JP2017228621A - 半導体装置及び半導体装置の製造方法 - Google Patents

半導体装置及び半導体装置の製造方法 Download PDF

Info

Publication number
JP2017228621A
JP2017228621A JP2016122992A JP2016122992A JP2017228621A JP 2017228621 A JP2017228621 A JP 2017228621A JP 2016122992 A JP2016122992 A JP 2016122992A JP 2016122992 A JP2016122992 A JP 2016122992A JP 2017228621 A JP2017228621 A JP 2017228621A
Authority
JP
Japan
Prior art keywords
electrode
substrate
forming
semiconductor device
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016122992A
Other languages
English (en)
Other versions
JP6877896B2 (ja
Inventor
多木 俊裕
Toshihiro Tagi
俊裕 多木
岡本 直哉
Naoya Okamoto
直哉 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016122992A priority Critical patent/JP6877896B2/ja
Publication of JP2017228621A publication Critical patent/JP2017228621A/ja
Application granted granted Critical
Publication of JP6877896B2 publication Critical patent/JP6877896B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

【課題】窒化物半導体を用いた半導体装置において、半導体装置を動作させて発熱した際にも、基板にクラック等の発生することのない、信頼性の高い半導体装置を提供する。【解決手段】基板10の一方の面に、第1の窒化物半導体層21と、第2の窒化物半導体層22と、第2の窒化物半導体層22の上に形成されたゲート電極31、ソース電極32及びドレイン電極33と、基板10の他方の面に形成された裏面電極51と、基板51を貫通し、ソース電極32と裏面電極51とを接続する貫通電極50と、を有する。貫通電極50は、くびれ部分50aが形成されており、くびれ部分50aよりも他方の面の側の貫通電極下部50cと基板10との間、基板10の他方の面と裏面電極51との間には、シードメタル52が形成されており、くびれ部分50aよりも一方の面の側の貫通電極上部50bと基板10との間においては、貫通電極上部50bと基板10とが接している。【選択図】図2

