乖離値に応じて、公転又は自転の少なくとも一方の回転数を変更することを特徴とする。
このような攪拌・脱泡方法とすることで、攪拌・脱泡処理条件を自動的に修正し、最適な条件での被処理物の処理を行うことができる。
本発明によれば、公転運動や自転運動といった回転処理中に容器の上方から、リアルタイムで精度よく温度測定を行うことができ、さらに様々な攪拌・脱泡装置への適応が高い。
また、攪拌・脱泡処理の異常の有無を判定し、さらに最適な処理条件を維持することも可能となる。
なお、本発明にかかる温度測定装置及び温度測定方法は、攪拌・脱泡処理のみならず、被処理物を収容して容器に回転処理を施すボールミルのような研磨処理、粉砕処理、遠心分離処理等に対しても適用することができる。
本発明の実施形態1における温度測定装置を備えた容器の断面図。 本発明の実施形態1における温度測定システムの構成図。 本発明の実施形態1における温度測定装置を備えた攪拌・脱泡装置の断面図。 本発明の実施形態1における温度測定装置の測定視野を模式的に示す容器の断面図。 本発明の実施形態2における温度測定装置を備えた容器の断面図。 本発明の実施形態3における温度測定装置を備えた容器の部分断面図。 本発明の実施形態4における温度測定装置を備えた容器の断面図。 本発明の実施形態5における温度測定装置を備えた容器の断面図。 本発明の実施形態6における温度測定装置を備えた攪拌・脱泡装置の断面図。
以下、図面を参照して本発明の実施形態について説明する。但し、以下の実施形態は、いずれも本発明の要旨の認定において限定的な解釈を与えるものではない。また、同一又は同種の部材については同じ参照符号を付して、説明を省略することがある。
(実施形態1)
以下、本発明にかかる温度測定方法及び測定装置の構成について、攪拌・脱泡装置への適用を例に詳細に説明するが、本温度測定装置は、ボールミル等の研磨装置、粉砕装置、遠心分離装置等にも適用可能である。
<装置構成>
図1は、本実施形態の攪拌・脱泡装置の被処理物1を収容する容器2の構成を示す。
容器2は、後述する攪拌・脱泡装置により、公転しながら自転することで、被処理物1を攪拌及び脱泡する。容器2には、自転運動が加えられるように、通常、容器2の形状は、回転対称性を有する、例えば有底の円筒形状が好適に用いられる。
容器2の上部には、上蓋3がネジ等により脱着可能に固定され、上蓋3と容器2とに挟まれるように中蓋4が固定される。
上蓋3には非接触温度測定器である放射温度計6、例えば赤外線センサが、その光入射口部を被処理物1側に向けて設置されており、中蓋4に設けられた開口部5を介して被処理物1から放射され放射温度計6に入射する光を検出し、被処理物1の温度測定を行う。
放射温度計6を覆うように上蓋3にカバー7がボルト等で固定されており、不必要な外部光による擾乱を防ぐことができる。容器2、上蓋3及びカバー7は、好適には、測定する波長領域の光を遮断する材料が使用できる。
また、上蓋3及びカバー7が一体として形成されていてもよい。
なお、開口部5に、放射温度計6が測定する光を透過する透過板、例えば石英ガラス等を設け、被処理物1の蒸気等により放射温度計6の表面が曇ることを防止してもよい。
中蓋4のみを取り外し定期洗浄することにより、常に良好な状態で温度測定が可能となる。複数の中蓋4を準備しておくことにより、洗浄による装置稼働率を低下させることもない。
また、中蓋4の開口部5に設置する上記透過板として、特定の波長の光(例えば赤外光)のみを透過させるフィルターを用いて、特定の波長領域の光の検出に適した放射温度計6を使用し、温度測定の精度を高めてもよい。例えば、被処理物1の放射率が高い波長の光を選択的に透過させるフィルターを選択することで、被処理物1の温度の測定精度が向上するという効果が得られる。
一般に使用される放射温度計6は、測定被処理物からの熱輻射を光入射口部39から取り入れ、レンズにより集光し、検知部へ導き(集光し)温度測定を行う構成である。そのため、放射温度計6は、光軸と測定可能な測定視野を決定する光の入射角の範囲(視野角)θを有しており、放射温度計6の種々の仕様から、所望のθ値を選択できる。
被処理物1表面上の測定視野の大きさは、被処理物1と放射温度計6からの距離と視野角θで決定される。後述するように、θの値は、容器2の形状、被処理物1の量等から最適な測定視野が得られる値を選択する
図1に示すように、中蓋4の開口部5の径は、入射角の範囲θの光が放射温度計6に侵入するように設定されている。その結果、測定視野以外のからの放射光が、不必要に放射温度計6に侵入することを遮断し、放射温度計6の面積効果による測定誤差を低減する。
さらに好適には、開口部5の断面に傾斜を設け、テーパー形状とすることができる。
放射温度計6の受光面と開口部5の面積と、両者の間隔の距離に従って開口部5の断面の傾斜角を設定することにより、開口部5のエッジ部が、回折現象により入射光の集光特性に影響を与えることを防止することができる。その結果、開口部5のエッジ部近傍での回折現象による受光強度の低下を抑制することができる。
また、中蓋4の開口部5に、θを変更するために追加的な光学素子、例えばフレネルレンズ等を設置してもよい。
放射温度計6の光軸の容器2側の延長線上で、放射温度計6の光入射口部から離間して位置する開口部5に光学素子を設置することにより、開口部5を経由して放射温度計6に入射する光を光学素子により屈折させ、θを変更することができる。その結果、放射温度計6を変更することなく、容器や被処理物の量に合わせて測定視野を変更し、測定視野を最適化することで温度測定の精度を向上させることができる。
このように開口部5を有する中蓋4を備えることで、温度測定装置の稼働率低下を防ぎ、また温度測定精度を向上させる等の種々の対応が可能となる。
放射温度計6上部には、電源8、例えばボタン電池が設置される。一般に放射温度計6の検知部は軸対象(円柱形)であるため、好適には、例えば、容器2が自転する自転軸線と放射温度計6の中心軸(光軸)及び電源8(電池)の中心軸(又は重心)とが一致するように配置してもよい。その結果、容器2が自転すると、放射温度計6及び電源8は、それぞれの中心軸のまわりに回転し、容器2の自転運動に対して、上蓋3の重心の変動による揺れを軽減するという効果を容易に得ることができる。
なお、電源8の配置は上記に限定されるものではない。
放射温度計6及び電源8は、それぞれ基板9a、9bを介して上蓋3にボルト等により固定される。ボルトは容器2の自転軸に対して対称な位置に設置され、基板9a、9bの形状は、好適には容器2自転軸に対して対称な形状に設計される。
基板9a、9bは、導電性配線等により互いに電気的に接続され、基板9bには電源スイッチ10が設置される。容器2により被処理物1を処理する際には、電源スイッチ10をオン(ON)し放射温度計6に電力を供給し、不使用時には電源スイッチ10をオフ(OFF)し、放射温度計6への電力の供給を停止することができる。
なお、追加的に加速度センサ30を基板9a又は基板9bに搭載してもよい。電源8により加速度センサ30を駆動し、所定の加速度(閾値)を超えた加速度が検知された場合、自動的に放射温度計6に電力を供給するようにしてもよい。手動で電源スイッチ10を操作する手間が省け、電源スイッチ10の入れ忘れを防止することができる。
さらに回転処理を停止することにより、加速度センサ30が所定の加速度(閾値)を下回る加速度を検知した場合、自動で電源をオフすることにより、省電力化を図ることもできる。
この場合、加速度センサ30からの出力でリレー回路を動作させればよい。
加速度センサ30は、電気的に駆動するものの他、機械的に駆動するものであってもよい。例えば、錘と弾性体により機械的にスイッチのオン、オフが可能な加速度センサを採用することで、さらなる省電力化を図ることができる。
また、加速度センサ30の代わりに傾斜計を用い、容器2を攪拌・脱泡装置の傾斜した容器ホルダーに載置したことを検知し、スイッチのオン、オフを可能とする構成でもよい。
上記のように、消費電力の小さい又は電力を必要としない加速度センサや傾斜計により回転処置中であるか否かを自動で検知し、放射温度計6の電源のオン、オフを行うことで、不必要に電池を消耗することを防止し、電池の交換頻度を低減することができる。
放射温度計6の出力すなわち温度測定値は、無線通信手段により容器2外部に送信することができる。なお、本明細書における放射温度計6による温度測定値とは、温度に変換された数値に限定されず、温度に応じた電圧や電流等の値(電子回路で使用される数値)であってもよい。
図2は、温度の測定値を含むデータを送信する送信ユニット11及び受信する受信ユニット12の構成例を示す。
