WO2022201841A1 - 窒化物半導体装置 - Google Patents

窒化物半導体装置 Download PDF

Info

Publication number
WO2022201841A1
WO2022201841A1 PCT/JP2022/003094 JP2022003094W WO2022201841A1 WO 2022201841 A1 WO2022201841 A1 WO 2022201841A1 JP 2022003094 W JP2022003094 W JP 2022003094W WO 2022201841 A1 WO2022201841 A1 WO 2022201841A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride semiconductor
nitride
semiconductor device
substrate
Prior art date
Application number
PCT/JP2022/003094
Other languages
English (en)
French (fr)
Inventor
啓太 四方
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2023508713A priority Critical patent/JPWO2022201841A1/ja
Priority to DE112022001240.4T priority patent/DE112022001240T5/de
Priority to CN202280024228.7A priority patent/CN117121214A/zh
Publication of WO2022201841A1 publication Critical patent/WO2022201841A1/ja
Priority to US18/471,333 priority patent/US20240014094A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present disclosure relates to a nitride semiconductor device made of a Group III nitride semiconductor (hereinafter sometimes simply referred to as "nitride semiconductor").
  • a group III nitride semiconductor is a semiconductor in which nitrogen is used as a group V element in a group III-V semiconductor.
  • Aluminum nitride (AlN), gallium nitride (GaN), and indium nitride (InN) are representative examples. In general, it can be expressed as AlxInyGa1 -x-yN ( 0 ⁇ x ⁇ 1 , 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1).
  • Patent Document 1 discloses a HEMT (High Electron Mobility Transistor) using a nitride semiconductor.
  • the HEMT of Patent Document 1 includes a p-type Si substrate, a buffer layer formed on the p-type Si substrate, an electron transit layer made of GaN formed on the buffer layer, and an AlGaN electron transit layer formed on the electron transit layer. and an electron supply layer consisting of A drain electrode and a gate electrode are formed in contact with the electron supply layer.
  • a source electrode is formed so as to penetrate through the electron supply layer, the electron transit layer and the buffer layer and come into contact with the p-type Si substrate.
  • a back surface electrode electrically connected to the source electrode via the p-type Si substrate is formed on the back surface of the p-type Si substrate.
  • a two-dimensional electron gas is formed in the electron transit layer at a position several angstroms inward from the interface between the electron transit layer and the electron supply layer. .
  • this two-dimensional electron gas is connected.
  • the gate electrode By applying a control voltage to the gate electrode to cut off the two-dimensional electron gas, the connection between the source and the drain is cut off.
  • An object of the present disclosure is to provide a nitride semiconductor device with high heat dissipation.
  • One embodiment of the present disclosure is a nitride semiconductor device including a substrate having a first main surface and a second main surface opposite thereto, and a nitride epitaxial layer formed on the first main surface.
  • the nitride semiconductor device has, in plan view, an active region in which a two-dimensional electron gas can be formed in the nitride epitaxial layer and an inactive region in which a two-dimensional electron gas is not formed in the nitride epitaxial layer.
  • a nitride semiconductor device is provided, including a buried metal formed therein.
  • FIG. 1 is a plan view for explaining the configuration of a nitride semiconductor device according to a first embodiment of the present disclosure
  • FIG. FIG. 2 is a cross-sectional view taken along line II--II of FIG.
  • FIG. 3 is a cross-sectional view taken along line III--III in FIG.
  • FIG. 4A is a cross-sectional view showing an example of the manufacturing process of the nitride semiconductor device.
  • FIG. 4B is a cross-sectional view showing the next step of FIG. 4A.
  • FIG. 4C is a cross-sectional view showing the next step of FIG. 4B.
  • FIG. 4D is a cross-sectional view showing the next step of FIG. 4C.
  • FIG. 4E is a cross-sectional view showing the next step of FIG.
  • FIG. 4F is a cross-sectional view showing the next step of FIG. 4E.
  • FIG. 4G is a cross-sectional view showing the next step of FIG. 4F.
  • FIG. 4H is a cross-sectional view showing the next step of FIG. 4G.
  • FIG. 4I is a cross-sectional view showing the next step of FIG. 4H.
  • FIG. 5 is a plan view for explaining the configuration of the nitride semiconductor device according to the second embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view taken along line VI-VI of FIG.
  • FIG. 7 is a cross-sectional view along line VII-VII of FIG.
  • FIG. 8A is a cross-sectional view showing an example of the manufacturing process of the nitride semiconductor device.