Description

本発明は、半導体装置及び半導体装置の製造方法に関するものである。
窒化物半導体であるGaN、AlN、InNまたは、これらの混晶からなる材料等は、広いバンドギャップを有しており、高出力電子デバイスまたは短波長発光デバイス等として用いられている。例えば、窒化物半導体であるGaNは、バンドギャップが3.4eVであり、Siのバンドギャップ1.1eV、GaAsのバンドギャップ1.4eVよりも大きい。
このような高出力電子デバイスとしては、電界効果型トランジスタ(FET:Field effect transistor)として、高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)がある(例えば、特許文献1)。窒化物半導体を用いたHEMTは、高出力・高効率増幅器、大電力スイッチングデバイス等に用いることができる。尚、AlGaNを電子供給層、GaNを電子走行層に用いたHEMTでは、AlGaNとGaNとの格子定数差による歪みによりAlGaNにピエゾ分極等が生じ、高濃度の2DEG(Two‐Dimensional Electron Gas:2次元電子ガス)が発生する。
特開2002−359256号公報 特開2006−210369号公報 特開2008−85020号公報 特開2013−191763号公報
窒化物半導体を用いたHEMTでは、SiやSiC等により形成された基板の一方の面に、電子走行層、電子供給層、ゲート電極、ソース電極、ドレイン電極等が形成されており、基板の他方の面には、接地電位に接続される裏面電極が形成されている。基板には、基板の一方の面に設けられたソース電極と他方の面に設けられた裏面電極とを接続するため、基板の一方の面から他方の面に貫通するスルーホールが設けられており、スルーホールを金属より埋め込むことにより貫通電極が形成されている。
窒化物半導体を用いたHEMTの多くは、高出力電子デバイスとして用いられるため、動作をさせた際に生じる発熱は、低電圧、低出力の半導体装置と比べて多い。このような発熱は、電流が流れる窒化物半導体層において発生し、基板から、スルーホールに形成されている貫通電極にも伝わる。貫通電極は、貫通電極を形成するためのスルーホールを形成した後、密着性を高めるため、スルーホールの側面にTi等によりシードメタルを形成し、シードメタルの上にメッキにより導電性の高いAu等を堆積させることにより形成する。
ところで、貫通電極を形成しているAuとの熱膨張係数は14.3×10−6/Kであり、基板を形成しているSiの熱膨張係数の2.6×10−6/Kや、SiCの熱膨張係数の4.2×10−6/Kよりも大きい。このため、半導体装置が発熱すると、熱膨張係数の差により、貫通電極と基板との界面近傍において強い応力が生じ、基板にクラック等が発生してしまう場合がある。
このため、窒化物半導体を用いた半導体装置において、半導体装置を動作させても、基板と貫通電極との界面近傍において、クラック等の発生することのない、信頼性の高い半導体装置が求められている。
本実施の形態の一観点によれば、基板の一方の面に、窒化物半導体により形成された第1の半導体層と、前記第1の半導体層の上に、窒化物半導体により形成された第2の半導体層と、前記第2の半導体層の上に形成されたゲート電極、ソース電極及びドレイン電極と、基板の他方の面に形成された裏面電極と、前記基板を貫通し、前記ソース電極と前記裏面電極とを接続する貫通電極と、を有し、前記貫通電極は、前記貫通電極の幅が細くなったくびれ部分が形成されており、前記くびれ部分よりも他方の面の側の貫通電極下部と前記基板との間、前記基板の他方の面と前記裏面電極との間には、シードメタルが形成されており、前記くびれ部分よりも一方の面の側の貫通電極上部と前記基板との間においては、前記貫通電極上部と前記基板とが接していることを特徴とする。
開示の半導体装置によれば、動作させても、基板にクラック等が発生しにくく、信頼性を向上させることができる。
貫通電極が形成されている半導体装置の構造図 第1の実施の形態における半導体装置の構造図 第1の実施の形態における半導体装置の製造方法の工程図(1) 第1の実施の形態における半導体装置の製造方法の工程図(2) 第1の実施の形態における半導体装置の製造方法の工程図(3) 第2の実施の形態における半導体装置の製造方法の工程図(1) 第2の実施の形態における半導体装置の製造方法の工程図(2) 第2の実施の形態における半導体装置の製造方法の工程図(3) 第3の実施の形態における半導体装置の構造図 第3の実施の形態における半導体装置の製造方法の工程図(1) 第3の実施の形態における半導体装置の製造方法の工程図(2) 第3の実施の形態における半導体装置の製造方法の工程図(3) 第4の実施の形態における半導体装置の製造方法の工程図(1) 第4の実施の形態における半導体装置の製造方法の工程図(2) 第4の実施の形態における半導体装置の製造方法の工程図(3) 第5の実施の形態における半導体装置の製造方法の工程図(1) 第5の実施の形態における半導体装置の製造方法の工程図(2) 第5の実施の形態における半導体装置の製造方法の工程図(3) 第6の実施の形態におけるディスクリートパッケージされた半導体デバイスの説明図 第6の実施の形態における電源装置の回路図 第6の実施の形態における高周波増幅器の構造図
実施するための形態について、以下に説明する。尚、同じ部材等については、同一の符号を付して説明を省略する。
〔第1の実施の形態〕
最初に、図1に基づき、窒化物半導体により形成されている半導体装置であって、貫通電極が形成されている半導体装置を動作させた際に、基板と貫通電極との界面近傍にクラック等が発生することについて詳細に説明する。図1に示される半導体装置は、SiやSiC等の基板910の表面となる一方の面910aに、不図示のバッファ層、電子走行層921、電子供給層922等の窒化物半導体層をエピタキシャル成長させることにより形成されている。例えば、電子走行層921は、GaNにより形成されており、電子供給層922はAlGaNにより形成されており、これにより、電子走行層921と電子供給層922との界面近傍における電子走行層921には、2DEG921aが生成される。
また、基板910の一方の面910aの電子供給層922の上には、ゲート電極931、ソース電極932及びドレイン電極933が形成されている。基板910には、ソース電極932が形成されている領域の一部に、基板910の表面となる一方の面910aから裏面となる他方の面910bに貫通するスルーホールが形成されており、スルーホールの内部には貫通電極950が形成されている。基板910の他方の面910bには、全面に裏面電極951が形成されており、貫通電極950と裏面電極951とは一体となっている。即ち、貫通電極950及び裏面電極951は、スルーホールの底面及び側面、基板910の他方の面に形成されたシードメタル952の上に、Au等のメッキにより一体として形成されている。尚、貫通電極950は、基板910の一方の面910aに形成されたソース電極932と接続されており、これにより、ソース電極932は、貫通電極950により、裏面電極951と接続されている。
図1に示す構造の半導体装置では、半導体装置を動作させることにより、ゲート電極931の直下の電子走行層921等の窒化物半導体層において発熱し、発生した熱は基板910に伝わり、更に、スルーホールに形成されている貫通電極950にも伝わる。この半導体装置では、基板910と貫通電極950との間にはシードメタル952が形成されているため、密着性が高く、熱抵抗も低い。このため、半導体装置を動作させた際に発生した熱は、基板910から貫通電極950に伝わりやすく、貫通電極950の温度は、基板910と略同じ温度まで上昇する。このため、基板910と貫通電極950との間には、基板910を形成している半導体と貫通電極950を形成している金属との熱膨張率差に起因した応力が発生し、この応力により、基板910にクラックが生じる。
即ち、窒化物半導体を用いた半導体装置を高出力電子デバイス等として用いた場合、高電圧が印加され、流れる電流も大きく、発熱量も大きい。また、基板910を形成している半導体と、貫通電極950を形成している金属とでは、熱膨張率差が大きいため、基板910と貫通電極950とが同じ温度まで高温となった場合には、熱膨張率差による応力が生じる。この応力は、温度が高ければ高い程、大きくなる。このように生じた熱膨張率差による応力により、基板910における貫通電極950の近傍にはクラック等が生じてしまう場合がある。
(半導体装置)
次に、第1の実施の形態における半導体装置について、図2に基づき説明する。本実施の形態における半導体装置は、SiやSiC等の基板10の表面となる一方の面10aに、不図示のバッファ層、電子走行層21、電子供給層22等の窒化物半導体層をエピタキシャル成長させることにより形成されている。例えば、電子走行層21は、GaNにより形成されており、電子供給層22はAlGaNにより形成されており、これにより、電子走行層21と電子供給層22との界面近傍における電子走行層21には、2DEG21aが生成される。本願においては、電子走行層21を第1の半導体層と記載し、電子供給層22を第2の半導体層と記載する場合がある。
また、基板10の一方の面10aの電子供給層22の上には、ゲート電極31、ソース電極32及びドレイン電極33が形成されている。基板10のソース電極32が形成されている領域の近傍には、基板10の表面となる一方の面10aから裏面となる他方の面10bに貫通するスルーホールが形成されており、スルーホールの内部をAu等を埋め込むことにより貫通電極50が形成されている。また、電子供給層22、ゲート電極31、ソース電極32及びドレイン電極33の上には、層間絶縁膜40が形成されている。層間絶縁膜40には、ソース電極32、ドレイン電極33、貫通電極50の上に、コンタクトホールが形成されており、これらのコンタクトホールをAu等の金属により埋め込むことによりソース配線層62及びドレイン配線層63が形成されている。具体的には、ソース電極32の上のコンタクトホールと貫通電極50の上のコンタクトホールを埋め込むことにより、ソース電極32と貫通電極50とを電気的に接続するソース配線層62が形成されている。また、ドレイン電極33の上のコンタクトホールを埋め込むことによりドレイン電極33と接続されるドレイン配線層63が形成されている。