図1に示すように、送信ユニット11は、カバー7の内部に収容され、放射温度計6等から構成されており、各構成要素は基板9a、9bに固定されている。
上蓋3及びカバー7は、送信ユニット11を収容する筐体を構成することになる。
容器2が攪拌・脱泡装置により公転、自転運動すると、送信ユニット11も容器2とともに公転、自転運動する。
送信ユニット11は、容器2の外部上方の上蓋3に固定されるため、容器2は既存のものを使用できる。被処理物1を収容する容器2を交換することで、同じ上蓋3を用いて異なる被処理物1を測定できるため、製品を量産する製造工程での使用にも適している。
受信ユニット12は、容器2と離間して設置され、公転、自転運動することなく、攪拌・脱泡装置の制御部分に内蔵されるか、又は攪拌・脱泡装置とは別個の装置として、例えばPC(パーソナルコンピュータ)を利用して構成される。特に、受信ユニット12を攪拌・脱泡装置とは別個の装置として構成することで、既存の攪拌・脱泡装置を改造することなく、温度測定機能を追加することができる。
なお、受信ユニット12と攪拌・脱泡装置との間で、電気的に情報の伝達を行ってもよい。
また、既存の通信技術で伝達してもよい。
なお、送信ユニット11、受信ユニット12に対して、ビルドアップ(積層)基板を用いることにより、各ユニットの小型化を図ってもよい。
以下、さらに詳細に送信ユニット11及び受信ユニット12の構成及び機能について説明する。
送信ユニット11は、センサ部13、電源部14、CPU(演算処理部)15を備える。電源部14は、電池16及び電池残量検出部17を備え、CPU15は、記録部18、時計部19、送信部20を備える。センサ部13は、上記放射温度計6に相当し、電池16は上記電源8に相当する。
電源部14は、センサ部13及びCPU15に電力を供給するとともに、電池16の残量を電池残量検出部17により検知し、CPU15へと出力する。CPU15は、電池16の交換の要求を受信ユニット12に発することができる。
また、CPU15は、電池16の残量を受信ユニット12へと送信し、受信ユニット12は、受信した電池残量から電池16の交換要否を判断してもよい。
センサ部13は、被処理物1の温度を測定し、温度測定値に対応した電気信号としてCPU15へ出力する。(以下、簡単のため「温度測定値に対応した電気信号」を単に「温度測定値」と称することがある。)
CPU15は、時計部19により測定された所定の時間間隔(周期)で、センサ部13に対して温度測定値の出力を要求する。
CPU15は、センサ部13から出力された温度測定値を記録部18にデータとして記録し、記録されたデータを測定時刻とともに演算処理によりデジタル化し、送信部20から、送信ユニット11の外部に出力信号として送信する。データは、例えば近距離無線通信規格、赤外線通信規格等に従って送信することができる。
なお、送信ユニット11から受信ユニット12へは、温度測定値だけでなく、上記の電池残量や測定時刻等を含むデータを出力信号として送信してもよい。
放射温度計6へ電力が供給され、温度測定が開始されると、送信ユニット11は所定の周期で攪拌・脱泡処理等の回転処理中の被処理物1の温度測定を行う。すなわち、攪拌・脱泡処理中には、
測定工程:センサ部13により非接触で被処理物1の温度測定する測定工程、
送信工程:測定された温度測定値を受信ユニット12へ送信する送信工程、
待機工程:所定時間待機する(温度測定を行わない)待機工程
の3つの工程を1つの送信サイクルとして、この送信サイクルが繰り返される。
上記待機工程において待機する時間を変えることで温度測定の周期を変えることができる。待機時間、すなわち測定の周期は、例えば送信ユニット11の記録部18に予め記録された所定の値であってもよいが、後述するように、受信ユニット12によって指定することで、変更することも可能である。
受信ユニット12により指定された待機時間は、受信ユニット12から送信され、送信ユニット11の送信部20で受信され、送信ユニット11の放射温度計6を動作させるタイミング情報として記録部18に記録される。
なお、送信部20は、受信ユニット12との間で送受信可能であり、上記のように受信ユニット12から送信された信号を受信することも可能である。
従って、送信ユニット11という名称により、送信ユニット11は送信のみを行うと理解されるべきではない。
待機時間が短ければ、温度測定の時間変化を詳細にモニタすることができるが、電池の消耗が増大することになる。例えば被処理物1の化学的、物理的特性や攪拌・脱泡処理条件に応じて、必要とされる時間分解能と省エネルギー効果との両方を考慮し、待機時間を適宜設定することができる。また、公転の回転数と同期して温度測定を行うことも可能である。
受信ユニット12は、受信部21、制御部22、表示部23、操作部24及び記録部25を備え、送信ユニット11から送信された信号を受信部21で受信し、制御部22で受信した信号を温度測定値を含むデータ(例えば、温度測定値のみのデータや温度測定値と測定時刻等とを組合わせたデータ)に変換し、記録部25に記録する。
なお、受信部21は、送信ユニット11と間で送受信可能であり、後述するように受信ユニット12から送信ユニット11へと信号を送信することも可能である。例えば、受信ユニット12が送信ユニット11からの信号を受信したことを知らせる信号を、受信ユニット12から送信ユニット11へ送信することで、送信ユニット11が、受信ユニット12の受信エラーの有無を検知し、受信エラーを検知した場合、送信ユニット11が受信ユニット12へ信号を再送し、測定値の欠落を防止することもできる。
従って、受信ユニット12という名称により、受信ユニット12は受信のみを行うと理解されるべきではない。
被処理物1の温度測定が開始されると、受信ユニット12は、
受信工程:送信ユニット11から送信された測定値を受信する受信工程
記録工程:記録部に記録する記録工程
の2つの工程を1つの受信サイクルとして繰り返す。
なお、送信ユニット11から送信された出力信号を受信するため、攪拌・脱泡処理の実行中は、受信ユニット12は常時稼働状態にある。
常時稼働状態の場合の他、測定、送信及び待機の送信サイクルと整合させて受信サイクルを稼働してもよい。
また、複数の容器を一度に処理できる攪拌・脱泡装置(例えば図3参照)においては、複数の送信ユニット11を同時に使用することとなり、その結果、1台の受信ユニットと、複数の送信ユニットとの間で通信を行うことが必要となる。この場合、1:nの通信を可能にする既存の無線通信規格を使用すればよい。
受信ユニット12は、攪拌・脱泡装置に内蔵することも可能であるが、攪拌・脱泡装置とは別個に構成することで、既存の種々の攪拌・脱泡装置を有効に活用でき、拡張性も高くなる。送信ユニット11と受信ユニット12との間のデータの送受信に対して、無線通信を利用することで、回転運動する送信ユニット11との通信が可能になり、また、例えば、真空下での攪拌・脱泡処理を行うような攪拌・脱泡装置にも適用可能となる。
記録部25は、温度測定値を、被処理物1及び各測定時刻に対応したデータベース(温度データ)として記録し、送信ユニット11が複数有る場合には、各送信ユニット11毎にデータベースとして記録する。
表示部23は、測定された温度を出力することができ、例えば温度の時間変化をグラフとして表示することもできる。また、後述するように攪拌・脱泡処理に異常を検知した場合、警告を表示することができる。
操作部24は、オペレータによる入力を可能とするものである。例えば表示部23で表示されるグラフの仕様を変更したり、被処理物1の種類を入力し予め記録部25に被処理物1の物性値等を格納しておき、測定されたデータと関連付けてデータベースに記録することもできる。
また、オペレータにより記録部25に記録されたデータを出力して、データの解析等を行うことも可能となる。
さらに、オペレータは、強制的に攪拌・脱泡処理を終了させる命令を操作部24から入力することも可能である。操作部24からのコマンド入力の優先度(プライオリティ)を最高に設定することにより、オペレータによる強制終了が可能となる。
被処理物1の物性値として放射率を記録部25に予めデータベースとして記録しておき、制御部22は、被処理物1の放射率をデータベースから読み取り、放射温度計6から出力された測定値を自動で補正することも可能である。
放射率は、被処理物1により異なり、放射温度計6の温度測定値は放射率に依存するため、制御部22による温度補正により、さらに正確な温度を容易に得ることができる。
また上記のように、受信ユニット12は、送信ユニット11に対して、温度測定を実行する命令を送信することも可能である。