  • FIG. 8B is a cross-sectional view showing the next step of FIG. 8A.
  • FIG. 8C is a cross-sectional view showing the next step of FIG. 8B.
  • FIG. 8D is a cross-sectional view showing the next step of FIG. 8C.
  • FIG. 9 is a plan view for explaining the configuration of the nitride semiconductor device according to the third embodiment of the present disclosure.
  • 10 is a cross-sectional view taken along line XX of FIG. 9.
  • FIG. 11 is a cross-sectional view taken along line XI-XI of FIG. 10.
  • FIG. FIG. 12A is a cross-sectional view showing an example of the manufacturing process of the nitride semiconductor device.
  • FIG. 12B is a cross-sectional view showing the next step of FIG.
  • FIG. 12A is a cross-sectional view showing the next step of FIG. 12B.
  • FIG. 12D is a cross-sectional view showing the next step of FIG. 12C.
  • FIG. 12E is a cross-sectional view showing the next step of FIG. 12D.
  • FIG. 12F is a cross-sectional view showing the next step of FIG. 12E.
  • FIG. 12G is a cross-sectional view showing the next step of FIG. 12F.
  • FIG. 12H is a cross-sectional view showing the next step of FIG. 12G.
  • 13 is a cross-sectional view showing a modification of the nitride semiconductor device of FIG. 2.
  • FIG. 14 is a cross-sectional view showing a modification of the nitride semiconductor device of FIG. 6.
  • FIG. 15 is a cross-sectional view showing a modification of the nitride semiconductor device of FIG. 10.
  • One embodiment of the present disclosure is a nitride semiconductor device including a substrate having a first main surface and a second main surface opposite thereto, and a nitride epitaxial layer formed on the first main surface.
  • the nitride semiconductor device has, in plan view, an active region in which a two-dimensional electron gas can be formed in the nitride epitaxial layer and an inactive region in which a two-dimensional electron gas is not formed in the nitride epitaxial layer.
  • a nitride semiconductor device is provided, including a buried metal formed therein.
  • the trench is formed only in the inactive region of the active region and the inactive region.
  • the trench is formed in both the active area and the inactive area.
  • the total volume of trenches present in the inactive region is 1 ⁇ 3 or more of the volume of the substrate in the inactive region.
  • An embodiment of the present disclosure includes a lead metal formed on the second main surface and thermally connected to the embedded metal.
  • the trench is dug halfway through the substrate from the second main surface toward the first main surface.
  • the trench extends through the substrate to the nitride epitaxial layer.
  • a source electrode, a drain electrode, and a gate electrode arranged on the nitride epitaxial layer and electrically connecting the source electrode and the embedded metal through the nitride epitaxial layer Including contact metal to be connected.
  • the nitride epitaxial layer is formed on a first nitride semiconductor layer forming an electron transit layer, and on the first nitride semiconductor layer to form an electron supply layer. and a second nitride semiconductor layer having a bandgap higher than that of the first nitride semiconductor layer.
  • An embodiment of the present disclosure includes a semi-insulating nitride layer disposed between the substrate and the first nitride semiconductor layer and having an acceptor concentration higher than a donor concentration.
  • a buffer layer made of a nitride semiconductor is included between the substrate and the semi-insulating nitride layer.
  • the first nitride semiconductor layer is a GaN layer
  • the second nitride semiconductor layer is an AlGaN layer.
  • the first nitride semiconductor layer is a GaN layer
  • the second nitride semiconductor layer is an AlGaN layer
  • the semi-insulating nitride layer is a GaN layer containing carbon
  • the first nitride semiconductor layer is a GaN layer
  • the second nitride semiconductor layer is an AlGaN layer
  • the semi-insulating nitride layer is a GaN layer containing carbon
  • the buffer layer is composed of a laminated film of an AlN layer formed on the first main surface and an AlGaN layer laminated on the AlN layer.
  • the first nitride semiconductor layer is a GaN layer
  • the second nitride semiconductor layer is an AlGaN layer
  • the semi-insulating nitride layer is a GaN layer containing carbon
  • the buffer layer is composed of an AlN layer or an AlGaN layer.
  • FIG. 1 is a plan view for explaining the configuration of the nitride semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view taken along line II--II of FIG.
  • FIG. 3 is a cross-sectional view taken along line III--III in FIG.
  • the horizontal direction of the paper surface of FIG. 1 may be referred to as the horizontal direction
  • the vertical direction of the paper surface of FIG. 1 may be referred to as the vertical direction
  • the nitride semiconductor device 1 has, for example, a laterally elongated rectangular parallelepiped shape.
