JP2018501845A - 軟骨修復のための移植片足場及びその製造方法 - Google Patents

軟骨修復のための移植片足場及びその製造方法 Download PDF

Info

Publication number
JP2018501845A
JP2018501845A JP2017529659A JP2017529659A JP2018501845A JP 2018501845 A JP2018501845 A JP 2018501845A JP 2017529659 A JP2017529659 A JP 2017529659A JP 2017529659 A JP2017529659 A JP 2017529659A JP 2018501845 A JP2018501845 A JP 2018501845A
Authority
JP
Japan
Prior art keywords
particles
cartilage
gum
printing
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017529659A
Other languages
English (en)
Other versions
JP2018501845A5 (ja
JP6762936B2 (ja
Inventor
ケスティ,マッティ
ゼノビ−ワン,マーシー
ミューラー,ミハエル
Original Assignee
イーティーエッチ チューリッヒ
イーティーエッチ チューリッヒ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーティーエッチ チューリッヒ, イーティーエッチ チューリッヒ filed Critical イーティーエッチ チューリッヒ
Publication of JP2018501845A publication Critical patent/JP2018501845A/ja
Publication of JP2018501845A5 publication Critical patent/JP2018501845A5/ja
Application granted granted Critical
Publication of JP6762936B2 publication Critical patent/JP6762936B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3612Cartilage, synovial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3817Cartilage-forming cells, e.g. pre-chondrocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3852Cartilage, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3852Cartilage, e.g. meniscus
    • A61L27/3856Intervertebral discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/48Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/351343-D cad-cam
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49007Making, forming 3-D object, model, surface

Abstract

本発明は、特にヒトの患者における、軟骨修復のための移植片足場を提供する方法に関する。本発明の方法は、以下の工程、粒子及び/又は線維を提供すること;ゲル化多糖類の水溶液を提供すること;哺乳動物細胞を提供すること;前記粒子及び/又は線維、ゲル化多糖類の前記水溶液及び前記哺乳動物細胞を混合して印刷ミックスを得ること;及び前記印刷ミックスを三次元形態で沈着させることを含む。本発明はさらに前記方法により得られた移植片足場及び移植片に関する。【選択図】図1