貫通電極50は、途中にくびれ部分50aを有しており、くびれ部分50aよりも一方の面10aの側が貫通電極上部50bとなり、くびれ部分50aよりも他方の面10bの側が貫通電極下部50cとなっている。貫通電極50における貫通電極下部50c及び裏面電極51と基板10との間には、Ti等によりシードメタル52が形成されており、貫通電極下部50cと裏面電極51は、シードメタル52の上にAu等のメッキにより一体で形成されている。従って、貫通電極50と裏面電極51とは一体となっている。
本実施の形態においては、貫通電極50のくびれ部分50aの幅は、貫通電極50の幅Waが最も広くなる一方の面10aの近傍における幅Wb及び他方の面10bの近傍における幅Wcよりも狭く、幅Wb及び幅Wcの1/2以上となるように形成されている。尚、くびれ部分50aの幅Waが狭すぎると、この部分における抵抗が高くなり、強度も低下するため、この部分において断線等が生じる恐れがある。
本実施の形態においては、貫通電極上部50bと基板10との間には、シードメタルは形成されておらず、基板10のスルーホールにおいて、貫通電極上部50bと基板10とが直接接している。
シードメタル52は、基板10との密着性を高めるとともに、裏面電極51等の電極をメッキにより形成するために形成されている。従って、シードメタル52が形成されている基板10の他方の面10bと裏面電極51との間、基板10と貫通電極50の貫通電極下部50cとの間は、密着性が高い。これに対し、基板10と貫通電極50の貫通電極上部50bとの間には、シードメタルが形成されていないため、密着性が低く、基板10と貫通電極上部50bとの間において、僅かながら隙間等が生じている場合があり、熱伝導は低い。このため、基板10からの熱は、貫通電極50における貫通電極上部50bには伝わりにくい。従って、窒化物半導体層において発熱が生じても、熱が伝わりにくいため、貫通電極50における貫通電極上部50bの温度は、基板10の温度よりも低くなる。
貫通電極50を形成している金属と基板10を形成している半導体とでは、熱膨張率差はあるが、熱膨張率は半導体よりも金属の方が高い。従って、発熱した際、貫通電極50の温度と基板10の温度とが同じ場合と比べて、貫通電極50の温度が基板10の温度よりも低い方が、貫通電極50の熱膨張は小さいため、貫通電極50と基板10との熱膨張による差は小さくなる。このため、貫通電極50と基板10との間で生じる応力も小さくなり、貫通電極50の近傍において基板10にクラック等が発生することを抑制することができる。
また、スルーホールに形成されている貫通電極50の貫通電極上部50bと基板10との密着性は低く、また、貫通電極上部50bを形成しているAu等は軟らかい。このため、貫通電極50の貫通電極上部50bにおいて熱膨張しても、スルーホール内で貫通電極上部50bが伸びるため、基板10における応力の発生を抑制することができる。
よって、本実施の形態における半導体装置においては、半導体装置を動作させても、基板10の貫通電極が形成されている領域の近傍において、熱によるクラック等が入りにくく、半導体装置の信頼性を向上させることができる。
(半導体装置の製造方法)
次に、本実施の形態における半導体装置の製造方法について、図3〜図5に基づき説明する。
最初に、図3(a)に示すように、基板10の一方の面10aに、エピタキシャル成長により、不図示のバッファ層、電子走行層21、電子供給層22を積層して形成する。具体的には、基板10の一方の面10aの上に、有機金属気相成長(MOVPE:Metal‐Organic Vapor Phase Epitaxy)により、不図示のバッファ層、電子走行層21、電子供給層22を順に積層して形成する。基板10には、厚さが50μm以上、150μm以下、例えば、100μmの半絶縁性のSiC基板を用いているが、サファイア、Si、GaAs、GaN等の基板を用いてもよく、基板10の導電性は、半絶縁性、絶縁性のものであってもよい。また、基板10の厚さは、50μm以下であってもよく、また、1mm程度であってもよい。
本実施の形態においては、不図示のバッファ層、電子走行層21、電子供給層22は、窒化物半導体により形成されている。不図示のバッファ層は、AlNやAlGaN等により形成されている。電子走行層21は、厚さが約3μmのi−GaNにより形成されている。電子供給層22は、厚さが約30nmのn−AlGaNにより形成されており、n型となる不純物元素として、Siが5×1018cm−3の濃度でドープされている。これにより、電子走行層21と電子供給層22との界面近傍における電子走行層21には、2DEG21aが生成される。尚、電子走行層21と電子供給層22との間には、厚さが5nmのi−AlGaNにより不図示のスペーサ層を形成してもよく、電子供給層22の上には、厚さが5nmのn−GaN等により不図示のキャップ層を形成してもよい。
次に、図3(b)に示すように、電子供給層22の上に、ソース電極32及びドレイン電極33、そして、ゲート電極31を形成する。具体的には、電子供給層22の上に、フォトレジストを塗布し、露光装置による露光、現像を行うことにより、ソース電極32及びドレイン電極33が形成される領域に開口を有する不図示のレジストパターンを形成する。この後、真空蒸着により、厚さが20nmのTi膜、厚さが200nmのAl膜を順に成膜した金属積層膜を形成した後、有機溶剤に浸漬させることにより、レジストパターンの上に成膜された金属積層膜をリフトオフにより除去する。これにより、残存する金属積層膜により、ソース電極32及びドレイン電極33を形成する。この後、窒素雰囲気中において、400℃〜1000℃の間の温度、例えば、550℃の温度で熱処理を行うことにより、オーミックコンタクトを確立させる。
この後、電子供給層22、ソース電極32及びドレイン電極33の上に、フォトレジストを塗布し、露光装置による露光、現像を行うことにより、ゲート電極31が形成される領域に開口を有する不図示のレジストパターンを形成する。この後、真空蒸着により、厚さが30nmのNi膜、厚さが400nmのAu膜を順に成膜した金属積層膜を形成した後、有機溶剤に浸漬させることにより、レジストパターンの上に成膜された金属積層膜をリフトオフにより除去する。これにより、残存する金属積層膜により、ゲート電極31を形成する。
次に、図3(c)に示すように、基板10の他方の面10bに、スルーホールの一部となる第1の開口部11を形成する。具体的には、基板10の他方の面10bにフォトレジストを塗布し、露光装置による露光、現像を行うことにより、第1の開口部11が形成される領域に開口を有する不図示のレジストパターンを形成する。この後、エッチングガスとしてハロゲンガスを用いたRIE(Reactive Ion Etching)等のドライエッチングにより、基板10の他方の面10bを所定の深さまで除去することにより第1の開口部11を形成する。形成される第1の開口部11は、側面が順テーパ形状、即ち、第1の開口部11の入口部分よりも奥の底面の方が狭くなるようなテーパ形状となるような条件で、ドライエッチングを行うことにより形成する。この後、レジストパターンは、有機溶剤等により除去する。これにより、基板10の他方の面10bには、入口部分の幅が50μm、奥の底面の幅が30μm、深さが5μm以上、10μm以下、例えば、10μmの第1の開口部11が形成される。尚、第1の開口部11における底面の幅は、入口部分よりも狭く、入口部分の幅の1/2以上であることが好ましい。
次に、図4(a)に示すように、基板10の他方の面10b及び第1の開口部11の底面及び側面にシードメタル52を形成した後、基板10の他方の面10bに、裏面電極51を形成し、他方の面10bの第1の開口部11に、貫通電極下部50cを形成する。具体的には、基板10の他方の面10b及び第1の開口部11の底面及び側面に、スパッタリングにより、厚さが30nmのTi膜、厚さが300nmのAu膜を順に成膜することにより、シードメタル52を形成する。この後、シードメタル52の上に、厚さ10μmのAu膜をメッキにより形成する。これにより、基板10の他方の面10b及び第1の開口部11の底面及び側面にシードメタル52が形成され、シードメタル52の上の基板10の他方の面10bに、裏面電極51が形成され、第1の開口部11に、貫通電極下部50cが形成される。
次に、図4(b)に示すように、基板10の一方の面10aより、スルーホールの他の一部となる第2の開口部12を形成する。第2の開口部12は、基板の他方の面10bに形成されている貫通電極下部50cに対応した位置に形成される。
具体的には、基板10の一方の面10aの電子供給層22、ゲート電極31、ソース電極32及びドレイン電極33の上にフォトレジストを塗布し、露光装置による露光、現像を行う。これにより、第2の開口部12が形成される領域に開口を有する不図示のレジストパターンを形成する。この後、エッチングガスとしてハロゲンガスを用いたRIE等のドライエッチングにより、基板10の一方の面10aより、電子供給層22、電子走行層21、基板10、シードメタル52を除去し、底面において貫通電極下部50cを露出させる。これにより第2の開口部12を形成する。形成される第2の開口部12は、側面が順テーパ形状、即ち、第2の開口部12の入口部分よりも奥の底面の方が狭くなるようなテーパ形状となるような条件で、ドライエッチングを行うことにより形成する。この後、レジストパターンは、有機溶剤等により除去する。これにより、基板10の一方の面10aには、入口部分の幅が50μm、奥の底面の幅が30μm、深さが、例えば、90μmの第2の開口部12が形成される。尚、第2の開口部12における底面の幅は、入口部分よりも狭く、入口部分の幅の1/2以上であることが好ましい。本実施の形態においては、スルーホールは、基板10の他方の面10bより形成された第1の開口部11と、一方の面10aより形成された第2の開口部12とにより形成されている。