  • a nitride semiconductor device 1 includes a substrate 2 having a first main surface (front surface) 2a and a second main surface (back surface) 2b opposite thereto, and a nitride epitaxial layer formed on the first main surface 2a of the substrate 2. and layer 20 .
  • Nitride epitaxial layer 20 includes buffer layer 3 formed on first main surface 2a of substrate 2, semi-insulating nitride layer 4 formed on buffer layer 3, and semi-insulating nitride layer 4. and a second nitride semiconductor layer 6 formed on the first nitride semiconductor layer 5 .
  • this nitride semiconductor device 1 includes an insulating film 7 formed on the second nitride semiconductor layer 6 .
  • Nitride semiconductor device 1 further includes source electrode 10 and drain electrode 11 penetrating through source contact hole 8 and drain contact hole 9 formed in insulating film 7 and making ohmic contact with second nitride semiconductor layer 6 . .
  • the source electrode 10 and the drain electrode 11 are spaced apart.
  • this nitride semiconductor device 1 includes a gate electrode 13 that penetrates through a gate contact hole 12 formed in the insulating film 7 and contacts the second nitride semiconductor layer 6 .
  • the gate electrode 13 is arranged between the source electrode 10 and the drain electrode 11 .
  • this nitride semiconductor device 1 has a heat dissipation structure 15 .
  • the substrate 2 is made of a low resistance Si (silicon) substrate in this embodiment.
  • the substrate 2 may contain p-type impurities, for example.
  • the p-type impurity concentration may be, for example, 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 20 cm ⁇ 3 .
  • the thickness of the substrate 2 is, for example, about 100 ⁇ m to 700 ⁇ m. In this embodiment, the thickness of the substrate 2 is of the order of 200 ⁇ m.
  • the buffer layer 3 is a buffer layer for relaxing strain caused by a difference between the lattice constant of the semi-insulating nitride layer 4 formed on the buffer layer 3 and the lattice constant of the substrate 2 .
  • the buffer layer 3 is composed of a multi-layered buffer layer in which a plurality of nitride semiconductor films are laminated.
  • the buffer layer 3 is composed of a laminated film of an AlN film in contact with the surface of the substrate 2 and an AlGaN film laminated on the surface of this AlN film (the surface opposite to the substrate 2).
  • the buffer layer 3 may be composed of a single AlN film or a single AlGaN film.
  • the thickness of the buffer layer 3 is, for example, about 0.1 ⁇ m to 5 ⁇ m. In this embodiment, the thickness of the buffer layer 3 is approximately 0.5 ⁇ m.
  • the semi-insulating nitride layer 4 is provided to suppress leakage current.
  • the semi-insulating nitride layer 4 is composed of an impurity-doped GaN layer and has a thickness of about 1 ⁇ m to 10 ⁇ m. In this embodiment, the thickness of the semi-insulating nitride layer 4 is of the order of 2 ⁇ m.
  • the impurity is C (carbon), for example, and is doped so that the difference (Na ⁇ Nd) between the acceptor concentration Na and the donor concentration Nd is approximately 1 ⁇ 10 17 cm ⁇ 3 .
  • the first nitride semiconductor layer 5 constitutes an electron transit layer.
  • the first nitride semiconductor layer 5 is an n-type GaN layer doped with donor-type impurities, and has a thickness of, for example, about 0.05 ⁇ m to 1 ⁇ m. In this embodiment, the thickness of the first nitride semiconductor layer 5 is approximately 0.2 ⁇ m.
  • the first nitride semiconductor layer 5 may be composed of an undoped GaN layer.
  • the lower surface on the semi-insulating nitride layer 4 side is called the back surface, and the upper surface on the opposite side is called the front surface.
  • a laterally long rectangular center portion 5A on the surface of the first nitride semiconductor layer 5 in plan view protrudes from a rectangular annular peripheral portion 5B in plan view on the surface. Thereby, a step is formed between the central portion 5A and the peripheral edge portion 5B of the surface of the first nitride semiconductor layer 5 . Therefore, the surface (upper surface) of the first nitride semiconductor layer 5 is composed of a central portion 5A of a high step portion, a peripheral edge portion 5B of a low step portion, and a connecting portion 5C connecting them.
  • the second nitride semiconductor layer 6 is formed on the central portion 5A of the surface of the first nitride semiconductor layer 5 .
  • the second nitride semiconductor layer 6 constitutes an electron supply layer.
  • the second nitride semiconductor layer 6 is made of a nitride semiconductor having a bandgap larger than that of the first nitride semiconductor layer 5 .
