JP2019014625A - リチャージ管及び単結晶の製造方法 - Google Patents

リチャージ管及び単結晶の製造方法 Download PDF

Info

Publication number
JP2019014625A
JP2019014625A JP2017133366A JP2017133366A JP2019014625A JP 2019014625 A JP2019014625 A JP 2019014625A JP 2017133366 A JP2017133366 A JP 2017133366A JP 2017133366 A JP2017133366 A JP 2017133366A JP 2019014625 A JP2019014625 A JP 2019014625A
Authority
JP
Japan
Prior art keywords
raw material
single crystal
recharge
valve
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017133366A
Other languages
English (en)
Other versions
JP6708173B2 (ja
Inventor
拓生 小林
Takuo Kobayashi
拓生 小林
克 松本
Katsu Matsumoto
克 松本
三田村 伸晃
Nobuaki Mitamura
伸晃 三田村
園川 将
Susumu Sonokawa
将 園川
敏治 上杉
Toshiharu Uesugi
敏治 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2017133366A priority Critical patent/JP6708173B2/ja
Priority to PCT/JP2018/022035 priority patent/WO2019009010A1/ja
Priority to KR1020207000376A priority patent/KR20200026247A/ko
Priority to CN201880043909.1A priority patent/CN110869541A/zh
Publication of JP2019014625A publication Critical patent/JP2019014625A/ja
Application granted granted Critical
Publication of JP6708173B2 publication Critical patent/JP6708173B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】単結晶製造装置内への取り入れ、単結晶製造装置からの取り出しが簡単に行え、ナゲット状や粒状などの固形状の原料をルツボ内の融液面に直接投入することができ、さらに、融液から飛散した液跳ねをリチャージ管や石英ルツボのみに付着させることにより、単結晶製造装置を保護することが可能で、かつ、安価なリチャージ管を提供する。
【解決手段】原料を収容する円筒部材と、円筒部材の下部の開口部を開閉する円錐状のバルブを具備するリチャージ管であって、円筒部材は、内周面の下端部に下方に向かって内径が小さくなる円錐状の開口部である下部円錐口部を有し、かつ、下端部の下部円錐口部より上方に、下方に向かって内径が小さくなる円錐状の開口部である上部円錐口部を有し、バルブが下部円錐口部と上部円錐口部の間に位置するものであることを特徴とするリチャージ管。
【選択図】 図1

