WO2016152057A1 - 投入装置、塊状シリコン原料の供給方法、シリコン単結晶製造装置およびシリコン単結晶の製造方法 - Google Patents

投入装置、塊状シリコン原料の供給方法、シリコン単結晶製造装置およびシリコン単結晶の製造方法 Download PDF

Info

Publication number
WO2016152057A1
WO2016152057A1 PCT/JP2016/001307 JP2016001307W WO2016152057A1 WO 2016152057 A1 WO2016152057 A1 WO 2016152057A1 JP 2016001307 W JP2016001307 W JP 2016001307W WO 2016152057 A1 WO2016152057 A1 WO 2016152057A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
silicon
single crystal
bulk silicon
quartz
Prior art date
Application number
PCT/JP2016/001307
Other languages
English (en)
French (fr)
Inventor
浩二 福原
橘 昇二
渉 糸山
和宏 福永
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2016533224A priority Critical patent/JP6028128B1/ja
Publication of WO2016152057A1 publication Critical patent/WO2016152057A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a charging apparatus, a bulk silicon raw material supply method, a silicon single crystal manufacturing apparatus, and a silicon single crystal manufacturing method.
  • CZ method Czochralski method
  • a bulk silicon raw material is placed in a quartz crucible installed in a growth furnace and heated to form a melt in the quartz crucible, and a silicon single crystal is produced from this melt.
  • a batch method in which one single crystal is produced in one production is used, but it is important to increase the raw material filling amount per batch in order to reduce production costs.
  • Multi-pulling is a method in which a silicon single crystal is produced from the initially filled raw material, and the raw material is recharged to the remaining molten silicon (re-introduction of the raw material by a raw material charging device), and it is known that the manufacturing cost can be reduced efficiently. ing.
  • a raw material charging device called a recharge pipe is known as a method for charging or recharging a raw material (see, for example, Patent Documents 1, 2, and 3).
  • a recharge tube is composed of a tube body, a bottom cover that detachably closes the bottom surface of the tube body, and a wire that suspends the bottom cover through the tube body. Then, the bulk silicon raw material filled in the recharge tube is lowered to the vicinity of the quartz crucible, and the tube body is hooked on the flange provided in the silicon single crystal manufacturing apparatus, and the bottom cover is removed from the tube body, whereby the recharge tube The bulk silicon raw material filled in is introduced into the quartz crucible.
  • the tube main body and the bottom lid are made of quartz that has excellent heat resistance, does not contaminate single crystal silicon, and is inexpensive and easy to process.
  • the bulk silicon raw material in order to efficiently charge or recharge the bulk silicon raw material, there is a method of increasing the filling rate by increasing the particle diameter of the bulk silicon raw material in addition to increasing the length of the recharge tube.
  • the raw material having a large particle size has the advantage that the labor of crushing it can be saved.
  • the bulk silicon material collides with the lower part of the recharge tube or the bottom lid when the bulk silicon material is additionally charged or recharged to the quartz crucible. There is a problem in that the impact when this occurs increases, causing breakage such as chipping in the lower part of the recharge tube and the bottom cover.
  • the silicon melt is scattered by the impact of the bulk silicon raw material falling, and the silicon melt droplets adhere to the top surface of the bottom lid and solidify. There is. Since this solidified silicon adheres to the upper surface of the bottom lid, it may come off together with a part of the bottom lid by coming into contact with the lump silicon raw material that has fallen and fall into the silicon melt. When a part of the bottom lid enters the silicon melt, there is a problem that the production of the silicon single crystal is hindered. In the past, it was observed that the silicon melt itself was scattered with the dropping of the bulk silicon raw material, but this scattered material adhered to the upper surface of the bottom cover of the recharge tube and solidified, and this separated and separated. None was known to inhibit the production of crystals.
  • Patent Documents 1 and 2 disclose a method for preventing damage to the lower portion of the recharge tube, but no disclosure or suggestion is made regarding countermeasures for damage to the bottom cover. Since it is not recognized that it adheres to it, the countermeasure is naturally not even suggested.
  • the present invention has been made in view of the above circumstances, and its purpose is to prevent damage to the bottom cover due to collision of the bulk silicon raw material and fall of the quartz piece derived from the bottom cover into the silicon melt. It is an object of the present invention to provide a raw material charging apparatus and a bulk silicon raw material supply method using the same.
  • the charging device of the present invention is a charging device for charging a bulk silicon raw material into a crucible for storing a silicon melt, and a cylindrical body into which the bulk silicon raw material is placed, and the cylindrical body And a bottom lid that opens and closes a lower end opening when the base is held in a vertically extending state.
  • the bottom lid is made of quartz and has a configuration in which at least a part of the upper surface is covered with a metal plate. ing. In a state where the bottom end opening of the cylinder is closed by the bottom lid, a lump silicon raw material is put inside the cylinder, and the lump silicon raw material put in the bottom is opened by the bottom lid opening the bottom end opening of the cylinder. It is put into the crucible from the opening.
  • the upper surface of the bottom lid is inclined downward from the central portion toward the peripheral portion. And it is preferable to open and close the lower end opening part of a cylinder by moving a bottom cover up and down along the central axis of a cylinder.
  • the metal plate is preferably made of a metal having a segregation coefficient k smaller than 1 ⁇ 10 ⁇ 3 , and the metal is more preferably molybdenum.
  • the bulk silicon raw material supply method of the present invention is a method of supplying a bulk silicon raw material using the above-described charging device, and the bulk silicon raw material is closed in the cylindrical body with the bottom end opening closed by the bottom lid.
  • the charging device is preferably configured to open the lower end opening by moving the bottom lid below the cylinder.
  • the silicon single crystal manufacturing apparatus of the present invention is equipped with the above-described charging apparatus.
  • the method for producing a silicon single crystal by multiple pulling includes a storage step of storing a silicon melt in a crucible, a production step of producing a silicon single crystal from the silicon melt, and the lump shape after the production step. And a charging step of charging the bulk crucible material into the crucible by a silicon material supply method, and the storage step and the manufacturing step are performed again after the charging step.
  • the present invention it is possible to prevent at least one of the breakage of the bottom lid due to the collision of the bulk silicon raw material and the mixing of the quartz fragments into the crucible due to the adhesion of the scattered silicon melt to the top surface of the bottom lid, An increase in the manufacturing cost of the silicon single crystal can be suppressed.
  • FIG. 10 is a schematic longitudinal section showing a bottom cover according to Modification 1.
  • FIG. 10 is a schematic longitudinal sectional view showing a bottom cover according to Modification 2.
  • FIG. 10 is a schematic longitudinal sectional view showing a bottom lid according to Modification 3.
  • FIG. 10 is a schematic longitudinal sectional view showing a bottom cover according to Modification 4.
  • the recharge tube of the raw material charging apparatus is lengthened in order to reduce the manufacturing cost of the silicon single crystal.
  • the lengthening of the recharge tube increases the distance that the bulk silicon raw material falls on the bottom cover provided below when the bulk silicon raw material is additionally charged or recharged to the quartz crucible. For this reason, at the beginning of the start of filling the recharge tube with the lump silicon raw material, the impact of the lump silicon raw material colliding with the lower part of the recharge tube or the bottom cover increases.
  • the load on the top surface of the bottom lid becomes excessive, and when the lower end opening is opened and put into the crucible, it is received from the falling bulk silicon raw material. The impact is still increased. Therefore, there is a problem that breakage such as chipping occurs in the lower part of the recharge tube made of quartz or the bottom cover.
  • the large particle size of the bulk silicon raw material is the initial stage of filling the bulk silicon raw material into the recharge tube, or when the bulk silicon raw material filled in the recharge tube is additionally charged or recharged to the quartz crucible, Since the impact given by dropping on the bottom lid provided on the surface becomes larger than the small particle size, there is a problem that the bottom lid is damaged such as chipping.
  • This breakage may occur due to one additional charge or recharge of the bulk silicon raw material, or may occur due to the accumulation of strain due to repeated use.
  • the bottom cover moves downward, that is, toward the silicon melt, and opens the lower end of the recharge tube.
  • the silicon melt is scattered by the dropped impact.
  • the scattered silicon melt droplets may adhere to the upper surface of the bottom lid that has moved downward.
  • the adhesion of the silicon melt droplet to the upper surface of the bottom lid is more prominent when the recharge tube is installed in a state where the distance between the lower end thereof and the melt surface in the crucible is in the range of 100 to 300 mm. Arise.
  • the silicon melt droplets solidify, they adhere firmly to quartz, which is the base material of the bottom lid, and become a raised shape. Therefore, when the lump silicon raw material that has fallen comes into contact with the solidified silicon, the solidified silicon may be peeled off together with the quartz of the bottom cover and fall into the silicon melt. In this case as well, there is a problem that the quartz fragments cause the production of the silicon single crystal.
