JP2008063205A - 固形状原料のリチャージ装置およびこれを用いたリチャージ方法 - Google Patents

固形状原料のリチャージ装置およびこれを用いたリチャージ方法 Download PDF

Info

Publication number
JP2008063205A
JP2008063205A JP2006245406A JP2006245406A JP2008063205A JP 2008063205 A JP2008063205 A JP 2008063205A JP 2006245406 A JP2006245406 A JP 2006245406A JP 2006245406 A JP2006245406 A JP 2006245406A JP 2008063205 A JP2008063205 A JP 2008063205A
Authority
JP
Japan
Prior art keywords
recharge
tube
pipe
raw material
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006245406A
Other languages
English (en)
Inventor
Toshio Hisaichi
俊雄 久一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2006245406A priority Critical patent/JP2008063205A/ja
Publication of JP2008063205A publication Critical patent/JP2008063205A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】リチャージ管を長大化させることなく固形状原料の充填量を増やすことにより、単結晶の生産性を向上させ、製造コストを低減することを可能とするリチャージ装置およびこれを用いたリチャージ方法を提供する。
【解決手段】結晶融液を貯留するルツボを有する単結晶製造装置に設けられ、ルツボに固形状原料を充填するための固形状原料のリチャージ装置200であって、リチャージ装置200に備えられたリチャージ管201が、リチャージ管上部201a、リチャージ管下部201c、および、リチャージ管上部201aと前記リチャージ管下部201cとの間に設けられたテーパ部201bによって構成され、リチャージ管上部201aの外径が、リチャージ管下部201cの外径よりも大きいことを特徴とする固形状原料のリチャージ装置200およびこれを用いたリチャージ方法。
【選択図】図1