被処理物1の予想される温度変化に合わせて、温度測定の頻度を変えることにより、送信ユニット11の省エネルギー化を図ることができる。例えば、被処理物1の温度変化が急速に生じることが予想される場合、温度測定の頻度を高くするように(測定周期を短くするよう)送信ユニット11に命令を送り、被処理物1の温度変化の速さが緩やかであることが予想される場合、温度測定の頻度を低くするように(測定周期を長くするよう)送信ユニット11に命令を送る。
受信ユニット12から送信ユニット11への測定の命令は、温度測定する各時刻に送信し、温度測定命令を受けた送信ユニット11がその都度温度測定を実行してもよいが、受信ユニット12が、温度測定のタイミング(測定時刻や測定周期等)を送信ユニット11に送信しておき、その温度測定のタイミングに従って、送信ユニット11が、温度測定を実行してもよい。この場合、送信ユニット11のCPU15は、受信ユニット12から送信された測定タイミングの情報を記録部18に記録しておき、記録したタイミング情報に従ってセンサ部13が温度測定を行うよう制御する。
送信ユニット11を電池により駆動する場合、温度測定の無駄を省き、電池寿命を延ばすことができる。
なお、受信ユニット12の記録部25に、被処理物1及びその処理条件に対応した温度測定のタイミングを予め記録しておき、制御部22が記録された温度測定のタイミングを読み出し、受信部21から送信ユニット11に温度測定のタイミングを送信してもよい。
図3は、図1で示された容器2を搭載する攪拌・脱泡装置100の一例を示す。
公転歯車101を有する回転ドラム102は、軸受を介して公転軸103(固定軸)に対して回転自在に支持されている。モータ104による回転運動が、公転歯車101を介して回転ドラム102に伝達され、回転ドラム102は、公転軸103を軸に回転する。
公転テーブル105は、回転ドラム102に連結(固定)されており、回転ドラム102とともに回転する。
容器ホルダー106は、回転軸107(自転軸)を有し、回転軸107は、軸受を介して公転テーブル105に回転自在に支持されている。
そのため、容器ホルダー106は、公転テーブル105の回転により、公転軸103を中心に回転(公転)する。
容器ホルダー106は、自転歯車108を有している。自転歯車108は、軸受を介して公転テーブル105に回転自在に支持されている中間歯車109と噛合する。さらに中間歯車109は、太陽歯車110と噛合する。
太陽歯車110は、回転ドラム102の外側に配置されており、回転ドラム102に対して、軸受を介して回転自在に支持されている。
さらに太陽歯車110は、歯車111に噛合する。歯車111には、互いに噛合する歯車112及び歯車113を介して、パウダーブレーキ等の制動装置114の制動力が伝達される。
太陽歯車110は、制動装置114により加えられる制動力が無い(制動力がゼロの)場合、回転ドラム102に従動して、回転する。
制動装置114の制動力が歯車111を介して太陽歯車110に伝達された場合、太陽歯車110の回転速度が回転ドラム102の回転速度に比べ減少し、太陽歯車110の回転速度と回転ドラム102に連結されている公転テーブル105の回転速度との間に差が生じる。その結果、太陽歯車110に対して、中間歯車109が相対的に回転する。中間歯車109は、自転歯車108と噛合するため、自転歯車108が回転し、容器ホルダー106は、回転軸107を軸に回転(自転)する。
なお、上記攪拌・脱泡装置100は、1つの駆動モータ104により、容器ホルダー106を公転及び自転させる構成例を示したが、攪拌・脱泡装置の構成はこの図3の例に限定するものではない。
例えば、公転用駆動モータと自転用駆動モータを別々に備え、容器ホルダー106を公転及び自転させてもよく、他の構成であってもよい。既に述べたように、送信ユニット12は、容器2に設置することができるため、既存の様々な攪拌・脱泡装置に適用可能であるからである。
図3においては、2つの容器2を搭載している。このように2つ以上の複数の容器2を同時に攪拌・脱泡処理を行い、同時に複数の容器2に収容されている被処理物1の温度測定を行うことが可能である。
複数の容器2、すなわち複数の送信ユニット11と単一の受信ユニット12とを、電波や赤外線を用いた無線通信で接続可能であることは上述のとおりである。
1回の通信で送信するデータ量が少ないため、様々な通信規格を利用することができる。
容器2は、攪拌・脱泡装置100の容器ホルダー106内に固定されるため、容器2は公転しながら自転する。
容器2の公転運動に起因する遠心力により、被処理物1が容器2の側壁に沿って競り上がる。図3で示すように、放射温度計6のθが、容器2の底部で定まる範囲内に測定視野が設定されており、被処理物1が競り上がった状態でも、被処理物1の温度を測定することができる。
放射温度計6のθは、被処理物1の量や容器2に合わせて設定する必要がある。
例えば、図4(a)に示すように20°に設定することもでき、図4(b)90°に設定することも可能である。
図4(a)に示す例の場合、被処理物1の表面の中央部分のみを測定することができる。
被処理物1の表面の限られた領域のみを測定するため、表面全体の平均的温度を測定することはできない。
図4(b)に示す例の場合、被処理物1の表面を広範囲に温度測定ができる。但し、被処理物1の量が少なく、被処理物1だけでなく容器2の側壁からの輻射も増大し、被処理物1の正確な温度測定ができないことがある。
好適なθの例として、図4(c)に示すように、容器2を静止し、被処理物1を水平状態にし、その表面全体を放射温度計6の測定視野が覆い、被処理物1の表面と測定視野が、実質的に一致するように設定することができる。
また、図3に示されるような回転時の被処理物1の状態に合わせて、図4(c)の例で示されるθをさらに調整し(例えばθの値を小さくし)、最適化することも可能である。
従って、θの値としては容器2の形状(径や高さ)、被処理物1の量に合わせて、20°〜90°の範囲で適宜選択することで幅広い条件で温度測定が可能となる。
なお、θの値は放射温度計6の仕様により確定しており、市販されている様々な放射温度計から、所望のθを有する放射温度計を選択することができる。また、上記のように、中蓋4の開口部5に追加的な光学素子を設けてθを調整することで、容器2や被処理物1に対して、さらに最適なθを得ることができる。
このように送信ユニット11及び受信ユニット12により、攪拌・脱泡処理時の被処理物1の近傍から測定視野全体の温度を測定し、攪拌・脱泡処理時の被処理物1の流れによる一時的かつ局所的な温度不均一の影響がなく、被処理物1の温度変化を正確に、再現性よく、リアルタイムで測定することが可能となる。
また、被処理物1に対して非接触であるため、被処理物1の攪拌・脱泡処理に影響を与えることはない。
<攪拌・脱泡処理への応用>
受信ユニット12は、記録部25を備えているため、測定データをデータベースとして記録することができる。
データベースとして、被処理物1に対応した温度の時間変化を示す参照データ(又は基準となる標準データ)を予め記録しておき、実際に測定された温度測定値の時間変化と参照データとを随時比較し、参照データとの乖離を算出することで、正常に攪拌・脱泡処理が実行されたかどうかの判定をすることが可能である。
なお、受信ユニット12は、予め記録する参照データの記録部(記録部)を測定された温度測定値を記録する記録部25(記録領域)とは別に備えていてもよいことはいうまでもない。
例えば、量産工場等において、同一製品を製造する場合、品質管理の目的で、測定温度データを記録し、管理し、活用することができる。
具体的には、同一の製品を製造するため、同一の材料からなる被処理物1を処理する場合、予め測定された典型的な(或いは最適化された攪拌・脱泡処理条件での)温度変化の参照データを記録部25にデータベースとして記録しておく。
攪拌・脱泡処理の過程において、所定の時間間隔で参照データの温度と測定された温度との乖離を、温度差(差分)により計算し、温度差の平均値(又は合計値)を算出し、これらの値の絶対値が閾値を超えた場合、例えば平均値(又は合計値)が管理基準の範囲から外れた場合、異常あり(乖離あり)と判定し、警告を画面表示やランプ等により発する、又はデータベースに警告が生じたことを記録するように設定する。なお、温度の乖離が管理基準の範囲内であれば、異常無し(乖離無し)と判定する。
また、上記温度差(差分)の代わりに差分の2乗や差分の絶対値の平均値(又は合計値)を使用して、予め設定された閾値を超えた場合、異常ありと判定し、警告を発してもよい。また、これらの値の複数を組合わせ、例えば差分と差分の2乗の両方を用いて、警告を発してもよい。
このように差分、差分の2乗又は差分の絶対値の平均値(又は合計値)を用いて乖離値として定義することで、参照データからの乖離を定量的に評価することができる。