  • the inventors of the present application have discovered for the first time that the silicon melt is scattered together with the quartz by the scattering of the droplets of the silicon melt, the adhesion of the droplets to the upper surface of the bottom lid and the collision of the bulk silicon raw material. is there.
  • the total length of the recharge tube is 300 mm.
  • the thickness is 650 mm or more, the phenomenon becomes prominent. In particular, it occurs remarkably when the bulk silicon raw material is packed in a large amount so that the filling height from the lower end of the tube is 300 mm or more and is charged or recharged.
  • the average diameter of the bulk silicon raw material (average of the maximum major axis of each bulk material) is increased to 15 mm or more, more specifically 20 mm or more.
  • FIG. 1 is a schematic longitudinal sectional view of a silicon single crystal manufacturing apparatus according to this embodiment.
  • the silicon single crystal manufacturing apparatus 10 includes a substantially cylindrical chamber 11 and accommodates a crucible 12 made of quartz that melts and stores silicon therein.
  • An inert gas such as argon is introduced into the chamber 11 when the silicon single crystal is manufactured.
  • a pulling drive device (not shown) is provided at the top of the chamber 11, and a wire 13 is unwound from an attached pulling motor (not shown), and a tip of the silicon 11 is a growth nucleus of the silicon single crystal 14.
  • a seed holder 16 for attaching the seed crystal 15 is connected. The pulling drive device pulls the wire 13, the seed holder 16, the seed crystal 15 and the silicon single crystal 14 upward while rotating.
  • the crucible (graphite crucible) 17 for supporting the quartz crucible 12 on the outside is a crucible that can be rotated and moved up and down by a rotary drive device (not shown) attached to the lower part of the silicon single crystal manufacturing apparatus 10.
  • the liquid level position of the silicon melt 21 that is supported by the shaft 18 and changes as the silicon single crystal 14 is manufactured is adjusted.
  • a heater 19 is disposed so as to surround the crucible 12 made of quartz and the graphite crucible 17, and the bulk silicon raw material directly filled inside the crucible 12 made of quartz is heated and melted.
  • a heat insulating material 20 is provided outside the heater 19 so as to surround the heater 19 so that the heat of the heater 19 is not directly radiated to the chamber 11.
  • a shielding cylinder 22 is provided so as to cover the upper surface of the silicon melt 21. The shielding cylinder 22 serves to adjust the radiant heat from the silicon melt 21, the crucible 12, and the graphite crucible 17, to smoothly discharge a gas such as SiO evaporated from the silicon melt together with an inert gas, and to the silicon melt. It plays the role of driving trash floating in the liquid as far as possible.
  • the chamber 11 is made of a metal having excellent heat resistance and thermal conductivity, such as stainless steel, and is water-cooled through a cooling pipe (not shown).
  • a flange 23 is provided above the silicon single crystal manufacturing apparatus 10 for hooking a recharge apparatus (silicon raw material charging apparatus), which will be described later, on top of the crucible 12 made of quartz.
  • a recharge device is hooked on the flange 23 to charge or recharge the bulk silicon raw material to the crucible 12 made of quartz.
  • a method for manufacturing a silicon single crystal using such a silicon single crystal manufacturing apparatus 10 is as follows. First, a predetermined amount of bulk silicon raw material is filled in a crucible 12 made of quartz. Thereafter, the heater 19 is activated to melt the raw material in the crucible 12 made of quartz, thereby forming a silicon melt 21. The silicon single crystal 14 is manufactured by bringing the seed crystal 15 into contact with the silicon melt 21 and rotating the seed crystal 15 upward at a specified speed.
  • FIG. 2 is a schematic longitudinal sectional view showing a recharging device as a lump silicon raw material charging device.
  • the recharge device (loading device) 30 of the present embodiment has a tube (tubular body) 31, a bottom lid 32, and an upper lid 34 through which a suspension rod 33 is passed in order to stabilize the tube 31 to the central axis of the silicon single crystal manufacturing apparatus 10. It is equipped.
  • the bottom cover 32 has a conical shape (conical trapezoidal shape), and the suspension rod 33 is fixed to the conical bottom portion of the bottom cover 32 by a stopper 37, and the tube 31 is connected to the bottom cover 32. Is held by.
  • the pipe 31 has a longitudinal direction in the vertical direction, and a lower end opening is closed by a bottom lid 32 so that the upper end opening can be opened and closed by an upper lid 34. Further, a stopper 35 is provided on the outer periphery of the upper portion of the tube 31 for latching the tube 31 with a flange 23 provided above the silicon single crystal manufacturing apparatus 10.
  • the bottom cover 32 is moved up and down along the central axis of the pipe 31 by the hanging rod 33, and closes the lower end opening of the pipe 31 when it is above, and opens the lower end opening when it is below.
  • the upper surface is a slope inclined downward from the central portion toward the peripheral edge, and when the bulk silicon raw material is charged, the bulk silicon raw material falls downward along this slope. Go. Further, the entire upper surface of the bottom cover 32 is covered with a metal plate 40.
  • the pipe 31 and the bottom cover 32 are made of quartz that is excellent in heat resistance and relatively inexpensive because it approaches the silicon melt 21.
  • the tube 31 and the bottom cover 32 may be made of other than quartz, but are preferably made of quartz from the viewpoints of heat resistance, contamination of silicon, and low cost.
  • FIGS. 1, 3 and 4 For the bulk silicon raw material supply method (recharge method) of the present embodiment using the recharge apparatus and the silicon single crystal manufacturing apparatus configured as described above. Will be described.
  • the previously used quartz crucible 12 is used as it is, and the bulk silicon raw material 36 is recharged to the quartz crucible 12.
  • the recharge device 30 is filled with the bulk silicon raw material 36, and the crucible 12 made of quartz is additionally charged or recharged.
  • the lower end opening of the tube 31 is closed by the bottom cover 32, and the suspension rod 33 is positioned at the central axis portion of the tube 31. Then, the upper lid 34 is lifted upward, and the bulk silicon raw material 36 is charged into the tube 31 from the upper end opening of the tube 31.
  • the recharge device 30 is slowly lowered from above the silicon single crystal manufacturing device 10 (see FIG. 3).
  • the recharging device 30 descends by lowering the hanging rod 33 suspended from the wire.
  • the stopper 35 formed on the tube 31 is hooked on the flange 23 of the silicon single crystal manufacturing device, and the tube 31 stops in that state.
  • the bottom cover 32 and the lump silicon raw material 36 are lowered together, the bottom cover 32 opens the lower end opening of the pipe 31, and the lump silicon raw material 36 is connected to the lower end of the pipe 31. It falls from between the bottom lid 32 and is introduced into the crucible 12 made of quartz (see FIG. 4).
  • the bulk silicon raw material 36 filled in the recharging device 30 is additionally charged or recharged to the crucible 12 made of quartz, the introduction of the bulk silicon raw material 36 is completed.
  • the bottom cover 32 comes into contact with the pipe 31 and closes the lower end opening.
  • the recharge device 30 is raised above the silicon single crystal manufacturing apparatus 10 (not shown), and then a gate valve (not shown) provided above the silicon single crystal manufacturing apparatus 10 is opened. The recharge device 30 is taken out from the silicon single crystal manufacturing device 10 by closing.
  • the bottom cover 32 is made of quartz, which is excellent in terms of preventing contamination of the silicon single crystal.
  • a metal plate 40 covers the entire upper surface of the bottom cover 32. Accordingly, the bulk silicon raw material 36 falling in the pipe 31 may collide with the metal plate 40 but not the bottom lid 32 itself.
  • the bulk silicon raw material 36 is added when the bulk silicon raw material 36 is charged. May collide with the bottom cover 32 to cause breakage such as chipping. The bottom cover 32 may be damaged, or the chipped quartz piece may fall into the crucible 12. Further, when the bulk silicon raw material 36 falls into the residual silicon melt, the silicon melt may scatter, and the scattered silicon melt droplets may adhere to the upper surface of the bottom cover 32 made of quartz. After the silicon melt droplets solidify, they may come off together with the quartz by contacting the bulk silicon raw material.
  • the bottom cover 32 of the recharge device 30 may be damaged or peeled off, which causes quartz to fall into the silicon melt and hinder the production of the silicon single crystal. Become. That is, if a piece made of quartz adheres to the growth interface during the growth of the silicon single crystal, polycrystallization occurs from that point, which becomes a cause of hindering the production of the silicon single crystal.
  • the upper surface of the bottom lid 32 is covered with the metal plate 40, and the bottom lid 32 made of quartz is damaged even when the lump silicon raw material 36 falls on the bottom lid 32 during recharging.
  • the bulk silicon raw material 36 can be additionally charged or recharged to the crucible 12 made of quartz without any problem. Further, since the silicon melt scattered when the bulk silicon raw material 36 is additionally charged or recharged to the crucible 12 made of quartz adheres to the metal plate 40, it easily peels off and melts immediately in the silicon melt, so It does not cause the production of crystals.
  • the bottom cover itself is made of metal in order to obtain the same effect, the heat resistance and strength are kept high, but the weight also increases, which increases the load on the wire that suspends the recharge device, which is not preferable. .