Description

本発明は、チョクラルスキー(CZ)法による単結晶製造装置における、固形状原料のリチャージ装置およびこれを用いたリチャージ方法に関する。
単結晶、例えばシリコン単結晶の製造方法として、いわゆるチョクラルスキー法(CZ法)が知られている。この方法では、育成炉内に設置されたルツボに原料塊を収容し、ヒータを高温加熱してルツボ内の原料を融液とする。そして、原料融液面に種結晶を着液させ、種結晶の下方に所望の直径と品質とを有する単結晶を育成する。1回の操業で1本の単結晶を引上げる1本引き操業が広く用いられているが、複数の単結晶を引上げるマルチ引き操業も、リチャージ技術の普及により次第に増える傾向にある。
このようなマルチ引き操業は、一度しか使用できないルツボから複数本の単結晶を製造し、単結晶の生産性を向上させるとともに、高価なルツボを有効に活用して、単結晶製造コストの低減を図ることを目的としている。
上記のマルチ引き操業の際に用いられるリチャージ法の一つとして、リチャージ管リチャージ法が知られている(例えば、特許文献1、2参照)。
図12は従来技術のリチャージ管リチャージ法で用いられるシリコン単結晶製造装置を説明する模式的縦断面図である。図12に示すように、シリコン単結晶製造装置100にはリチャージ装置200が設けられている。そして、このリチャージ装置200は、固形状シリコン多結晶原料155が充填されるストレート形状で円筒状のリチャージ管201、このリチャージ管201を吊り下げるワイヤ129、ワイヤ129を巻き上げる引上げモータ141で構成されている。そして、ワイヤ129はリチャージ管201の中心を通り、底蓋203の中心で固定されている。この底蓋203がリチャージ管201の下端を支えることによってリチャージ管201が保持されている。
そして、リチャージ管201に充填された固形状シリコン多結晶原料155は、リチャージ装置200が石英ルツボ101にむけて下降し、図13に示すようにストッパ205がサブチャンバ127の内壁に設けられたフリンジ128に掛け止めされた後、さらに底蓋203のみが降下し、隙間210が生ずることによって、石英ルツボ101のシリコン融液105面へと供給される構成になっている。
近年、単結晶の大口径化が進み、特にシリコン単結晶では、φ300mm(12インチ)結晶製造が主流になりつつある。そして、このような大口径シリコン単結晶において高歩留まり、高生産性を実現するためには、リチャージ管に充填する固形状原料の重量を増やしリチャージ回数をできるだけ少なくする必要がある。このため、リチャージ管の口径も大口径化することが図られている。
もっとも、引上げ単結晶の温度コントロールにより高品質結晶を得るために、引上げ装置内には輻射シールド125(図13)やパージパイプが、引上げ単結晶周囲を取り巻く形で設置されている。よって、通常、リチャージ管の最大外径は引上げ結晶径程度以上に大きくすることが困難である。したがって、さらに、リチャージ管に充填する固形状原料の重量を増やすためには、リチャージ管の長さを長くせざるを得ないという状況にある。
特開昭57−95891号公報 特再2002−068732号公報
しかしながら、上記のような、単結晶の大口径化に伴うリチャージ管の長大化により、リチャージ管、あるいは、リチャージ管の下方に設けられた底蓋にクラック、カケ等の破損が生ずるという問題が顕在化してきた。
なぜなら、リチャージ管が長くなることにより、リチャージする固形状原料がリチャージ管下端に対し、高い位置まで充填される。このため、充填された固形状原料が高い位置エネルギーを有することになる。したがって、固形状原料をルツボに投入する際に、原料の落下エネルギーが大きくなり勢いを増して落下する。そして、特に、落下エネルギーの大きい固形状原料が衝突するリチャージ管下部や底蓋で破損が生じやすくなるからである。
なお、この破損は、固形状原料の落下の1回の衝撃力によって生ずる場合もあれば、繰り返し使用されるリチャージ管に、度重なる衝突による歪が蓄積することによって生ずる場合もある。
そして、固形状原料投入中にリチャージ管や底蓋が破損し、チャンバ内や融液内に飛散した場合、これらの飛散したリチャージ管や底蓋の破片の回収は極めて困難である。したがって、長時間操業を停止せざるを得ない場合があり単結晶の生産性を大きく阻害する。
また、たとえリチャージ管や底蓋の破片が飛散しなくとも、破損したリチャージ管や底蓋は交換を余儀なくされる。したがって、高価なリチャージ管や底蓋のコストが単結晶製造コストに跳ね返り、結果的に単結晶製造コストが増大するという問題が生ずる。
本発明は、上記事情を考慮してなされたもので、その目的とするところは、リチャージ管を長大化させることなく固形状原料の充填量を増やすことにより、単結晶の生産性を向上させ、製造コストを低減することを可能とするリチャージ装置およびこれを用いたリチャージ方法を提供することにある。
本発明の一態様の固形状原料のリチャージ装置は、
結晶融液を貯留するルツボを有する単結晶製造装置に設けられ、前記ルツボに固形状原料を充填するための固形状原料のリチャージ装置であって、
前記リチャージ装置に備えられたリチャージ管が、リチャージ管上部、リチャージ管下部、および、前記リチャージ管上部と前記リチャージ管下部との間に設けられたテーパ部によって構成され、
前記リチャージ管上部の外径が、前記リチャージ管下部の外径よりも大きいことを特徴とする。
ここで、前記テーパ部の水平面に対するテーパ角が40°以上70°以下であることが望ましい。
また、前記リチャージ管下部の少なくとも一部が、前記リチャージ管上部よりも肉厚であることが望ましい。
また、前記リチャージ管下部の少なくとも一部に補強材が設けられていることが望ましい。
本発明の一態様の固形状原料のリチャージ方法は、
結晶融液を貯留するルツボを有する単結晶製造装置に設けられ、前記ルツボに固形状原料を充填するための固形状原料のリチャージ装置を用いた固形状原料のリチャージ方法であって、