Description

本発明は、三次元移植片、特に頭蓋顔面特徴および損傷した関節の修復のための三次元移植片、及び生体適合性インキを用いた三次元バイオ印刷およびコンピューター支援モデリングを用いた患者特異的移植片の製造方法に関する。
局所的に変化する機械的特性および皮膜の重なりを伴う内軟骨構造の複雑な三次元特性のために、患者特異的な方法で鼻および外耳を再建することは、形成外科における最大の課題のいくつかである。耳介の再建は、先天性の奇形、小耳症、黒色腫に関連する組織の犠牲および事故および重度の火傷を含む傷害に適用可能である。耳は、頭部および頸部を含む火傷の約90%に関与する。米国および欧州連合における総耳介再建のために最も頻繁に使用される標準的な治療は、できる限り限られた量で組織が採取されるように、耳の形状に整形される第6、第7および第8の肋骨から採取された自己肋軟骨を用いた第2から第3ステージの手術法に基づく。十分な量の肋軟骨は、一般的に10歳で達成され、再建手術が遅れる。耳の再建手術のためのもう一つの再構成方法は、肋軟骨採取の必要性を避けるためにシリコーンインプラントを使用することである。しかし、皮膚の薄い層の下に無細胞足場を置くことは、患者に長期的な合併症の高いリスクを与える。さらに、各患者にカスタマイズされたサイズおよび形状を提供することは不可能であり、再構成された耳は対側の耳のようには成長しないため非対称性につながる。利用可能な再建戦略はいくつかの手術を含み、その結果は再建外科医の専門知識に大きく依存する。ドナー側の罹患率、肋軟骨支持の欠如による腹壁の崩壊および肋軟骨採取に関連する激しい疼痛は一般的な合併症である。
さらに、スポーツ傷害、外傷および変形性関節症などの変性疾患の結果として生じる骨軟骨の病変を修復する大きな臨床的必要性が存在する。これを治療するための現行の方法論は、自己由来または骨バンク由来の骨軟骨移植片の移植を含む。この治療には、ドナー部位の罹患率、ドナー組織の不足、外科手術の困難性、及び移植片は複数の部分で構成されており、それぞれの部分が緩んだり、又は高さがずれていたりする可能性がある事実を含むいくつかの欠点がある。
この従来技術水準に鑑みて、本発明の目的は、上記の従来技術の欠点を改善した患者固有の移植片を提供するための方法および手段を提供することである。この目的は、本明細書の特許請求の範囲の技術的特徴によって達成される。
概要
本発明の第一の側面によれば、特にヒトの患者に使用するための、移植片足場を提供する方法は、以下の工程:
− 粒子及び/又は線維を提供すること;
− ゲル化多糖類の水溶液を提供すること;
− 哺乳動物細胞を提供すること;
− 前記粒子及び/又は線維、前記ゲル化多糖類の水溶液及び前記哺乳動物細胞を混合して印刷ミックスを得ること;
− 前記印刷ミックスを三次元形態で沈着させること
を含む。
本発明の別の側面によれば、移植片を提供する方法は、以下の工程:
− 本発明の第1の側面による方法、又はその特定の実施形態のいずれかによる移植片足場を提供すること、及び
− 細胞培養工程において、前記無細胞足場を、哺乳動物細胞、特に軟骨細胞、幹細胞又は軟骨前駆細胞を含む細胞培養培地中に沈着させること
を含む。
本発明のさらに別の側面によれば、本発明の先行する側面のいずれか、又はそれらの特定の実施形態のいずれかによって得られた、又は得られうる移植片は、特に頭蓋顔面又は関節修復の方法に使用するために提供される。
本発明のさらに別の側面によれば、頭蓋顔面又は関節修復の方法は、軟骨特異的印刷ミックスを用いて三次元積層造形のために改変された患者特異的移植片のコンピュータモデルを含み、この軟骨特異的印刷ミックスは、少なくとも1つの細胞適合性ポリマー、少なくとも1つの刻まれた組織、又は他の添加剤粒子及び細胞を含み、架橋は共押し出し材料又は生体インク内部に埋め込まれた反応基及び分子の自発的または外部から誘発された反応によって提供され、これらのタイプの少なくとも1つは、ポリマー、刻まれた組織及び細胞のうちの少なくとも1つに存在し、機能的且つ天然軟骨様組織移植片を再構築する。
本発明の一側面によれば、製造された組織移植片の機械的負荷に対してより適した移植片の内部ポリマー勾配、多孔性および支持領域を作り出す方法が積層造形方法により提供される。
本発明の一側面によれば、犠牲的な外部支持構造を作成し、移植片の張出し形状の印刷に役立つ方法が提供され、ここで、犠牲ポリマーは印刷ミックスと共沈着され、印刷ミックスを重合させるための架橋開始剤のリザーバーとして機能し、そして重合後に除去される。
本発明は以下の図及び非限定的な例を参照してさらに説明され、これらの例は、以下の特定の実施形態を表す。
図1A)は、患者のCTモデルに基づいて作成された三次元モデルであり、内部支持構造が移植片への耐荷重性を高めるために追加された後に作成された三次元モデル、B)無傷の組織の人工耳構築物の写真、及びC)より天然に近い曲げ特性のために耳構造を安定させることができる内部支持構造の写真。画像BおよびCの両方は、三次元バイオプリンティングを利用して製造され、刻まれた軟骨粒子、ジェランガム、及びアルギン酸塩から構成されている。 図2は、2つの組成物を有するバイオインクのレオロジー架橋速度論および最終剛性を示す。 図3は、20mM塩化ストロンチウム溶液による機械的特性の時間依存性を示しており、各時点の破損時の標本(n=6)の平均極限応力を引張りで測定した。さらに、カチオン(黒色は塩化カルシウムを示し、及び灰色は塩化ストロンチウムを示す)の濃度は、カチオン供給源にかかわらず架橋に対して同様の効果を有する。機械的性質はカチオン濃度および架橋時間に大きく依存すると結論付けることができる。 図4は、印刷工程において印刷ミックス材料に埋め込まれた軟骨細胞の代謝活性を示すグラフである。代謝活性アッセイ(プロメガMTS one solutionアッセイ)をいくつかの時点で行い、プレートリーダー(Synergy H1、Biotek)で分析した。陽性対照はアルギン酸塩1%(薄灰色)、印刷ミックス材料は組織粒子を含まない印刷ミックス材料(灰色)に対応し、且つ印刷ミックス材料+ECM(濃い灰色)は<100μmの直径の軟骨細胞外マトリックス粒子からなる。全ての条件を三重に分析した。 図5は、架橋カスケードを開始する任意の供給源、酵素、タンパク質又は他の活性化分子由来のカチオンなどの最初の架橋分子を提供する共沈着された支持構造A)、及びこの支持体の溶出後に張出した特徴を有する最終構築物B)を示す。 図6は、粒子、ジェランガム、およびアルギン酸塩からなる無傷の天然のサイズの培養鼻構築物の写真である。構築物は、三次元バイオプリンティングを利用して17分未満で作製された。ラインとラインとの間隔は1mmを表す。 図7は、3%ジェランガム中10%PMMA線維配向を示す明視野顕微鏡画像であり、せん断前(左)、コーナーからコーナーの2方向における1軸せん断後(中央)及び垂直方向の1軸せん断後を示す。スケールバーは50ミクロンである。 図8は、高アシル化ジェラン(A)及び非アシル化ジェラン(B)のジェランガム組成を示す。 図9は、印刷プロセス中の患者固有の三次元モデルを培養鼻組織片への左から右への変換を示す。ライン同士の間隔は1mmを表す。 図10は、A)アルギン酸塩、及びB)ジェランガムのポリマー骨格における種々のレベルの硫酸化におけるフーリエ変換赤外分光法(FTIR)の結果を示す。1300cm−1における矢印は硫酸化のピークを示す。ポリマー中の硫酸化度が高いほど、増殖因子の結合が増加し、分子のより良好な送達がもたらされる。 図11は、粒子を有するバイオインク組成物及び粒子を含まないバイオインク組成物のレオロジー特性の結果を示す。a)は、せん断減粘性を、回転速度で測定したもの、b)は、2サイクルについて1秒のせん断後の振動(100−sせん断速度)におけるせん断回復を示し、c)は、バイオインク単独について種々のカチオン条件でイオン結合により架橋した貯蔵弾性率G’、及びd)は、20mM SrClで30分間架橋させたサンプルの最大貯蔵弾性率G’を示す。エラーバーは標準偏差を表す。 図12は、印刷された構築物の引張および膨潤特性の決定の結果を示す。引張り試験は、印刷されたダンベルの標本に対して行われ、ここでノズルの経路は黒い線で示され、印刷された構造は膨潤した後に示されるa)。標本の中央部に破損が生じた場合の代表的な応力・歪み曲線b)。化学反応式(2)および(3)に基づいたバイオインク組成物の膨潤挙動により、総保水率c)および架橋後の保水率d)をそれぞれ評価した。定規の最小区画は1mmであり、エラーバーは標準偏差を表す。 図13は、印刷された構築物の細胞生存率の決定および細胞増殖アッセイの結果を示す。a)生死の染色で、1層の厚さのディスクを印刷した後の生存率を評価し、ここで印刷後3時間では80%の生存率が観察され、4日目に97%まで回復した。大きな構造における生存率を評価するために、若い成人サイズの鼻を印刷し、生存率を、生死染色によって評価した中央のスライス(拡散距離〜5mm)から評価した。60%の細胞生存率が観察された。スケールバーは5mm(左)、及び50μm(右)である。さらに、鋳造されたディスクの細胞数は、DNA定量化で評価し、ここで、バイオインク+軟骨粒子及び両方のTGF−β3補充組成物に、1日目から21日目までのDNAについて統計的に有意な増加が観察された。エラーバーは標準偏差を表し、有意水準は(p<0.05)であった。
発明の詳細な説明
本発明の第一の側面によれば、特にヒトの患者における、移植片足場を提供する方法に関し、以下の工程:
− ゲル化多糖類の水溶液を提供すること;
− 以下の
粒子及び/又は線維;
哺乳動物細胞;
の少なくとも1つを提供すること;
− 前記粒子及び/又は線維、前記ゲル化多糖類の水溶液及び前記哺乳動物細胞を混合して印刷ミックスを得ること;
− 前記印刷ミックスを三次元形態で沈着させること
を含む。
ある実施形態では、印刷ミックスはゲル化多糖類の水溶液及び粒子を含む。ある実施形態では、印刷ミックスは、ゲル化多糖類の水溶液及び線維を含む。
線維及び/又は粒子は、特に軟骨組織に由来する場合、移植片内の細胞の増殖を支援するのに役立つ要因を含み得る。
ある実施形態では、印刷ミックスはゲル化多糖類の水溶液、及び粒子と線維との両方を含む。
ある実施形態では、印刷ミックスはゲル化多糖類の水溶液及び細胞を含む。ある実施形態では、印刷ミックスはゲル化多糖類の水溶液及び細胞及び1つ又は複数の増殖因子を含む。本発明者らは、驚くべきことに、軟骨粒子又は線維が存在しなくても、ゲル化材料および細胞を提供することにより、特に増殖因子の存在下で、細胞の生存能力および増殖を維持するために、十分であり得ることを見出した。
ある実施形態では、印刷ミックスは、ゲル化多糖類の水溶液及び粒子及び細胞を含む。ある実施形態では、印刷ミックスは、ゲル化多糖類の水溶液及び粒子及び線維及び細胞を含む。
ある実施形態では、前記粒子は、組織粒子からなるか、又は組織粒子を含む。ある実施形態では、前記粒子は、軟骨粒子からなるか、又は軟骨粒子を含む。ある実施形態では、前記粒子は、凍結乾燥軟骨組織からなる粒子からなるか、またはそれらを含む。ある実施形態では、前記粒子は、ヒト軟骨組織からなるか、またはそれを含む。ある好ましい実施形態では、前記粒子は、自己軟骨組織からなるか、またはそれを含む。ある好ましい実施形態では、粒子は、BioCartilage、Amniofix、Alloderm‐Cymetra、Cook Biotech Small Intestial Muscosa(SIS)粒子を含む微粉化したマトリックスの臨床製品であり得る。ある好ましい実施形態では、粒子は、ヒドロキシアパタイト又はリン酸カルシウムであり得る。
ある実施形態では、粒子及び/又は線維は、合成ポリマー、特にポリエチレングリコール、ポリプロピレングリコール、ゲル形成ポロキサマーF108,F127,F68,F88、ポリオキサゾリン、ポリエチレンイミン、ポリビニルアルコール、ポリビニルアセテート、ポリメチルビニルエーテル‐co‐無水マレイン酸、ポリラクチド、ポリ‐N‐イソプロピルアクリルアミド、ポリグリコール酸、ポリメチルメタクリレート、ポリアクリルアミド、ポリアクリル酸、及びポリアリルアミンからなるポリマー、又はこれらから誘導されるポリマー、又はこれらの共重合体、又はこれらのブロック共重合体からなる群から選択されるポリマーで作製される。
ある実施形態では、粒子及び/又は線維は、刻んだ組織を含み、又は主に、又は専ら、刻んだ組織からなる。ある実施形態において、刻んだ組織は、耳介軟骨、鼻軟骨、髄核、半月板、気管、鼻軟骨、肋軟骨、関節軟骨、滑液、硝子体液、脳、脊髄、筋肉、結合組織、小腸粘膜下組織及び肝臓からなる群から選択された組織に由来する。ある実施形態において、刻まれた組織は、5μm〜50μm、50〜200μm及び200〜1000μmの範囲又はこれらの組合せの範囲内にある。
ある実施形態では、前記ゲル化多糖類は、ジェランガム、アシル化及び/又は硫酸化ジェランガムである。ある実施形態において、前記ゲル化多糖類は、グアーガム、カッシアガム、コンニャクガム、アラビアゴム、ガッティガム、ローカストビーンガム、キサンタンガム、硫酸キサンタンガム、カラギーナン、硫酸カラギーナン、又は前記ゲル化多糖類の上記いずれかの混合物から選択される。
ある実施形態では、ゲル化多糖類の前記溶液は、ゲル化多糖類に加えて、添加剤として細胞適合性ポリマーを含み、特にアルギン酸塩、硫酸アルギン酸塩、硫酸化ジェラン、カラギーナン、硫酸カラギーゲン、グアーガム、カッシアガム、コンニャクガム、アラビアゴム、ガッティガム、ローカストビーンガム、キサンタンガム、硫酸キサンタンガム、ヘパリン、線維素、ヘパリン硫酸、エラスチン、トロポエラスチン、コンドロイチン硫酸、デルマタン硫酸、ヒアルロン酸、硫酸化ヒアルロナン、セルロース、デキストラン、硫酸デキストラン、ポリ‐l‐リジン、キトサン、シルク及びコラーゲンからなる群から選択される細胞適合性ポリマーを含む。
ある実施形態では、添加剤はジェランガム、アシル化及び/又は硫酸化ジェランガムと組み合わせて含まれる。
ジェランガムは、シュードモナス・エロデア(Pseudomonas elodea)菌によって生産される水溶性多糖類である。ポリマーの反復単位は、四糖類であり、この四糖類は、Dグルコースの2残基及びL−ラムノースとD−グルクロン酸の各残基の1つからなる。この反復は、以下の構造を有する。:[D‐Glc(β1→47D‐GlcA(β1→4)Djhbn‐Glc(β877→u8ir)L‐Rha(α1→3)]n
「アシル化ジェランガム」は、当技術分野で知られている用語であり、グルコース単位の酸素5’位の一部又は全部にアセチル、及び酸素2’位の一部又は全てにグリセリル酸(glycerylic acid)を含むジェランを指す。図8を参照。:アシル化ジェラン(A)は、細菌発酵後のジェラン原産物であり、精製されると、アシル側鎖及びグリセリル側鎖が切断され得る(B)。これは、ゲル化を促進し、異なる剛性を達成することができる。本発明のある実施形態では、アシル化されたジェランと精製されたジェランとを一緒に組み合わせて、構造に対しより優れた柔軟性を達成する。