  • the metal plate 40 is preferably made of molybdenum, tungsten, stainless steel, hastelloy (nickel alloy) or the like having excellent heat resistance and impact resistance.
  • molybdenum and tungsten are more preferable because the effective segregation coefficient k is 1 ⁇ 10 ⁇ 6 or less.
  • the thickness of the metal plate 40 is preferably from 0.1 mm to 4 mm, more preferably from 0.5 mm to 3 mm.
  • the method of covering the upper surface of the bottom cover 32 with the metal plate 40 is not particularly limited, and a metal plate may be attached to the upper surface of the bottom cover 32 using an adhesive, or a hooking portion may be provided for engagement.
  • a metal plate may be attached to the upper surface of the bottom cover 32 using an adhesive, or a hooking portion may be provided for engagement.
  • the bottom lid 32 has a conical shape, it can be sufficiently fixed only by placing a metal conical plate having a shape following the upper surface thereof.
  • Patent Document 3 as a method for solving the problem that the raw materials in the recharging device or the raw materials and quartz adhere to each other due to radiant heat when recharging and the raw materials are difficult to drop, a molybdenum thin plate is used as a cavity in the bottom cover. It is attached to the inner wall (bottom surface) of this part, but this prevents damage to the bottom lid caused by the collision of the bulk silicon raw material and prevents the scattered silicon melt deposits from falling into the crucible with the quartz pieces. I can't.
  • the metal plate 43 covers the top of the bottom cover 32 from the top to the middle of the bottom, and the bottom end of the bottom cover 32 is exposed with quartz.
  • the lump silicon raw material 36 does not directly collide with the quartz portion from the top of the upper surface of the bottom cover 32 covered by the metal plate 43 to the middle of the lower portion, but the lower end portion not covered by the metal plate 43 is additionally charged or recharged.
  • the bulk silicon raw material 36 directly collides with the exposed portion of the quartz on the upper surface of the bottom cover 32, cracks or the like may occur.
  • the top of the bottom lid 32 that is most likely to crack is covered with the metal plate 43 and most of the upper surface of the bottom lid 32 is covered with the metal plate 43, damage to the bottom lid 32 is greatly prevented.
  • the scattered silicon melt also has a very small area on the upper surface of the bottom cover 32 that is not covered by the metal plate 43, and therefore, adhesion to the exposed portion of the quartz of the bottom cover 32 is greatly suppressed. .
  • the bulk silicon raw material 36 is directly applied to the exposed quartz portion of the upper surface of the bottom cover 32 when additional charging or recharging is performed. Due to the collision, cracks and the like may occur. Further, when additional charging or recharging is performed, the silicon melt scatters due to the impact that the bulk silicon raw material 36 has dropped into the quartz crucible 12, and therefore the scattered silicon melt is not covered with the metal plate 44. If it adheres to the middle part or the lower end part of the upper surface, there is a problem that quartz which is a base material of the bottom cover 32 peels off, and it is difficult to completely prevent the bottom cover 32 from being damaged.
  • the modification 3 is different from the first embodiment shown in FIG. 5 in that the metal plate 41 covering the upper surface of the bottom cover 32 does not cover the lower end of the bottom cover 32 and parallel to the inner wall of the tube 31. Is a point.
  • the portion of the upper surface of the bottom cover 32 that is not covered by the metal plate 41 hardly collides with the falling bulk silicon raw material, and therefore has substantially the same effect as the recharging device of the first embodiment shown in FIG.
  • the metal plate 42 does not cover the top surface and the top surface of the bottom cover 32.
  • Embodiment 1 After that, without shutting down the furnace, after filling the recharge device (pipe inner diameter 200 mm, tube length 1700 mm) of Embodiment 1 shown in FIG. 5 with 50 kg of bulk silicon raw material (average particle size 25 mm) (lower end of the recharge tube) From the above-mentioned bulk silicon raw material supply method, recharging was performed twice and a total of 100 kg of bulk silicon raw material was introduced into the quartz crucible to prepare 120 kg of silicon melt.
  • the recharge tube was installed so that the distance between the lower end of the tube and the melt surface in the crucible was about 250 mm. Further, the upper surface of the quartz bottom lid of the recharging device was entirely covered with a molybdenum metal plate having a thickness of 1.5 mm. When the melting of the bulk silicon material was completed after the recharge, the silicon melt surface in the crucible was observed from a viewing window (not shown) provided in the chamber, and no suspended matter was observed.
  • a single crystal (weight: about 100 kg, diameter: about 200 mm ⁇ straight body length: about 1230 mm) was manufactured under the same conditions as the second multi-pull manufacturing, and was taken out from the furnace. After that, the heater power was turned off and the furnace was shut down. This was defined as one batch, and the same multi-pull-up production was performed for 20 batches under the same conditions as described above. In the production of single crystals after the second batch, the recharge apparatus used was continuously used as it was in the first batch (Example 1).
  • Table 1 shows the observation results of the melt surface of the bulk silicon raw material after the recharge in the second single crystal production of the multi-pull up production for each of Embodiment 1, Modifications 1 and 2, and Comparative Example. Moreover, the polycrystallization rate of the single crystal obtained as the second of each multi-pulling production was shown. The polycrystallization rate is the ratio of the number of ingots that have been polycrystallized due to inhibition of single crystallization in the second multi-pulling production.
  • the number of chipping occurrences is the average number of chipping occurrences (pieces / batch) per batch after 20 batches of multi-pull manufacturing.
  • the average number of chippings is determined by checking the number and position of the dents with a diameter of 2 mm or more generated on the top surface of the bottom cover for each batch, and taking a photograph, and comparing the result with the state after the next batch. The amount of increase was measured as the number of chipped occurrences per batch. In this recess, the lump silicon raw material directly collides with the quartz part of the bottom lid and the quartz fragments are removed, and the silicon melt droplets adhere to the quartz part, and the quartz pieces peel off together with the solidified droplets. Both are included.
  • the former trace of chipping due to direct impact often has a diameter of 10 mm or more, and the latter chipping has a droplet size of about 2 to 5 mm. It was assumed that it was generated by directly colliding with the part, and a dent with a diameter of 2 to 5 mm was identified as a mark in which a droplet of silicon melt adhered to the quartz part and the quartz piece was peeled off together with the solidified droplet.
  • the metal plate cover the entire upper surface of the bottom cover as shown in FIG. 5, but if the upper surface is even covered by a part of the metal plate, the occurrence of chipping and polycrystallization can be greatly suppressed. If the bottom cover of the embodiment shown in FIGS. 6 and 7 is used, the effect of the present invention is achieved.
  • the scattered silicon melt may adhere to the lower end of the tube 31, the lower surface of the bottom cover 32, and the upper surface of the bottom cover 32.
  • the lower end of the tube 31 and the lower surface of the bottom lid do not need to be covered with a metal plate because they do not come into contact with the bulk silicon raw material during additional charging and recharging.
  • Example 4 As Example 4, a total of 20 batches of the same multi-pull up production were performed under the same conditions as in Example 3 except that the average diameter of the bulk silicon raw material supplied to the recharging device of Example 3 was changed to 12 mm. Table 2 shows the results.
  • Example 4 in contrast to Example 3, the average particle size of the bulk silicon raw material supplied to the recharging device was halved, so that the number of chippings decreased and the polycrystallization rate also decreased to 5%. It was. In the generated chipping, the lump of silicon material directly collided with the quartz portion and the quartz fragments were removed, and 10% of the traces of the adhered substance of the silicon melt droplets were 90%.
  • Example 5 As Example 5, the filling height of the bulk silicon raw material into the recharge tube of Example 3 was about 625 mm from the lower end of the pipe (the bulk silicon raw material 25 kg), and the number of recharges was increased from 2 to 4 times, for a total of 100 kg. Except for recharging the bulk silicon raw material, the same multi-pull-up production was carried out for 20 batches under the same conditions as in Example 3. Table 2 shows the results.
  • Example 5 In contrast to Example 3, in Example 5, the polycrystallization ratio was 10%, but the number of chippings decreased by slightly lowering the packing height of the bulk silicon raw material. In the generated chips, the trace of the quartz silicon material directly colliding with the quartz portion and removing the quartz fragments was 8%, and the peeled trace of the adhered substance of the silicon melt droplet was 92%.
  • the bottom cover may be conical, hemispherical or rotating parabolic. That is, any bottom lid shape may be used as long as the top surface of the bottom lid is inclined downward from the central portion toward the peripheral portion.
  • the number of times the storage process and the manufacturing process are performed again after the charging process is not limited to once as in the embodiment, and the storage process, the manufacturing process, and the charging process may be repeated twice or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