なお、閾値は、被処理物1(又は製品仕様)に対応して設定するものであり、例えばオペレータにより操作部24から入力し、記録部25に記録しておくことができる。
上記乖離値は、測定時間とともに随時算出することにより、参照データからの乖離の有無及び乖離の程度を動的にモニタすることができる。すなわち温度測定開始時点から現時点までの測定データから乖離値を算出し、測定時間が経過するとともに随時乖離値を更新することで動的な解析ができる。
その結果、攪拌・脱泡処理が予定通りであるか否か、異常の発生の有無を、即座に判定し、警告を発することが、自動的に行うことができる。
例えば差分の2乗の平均値が閾値を超えているが差分の平均値の絶対値が閾値を超えない場合は、警告レベル1、両方が閾値を超える場合は警告レベル2とし、さらに差分の平均値がマイナスの場合とプラスの場合を区別して警告レベルを区別する等、適宜警告レベルを被処理物1の物性値に対応して設定することができる。
これらの差分の算出等は制御部22で行い、警告レベルは表示部23で発することができ、またデータベースとして記録部25に記録することができる。
さらに、上記乖離値のデータを利用して攪拌・脱泡処理を制御することも可能となる。
例えば、被処理物1によっては、攪拌・脱泡処理時の被処理物1の化学変化を防止するため、上限温度が定められている場合がある。逆に、攪拌・脱泡効果を高めるため、下限温度が定められている場合がある。
このような場合においても、乖離値のデータを利用して、受信ユニット12の制御部22から、攪拌・脱泡装置100の回転運動を制御する制御部に指令信号を送信することで、攪拌・脱泡装置100の処理条件を制御し、最適な攪拌・脱泡処理条件を維持することも可能である。
例えば、参照データと測定データの乖離値が閾値の下限を下回った場合、公転又は自転の少なくとも一方の回転数を増大させ、参照データと測定データの乖離値が閾値の上限を上回った場合、公転又は自転の少なくとも一方の回転数を減少させるといった制御が可能である。
放射温度計6の応答速度が速いため、このような回転数のフィードバック制御が可能となる。
また、被処理物1の気泡の量による輻射エネルギーの違い等を、放射温度計6により素早く検知することも可能である。
参照データとして標準データ(最適化された攪拌・脱泡条件での温度の時間変化のデータ)の他に、気泡の量の異なる被処理物1の種々の温度変化のデータを予めデータベースとして記録し、これらの温度変化のデータの時間依存性のパターン(温度変化パターン)を照合し、最も近い温度変化パターンから被処理物1の状態を推定することができる。
照合は、制御部22により行うことが可能であり、具体的には測定データと種々の温度変化パターンとの乖離値を上記のように算出し、最も乖離値の小さい温度変化パターンを抽出する。或いは標準データの温度変化パターンと、特定の状態、例えば気泡を多量に含有する状態の被処理物1の温度変化パターンとを、それぞれ線型に組合わせて測定データを再現し、それぞれの組合わせ比率で、被処理物1の状態を、どちらの状態に近いか等を推定してもよい。組合わせ比率を乖離値として利用することで、定量的な解析が可能である。なお、組合わせ比率は最小自乗法により、簡単に(代数的に)算出可能である。
温度変化のパターンを認識することにより、温度測定だけでなく、被処理物1の状態を推定することも可能となる。そのため、攪拌・脱泡処理の終了時点の検知にも用いることができる。
このように測定データが温度という1つの変数であるため、温度変化パターンを認識し解析することが容易であり、高度な計算技術を必要とせず、通常のパーソナルコンピュータでも十分に速い解析が可能であり、リアルタイムで動的な解析が可能である。
温度変化パターンの最も単純化されたモデルにおいては、(1)攪拌・脱泡処理条件が一定であり、被処理物1を容器2との摩擦による熱の発生が一定である、(2)被処理物1の時刻tでの温度(T(t))と周囲の温度(Ta)との温度差に比例した熱が周囲に放出される、と仮定することができる。これらの仮定から導かれる簡単な微分方程式により、被処理物1の温度(T(t))は、
T(t)=Ta+A(1−exp(−αt)) (式1)
と表すことができる。ここで、A、αは定数である。
単純なモデルであるが、式1は、最適化された攪拌・脱泡条件での実測された温度変化パターンと整合することが確認できた。このことは、温度測定値の妥当性を裏付ける。
一方、容器2の底部の温度測定方法による温度変化パターンにおいては、式1から予想し得ない変曲点が見られ、温度測定が不安定であることが確認され、本発明にかかる温度測定装置による温度測定の優位性が確認された。
また、上記式1を利用し、制御部22において、実測値との比較によりA、αを最小自乗法等を利用して求めて温度変化を予測し、被処理物1の温度が許容される上限値を超えると予測される場合、その予測結果を攪拌・脱泡装置100に送信し、攪拌・脱泡装置100の制御部により公転又は自転の少なくとも一方の回転数を変更、例えば低減し、又は攪拌・脱泡処理を停止するという対処を施すことも可能である。逆に、予測値が下限値を下回る場合、制御部により公転又は自転の少なくとも一方の回転数を変更、例えば増大するという対処を施してもよい。
これらの対処は、予め記録部25に被処理物1についての予測される温度変化の上限値及び下限値を登録しておき、制御部22から攪拌・脱泡装置100に対して自動的に実行することも可能である。
なお、温度変化の予測は、最新の複数(例えば3点)の温度測定値から直線近似により行い、被処理物1の温度が上限(下限)を超える(下回る)か否かを判定又は予測し、上記対処を施してもよい。
また、処理時の公転回転速度、自転回転速度、各駆動系の負荷(トルク)の時間変化を装置データとして記録部25に記録し、これらの装置データと測定温度のデータとの相関を分析することも可能である。それにより、攪拌・脱泡条件の最適化作業も容易となる。
例えば、駆動系の負荷が大きい場合、被処理物1内部での摩擦や、被処理物1と容器2との摩擦が大きいことが推定されるため、負荷と温度との相関をリアルタイムでモニタすることができる。
また、容器2の底部において容器2の温度測定を熱電対等でモニタし、容器2の温度と放射温度計6との温度変化の違いのパターンを予め記録し、実測データとの比較をリアルタイムで実行してもよい。被処理物1の材料の特性等により、熱の発生状況が異なり、両者の温度変化の時間依存性に特徴が明確に現れる場合があり、被処理物1の状態を間接的にモニタすることができる。
(実施形態2)
一般に放射温度計6は、被処理物から放射される光を集光して検知部に導き温度測定を行う。従って、放射温度計6は、光をレンズで集光する光軸を有する。実施形態1では、放射温度計6の光軸31と容器2の自転軸32とが一致するように設置した。
本実施形態においては、図5に示すように放射温度計6の光軸31を、容器2の自転軸32と平行に保ちながら自転軸32から所定量δ、例えば容器2の半径の10分の1程度、ずらして配置している。
容器2は公転運動とともに自転運動している。攪拌効果を高めるため、高い回転数で自転する場合、自転軸32近傍では攪拌効果が低く、また自転の遠心力により、容器2の中央部分では被処理物1に窪みができる。
そのため、放射温度計6の光軸31を容器2の自転軸32から距離δずらして配置し、自転軸32上の被処理物1の窪みの影響を軽減し、温度測定の精度をさらに向上させることが可能である。
(実施形態3)
放射温度計6は、上記のように光学系を備えており、放射温度計6により測定視野が確定されている。測定視野は、容器2及び容器2に収容されている被処理物1の量に応じて最適化することが好ましい。この目的のために、種々の測定視野を有する放射温度計6をセンサ部13として用いた送信ユニット11を複数準備しておき、最適な測定視野に近い送信ユニット11を選択すると、コストが増大するという問題がある。
本実施形態によれば、1台の放射温度計6により、測定視野の最適化を可能にすることができる。
図6に示すように、放射温度計6(センサ部13)の光入射口部39には、入射光を屈折させる光学素子40、例えば凸レンズ、が固定された可動支持台41が設置されている。
可動支持台41は放射温度計6の光軸に沿って平行に移動可能であり、さらに、放射温度計6に対して、ネジ等で固定することができる。
可動支持台41を移動させることで、光学素子40は、放射温度計6の光軸において、焦点距離を変更し、放射温度計6に入射する光の視野角を変更することができる。
放射温度計6の円筒形の外面と円筒形の可動支持台41の内面に同じピッチのネジ山を形成しておき、可動支持台41を回転させることにより、可動支持台41を光軸方向に移動可能にすることができる。