次に、図4(c)に示すように、基板10の一方の面10aに形成された第2の開口部12をAu等により埋め込むことにより、貫通電極上部50bを形成する。具体的には、基板10の一方の面10aの電子供給層22、ゲート電極31、ソース電極32及びドレイン電極33の上にフォトレジストを塗布し、露光装置による露光、現像を行うことにより、不図示のレジストパターンを形成する。形成されるレジストパターンは、第2の開口部12よりも僅かに広い開口を有している。この後、Auメッキにより第2の開口部12を埋め込むことにより、貫通電極上部50bを形成する。貫通電極上部50bは、電子供給層22の表面よりも高い位置まで形成してもよい。
第2の開口部12の側面には、シードメタルは形成されていないため、貫通電極上部50bは、第2の開口部12の底面において露出している貫通電極下部50cの上にメッキにより堆積したAuにより形成されている。よって、第2の開口部12内をAuにより完全に埋め込むことにより、貫通電極上部50bは形成されている。このため、貫通電極上部50bと基板10との間には、シードメタルは存在しておらず、貫通電極上部50bと基板10とは直接接している。このようにして、本実施の形態においては、第1の開口部11及び第2の開口部12により形成されたスルーホールを埋め込む貫通電極50が、貫通電極上部50b及び貫通電極下部50cにより形成される。尚、貫通電極50において、貫通電極上部50bと貫通電極下部50cとの境界部分となるくびれ部分50aにおいて、最も幅が狭くなっている。
次に、図5(a)に示すように、電子供給層22、ゲート電極31、ソース電極32及びドレイン電極33の上に層間絶縁膜40を形成し、ソース電極32、ドレイン電極33、貫通電極50の直上に、コンタクトホール40a、40b、40cを形成する。具体的には、BCB(ベンゾシクロブテン)等の塗布することにより、層間絶縁膜40を形成する。この後、形成された層間絶縁膜40の上にフォトレジストを塗布し、露光装置による露光、現像を行うことにより、コンタクトホール40a、40b、40cが形成される領域に開口部を有する不図示のレジストパターンを形成する。この後、エッチングガスとしてハロゲンガスを用いたRIE等のドライエッチングにより、レジストパターンが形成されていない領域の層間絶縁膜40をソース電極32、ドレイン電極33、貫通電極50が露出するまで除去する。これにより、ソース電極32の直上にコンタクトホール40a、ドレイン電極33の直上にコンタクトホール40b、貫通電極50の直上にコンタクトホール40cを形成する。
次に、図5(b)に示すように、コンタクトホール40a及び40cを埋め込むことにより、ソース配線層62を形成し、コンタクトホール40bを埋め込むことにより、ドレイン配線層63を形成する。具体的には、層間絶縁膜40の上に、フォトレジストを塗布し、露光装置による露光、現像を行うことにより、ソース配線層62及びドレイン配線層63が形成される領域に開口を有する不図示のレジストパターンを形成する。この後、Auメッキにより層間絶縁膜40に形成されたコンタクトホール40a及び40cを埋め込むことにより、ソース配線層62を形成し、コンタクトホール40bを埋め込むことにより、ドレイン配線層63を形成する。このように形成されたソース配線層62は、ソース電極32、貫通電極50及び層間絶縁膜40の上に形成されており、ソース電極32と貫通電極50とを電気的に接続する配線層である。ドレイン配線層63は、ドレイン電極33の上に形成されており、ドレイン電極33と電気的に接続されている。
以上の工程により、本実施の形態における半導体装置を製造することができる。尚、上記におけるゲート電極31やソース電極32及びドレイン電極33における積層金属膜の構造は、一例であり、他の構造であってもよく、他の形成方法により形成してもよい。また、上記においては、貫通電極50がAuである場合について説明したが、貫通電極50はCu等により形成してもよい。また、上記においては、電子供給層22がAlGaNである場合について説明したが、電子供給層22は、InAlN等により形成してもよい。
〔第2の実施の形態〕
次に、第2の実施の形態について説明する。本実施の形態は、第1の実施の形態における半導体装置を第1の実施の形態とは異なる方法により製造する製造方法である。本実施の形態における半導体装置の製造方法について、図6〜図8に基づき説明する。
最初に、図6(a)に示すように、基板10の一方の面10aに、エピタキシャル成長により、不図示のバッファ層、電子走行層21、電子供給層22を積層して形成する。
次に、図6(b)に示すように、基板10の他方の面10bに、スルーホールの一部となる第1の開口部11を形成する。
次に、図6(c)に示すように、基板10の他方の面10b及び第1の開口部11の底面及び側面にシードメタル52を形成し、メッキにより、基板10の他方の面10bに、裏面電極51を形成し、第1の開口部11に、貫通電極下部50cを形成する。
次に、図7(a)に示すように、基板10の一方の面10aより、スルーホールの他の一部となる第2の開口部12を形成する。第2の開口部12は、基板の他方の面10bに形成されている貫通電極下部50cに対応した位置に形成する。
次に、図7(b)に示すように、基板10の一方の面10aに形成された第2の開口部12をAu等のメッキにより埋め込むことにより、貫通電極上部50bを形成する。これにより、第1の開口部11及び第2の開口部12により形成されたスルーホールを埋め込む貫通電極50が、貫通電極上部50b及び貫通電極下部50cにより形成される。尚、貫通電極50において、貫通電極上部50bと貫通電極下部50cとの境界部分となるくびれ部分50aにおいて、最も幅が狭くなっている。
次に、図7(c)に示すように、電子供給層22の上に、ソース電極32及びドレイン電極33、そして、ゲート電極31を形成する。
次に、図8(a)に示すように、電子供給層22、ゲート電極31、ソース電極32及びドレイン電極33の上に層間絶縁膜40を形成し、ソース電極32、ドレイン電極33、貫通電極50の直上に、コンタクトホール40a、40b、40cを形成する。
次に、図8(b)に示すように、コンタクトホール40a及び40cを埋め込むことにより、ソース配線層62を形成し、コンタクトホール40bを埋め込むことにより、ドレイン配線層63を形成する。このように形成されたソース配線層62は、ソース電極32、貫通電極50及び層間絶縁膜40の上に形成されており、ソース電極32と貫通電極50とを電気的に接続する配線層である。ドレイン配線層63は、ドレイン電極33の上に形成されており、ドレイン電極33と電気的に接続されている。
以上の工程により、本実施の形態における半導体装置を製造することができる。
尚、上記以外の内容については、第1の実施の形態と同様である。
〔第3の実施の形態〕
次に、第3の実施の形態について説明する。本実施の形態における半導体装置は、図9に示されるように、基板10の一方の面10aにおける貫通電極50を覆うようにソース電極32が形成されている構造のものである。
次に、本実施の形態における半導体装置の製造方法について、図10〜図12に基づき説明する。
最初に、図10(a)に示すように、基板10の一方の面10aに、エピタキシャル成長により、不図示のバッファ層、電子走行層21、電子供給層22を積層して形成する。
次に、図10(b)に示すように、基板10の他方の面10bに、スルーホールの一部となる第1の開口部11を形成する。
次に、図10(c)に示すように、基板10の他方の面10b及び第1の開口部11の底面及び側面にシードメタル52を形成し、メッキにより、基板10の他方の面10bに、裏面電極51を形成し、第1の開口部11に、貫通電極下部50cを形成する。
次に、図11(a)に示すように、基板10の一方の面10aより、スルーホールの他の一部となる第2の開口部12を形成する。第2の開口部12は、基板の他方の面10bに形成されている貫通電極下部50cに対応した位置に形成する。
次に、図11(b)に示すように、基板10の一方の面10aに形成された第2の開口部12をAu等のメッキにより埋め込むことにより、貫通電極上部50bを形成する。これにより、第1の開口部11及び第2の開口部12により形成されたスルーホールを埋め込む貫通電極50が、貫通電極上部50b及び貫通電極下部50cにより形成される。尚、貫通電極50において、貫通電極上部50bと貫通電極下部50cとの境界部分となるくびれ部分50aにおいて、最も幅が狭くなっている。
次に、図11(c)に示すように、電子供給層22の上に、ソース電極32及びドレイン電極33を形成する。本実施の形態においては、ソース電極32は、貫通電極50を覆うように形成する。具体的には、電子供給層22の上に、フォトレジストを塗布し、露光装置による露光、現像を行うことにより、ソース電極32及びドレイン電極33が形成される領域に開口を有する不図示のレジストパターンを形成する。この後、真空蒸着により、厚さが20nmのTi膜、厚さが200nmのAl膜を順に成膜した金属積層膜を形成した後、有機溶剤に浸漬させることにより、レジストパターンの上に成膜された金属積層膜をリフトオフにより除去する。これにより、残存する金属積層膜により、ソース電極32及びドレイン電極33を形成する。このように形成されたソース電極32は、貫通電極50を覆うように形成されており、貫通電極50と電気的に接続されている。この後、窒素雰囲気中において、400℃〜1000℃の間の温度、例えば、550℃の温度で熱処理を行うことにより、オーミックコンタクトを確立させる。