塊状シリコン原料の衝突による底蓋の破損およびシリコン融液内への底蓋由来の石英片の落下を防止する原料投入装置およびこれを用いた塊状シリコン原料の供給方法を提供するために、本発明の投入装置は、シリコン融液を貯留する坩堝に、塊状シリコン原料を投入する投入装置であって、前記塊状シリコン原料が入れられる筒体と、前記筒体を上下に延びる状態に保持した際の下端開口部を開閉させる底蓋とを備え、前記底蓋は石英からなっているとともに、上面の少なくとも一部が金属板により覆われている。

Description

投入装置、塊状シリコン原料の供給方法、シリコン単結晶製造装置およびシリコン単結晶の製造方法
 本発明は、投入装置、塊状シリコン原料の供給方法、シリコン単結晶製造装置およびシリコン単結晶の製造方法に関するものである。
 シリコン単結晶製造方法として、いわゆるチョクラルスキー法(CZ法)が知られている。この方法では、育成炉内に設置された石英坩堝内に塊状シリコン原料を入れて加熱することで、石英坩堝内に融液を形成し、この融液からシリコン単結晶を製造する。シリコン単結晶の製造は、1回の製造で1本の単結晶を製造するバッチ方式が用いられるが、製造コストの削減のために、バッチ当たりの原料充填量を増加させることが重要である。
 こうした原料充填量を増加する方法として石英坩堝のサイズを大きくする方法があるが、サイズの大きな石英坩堝に見合った大型の単結晶製造装置にする必要があり効果的な製造コストの削減は難しい。
 そこで、石英坩堝に充填した原料が溶融した後にさらに原料を追加チャージする方法や、1個の石英坩堝から複数本のシリコン単結晶を製造するマルチ引上げ製造が用いられている。マルチ引上げは、最初に充填した原料からシリコン単結晶を製造し、残留した溶融シリコンに原料をリチャージ(原料投入装置による原料の再導入)する方法で、効率的に製造コストを削減できることが知られている。
 このように、原料を追加チャージまたはリチャージする方法としてリチャージ管と称される原料投入装置が知られている(例えば、特許文献1,2,3参照)。こうしたリチャージ管は管本体と、管本体の底面を着脱自在に塞ぐ底蓋と、管本体の中を通って底蓋を吊り下げるワイヤとから構成されている。そして、リチャージ管に充填された塊状シリコン原料は石英坩堝の近傍まで下ろされる途中で管本体がシリコン単結晶製造装置に設けられたフランジに掛け止めされ、管本体から底蓋が外れることによってリチャージ管に充填された塊状シリコン原料が石英坩堝内に導入される構造になっている。また、管本体と底蓋は、耐熱性にすぐれ且つ単結晶シリコンを汚染せず、安価で加工のしやすい石英から作られている。
 効率的に塊状シリコン原料を追加チャージまたはリチャージするためには、リチャージ管に充填する原料を増やしリチャージ回数をできるだけ少なくする必要がある。このために、リチャージ管の口径を大きくすることや長さを長くする大型化が図られている。
 また、効率的に塊状シリコン原料を追加チャージまたはリチャージするためには、リチャージ管の長大化に加えて、塊状シリコン原料を大粒径化して充填率を向上させる方法がある。大粒径化した原料においては、これを破砕する手間が省けるという利点がある。
特開2008-063205号公報 特開2007-246357号公報 特開2004-244236号公報
 ここでリチャージ管を長大化させたり、塊状シリコン原料を大粒径化させたりすると、塊状シリコン原料を石英坩堝に追加チャージまたはリチャージする際に、塊状シリコン原料がリチャージ管の下部や底蓋に衝突したときの衝撃が増大し、リチャージ管の下部や底蓋に欠け等の破損を生じさせるという問題がある。
 また、塊状シリコン原料をシリコン融液に追加チャージまたはリチャージする時、塊状シリコン原料が落下した衝撃によりシリコン融液が飛散して、シリコン融液の液滴が底蓋の上面に付着し固化することがある。この固化したシリコンは底蓋の上面に付着しているので、落下してきた塊状シリコン原料と接触することによって底蓋の一部と一緒に剥がされて、シリコン融液内に落下することがある。底蓋の一部がシリコン融液内に入ることにより、シリコン単結晶の製造が阻害されるという問題がある。これまで塊状シリコン原料の落下に伴い、シリコン融液が飛散すること自体は観察されていたが、この飛散物がリチャージ管の底蓋の上面に付着して固化し、これが剥離して、シリコン単結晶の製造を阻害することは何も知られていなかった。
 特許文献1,2では、リチャージ管の下部の破損を防ぐための方法は開示されているが、底蓋の破損の対策についてはなんら開示も示唆もしておらず、飛散したシリコン融液が底蓋に付着することは認識されていないので、その対策も当然示唆すらされていない。
 本発明は、上記事情を鑑みてなされたものであって、その目的とするところは、塊状シリコン原料の衝突による底蓋の破損およびシリコン融液内への底蓋由来の石英片の落下を防止する原料投入装置およびこれを用いた塊状シリコン原料の供給方法を提供することにある。
 上記の課題を解決するため、本発明の投入装置は、シリコン融液を貯留する坩堝に、塊状シリコン原料を投入する投入装置であって、前記塊状シリコン原料が入れられる筒体と、前記筒体を上下に延びる状態に保持した際の下端開口部を開閉させる底蓋とを備え、前記底蓋は石英からなっているとともに、上面の少なくとも一部が金属板により覆われている構成を有している。筒体の下端開口部が底蓋によって閉鎖された状態で、筒体の内部に塊状シリコン原料が入れられ、入れられた塊状シリコン原料は、筒体の下端開口部を底蓋が開くことによって下端開口部から坩堝の中に投入される。
 前記底蓋の上面は、中央部分から周縁部分に向かって下方に傾斜していることが好ましい。そして、底蓋は筒体の中心軸に沿って上下に移動することによって筒体の下端開口部の開閉を行うことが好ましい。
 前記金属板は、偏析係数kが1×10-3よりも小さい金属からなっていることが好ましく、前記金属はモリブデンであることがより好ましい。
 本発明の塊状シリコン原料の供給方法は、上記の投入装置を用いて塊状シリコン原料を供給する方法であって、筒体の下端開口部を底蓋により閉じた状態で、筒体の中に塊状シリコン原料を充填する工程と、前記底蓋を移動させることによって前記下端開口部を開けて、坩堝に前記塊状シリコン原料を投入する工程とを含んでいる。投入装置は、底蓋を筒体の下方へ移動させることによって下端開口部を開くように構成されていることが好ましい。
 本発明のシリコン単結晶製造装置は、上記の投入装置を備えている。
 本発明のマルチプリングによるシリコン単結晶の製造方法は、坩堝にシリコン融液を貯留する貯留工程と、前記シリコン融液からシリコン単結晶を製造する製造工程と、前記製造工程の後に、前記の塊状シリコン原料の供給方法により前記坩堝に塊状シリコン原料を投入する投入工程とを含み、前記投入工程の後に再び前記貯留工程及び前記製造工程を行う構成を備えている。
 本発明によれば、塊状シリコン原料の衝突による底蓋の破損および飛散したシリコン融液の底蓋上面への付着に起因する石英破片の坩堝内への混入の少なくとも一方を防ぐことができて、シリコン単結晶の製造コストの増大を抑制することができる。
実施形態に係るシリコン単結晶製造装置の一部を示す模式的な縦断面図である。 実施形態に係る塊状シリコン原料の投入装置を示す模式的な縦断面図である。 実施形態に係るシリコン単結晶製造装置の一部を示す別の模式的な縦断面図である。 実施形態に係るシリコン単結晶製造装置の一部を示す他の模式的な縦断面図である。 実施形態に係る底蓋を示す模式的な縦断面図である。 変形例1に係る底蓋を示す模式的な縦断面図である。 変形例2に係る底蓋を示す模式的な縦断面図である。 変形例3に係る底蓋を示す模式的な縦断面図である。 変形例4に係る底蓋を示す模式的な縦断面図である。
 発明を実施するための形態を説明する前に、本願発明者らが本発明に至った経緯について説明を行う。
 上述したように、シリコン単結晶の製造コストを低下させるために原料投入装置のリチャージ管が長大化している。リチャージ管の長大化は、塊状シリコン原料を石英坩堝に追加チャージまたはリチャージする際に、塊状シリコン原料が下方に設けられた底蓋に落下する距離が長くなる。このためリチャージ管への塊状シリコン原料の充填開始初期には、該塊状シリコン原料がリチャージ管の下部や底蓋に衝突する衝撃が増大する。また、多量の塊状シリコン原料がリチャージ管に充填されると底蓋上面への荷重が過大になり、その下端開口部を開けてこれを坩堝に投入する際には、落下する塊状シリコン原料から受ける衝撃がやはり増大する。これらから、石英からなるリチャージ管の下部や底蓋に欠け等の破損を生じるという問題がある。