可動支持台41は、最適な位置において固定することが可能なように、可動支持台41の側壁を貫通するネジ穴を別途設け、ボルトで放射温度計6と固定することができる。
また視野角は、可動支持台39の位置を変化させることにより、連続的に変更することができる。従って、中蓋4の開口部5にレンズを使用した場合と異なり、視野角を微調整することができ、さらに測定視野の最適化が可能であり、温度測定精度を向上させることができる。
なお、中蓋4の開口部5に設置する光学素子(例えばフレネルレンズ)との組合わせにより、広い範囲での視野角の変更も可能である。
(実施形態4)
実施形態1においては、上蓋3の上部(容器2の外部側)に突出するようにカバー7が取り付けられ、その内部に送信ユニット11を収容していた。
図7に示すように、上蓋3の下部すなわち容器2側に突出するようにカバー7を取り付け、カバー7の内部に送信ユニット11を設けてもよい。
図7に示すように、基板9a、9bはカバー7にボルト等により固定され、カバー7は上蓋3にボルト等により、上蓋3の上部から固定される。
このような構成とするにより、送信ユニット11を上蓋3の内側に収容できるため、本装置の小型化が可能になる。そのため小型の攪拌・脱泡装置へも対応が容易である。
放射温度計6により、容器2の上方から被処理物1の温度を直接、リアルタイムで測定できることは実施形態1と同様であるため、温度測定についての説明は割愛する。
なお、容器2の上方とは、容器2の自転軸に沿って、容器2の底部と対向する側を意味する。
(実施形態5)
本実施形態では、被処理物1を攪拌・脱泡処理を行う際に、遠心力により被処理物1が競り上がる現象に対応して、放射温度計6の光軸を容器2の自転軸に対して所定の角度交差(傾斜)させ被処理物1が競り上がる方向に向け、回転処理中の被処理物1の形態に合わせた最適な条件で温度測定を行うことが可能となる。
図8に示すように、放射温度計6等を含む送信ユニット11は、基板9a、9bを介して筐体33に固定される。筐体33は、図1のカバー7に相当し、その内部に送信ユニット11を収容している。
筐体33は、球面軸受34の球体35に連結されたシャフト36に固定され、かつ送信ユニット11の放射温度計6(センサ部13)の光軸とシャフトの中心軸とが一致するように位置決めされる。
球面軸受34は支持体37に固定され、支持体37は上蓋3に固定される。
支持体37は、上蓋3を容器2に取り付けた際に、静止状態でシャフト36の中心軸と容器2の自転軸(回転対称軸)とが一致するように位置決めする。
従って、筐体33は、球面軸受34によって揺動可能に支持され、容器2の自転軸に対して全ての方向に自在に傾斜することができる。
さらに、シャフト36にはストッパ38が固定されており、シャフト36の最大傾斜角度を規定する。すなわち、シャフト36が傾斜すると、ストッパ38は球面軸受34の上面と干渉し、傾斜角を制限し、最大傾斜角(傾斜角の上限)よりもシャフト36が傾斜することを防止する。
最大傾斜角は、被処理物1の競り上がり量に応じて決定する。
また、ストッパ38の形状及び設置位置により、最大傾斜角を変更することができる。
このように球面軸受34によって、最大傾斜角内で自在に筐体33が傾斜(回転)することができる。
球面軸受34によって自在に傾斜が可能な放射温度計6を備えた上蓋3を、容器2に取り付け、攪拌・脱泡装置100の容器ホルダー106に容器2を載置し、攪拌・脱泡処理を実行すると、遠心力により公転軸から遠ざかる方向に、放射温度計6の光軸が傾斜する。
同時に被処理物1は、公転軸から遠ざかる方向に競り上がる。
筐体33に固定された送信ユニット11の放射温度計6は、容器2の上方から被処理物1の競り上がりに対応した部分の温度測定を行うことができる。
従って、放射温度計6は、容器2の自転運動に関わらず、常に被処理物1の競り上がり部分の温度測定を行うことができる。
なお、容器2の上方とは、容器2の自転軸に沿って、容器2の底部と対向する側を意味する。
(実施形態6)
上記実施形態においては、上蓋3を介して容器2に放射温度計6を固定する構成であった。
本実施形態6の攪拌・脱泡装置200においては、放射温度計6を容器202に固定することなく、容器202とともに公転する公転体に固定し、容器202に収容された被処理物1の温度測定を行う構成である。
図9は、本実施形態6の攪拌・脱泡装置200の構成の一例を示す。図3に示す攪拌・脱泡装置100と同様に、駆動モータ104により公転軸103を軸に回転ドラム102が回転する。
回転ドラム102には、公転アーム201が連結(固定)されている。そのため、公転アーム201は、回転ドラム102及び、回転軸107を介して容器ホルダー106を支持する公転テーブル105とともに回転する。
公転アーム201は、容器ホルダー106に載置された容器202の上方まで延在する。
なお、容器202の上方とは、容器202の自転軸に沿って、容器202の底部と対向する側を意味する。
容器202の上方において、筐体33が公転アーム201に固定される。放射温度計6等を含む送信ユニット11が、筐体33に固定される。
容器202の上部は開放されており、放射温度計6の光軸は、容器202に収容されている被処理物1の方向に向けられ、被処理物1の温度を測定することができる。
なお、図6に示すように、放射温度計6の光入射口部に追加的な光学素子を設置してもよい。
本実施形態においては、容器202のみを交換することで、容易に被処理物1の温度測定が可能である。そのため、例えば同一製品を量産する場合、容器202の交換が容易となり、生産性が向上する。
また、送信ユニット11が自転運動を受けないため、自転運動する場合と比較し、送信ユニット11の耐久性を向上させることができる。
また、実施形態5と異なり送信ユニット11が自転運動を受けないため、球面軸受を使用することなく放射温度計6の光軸を傾斜させ、常に競り上がりに対応した角度で設置することも可能である。
また、電源8を使用する代わりに、電力を公転アーム201を介して、有線にて外部から送信ユニット11に供給することも可能である。
電源8としてボタン電池を使用した場合、定期的な電池交換が必要となるが、本実施形態においては、電池交換による電力供給の中断がなく、安定した電力供給が可能である。
なお、上記の各実施形態において、電力を電源8として例えば電池により供給したが、ワイヤレス給電(電波や光等による)や、公転、自転運動により発電してもよく、太陽電池を用いて外部光を受光して発電してもよい。
公転、自転運動により発電する場合、送信ユニット11の電源部14にレギュレータを搭載し、安定した電力を放射温度計6に供給するよう構成してもよい。
本発明によれば、公転や自転運動といった回転処理を行いながら被処理物の温度をリアルタイムで測定することができ、被処理物の温度変化の異常の検出や、温度変化に対応して攪拌・脱泡処理等を自動的に変更することも可能となる。さらに、回転処理時の被処理物の温度履歴をデータベースとして残すことができ、製品の品質管理を行うことも可能となる。そのため本発明の産業上の利用可能性は大きい。
1 被処理物
2 容器
3 上蓋
4 中蓋
5 開口部
6 放射温度計
7 カバー
8 電源
9a、9b 基板
10 電源スイッチ
11 送信ユニット
12 受信ユニット
13 センサ部
14 電源部
15 CPU(演算処理部)
16 電池
17 電池残量検出部
18 記録部
19 時計部
20 送信部
21 受信部
22 制御部
23 表示部
24 操作部
25 記録部
30 加速度センサ
31 光軸
32 自転軸
33 筐体
34 球面軸受
35 球体
36 シャフト
37 支持体
38 ストッパ
39 光入射口部
40 光学素子
41 可動支持台
100 攪拌・脱泡装置
101 公転歯車
102 回転ドラム
103 公転軸
104 モータ
105 公転テーブル
106 容器ホルダー
107 回転軸
108 自転歯車
109 中間歯車
110 太陽歯車
111 歯車
112 歯車
113 歯車
114 制動装置
200 攪拌・脱泡装置
201 公転アーム
202 容器
本発明にかかる温度測定装置は、
公転及び/又は自転運動する容器に収容された被処理物の温度を測定する温度測定装置であって、
送信ユニットと受信ユニットとを備え
前記送信ユニットは、非接触で前記被処理物の温度を測定し、前記被処理物の温度の測定値を含むデータを送信し、
前記受信ユニットは、前記データを受信し、
前記送信ユニットは、前記容器に着脱可能に固定される上蓋に、前記被処理物から放射された光の入射光を検知可能に設置され、前記容器とともに公転可能である
ことを特徴とする。