前記リチャージ装置に備えられたリチャージ管が、リチャージ管上部、リチャージ管下部、および、前記リチャージ管上部と前記リチャージ管下部との間に設けられたテーパ部によって構成され、
前記リチャージ管上部の外径が、前記リチャージ管下部の外径よりも大きいことを特徴とする。
ここで、前記リチャージ管上部およびテーパ部に充填される固形状原料がナゲット状または粒状の形状を有し最大径が前記リチャージ管下部内径の1/8以下であることを特徴とすることが望ましい。
本発明によれば、リチャージ管を長大化させることなく固形状原料の充填量を増やすことにより、単結晶の生産性を向上させ、製造コストを低減することを可能とするリチャージ装置およびこれを用いたリチャージ方法を提供することが可能になる。
以下、本発明に係る固形状原料のリチャージ装置およびこれを用いたリチャージ方法についての実施の形態につき、添付図面に基づき説明する。なお、ここでは単結晶として、シリコン単結晶を製造する場合を例として記載する。
[実施の形態]
本実施の形態のリチャージ装置は、後に詳述するように、リチャージ装置を構成するリチャージ管が、リチャージ管上部、リチャージ管下部、および、前記リチャージ管上部と前記リチャージ管下部との間に設けられたテーパ部によって構成され、リチャージ管上部の外径が、前記リチャージ管下部の外径よりも大きいことを特徴とする。
(単結晶製造装置)
最初に、本実施の形態で用いられうるシリコン単結晶製造装置の構成の一態様について簡単に説明する。
図2は、本実施の形態で用いられうるシリコン単結晶製造装置の模式的縦断面図である。
図2に示すシリコン単結晶製造装置100は、原料となる多結晶シリコンが充填されるルツボ101、103、多結晶シリコンを加熱、溶融しシリコン融液105とするための主ヒータ107および、下部ヒータ109がチャンバ111内に格納され、チャンバ111上部には、育成されたシリコン単結晶(図示せず)を引き上げる引き上げ機構141が設けられている。
チャンバ111の上部に取り付けられた引き上げモータ141からは引き上げワイヤ129が巻き出されており、その先端には、種結晶131を取り付けるための種ホルダ(図示せず)が接続されている。
なお、上記ルツボ101、103は、内側にシリコン融液105を直接収容する石英ルツボ101と、石英ルツボ101を外側で支持するためのカーボンルツボ103とから構成されている。ルツボ101、103は、シリコン単結晶製造装置の下部に取り付けられた回転駆動機能(図示せず)によって回転昇降自在なルツボシャフト113によって支持されている。
ルツボ101、103を取り囲むように主ヒータ107および、下部ヒータ109が配置されており、主ヒータ107の外側には、主ヒータ107からの熱がチャンバ111に直接輻射されるのを防止するための第1の保温材115、第2の保温材117が主ヒータ107の周囲を取り囲むように設けられている。加えて、シリコン融液105やルツボ101、103からの熱がチャンバ111に直接輻射されるのを防止するための第3の保温材119、第4の保温材121が設けられている。そして、シリコン融液105やルツボ101、103からの熱が引き上げシリコン単結晶123の冷却を阻害しないように輻射シールド125が、シリコン融液105、ルツボ101、103とシリコン単結晶間にくるように設けられている。なお、保温材115、117の材質については、特に保温性に優れているものを使用することが望ましく、通常成形断熱材が用いられている。保温材119、121の材質については、例えば、成形断熱材、カーボン、あるいはカーボンの表面を炭化ケイ素で被覆したものが用いられている。輻射シールド125については、輻射熱を調整する役目を果たしているので、例えば、モリブデン、タングステン、タンタル等の金属や、カーボン、カーボンの表面を炭化ケイ素で被覆したもの及びこれらの内側に成形断熱材を設置したものが用いられる。
このような輻射シールド125が、ルツボ101、103内側に設けられていることが、上述したように、リチャージ管201の最大径を制限し、リチャージ管の長大化を招く要因となっている。
なお、チャンバ111は、ステンレス等の耐熱性、熱伝導性に優れた金属により形成されており、冷却管(図示せず)を通して水冷されている。
さらに、チャンバ111上部にはゲートバルブ(図示せず)を介して、シリコン融液105から引上げられたシリコン単結晶を保持して取り出すためのサブチャンバ127が設けられている。そして、サブチャンバ127の内周面には、後述するリチャージ管201を掛け止めするための、フランジ128が設けられている。また、サブチャンバ上端は天板により封鎖されており、引上げられたシリコン単結晶の取り出しや後述するリチャージ装置200を取り出し可能にするサブチャンバの蓋がサブチャンバ上方側面に設けられている。
そして、サブチャンバ127上部には、引き上げモータ141を設けている。引き上げモータ141は、引上げワイヤ129を上下動自在に保持しており、引き上げワイヤ129は天板を通して、サブチャンバ127の中心軸に沿って吊り下げられている。引き上げワイヤ129の下端には、シリコン単結晶引上げ工程の際には図3に示すように種結晶131が吊り下げられ、リチャージ工程の際には図2に示すように、リチャージ装置200が吊り下げられる。
(リチャージ装置)
図1に本実施の形態のリチャージ装置の要部の説明図を示す。本実施の形態のリチャージ管は、φ300mm(12インチ)のシリコン単結晶を引上げる単結晶製造装置に用いられるものである。図1(a)リチャージ装置要部の全体斜視図、図1(b)はリチャージ管の側面図である。図1(a)に示すように、本実施の形態のリチャージ装置200はリチャージ管201と底蓋203およびリチャージ管201をサブチャンバ127(図2参照)の中心軸に安定させるために引き上げワイヤ129を通すフタ204が備わっている。引き上げワイヤ129は底蓋203の中心部に固定されており、リチャージ管201は、底蓋203によって保持されている。また、リチャージ管201上部外周には、リチャージ管201をサブチャンバ127に設けられたフランジ128で掛け止めするためのストッパ205が設けられている。