 また、塊状シリコン原料の大粒径化は、塊状シリコン原料をリチャージ管に充填する初期段階や、リチャージ管に充填した塊状シリコン原料を石英坩堝に追加チャージまたはリチャージする際に、塊状シリコン原料が下方に設けられた底蓋に落下することにより与える衝撃が小粒径よりも大きくなるため、底蓋に欠け等の破損を生じるという問題がある。
 この破損は塊状シリコン原料を1回追加チャージまたはリチャージすることで発生する場合もあれば、使用を繰り返すことで歪が蓄積されて発生する場合もある。
 塊状シリコン原料を石英坩堝に追加チャージまたはリチャージしている時に破損した場合は、破損した破片がシリコン融液中に落下してしまう。この石英からなる破片がシリコン単結晶成長中に成長界面に付着してしまうと、そこを起点として多結晶化することで、シリコン単結晶の製造を阻害する原因になり、長時間の製造中止となる。その結果製造コストが大きくなってしまう。
 また、塊状シリコン原料をシリコン融液に追加チャージまたはリチャージする時、底蓋は下方すなわちシリコン融液に近づく方へ移動してリチャージ管の下端部を開く。その開いたところから塊状シリコン原料が落下するのであるが、落下した衝撃でシリコン融液が飛散する。この飛散したシリコン融液の液滴は、下方に移動した底蓋の上面に付着してしまう場合がある。このシリコン融液の液滴の底蓋上面への付着は、リチャージ管が、その下端と坩堝中の融液面との間隔が100~300mmの範囲である状態で設置されている場合により顕著に生じる。
 上記シリコン融液の液滴は固化すると底蓋の母材である石英に強固に付着し盛り上がった形状となる。そのため、落下してきた塊状シリコン原料が固化したシリコンに接触すると、固化したシリコンが底蓋の石英と一緒に剥がされて、シリコン融液内に落下することがある。この場合も、石英破片がシリコン単結晶の製造を阻害する原因になるという問題がある。なお、このようなシリコン融液の液滴の飛散と、液滴の底蓋上面への付着および塊状シリコン原料の衝突によって石英と一緒に剥がされることは、本願発明者らが初めて見出したことである。
 こうした塊状シリコン原料の衝突による底蓋の破損や飛散したシリコン融液の底蓋上面への付着に起因する石英破片の坩堝内への混入の問題は、具体的には、リチャージ管の全長が300mm以上、より明確には650mm以上になると顕著に生じるようになる。特に、塊状シリコン原料を、管下端からの充填高さが上記300mm以上になるように多量に詰めて追加チャージまたはリチャージする場合に、顕著に生じる。
 また、同様に、塊状シリコン原料の平均直径(各塊状物の最大長径の平均)が15mm以上、より明確には20mm以上に大粒径化した場合にも顕著に生じる。
 このようにシリコン単結晶の製造を阻害することは、製品の収率の低下に繋がり製造コストを増加させることになる。また、高価な底蓋を交換することもシリコン単結晶の製造コストを増加させることになる。
 これまでリチャージ管の破損防止の方法については特許文献1,2等に開示されているが、底蓋の破損防止およびシリコン融液の付着液滴に由来する石英の剥がれの防止については開示されている文献がないので、これらの問題に対処するために、本願発明者らは様々な検討を行ってついに本発明に至った。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。以下の図面においては、説明の簡潔化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。
 <実施形態1>
 (シリコン単結晶製造装置)
 図1は、本実施形態に係るシリコン単結晶製造装置の模式的な縦断面図である。シリコン単結晶製造装置10は、略円筒状のチャンバ11を備え、内部にシリコンを溶融して貯留する石英からなる坩堝12を収容する。シリコン単結晶の製造時にはチャンバ11の内部にアルゴンなどの不活性ガスが導入される。チャンバ11の頂部には引上げ駆動装置(図示略)が備えられ、取付けられた引上げモーター(図示略)からはワイヤ13が巻き出されており、その先端にはシリコン単結晶14の成長核となる種結晶15を取り付けるための種ホルダー16が接続されている。引上げ駆動装置は、ワイヤ13、種ホルダー16、種結晶15およびシリコン単結晶14を回転させながら上方に引上げる。
 なお、上記石英からなる坩堝12を外側で支持するための坩堝(黒鉛坩堝)17は、シリコン単結晶製造装置10の下部に取り付けられた回転駆動装置(図示略)によって回転や昇降が可能な坩堝シャフト18によって支持されるとともに、シリコン単結晶14の製造に伴って変化するシリコン融液21の液面位置を調整する。
 石英からなる坩堝12や黒鉛坩堝17を取り囲むようにヒーター19が配置されており、石英からなる坩堝12の内側に直接充填された塊状シリコン原料を加熱し溶融させる。ヒーター19の外側には、ヒーター19の熱が直接チャンバ11に輻射されないように保温材20がヒーター19を取り囲むように設けられている。加えて、シリコン融液21の上面を覆うように遮蔽筒22が設けられている。この遮蔽筒22は、シリコン融液21、坩堝12、及び黒鉛坩堝17からの輻射熱を調整する役割、シリコン融液から蒸発するSiOなどのガスを不活性ガスと共にスムーズに排出する役割、及びシリコン融液中に浮遊するゴミをなるべく外側に追いやる役割などを果たしている。
 なお、チャンバ11は、ステンレス等の耐熱性、熱伝導性に優れた金属により形成されており、冷却管(図示略)を通して水冷されている。
 シリコン単結晶製造装置10の上方には、後に説明するリチャージ装置(シリコン原料の投入装置)を石英からなる坩堝12の上部で掛け止めするためフランジ23が設けられている。このフランジ23にリチャージ装置が掛け止めされて、塊状シリコン原料を石英からなる坩堝12に追加チャージまたはリチャージする。
 こうしたシリコン単結晶製造装置10を用いてシリコン単結晶を製造する方法は、以下の通りである。まず、石英からなる坩堝12に塊状シリコン原料を規定量充填する。その後、ヒーター19を起動し、石英からなる坩堝12内の原料を溶解させ、シリコン融液21を形成する。このシリコン融液21に種結晶15を接触させ回転させながら上方に規定速度で引上げることによって、シリコン単結晶14を製造する。
 (シリコン原料の投入装置)
 図2は塊状シリコン原料の投入装置であるリチャージ装置を示す模式的な縦断面図である。本実施形態のリチャージ装置(投入装置)30は、管(筒体)31と底蓋32および管31をシリコン単結晶製造装置10の中心軸に安定させるために吊下げ棒33を通す上蓋34が備わっている。図5に示すように、底蓋32は円錐形(円錐台形)であって、吊下げ棒33は底蓋32の円錐形の底部にストッパ37によって固定されており、管31は、底蓋32によって保持されている。管31は、長手方向を上下方向にして、下端開口部が底蓋32によって開閉自在に塞がれており、上端開口部が上蓋34によって開閉自在に塞がれている。また、管31の上部外周には、管31をシリコン単結晶製造装置10の上方に設けられたフランジ23で掛け止めするためのストッパ35が設けられている。
 底蓋32は、吊下げ棒33によって管31の中心軸に沿って上下に移動し、上にある時は管31の下端開口部を塞ぎ、下にある時は下端開口部を開けた状態になる。底蓋32は円錐形であるので、上面は中央部分から周縁部に向かって下方に傾斜している斜面であり、塊状シリコン原料の投入時にはこの斜面にそって塊状シリコン原料が下方に落下していく。また、底蓋32の上面は、金属板40により全面が覆われている。
 管31および底蓋32は、シリコン融液21に接近するため、耐熱性に優れ、比較的安価な石英からなっている。管31および底蓋32は、石英以外からなっていてもよいが、耐熱性、シリコンを汚染しない点、低コストである点などから石英からなることが好ましい。
 (塊状シリコン原料の供給方法)
 次に上記のように構成されたリチャージ装置およびシリコン単結晶製造装置を用いた本実施形態の塊状シリコン原料の供給方法(リチャージ方法)について図1、図3および図4の模式的な縦断面図を用いて説明する。
 例えば、シリコン単結晶製造装置10を用いて、シリコン単結晶14を1本引上げた後に、前回使用した石英からなる坩堝12をそのまま使用して、塊状シリコン原料36を石英からなる坩堝12にリチャージし、シリコン単結晶14を製造する方法や、あるいは、石英からなる坩堝12に規定量の塊状シリコン原料36を充填し溶解した後に、更に、塊状シリコン原料36を石英からなる坩堝12に追加チャージして、シリコン融液21を増やして、大口径や長尺なシリコン単結晶14を製造する方法がある。このような場合に、リチャージ装置30に塊状シリコン原料36を充填し、石英からなる坩堝12に追加チャージまたはリチャージする。
 塊状シリコン原料36を石英からなる坩堝12に追加チャージまたはリチャージする際は、管31の下端開口部を底蓋32によって塞ぎ、吊下げ棒33を管31の中心軸の部分に位置するようにしてから、上蓋34を上方に持ち上げて管31の上端開口部から管31内に塊状シリコン原料36を入れて充填する。