Description

本発明は、リチャージ管及び単結晶の製造方法に関する。
半導体集積回路の基板として使用されるシリコン単結晶ウェーハは、例えばチョクラルスキー(CZ)法によりシリコン単結晶を引上げて製造される。CZ法では、先ず、石英ルツボ内に原料の多結晶シリコン(多結晶原料)を充填し、石英ルツボを保持する黒鉛ルツボをその外周にある円筒状の黒鉛ヒーターで加熱し、多結晶シリコンを溶融させる。次いで、種結晶をシリコン融液に浸して絞り部を形成して無転位化した後、必要な直径と長さになるまでシリコン単結晶を成長させる。このCZ法において、シリコン単結晶の製造コストを低減する為に、シリコン単結晶引き上げに伴うルツボ内のシリコン融液の減少分を供給すべく、供給管を設けてルツボ内へ粒状の多結晶原料(以下、粒状原料と称す。)を、融液減少量に応じて供給する方法が知られている。
この方法の一つとして、シリコン単結晶成長中のルツボ内の融液面に、連続的に粒状原料を供給しながら単結晶を成長させる、いわゆる連続チャージ(CCCZ:Continuous Charging CZ)法があり、理論的には単結晶の製造歩留まりを著しく向上させて、その製造コストを大幅に低減できる。しかし、この方法では、シリコン単結晶成長量(通常は0.3g/秒〜1.0g/秒程度)と同量の粒状原料を少量ずつ、ゆっくりと供給しなければならないが、ルツボ内への供給時に融液が飛び跳ねたり、または湯面振動を起こしたりなどの攪乱を起こすことが多い。このためシリコン単結晶成長途中でシリコン単結晶が有転位化してしまうことでシリコン単結晶の成長続行ができなくなり、現実には製造コストの低減ができないことがしばしば起こる。
これを防止するために供給管の先端を絞り込んで供給速度をある程度抑制している。これにより供給速度が制限されて粒状原料の供給時間が長くなりすぎるという不都合があった。さらに、粒状原料の連続供給によってシリコン単結晶の成長が阻害されることを防止するために二重構造のルツボを使用した場合は、シリコン単結晶の界面が内側ルツボに接近しているので構造が複雑となってルツボのコストが高くなるという問題に加えて、低酸素化できないという欠点があった。
また、従来のバッチ式で原料追加を行なう場合の製造コストを低減する方法として、マルチプーリング(あるいはリチャージ引上げ(RCCZ))法が知られている(例えば、非特許文献1参照)。この方法は、抵抗率規格を満足する範囲のドーパント濃度を持つシリコン単結晶を引き上げた後、引き上げ重量分の棒(ロッド)状多結晶原料(以下、ロッド状原料と称す。)を吊り下げて石英ルツボ内に残余しているシリコン融液に浸しながら、徐々に溶融させて追加充填し、再度、同様のシリコン単結晶の引き上げを繰り返すことで、一度しか使用できない石英ルツボから複数本のシリコン単結晶を製造し、製造歩留まりを向上させると共に、石英ルツボのコストを低減させようとするものである。しかしながら、RCCZ法では、ロッド状原料の溶融に時間がかかることや、石英ルツボの溶解が大きいことや、重金属が濃縮してしまう等の欠点を有し、高純度シリコン単結晶育成の観点からは融液中に不純物が蓄積していくので、引上げ回数が制限される。
以上のような状況から、原料供給は短時間であるほどシリコン単結晶の製造時間を短縮してシリコン単結晶の生産性を向上できるので、石英ルツボに損傷を与えない範囲で原料供給速度が速いほどよい。このため、特許文献1などに示されているような、塊状多結晶原料(以下、ナゲット原料と称す。)を用いたリチャージ管などの原料供給装置によるリチャージ方法がより好ましいとされている。
特許第4103593号 特開2005−001977号公報 特開2010−083685号公報 特開2010−006657号公報
Fumio Shimura,Semiconductor Silicon Crystal Technology,p178−p179,1989
リチャージ管などの原料供給装置によってナゲット原料を石英ルツボ内に充填する際には、ナゲット原料が融液に衝突すると、融液がシリコン単結晶製造装置内で飛散する。このため、装置部品の寿命の低下やシリコン単結晶が製造できなくなるという問題があった。また、シリコン融液上部に位置する熱遮蔽部材にシリコン融液が飛散し、原料の溶融時やシリコン単結晶の成長時に飛散したシリコンの塊(以下、液跳ねと称す)がシリコン融液内に落下して混入することで、成長中のシリコン単結晶への付着や、シリコン融液への混入時の湯面振動が生じたり、固化したシリコンが単結晶に付着したりすることで、シリコン単結晶に転位が頻繁に発生し、多結晶化することにより、シリコン単結晶の生産効率を大幅に低下させてしまうという問題があった。
また、カーボンなどから成る熱遮蔽部材に付着した液跳ねがシリコン融液内に混入することにより炭素濃度が上昇してしまう。これに対して、融液の飛散を防止するために融液表面を固化すると、固化の進行状況によっては石英ルツボにダメージを与えて石英ルツボの内表面を剥離させてしまい、剥離した石英屑が成長中のシリコン単結晶に付着し、シリコン単結晶に転位が発生して多結晶化してしまう現象が頻繁に発生し、シリコン単結晶の生産効率を大幅に低下させてしまうという問題があった。さらに、固化が過度に進行すると、石英ルツボがヒビ割れを起こして石英ルツボ内の融液が外側に漏れたりする問題が考えられる。また、ヒーターパワーを下げて融液表面を固化させた後に、原料を充填し、再度、ヒーターパワーを上げて溶融を行うために、固化を形成して、その後溶融するまでの時間ロスが発生する。
以上を鑑みて、融液に原料を投入した際に飛散した融液を例えばリチャージ管等により防止することで、シリコン単結晶製造装置内を保護することが求められる。これまでに融液の飛散防止を目的とした以下のようなリチャージ管が開示されている。
例えば、特許文献2では、内側容器、外側容器が摺動することによって原料投入を行う構造となっている。このため、内側容器と外側容器のクリアランスを確保するために精度が要求されることや二重構造のため複雑になり、高価となる。また、開口部に近い下層部に粒径が25mm以下の細粒原料を充填する制約がある。下部にカバーを取り付けることにより液跳ね防止が可能となっているが、外側容器が降下する必要があるため、チャンバーが大型化する。また、カバーは下部の径が拡大しているため、カバー付近に原料が落下した場合には飛散防止効果が低下する。飛散防止を行うためにはカバー先端を湯面に接触させて原料を投入しなければ確実に効果を得ることは難しい。