Claims (12)

  1. 公転及び/又は自転運動中の被処理物の温度を測定する温度測定装置であって、
    送信ユニットと受信ユニットとを備え
    前記送信ユニットは、非接触で前記被処理物の温度を測定し、前記被処理物の温度の測定値を含むデータを送信し、
    前記受信ユニットは、前記データを受信し、
    前記送信ユニットは、前記被処理物を収容し公転運動する容器の上方に設置され、前記容器とともに公転可能である
    ことを特徴とする温度測定装置。
  2. 前記送信ユニットは、
    前記被処理物の温度を非接触で測定するセンサ部と、
    前記センサ部へ電力を供給する電源部と、
    前記測定値を含む前記データを前記受信ユニットへ送信する演算処理部とを有し、
    前記受信ユニットは、
    前記測定値を含む前記データを受信する受信部と、
    前記測定値を記録する記録部とを有する、
    ことを特徴とする請求項1記載の温度測定装置。
  3. 前記センサ部の視野角が、20°〜90°であることを特徴とする請求項2記載の温度測定装置。
  4. 前記センサ部の光入射口部に、前記センサ部の光軸方向に可動な光学素子が設置されていることを特徴とする請求項2又は3記載の温度測定装置。
  5. 前記センサ部の光軸の延長線上に、前記センサ部の光入射口部から離間した位置に光学素子が設置されていることを特徴とする2乃至4のいずれか1項記載の温度測定装置。
  6. 前記送信ユニットは、前記容器の上蓋に設置されることを特徴とする請求項1乃至5のいずれか1項記載の温度測定装置。
  7. 前記送信ユニットは、前記容器と同期して公転する公転体に設置され、前記容器の上方に設置されることを特徴とする請求項1乃至4のいずれか1項記載の温度測定装置。
  8. 前記送信ユニットが、球面軸受により揺動可能に支持されることを特徴とする請求項1乃至6のいずれか1項記載の温度測定装置。
  9. 前記送信ユニットは、加速度センサをさらに備え、前記加速度センサが閾値以上の加速度を検知すると、前記送信ユニットが前記被処理物の温度の測定を開始することを特徴とする請求項1乃至8のいずれか1項記載の温度測定装置。
  10. 公転及び/又は自転運動中の被処理物の温度を測定する方法であって、
    前記容器の上方に設置された送信ユニットは
    前記被処理物の温度を非接触で測定する測定工程と、
    前記被処理物の温度の測定値を含むデータを送信する送信工程と、
    所定時間待機する待機工程と
    からなる送信サイクルを繰り返し、
    前記容器の外部に設置された受信ユニットは、
    前記送信工程の後に前記送信ユニットから送信された前記測定値を含む前記データを受信する受信工程と、
    前記測定値を記録する記録工程と、
    からなる受信サイクルを繰り返す
    ことを特徴とする温度測定方法。
  11. 前記受信ユニットは、
    前記記録工程の後に、記録された前記測定値と予め前記受信ユニットの記録部に記録されている参照データとを比較する比較工程と、
    前記測定値と前記参照データとの乖離の有無を判定する判定工程と、
    を繰り返すことを特徴とする請求項10記載の温度測定方法。
  12. 公転及び/又は自転運動する容器に収容された被処理物を攪拌・脱泡する方法であって、
    前記容器の上方に設置された送信ユニットは
    前記被処理物の温度を非接触で測定する測定工程と、
    前記被処理物の温度の測定値を含むデータを送信する送信工程と、
    所定時間待機する待機工程と
    からなる送信サイクルを繰り返し、
    前記容器の外部に設置された受信ユニットは、
    前記送信工程の後に前記送信ユニットから送信された前記測定値を含む前記データを受信する受信工程と、
    前記測定値を記録する記録工程と、
    前記記録工程の後に、記録された前記測定値と予め前記受信ユニットの記録部に記録されている参照データとを比較する比較工程と、
    前記測定値と前記参照データとの乖離値を算出する工程と
    からなる受信サイクルを繰り返し、
    前記乖離値に応じて、公転又は自転の少なくとも一方の回転数を変更することを特徴とする攪拌・脱泡方法。
JP2017199844A 2017-10-13 2017-10-13 被処理物の温度測定装置及び温度測定方法並びに攪拌・脱泡方法 Active JP6388992B1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017199844A JP6388992B1 (ja) 2017-10-13 2017-10-13 被処理物の温度測定装置及び温度測定方法並びに攪拌・脱泡方法
CN201880002565.XA CN109923386B (zh) 2017-10-13 2018-09-11 被处理物的温度测定装置和温度测定方法以及搅拌消泡方法
US16/651,321 US11486766B2 (en) 2017-10-13 2018-09-11 Temperature measuring device
PCT/JP2018/033667 WO2019073738A1 (ja) 2017-10-13 2018-09-11 被処理物の温度測定装置及び温度測定方法並びに攪拌・脱泡方法
KR1020187037690A KR101992300B1 (ko) 2017-10-13 2018-09-11 피처리물의 온도 측정 장치와 온도 측정 방법 및 교반·탈포 방법
DE112018005502.7T DE112018005502T5 (de) 2017-10-13 2018-09-11 Temperaturmessvorrichtung und Temperaturmessverfahren für zu behandelnde Substanz sowie Rühr-/Entgasungsverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017199844A JP6388992B1 (ja) 2017-10-13 2017-10-13 被処理物の温度測定装置及び温度測定方法並びに攪拌・脱泡方法