 塊状シリコン原料36を充填後、シリコン単結晶製造装置10の上方からリチャージ装置30をゆっくりと下降させる(図3参照)。リチャージ装置30は、ワイヤに吊り下げられた吊下げ棒33を下げていくことで下降していく。やがて、リチャージ装置30は、管31に形成されたストッパ35がシリコン単結晶製造装置のフランジ23に掛け止めされ、管31はその状態で停止する。そのまま吊下げ棒33の下降を継続させることで、底蓋32と塊状シリコン原料36が一緒に下降し、底蓋32が管31の下端開口部を開いて、塊状シリコン原料36が管31下端と底蓋32との間から落下し、石英からなる坩堝12に導入される(図4参照)。リチャージ装置30に充填された塊状シリコン原料36が全て石英からなる坩堝12に追加チャージまたはリチャージされると、塊状シリコン原料36の導入が完了する。
 塊状シリコン原料36の追加チャージまたはリチャージが完了後、再び吊下げ棒33を上昇させると、底蓋32が管31と接触して下端開口部を塞ぐ。さらに上昇を継続することで、リチャージ装置30をシリコン単結晶製造装置10の上方(図示略)に上昇させて、その後、シリコン単結晶製造装置10の上方に設けられたゲートバルブ(図示略)を閉じることによってシリコン単結晶製造装置10からリチャージ装置30を取出す。
 ここで、底蓋32は石英からなっており、シリコン単結晶の汚染防止という点ですぐれている。そして、底蓋32の上面の全面を金属板40が覆っている。従って、管31内を落下してくる塊状シリコン原料36は金属板40に衝突することはあるが、底蓋32自体には衝突することはない。
 一方、特許文献1から3に記載されているように、底蓋32の上面を覆っている金属板40が存在しない場合には、上述の塊状シリコン原料36の投入の際に、塊状シリコン原料36が底蓋32に衝突することで欠け等の破損が生じることがあり、底蓋32が損傷したり、欠けた石英片が坩堝12の中に落下することがある。また、塊状シリコン原料36が残留シリコン融液内に落下した時にシリコン融液が飛散し、この飛散したシリコン融液の液滴が底蓋32の石英からなる上面に付着してしまうことがある。シリコン融液の液滴は、固化した後に、塊状シリコン原料と接触することによって石英と一緒に剥がれてしまうことがある。
 このように金属板40が存在しない場合には、リチャージ装置30の底蓋32が破損したり、剥がれたりすることが生じ、石英がシリコン融液に落下しシリコン単結晶の製造を阻害する原因になる。すなわち、石英からなる破片がシリコン単結晶成長中に成長界面に付着してしまうと、そこを起点として多結晶化が生じてしまい、シリコン単結晶の製造を阻害する原因になる。
 けれども、本実施形態では底蓋32の上面を金属板40で被覆しており、リチャージの際に塊状シリコン原料36が底蓋32に落下した衝撃でも、石英で形成された底蓋32を破損することなく塊状シリコン原料36を石英からなる坩堝12に追加チャージまたはリチャージすることができる。また、塊状シリコン原料36を石英からなる坩堝12に追加チャージまたはリチャージする際に飛散したシリコン融液が金属板40に付着しても容易に剥がれ、シリコン融液内ですぐに溶けるため、シリコン単結晶の製造を阻害する原因とはならない。
 同じような効果を得るために底蓋自体を金属で形成した場合は、耐熱性や強度は高く保持されるが、重量も増加するため、リチャージ装置を吊り下げるワイヤの負荷が増加するため好ましくない。
 金属板40に付着したシリコンが、仮に金属を一部伴って剥がれてシリコン融液に混入したとすると、半導体用シリコン単結晶の製造ではライフタイムが低下する等の問題が生じるおそれもあるが、太陽電池用シリコン単結晶の製造では、金属の実効偏析係数kが1×10-3よりも小さければ少量入っても製造に実質上支障はなく、問題にならない。
 金属板40は耐熱性や耐衝撃性に優れたモリブデン、タングステン、ステンレス、ハステロイ(ニッケル系合金)などからなることが好ましい。特に、モリブデン、タングステンは実効偏析係数kが1×10-6以下であるためより好ましい。
 金属板40の厚みは、0.1mm未満であると繰り返し使用した際の強度が低下するため、これ以上であることが望ましい。また、厚みが厚くなると製造コストが増加し、また、重量も増加するため、リチャージ装置を吊り下げるワイヤの負荷が増加するため好ましくない。金属板の厚みは0.1mm以上4mm以下が好ましく、0.5mm以上3mm以下がより好ましい。
 底蓋32の上面を金属板40で覆う方法は、特に制限されるものではなく、接着剤を用いて底蓋32の上面に金属板を貼着したり、掛合部を設けて係着等すればよいが、該底蓋32が円錐形の場合は、その上面に添う形状の金属製円錐板を載置するだけで十分に固定される。
 特許文献3では、リチャージをする際に輻射熱によってリチャージ装置内の原料同士あるいは、原料と石英が固着し、原料が落下し難くなる問題を解決する方法として、モリブデン製の薄板を底蓋内の空洞部の内壁(下面)に貼っているが、これでは塊状シリコン原料の衝突による底蓋の損傷の防止、および飛散したシリコン融液の付着物が石英片を伴って坩堝内へ落下することの防止をすることができない。
 <変形例1>
 実施形態1の変形例1を、図6に示す模式的な縦断面図を用いて説明する。
 変形例1では、底蓋32の上面の頂部から下部の途中までを金属板43が覆っており、底蓋32の下端付近は石英が剥き出しになっている。金属板43により覆われている底蓋32の上面の頂部から下部の途中までは塊状シリコン原料36が石英部分に直接衝突しないが、金属板43が覆っていない下端付近は、追加チャージまたはリチャージする際に塊状シリコン原料36が直接に底蓋32の上面の石英が露出している部分に衝突するため、割れ等が発生することがある。ただ、最も割れが発生しやすい底蓋32の頂部が金属板43に覆われ、また底蓋32の上面の大半が金属板43で覆われているため、底蓋32の破損は大幅に防止される。
 また、飛散したシリコン融液も、金属板43により覆われていない底蓋32の上面の面積が非常に小さいため、底蓋32の石英が露出している部分への付着が大幅に抑止される。
 <変形例2>
 実施形態1の変形例2を、図7に示す模式的な縦断面図を用いて説明する。
 変形例2では、底蓋32の上面の頂部のみを金属板44で覆い、上面のそれ以外の部分は石英が露出している。底蓋32上面において石英が露出している場合、小粒径の塊状シリコン原料36を追加リチャージまたはリチャージする際は問題にならないが、大粒径の塊状シリコン原料36を使用する場合は、底蓋32の円錐形の頂部は強度が弱いため、この箇所に塊状シリコン原料36が衝突すると割れ等が発生する場合がある。従って、本変形例のようにこの円錐形(円錐台形)の底蓋32の上面頂部を金属板44で被覆することは底蓋32の破損防止に効果がある。ただ、金属板44により覆われていない箇所、例えば、底蓋32の上面の中部や下端部は、追加チャージまたはリチャージする際に塊状シリコン原料36が直接に底蓋32の上面の石英露出部分に衝突するため、割れ等が発生することがある。また、追加チャージまたはリチャージする際に、塊状シリコン原料36が石英坩堝12内に落下した衝撃でシリコン融液が飛散するため、この飛散したシリコン融液が金属板44により覆われていない底蓋32の上面の中部や下端部に付着すると、底蓋32の母材である石英が剥がれる問題があり、完全に底蓋32の破損を防止することは難しい。
 <変形例3>
 実施形態1の変形例3を、図8に示す模式的な縦断面図を用いて説明する。
 変形例3が図5に示す実施形態1と違う点は、底蓋32の上面を覆う金属板41が、底蓋32下端であって管31の内壁と平行になっている部分を覆っていない点である。底蓋32の上面のうち金属板41が覆っていない部分には、落下する塊状シリコン原料が衝突することはほとんどなく、そのため、図5に示す実施形態1のリチャージ装置とほぼ同じ効果を奏する。
 <変形例4>
 実施形態1の変形例4を、図9に示す模式的な縦断面図を用いて説明する。
 変形例4が図5に示す実施形態1と違う点は、金属板42が底蓋32の頂部上面および上面上部を覆っていない点である。これにより、大粒径の塊状シリコン原料を使用するときには、底蓋32の頂部および上部での石英部分の損傷が生じるおそれがあるが、小粒径の塊状シリコン原料では損傷は問題にはならず、かつ、飛散するシリコン融液は、底蓋32の頂部及び上部にまではほぼ達しないので、シリコン融液の液滴による底蓋32の破損はほとんどない。
 <実施例1~3,比較例1>
 図1の構成を備えたシリコン単結晶製造装置により、マルチ引上げ製造(2本)を行った。