次に、図12に示すように、電子供給層22の上に、ゲート電極31を形成する。具体的には、電子供給層22、ソース電極32及びドレイン電極33の上に、フォトレジストを塗布し、露光装置による露光、現像を行うことにより、ゲート電極31が形成される領域に開口を有する不図示のレジストパターンを形成する。この後、真空蒸着により、厚さが30nmのNi膜、厚さが400nmのAu膜を順に成膜した金属積層膜を形成した後、有機溶剤に浸漬させることにより、レジストパターンの上に成膜された金属積層膜をリフトオフにより除去する。これにより、残存する金属積層膜により、ゲート電極31を形成する。
以上の工程により、本実施の形態における半導体装置を製造することができる。
尚、上記以外の内容については、第1の実施の形態または第2の実施の形態と同様である。
〔第4の実施の形態〕
次に、第4の実施の形態における半導体装置の製造方法について、図13〜図15に基づき説明する。
最初に、図13(a)に示すように、基板10の一方の面10aに、エピタキシャル成長により、不図示のバッファ層、電子走行層21、電子供給層22を積層して形成する。
次に、図13(b)に示すように、電子供給層22の上に、ソース電極32及びドレイン電極33、そして、ゲート電極31を形成する。
次に、図13(c)に示すように、基板10の他方の面10bに、スルーホールの一部となる第1の開口部11を形成する。
次に、図14(a)に示すように、基板10の他方の面10b及び第1の開口部11の底面及び側面にシードメタル52を形成し、メッキにより、基板10の他方の面10bに、裏面電極51を形成し、第1の開口部11に、貫通電極下部50cを形成する。
次に、図14(b)に示すように、基板10の一方の面10aより、スルーホールの他の一部となる第2の開口部12を形成する。本実施の形態においては、第2の開口部12は、基板の他方の面10bに形成されている貫通電極下部50cに対応した位置であって、ソース電極32の形成されている領域の一部に形成される。
次に、図14(c)に示すように、第2の開口部12を形成する際に露出したソース電極32の開口部の側面におけるAlを酸化することにより、金属酸化膜によりバリア層70を形成する。
次に、図15(a)に示すように、基板10の一方の面10aに形成された第2の開口部12をAu等のメッキにより埋め込むことにより、貫通電極上部50bを形成する。
次に、図15(b)に示すように、ソース電極32と貫通電極上部50bの上に、導電性材料によりソース配線層162を形成する。これにより、ソース電極32と貫通電極50とは、ソース配線層162により電気的に接続される。
以上の工程により、本実施の形態における半導体装置を製造することができる。
尚、上記以外の内容については、第1の実施の形態と同様である。
〔第5の実施の形態〕
次に、第5の実施の形態について説明する。本実施の形態は、半導体装置の製造方法であり、図16〜図18に基づき説明する。
最初に、図16(a)に示すように、基板10の一方の面10aに、エピタキシャル成長により、不図示のバッファ層、電子走行層21、電子供給層22を積層して形成する。
次に、図16(b)に示すように、電子供給層22の上に、ソース電極32及びドレイン電極33、そして、ゲート電極31を形成する。
次に、図16(c)に示すように、基板10の他方の面10bにシードメタル52を形成した後、メッキにより、基板10の他方の面10bに、裏面電極51を形成する。
次に、図17(a)に示すように、基板10の一方の面10aより、スルーホール211を形成する。具体的には、基板10の一方の面10aの電子供給層22、ゲート電極31、ソース電極32及びドレイン電極33の上にフォトレジストを塗布し、露光装置による露光、現像を行う。これにより、スルーホール211が形成される領域に開口を有する不図示のレジストパターンを形成する。この後、エッチングガスとしてハロゲンガスを用いたRIE等のドライエッチングにより、基板10の一方の面10aより、電子供給層22、電子走行層21、基板10、シードメタル52を除去し、底面において裏面電極51を露出させる。これによりスルーホール211を形成する。この後、レジストパターンは、有機溶剤等により除去する。これにより、基板10の一方の面10aより、幅が50μmのスルーホール211が形成される。
次に、図17(b)に示すように、基板10の一方の面10aより形成されたスルーホール211をAu等のメッキにより埋め込むことにより、貫通電極250を形成する。具体的には、基板10の一方の面10aの電子供給層22、ゲート電極31、ソース電極32及びドレイン電極33の上にフォトレジストを塗布し、露光装置による露光、現像を行うことにより、不図示のレジストパターンを形成する。形成されるレジストパターンは、スルーホール211と同程度の開口を有している。この後、スルーホール211をAuメッキにより埋め込むことにより、貫通電極250を形成する。貫通電極250は、電子供給層22の表面よりも高い位置まで形成してもよい。
貫通電極250は、スルーホール211の底面において露出している裏面電極51のAuの上に、AuメッキによりAuが堆積することにより形成される。即ち、スルーホール211の側面には、シードメタルが形成されていないため、スルーホールの底面において露出している裏面電極51の上より、メッキによりAuが堆積してスルーホール211が埋め込まれ、貫通電極250が形成される。従って、貫通電極250は、スルーホール211の側面からは、メッキによるAu膜が堆積しないため、貫通電極250の内部にボイド等が発生することなく、スルーホール211内をAuにより完全に埋め込むことにより、貫通電極250を形成することができる。よって、半導体装置の信頼性を向上させることができる。
即ち、図1に示されるように、スルーホールの側面にシードメタルが形成されている場合には、スルーホールの側面からもメッキ膜が堆積する。このため、スルーホールの内部がAuにより完全に埋め込まれる前に、スルーホールの入口がスルーホールの側面より堆積したメッキ膜により閉じられてしまう場合がある。このように、スルーホールの入口がメッキ膜により閉じられてしまうと、スルーホールの内部に空間が生じ、これがボイドとなる。このような貫通電極内にボイドが発生している半導体装置は、信頼性が低く好ましくない。本実施の形態における半導体装置においては、貫通電極内にボイドが発生しないため、半導体装置の信頼性を高めることができる。
次に、図17(c)に示すように、電子供給層22、ゲート電極31、ソース電極32及びドレイン電極33の上に層間絶縁膜40を形成し、ソース電極32、ドレイン電極33、貫通電極50の直上に、コンタクトホール40a、40b、40cを形成する。
次に、図18に示すように、コンタクトホール40a及び40cを埋め込むことにより、ソース配線層62を形成し、コンタクトホール40bを埋め込むことにより、ドレイン配線層63を形成する。このように形成されたソース配線層62は、ソース電極32、貫通電極50及び層間絶縁膜40の上に形成されており、ソース電極32と貫通電極50とを電気的に接続する配線層である。ドレイン配線層63は、ドレイン電極33の上に形成されており、ドレイン電極33と電気的に接続されている。
以上の工程により、本実施の形態における半導体装置を製造することができる。
尚、上記以外の内容については、第1の実施の形態と同様である。
〔第6の実施の形態〕
次に、第6の実施の形態について説明する。本実施の形態は、半導体デバイス、電源装置及び高周波増幅器である。
本実施の形態における半導体デバイスは、第1から第5の実施の形態におけるいずれかの半導体装置をディスクリートパッケージしたものであり、このようにディスクリートパッケージされた半導体デバイスについて、図19に基づき説明する。尚、図19は、ディスクリートパッケージされた半導体装置の内部を模式的に示すものであり、電極の配置等については、第1から第5の実施の形態に示されているものとは、異なっている。
最初に、第1から第5の実施の形態において製造された半導体装置をダイシング等により切断することにより、GaN系の半導体材料のHEMTの半導体チップ410を形成する。この半導体チップ410をリードフレーム420上に、ハンダ等のダイアタッチ剤430により固定する。尚、この半導体チップ410は、第1から第5の実施の形態における半導体装置に相当するものである。
次に、ゲート電極411をゲートリード421にボンディングワイヤ431により接続し、ソース電極412をソースリード422にボンディングワイヤ432により接続し、ドレイン電極413をドレインリード423にボンディングワイヤ433により接続する。尚、ボンディングワイヤ431、432、433はAl等の金属材料により形成されている。また、本実施の形態においては、ゲート電極411はゲート電極パッドであり、第1から第5の実施の形態における半導体装置のゲート電極31と接続されている。また、ソース電極412はソース電極パッドであり、第1から第5の実施の形態における半導体装置のソース電極32と接続されている。また、ドレイン電極413はドレイン電極パッドであり、第1から第5の実施の形態における半導体装置のドレイン電極33と接続されている。
次に、トランスファーモールド法によりモールド樹脂440による樹脂封止を行なう。このようにして、GaN系の半導体材料を用いたHEMTのディスクリートパッケージされている半導体デバイスを作製することができる。
次に、本実施の形態における電源装置及び高周波増幅器について説明する。本実施の形態における電源装置及び高周波増幅器は、第1から第5の実施の形態におけるいずれかの半導体装置を用いた電源装置及び高周波増幅器である。