Publications (2)

Publication Number Publication Date
JP6388992B1 JP6388992B1 (ja) 2018-09-12
JP2019074385A true JP2019074385A (ja) 2019-05-16

Family

ID=63518883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017199844A Active JP6388992B1 (ja) 2017-10-13 2017-10-13 被処理物の温度測定装置及び温度測定方法並びに攪拌・脱泡方法

Country Status (6)

Country Link
US (1) US11486766B2 (ja)
JP (1) JP6388992B1 (ja)
KR (1) KR101992300B1 (ja)
CN (1) CN109923386B (ja)
DE (1) DE112018005502T5 (ja)
WO (1) WO2019073738A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020086527A (ja) * 2018-11-15 2020-06-04 株式会社メガチップス 情報処理装置、プログラム、及び被判定装置の真贋判定方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6558841B1 (ja) * 2018-03-22 2019-08-14 株式会社写真化学 状態監視システム及びそれを用いた撹拌・脱泡処理方法
JP6858947B2 (ja) * 2019-02-21 2021-04-14 株式会社シンキー 遠心機において使用される検出器及び検出システム
JP7305470B2 (ja) * 2019-07-05 2023-07-10 共立精機株式会社 撹拌脱泡機及びその制御方法
JP2022043453A (ja) * 2020-09-04 2022-03-16 株式会社ニューフレアテクノロジー θステージ機構及び電子ビーム検査装置
JP7291406B2 (ja) * 2020-10-19 2023-06-15 株式会社写真化学 攪拌・脱泡装置
WO2023030564A1 (de) * 2021-08-31 2023-03-09 Hauschild Gmbh & Co. Kg Vorrichtung zur temperaturbestimmung von mischgut in einem rotationsmischer
CN114504848B (zh) * 2022-01-14 2023-07-25 安徽开发矿业有限公司 一种具有消泡装置的选矿用浓密机
DE102022110524A1 (de) * 2022-04-29 2023-11-02 Marco Systemanalyse Und Entwicklung Gmbh Verfahren zur überwachung der benetzungshöhe eines mischbechers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929086A (ja) * 1995-07-17 1997-02-04 Shinkii:Kk 混練装置
US20060160687A1 (en) * 2002-11-19 2006-07-20 Mats Malmqvist Method and device for rapid homogenisation and mass transport
JP2006305512A (ja) * 2005-05-02 2006-11-09 Thinky Corp 攪拌脱泡方法および攪拌脱泡装置
JP2007245110A (ja) * 2006-03-20 2007-09-27 Fujitsu Ltd 温度調整機能付混練脱泡装置及び混練脱泡方法
WO2008078368A1 (ja) * 2006-12-22 2008-07-03 Ssjapan Ltd. 遊星運動型摺擦装置
JP2011045873A (ja) * 2009-07-27 2011-03-10 Norio Yamauchi 公転・自転撹拌機
JP2011218300A (ja) * 2010-04-09 2011-11-04 Nippon Spindle Mfg Co Ltd 遊星回転混合装置
US20150174539A1 (en) * 2012-07-02 2015-06-25 Ktb Tumorforschungsgesellschaft Mbh Apparatus for the homogenization and separation of samples