ある実施形態では、ゲル化多糖類の溶液は、ゲル化多糖類として、ジェランガム又はアセチル化ジェランガム、又はアシル化ジェランガムの硫酸化生成物、及び、細胞適合性ポリマー添加剤として、アルギン酸塩、硫酸アルギン酸塩、硫酸化ジェラン、カラギーナン、及び/又は硫酸カラギーナンを含む。
ある実施形態では、一価、二価及び/又は三価カチオンを含む塩の水溶液を前記ゲル化多糖類に添加してゲル化させる。
ある実施形態では、前記水溶液は10〜150mmol/lの二価イオンを含む。ある実施形態において、前記水溶液は、ストロンチウムイオン(Sr2+)を含む。ある実施形態において、前記水溶液は、バリウムイオン(Ba2+)を含む。ある実施形態では、前記水溶液はカルシウムイオン(Ca2+)を含む。
ある実施形態では、前記水溶液は、合計で10〜150mmol/lの二価イオンを含む。 ある実施形態において、前記水溶液は、10〜150mmol/lのストロンチウムイオン(Sr2+)、特に15〜50mmol/lのSr2+を含む。ある実施形態において、前記水溶液は、10〜150mmol/lのバリウムイオン(Ba2+)、特に15〜50mmol/lのBa2+を含む。ある実施形態において、前記水溶液は、10〜150mmol/lのカルシウムイオン(Ca2+)、特に15〜100mmol/lのCa2+を含む。
ある実施形態では、前記水溶液は、合計で10〜150mmol/lのSr2+及びBa2+を含み、特に15〜50mmol/lのSi2+及びBa2+を含む。ある実施形態において、前記水溶液は、合計で10〜150mmol/lのCa2+及びBa2+を含み、特に15〜50mmol/lのCa2+及びBa2+を含む。ある実施形態において、前記水溶液は、合計で10〜150mmol/lのSi2+及びCa2+を含み、特に15〜50mmol/lのSi2+及びCa2+を含む。
ある実施形態では、ゲル化多糖類の前記溶液は、単糖類又は二糖類、特にグルコース、マンノース又はアラビノースを生理的オスモル濃度で含む。この添加は、印刷ミックス中に包埋された細胞の生存能力を保護するために重要であり得る。
ある実施形態では、前記粒子及び/又は線維は、以下からなるか、又は含む。
− 生体適合性又は細胞適合性ポリマー、及び/又は
− 生体吸収性ポリマー、特にPLA(ポリ乳酸又はポリラクチド)、DL‐PLA(ポリ(DL‐ラクチド))、L‐PLA(ポリ(L‐ラクチド))、ポリエチレングリコール(PEG)、PGA(ポリグリコリド)、PCL(ポリ‐ε‐カプロラクトン)、PLCL(ポリラクチド‐co‐ε‐カプロラクトン)、ジヒドロリポ酸(DHLA)、アルギン酸塩及びキトサンからなる群から選択されるポリマー、及び/又は
− 合成ポリマー、特にポリエチレングリコール、ポリプロピレングリコール、ポロクサマー(polaxomers)、ポリオキサゾリン、ポリエチレンイミン、ポリビニルアルコール、ポリ酢酸ビニル、ポリメチルビニルエーテル‐co‐無水マレイン酸、ポリラクチド、ポリ‐N‐イソプロピルアクリルアミド、ポリグリコール酸、ポリメチルメタクリレート、ポリアクリルアミド、ポリアクリル酸、及びポリアリルアミン由来のポリマー、又はポリマーからなる群から選択されるポリマー、
− 天然線維、特にエラスチン、レジリン、及びシルク及びそれらの誘導体から選択される天然線維;
− 生体適合性導電材料、特に遷移金属タンタル及び導電性ポリマーポリピロール(PPy)。
ある実施形態において、粒子は、油乳濁液中で、または沈殿によって、上記のバイオポリマーから形成される。ある特定の実施形態では、そのようなバイオポリマーはアルギン酸塩である。
ある実施形態において、前記組織粒子は、耳介軟骨、鼻軟骨、髄核、半月板、気管、鼻軟骨、肋軟骨、関節軟骨、滑液、硝子体液、脳、脊髄、筋肉、結合組織、小腸粘膜下組織及び肝臓からなる群から選択される組織由来である。
ある実施形態では、細胞適合性ポリマーは天然ポリマーである。
ある実施形態では、細胞適合性ポリマーは、種々のアシル化度を有するジェランガム、特にアシル化が100%〜10%の範囲のアシル化を有し、高くて100%まで有し、場合によりアルギン酸塩、硫酸アルギン酸塩、ヘパリン、線維素、ヘパリン硫酸、エラスチン、トロポエラスチン、コンドロイチン硫酸、デルマタン硫酸、ヒアルロン酸、硫酸化ヒアルロナン、セルロース、デキストラン、硫酸デキストラン、ポリ‐l‐リジン、キトサン、シルク及びコラーゲンの種々のタイプ及びこれらの硫酸化型からなる群から選択される添加剤を含む。
ある実施形態では、前記粒子の≧90%、≧95%又は≧98%は、5μm〜1000μm、特に5μm〜50μm、5μm〜200μm、50μm〜200μm又は200μm〜1000μmの範囲にある。
ある実施形態において、前記線維は、長さが、5μm〜50μm及び50〜500μmの範囲の大きさであり、そのアスペクト比が、2〜1000の範囲、特に10〜500、より特定的には100〜500、100〜1000、200〜1000又は500〜1000の範囲を有する。ある実施形態では、シルク線維は、1μm又はそれ未満の直径を有し、且つ500〜1000μm又はそれより大の長さを有するものが使用される。本明細書の文脈中での用語の使用のために、アスペクト比は、線維の長さ対直径の比として定義される。
ある実施形態において、前記哺乳動物細胞は、軟骨細胞、又は軟骨前駆細胞、又は軟骨前駆細胞又は軟骨細胞に分化することができる幹細胞である。
ある実施形態では、哺乳動物細胞は、原発性自家培養軟骨細胞、原発性同種軟骨細胞、軟骨前駆細胞、軟骨芽細胞、間充織幹細胞、誘導多能性幹細胞及び脂肪由来幹細胞からなる群より選択される。
ある実施形態では、印刷ミックスは:
− 1〜6%(w/v)、特に約3%(w/v)の前記ゲル化多糖類;
− 0.5〜10%(w/v)、特に約4%(w/v)の前記粒子、
− 場合により、0.5〜8%(w/v)、特に約2%(w/v)の前記添加剤
を含む。
ある実施形態では、印刷ミックスは:
− 約3%(w/v)のジェランガム;
− 約4%(w/v)の軟骨組織粒子、
− 約2%(w/v)のアルギン酸塩、10ng/mlのTGBF3
− 10〜10の軟骨細胞/ml
を含む。
ある実施形態において、印刷ミックスは、犠牲ポリマーと共に沈着される。
これにより、張り出し構造の生成が可能になり、これは特に鼻および耳の所定の特徴を形成する際に重要である。
ある実施形態において、印刷ミックスは、犠牲ポリマー足場上に沈着される。
ある実施形態では、犠牲ポリマー足場は印刷ミックスと共沈着される。
ある実施形態では、犠牲ポリマー混合物及び/又は足場は、二価カチオン又はゲル化/重合の他の薬剤を含む。
犠牲ポリマー混合物を印刷ミックス中に拡散することによって、これらのカチオン又は他のゲル化/重合剤が足場の三次元構造の迅速な形成を可能にする。
ある実施形態では、三次元形態及び/又は前記犠牲ポリマー足場は、3‐D‐印刷法、特に前記患者の対側臓器の三次元コンピュータモデルに基づいて誘導される。
ある実施形態では、三次元モデルは、コンピューター断層撮影、磁気共鳴映像法、レーザー走査又は三次元カメラの利用により得られる。
ある実施形態において、コンピュータモデルは、勾配による耐荷重性をサポートし、且つより良好な細胞生存率および多孔性のための内部構造を形成するために作製される。
ある実施形態において、ポリマー足場は、積層造形方法によって誘導される。
ある実施形態では、積層造形方法は、インクジェット印刷、バイオプリンティング、押出印刷又は積層方法(layer−by−layer)である。
ある実施形態では、ポリマー足場は、内部ポリマー勾配、多孔性および支持領域によって特徴付けられる。
ある実施形態では、インクが一貫して押出され、フィルタ加圧現象により塞がれないように、マトリックス液体粘度を高めるために追加のポリマーが添加される。
ある実施形態において、犠牲ポリマーは、前記細胞培養工程の前または後に除去される。
ある実施形態では、組織粒子及び/又はバイオインクは、特にBMP‐2、BMP‐7、TGF‐β1、TGF‐β2、TGF‐β3、及び/又はFGF‐2から選択される増殖因子又は増殖因子の組合せを含み、及び/又は分裂促進因子、特にIGF‐1を含むことにより治癒および再生を促進する。
ある実施形態では、増殖因子をバイオインク混合物に直接的に担持することができる。ある実施形態では、前記増殖因子の濃度は、0.1〜5mg/ml、5〜50ng/ml又は50〜500ng/mlの範囲にある1つの増殖因子又はいくつかの増殖因子の組み合わせである。ある実施形態では、増殖因子は、BMP‐2、BMP‐7、TGF‐β1,2,3、IGF‐1及び/又はFGF‐2から選択される。
ある実施形態では、印刷ミックス、特に粒子は、添加成分、特に増殖因子、抗酸化剤、サイトカイン、薬物および生物製剤から選択される成分を含む。
ある実施形態では、犠牲ポリマーは、架橋を開始させる薬剤を結論付け、この薬剤は、一価、二価及び三価カチオン、酵素、過酸化水素、西洋ワサビペルオキシダーゼ、放射線重合性モノマー、例えばリチウムフェニル‐2,4,6‐トリメチルベンゾイルホスフィン酸塩である。
ある実施形態において、架橋開始基は、印刷ミックス中に存在し、特に光暴露、カチオン媒介架橋及び酵素媒介架橋に関与する基から選択される。
本発明の別の態様は、移植片修復を提供する方法であって、
− 前記の特許請求の範囲のいずれか一項に記載の方法により移植片足場を提供すること、及び
− 細胞培養工程において、哺乳動物細胞、特に軟骨細胞、幹細胞または軟骨前駆細胞を含む細胞培養培地中に、前記無細胞足場を沈着させることを含む方法。
本発明の別の態様は、本発明の前述の方法のいずれか一つに記載の方法、又は特定の実施形態又はこの特定の実施形態によって提供される特徴の組み合わせのいずれかによって得られる、又はそれによって得られうる移植片足場に関する。
本発明は、積層造形方法によって製造された患者固有の頭蓋顔面再建移植片を提供する。軟骨組織移植片は、軟骨採取の必要性を無くし、患者の不快感を減少させ、手術時間を短縮し、且つ形状、サイズ及び機械的柔軟性のより良好な複製を可能にする。さらに、より速い組織再生及び増加した細胞増殖を達成して外科的回復を促進することができる。頭蓋顔面適用のために、この技術は、現在使用されている皮膚増強処置(すなわち、エキスパンダ)又は他の天然又は合成皮膚移植片と組み合わせることができる。
印刷
本発明によれば、患者固有の耳介及び鼻移植片は、積層造形方法、例えばこれに限定されるものではないが、押出印刷、インクジェット印刷及び他の積層沈着方法などを利用することにより、患者からの三次元走査モデルに基づいて製造される。臨床コンピュータ断層撮影(CT)、磁気共鳴画像法(MRI)、レーザー走査又は三次元カメラのような三次元画像ツール又はこれらの組み合わせを使用して、患者固有のインプラントのコンピューター化モデルを生成する。耳の再建のために、画像を鏡映して、組織移植片作製のために反対側の耳を正確に模倣する計算モデルを生成することができる。耳と鼻の再建のために、移植片モデルのライブラリーを使用して、特に、正常な対側スキャンが実行できない場合に、患者のための移植片の選択を提供することができる。これらの方法は、特定のサイズ縮小ツールを使用して、皮膚層の厚さにより軟骨フレームワークの寸法を減少させて適切なサイズの最終移植片を達成する場合に、より美容的で審美的な結果をもたらすことができる。積層造形方法は、これらの構築物を高精度かつ無菌条件下で作製する際に利用することができる。さらに、大きな構築物における細胞生存のための内部支持構造および多孔性は、患者のニーズに応じて患者固有の形状及び/又は剛性に追加することができる。血管柄付き軟骨は、壊死を防ぐために、皮膚およびそれに近接した他の組織をその上に重ねるための血管構造を宿すように設計することができる。印刷された軟骨フレームワークは、上部組織、放出増殖因子及び他の分泌分子の構築のための生物活性テンプレートとして使用して、隣接する細胞の生存能力を高めることができる。この放出は、混合物中に硫酸化ポリマーを有することにより、増殖因子を細胞の近傍に結合させ、且つ分子をゆっくりと放出させるように特別に設計することができる。
ある実施形態では、3D形状は、勾配による耐荷重性をサポートし、且つより良好な細胞生存および多孔性のための内部構造を形成するためにコンピュータモデルとして作成することができる。
材料
バイオインク材料は、少なくとも1つの細胞適合性ポリマーと、及び粒子および細胞の少なくとも1つとを含み、架橋は、反応基および分子の自発的または外部的に誘発された反応によって提供され、これらのタイプの少なくとも1つは、ポリマー、刻まれた組織及び細胞の少なくとも1つに存在する。本方法に使用する細胞適合性ポリマー(以下、「ポリマー」と称する)は、必要な細胞適合性を有する任意の適切なポリマーであってよく、すなわち、それらの存在は細胞に対して有害ではない。それらは、天然(バイオポリマー)又は合成材料、又はこれらの組み合わせであってよい。架橋を可能にするために必要な反応基は既にポリマー上に存在していてもよく、又はポリマーはそのような基を含むように修飾されていてもよい。天然ポリマーの非限定的な典型例として、アルギン酸塩、硫酸アルギン酸塩、ヘパリン、線維素、ヘパリン硫酸、エラスチン、トロポエラスチン、コンドロイチン硫酸、デルマタン硫酸、ヒアルロン酸、硫酸化ヒアルロナン、セルロース、デキストラン、硫酸デキストラン、ポリ‐l‐リジン、キトサン、ゼラチン、様々なアシル化度のジェランガム、硫酸ジェラン、グアーガム、カッシアガム、コンニャクガム、アラビアゴム、ガッティガム、ローカストビーンガム、キサンタンガム、硫酸キサンタンガム、カラギーナン、硫酸カラギーゲン、シルク及び種々のタイプのコラーゲンを含む。これらのポリマーの全ての硫酸化型が含まれる。
合成ポリマーの非限定的な典型例として、以下には限定されないが、ポリエチレングリコール、ポリプロピレングリコール、ポロクサマー(polaxomers)、ポリオキサゾリン、ポリエチレンイミン、ポリビニルアルコール、ポリ酢酸ビニル、ポリメチルビニルエーテル‐co‐無水マレイン酸、ポリラクチド、ポリN‐イソプロピルアクリルアミド、ポリグリコール酸、ポリメチルメタクリレート、ポリアクリルアミド、ポリアクリル酸、及びポリアリルアミン由来のポリマー、又はそれらポリマーが挙げられる。
ポリマー、粒子及び細胞の少なくとも1つに存在する基の「少なくとも1つ」とは、付加された反応基がこれらの実体の全て又はいずれかに存在し得ることを意味する。
ポリマー溶液に組み込まれる粒子は、細胞外マトリックス組織粒子、装填または非装填ビーズ及び線維であって、5〜500ミクロンの範囲のサイズを有するものからなるがこれに限定されない。
架橋