また、特許文献3には、リチャージ管の管状部を二重構造とすることが開示されているが、二重構造による複雑化や可動カバーの降下によりチャンバーの大型化、可動カバー付近に原料が落下した場合には飛散防止効果が低下する。
また、特許文献4には、原料充填容器と原料供給部カバーの二重構造となっており、原料供給部カバーの先端に行くに従って径小となっている。前記の構造同様に二重構造のため構造が複雑になってしまうことや、可動カバー底面がリチャージ管外径まで覆う構造ではないため、可動カバー下端部に飛散した融液を遮ることができず、チャンバー内に飛散する液跳ねを抑制することができない。
本発明は前述のような問題に鑑みてなされたもので、単結晶製造装置内への取り入れ、単結晶製造装置からの取り出しが簡単に行え、ナゲット状や粒状などの固形状の原料をルツボ内の融液面に直接投入することができ、さらに、融液から飛散した液跳ねをリチャージ管や石英ルツボのみに付着させることにより、単結晶製造装置を保護することが可能で、かつ、安価なリチャージ管を提供することを目的とする。また、融液から飛散した液跳ねから単結晶製造装置を保護するとともに、単結晶の生産性や品質の低下を抑制することが可能な単結晶の製造方法を提供することを目的とする。
上記目的を達成するために、本発明は、原料を収容する円筒部材と、該円筒部材の下部の開口部を開閉する円錐状のバルブを具備するリチャージ管であって、前記円筒部材は、内周面の下端部に下方に向かって内径が小さくなる円錐状の開口部である下部円錐口部を有し、かつ、前記下端部の前記下部円錐口部より上方に、下方に向かって内径が小さくなる円錐状の開口部である上部円錐口部を有し、前記バルブが前記下部円錐口部と前記上部円錐口部の間に位置するものであることを特徴とするリチャージ管を提供する。
このようなリチャージ管であれば、下部円錐口部によって、リチャージ管の中心軸付近に原料を落下させることができるため、原料の融液への衝突によって発生する液跳ねをリチャージ管の内壁及び石英ルツボの内壁に付着させ、熱遮蔽部材やヒーターなどのチャンバー内の部材に液跳ねが付着することを防ぐことができる。その結果、単結晶製造装置を構成する部材の劣化や、融液への意図しない不純物の混入を防止することができる。また、このようなリチャージ管は、単結晶製造装置への取入れ、取り出しが容易である上に、構造も簡単なので安価に製造可能なものである。
このとき、前記下部円錐口部の内径φ、前記バルブの最外径φ、前記上部円錐口部の内径φが、φ>φ>φの関係を満たすものであることが好ましい。
φ>φを満たすものであれば、上部円錐口部とバルブにより原料を簡単に封止することができる。さらに、φ>φであることで、リチャージ管の製造、組み立て時などにバルブが下部円錐口部を通過することができ、また、リチャージ管が下部円錐口部から十分な量の原料を供給できるものとなる。
またこのとき、前記円筒部材と前記バルブが石英製のものであることが好ましい。
シリコン単結晶インゴットを引き上げる場合には、円筒部材とバルブを石英製とすることで、原料の意図しない不純物汚染を防止でき、その結果、製造するシリコン単結晶インゴットの不純物汚染を防止することができる。
また、前記円筒部材と前記バルブが透明石英ガラス製のものであることが好ましい。
シリコン単結晶インゴットを引き上げる場合に、純度の高い透明石英ガラスから成る円筒部材とバルブを用いれば、原料の不純物汚染をより確実に防止でき、その結果、製造するシリコン単結晶インゴットの不純物汚染をより確実に防止することができる。
また、本発明は、上記目的を達成するために、上記のリチャージ管に収容した原料を石英ルツボ内に投入し、該投入した原料を溶融して原料融液とし、該原料融液から単結晶を引き上げて単結晶を製造する方法であって、前記原料を前記石英ルツボ内に投入する前に、前記リチャージ管の前記上部円錐口部と前記バルブを接触させて該上部円錐口部を閉じた状態で前記円筒部材内に前記原料を充填し、その後、前記バルブを前記上部円錐口部から離間させて前記上部円錐口部を開け、前記上部円錐口部と前記下部円錐口部の間に位置させることで前記原料を前記石英ルツボ内に投入することを特徴とする単結晶の製造方法を提供する。
このような単結晶の製造方法であれば、原料融液から飛散した液跳ねから単結晶製造装置を保護することが可能となり、単結晶製造装置を構成する部材の劣化や、原料融液への意図しない不純物の混入を防止することができる。
このとき、前記リチャージ管を用いた原料投入を、前記石英ルツボ内の原料融液の表面に未溶融の原料がない状態で行うことが好ましい。
このような状態で原料を投入することで、短時間でリチャージを行うことができるとともに、より確実にリチャージ管の中心軸付近に原料を落下させることができるため、液跳ねをより確実にリチャージ管の内壁及び石英ルツボの内壁に付着させることができる。
また、本発明の単結晶の製造方法では、前記単結晶を育成した後、前記リチャージ管を用いた原料投入により前記石英ルツボ内に原料をリチャージし、次の単結晶を育成することにより、1つの石英ルツボから複数本の単結晶を成長させることが好ましい。
本発明の単結晶の製造方法は、1つの石英ルツボから複数の単結晶を引き上げる際の、原料のリチャージにおいて、リチャージに要する時間を短縮できるとともに、液跳ねによる単結晶製造装置を構成する部材の劣化や、融液への不純物の混入を防止することが可能であり、このような場合に好適な方法である。
本発明のリチャージ管であれば、単結晶製造装置内への取り入れ、単結晶製造装置からの取り出しを簡単に行うことができ、さらに、融液から飛散した液跳ねをリチャージ管や石英ルツボのみに付着させることにより、単結晶製造装置を保護することが可能で、かつ、安価なものである。また、本発明の単結晶製造方法は、融液から飛散した液跳ねから単結晶製造装置を保護することが可能であり、単結晶製造装置の劣化及び単結晶の不純物汚染を抑制することができるとともに、生産性、歩留まりを向上させることができる。
本発明のリチャージ管の一例を示した概略図である。 本発明のリチャージ管の下部円錐口部の形状の例を示した概略図である。 本発明のリチャージ管による原料のリチャージの態様を示す概略図である。 比較例1における原料のリチャージの態様を示す概略図である。 比較例2における原料のリチャージの態様を示す概略図である。