最初に、図20に基づき、本実施の形態における電源装置について説明する。本実施の形態における電源装置460は、高圧の一次側回路461、低圧の二次側回路462及び一次側回路461と二次側回路462との間に配設されるトランス463を備えている。一次側回路461は、交流電源464、いわゆるブリッジ整流回路465、複数のスイッチング素子(図20に示す例では4つ)466及び一つのスイッチング素子467等を備えている。二次側回路462は、複数のスイッチング素子(図20に示す例では3つ)468を備えている。図20に示す例では、第1から第5の実施の形態における半導体装置を一次側回路461のスイッチング素子466及び467として用いられている。尚、一次側回路461のスイッチング素子466及び467は、ノーマリーオフの半導体装置であることが好ましい。また、二次側回路462において用いられているスイッチング素子468はシリコンにより形成される通常のMISFET(metal insulator semiconductor field effect transistor)を用いている。
次に、図21に基づき、本実施の形態における高周波増幅器について説明する。本実施の形態における高周波増幅器470は、例えば、携帯電話の基地局用パワーアンプに適用してもよい。この高周波増幅器470は、ディジタル・プレディストーション回路471、ミキサー472、パワーアンプ473及び方向性結合器474を備えている。ディジタル・プレディストーション回路471は、入力信号の非線形歪みを補償する。ミキサー472は、非線形歪みが補償された入力信号と交流信号とをミキシングする。パワーアンプ473は、交流信号とミキシングされた入力信号を増幅する。図21に示す例では、パワーアンプ473は、第1から第5の実施の形態におけるいずれかの半導体装置を有している。方向性結合器474は、入力信号や出力信号のモニタリング等を行なう。図21に示す回路では、例えば、スイッチの切り替えにより、ミキサー472により出力信号を交流信号とミキシングしてディジタル・プレディストーション回路471に送出することが可能である。
以上、実施の形態について詳述したが、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。
上記の説明に関し、更に以下の付記を開示する。
(付記1)
基板の一方の面に、窒化物半導体により形成された第1の半導体層と、
前記第1の半導体層の上に、窒化物半導体により形成された第2の半導体層と、
前記第2の半導体層の上に形成されたゲート電極、ソース電極及びドレイン電極と、
基板の他方の面に形成された裏面電極と、
前記基板を貫通し、前記ソース電極と前記裏面電極とを接続する貫通電極と、
を有し、
前記貫通電極は、前記貫通電極の幅が細くなったくびれ部分が形成されており、
前記くびれ部分よりも他方の面の側の貫通電極下部と前記基板との間、前記基板の他方の面と前記裏面電極との間には、シードメタルが形成されており、
前記くびれ部分よりも一方の面の側の貫通電極上部と前記基板との間においては、前記貫通電極上部と前記基板とが接していることを特徴とする半導体装置。
(付記2)
前記貫通電極は、AuまたはCuにより形成されていることを特徴とする付記1に記載の半導体装置。
(付記3)
前記貫通電極は、金属が埋め込まれているものであることを特徴とする付記1または2に記載の半導体装置。
(付記4)
前記貫通電極におけるくびれ部分の幅は、前記基板の一方の面及び他方の面における前記貫通電極の幅の1/2以上であることを特徴とする付記1から3のいずれかに記載の半導体装置。
(付記5)
前記シードメタルは、Tiを含む材料により形成されていることを特徴とする付記1から4のいずれかに記載の半導体装置。
(付記6)
前記貫通電極と前記ソース電極との間には絶縁膜が設けられており、
前記絶縁膜の上には、前記貫通電極と前記ソース電極とを電気的に接続するソース配線層が設けられていることを特徴とする付記1から5のいずれかに記載の半導体装置。
(付記7)
前記ソース電極は、前記基板の一方の面における前記貫通電極の上に形成されていることを特徴とする付記1から5のいずれかに記載の半導体装置。
(付記8)
前記第1の半導体層は、GaNを含む材料により形成されており、
前記第2の半導体層は、AlGaNまたはInAlNを含む材料により形成されていることを特徴とする付記1から7のいずれかに記載の半導体装置。
(付記9)
基板の一方の面に、窒化物半導体により第1の半導体層及び第2の半導体層を順に積層して形成する工程と、
前記第2の半導体層の上に、ゲート電極、ソース電極及びドレイン電極を形成する工程と、
前記基板の他方の面の一部を除去することにより、前記基板の他方の面に第1の開口部を形成する工程と、
前記基板の他方の面及び前記第1の開口部が形成されている面にシードメタルを成膜し、前記シードメタルの上に、メッキにより裏面電極及び貫通電極下部を形成する工程と、
前記基板の一方の面より、前記第2の半導体層、前記第1の半導体層、前記基板の一部、前記シードメタルを除去し、前記貫通電極下部を露出させることにより第2の開口部を形成する工程と、
前記第2の開口部をメッキにより埋め込むことにより貫通電極上部を形成する工程と、
前記貫通電極上部と前記ソース電極とを接続する配線層を形成する工程と、
を有し、
前記貫通電極下部と前記貫通電極上部とにより、貫通電極が形成されることを特徴とする半導体装置の製造方法。
(付記10)
前記貫通電極上部を形成した後、前記基板の一方の面の側に、前記貫通電極上部及び前記ソース電極が形成されている領域の一部に開口部を有する絶縁膜を形成する工程と、
前記絶縁膜の上に、前記貫通電極上部と前記ソース電極とを接続する配線層を形成する工程と、
を有することを特徴とする付記9に記載の半導体装置の製造方法。
(付記11)
前記第2の開口部は、前記ソース電極が形成されている領域おいて、前記ソース電極の一部を除去することにより形成されており、
前記第2の開口部を形成した後、前記第2の開口部を形成する際に露出した前記ソース電極の面に金属酸化膜を形成する工程と、
前記金属酸化膜を形成した後、前記貫通電極上部を形成する工程と、
前記ソース電極と前記貫通電極上部の上に、導電性材料により配線層を形成する工程と、
を有することを特徴とする付記9に記載の半導体装置の製造方法。
(付記12)
基板の一方の面に、窒化物半導体により第1の半導体層及び第2の半導体層を順に積層して形成する工程と、
前記基板の他方の面の一部を除去することにより、前記基板の他方の面に第1の開口部を形成する工程と、
前記基板の他方の面及び前記第1の開口部が形成されている面にシードメタルを成膜し、前記シードメタルの上に、メッキにより裏面電極及び貫通電極下部を形成する工程と、
前記基板の一方の面より、前記第2の半導体層、前記第1の半導体層、前記基板の一部、前記シードメタルを除去し、前記貫通電極下部を露出させることにより第2の開口部を形成する工程と、
前記第2の開口部をメッキにより埋め込むことにより貫通電極上部を形成する工程と、
前記第2の半導体層の上にゲート電極及びドレイン電極を形成し、前記第2の半導体層及び前記貫通電極上部の上にソース電極を形成する工程と、
を有し、
前記貫通電極下部と前記貫通電極上部とにより、貫通電極が形成されることを特徴とする半導体装置の製造方法。
(付記13)
前記第1の開口部及び前記第2の開口部は、入口部分よりも奥が狭くなるように形成されていることを特徴とする付記9から12のいずれかに記載の半導体装置の製造方法。
(付記14)
基板の一方の面に、窒化物半導体により第1の半導体層及び第2の半導体層を順に積層して形成する工程と、
前記第2の半導体層の上に、ゲート電極、ソース電極及びドレイン電極を形成する工程と、
前記基板の他方の面にシードメタルを成膜し、前記シードメタルの上に、メッキにより裏面電極を形成する工程と、
前記基板の一方の面より、前記第2の半導体層、前記第1の半導体層、前記基板の一部、前記シードメタルを除去し、前記裏面電極を露出させることによりスルーホールを形成する工程と、
前記スルーホールをメッキにより埋め込むことにより貫通電極を形成する工程と、
前記貫通電極と前記ソース電極とを接続する配線層を形成する工程と、
を有することを特徴とする半導体装置の製造方法。
(付記15)
前記貫通電極を形成した後、前記基板の一方の面の側に、前記貫通電極及び前記ソース電極が形成されている領域の一部に開口部を有する絶縁膜を形成する工程と、
前記絶縁膜の上に、前記貫通電極と前記ソース電極とを接続する配線層を形成する工程と、
を有することを特徴とする付記14に記載の半導体装置の製造方法。
(付記16)
前記メッキは、AuまたはCuメッキであることを特徴とする付記9から15のいずれかに記載の半導体装置の製造方法。
(付記17)
前記シードメタルは、Tiを含む材料により形成されていることを特徴とする付記9から16のいずれかに記載の半導体装置の製造方法。
(付記18)
前記第1の半導体層は、GaNを含む材料により形成されており、
前記第2の半導体層は、AlGaNまたはInAlNを含む材料により形成されていることを特徴とする付記9から17のいずれかに記載の半導体装置の製造方法。
(付記19)
付記1から8のいずれかに記載の半導体装置を有することを特徴とする電源装置。
(付記20)
付記1から8のいずれかに記載の半導体装置を有することを特徴とする増幅器。
10 基板
10a 一方の面
10b 他方の面
11 第1の開口部
12 第2の開口部
21 電子走行層
21a 2DEG
22 電子供給層
31 ゲート電極
32 ソース電極
33 ドレイン電極
40 層間絶縁膜
50 貫通電極
50a くびれ部分
50b 貫通電極上部
50c 貫通電極下部
51 裏面電極
52 シードメタル
62 ソース配線層
63 ドレイン配線層