ここで、リチャージ管201は、シリコン融液105と接近するため、耐熱性に優れるほか、ウェーハを汚染しないものとすることが好ましく、加工性に優れ、比較的安価な点から石英が好ましいが、炭化ケイ素、窒化ケイ素、または酸化アルミニウム等を用いることが出来る。
そして、図1(a)(b)に示すようにリチャージ管201は、リチャージ管上部201a、リチャージ管下部201c、および、リチャージ管上部201aとリチャージ管下部201との間に設けられ、両者を接合するテーパ部201bによって構成されている。ここで、図1(b)に示すように、リチャージ管上部201aの外径R1は、リチャージ管下部201cの外径R2よりも大きくなっている(R1>R2)。このリチャージ管下部201cの外径R2は、上述のように単結晶引上げ装置内の輻射シールドやパージパイプにより制限され、通常は引上げ結晶径程度以上に大きくすることが困難である。
本実施の形態においては、上述のように、輻射シールド等の制約を受けるリチャージ管下部201cの外径R2に対し、輻射シールド等の制約を受けないリチャージ管上部201aの外径R2を大きくしている。これによって、リチャージ管に充填する固形状原料の充填量を従来のストレート形状のリチャージ管よりも増大させることができる。このため、従来と同一の充填量を実現する場合には、リチャージ管の全長を短くすること、すなわち、固形状原料の原料充填高さを従来よりも低くし、固形状原料の充填時の落下エネルギーを低減することが可能となる。
そして、テーパ部の存在による固形状原料の落下速度の減速効果によっても、固形状原料の充填時の落下エネルギーを低減することが可能となる。
よって、本実施の形態のリチャージ装置により、従来技術に比較して、リチャージ管の破損を抑制でき、単結晶の生産性を向上させ、製造コストを低減することが可能となる。
次に、表1に、リチャージ管のテーパ部のテーパ角θ(図1(b))とリチャージ成功率との関係を示す。
Figure 2008063205
ここで、リチャージ成功率とは、図1に示す本実施の形態のリチャージ装置を用いてリチャージを5回行った際に、固形状原料が詰まることなく投入できた回数の割合である。
表1に示すように、テーパ部のテーパ角θが40°以上であれば、高いリチャージ成功率で投入できることが明らかである。したがって、テーパ部のテーパ角θは40°以上であることが望ましい。なお、ここでは、固形状原料のサイズとして、径が25mmより大きく35mm以下のものを使用した。また、径とは、固形状原料の長径(最大長)をいう。また、本実施の形態では、内径270mmのリチャージ管を用いている。
一方、テーパ部のテーパ角θは大きくとも、リチャージ成功率の観点からは問題がない。しかしながら、テーパ部のテーパ角θが大きくなると、テーパ部の長さ(高さ)が長くなる。このため、同じリチャージ充填量であっても、リチャージする固形状原料がリチャージ管下端に対し、高い位置まで充填されることとなってしまう。そのため、リチャージ管下部や底蓋で破損が生じやすくなる。また、テーパ部のテーパ角θが大きくなるとテーパ部での固形状原料の落下速度の減速効果も小さくなるため、リチャージ管破損のおそれが大きくなる。したがって、上記2つの観点から、テーパ部のテーパ角θは70°以下であることが望ましい。
よって、テーパ部のテーパ角θは、40°以上70°以下であることが望ましい。
(リチャージ方法)
次に、上記のように構成されたリチャージ装置およびシリコン単結晶製造装置を用いた本実施の形態のリチャージ方法の一態様について図3ないし図8の模式的縦断面図を用いて説明する。
まず、シリコン単結晶製造装置100は、ゲートバルブ135を開き、サブチャンバ127の上方側面に設けられた蓋(図示せず)を閉じた状態にしておく。
次に、チャンバ111およびサブチャンバ127の内部を不活性ガスで置換した後、Ar等の不活性ガスを流した状態で低圧に保つ。その後、ヒータ107,109を加熱することにより、予め石英ルツボ101の内部に投入されている固形状多結晶シリコン原料(図示せず)を溶融し、シリコン融液105とする。
次に、図3に示すように、ゲートバルブ135を閉め、チャンバ111とサブチャンバ127と遮断する。これにより、チャンバ111内を不活性雰囲気に保持しシリコン融液105の酸化を防止した状態で、サブチャンバ127を常圧に戻す。その後、サブチャンバ127の蓋(図示せず)を開き、引き上げワイヤ129の下端に種結晶131を吊り下げる。
引き上げワイヤ129の下端に種結晶131を吊り下げた後、サブチャンバ127の蓋(図示せず)を閉じ、サブチャンバ127を密閉する。
その後、サブチャンバ127を減圧し、サブチャンバ127内部をAr等の不活性雰囲気で満たす。次に、ゲートバルブ135を開き、チャンバ111とサブチャンバ127を連通する。この状態で、種結晶131はシリコン融液105の真上に位置するため、シリコン融液105の輻射熱により予熱される。
次に、引上げ装置を駆動し、引き上げワイヤ129下端に吊り下げられた種結晶131を降下させ、種結晶131の少なくとも一部をシリコン融液105に浸す。種結晶131がシリコン融液105に浸されると、図4に示すように種結晶131下方に徐々にシリコン単結晶150が成長する。そして、シリコン単結晶150が成長するに従い、所定速度で種結晶131を引上げることにより、所望の直径および長さを有するシリコン単結晶インゴット150(図5)を引上げることが可能となる。
その後、成長したシリコン単結晶インゴット150を、図5に示すようにサブチャンバ127まで上昇させる。そして、ゲートバルブ135を閉じ、チャンバ111とサブチャンバ127とを遮断する。これにより、チャンバ111内を不活性雰囲気に保持し、シリコン融液105の酸化を防止した状態で、サブチャンバ127を常圧に戻す。その後、サブチャンバ127の蓋を開き、シリコン単結晶インゴット150を取り出す。このようにして、1本目のシリコン単結晶インゴット150の製造工程が終了する。