 まず石英坩堝(内径588 mm)内に120kgの塊状シリコン原料を充填し、次いで溶融させて、シリコン融液を調製した。この状態で、種結晶を融液に接触させてネッキング工程から順次工程を進めていき、クラウン部(肩部)成長工程に進み、引上速度を調整しながら、直胴部及びテイル部の成長を行い、マルチ引上げ製造の1本目として単結晶(重量約100kg、直径約200mm×直胴部長さ約1230mm)を製造し、炉内から取出した。このときの石英坩堝内のシリコン融液の残量は約20kgであった。
 その後、炉をシャットダウンせずに、図5に示す実施形態1のリチャージ装置(管の内径200mm、管の長さ1700mm)に50kgの塊状シリコン原料(平均粒径25mm)を充填後(リチャージ管下端からの充填高さ約1300mm)、上述の塊状シリコン原料の供給方法によりリチャージを2回行い、合計100kgの塊状シリコン原料を石英坩堝内に導入し、シリコン融液120kgを調整した。
 使用したリチャージ装置において、リチャージ管は、管下端と坩堝中の融液面との間隔が約250mmになるように設置した。また、前記リチャージ装置の石英製底蓋の上面は、全面がモリブデン製厚さ1.5mmの金属板により覆われていた。上記リチャージ後、塊状シリコン原料の溶融が完了した時点において、チャンバに設けられた覗き窓(図示略)より、坩堝内のシリコン融液面を観察したところ、浮遊物は認められなかった。
 その後、マルチ引上げ製造の2本目として前記同様の条件で単結晶(重量約100kg、直径約200mm×直胴部長さ約1230mm)を製造し、炉内から取出した。その後、ヒーター電源を落とし、炉をシャットダウンした。これを1バッチとし、上記と同様の条件で同様のマルチ引上げ製造を合計20バッチ実施した。なお、2バッチ目以降の単結晶の製造においてリチャージ装置は、1バッチ目で使用したものをそのまま連続使用した(実施例1)。
 その結果、何れのバッチも、2本目の単結晶の製造に際して、リチャージ後、塊状シリコン原料の溶融が完了した時点において融液面に浮遊物は観察されなかった。また、各バッチにおける、マルチ引上げ製造の2本目として得られた単結晶について、直胴部の晶癖線切れの有無で結晶状態を観察したところ、晶癖線切れがなかったことから全て単結晶と判断した。また、前記マルチ引上げ製造のバッチ毎に、リチャージ装置の底蓋において、上面のモリブデン製金属板を外し、露出した底蓋上面を確認したところ、割れ欠けの箇所は全く認められなかった。
 次に、底蓋のみを変形例1の底蓋に変更したリチャージ装置を用いて、上記と同様の条件で同様のマルチ引上げ製造を合計20バッチ実施した。なお、2本目の単結晶の製造に際して、リチャージ後、塊状シリコン原料の溶融が完了した時点において融液面に浮遊物が観察されたバッチがあり、そのバッチ数を積算した(実施例2)。
 さらに、底蓋のみを変形例2の底蓋に変更したリチャージ装置を用いて、上記と同様の条件で同様のマルチ引上げ製造を合計20バッチ実施した(実施例3)。
 また比較のため、底蓋(石英製)の上面を金属板で被覆しないリチャージ装置を用いて、同様の条件で同様のマルチ引上げ製造を合計20バッチ実施した(比較例)。
 表1に、実施形態1、変形例1,2、比較例のそれぞれについて、マルチ引上げ製造の2本目の単結晶製造における、前記リチャージ後の塊状シリコン原料の融液面の観察結果を示した。また、各マルチ引上げ製造の2本目として得られた単結晶の多結晶化率を示した。多結晶化率とは、上記マルチ引上げ製造の2本目において、単結晶化が阻害され、多結晶化したインゴット本数の割合である。
 また、表1に欠け発生数を示す。欠け発生数とは、マルチ引上げ製造の20バッチ実施後における1バッチ当たりの平均欠け発生数(個/バッチ)のことである。この平均欠け発生数は、バッチ毎に底蓋の上面に発生した直径2mm以上の凹みの数と位置を確認して写真撮影し、次バッチ後の状態と比較することにより、バッチ毎の凹み数の増加量をバッチ毎の欠け発生数として計測した。なお、この凹みには塊状シリコン原料が底蓋の石英部分に直接衝突して石英破片が取れた跡と、シリコン融液の液滴が石英部分に付着し、固化した液滴とともに石英片が剥がれた跡との両方が含まれる。前者の直接衝突による欠けの跡は、直径10mm以上となることが多く、また後者の液滴による欠けは、液滴サイズが2~5mm程度のため、直径5mmを超える凹みは塊状シリコン原料が石英部分に直接衝突して発生したものとし、直径2~5mmの凹みはシリコン融液の液滴が石英部分に付着し、固化した液滴とともに石英片が剥がれた跡として識別した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例1のリチャージ装置を用いると、欠けが多数発生して、多結晶化率も20%と大きい数字となった。発生した欠けにおいて塊状シリコン原料が石英部分に直接衝突して石英破片が取れた跡は20%であり、シリコン融液の液滴の固着物の剥離跡は80%であった。
 比較例1に対し、底蓋の上面の全面を金属板で被覆した実施形態1のリチャージ装置(実施例1)を用いると、欠けは発生せず、多結晶化も全く生じなかった。変形例1のリチャージ装置(実施例2)を用いると、欠けは少し発生したが、多結晶化は全く生じなかった。変形例2のリチャージ装置(実施例3)を用いると、変形例1よりも欠けの発生量が増加し、多結晶化も10%生じたが、比較例1に比べると欠け発生数は7割であり、多結晶化率は1/2であって低い水準であった。このように金属板により被覆された面積を大きくすることで多結晶化率や欠け発生数が減少することが明らかである。したがって、金属板は図5に示すように底蓋の上面の全てを被覆することが望ましいが、一部でも金属板により上面が覆われていれば欠けの発生および多結晶化が大きく抑えられるため、図6,7に示す態様の底蓋を用いれば、本発明の効果を奏する。
 追加チャージまたはリチャージする際に、塊状シリコン原料が石英坩堝内に落下した衝撃でシリコン融液が飛散することは、例え小粒径の塊状シリコン原料でも発生する。この飛散したシリコン融液は管31の下端、底蓋32の下面および底蓋32の上面に付着することがある。しかしながら、管31の下端および底蓋の下面は追加チャージおよびリチャージする時に、塊状シリコン原料と接触しないため、金属板で被覆する必要はない。
 これにより、単結晶インゴットの製造を阻害する原因の発生を確実に防ぐことが可能になる。
 <実施例4>
 実施例4として、実施例3のリチャージ装置に供給する塊状シリコン原料の平均直径を12mmに変更する以外は、実施例3と同様の条件で同様のマルチ引上げ製造を合計20バッチ実施した。表2に結果を示した。
Figure JPOXMLDOC01-appb-T000002
 実施例3に対して実施例4では、リチャージ装置に供給する塊状シリコン原料の平均粒径を約半分としたことにより、欠け発生数は減少して多結晶化率も低下して5%になった。発生した欠けにおいて、塊状シリコン原料が石英部分に直接衝突して石英破片が取れた跡は10%であり、シリコン融液の液滴の固着物の剥離跡は90%であった。
 <実施例5>
 実施例5として、実施例3のリチャージ管への塊状シリコン原料の充填高さを、管下端から約625mm(塊状シリコン原料25kg)とし、リチャージ回数を2回から4回に増やして、合計100kgの塊状シリコン原料をリチャージした以外は、実施例3と同様の条件で同様のマルチ引上げ製造を合計20バッチ実施した。表2に結果を示した。
 実施例3に対して実施例5では、多結晶化率は変わりなく10%であったが、塊状シリコン原料の充填高さを少し低くすることにより欠け発生数は減少した。発生した欠けにおいて、塊状シリコン原料が石英部分に直接衝突して石英破片が取れた跡は8%であり、シリコン融液の液滴の固着物の剥離跡は92%であった。
 <その他の実施形態>
 上述の実施形態は本願発明の例示であって、本願発明はこれらの例に限定されず、これらの例に周知技術や慣用技術、公知技術を組み合わせたり、一部置き換えたりしてもよい。また当業者であれば容易に思いつく改変発明も本願発明に含まれる。
 底蓋は上面が円錐形の他、半球形や回転放物線形状などであっても構わない。すなわち、底蓋の上面が中央部分から周縁部分に向かって下方に傾斜している形状であれば、どのような底蓋の形状であっても構わない。
 投入工程の後に再び貯留工程及び製造工程を行う回数は、実施例のように1回に限られず、貯留工程、製造工程および投入工程のサイクルを2回以上繰り返しても構わない。
10              シリコン単結晶製造装置
12                   坩堝
21              シリコン融液
30              リチャージ装置(投入装置)
31                   管(筒体)
32                   底蓋
36                   塊状シリコン原料
40,41,42,43,44  金属板