材料の組み合わせ、粒子及び細胞に基づくヒドロゲルの形成は、一価の、二価の、三価のカチオン、酵素およびラジカル開始剤を含むが、これに限定されない多くの因子または薬剤によって開始することができる。さらに、物理的及び物理的−化学的方法、例えば、製造プロセス中、低pH溶液又は高pH溶液及び異なる温度領域での処理を採用することができる。
ある実施形態では、前記印刷ミックス及び前記ポリマー足場のいずれか1つは、前記粒子に共有結合している反応基、特に前記印刷ミックスまたはその構成成分が前記粒子に結合することを促進する反応基を含み、この結合は、自発的または外部的に誘発された反応による架橋によるものであり、ここで反応基はポリマー、刻まれた組織及び細胞の少なくとも1つに存在し、組織移植片のような機能的且つ天然の軟骨様組織移植片を再構築する。
粒子
使用される刻まれた組織のサイズは、任意の適切なサイズであり得るが、特定の実施形態では、5ミクロン〜500ミクロンであるので、ニードルまたは弁などの分配ユニットを詰まらせることなく押し出すことができる。この方法で使用される刻まれた組織は、任意の適切な組織であり得るが、それは、軟骨の組織と類似または同一の性質の組織であることが有利である。適切な組織の例示的かつ非限定的な例は、関節軟骨、髄核、半月板、気管、鼻軟骨、肋軟骨、耳軟骨、滑液、気管軟骨、硝子体液、脳、肝臓、脊髄、筋肉、結合組織及び皮下脂肪、膝蓋下脂肪体(intrapatellar fat pad)、小腸粘膜下組織を含む。特定の例は、高含量のエラスチン及びグリコサミノグリカンを有する組織であり、特定の例は、あらゆるタイプの軟骨、髄核及び半月板である。組織は、任意の適切な方法によって刻まれることができ、代表的かつ非限定的な方法として、均質化、凍結粉砕、乾式製粉、切断、チョッピング、破砕およびスライシングを含む。組織は、脱細胞化を受けて、急性炎症応答及びHIVを含む病原体を引き起こし得るエピトープを除去することができる。最近、脱細胞化された組織、すなわち、細胞が殺され、その残骸が除去された組織は、足場が単一の材料からなるより簡単なアプローチに対し足場材料代替物として関心を集めている(Hoshibaら他、「組織工学のための脱細胞化されたマトリックス」、Expert Opinion on Biological Therapy、2010;10:1717−28)。組織脱細胞化は、機能の再現に必要な高解像度の構造および生物学的合図を保持するので、損傷または病変組織の再生に理想的に適した細胞外マトリックスの足場をもたらす。脱細胞化は、例えば、界面活性剤、過酸化水素、水酸化ナトリウム及び酵素、リボヌクレアーゼ及びデオキシリボヌクレアーゼを用いて行うことができる。粒子は、以下に限定されないが、親水性/疎水性相互作用によるコロイド形成、二相エマルションおよび油界面のような方法によって製造することができる。線維は、限定されるものではないが、電界紡糸、線維押出および線維牽引などの方法により製造可能である。あらゆる種類の粒子および線維は、任意の適切な方法、例示的且つ非限定的な方法により刻まれることができ、その方法として均質化、凍結粉砕、乾式粉砕、切断、チョッピング、破砕及びスライシングが挙げられる。これらの付加的な組織片、粒子及び線維は、担体ポリマー又はこれらの材料の組み合わせに結合する官能基でさらに修飾されてもよく、又は架橋のための反応基を露出するように処理されてもよい。さらに、増殖因子、抗酸化剤及び薬物分子は、添加されたポリマー、組織片、粒子及び線維の中または上に担持されてもよい。
細胞
本明細書における用語「細胞」の使用は、個々の細胞、特に哺乳動物細胞、より具体的にはヒト細胞、最も具体的には自己ヒト細胞を包含するが、スフェロイド、ペレットおよび微小組織を形成する上記の細胞の凝集物をも包含し、このことは、当該技術分野において周知であり、一般的に使用されている。この方法に使用される細胞は、軟骨組織上に存在するものと同様のタイプの細胞であるのが有利である。適切な細胞型の典型的且つ非限定例には、原発性自家培養軟骨細胞、原発性同種軟骨細胞、軟骨前駆細胞、軟骨芽細胞、間充織幹細胞、誘導多能性幹細胞及び脂肪由来幹細胞、神経堤由来幹細胞が含まれる。
印刷ミックス材料
本明細書の文脈における「印刷ミックス」という用語は、以下の主要構成成分を含む押出された集合体を指す:
− 天然の(任意に乾燥した)組織又は線維でできている、又は生体適合性ポリマー、任意に生体吸収性のポリマー、又はポリマーと天然の組織/線維との両方でできている粒子、
− ゲル化多糖類、特にジェランガム又はその誘導体の水溶液、及び
− 哺乳動物細胞。
印刷ミックス材料の組成は、材料の性質及び最終用途に応じて、広範囲にわたって変化させることができる。ポリマーは、典型的には0.5〜20%の重量割合で存在する。刻まれた組織、粒子又は線維が存在する場合、それらは、典型的には、乾燥ポリマーの10〜40%、又は全重量の1〜20%の重量割合で存在する。細胞が存在する場合、細胞は典型的には3×10細胞/ml〜50×10細胞/mlの濃度で使用される。
上記の主要成分に加えて、架橋性材料は、材料に特定の特性を付与するために存在する他の材料を含むことができる。1つの具体例は、エラスチンであり、これは耳介及び鼻のECMに豊富にあり、組織の弾性を提供するものであり、他の例としては、増殖因子、サイトカイン、薬物、生物製剤、低分子干渉RNA、DNA、ポリフェノールなどの酸化防止剤が高分子溶液内に含まれ、組織の再生を増強することができる。添加された増殖因子は、硫酸化ポリマー又は未修飾ポリマーに結合して、印刷混合物中に存在する細胞の近傍への送達及び有効性を高めることができる。
すぐに使用できる形態の印刷ミックス材料は、熱的に容易にゲル化された状態であり、製造プロセスにおいて所望の形状を得るために容易に適用できる。分子及び凍結乾燥された刻まれた組織の粉末、粒子及び繊維は、別々に保存および滅菌することができる。全ての成分は、包装の前に組み合わせるか、又は使用直前に再水和させて、長期間にわたって増殖因子及びタンパク質を保存することができる。
形状
患者固有の組織移植片は、各患者に合わせて調整されるか、又は患者の画像化が望ましくない又は不可能な状況の場合、ある種のモデルカタログを作成することができる。外耳および鼻のスキャンから得られた三次元モデルは、内部支持構造、多用途の機械的特性のためのポリマー勾配、及び大きな構造物における細胞生存の増強のための多孔性を含むように改変することができる。さらに、領域は、例えば、細胞増殖の領域的変動を誘導するために、剛性、増殖因子混合物及び濃度の点で調整することができる。例えば、軟骨移植片の周囲は、より多孔性でもより軟質であってもよく、より深く構造内へより多くの栄養素を流すことができる。また、領域特異性および組織型は、これらの構築物にみられ、例えば、耳たぶでは脂肪が主な組織であり、及び機械的特性の原因となる。この領域特性及び特定された構造は、積層法で簡単に作成できる。このような階層化アプローチでは、架橋機構は個々の層内だけでなく隣接する層間でも起こるため、完全に一体化した連続構造を形成する。これは、反応分子リザーバーを含む支持構造と接触する構築物の周辺で架橋を開始することによって達成することができる。
サポート
支持構造は印刷ミックス材料と共沈着して、張出し構造を支持し、架橋を開始し、又は沈着中の材料の乾燥を防止することができる。支持材料は、架橋因子を含むことができ、この因子は限定されないが、一価、二価、三価のカチオン、酵素及びラジカル開始剤を含む。さらに、物理的及び物理的‐化学的方法を使用することができ、これは、支持材料相互作用によりpHおよび分子濃度を変更する方法である。構築物製造後、支持構造を溶出することができる。溶出は、温度変化、pH変化又は分解する分子に起因するが、これに限定されない。
結果物は、迅速で、効果的で、長持ちする軟骨修復である。寿命は、細胞の十分なECM産生が達成されて天然の軟骨様構造を生成するまで、機械的特性を維持するために、移植片における重要な要素である。
本開示の方法を適用することができる用途の典型的な例には、以下が含まれる:
− 頭蓋顔面欠損の再建;
− 部分的な組織の喪失の補充、再建且つそれらを天然の組織との統合;
− 気管(気管(windpipe))、半月板又は肋軟骨を患者固有の移植片で再建;
− 骨軟骨欠損の充填。
本発明の方法は、以下の利点を特徴とする:
− 患者固有の組織移植片を頭蓋顔面および整形外科用途、例えばこれに限定されないが耳、鼻、関節軟骨のために製造する可能性。
− 曲げ特性を調整して足場を天然の組織の物理的パラメータ及び特異的領域に一致させる可能性。
− よりコンパクトなポリマー及び強化構造の機能的な耐荷重領域を含み移植片の機械的特性を調整する可能性。
− 軟骨採取の必要性を排除することにより、患者のより高い満足度、疼痛レベルの減少の提供。
− 組織特異的細胞外マトリックス成分の複雑な配列を生理学的に正確な割合で既に含有する自家、同種又は異種の天然組織を利用すること。これらの粒子は、主に軟骨細胞を刺激する増殖の合図に関与している。
− 任意の可能なECM粒子からの組織断片を、その生化学組成を損なうことなく任意の所望の幾何学的形状を生成するための積層造形目的のためにヒドロゲルブレンドに組み込むことができ、それにより臓器バイオプリンティングの可能性が高まる。
− 足場内に治療因子を組み込む可能性があり、以下に限定されるものではないが、医薬化合物、増殖因子、ペプチド、タンパク質、炭水化物、及び遺伝子治療ベクターを含む。さらに、足場への宿主細胞の移動を誘導するホーミング分子を含めることができる。
− 積層造形技術を用いて様々な組織/組成物を積層することによって組織構造のゾーン構造を達成する可能性。
実施例1a:患者固有の組織移植片のバイオプリンティング
臨床的コンピューター断層撮影撮像を行い、得られた計算上の三次元物体(図1)を得た。その後、患者固有の外耳モデルを対側に対してミラーリングし、新しい3Dモデルを生成した。新しいモデルと共に、外部支持構造モデルが、特に印刷中の張出し領域で耳構造を支持するために生成された。支持構造は、架橋を開始し、張出した特徴を支持するために戦略的に重要な場所でインクと接触するように設計された(図5)。支持材料の同時押出により、支持体の溶出後に印刷された形状を正確に保持し、且つ垂れ下がることなく水平なバイオインクラインを保持することが示された。さらに、より高密度のポリマーの内部支持構造は、内部構造においてより良好な力配分が可能となるように調製された(図2、3)。すべてのモデルは、STL‐コンバータ(RegenHU)のマシンコードに変換され、印刷プロセスのためにバイオプリンタ(BioFactory、RegenHU)に転写された。
同じ技術を使用して、本発明者らは、半月板、椎間板および鼻を含むいくつかの軟骨構造の印刷を実証した。2成分椎間板移植片は、髄核および線維輪を模倣する2つのバイオインク組成物で印刷することができた。
実施例1b:三次元印刷目的用の軟骨粒子の製造
軟骨の薄層をPBSおよびペニシリン‐ストレプトマイシン1%を含有するペトリ皿へ除去することにより、軟骨を新鮮なウシ関節軟骨又は耳介軟骨から採取した。採取した軟骨をクライオミル(Retsch)に移し、30Hzの強度で3サイクル粉砕した。粉砕した軟骨を収集し、所望の粒度範囲にふるい分けることができる乾燥粉末を得るために凍結乾燥した。これらの粒子は、増殖因子又は他の分子をさらに担持して、増殖率および他の細胞応答を増強することができる。担持後、粒子を凍結乾燥し、且つ凍結保存して、長期貯蔵寿命のために生体分子の利用可能性を最大にした。
実施例1c:印刷ミックス材料の調製および印刷工程
3.5%濃度のジェランガムをアルギン酸塩3%と組み合わせることにより、印刷ミックス材料(「バイオインク」)を製造した。ジェランガムを超純水に対して透析して、材料中のカチオン残留物を最小限に抑えた。透析は70〜80℃の超純水で3日間にわたり、水を1日に1〜2回交換しつつ行った。ジェランをさらに凍結乾燥して乾燥粉末を得た。精製されたジェランガムを、脱イオン水を含むグルコースに溶解して細胞適合性を高め、アルギン酸溶液を添加してポリマーの最終濃度を得た。ポリマーブレンドをECM粒子及び6×10細胞/mlと混合して最終印刷ミックス材料を得た。この印刷ミックス材料は、陽性対照と比較して有意に細胞増殖を刺激した(図4)。軟骨細胞外マトリックス産生を、バイオインク単独、バイオインク+ECMに増殖因子TGF−β3を加えたもの、及びバイオインク+ECMに増殖因子TGF−β3がないものについて培地でそれぞれ培養して8週間後の組織構造および免疫染色により評価した。増殖因子のないバイオインク+ECMは、バイオインク単独より大きく細胞増殖を刺激し、これはH&E染色ではっきりと見えた。バイオインク+軟骨粒子はアルシアンブルー染色でわずかな増加を示し、且つわずかなコラーゲンII染色が観察されたことから、さらなる増殖因子刺激の必要性を示唆した。細胞は、増殖因子がない粒子の周辺で度々増殖を示す一方で、TGF‐β3を含むバイオインク+軟骨粒子は部位特異的増殖を有さず、これは粒子が細胞分裂促進増殖因子の供給源であることを示唆する。8週間後、足場の肉眼的形態は、TGF‐β3を補充したサンプルのサイズおよび不透明な外観に見られるように、増殖因子刺激が軟骨マトリックス産生に明確な効果を有することを示唆した。両方の補充されたバイオインク組成物は、軟骨ECM成分の有意な増加を示し、且つ天然軟骨の細胞密度及びGAG含量に類似し始めた領域を有していた。さらに、増殖因子を補充した条件では移植片全体にわたってコラーゲンII沈着が強かったのに対し、TGF‐β3なしで培養したサンプルでは、細胞周囲染色のみが見られた。コラーゲンI型及びアリザリンレッド染色を行い、線維軟骨の産生および石灰化を決定した。コラーゲンIは、バイオインク+軟骨粒子及び両TGF‐β3補充された条件で見出され、これは、おそらく細胞の継代が原因で、いくらかの線維軟骨産生を示唆する。全ての条件において、石灰化は存在せず、これは軟骨細胞の軟骨表現型が安定していることを示唆する。
印刷ミックス材料を基材上に印刷し、支持ポリマーPluronic F127を同時押出しして次の層を充填した。Pluronicは20mMのSrClを含み、インクとの接触時にバイオインク架橋を開始した。カチオンは、浸透圧バランス及び静電気力によって印刷ミックス材料中に拡散し、架橋を開始した。
構造物は、410μmの針と800mm/分の送り速度で生成された。押出シリンジに付される圧力を、1.2〜1.4バールの間で変化させた。所望の形態に材料の積層による沈着の後、犠牲支持体Pluronicを20mMのSrCl浴で数分間溶出させた後に、構築物を37℃の細胞培養培地に移した。図1は耳軟骨内部支持構造を示し、図6は、この技術によって生成された鼻移植片を示す。図2は、高剛性ヒドロゲルに匹敵する架橋後の初期貯蔵弾性率が100kPaであることを示している。
実施例2:機械的特性および増殖因子保持のために最適化されたバイオインク組成物