  • the second nitride semiconductor layer 6 is made of a nitride semiconductor having a higher Al composition than the first nitride semiconductor layer 5 . In nitride semiconductors, the higher the Al composition, the larger the bad gap.
  • the first nitride semiconductor layer 5 (electron transit layer) and the second nitride semiconductor layer 6 (electron supply layer) are made of nitride semiconductors having different band gaps (Al compositions). has lattice mismatch. Then, the first nitride semiconductor layer 5 and the second nitride semiconductor layer 6 are polarized by spontaneous polarization of the first nitride semiconductor layer 5 and the second nitride semiconductor layer 6 and piezoelectric polarization caused by lattice mismatch therebetween. The energy level of the conduction band of the first nitride semiconductor layer 5 at the interface with is lower than the Fermi level.
  • a two-dimensional electron gas (2DEG) 19 spreads in the first nitride semiconductor layer 5 at a position close to the interface with the second nitride semiconductor layer 6 (for example, a distance of several angstroms from the interface).
  • a region where the two-dimensional electron gas 19 can be formed is called an active region 101, and a region where the two-dimensional electron gas (2DEG) 19 is not formed is called an inactive region 102.
  • the region where the central portion 5A of the surface of the first nitride semiconductor layer 5 exists in plan view is the active region 101, and the peripheral portion 5B of the surface of the first nitride semiconductor layer 5 exists in plan view.
  • the area to be covered is the inactive area 102 .
  • the insulating film 7 is formed over substantially the entire surface of the second nitride semiconductor layer 6 .
  • the insulating film 7 is made of SiN in this embodiment.
  • the thickness of the insulating film 7 is, for example, about 10 nm to 200 nm. In this embodiment, the thickness of the insulating film 7 is approximately 100 nm.
  • the insulating film 7 may be composed of SiN, SiO 2 , SiN, SiON, Al 2 O 3 , AlN, AlON, HfO, HfN, HfON, HfSiON, AlON, or the like.
  • the source electrode 10 covers the source contact hole 8 and the peripheral portion of the source contact hole 8 on the surface of the insulating film 7 . A portion of the source electrode 10 enters the source contact hole 8 and contacts the surface of the second nitride semiconductor layer 6 within the source contact hole 8 .
  • the drain electrode 11 covers the drain contact hole 9 and the periphery of the drain contact hole 9 on the surface of the insulating film 7 . A portion of the drain electrode 11 enters the drain contact hole 9 and contacts the surface of the second nitride semiconductor layer 6 within the drain contact hole 9 .
  • the source electrode 10 and the drain electrode 11 are composed of, for example, a Ti/Al laminated film in which a Ti film and an Al film are laminated in that order from the lower layer.
  • the thickness of the Ti film on the lower layer side is, for example, about 20 nm
  • the thickness of the Al film on the upper layer side is, for example, about 300 nm.
  • the source electrode 10 and the drain electrode 11 need only be made of a material that can make ohmic contact with the second nitride semiconductor layer 6 (AlGaN layer).
  • the source electrode 10 and the drain electrode 11 may be composed of a Ti/Al/Ni/Au laminated film in which a Ti film, an Al film, a Ni film and an Au film are laminated in that order from the bottom.
  • the gate electrode 13 covers the gate contact hole 12 and the peripheral portion of the gate contact hole 12 on the surface of the insulating film 7 . A portion of gate electrode 13 enters gate contact hole 12 and contacts the surface of second nitride semiconductor layer 6 within gate contact hole 12 .
  • the gate electrode 13 is composed of, for example, a Ni/Au laminated film in which a Ni film and an Au film are laminated in that order from the lower layer.
  • the thickness of the Ni film on the lower layer side is, for example, about 10 nm
  • the thickness of the Au film on the upper layer side is, for example, about 600 nm.
  • the gate electrode 13 may be made of a material capable of forming a Schottky barrier against the second nitride semiconductor layer 6 (AlGaN layer).
  • the substrate 2 in the inactive region 102, is formed with a plurality of trenches 14 dug down from the second main surface 2b toward the first main surface 2a.
  • the trench 14 is dug halfway through the thickness of the substrate 2 from the second major surface 2b toward the first major surface 2a.
  • the cross-sectional shape of trench 14 is elliptical in this embodiment.
  • the plurality of trenches 14 are arranged in a grid pattern in plan view.
  • the plurality of trenches 14 are arranged in a matrix in plan view.
  • the plurality of trenches 14 may be arranged in a zigzag pattern in plan view.