Claims (7)

  1.  シリコン融液を貯留する坩堝に、塊状シリコン原料を投入する投入装置であって、
     前記塊状シリコン原料が入れられる筒体と、前記筒体を上下に延びる状態に保持した際の下端開口部を開閉させる底蓋とを備え、
     前記底蓋は石英からなっているとともに、上面の少なくとも一部が金属板により覆われている、投入装置。
  2.  前記底蓋の上面は、中央部分から周縁部分に向かって下方に傾斜している、請求項1に記載されている投入装置。
  3.  前記金属板は、偏析係数kが1×10-3よりも小さい金属からなる、請求項1又は2に記載されている投入装置。
  4.  前記金属はモリブデンである、請求項3に記載されている投入装置。
  5.  請求項1から4のいずれか一つに記載されている投入装置を用いて塊状シリコン原料を供給する方法であって、
     筒体の下端開口部を底蓋により閉じた状態で、筒体の中に塊状シリコン原料を入れる工程と、
     前記底蓋を移動させることによって前記下端開口部を開けて、坩堝に前記塊状シリコン原料を投入する工程と
     を含む、塊状シリコン原料の供給方法。
  6.  請求項1から4のいずれか一つに記載されている投入装置を備えたシリコン単結晶製造装置。
  7.  坩堝にシリコン融液を貯留する貯留工程と、
     前記シリコン融液からシリコン単結晶を製造する製造工程と、
     前記製造工程の後に、請求項5に記載の塊状シリコン原料の供給方法により前記坩堝に塊状シリコン原料を投入する投入工程と
     を含み、
     前記投入工程の後に再び前記貯留工程及び前記製造工程を行う、マルチプリングによるシリコン単結晶の製造方法。
PCT/JP2016/001307 2015-03-25 2016-03-09 投入装置、塊状シリコン原料の供給方法、シリコン単結晶製造装置およびシリコン単結晶の製造方法 WO2016152057A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016533224A JP6028128B1 (ja) 2015-03-25 2016-03-09 投入装置、塊状シリコン原料の供給方法、シリコン単結晶製造装置およびシリコン単結晶の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015063034 2015-03-25
JP2015-063034 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016152057A1 true WO2016152057A1 (ja) 2016-09-29

Family

ID=56977290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001307 WO2016152057A1 (ja) 2015-03-25 2016-03-09 投入装置、塊状シリコン原料の供給方法、シリコン単結晶製造装置およびシリコン単結晶の製造方法

Country Status (2)

Country Link
JP (1) JP6028128B1 (ja)
WO (1) WO2016152057A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009010A1 (ja) * 2017-07-07 2019-01-10 信越半導体株式会社 リチャージ管及び単結晶の製造方法
CN113622026A (zh) * 2020-05-06 2021-11-09 内蒙古中环协鑫光伏材料有限公司 一种直拉单晶复投装置及其复投方法
WO2022103416A1 (en) * 2020-11-11 2022-05-19 Globalwafers Co., Ltd. Methods for forming a single crystal silicon ingot with reduced crucible erosion
CN116783333A (zh) * 2020-12-31 2023-09-19 环球晶圆股份有限公司 在单晶硅锭生长期间使用缓冲剂
US12091769B2 (en) 2020-12-31 2024-09-17 Globalwafers Co., Ltd. Determination of mass/time ratios for buffer members used during growth of single crystal silicon ingots

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795891A (en) * 1980-12-05 1982-06-14 Toshiba Mach Co Ltd Recharger for semiconductor crystal pulling up machine
JP2004244236A (ja) * 2003-02-12 2004-09-02 Komatsu Electronic Metals Co Ltd リチャージ装置、インゴット引上げ装置、及びインゴット製造方法
JP2008088001A (ja) * 2006-09-29 2008-04-17 Sumco Techxiv株式会社 原料供給装置
JP2009263178A (ja) * 2008-04-25 2009-11-12 Sumco Corp 単結晶育成装置および原料供給方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795891A (en) * 1980-12-05 1982-06-14 Toshiba Mach Co Ltd Recharger for semiconductor crystal pulling up machine
JP2004244236A (ja) * 2003-02-12 2004-09-02 Komatsu Electronic Metals Co Ltd リチャージ装置、インゴット引上げ装置、及びインゴット製造方法
JP2008088001A (ja) * 2006-09-29 2008-04-17 Sumco Techxiv株式会社 原料供給装置
JP2009263178A (ja) * 2008-04-25 2009-11-12 Sumco Corp 単結晶育成装置および原料供給方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009010A1 (ja) * 2017-07-07 2019-01-10 信越半導体株式会社 リチャージ管及び単結晶の製造方法
JP2019014625A (ja) * 2017-07-07 2019-01-31 信越半導体株式会社 リチャージ管及び単結晶の製造方法
CN110869541A (zh) * 2017-07-07 2020-03-06 信越半导体株式会社 再装填管及单晶的制造方法
CN113622026A (zh) * 2020-05-06 2021-11-09 内蒙古中环协鑫光伏材料有限公司 一种直拉单晶复投装置及其复投方法
WO2022103416A1 (en) * 2020-11-11 2022-05-19 Globalwafers Co., Ltd. Methods for forming a single crystal silicon ingot with reduced crucible erosion
US12110609B2 (en) 2020-11-11 2024-10-08 Globalwafers Co., Ltd. Methods for forming a single crystal silicon ingot with reduced crucible erosion
CN116783333A (zh) * 2020-12-31 2023-09-19 环球晶圆股份有限公司 在单晶硅锭生长期间使用缓冲剂
US12091769B2 (en) 2020-12-31 2024-09-17 Globalwafers Co., Ltd. Determination of mass/time ratios for buffer members used during growth of single crystal silicon ingots

Also Published As

Publication number Publication date
JPWO2016152057A1 (ja) 2017-04-27
JP6028128B1 (ja) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6028128B1 (ja) 投入装置、塊状シリコン原料の供給方法、シリコン単結晶製造装置およびシリコン単結晶の製造方法
KR100800212B1 (ko) 단결정 성장 장치에 고체 원료를 공급하는 장치 및 방법
JP4103593B2 (ja) 固形状多結晶原料のリチャージ管及びそれを用いた単結晶の製造方法
JP2001520168A (ja) ポリシリコン装填物からシリコンメルトを製造する方法
KR101997600B1 (ko) 원료 충전방법, 단결정의 제조방법 및 단결정 제조장치
JP5741528B2 (ja) 原料充填方法及び単結晶の製造方法
JP2010083685A (ja) 原料供給装置、単結晶製造装置および単結晶の製造方法
JP2008285351A (ja) 原料供給装置及びこれを備えた単結晶引上げ装置、並びに原料供給方法
JP6503933B2 (ja) シリコン融液供給装置及び方法並びにシリコン単結晶製造装置
US20030101924A1 (en) Intermittent feeding technique for increasing the melting rate of polycrystalline silicon
US6805746B2 (en) Method for supplying CZ material
JP6708173B2 (ja) リチャージ管及び単結晶の製造方法
JP3953042B2 (ja) チョクラルスキー法による原料供給装置および原料供給方法
US12091769B2 (en) Determination of mass/time ratios for buffer members used during growth of single crystal silicon ingots
JP2007314394A (ja) チョクラルスキー法による原料供給装置および原料供給方法
US6908509B2 (en) CZ raw material supply method
KR20150103177A (ko) 단결정 반도체 재료의 제어된 도핑을 위한 액체 도핑 시스템 및 방법
JP4403902B2 (ja) 原料供給装置
JP2007254162A (ja) 単結晶製造装置およびリチャージ方法
JP2007277069A (ja) 固形状原料のリチャージ装置およびリチャージ方法
JP7412276B2 (ja) 原料シリコンの充填方法
JP2010173880A (ja) 半導体単結晶の製造方法および原料供給容器
JP2008063205A (ja) 固形状原料のリチャージ装置およびこれを用いたリチャージ方法
JP2010006657A (ja) シリコン単結晶の製造装置およびシリコン単結晶の製造方法
JP2008013376A (ja) 固形状原料のリチャージ装置およびこれを用いたリチャージ方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016533224

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16767967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16767967

Country of ref document: EP

Kind code of ref document: A1