次に、単結晶製造装置外で、リチャージする原料となるナゲット状または粒状の固形状多結晶シリコン原料155をリチャージ装置200に充填した後に、サブチャンバ127の蓋を開き、図6に示すようにリチャージ装置200を引き上げワイヤ129に吊り下げる。
次に、サブチャンバ127の蓋を閉じサブチャンバ127を密閉する。その後、サブチャンバ127を減圧し、サブチャンバ127内部を不活性雰囲気で満たす。
次に、ゲートバルブ135を開き、チャンバ111とサブチャンバ127内を連通させる。この状態でワイヤ129と共にリチャージ装置200を下降させる。
リチャージ装置200が下降していくと、図7に示すように、ストッパ205がフランジ128に接触する。これから更にワイヤ129を下降させると、フランジ128によりリチャージ管201の下降が阻止され、底蓋203のみが更に下降する。そうすると、リチャージ管201と底蓋203の間に、隙間210が生じ、この隙間210から、固形状多結晶シリコン原料155が、自重により石英ルツボ101内に落下する。
この時、リチャージ管201が長大であると、リチャージ管201上部に充填されていた固形状多結晶シリコン原料155の落下エネルギーが大きくなる。そのため、この固形状多結晶シリコン原料155が、リチャージ管201内壁や底蓋203に衝突することにより、リチャージ管201や底蓋203の破損が生ずる恐れが増大する。
なお、固形状多結晶シリコン原料155の石英ルツボ101内への落下は、ヒータ107,109を制御してチャンバ内温度を低下させ、石英ルツボ内の残余シリコン融液105の表面が固化した状態で行なわれることが望ましい。なぜなら、表面を固化させることにより、シリコン融液105の飛沫がチャンバ内の部品に付着し部品寿命を短くするという問題を回避できるからである。
リチャージ管201内部に装填されたすべての固形状多結晶シリコン原料155が、石英ルツボ101内に投入された後、引き上げワイヤ129を上昇させる。すると、引き上げワイヤ127と底蓋203が上昇する。そして、更に引き上げワイヤ129を上昇させることにより、底蓋203に保持されたリチャージ管201が、底蓋203と一体となって上昇する。
なお、リチャージ管201内部に装填されたすべての固形状多結晶シリコン原料155が、石英ルツボ101内に投入された後、シリコン融液105の表面固化のために、下げていたチャンバ111内温度を、ヒータ107,109を制御することによって上昇させ、石英ルツボ101内に投入した固形状多結晶シリコン原料155を溶融する。
そして、図8に示すようにリチャージ装置200が、サブチャンバ127まで完全に上昇した後に、ゲートバルブ135を閉め、チャンバ111とサブチャンバ127を遮断する。これにより、チャンバ111内を不活性雰囲気に保持し、シリコン融液105の酸化を防止した状態で、サブチャンバ127の蓋を開き、サブチャンバ127内を常圧に戻す。その後、リチャージ装置200を単結晶製造装置100外部に取り出しリチャージ工程が完了する。
上記のシリコン単結晶150の製造工程とリチャージ工程を繰り返すことにより、石英ルツボ101を交換することなく2本目以降のシリコン単結晶インゴットを連続して製造することが可能となる。
なお、本実施の形態において、リチャージ管に充填されるナゲット状または粒状の固形状多結晶シリコン原料のサイズは、必ずしも限定されるものではない。しかしながら、リチャージ管上部およびテーパ部に充填される固形状原料の最大径はリチャージ管下部内径の1/8以下であることが望ましい。このように、好ましい固形状原料の最大径がリチャージ管下部内径に比例するのは、同一の最大径であっても、リチャージ管下部内径が増大するにつれて詰まりにくくなるからである。
表2に、固形状原料のサイズを変化させた場合のリチャージ成功率を示す。ここで、リチャージ成功率とは、図1に示す本実施の形態のリチャージ装置を用いてリチャージを5回行った際に、固形状原料が詰まることなく投入できた回数の割合であることは先に記述したとおりである。なお、ここでは、リチャージ管のテーパ部のテーパ角θを40°とした。また、表中で、例えば、原料サイズ30mmとは、固形状原料の径が、25mmより大きく35mm以下の範囲にあることを示している。ここで、径とは、固形状原料の長径(最大長)をいう。また、本実施の形態では、内径270mmのリチャージ管を用いている。
Figure 2008063205
表2から、固形状原料の最大径が35mm以下の場合に、高い成功率を維持できることが明らかである。すなわち、リチャージ管下部内径(270mm)の1/8(33.75mm)以下の領域では、高い成功率を維持できることが明らかである。
なお、リチャージ管下部に充填される固形状原料のサイズに関しては、上記サイズの限定は不要である。
(実施の形態の変形例1)
次に本実施の形態のリチャージ装置の変形例1について説明する。本変形例のリチャージ装置はリチャージ管下部の少なくとも一部が、前記リチャージ管上部よりも肉厚であることを特徴とする以外は、実施の形態と同様であるので記述を省略する。
図9は本変形例のリチャージ装置を構成するリチャージ管の一例を示す側面図である。図9に示すように、リチャージ管下部201cの膜厚t2が、リチャージ管上部201aの膜厚t1より大きく、すなわち肉厚になっている。
また、図10は本変形例のリチャージ装置を構成するリチャージ管の別の一例を示す側面図である。図10に示すように、リチャージ管下部201cの端部201dの膜厚が厚く、肉盛りされた状態になっている。
一般に、固形状原料をルツボに投入する際に、特に、固形状原料の落下エネルギーが大きくなるリチャージ管下部で、衝突によるリチャージ管の破損が生じやすくなる。本変形例のように、リチャージ管下部の少なくとも一部を肉厚にすることによりリチャージ管の破壊靭性を大きくし、リチャージ管の破損を防止することが可能となる。よって、実施の形態の効果に加え、さらに、単結晶の生産性を向上させることを可能となる。