バイオインク調製:ジェランを90℃で超純水を含むD‐グルコース(300mM)に添加して、85%が低アシルジェランガムであり、25%が高アシルジェランガムである3.5%溶液を得た。アルギン酸塩をこの混合物に加えて2.5%溶液を得た。煮沸フラスコを、溶液が均質になるまで、典型的には1時間、撹拌しながら90℃に保った。均質な溶液を細胞混合の前に30℃まで冷却した。簡単に説明すると、ウシ軟骨細胞(4×10細胞/ml)をDMEM溶液中で混合し、1:10の体積比で培地中のバイオインクに添加してバイオインクを予備架橋した。溶液が室温に達するまで混合を行い、印刷シリンジを装填した。
高アシル(GG−HA)および低アシル(GG−LA)のジェランガム組成物(図8)は、最終的なバイオインクの剛性および弾性に寄与する。アシル化形態間の比を変化させることにより、材料をより強固に架橋することができ、より剛性の高いマトリックスを得ることができる一方で、架橋する際にポリマー鎖の緊密な充填を破壊することによって、より弾性のあるマトリックスを生成できる。これらのパラメータは、85%GG‐LA、25%GG‐HAの組成物における頭蓋顔面適用に最適であり、この組成物は、極限応力が230kPaまで且つ破損時の平均歪み68%の調整可能な架橋特性を提供する(図3)。バイオインクにおける増殖因子の保持をさらに最適化するために、2%の濃度の硫酸化ジェランガム(GG‐3%)(図8)をバイオインクに添加した。この組成物は、非硫酸化バイオインクと比較して、担持された増殖因子、この場合はTGF‐β3およびFGF‐2をバイオインク内に保持する点で優れていた。
実施例3:任意の印刷材料および支持材料との架橋プロセス
チラミン3%と結合したヒアルロン酸添加剤とベースポリマージェラン3%とを一緒に混合して、西洋ワサビペルオキシダーゼ(HRP)及び過酸化水素の存在下で酵素的に架橋可能なヒドロゲルを生成させた。生理的オスモル濃度、特に300mMで単糖グルコースの存在下で材料を脱イオン水に溶解した。4%(w/v)の濃度のヒドロキシアパタイト粒子をポリマー混合物に添加した。このバイオインク組成物は、HRPが1単位/ml濃度のバイオインクと、又は0.0012%濃度の過酸化水素と共にプルロニックF127 30%混合物とのいずれかに混合された場合に、HRPおよび過酸化水素の存在下でさらにバイオプリントされた。積層構築された足場は支持構造と接触すると直ちに架橋された。支持構造は低温媒体中で溶出され、細胞の存在下で過酸化水素の負の効果を減少させた。その後の過酸化水素残留物の量を最小にするために、その構造を数回洗浄した。
実施例4:バイオプリンティングのための線維強化材料
ジェラン3%を脱イオン水に溶解し、且つ10%(w/v)ポリメチルメタクリレート(PMMA)線維をチョップドエレクトロスピン線維としてそのジェラン溶液に添加した。線維を走査型電子顕微鏡法で画像化して、線維の直径を約2ミクロンに決定した。線維強化ジェランをせん断の前に画像化し(図7左)、且つ2分間2つの異なるせん断配向の後に画像化した(図7中央および右)。線維配向はすでに2分後には一軸せん断で大きく増加した。さらに、一軸ではあるが単方向ではないせん断は、せん断方向に対して50ミクロンより短い線維を配向させ、これにより、マトリックス中に異種の耐荷重構造を形成することを可能にする。しかし、50ミクロンよりも長い線維は、せん断の方向が変わったときに、せん断の配向を維持することができなかった。押出印刷の間、せん断パターンはノズル内で一方向且つ一軸性であり、したがって線維を流動方向に配向させる。流れを速やかに停止させると、線維の配向を一軸性に保つことができ、構造の耐荷重能力に影響を与える。これらの構造は特性に影響され、例えば関節軟骨のコラーゲンII線維は異なる軟骨層の配向を変化させる。
実施例4aバイオインク架橋
典型的なバイオインクは、ヒト微粉化軟骨粒子またはHA粒子(≦40μmサイズ)と混合されたアルギン酸塩及びジェランの混合物である。一価、二価または三価のカチオンを添加すると、ゲル化(ゾル‐ゲル転移)が、分子のコイル部分を介して三次元ネットワーク内に連結される接合ゾーンへのヘリックス凝集体として生じる。印刷プロセスは、3つの段階、すなわち、バイオインク印刷前、印刷プロセスおよび印刷後架橋に分けられる。最初に、バイオインクをシリンジに充填し、支持ポリマーを第2のシリンジに充填した。この段階で、少量のカチオンがバイオインクに存在させて粘度を高め、印刷特性を向上させた。印刷プロセスの間、支持体とカチオンとの同時押出物は印刷構造の周囲に拡散して架橋を開始した。最終的な構造が完成した後、支持体を4℃のカチオン添加培地で溶出することができる。
実施例4b:レオロジー解析
カチオンに関連する粘度増強特性および架橋特性は、レオロジーおよび機械的試験によって調べることができる。バイオインク、バイオインク+HA、及びバイオインク+軟骨粒子のレオロジー特性をAnton Paar MCR 301(Anton Paar、Zofingen、スイス)レオメーターで測定し、せん断挙動およびせん断回復を決定した。すべてのバイオインク組成物は、押出しに重要なせん断減粘現象を示した(図11a)。さらに、すべての組成物は、押出前の降伏点(弱いゲル形成)を有し、これはシリンジ中の粒子及び細胞沈降を防止する上で重要である(表1)。
表1.レオロジー測定の概要。降伏点はHerschel/Bulkley方程式を用いて計算した。*2番目のせん断シーケンス後10秒の時点でのせん断回復。
せん断回復曲線(図11b)は、印刷プロセス後のバイオインク構造の回復を示す。2番目のせん断シーケンス後のせん断回復は、10秒後に、バイオインク+軟骨粒子で98%、バイオインク+HAで90%であった。同時にバイオインク単独では元の弾性率の21%だけが回復した。図11cは、バイオインク単独のカチオン誘導架橋後の貯蔵弾性率G’を示し、ここでは、カチオン濃度及び供給源が明確な影響を与えた。図11dは、3つのバイオインク組成物の最終貯蔵弾性率を示す。バイオインク+軟骨粒子(96kPa±1kPa)及びバイオインク+HA(110kPa±2kPa)と比較して、バイオインク単独では、最高の最終貯蔵弾性率(152kPa±3kPa)を示し、架橋がその供給源にかかわらず粒子によって幾分妨げられることを示唆している。
実施例4c:機械的特性および膨潤挙動
バイオプリントされた軟骨構造の機械的特性を引張りで評価した。細胞と共に、又は細胞がない状態でバイオインク+HA粒子を用いて引張ダンベル標本を印刷した。標本のゲージ部におけるノズルの経路(印刷方向)は、引張りの方向と平行になるように選択した(図12a)。ヤング率は、細胞構築物(E=116kPa±6.8kPa)(p<0.001)と比較して、無細胞構築物(E=230kPa±7.0kPa)において有意に高く、これは細胞が構築物のコンプライアンスを増加させ、及び/又は架橋を阻害することを示唆する。無細胞構築物(37%±6.4%)及び細胞構築物(34%±2.1%)(p=0.54)の間では、破壊歪みに差はなかった。
粒子と共に、又は粒子の無いバイオインクの膨潤を定量化して、ゲルの架橋後の総保水性および保水性を評価した(図12c〜d)。37℃で48時間まで膨潤させると、ヒドロゲルの重量は、サンプルの乾燥重量の2000〜3800%で増加し、これは典型的なヒドロゲルであり、ヒドロゲルの架橋重量が26%〜54%の間にある。完全に水和された状態は24時間後に達成され、より具体的にはバイオインク及びバイオインク+軟骨粒子は5時間後に完全に水和され、これはより速い膨潤速度を示唆する。48時間後のバイオインク単独と粒子有組成物との膨潤比どうしの比較から、粒子の種類に依存することを示唆した。
実施例4d:バイオインクとの適合性
粒子と細胞の間のすべての相互作用および増殖の合図を排除するためにバイオインク+HAを用いて細胞のバイオプリンティングプロセスを調べた。1層の厚いディスクを印刷して印刷後の細胞生存率を評価し(図13a)、これを混合前の細胞の初期生存率と比較した。大きな構造の細胞生存率を調べるために、若い成人サイズの鼻(3.1cm、2.6cmおよび1.5cm)を印刷し、構築物の中央の細胞生存率が中央のスライス(最小拡散距離5mm)から評価されるまで静的培養で維持した。粒子を用いたバイオプリンティングは、印刷後3時間で80%の生存率を示したが、4日後には細胞生存率は97%まで回復し、これは実験の終了時まで保たれた。若い成人のサイズの鼻移植片は、足場の中央で生存率が低下し(7日目で60%生存細胞)、これは周辺部での96%生存率と比較して低かった(図13b)。これは、栄養輸送を強化するために、内部多孔性またはチャンネルを組み込む必要性を示唆している。相互接続された多孔性を1.5cmの高さの立方体に導入することにより、構造の中心部の生存率は周辺部と同じく高かった。このような栄養チャンネル又は人工的多孔性は、移植片内に支持ポリマーを押し出すことによってバイオプリント構造に組み込むことができ、その後の洗浄/架橋工程で後に除去することができる。この技術により、複雑な3D相互接続多孔質ネットワークを作製することができ、栄養豊富な培地で移植片を灌流するために使用される。栄養素の大量輸送をさらに強化するために、移植片はダイナミックバイオリアクター内で事前調整することも可能である。
軟骨粒子および増殖因子、この場合はTGF‐β3の細胞増殖に対する補充の影響を、21日間培養した鋳造ゲルで評価した。バイオインク単独では細胞増殖を刺激しなかった;実際には、7日目にはDNAの消失があり、これは徐々に回復した。一方、バイオインク+軟骨粒子では、増殖を刺激し、且つ21日間にわたりDNAにおいて統計学的に有意な増加(p<0.001)が生じた。TGF‐β3を補充した場合には、7日目に、サンプルを含有する軟骨粒子にDNAの統計的に有意な増加があった(p<0.001)。21日目までに、両方のバイオインクはDNAの増加を示したが、これは互いに統計的に有意ではなかった。
実施例4e:細胞外マトリックス産生および軟骨形成
軟骨細胞外マトリックス産生を、培養して3週間後及び8週間後に、組織学および免疫染色によりバイオインク単独及びバイオインク+軟骨粒子において評価した。3週間後の組織学的評価により、TGF‐β3(10ng/ml)を補充した両方のバイオインク組成物において、細胞数、GAG合成及びコラーゲンII産生の明らかな増加が示された。さらに、増殖因子のないバイオインク+軟骨粒子は、バイオインク単独よりも大きく細胞増殖を刺激し、これは3週間および8週間のH&E染色で、はっきりと見えた。両方の時点で、バイオインク+軟骨粒子は、アルシアンブルー染色でわずかな増加を示し、8週間の時点でわずかなコラーゲンII染色が観察され、これはさらなる増殖因子刺激の必要性を示唆する。細胞は、増殖因子の補充がない粒子の周辺で増殖することがしばしば見られ、これは粒子内の増殖因子及び/又は細胞‐粒子の接着が重要であることを示唆する。しかし、TGF‐β3サンプルを含むバイオインク+軟骨粒子では、部位特異的な増殖は観察されなかったため、その結果はむしろ粒子が分裂促進増殖因子の供給源であり、特異的な細胞‐マトリックス接着の合図ではないことを示唆する。8週間後、足場の肉眼的形態は、不透明な外観および大きさの増加が観察されたことから、増殖因子による刺激が軟骨マトリックス産生に明確な効果を有することを示唆した。8週間で、補充されたバイオインク組成物の両方は、軟骨ECM成分の有意な増加を示し、且つ天然軟骨の細胞密度及びGAG含量に類似し始めた領域を有していた。さらに、コラーゲンIIの沈着は、増殖因子補充条件下では移植片全体にわたって強かった一方で、TGF‐β3なしで培養したサンプルでは、細胞周囲の染色のみが見られた。コラーゲンIは、バイオインク+軟骨粒子及び両TGF‐β3補給された条件において見出され、これはおそらく細胞の継代に起因して、いくらかの線維軟骨が産生することを示唆する。全ての条件において、石灰化は存在しなかったことから、軟骨細胞の軟骨表現型が安定していたことを示唆する。
実施例4f:磁気共鳴画像法
印刷された構造の形状保持を評価するために、いくつかのMRI技術が評価された。印刷された鼻をPBSで2週間保持して、T2重み付けMR画像前の完全な腫脹を確実にした。これらの画像は閾値処理され、.STLファイルに変換して、印刷に使用した元のモデルと、印刷直後の軟骨移植片と比較した。元のモデルと印刷された移植片との比較により、正確な材料押出および詳細な構造を示す。しかしながら、元のモデルと比較して、わずかに厚い鼻孔壁が観察された。さらに、印刷された構造を2週間の膨潤後のMRIモデルに対して比較すると、鼻孔壁のわずかな厚みが観察されたが、形状の劣化または崩壊の徴候は検出されなかった。
実施例5:バイオプリンティングプロセスパラメータ
再現可能な印刷プロセスの1つの重要な要素は、連続するラインの接続性である。ライン間隔の影響を評価するために、ラインの太さの最適化が行われなければならない。ラインの太さを900μm±53μmに標準化するために、圧力、供給速度、および針の直径などの印刷パラメータを試験した。ラインの平均太さの決定後、有効なライン‐ライン接着力は、異なるライン間隔を有する一連の引張り試験をしたダンベルを印刷することによって調査した。ダンベルは破損まで引張り試験を行い、そのデータは、ライン間隔を増加させることによって構造の欠陥の可能性が増したことを示したことから、印刷された構造に対して再現性のある機械的特性を提供するために、ラインは、約40〜50%重複すべきことを示している。このデータは、破損時の最終的な応力は、20%まで重複するラインの量を下げて試験したサンプルにおいて変動はなかったが、一方で、試験に対して安定性が十分でなかったサンプルの数は、ライン間隔の増加に伴い増加したことを示した。このデータによれば、最適なライン間隔は、問題のバイオインクの影響を受けるが、重複を増加させることによって、内部の印刷プロセスに関連する欠陥の確率が減少する。さらに、ラインの太さは、圧力、印刷速度、針の直径などのプロセスパラメータを変更することにより、自由に選択できる。
新たに設計されたバイオインクについていくつかの機械的試験測定を行い、構造の再現性及び機械的特性に影響を及ぼすパラメータを調べた。印刷方向を変化させ、且つ細胞が担持されたバイオインクを用いて、印刷された標本の引張り評価から、ヤング率、極限応力及び破損歪は、4×10の播種密度で細胞を添加することにより変化しないことが示され、これは、細胞の体積分率(約〜1%)が強力な周囲マトリックスによって補われていることを示す。さらに、ダンベル標本を引張りに関して様々な印刷方向に、すなわち、引張りに平行に(0°)、引張りに垂直に(90°)、及び引張りに対して45°の角度で(45°)、印刷された。印刷方向は、これらのグループ間で統計的に有意な差異は示さなかったことから、バイオプリントされた構造は、最終的な構造の推定された機械的荷重に基づいてではなく、印刷及びプロセス関連パラメータに基づいて設計できることを示唆する。