以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
上記のように、従来のリチャージ管では、原料の投入時に液跳ねが単結晶製造装置の構成部材に付着し、構成部材の劣化や、単結晶への意図しない不純物の混入が発生してしまうという問題があった。
そこで、本発明者はこのような問題を解決すべく鋭意検討を重ねた。その結果、リチャージ管の本体を構成する円筒部材として、その内周面の下端部及び該下端部の上方の2か所に、下方に向かって内径が小さくなる円錐状の開口部を有するものを用いれば、液跳ねのほとんどを円筒部材の内壁又は石英ルツボの内壁に付着させることが可能となることを知見し、本発明を完成させた。
本発明のリチャージ管は、ナゲット状原料、粒状原料、又はこれら両方を混合した原料を充填することが可能な略円筒状のリチャージ管であって、リチャージ管本体がフックにより吊るされた状態で単結晶製造装置に取り入れることができるものである。そして、リチャージ管ワイヤーに繋がれた円錐状のバルブがリチャージ管内部の上部円錐口部から離れ、リチャージ管本体内に保持されていた固形状原料がルツボ内に充填される。まず、このような本発明のリチャージ管の構成について図1を参照して説明する。図1に示すように、本発明のリチャージ管1は、主に、原料を収容する円筒部材2と、該円筒部材2の下部の開口部を開閉する円錐状のバルブ3を具備する。
円筒部材2は、内部にシリコン多結晶などの固形状原料を保持するための原料充填室4を有しており、また、内周面の下端部に下方に向かって内径が小さくなる円錐状の開口部である下部円錐口部5と、下端部の下部円錐口部5より上方に、下方に向かって内径が小さくなる円錐状の開口部である上部円錐口部6とを有している。
バルブ3は、下部円錐口部5と上部円錐口部6の間に位置しており、また、バルブ3は上部円錐口部6の下端部に脱着可能に設けられている。これによって、上部円錐口部6とバルブ3との距離の調整により原料の投入を調節することができ、また、上部円錐口部6とバルブ3とを接触させて開口を閉じた状態とすれば、原料充填室4内に原料を保持することができる。
また、円筒部材2の下端部の下部円錐口部5は、下方に向かって内径が小さくなる円錐状の開口部であるため、円筒部材2の下端からルツボに投入される原料は、円筒部材2の中心軸付近で融液に投入され、液跳ねがルツボの内壁又は円筒部材2の内壁に付着しやすくなる。このとき特に、円筒部材2の下部円錐口部5より上方、かつ、上部円錐口部6より下方の下部筒部7が液跳ねの遮蔽部材として作用する。その結果、熱遮蔽部材やヒーターなどのチャンバー内の部材に液跳ねが付着することを防ぐことができ、単結晶製造装置を構成する部材の劣化や、原料融液への意図しない不純物の混入を防止することができる。また、単結晶製造装置への取り入れ、取り出しも極めて容易で、かつ、簡単な構造であるため安価なものでもある。
また、リチャージ管底部に液跳ねを付着させるために、下部円錐口部5の外径は下部筒部の外径と同じであることが望ましい。下部円錐口部5の形状は、例えば、図2のような形状とすることができる。具体的には、図1及び図2(a)に示すように断面にして三角形状のものや、図2(b)のように外側を筒状で覆うものや、図2(c)のように下端が円盤状になっているものが考えられる。
上部円錐口部6と下部円錐口部5の円筒部材2の内壁に対する角度は、リチャージ管1の長さ、直径により最適な角度は異なるが、原料をスムースに落下させるために0°よりも大きく90°未満であることが望ましい。例えば、内径300mm程度のリチャージ管においては、上部円錐口部6と下部円錐口部5の上記角度は30°以上、70°以下であることが好ましい。円筒部材2の長軸方向の上部円錐口部6の長さは、上部円錐口部6の内径に対して約12〜58%、円筒部材2の長軸方向の下部円錐口部5の長さは、下部円錐口部5の内径に対して約8〜42%であることが好ましい。
また、図1に示すように、下部円錐口部5の内径φ、バルブ3の最外径φ、上部円錐口部6の内径φが、φ>φ>φの関係を満たすものであることが好ましい。このようなものであれば、原料の投入時に、原料が円筒部材2の内壁とバルブ3の最外径の間を通過し、リチャージ管1の下部の下部円錐口部5で原料は中心に向かって落下でき、詰まったり、滞ったりすることなくスムースに原料を投入できる。
また、円筒部材2とバルブ3が石英製のものであることが好ましい。さらに、円筒部材2とバルブ3が高純度の透明石英ガラス製であることがより好ましい。製造する単結晶をシリコン単結晶とした場合、原料としてはシリコン多結晶などが用いられるが、この際に原料と直接接触する円筒部材2とバルブ3が石英製、さらには高純度の透明石英ガラス製であることで、原料に不純物が混入することを抑制できる。
また、リチャージ管1は、原料を原料充填室4に封止する蓋8と、原料充填室4の上部(円筒部材2の上部)に嵌合して蓋8を原料充填室4に固定するためのガイド9と、原料充填室4をシリコン単結晶製造装置の引き上げワイヤーに吊るす為のフック10と、フック10とバルブ3を繋ぐタングステン製等のリチャージ管ワイヤー11と、蓋8の中心部に配設され、リチャージ管ワイヤー11が原料充填室4の略中心を貫くように位置させるストッパー12と、シリコン単結晶製造装置内でリチャージ管1が支持されるためのフランジ部13とを備えていてもよい。
次に、このようなリチャージ管1を用いた本発明の単結晶の製造方法について説明する。まず、本発明の単結晶の製造に使用できる単結晶製造装置を、図3を参照して説明する。図3は、単結晶製造装置20における、本発明のリチャージ管1による原料21のリチャージの態様を示す概略図である。
単結晶製造装置20は、チャンバー22を具備し、チャンバー22の内部には、黒鉛ルツボ23に支持された石英ルツボ24が配置されている。石英ルツボ24の内部には、原料である多結晶シリコンなどが融解された原料融液25が収容される。
また、チャンバー22の内部には、ヒーター26が配置されており、このヒーター26により石英ルツボ24の内部に投入された原料が加熱溶融されて原料融液25になる。なお、原料融液25が得られた後も、ヒーター26により加熱は続けられる。また、チャンバー22の内部には、ヒーター26の周囲を取り囲むように断熱材27が配置されている。また、黒鉛ルツボ23と石英ルツボ24は、底面から回転可能な支持軸28により支持されている。さらに、石英ルツボ24の上方には熱遮蔽部材29を有する。