(実施の形態の変形例2)
次に本実施の形態のリチャージ装置の変形例2について説明する。本変形例のリチャージ装置はリチャージ管下部に補強材が設けられていることを特徴とする以外は、実施の形態と同様であるので記述を省略する。
図11は本変形例のリチャージ装置を構成するリチャージ管の一例を示す側面図である。図11に示すように、石英からなるリチャージ管下部201cに、例えば、石英からなる補強材500が複数本設けられている。
このように、リチャージ管下部に補強材を設けることにより、リチャージ管下部の破壊靱性を大きくすることが出来る。したがって、リチャージの際に、特に落下エネルギーの高い固形状原料が衝突するリチャージ管下部の破損を防止することができ、結果的に単結晶の生産性を向上させることが可能となる。
なお、このようなリチャージ管は、線形の石英を石英管に溶着させるだけで容易に作成することが可能である。
ここで、補強材の形状については、リチャージ管下部の破壊靭性が高くなるのであれば、必ずしも図11のように、リチャージ管の長さ方向に伸びる直線状でなくとも、例えば、円柱方向にリング状に形成しても良いし、例えば、格子状に形成しても良い、あるいは、例えば螺旋状に形成しても構わない。
ここで、リチャージ管の材料と補強材の材料は必ずしも同一である必要性はない。そして、補強材の材料については、リチャージ管の材料同様、シリコン融液と接近するため、耐熱性に優れるほか、ウェーハを汚染しないものとすることが好ましく、石英、炭化ケイ素、窒化ケイ素、または酸化アルミニウム等を用いることが出来る。
以上、具体例を参照しつつ本発明の実施の形態について説明した。実施の形態の説明においては、単結晶製造装置、リチャージ装置、リチャージ管、底蓋、リチャージ方法等で、本発明の説明に直接必要としない部分等については記載を省略したが、必要とされる単結晶製造装置、リチャージ装置、リチャージ管、底蓋、リチャージ方法等に関わる要素を適宜選択して用いることができる。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての固形状原料のリチャージ装置およびこれを用いたリチャージ方法は、本発明の範囲に包含される。
以下、本発明の実施例について、図面を参照しつつ説明するが、これらによって本発明が限定されるものではない。
図1(b)に示すような、材質が石英からなる長さ1200mm、厚さ4mmのリチャージ管を準備した。このリチャージ管上部201aは外径φ425mm(内径φ417mm)、長さ725mmとした。また、リチャージ管下部201cは、外径φ278mm(内径φ270mm)、長さ400mmとした。また、テーパ部201bのテーパ角θは45°とした。そして、固形状多結晶シリコン原料を、リチャージ管下部201c下端から高さ700mmの領域まで充填した。このときの総充填重量は、85kgであった。そして、リチャージ管上部およびテーパ部に充填される固形状原料は、ナゲット状または粒状の形状を有し、最大径が35mm以下のものとした。
なお、従来技術の外径φ278mm(内径φ270mm)のストレート形状のリチャージ管では、下端から高さ850mmの領域まで充填した場合の総充填重量は、50kgである。したがって、本実施例のリチャージ管は、充填高さ、すなわち、充填される固形状原料の位置エネルギーを従来技術と同等に保った状態で、従来の70%増の固形状原料を充填することが可能である。裏を返せば、同一の総充填量で、充填高さを大幅に低くすることが可能となる。
次に、図2に示すシリコン単結晶製造装置100で、上記リチャージ管201を用いて3回のリチャージを行った。ここで、石英ルツボは32インチとした。また、引上げられる単結晶はφ300mm(12インチ)単結晶とし、リチャージを行う際の残余融液は200〜250kgであった。この時、固形状原料の膨張による原料詰まりが生じにくいように、リチャージ管のテーパ部より上部が500℃以下となる環境でリチャージを行った。
3回のリチャージにおいて、いずれの場合も、リチャージ管下部の固形状原料衝突に伴うクラック、カケまたは破損は見られなかった。また、いずれの場合も、固形状原料は、詰まることなくスムースに落下することを確認できた。
実施の形態および実施例のリチャージ装置の説明図である。 本発明で用いられうるシリコン単結晶製造装置およびリチャージ方法を説明する模式的縦断面図である。 本発明で用いられうるシリコン単結晶製造装置およびリチャージ方法を説明する模式的縦断面図である。 本発明で用いられうるシリコン単結晶製造装置およびリチャージ方法を説明する模式的縦断面図である。 本発明で用いられうるシリコン単結晶製造装置およびリチャージ方法を説明する模式的縦断面図である。 本発明で用いられうるシリコン単結晶製造装置およびリチャージ方法を説明する模式的縦断面図である。 本発明で用いられうるシリコン単結晶製造装置およびリチャージ方法を説明する模式的縦断面図である。 本発明で用いられうるシリコン単結晶製造装置およびリチャージ方法を説明する模式的縦断面図である。 実施の形態の変形例1のリチャージ装置を構成するリチャージ管の一例の側面図である。 実施の形態の変形例1のリチャージ装置を構成するリチャージ管の一例の側面図である。 実施の形態の変形例2のリチャージ装置を構成するリチャージ管の側面図である。 従来技術のシリコン単結晶製造装置およびリチャージ方法を説明する模式的縦断面図である。 従来技術のシリコン単結晶製造装置およびリチャージ方法を説明する模式的縦断面図である。
符号の説明
101 石英ルツボ
105 シリコン融液
111 チャンバ
127 サブチャンバ
129 引き上げワイヤ
135 ゲートバルブ
150 シリコン単結晶
155 固形状多結晶シリコン原料
200 リチャージ装置
201 リチャージ管
201a リチャージ管上部
201b リチャージ管上部
201c リチャージ管下部
203 底蓋
204 フタ
210 隙間
300 ワイヤ