Claims (10)

  1. 基板の一方の面に、窒化物半導体により形成された第1の半導体層と、
    前記第1の半導体層の上に、窒化物半導体により形成された第2の半導体層と、
    前記第2の半導体層の上に形成されたゲート電極、ソース電極及びドレイン電極と、
    基板の他方の面に形成された裏面電極と、
    前記基板を貫通し、前記ソース電極と前記裏面電極とを接続する貫通電極と、
    を有し、
    前記貫通電極は、前記貫通電極の幅が細くなったくびれ部分が形成されており、
    前記くびれ部分よりも他方の面の側の貫通電極下部と前記基板との間、前記基板の他方の面と前記裏面電極との間には、シードメタルが形成されており、
    前記くびれ部分よりも一方の面の側の貫通電極上部と前記基板との間においては、前記貫通電極上部と前記基板とが接していることを特徴とする半導体装置。
  2. 前記貫通電極は、AuまたはCuにより形成されていることを特徴とする請求項1に記載の半導体装置。
  3. 前記貫通電極は、金属が埋め込まれているものであることを特徴とする請求項1または2に記載の半導体装置。
  4. 前記貫通電極と前記ソース電極との間には絶縁膜が設けられており、
    前記絶縁膜の上には、前記貫通電極と前記ソース電極とを電気的に接続するソース配線層が設けられていることを特徴とする請求項1から3のいずれかに記載の半導体装置。
  5. 前記ソース電極は、前記基板の一方の面における前記貫通電極の上に形成されていることを特徴とする請求項1から3のいずれかに記載の半導体装置。
  6. 基板の一方の面に、窒化物半導体により第1の半導体層及び第2の半導体層を順に積層して形成する工程と、
    前記第2の半導体層の上に、ゲート電極、ソース電極及びドレイン電極を形成する工程と、
    前記基板の他方の面の一部を除去することにより、前記基板の他方の面に第1の開口部を形成する工程と、
    前記基板の他方の面及び前記第1の開口部が形成されている面にシードメタルを成膜し、前記シードメタルの上に、メッキにより裏面電極及び貫通電極下部を形成する工程と、
    前記基板の一方の面より、前記第2の半導体層、前記第1の半導体層、前記基板の一部、前記シードメタルを除去し、前記貫通電極下部を露出させることにより第2の開口部を形成する工程と、
    前記第2の開口部をメッキにより埋め込むことにより貫通電極上部を形成する工程と、
    前記貫通電極上部と前記ソース電極とを接続する配線層を形成する工程と、
    を有し、
    前記貫通電極下部と前記貫通電極上部とにより、貫通電極が形成されることを特徴とする半導体装置の製造方法。
  7. 前記貫通電極上部を形成した後、前記基板の一方の面の側に、前記貫通電極上部及び前記ソース電極が形成されている領域の一部に開口部を有する絶縁膜を形成する工程と、
    前記絶縁膜の上に、前記貫通電極上部と前記ソース電極とを接続する配線層を形成する工程と、
    を有することを特徴とする請求項6に記載の半導体装置の製造方法。
  8. 基板の一方の面に、窒化物半導体により第1の半導体層及び第2の半導体層を順に積層して形成する工程と、
    前記基板の他方の面の一部を除去することにより、前記基板の他方の面に第1の開口部を形成する工程と、
    前記基板の他方の面及び前記第1の開口部が形成されている面にシードメタルを成膜し、前記シードメタルの上に、メッキにより裏面電極及び貫通電極下部を形成する工程と、
    前記基板の一方の面より、前記第2の半導体層、前記第1の半導体層、前記基板の一部、前記シードメタルを除去し、前記貫通電極下部を露出させることにより第2の開口部を形成する工程と、
    前記第2の開口部をメッキにより埋め込むことにより貫通電極上部を形成する工程と、
    前記第2の半導体層の上にゲート電極及びドレイン電極を形成し、前記第2の半導体層及び前記貫通電極上部の上にソース電極を形成する工程と、
    を有し、
    前記貫通電極下部と前記貫通電極上部とにより、貫通電極が形成されることを特徴とする半導体装置の製造方法。
  9. 前記第1の開口部及び前記第2の開口部は、入口部分よりも奥が狭くなるように形成されていることを特徴とする請求項6から8のいずれかに記載の半導体装置の製造方法。
  10. 基板の一方の面に、窒化物半導体により第1の半導体層及び第2の半導体層を順に積層して形成する工程と、
    前記第2の半導体層の上に、ゲート電極、ソース電極及びドレイン電極を形成する工程と、
    前記基板の他方の面にシードメタルを成膜し、前記シードメタルの上に、メッキにより裏面電極を形成する工程と、
    前記基板の一方の面より、前記第2の半導体層、前記第1の半導体層、前記基板の一部、前記シードメタルを除去し、前記裏面電極を露出させることによりスルーホールを形成する工程と、
    前記スルーホールをメッキにより埋め込むことにより貫通電極を形成する工程と、
    前記貫通電極と前記ソース電極とを接続する配線層を形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
JP2016122992A 2016-06-21 2016-06-21 半導体装置及び半導体装置の製造方法 Active JP6877896B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016122992A JP6877896B2 (ja) 2016-06-21 2016-06-21 半導体装置及び半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016122992A JP6877896B2 (ja) 2016-06-21 2016-06-21 半導体装置及び半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2017228621A true JP2017228621A (ja) 2017-12-28
JP6877896B2 JP6877896B2 (ja) 2021-05-26