また、チャンバーの上部には、リチャージ管1や単結晶を吊るすための引き上げワイヤー30、及びリチャージ管1のフランジ部13を支持する支持リング31が配設されている。
次に、このような単結晶製造装置20を用いる場合における本発明の単結晶の製造方法を説明する。本発明の単結晶の製造方法は、リチャージ管1に収容した原料21を石英ルツボ24内に投入し、該投入した原料21を溶融して原料融液25とし、該原料融液25から単結晶を引き上げて単結晶を製造する方法である。
本発明では、まず、原料21を図3のような石英ルツボ24内に投入する前に、図1のようなリチャージ管1の上部円錐口部6とバルブ3を接触させて上部円錐口部6を閉じた状態で円筒部材2内に原料21を充填する。
続いて、リチャージ管1を単結晶製造装置20に装着する。その後、バルブ3を上部円錐口部6から離間させて上部円錐口部6を開け、バルブ3を上部円錐口部6と下部円錐口部5の間に位置させることで原料21を図3のように石英ルツボ24内に投入する。
次に、投入した原料21を溶融した原料融液25から、単結晶を引き上げる。
本発明では、上記のリチャージ管1を用いた原料21の投入を石英ルツボ24内の原料融液25の表面に未溶融の原料がない状態で行うことが好ましい。石英ルツボ24内に固形状の原料が存在していない状態で原料の投入を行うと、リチャージ管1から落下した原料が積載されて山を形成することがないため、この山から崩れた原料がリチャージ管1の外径よりも外側の融液面へ落下することがなくなる。その結果、下部円錐口部5に液跳ねが付着し、チャンバー22内の部材に付着しないため、液跳ね抑制効果をより向上させることができる。
また、本発明では、単結晶を育成した後、リチャージ管1を用いた原料投入により石英ルツボ24内に原料21をリチャージし、次の単結晶を育成することにより、1つの石英ルツボ24から複数本の単結晶を成長させることが好ましい。これにより、より多くの原料をルツボに充填することが可能となる。ルツボ内に初期投入されている原料はルツボを囲むように設置されているヒーター26により加熱され、原料融液25が形成される(初期チャージ)。ルツボ内の原料21は固形原料の空隙率が大きく、原料21の充填率が小さいために、通常、リチャージ管1を用いて原料の追加投入が行われる(追いチャージ)。本発明のリチャージ管1は、この追いチャージにおいて使用することも可能である。また、上記の通り、結晶取り出し後、2本目以降の結晶製造における、原料の追加投入(リチャージ)に用いることも可能である。
以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例)
図1に示すような本発明のリチャージ管1を図3の単結晶製造装置20における原料の投入に用いた。ここでは、バルブ3が下部円錐口部5を通過でき、かつ、バルブ3と上部円錐口部6とが原料充填室4内の固形状原料の栓としての役割を持つように、下部円錐口部5の内径φを240mm、バルブ3の最外径φを220mm、上部円錐口部6の内径φを200mmとした。即ち、φ(240mm)>φ(220mm)>φ(200mm)を満たすものとした。また、液跳ねを遮蔽する下部筒部7の長さ(上部円錐口部6と下部円錐口部5の間の距離)は200mmとした。また、固形状原料が下部筒部7をスムースに通過するように、バルブ3の最外径から下部筒部7の内径までの距離は充填原料の大きさ以上とし、具体的には、リチャージ管内径(円筒部材2の内径、下部筒部7の内径)を300mm、上部円錐口部6、及び下部円錐口部5の円筒部材2の内壁に対する角度を50°とした。
このような本発明のリチャージ管を使用した単結晶の製造は以下のように行った。まず、図3に示した単結晶育成装置に直径32インチ(約810mm)の石英ルツボ24を装備して、375kgの多結晶シリコン原料を溶解し、図1に示す本発明のリチャージ管に35kgの多結晶シリコン原料21を充填し、リチャージ(追いチャージ)を実施した。使用した多結晶シリコン原料は直径35mm程度の多結晶シリコン原料を用いた。ヒーター26の加熱電力は多結晶シリコン原料の溶融パワーから変化させること無くリチャージ管1によりリチャージ(追いチャージ)を行った。
ワイヤー30を降下させると、バルブ3が同期して降下することで、バルブ3が上部円錐口部6から離間し、原料充填室4から多結晶シリコン原料が投入された。その際、リチャージ管1のフランジ部13が支持リング31に接触した時の、リチャージ管1の底面(下端)から石英ルツボ24内の原料融液25までの距離を70mmに設定した。このとき、石英ルツボ24に充填された多結晶シリコン原料の重量分は、支持軸28により黒鉛ルツボ23及び石英ルツボ24を降下させることで、リチャージ管1の底面から石英ルツボ24内の原料融液25までの距離を70mmに保ち、リチャージを行った。その後、リチャージ管1を取り出し、リチャージ管1の内壁への液跳ねを確認した。また、CZ法によりシリコン単結晶を成長させ、シリコン単結晶を取り出した後に、チャンバー22内を冷却して、チャンバー22内の装置構成部材への液跳ねを確認した。
その結果、下部筒部7の内部や下部円錐口部5の底面への液跳ねは確認されたが、リチャージ管本体(円筒部材2)の外側への液跳ねは確認されなかった。また、シリコン単結晶を取り出した後のチャンバー1内の熱遮蔽部材29やヒーター26、断熱材27などへの液跳ね及び液跳ね跡は確認されなかった。原料21が原料融液25に衝突して発生した液跳ねは、リチャージ管内部に付着する経路a、リチャージ管下端に付着する経路a、石英ルツボに付着する経路aのように飛散したと考えられる。石英ルツボに付着した液跳ねは溶融工程において溶解して原料融液25となる。以上のように、本発明のリチャージ管による液跳ねの抑制効果を確認できた。
(比較例1)