Claims (6)

  1. 結晶融液を貯留するルツボを有する単結晶製造装置に設けられ、前記ルツボに固形状原料を充填するための固形状原料のリチャージ装置であって、
    前記リチャージ装置に備えられたリチャージ管が、リチャージ管上部、リチャージ管下部、および、前記リチャージ管上部と前記リチャージ管下部との間に設けられたテーパ部によって構成され、
    前記リチャージ管上部の外径が、前記リチャージ管下部の外径よりも大きいことを特徴とする固形状原料のリチャージ装置。
  2. 前記テーパ部の水平面に対するテーパ角が40°以上70°以下であることを特徴とする請求項1記載の固形状原料のリチャージ装置。
  3. 前記リチャージ管下部の少なくとも一部が、前記リチャージ管上部よりも肉厚であることを特徴とする請求項1または請求項2記載の固形状原料のリチャージ装置。
  4. 前記リチャージ管下部の少なくとも一部に補強材が設けられていることを特徴とする請求項1または請求項2記載の固形状原料のリチャージ装置。
  5. 結晶融液を貯留するルツボを有する単結晶製造装置に設けられ、前記ルツボに固形状原料を充填するための固形状原料のリチャージ装置を用いた固形状原料のリチャージ方法であって、
    前記リチャージ装置に備えられたリチャージ管が、リチャージ管上部、リチャージ管下部、および、前記リチャージ管上部と前記リチャージ管下部との間に設けられたテーパ部によって構成され、
    前記リチャージ管上部の外径が、前記リチャージ管下部の外径よりも大きいことを特徴とする固形状原料のリチャージ方法。
  6. 前記リチャージ管上部およびテーパ部に充填される固形状原料がナゲット状または粒状の形状を有し最大径が前記リチャージ管下部内径の1/8以下であることを特徴とする請求項5記載の固形状原料のリチャージ方法。