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891734A (ja) 1981-11-26 1983-05-31 Kuraray Co Ltd 優れた平滑性を有するシ−ト物の製造法
JPS627220A (ja) 1985-07-04 1987-01-14 Yokogawa Electric Corp 高速用ad変換装置
US4828376A (en) * 1987-02-17 1989-05-09 Martin Marietta Corporation Triaxis stabilized platform
JP3627220B1 (ja) 2003-10-29 2005-03-09 株式会社アイ・ケイ・エス 溶剤等の攪拌・脱泡方法とその装置
JP5357809B2 (ja) 2010-03-08 2013-12-04 株式会社シンキー 誘導電流発生器、回転センサ、及び、攪拌脱泡装置
CN202039160U (zh) * 2011-02-18 2011-11-16 上海普罗新能源有限公司 用于多晶硅铸锭炉的红外测温仪安装机构
CN202182769U (zh) * 2011-05-05 2012-04-04 西安供电局 全方位红外测温探头支架
CN202563635U (zh) 2012-03-23 2012-11-28 武汉发博科技有限公司 反射式点型光纤感烟火灾探测器
CN202562625U (zh) * 2012-05-11 2012-11-28 宁波欧日力电器制造有限公司 高压开关柜的测温装置
JP2013244475A (ja) 2012-05-29 2013-12-09 Thinky Corp 遠心機、それに用いられる制御機構、及び処理方法
KR102100176B1 (ko) * 2012-08-03 2020-04-13 세미텍 가부시키가이샤 고온 계측에서 사용되는 접촉형 적외선 온도 센서, 열기기 및 배기 시스템
CN104707521A (zh) * 2013-12-14 2015-06-17 马丽梅 物料混合机
CN103776548A (zh) * 2014-02-14 2014-05-07 丹纳赫(上海)工业仪器技术研发有限公司 红外测温仪以及用于测量能量区域的温度的方法
CN103868599A (zh) * 2014-02-22 2014-06-18 袁国炳 红外测温光学探头在小炉盖上的瞄准和定位安装装置
JP6734627B2 (ja) 2015-02-26 2020-08-05 倉敷紡績株式会社 攪拌装置及び温度測定ユニット
CN205253017U (zh) * 2015-12-04 2016-05-25 云南大唐汉方制药有限公司 混合装置
CN205262182U (zh) * 2015-12-08 2016-05-25 沈阳真空技术研究所 真空感应熔炼炉用带吹扫可调节红外测温装置
CN205403963U (zh) * 2016-03-01 2016-07-27 林岩 一种非手持式红外温度监控仪
JP6618405B2 (ja) 2016-03-30 2019-12-11 共立精機株式会社 撹拌脱泡機
CN205667817U (zh) * 2016-06-07 2016-11-02 江西博大化工有限公司 一种变性淀粉无残留锥型混合器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929086A (ja) * 1995-07-17 1997-02-04 Shinkii:Kk 混練装置
US20060160687A1 (en) * 2002-11-19 2006-07-20 Mats Malmqvist Method and device for rapid homogenisation and mass transport
JP2006305512A (ja) * 2005-05-02 2006-11-09 Thinky Corp 攪拌脱泡方法および攪拌脱泡装置
JP2007245110A (ja) * 2006-03-20 2007-09-27 Fujitsu Ltd 温度調整機能付混練脱泡装置及び混練脱泡方法
WO2008078368A1 (ja) * 2006-12-22 2008-07-03 Ssjapan Ltd. 遊星運動型摺擦装置
JP2011045873A (ja) * 2009-07-27 2011-03-10 Norio Yamauchi 公転・自転撹拌機
JP2011218300A (ja) * 2010-04-09 2011-11-04 Nippon Spindle Mfg Co Ltd 遊星回転混合装置
US20150174539A1 (en) * 2012-07-02 2015-06-25 Ktb Tumorforschungsgesellschaft Mbh Apparatus for the homogenization and separation of samples

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020086527A (ja) * 2018-11-15 2020-06-04 株式会社メガチップス 情報処理装置、プログラム、及び被判定装置の真贋判定方法

Also Published As

Publication number Publication date
DE112018005502T5 (de) 2020-07-09
CN109923386A (zh) 2019-06-21
CN109923386B (zh) 2022-09-23
US20200232850A1 (en) 2020-07-23
WO2019073738A1 (ja) 2019-04-18
US11486766B2 (en) 2022-11-01
KR101992300B1 (ko) 2019-06-24
KR20190042500A (ko) 2019-04-24
JP6388992B1 (ja) 2018-09-12

Similar Documents

Publication Publication Date Title
JP2019074385A (ja) 被処理物の温度測定装置及び温度測定方法並びに攪拌・脱泡方法
US20230132266A1 (en) Vibrational alarms facilitated by determination of motor on-off state in variable-duty multi-motor machines
WO2011114658A1 (ja) 研磨装置、研磨パッドおよび研磨情報管理システム
US20190240672A1 (en) Monitoring and control device for the automated optimization of the grinding line of a roller system and corresponding method
CN101603809B (zh) 影像检测筛选机
JP7260214B2 (ja) 状態監視システム
KR20190082693A (ko) 세탁기 동적 수평 불량 감지 방법, 장치 및 시스템
WO2012098946A1 (ja) 自動分析装置
WO2017123834A1 (en) Cmp pad conditioner, pad conditioning system and method
CA2627731A1 (en) Developer carrying device, developing device, process unit, and image forming apparatus
WO2016117244A1 (ja) 容器の肉厚検査装置
JP6727754B2 (ja) 攪拌装置及び攪拌装置システム
WO2020170772A1 (ja) 遠心機において使用される検出器及び検出システム
JP2011027480A (ja) 自動分析装置と自動分析装置における試薬容器の試薬量管理方法
JP7305076B1 (ja) データ収集分析システム、測定データ収集ユニット、および、データ収集分析方法
JP2006504518A (ja) 遠心蒸発器における感温
JP2016159186A (ja) 攪拌装置及び温度測定ユニット
US20220349911A1 (en) Automatic analysis apparatus
CN219417215U (zh) 一种油茶籽无损成分含量检测装置
EP3504166B1 (en) Glass manufacturing methods
CN212110402U (zh) 一种消防设施检测专用的感温探测器
WO2016017738A1 (ja) 検査装置、及び、検査プログラム
TW202241640A (zh) 具備檢測器的量測晶圓、及其使用方法
WO2021186902A1 (ja) 自動分析装置
JP2012108061A (ja) 自動分析装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180316

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180316

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180815

R150 Certificate of patent or registration of utility model

Ref document number: 6388992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250