図4に示すように、単結晶育成装置20に直径32インチ(約810mm)の石英ルツボ24を装備して、375kgのシリコン原料を溶解し、特許文献1に記載されているような、下部円錐口部も上部円錐口部も有していないリチャージ管101に35kgの多結晶シリコン原料を充填し、リチャージ(追いチャージ)を実施した。使用した多結晶シリコン原料は直径35mm程度のものを用いた。ヒーター26の加熱電力は多結晶シリコン原料の溶融パワーから変化させること無くリチャージ管101によりリチャージ(追いチャージ)を行った。ワイヤー30を降下させると、円錐形状のバルブ103が同期して降下することで多結晶シリコン原料が投入される。その際、リチャージ管101のフランジ部113が支持リング31に接触した時のリチャージ管101の底面から石英ルツボ24内の原料融液25までの距離を150mmに設定した。これは原料投入時に、最下端のバルブ103が降下し、石英ルツボ24内の原料融液25との接触を回避するためである。この際、石英ルツボ24に充填された多結晶シリコン原料の重量分は、支持軸28、黒鉛ルツボ23、及び石英ルツボ24を降下させることで、リチャージ管101の底面から石英ルツボ24内の原料融液25までの距離を150mmに保ち、リチャージを行った。その後、リチャージ管101を取り出し、リチャージ管101への液跳ねを確認した。また、CZ法によりシリコン単結晶を成長させ、シリコン単結晶を取り出した後に、チャンバー22内を冷却して、液跳ねを確認した。
その結果、バルブ103の底に加えて、リチャージ管101外側への液跳ねが確認された。また、シリコン単結晶を取り出した後、チャンバー22内の熱遮蔽部材29やヒーター26、断熱材27などへの液跳ね及び液跳ね跡が確認された。原料が融液25に衝突して発生した液跳ねは、熱遮蔽部材に付着する経路b、チャンバー内部に付着する経路b、ルツボに付着する経路b、リチャージ管外側に付着する経路bのように飛散したと考えられる。以上より、従来のリチャージ管101では大幅に液跳ねが生じることがわかった。
(比較例2)
図5に示すような単結晶育成装置20に直径32インチ(約810mm)の石英ルツボ24を装備して、375kgのシリコン原料を溶解し、特許文献2、3に代表されるような、下端に下部円錐口部を有していないリチャージ管201に35kgの多結晶シリコン原料(原料21)を充填し、リチャージ(追いチャージ)を実施した。使用した多結晶シリコン原料は直径35mm程度のものを用いた。ヒーター26の加熱電力は多結晶シリコン原料の溶融パワーから変化させること無くリチャージ管201によりリチャージ(追いチャージ)を行った。ワイヤー30を降下させると、円錐形状のバルブ203が同期して降下することで、バルブ203とリチャージ管201の本体の内側との間を多結晶シリコン原料が通過し、投入される。その際、リチャージ管201のフランジ部213が支持リング31に接触した時のリチャージ管201の底面から石英ルツボ24内の原料融液25までの距離を70mmに設定した。この際、石英ルツボ24に充填された多結晶シリコン原料の重量分は、支持軸28、黒鉛ルツボ23、及び石英ルツボ24を降下させることで、リチャージ管201の底面から石英ルツボ24内の原料融液25までの距離を70mmに保ち、リチャージを行った。その後、リチャージ管201を取り出し、リチャージ管201への液跳ねを確認した。また、CZ法によるシリコン単結晶を成長させ、シリコン単結晶を取り出した後に、チャンバー22内を冷却して、液跳ねを確認した。
その結果、リチャージ管201内部への液跳ねは確認されたが、リチャージ管201の本体の外周への液跳ねは確認されなかった。しかし、シリコン単結晶を取り出した後、チャンバー22内の熱遮蔽部材29やヒーター26、断熱材27などへの液跳ね及び液跳ね跡が確認された。原料21が原料融液25に衝突して発生した液跳ねは、熱遮蔽部材に付着する経路c、チャンバー内部に付着する経路c、ルツボに付着する経路c、リチャージ管内部に付着する経路cのように飛散したと考えられる。以上より、リチャージ管による液跳ねの抑制効果は小さかった。
以上より、従来のリチャージ管によるリチャージ(比較例1、2)ではチャンバー内、熱遮蔽部材等への湯飛び(液跳ね)が確認されたのに対して、本発明のリチャージによるリチャージ(実施例)では、チャンバー内、熱遮蔽部材等への湯飛び(液跳ね)は確認されなかった。また、比較例1、2では、液跳ねにより熱遮蔽部材にシリコン融液が多く付着したことによる熱遮蔽部材の寿命の低下により、熱遮蔽部材をライフエンドまで使用することが出来ず、早期に交換しなければならなかった。従来のリチャージ管によるリチャージではライフエンドに対して、70%程度で熱遮蔽部材を交換していたのに対して、本発明のリチャージ管によるリチャージでは液跳ねが付着しないため、熱遮蔽部材をライフエンドまで使用することが可能であった。
また、熱遮蔽部材に液跳ねが付着し、その液跳ねがシリコン単結晶成長中に融液内に混入することで、成長中のシリコン単結晶への付着や、シリコン融液への混入時の湯面振動や、固化したシリコンがシリコン単結晶に付着して、シリコン単結晶に転位が発生する。各リチャージ方法による、有転位化による再引上げを含む有転位化率を下記の表1に示す。表1に示すように、従来のリチャージ(比較例1、2)では、一本の結晶成長に対する有転位化率が0.34回/本であったが、本発明のリチャージ(実施例)では、一本の結晶成長に対する有転位化率が0.25回/本となり、本発明のリチャージ管によるリチャージでは有転位化率が従来比で26%低下することが分かった。
Figure 2019014625
また、熱遮蔽部材に付着した液跳ねが操業時に融液内に混入する場合、成長した単結晶の内の炭素濃度が増加して不良が発生する。各リチャージ方法による、本来良品となる長さに対する炭素濃度による不良長さ(炭素濃度不良率)を表2に示す。表2に示すように、従来のリチャージ管によるリチャージ(比較例1、2)では炭素濃度不良率が2.3%であったが、本発明のリチャージ管によるリチャージでは、炭素濃度不良率が0.5%となり、本発明のリチャージでは炭素濃度不良率が従来比で78%低下することが分かった。
Figure 2019014625
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
1…リチャージ管、 2…円筒部材、 3…バルブ、
4…原料充填室、 5…下部円錐口部、 6…上部円錐口部、
7…下部筒部、 8…蓋、 9…ガイド、 10…フック、
11…リチャージ管ワイヤー、 12…ストッパー、 13…フランジ部、
20…単結晶製造装置、 21…原料、 22…チャンバー、
23…黒鉛ルツボ、 24…石英ルツボ、 25…原料融液、
26…ヒーター、 27…断熱材、 28…支持軸、 29…熱遮蔽部材、
30…引き上げワイヤー、 31…支持リング。