JP2006245406A 2006-09-11 2006-09-11 固形状原料のリチャージ装置およびこれを用いたリチャージ方法 Pending JP2008063205A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006245406A JP2008063205A (ja) 2006-09-11 2006-09-11 固形状原料のリチャージ装置およびこれを用いたリチャージ方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006245406A JP2008063205A (ja) 2006-09-11 2006-09-11 固形状原料のリチャージ装置およびこれを用いたリチャージ方法

Publications (1)

Publication Number Publication Date
JP2008063205A true JP2008063205A (ja) 2008-03-21

Family

ID=39286223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006245406A Pending JP2008063205A (ja) 2006-09-11 2006-09-11 固形状原料のリチャージ装置およびこれを用いたリチャージ方法

Country Status (1)

Country Link
JP (1) JP2008063205A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032150A (ja) * 2009-08-06 2011-02-17 Sumco Corp 回収された多結晶シリコンの再生方法
WO2014080573A1 (ja) * 2012-11-20 2014-05-30 信越半導体株式会社 原料充填方法、単結晶の製造方法及び単結晶製造装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032150A (ja) * 2009-08-06 2011-02-17 Sumco Corp 回収された多結晶シリコンの再生方法
WO2014080573A1 (ja) * 2012-11-20 2014-05-30 信越半導体株式会社 原料充填方法、単結晶の製造方法及び単結晶製造装置
JP2014101254A (ja) * 2012-11-20 2014-06-05 Shin Etsu Handotai Co Ltd 原料充填方法、単結晶の製造方法及び単結晶製造装置
KR20150086229A (ko) * 2012-11-20 2015-07-27 신에쯔 한도타이 가부시키가이샤 원료 충전방법, 단결정의 제조방법 및 단결정 제조장치
US9650724B2 (en) 2012-11-20 2017-05-16 Shin-Etsu Handotai Co., Ltd. Method of charging raw material, method of manufacturing single crystals, and single crystal manufacturing apparatus
KR101997600B1 (ko) 2012-11-20 2019-07-08 신에쯔 한도타이 가부시키가이샤 원료 충전방법, 단결정의 제조방법 및 단결정 제조장치

Similar Documents

Publication Publication Date Title
JP4959456B2 (ja) 単結晶成長装置に固体原料を供給する装置及び方法
EP2471978B1 (en) Method for recharging silicon feedstock
JPWO2002068732A1 (ja) 固形状多結晶原料のリチャージ管及びそれを用いた単結晶の製造方法
JP2010083685A (ja) 原料供給装置、単結晶製造装置および単結晶の製造方法
JP6028128B1 (ja) 投入装置、塊状シリコン原料の供給方法、シリコン単結晶製造装置およびシリコン単結晶の製造方法
JP5213356B2 (ja) シリコン単結晶引上用石英ガラスルツボおよびその製造方法
US7001456B2 (en) Apparatus and method for supplying Crystalline materials in czochralski method
NO20230318A1 (en) Apparatus for continuously growing ingot
TW201432100A (zh) 在連續柴可斯基(czochralski)方法中用於改良晶體成長之堰
JP6471700B2 (ja) リチャージ装置を用いたシリコン原料の融解方法
JP2008063205A (ja) 固形状原料のリチャージ装置およびこれを用いたリチャージ方法
JP2003020295A (ja) Cz原料供給方法及び供給用治具
JP4672579B2 (ja) 固形状原料のリチャージ方法
JP6708173B2 (ja) リチャージ管及び単結晶の製造方法
JP2007254162A (ja) 単結晶製造装置およびリチャージ方法
JP4668100B2 (ja) 固形状原料のリチャージ管およびこれを用いたリチャージ方法
JP4563951B2 (ja) 固形状原料のリチャージ装置
JP2007182355A (ja) シリコン単結晶引上げ装置の熱遮蔽部材
JP2008013376A (ja) 固形状原料のリチャージ装置およびこれを用いたリチャージ方法
JP5289294B2 (ja) シリコン単結晶引上げ用石英ルツボ
JP2007277069A (ja) 固形状原料のリチャージ装置およびリチャージ方法
JP5029184B2 (ja) 半導体結晶の製造方法及びその製造装置
JP2009274920A (ja) シリコン単結晶の製造方法
JP2008081367A (ja) 単結晶の製造方法および製造装置
JP2010006657A (ja) シリコン単結晶の製造装置およびシリコン単結晶の製造方法