Claims (35)

  1. 特にヒトの患者における、軟骨修復のための移植片足場を提供する方法であって、以下の工程:
    − ゲル化多糖類の水溶液を提供すること;
    − 以下の
    粒子及び/又は線維;及び
    哺乳動物細胞;
    の少なくとも1つを提供すること;
    − 前記ゲル化多糖類の水溶液、前記粒子及び/又は線維、及び/又は前記哺乳動物細胞を混合して印刷ミックスを得ること;
    − 前記印刷ミックスを三次元形態で沈着させること
    を含む、移植片足場を提供する方法。
  2. 哺乳動物細胞と粒子及び線維の少なくとも1つとの両方は、前記印刷ミックスを得るために提供される、請求項1記載の方法。
  3. 前記粒子は組織粒子、特に軟骨粒子、より具体的に軟骨粒子、さらに具体的に凍結乾燥軟骨組織からなる粒子、さらにより具体的にはヒト軟骨組織からなる粒子からなり、又はそれらを含む、請求項1又は2記載の方法。
  4. 前記ゲル化多糖類は、ジェランガム、アシル化及び/又は硫酸化ジェランガム、グアーガム、カッシアガム、コンニャクガム、アラビアゴム、ガッティガム、ローカストビーンガム、キサンタンガム、硫酸キサンタンガム、カラギーナン、硫酸カラギーナンである、請求項1〜3のいずれか一項に記載の方法。
  5. ゲル化多糖類の前記溶液は、添加剤として細胞適合性ポリマーを含み、特にアルギン酸塩、硫酸アルギン酸塩、硫酸化ジェラン、カラギーナン、硫酸カラギーゲン、グアーガム、カッシアガム、コンニャクガム、アラビアゴム、ガッティガム、ローカストビーンガム、キサンタンガム、硫酸キサンタンガム、ヘパリン、線維素、ヘパリン硫酸、エラスチン、トロポエラスチン、コンドロイチン硫酸、デルマタン硫酸、ヒアルロン酸、硫酸化ヒアルロナン、セルロース、デキストラン、硫酸デキストラン、ポリ‐l‐リジン、キトサン、シルク及びコラーゲンからなる群から選択される細胞適合性ポリマーを含む、請求項1〜4のいずれか一項に記載の方法。
  6. 前記添加剤はジェランガム、アシル化及び/又は硫酸化ジェランガムと組み合わせて含まれる、請求項5記載の方法。
  7. ゲル化多糖類の前記溶液は、単糖類又は二糖類、特にグルコース、マンノース又はアラビノースを生理的オスモル濃度で含む、請求項1〜6のいずれか一項に記載の方法。
  8. 前記粒子及び/又は線維は、
    − 生体適合性又は生体吸収性ポリマー、特にPLA(ポリ乳酸又はポリラクチド)、DL‐PLA(ポリ(DL‐ラクチド))、L‐PLA(ポリ(L‐ラクチド))、ポリエチレングリコール(PEG)、PGA(ポリグリコリド)、PCL(ポリ‐ε‐カプロラクトン)、PLCL(ポリラクチド‐co‐ε‐カプロラクトン)、ジヒドロリポ酸(DHLA)、アルギン酸塩、ゼラチン、及びキトサンからなる群から選択されるポリマー、又は
    − 合成ポリマー、特にポリエチレングリコール、ポリプロピレングリコール、ポロクサマー(polaxomers)、ポリオキサゾリン、ポリエチレンイミン、ポリビニルアルコール、ポリ酢酸ビニル、ポリメチルビニルエーテル‐co‐無水マレイン酸、ポリラクチド、ポリ‐N‐イソプロピルアクリルアミド、ポリグリコール酸、ポリメチルメタクリレート、ポリアクリルアミド、ポリアクリル酸、及びポリアリルアミン由来のポリマー、又はそれらポリマーからなる群から選択されるポリマー、又は
    − エラスチン、レジリン、及びシルク及びそれらの誘導体;又は
    − 生体適合性導電材料、特に遷移金属タンタル及び導電性ポリマーポリピロール(PPy)
    からなるか、またはそれらを含む、請求項1〜7のいずれか一項に記載の方法。
  9. 前記粒子は、
    − 耳介軟骨、鼻軟骨、髄核、半月板、気管、鼻軟骨、肋軟骨、関節軟骨、滑液、硝子体液、脳、脊髄、筋肉、結合組織、小腸粘膜下組織、肝臓、及び骨からなる群から選択される組織由来の組織粒子である、又は
    − ヒドロキシアパタイト及び/又はリン酸カルシウムを含むか、または完全にそれらからなる粒子
    である、請求項1〜8のいずれか一項に記載の方法。
  10. 前記粒子の≧90%、≧95%又は≧98%は、5μm〜1000μm、特に5μm〜50μm、5μm〜200μm、50μm〜200μm又は200μm〜1000μmの範囲にある、請求項1〜9のいずれか一項に記載の方法。
  11. 前記線維は、長さが、5μm〜50μm及び50〜500μmの範囲の大きさであり、そのアスペクト比が、2〜1000の範囲、特に10〜500、より特定的には100〜500、100〜1000、200〜1000又は500〜1000の範囲を有する、請求項1〜10のいずれか一項に記載の方法。
  12. 増殖因子及び/又は分裂促進因子は、印刷ミックス内に提供される、請求項1〜11のいずれか一項に記載の方法。
  13. 前記増殖因子及び/又は分裂促進因子は、BMP‐2、BMP‐7、TGF‐β1、TGF‐β2、TGF‐β3、FGF‐2、及び/又はIGF‐1から選択される、請求項12記載の方法。
  14. 前記増殖因子の濃度は、0.1〜5ng/ml、5〜50ng/ml又は50〜500ng/mlである、請求項12又は13記載の方法。
  15. 前記哺乳動物細胞は、軟骨細胞、軟骨幹細胞又は軟骨前駆細胞である、請求項1〜14のいずれか一項に記載の方法。
  16. 前記哺乳動物細胞は、前記印刷ミックスの0.3%(v/v)から3%(v/v)の間;特に、0.75%(v/v)〜1.5%(v/v)の間で構成される、請求項1〜15のいずれか一項に記載の方法。
  17. 前記印刷ミックスは:
    − 1〜6%(w/v)、特に約3%(w/v)の前記ゲル化多糖類;
    − 0.5〜10%(w/v)、特に約4%(w/v)の前記粒子、
    − 場合により、0.5〜8%(w/v)、特に約2%(w/v)の前記添加剤
    を含む、請求項1〜16のいずれか一項に記載の方法。
  18. 前記印刷ミックスは:
    − 約3%(w/v)のジェランガム;
    − 約4%(w/v)の粒子、
    − 約2%(w/v)のアルギン酸塩、及び
    − 10〜10の軟骨細胞/ml
    を含む、請求項1〜17のいずれか一項に記載の方法。
  19. 前記印刷ミックスは、約10ng/mlのTGFベータ3を含む、請求項1〜18のいずれか一項に記載の方法。
  20. 前記印刷ミックスの三次元形態への沈着は、該印刷ミックスのラインの沈着により行われ、ここで各ラインは、700〜1100μm、特に約900μmの幅を有し、且つ該ラインは20%〜60%、特に40%〜50%重複する、請求項1〜19のいずれか一項に記載の方法。
  21. 前記印刷は、
    − 犠牲ポリマーと共に及び/又は
    − 犠牲ポリマー足場上に
    沈着される、請求項1〜20のいずれか一項に記載の方法。
  22. 前記犠牲ポリマーミックス及び/又は犠牲ポリマー足場は、二価カチオンを含む、請求項21記載の方法。
  23. 前記三次元形態及び/又は前記犠牲ポリマー足場は、3‐D‐印刷法、特に前記患者の対側臓器のコンピュータモデルに基づいて誘導される、請求項1〜22のいずれか一項に記載の方法。
  24. 前記三次元形態及び/又は前記ポリマー足場は、積層造形方法により誘導される、請求項1〜23のいずれか一項に記載の方法。
  25. 前記三次元形態及び/又は前記ポリマー足場は、内部ポリマー勾配、多孔性および支持領域によって特徴付けられる、請求項1〜24のいずれか一項に記載の方法。
  26. 前記犠牲ポリマー足場は、前記印刷ミックスと共沈着される、請求項1〜25のいずれか一項に記載の方法。
  27. 前記組織粒子は、治癒および再生を促進するために、増殖因子、特にBMP‐2、BMP‐7、TGF‐β1,2,3、及び/又はFGF‐2、及び/又は分裂促進因子、特にIGF‐1を含む、請求項1〜26のいずれか一項に記載の方法。
  28. 前記積層造形方法は、インクジェット印刷、バイオプリンティング、押出印刷又は積層方法である、請求項24〜27のいずれか一項に記載の方法。
  29. 前記ポリマー足場は、架橋開始剤を含み、該剤は、一価、二価及び三価カチオン、酵素、過酸化水素、西洋ワサビペルオキシダーゼ、放射線重合性モノマー、例えばリチウムフェニル‐2,4,6‐トリメチルベンゾイルホスフィン酸塩及びIrgacure 2959である、請求項1〜28のいずれか一項に記載の方法。
  30. 頭蓋顔面修復のための移植片を提供する方法であって、以下の工程
    − 前記請求項のいずれか一項に記載の方法による移植片足場を提供すること、及び
    − 細胞培養工程において、哺乳動物細胞、特に軟骨細胞、幹細胞又は軟骨前駆細胞を含む細胞培養培地中に、前記無細胞足場を沈着させること
    を含む方法。
  31. 前記哺乳動物細胞は、原発性自家培養軟骨細胞、原発性同種軟骨細胞、軟骨前駆細胞、軟骨芽細胞、間充織幹細胞、誘導多能性幹細胞、神経堤由来幹細胞、脂肪由来幹細胞からなる群より選択される、請求項30記載の方法。
  32. 前記犠牲ポリマー足場は、前記細胞培養工程の前または後に除去される、請求項1〜31のいずれか一項に記載の方法。
  33. 前記請求項1〜29のいずれか一項に記載の方法により得られうる、又は得られる移植片足場。
  34. 請求項30又は31又は32に記載の方法により得られうる、又は得られる移植片。
  35. 請求項1〜29のいずれか一項に記載の印刷ミックスの三次元印刷に適切な装置、及び請求項1〜29のいずれか一項に記載の方法を実施するためにプログラムされたコンピューターを含む、請求項1〜29のいずれか一項に記載の方法を実施するためのシステム。