Claims (7)

  1. 原料を収容する円筒部材と、該円筒部材の下部の開口部を開閉する円錐状のバルブを具備するリチャージ管であって、
    前記円筒部材は、内周面の下端部に下方に向かって内径が小さくなる円錐状の開口部である下部円錐口部を有し、かつ、前記下端部の前記下部円錐口部より上方に、下方に向かって内径が小さくなる円錐状の開口部である上部円錐口部を有し、
    前記バルブが前記下部円錐口部と前記上部円錐口部の間に位置するものであることを特徴とするリチャージ管。
  2. 前記下部円錐口部の内径φ、前記バルブの最外径φ、前記上部円錐口部の内径φが、φ>φ>φの関係を満たすものであることを特徴とする請求項1に記載のリチャージ管。
  3. 前記円筒部材と前記バルブが石英製のものであることを特徴とする請求項1又は請求項2に記載のリチャージ管。
  4. 前記円筒部材と前記バルブが透明石英ガラス製のものであることを特徴とする請求項3に記載のリチャージ管。
  5. 請求項1から請求項4のいずれか一項に記載のリチャージ管に収容した原料を石英ルツボ内に投入し、該投入した原料を溶融して原料融液とし、該原料融液から単結晶を引き上げて単結晶を製造する方法であって、
    前記原料を前記石英ルツボ内に投入する前に、前記リチャージ管の前記上部円錐口部と前記バルブを接触させて該上部円錐口部を閉じた状態で前記円筒部材内に前記原料を充填し、
    その後、前記バルブを前記上部円錐口部から離間させて前記上部円錐口部を開け、前記上部円錐口部と前記下部円錐口部の間に位置させることで前記原料を前記石英ルツボ内に投入することを特徴とする単結晶の製造方法。
  6. 前記リチャージ管を用いた原料投入を、前記石英ルツボ内の原料融液の表面に未溶融の原料がない状態で行うことを特徴とする請求項5に記載の単結晶の製造方法。
  7. 前記単結晶を育成した後、前記リチャージ管を用いた原料投入により前記石英ルツボ内に原料をリチャージし、次の単結晶を育成することにより、1つの石英ルツボから複数本の単結晶を成長させることを特徴とする請求項5又は請求項6に記載の単結晶の製造方法。
JP2017133366A 2017-07-07 2017-07-07 リチャージ管及び単結晶の製造方法 Active JP6708173B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017133366A JP6708173B2 (ja) 2017-07-07 2017-07-07 リチャージ管及び単結晶の製造方法
PCT/JP2018/022035 WO2019009010A1 (ja) 2017-07-07 2018-06-08 リチャージ管及び単結晶の製造方法
KR1020207000376A KR20200026247A (ko) 2017-07-07 2018-06-08 리차지관 및 단결정의 제조방법
CN201880043909.1A CN110869541A (zh) 2017-07-07 2018-06-08 再装填管及单晶的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017133366A JP6708173B2 (ja) 2017-07-07 2017-07-07 リチャージ管及び単結晶の製造方法