Family

ID=60889273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016122992A Active JP6877896B2 (ja) 2016-06-21 2016-06-21 半導体装置及び半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP6877896B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090281A1 (ja) * 2018-10-31 2020-05-07 ソニーセミコンダクタソリューションズ株式会社 半導体装置、通信モジュール及び半導体装置の製造方法
JP2020115524A (ja) * 2019-01-18 2020-07-30 ローム株式会社 半導体装置
CN111863955A (zh) * 2019-04-25 2020-10-30 世界先进积体电路股份有限公司 半导体结构
CN112652660A (zh) * 2019-10-10 2021-04-13 世界先进积体电路股份有限公司 半导体结构及其制造方法
WO2022131103A1 (ja) * 2020-12-16 2022-06-23 ソニーセミコンダクタソリューションズ株式会社 電子機器及び電子機器の製造方法
WO2022201841A1 (ja) * 2021-03-26 2022-09-29 ローム株式会社 窒化物半導体装置
WO2022215583A1 (ja) * 2021-04-08 2022-10-13 ローム株式会社 窒化物半導体装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045965A (ja) * 2001-07-31 2003-02-14 Fujitsu Quantum Devices Ltd 半導体装置及び製造方法
JP2007005403A (ja) * 2005-06-21 2007-01-11 Matsushita Electric Works Ltd 半導体基板への貫通配線の形成方法
JP2009033097A (ja) * 2007-06-29 2009-02-12 Fujitsu Ltd 半導体装置及びその製造方法
JP2012038885A (ja) * 2010-08-06 2012-02-23 Panasonic Corp 半導体装置及びその製造方法
JP2013141008A (ja) * 2013-03-08 2013-07-18 Fujitsu Ltd 半導体装置の製造方法
JP2013251330A (ja) * 2012-05-30 2013-12-12 Sumitomo Electric Ind Ltd 半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045965A (ja) * 2001-07-31 2003-02-14 Fujitsu Quantum Devices Ltd 半導体装置及び製造方法
JP2007005403A (ja) * 2005-06-21 2007-01-11 Matsushita Electric Works Ltd 半導体基板への貫通配線の形成方法
JP2009033097A (ja) * 2007-06-29 2009-02-12 Fujitsu Ltd 半導体装置及びその製造方法
JP2012038885A (ja) * 2010-08-06 2012-02-23 Panasonic Corp 半導体装置及びその製造方法
JP2013251330A (ja) * 2012-05-30 2013-12-12 Sumitomo Electric Ind Ltd 半導体装置
JP2013141008A (ja) * 2013-03-08 2013-07-18 Fujitsu Ltd 半導体装置の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090281A1 (ja) * 2018-10-31 2020-05-07 ソニーセミコンダクタソリューションズ株式会社 半導体装置、通信モジュール及び半導体装置の製造方法
JPWO2020090281A1 (ja) * 2018-10-31 2021-09-24 ソニーセミコンダクタソリューションズ株式会社 半導体装置、通信モジュール及び半導体装置の製造方法
JP7303215B2 (ja) 2018-10-31 2023-07-04 ソニーセミコンダクタソリューションズ株式会社 半導体装置、通信モジュール及び半導体装置の製造方法
JP2020115524A (ja) * 2019-01-18 2020-07-30 ローム株式会社 半導体装置
JP7260224B2 (ja) 2019-01-18 2023-04-18 ローム株式会社 半導体装置
US11646251B2 (en) 2019-01-18 2023-05-09 Rohm Co., Ltd. Semiconductor device
US11955411B2 (en) 2019-01-18 2024-04-09 Rohm Co., Ltd. Semiconductor device
CN111863955A (zh) * 2019-04-25 2020-10-30 世界先进积体电路股份有限公司 半导体结构
CN112652660A (zh) * 2019-10-10 2021-04-13 世界先进积体电路股份有限公司 半导体结构及其制造方法
WO2022131103A1 (ja) * 2020-12-16 2022-06-23 ソニーセミコンダクタソリューションズ株式会社 電子機器及び電子機器の製造方法
WO2022201841A1 (ja) * 2021-03-26 2022-09-29 ローム株式会社 窒化物半導体装置
WO2022215583A1 (ja) * 2021-04-08 2022-10-13 ローム株式会社 窒化物半導体装置

Also Published As

Publication number Publication date
JP6877896B2 (ja) 2021-05-26

Similar Documents

Publication Publication Date Title
JP6877896B2 (ja) 半導体装置及び半導体装置の製造方法
EP3327774B1 (en) Device with a conductive feature formed over a cavity and method therefor
US9299822B2 (en) Semiconductor device and manufacturing method of semiconductor device
TWI542008B (zh) 半導體裝置
JP5913816B2 (ja) 半導体装置の製造方法
JP6064628B2 (ja) 半導体装置
US20190326404A1 (en) Semiconductor device and method for manufacturing the same
JP2015037105A (ja) 半導体装置及び半導体装置の製造方法
JP6540461B2 (ja) 半導体装置及び半導体装置の製造方法
JP6575304B2 (ja) 半導体装置、電源装置、増幅器及び半導体装置の製造方法
JP2013197315A (ja) 半導体装置及び半導体装置の製造方法
JP7139774B2 (ja) 化合物半導体装置、化合物半導体装置の製造方法及び増幅器
JP2015115351A (ja) 半導体装置及び半導体装置の製造方法
JP6996241B2 (ja) 化合物半導体装置及びその製造方法、電源装置、高周波増幅器
JP2012174996A (ja) 半導体装置及び半導体装置の製造方法
JP6252122B2 (ja) 半導体装置及び半導体装置の製造方法
JP2021052025A (ja) 半導体装置、半導体装置の製造方法及び電子装置
JP2020113625A (ja) 半導体装置、半導体装置の製造方法及び増幅器
TWI487075B (zh) 半導體裝置及半導體裝置之製造方法
JP7099255B2 (ja) 化合物半導体装置、高周波増幅器及び電源装置
JP2022016950A (ja) 半導体装置
JP2016086125A (ja) 化合物半導体装置及びその製造方法
JP7102796B2 (ja) 半導体装置及び半導体装置の製造方法
JP6561559B2 (ja) 半導体装置及び半導体装置の製造方法
JP2018056320A (ja) 半導体装置及び増幅器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200615

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200624

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200630

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200807

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200818

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201110

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210323

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210427

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210428

R150 Certificate of patent or registration of utility model

Ref document number: 6877896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150