JP2017529659A 2014-12-11 2015-12-11 軟骨修復のための移植片足場及びその製造方法 Active JP6762936B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP14197449 2014-12-11
EP14197449.3 2014-12-11
EP15158224 2015-03-09
EP15158224.4 2015-03-09
PCT/EP2015/079502 WO2016092106A1 (en) 2014-12-11 2015-12-11 Graft scaffold for cartilage repair and process for making same

Publications (3)

Publication Number Publication Date
JP2018501845A true JP2018501845A (ja) 2018-01-25
JP2018501845A5 JP2018501845A5 (ja) 2019-01-24
JP6762936B2 JP6762936B2 (ja) 2020-09-30

Family

ID=55027702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017529659A Active JP6762936B2 (ja) 2014-12-11 2015-12-11 軟骨修復のための移植片足場及びその製造方法

Country Status (18)

Country Link
US (3) US10532126B2 (ja)
EP (2) EP3230044B1 (ja)
JP (1) JP6762936B2 (ja)
CN (1) CN106999635B (ja)
AU (1) AU2015359286B2 (ja)
CA (1) CA2967162C (ja)
CY (1) CY1123170T1 (ja)
DK (2) DK3689609T3 (ja)
ES (1) ES2809457T3 (ja)
HR (1) HRP20201252T1 (ja)
HU (1) HUE050420T2 (ja)
IL (1) IL252771B (ja)
LT (1) LT3230044T (ja)
PL (1) PL3230044T3 (ja)
PT (1) PT3230044T (ja)
RS (1) RS60700B1 (ja)
SI (1) SI3230044T1 (ja)
WO (1) WO2016092106A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102098134B1 (ko) * 2019-02-13 2020-04-08 성균관대학교산학협력단 나노 섬유질 콜라겐 3차원 구조체 제조방법
JP2021504190A (ja) * 2017-11-29 2021-02-15 オールジャン バイオセラピューティクス エス.アー. 滅菌積層造形システム
WO2021107303A1 (ko) * 2019-11-25 2021-06-03 경희대학교 산학협력단 히알루론산 및 폴리에틸렌글리콜을 포함하여 제조된 세포 시트 및 이의 제조방법
JP2021519060A (ja) * 2018-10-25 2021-08-10 セリンク エービー インビトロ培養及び移植のための組織構築物の生理学的3dバイオプリンティングのためのバイオガム及び植物性ガムハイドロゲルバイオインク
JP2022522219A (ja) * 2019-03-29 2022-04-14 ティーディービーティー アイピー インコーポレイティド 組織および臓器置換物、ならびにそれらを作製する方法
US11826951B2 (en) 2019-09-06 2023-11-28 Cellink Ab Temperature-controlled multi-material overprinting
WO2024004696A1 (ja) * 2022-06-30 2024-01-04 国立大学法人大阪大学 三次元造形物の製造方法および三次元造形物作製用インクセット
WO2024043039A1 (ja) * 2022-08-26 2024-02-29 国立大学法人大阪大学 三次元造形物の製造方法および三次元造形物作製用インクセット
US11931966B2 (en) 2018-01-26 2024-03-19 Cellink Bioprinting Ab Systems and methods for optical assessments of bioink printability

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3912652B1 (en) 2014-12-18 2023-11-15 CELLINK Bioprinting AB Bacterial cellulose nanofibrillar bioink for 3d bioprinting for cell culturing, tissue engineering and regenerative medicine applications
US11052175B2 (en) 2015-08-19 2021-07-06 Musculoskeletal Transplant Foundation Cartilage-derived implants and methods of making and using same
WO2017214736A1 (en) 2016-06-16 2017-12-21 Aspect Biosystems Ltd. Bioprinted meniscus implant and methods of using same
WO2018071639A1 (en) 2016-10-12 2018-04-19 Advanced Biomatrix, Inc. Three-dimensional (3-d) printing inks made from natural extracellular matrix molecules
CN106620873A (zh) * 2016-11-17 2017-05-10 太原理工大学 一种复合水凝胶软骨修复材料及其制备方法
CN106727706A (zh) * 2016-12-26 2017-05-31 湖南新起源医疗技术有限公司 一种用于皮肤损伤修复的细胞制剂的制备方法
CN106943632A (zh) * 2017-03-23 2017-07-14 江南大学 一种胶原/硫酸软骨素复合人工眼角膜及其制备方法
CN108686272B (zh) * 2017-03-29 2021-04-09 复旦大学附属华山医院 静电混纺肝素-瑞舒伐他汀钙壳芯结构纳米纤维动脉瘤覆膜支架及制备方法
CA3059120C (en) * 2017-04-10 2024-02-06 TheWell Bioscience Hydrogel for cell culture and biomedical applications
WO2018218203A1 (en) 2017-05-26 2018-11-29 Philip Brunner Water soluble polymer compositions
EP3427949A1 (en) * 2017-07-12 2019-01-16 Albert-Ludwigs-Universität Freiburg Mechanically tunable bioinks for bioprinting
CN107501612B (zh) * 2017-08-07 2020-04-28 华南理工大学 3d打印氧化石墨烯/纤维素复合材料及其制备方法与应用
JP7057076B2 (ja) * 2017-08-07 2022-04-19 株式会社クボタ 植物体の生産方法
US11643551B2 (en) * 2017-08-28 2023-05-09 Dsm Ip Assets B.V. Synthetic membrane composition comprising a polyurethane and a polyoxazoline
EP4309686A3 (en) 2017-10-19 2024-02-07 LifeCell Corporation Flowable acellular tissue matrix products and methods of production
US11246994B2 (en) 2017-10-19 2022-02-15 Lifecell Corporation Methods for introduction of flowable acellular tissue matrix products into a hand
US11485072B2 (en) * 2017-10-27 2022-11-01 DePuy Synthes Products, Inc. Selective laser sintering of asymmetric particles
CN107823711B (zh) * 2017-11-09 2020-10-30 华中科技大学同济医学院附属协和医院 核壳结构复合材料的制备及利用其构建组织工程微组织的方法
EP3485918A1 (en) * 2017-11-21 2019-05-22 ETH Zürich Gel composition for 3d printing of cell suspensions
US20200330647A1 (en) * 2017-12-20 2020-10-22 Aspect Biosystems Ltd. Bioprinted meniscus implant and methods of using same
WO2019122351A1 (en) * 2017-12-22 2019-06-27 Cellink Ab Tissue-specific human bioinks for the physiological 3d-bioprinting of human tissues for in vitro culture and transplantation
CN108159500A (zh) * 2017-12-27 2018-06-15 天津宝坻紫荆科技有限公司 一种3d打印人工骨修复材料及其制备方法
CN108355175A (zh) * 2018-02-12 2018-08-03 华中科技大学鄂州工业技术研究院 一种复合纳米纤维支架的制备方法
CN108187137A (zh) * 2018-02-27 2018-06-22 崔友军 一种可生物降解神经修复支架的制备方法
CN110240799A (zh) * 2018-03-09 2019-09-17 中国石油化工股份有限公司 3d打印组合物及其制备方法和应用
CN108578617B (zh) * 2018-04-09 2021-03-30 深圳市莱利赛生物科技有限公司 促进膝关节软骨再生用脐血间质干细胞药物的制备方法
CN108379659A (zh) * 2018-05-06 2018-08-10 西北工业大学 一种细胞密度多梯度人工软骨制备方法
CN108355168A (zh) * 2018-05-14 2018-08-03 上海交通大学医学院附属第九人民医院 一种结合三维打印技术制备髓核回植体的方法
CN108690205A (zh) * 2018-05-28 2018-10-23 深圳市第二人民医院 一种ⅱ型胶原和聚丙烯酰胺复合水凝胶及其制备和应用
CN108853582A (zh) * 2018-06-15 2018-11-23 南京冬尚生物科技有限公司 3D打印PCL-Cu骨组织工程支架及其制备方法
US20200040296A1 (en) * 2018-08-06 2020-02-06 University Of South Carolina Decellularized Tissue as a Microcarrier for Cell Culture and Expansion
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
WO2020077118A1 (en) 2018-10-10 2020-04-16 Cellink Ab Double network bioinks
CN109432501A (zh) * 2018-10-30 2019-03-08 上海交通大学医学院附属第九人民医院 复合纤维支架在制备鼻整形的复合材料中的用途
CN109513037B (zh) * 2018-11-14 2021-09-17 华中科技大学同济医学院附属协和医院 一种负载介孔生物玻璃的小肠粘膜下层创面敷料
CN109248009B (zh) * 2018-11-23 2020-01-14 吉林大学 一种利用3d打印技术制作人工胸骨的方法
KR102302770B1 (ko) * 2018-11-30 2021-09-16 주식회사 엘앤씨바이오 인체 유래 성분을 함유하고 조직 특이적 세포 분화 효과를 갖는 3d 프린팅 바이오 잉크 조성물 및 그 제조방법
ES2964369T3 (es) 2019-03-29 2024-04-05 Innovative Orthopedics Llc Composiciones y métodos de reemplazo de cartílago
CN110331124B (zh) * 2019-06-14 2022-03-22 浙江大学 一种导电聚吡咯/细胞外基质复合薄膜及其制备方法
CN110464879A (zh) * 2019-07-15 2019-11-19 暨南大学 一种骨组织工程支架的3d打印方法
CN110302428B (zh) * 2019-07-30 2021-07-13 中国人民解放军陆军军医大学第一附属医院 基于活细胞3d打印的软骨-骨-骨髓复合组织结构及方法
CN110538006B (zh) * 2019-08-13 2022-06-17 上海亚朋生物技术有限公司 纤维增强的三维打印软骨脱细胞基质支架的制作方法
CN110433331B (zh) * 2019-08-26 2021-08-24 四川大学 一种生物活性支架及其制备方法
CN110450401A (zh) * 2019-09-05 2019-11-15 上海交通大学医学院附属第九人民医院 一种液体支撑介质内生物三维打印人工关节的方法
CN110478529A (zh) * 2019-09-24 2019-11-22 广西医科大学 一种3d打印魔芋胶水凝胶支架及制备方法和应用
CN110575568A (zh) * 2019-10-22 2019-12-17 上海交通大学医学院附属第九人民医院 一种用于3d打印的水凝胶材料、制备方法及用途
CN110755685A (zh) * 2019-11-06 2020-02-07 广西医科大学 一种3d打印瓜尔胶水凝胶支架及其制备方法
CN110680954A (zh) * 2019-11-06 2020-01-14 广西医科大学 一种3d打印黄原胶水凝胶支架及其制备方法
CN111320767B (zh) * 2020-03-04 2023-01-10 西南交通大学 一种用于3d生物打印的可触变性水凝胶的制备方法
WO2021177503A1 (ko) * 2020-03-06 2021-09-10 주식회사 엘앤씨바이오 연골 성분 기반 바이오 잉크를 이용한 소이증 치료 목적 구조체 제작용 조성물 및 그 제조방법
CN113456897A (zh) * 2020-03-31 2021-10-01 威斯顿股份有限公司 生物材料及其用于促进组织再生的用途
WO2021255123A1 (en) 2020-06-17 2021-12-23 Auregen Biotherapeutics Sa Matured three-dimensional printed compositions and uses thereof
CN112354017B (zh) * 2020-11-19 2022-07-26 中国医学科学院生物医学工程研究所 一种3d打印的力学仿生耳廓软骨组织工程支架及其制造方法
CN113069596A (zh) * 2021-04-07 2021-07-06 山东建筑大学 一种基于3d打印半月板的复合生物陶瓷修复材料
CN113244455B (zh) * 2021-05-17 2022-08-05 广西医科大学 一种3d打印亚麻籽水凝胶支架及制备方法和应用
KR20240043740A (ko) 2021-06-16 2024-04-03 아우레겐 바이오테라퓨틱스 에스에이 젤란검 조성물 및 이의 제조 방법
WO2022265705A1 (en) * 2021-06-18 2022-12-22 Dimension Inx Corp Method for fabrication of additively manufactured, self-gelling structures and their use
WO2023247801A1 (en) * 2022-06-24 2023-12-28 Katholieke Universiteit Leuven Printing of cell aggregates
CN115519788B (zh) * 2022-09-06 2024-03-15 深圳先进技术研究院 组织工程支架的打印方法、打印系统、终端及存储介质
WO2024081898A1 (en) * 2022-10-13 2024-04-18 North Carolina State University Implantable scaffolds and methods of use