Publications (2)

Publication Number Publication Date
JP2019014625A true JP2019014625A (ja) 2019-01-31
JP6708173B2 JP6708173B2 (ja) 2020-06-10

Family

ID=64950009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017133366A Active JP6708173B2 (ja) 2017-07-07 2017-07-07 リチャージ管及び単結晶の製造方法

Country Status (4)

Country Link
JP (1) JP6708173B2 (ja)
KR (1) KR20200026247A (ja)
CN (1) CN110869541A (ja)
WO (1) WO2019009010A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111977246B (zh) * 2020-06-01 2022-06-17 徐州鑫晶半导体科技有限公司 用于加料装置的下料导管及其加工方法、加料装置
KR102460012B1 (ko) 2021-01-19 2022-10-28 에스케이실트론 주식회사 원료 공급 호퍼

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285351A (ja) * 2007-05-16 2008-11-27 Sumco Corp 原料供給装置及びこれを備えた単結晶引上げ装置、並びに原料供給方法
JP2012140291A (ja) * 2010-12-28 2012-07-26 Siltronic Japan Corp 多結晶シリコン原料のリチャージ方法
JP2014240342A (ja) * 2013-06-11 2014-12-25 エルジー・シルトロン・インコーポレーテッド 充電装置
WO2016152057A1 (ja) * 2015-03-25 2016-09-29 株式会社トクヤマ 投入装置、塊状シリコン原料の供給方法、シリコン単結晶製造装置およびシリコン単結晶の製造方法
WO2017068754A1 (ja) * 2015-10-19 2017-04-27 信越半導体株式会社 単結晶の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4103593B2 (ja) 2001-02-28 2008-06-18 信越半導体株式会社 固形状多結晶原料のリチャージ管及びそれを用いた単結晶の製造方法
JP3953042B2 (ja) 2003-05-16 2007-08-01 株式会社Sumco チョクラルスキー法による原料供給装置および原料供給方法
JP2010006657A (ja) 2008-06-27 2010-01-14 Kyocera Corp シリコン単結晶の製造装置およびシリコン単結晶の製造方法
JP2010083685A (ja) 2008-09-29 2010-04-15 Kyocera Corp 原料供給装置、単結晶製造装置および単結晶の製造方法
CN101403136B (zh) * 2008-11-07 2010-09-08 王飞 一种硅单晶炉连续投料装置及设有该装置的硅单晶炉
CN202543383U (zh) * 2012-03-23 2012-11-21 内蒙古中环光伏材料有限公司 用于颗粒原料的复投加料器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285351A (ja) * 2007-05-16 2008-11-27 Sumco Corp 原料供給装置及びこれを備えた単結晶引上げ装置、並びに原料供給方法
JP2012140291A (ja) * 2010-12-28 2012-07-26 Siltronic Japan Corp 多結晶シリコン原料のリチャージ方法
JP2014240342A (ja) * 2013-06-11 2014-12-25 エルジー・シルトロン・インコーポレーテッド 充電装置
WO2016152057A1 (ja) * 2015-03-25 2016-09-29 株式会社トクヤマ 投入装置、塊状シリコン原料の供給方法、シリコン単結晶製造装置およびシリコン単結晶の製造方法
WO2017068754A1 (ja) * 2015-10-19 2017-04-27 信越半導体株式会社 単結晶の製造方法

Also Published As

Publication number Publication date
CN110869541A (zh) 2020-03-06
KR20200026247A (ko) 2020-03-10
WO2019009010A1 (ja) 2019-01-10
JP6708173B2 (ja) 2020-06-10

Similar Documents

Publication Publication Date Title
JP4103593B2 (ja) 固形状多結晶原料のリチャージ管及びそれを用いた単結晶の製造方法
JP4345624B2 (ja) チョクラルスキー法による原料供給装置および原料供給方法
KR100800212B1 (ko) 단결정 성장 장치에 고체 원료를 공급하는 장치 및 방법
JP5413354B2 (ja) シリコン単結晶引き上げ装置及びシリコン単結晶の製造方法
JP2001520168A (ja) ポリシリコン装填物からシリコンメルトを製造する方法
TWI453310B (zh) 再裝填原料多晶矽的方法
JP2008285351A (ja) 原料供給装置及びこれを備えた単結晶引上げ装置、並びに原料供給方法
JP2010083685A (ja) 原料供給装置、単結晶製造装置および単結晶の製造方法
JP6708173B2 (ja) リチャージ管及び単結晶の製造方法
EP2322696A1 (en) Method of manufacturing silicon single crystal
JP6028128B1 (ja) 投入装置、塊状シリコン原料の供給方法、シリコン単結晶製造装置およびシリコン単結晶の製造方法
JP2005001977A (ja) チョクラルスキー法による原料供給装置および原料供給方法
JP4788444B2 (ja) シリコン単結晶の製造方法
JP2009269799A (ja) 単結晶の成長方法および単結晶の引き上げ装置
TW202328509A (zh) 用於涉及矽進料管之惰性氣體控制之單晶矽錠生長之方法
US20090293802A1 (en) Method of growing silicon single crystals
JP3085567B2 (ja) 多結晶のリチャージ装置およびリチャージ方法
JP4788445B2 (ja) シリコン単結晶の引上げ方法
JP2531415B2 (ja) 結晶成長方法
JP2007277069A (ja) 固形状原料のリチャージ装置およびリチャージ方法
JP2007254162A (ja) 単結晶製造装置およびリチャージ方法
JP2010006657A (ja) シリコン単結晶の製造装置およびシリコン単結晶の製造方法
JP4563951B2 (ja) 固形状原料のリチャージ装置
JP2690419B2 (ja) 単結晶の育成方法及びその装置
JP7412276B2 (ja) 原料シリコンの充填方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200504

R150 Certificate of patent or registration of utility model

Ref document number: 6708173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250