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126690A (en) * 1996-07-03 2000-10-03 The Trustees Of Columbia University In The City Of New York Anatomically correct prosthesis and method and apparatus for manufacturing prosthesis
JP2008532653A (ja) * 2005-03-11 2008-08-21 ウエイク・フオレスト・ユニバーシテイ・ヘルス・サイエンシズ 組織が工作された心臓弁の製造
WO2011119059A1 (en) * 2010-03-26 2011-09-29 Association For The Advancement Of Tissue Engineering And Cell Based Technologies And Therapies - A4Tec Photo-crosslinked gellan gum-based hydrogels: preparation methods and uses thereof
US20120089238A1 (en) * 2010-10-06 2012-04-12 Hyun-Wook Kang Integrated organ and tissue printing methods, system and apparatus
WO2014032748A1 (en) * 2012-08-31 2014-03-06 Eth Zurich Process of cartilage repair
AU2013204780A1 (en) * 2013-04-12 2014-10-30 University Of Wollongong Formulation and Method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531503B2 (en) * 2005-03-11 2009-05-12 Wake Forest University Health Sciences Cell scaffold matrices with incorporated therapeutic agents
US20090117087A1 (en) * 2007-04-13 2009-05-07 Wake Forest University Methods and compositions for printing biologically compatible nanotube composites of autologous tissue

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126690A (en) * 1996-07-03 2000-10-03 The Trustees Of Columbia University In The City Of New York Anatomically correct prosthesis and method and apparatus for manufacturing prosthesis
JP2008532653A (ja) * 2005-03-11 2008-08-21 ウエイク・フオレスト・ユニバーシテイ・ヘルス・サイエンシズ 組織が工作された心臓弁の製造
WO2011119059A1 (en) * 2010-03-26 2011-09-29 Association For The Advancement Of Tissue Engineering And Cell Based Technologies And Therapies - A4Tec Photo-crosslinked gellan gum-based hydrogels: preparation methods and uses thereof
US20120089238A1 (en) * 2010-10-06 2012-04-12 Hyun-Wook Kang Integrated organ and tissue printing methods, system and apparatus
WO2014032748A1 (en) * 2012-08-31 2014-03-06 Eth Zurich Process of cartilage repair
AU2013204780A1 (en) * 2013-04-12 2014-10-30 University Of Wollongong Formulation and Method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EXPERT OPIN. BIOL. THER., vol. 10, no. 12, JPN6019041453, 2010, pages 1717 - 1728, ISSN: 0004243486 *
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH B: APPLIED BIOMATERIALS, vol. Vol.98B, ISSUE2, JPN6019041451, August 2011 (2011-08-01), pages 238 - 245, ISSN: 0004243485 *
PLAST RECONSTR. SURG., vol. 123, no. 1, JPN6019041450, January 2009 (2009-01-01), pages 31 - 43, ISSN: 0004243484 *
SOFT MATTER, vol. 9, JPN6019041448, 2013, pages 3705 - 3711, ISSN: 0004243483 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021504190A (ja) * 2017-11-29 2021-02-15 オールジャン バイオセラピューティクス エス.アー. 滅菌積層造形システム
JP7210584B2 (ja) 2017-11-29 2023-01-23 オールジャン バイオセラピューティクス エス.アー. 滅菌積層造形システム
US11931966B2 (en) 2018-01-26 2024-03-19 Cellink Bioprinting Ab Systems and methods for optical assessments of bioink printability
JP2021519060A (ja) * 2018-10-25 2021-08-10 セリンク エービー インビトロ培養及び移植のための組織構築物の生理学的3dバイオプリンティングのためのバイオガム及び植物性ガムハイドロゲルバイオインク
JP7312761B2 (ja) 2018-10-25 2023-07-21 ビコ グループ アー・ベー インビトロ培養及び移植のための組織構築物の生理学的3dバイオプリンティングのためのバイオガム及び植物性ガムハイドロゲルバイオインク
KR102098134B1 (ko) * 2019-02-13 2020-04-08 성균관대학교산학협력단 나노 섬유질 콜라겐 3차원 구조체 제조방법
JP2022522219A (ja) * 2019-03-29 2022-04-14 ティーディービーティー アイピー インコーポレイティド 組織および臓器置換物、ならびにそれらを作製する方法
US11826951B2 (en) 2019-09-06 2023-11-28 Cellink Ab Temperature-controlled multi-material overprinting
WO2021107303A1 (ko) * 2019-11-25 2021-06-03 경희대학교 산학협력단 히알루론산 및 폴리에틸렌글리콜을 포함하여 제조된 세포 시트 및 이의 제조방법
WO2024004696A1 (ja) * 2022-06-30 2024-01-04 国立大学法人大阪大学 三次元造形物の製造方法および三次元造形物作製用インクセット
WO2024043039A1 (ja) * 2022-08-26 2024-02-29 国立大学法人大阪大学 三次元造形物の製造方法および三次元造形物作製用インクセット

Also Published As

Publication number Publication date
EP3689609A1 (en) 2020-08-05
US10532126B2 (en) 2020-01-14
DK3689609T3 (da) 2022-07-04
US11633518B2 (en) 2023-04-25
LT3230044T (lt) 2020-08-25
CA2967162C (en) 2019-07-02
HRP20201252T1 (hr) 2020-11-27
US20230321320A1 (en) 2023-10-12
CY1123170T1 (el) 2021-10-29
RS60700B1 (sr) 2020-09-30
EP3230044B1 (en) 2020-07-01
CN106999635A (zh) 2017-08-01
WO2016092106A1 (en) 2016-06-16
AU2015359286A1 (en) 2017-07-27
US20170348458A1 (en) 2017-12-07
CN106999635B (zh) 2021-06-11
JP6762936B2 (ja) 2020-09-30
SI3230044T1 (sl) 2020-10-30
US20200139007A1 (en) 2020-05-07
IL252771B (en) 2022-06-01
DK3230044T3 (da) 2020-08-17
AU2015359286B2 (en) 2019-05-02
HUE050420T2 (hu) 2020-12-28
PL3230044T3 (pl) 2021-02-08
IL252771A0 (en) 2017-08-31
EP3230044A1 (en) 2017-10-18
EP3689609B1 (en) 2022-04-20
ES2809457T3 (es) 2021-03-04
PT3230044T (pt) 2020-08-03
CA2967162A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
US11633518B2 (en) Graft scaffold for cartilage repair and process for making same
Zhang et al. Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury
Wang et al. Design and fabrication of a biodegradable, covalently crosslinked shape-memory alginate scaffold for cell and growth factor delivery
Walker et al. Anisotropic temperature sensitive chitosan‐based injectable hydrogels mimicking cartilage matrix
US11000630B2 (en) Hydrogel precursors having nanoparticles
Crosby et al. Interpenetrating polymer network hydrogels as bioactive scaffolds for tissue engineering
Zhou et al. Functionalized hydrogels for articular cartilage tissue engineering
Guo et al. Hyaluronic acid-based interpenetrating network hydrogel as a cell carrier for nucleus pulposus repair
US20050214341A1 (en) Biomimetic composition reinforced by a polyelectrolytic complex of hyaluronic acid and chitosan
JP4002299B2 (ja) 組織処理用の改善されたヒドロゲル
Chen et al. Hyaluronic acid-based biphasic scaffold with layer-specific induction capacity for osteochondral defect regeneration
Wang et al. Advances in mechanical properties of hydrogels for cartilage tissue defect repair
Bashiri et al. 3D-printed placental-derived bioinks for skin tissue regeneration with improved angiogenesis and wound healing properties
JP2023553977A (ja) 組織模倣物のための粒子状材料
Liao et al. Current intelligent injectable hydrogels for in situ articular cartilage regeneration
KR20210112975A (ko) 연골 성분 기반 바이오 잉크를 이용한 소이증 치료 목적 구조체 제작용 조성물 및 그 제조방법
CN114080244A (zh) 利用基于软骨成分的生物墨水的治疗小耳症目的结构体制造用组合物及其制造方法
Kirchmajer Gelatin and gellan gum based hydrogel materials: towards soft tissue scaffolds
Kesti Bioprinting technologies for auricular cartilage tissue engineering
US20240075189A1 (en) Particulate materials for tissue mimics
Liu et al. Advanced biocompatible polymers for cartilage tissue engineering
Tomić et al. Hydrogel Scaffolds Based on Alginate, Gelatin, and 2-Hydroxyethyl Methacrylate for Tissue Regeneration
Beck Development of Chondroinductive Hydrogel Pastes from Naturally Derived Cartilage Matrix
Dehghanbaniani Fabrication of Novel Injectable Chitosan-Based Scaffolds Reinforced with Drug-Loaded Starch Particles for Cartilage Tissue Engineering

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R150 Certificate of patent or registration of utility model

Ref document number: 6762936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250