  • the shape of the cross section of the trench 14 is arbitrary, and may be circular or polygonal (triangular, quadrangular, hexagonal, etc.). Moreover, the size of the cross section of the trench 14 (the area of the cross section) and the interval between two adjacent trenches 14 can be set arbitrarily.
  • the depth of the trench 14 is preferably 1/2 or more of the thickness of the substrate 2, more preferably 2/3 or more of the thickness of the substrate 2, and even more preferably 3/4 or more of the thickness of the substrate 2.
  • the total volume (total volume) of the plurality of trenches 14 existing in the inactive region 102 is preferably 1 ⁇ 3 or more of the volume of the substrate 2 in the inactive region 102 .
  • a barrier metal film 16 is formed over the entire inner surface (side and bottom surfaces) of each trench 14 and the entire second main surface 2 b of the substrate 2 .
  • the barrier metal film 16 is made of TiN, for example.
  • a heat dissipation metal 17 is embedded in each trench 14 while being surrounded by a barrier metal film 16 .
  • the heat dissipation metal 17 is made of metal with high thermal conductivity such as gold (Au) or copper (Cu). In this embodiment, the heat dissipation metal 17 is made of gold (Au).
  • the heat dissipation metal 17 includes an embedded portion 17A inside the trench 14 and an extraction portion 17B extracted along the second main surface 2b of the substrate 2 from the opening end of the trench 14 outside the trench 14 .
  • the lead portions 17B are uniformly led out from each trench 14 and cover the entire second main surface 2b of the substrate 2 .
  • the rear surface of the heat dissipation metal 17 (the rear surface of the lead portion 22B) is formed flat throughout.
  • the barrier metal film 16 in the trench 14 and the buried portion 17A surrounded by the barrier metal film 16 constitute the buried metal 15A in the present disclosure.
  • the barrier metal film 16 formed on the second main surface 2b of the substrate 2 and the lead portion 17B constitute the lead metal 15B in the present disclosure.
  • a heat dissipation structure 15 is composed of all the embedded metals 15A in the trenches 14 and the extraction metals 15B. In other words, the barrier metal film 16 and the heat dissipation metal 17 constitute the heat dissipation structure 15 .
  • the heat dissipation metal 17 does not have to be completely embedded in the trench 14 . In that case, the back surface of the heat dissipation metal 17 does not have to be flat. Moreover, the barrier metal film 16 and the heat dissipation metal 17 may not be formed on the second main surface 2 b of the substrate 2 .
  • a second nitride semiconductor layer 6 (electron supply layer) having a different bandgap (Al composition) is formed on a first nitride semiconductor layer 5 (electron transit layer) to form a heterojunction. It is As a result, a two-dimensional electron gas 19 is formed in the first nitride semiconductor layer 5 near the interface between the first nitride semiconductor layer 5 and the second nitride semiconductor layer 6, and the two-dimensional electron gas 19 is used as a channel. A utilized HEMT is formed.
  • this HEMT is a normally-on type.
  • a control voltage is applied to the gate electrode 13 such that the potential of the gate electrode 13 becomes negative with respect to the source electrode 10
  • the two-dimensional electron gas 19 is shut off and the HEMT is turned off.
  • 4A to 4I are cross-sectional views for explaining an example of the manufacturing process of the nitride semiconductor device 1 described above, showing cross-sectional structures at a plurality of stages in the manufacturing process.
  • a buffer layer 3 and a semi-insulating nitride layer 4 are epitaxially grown in order on the first main surface 2a of the substrate 2 by, for example, MOCVD (Metal Organic Chemical Vapor Deposition). Further, a first nitride semiconductor layer (electron transit layer) 5 and a second nitride semiconductor layer (electron supply layer) 6 are epitaxially grown in this order on the semi-insulating nitride layer 4 by MOCVD.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • a nitride epitaxial layer 20 composed of the buffer layer 3 , the semi-insulating nitride layer 4 , the first nitride semiconductor layer 5 and the second nitride semiconductor layer 6 is formed on the first main surface 2 a of the substrate 2 . be done.
  • a resist film (not shown) is formed on the second nitride semiconductor layer 6 so as to cover a region immediately above the planned formation region of the central portion 5A of the surface of the first nitride semiconductor layer 5 .
  • a resist film By dry etching using this resist film as a mask, as shown in FIG. 4B, the peripheral portion of the second nitride semiconductor layer 6 is removed, and the peripheral portion of the first nitride semiconductor layer 5 is removed halfway through the thickness. be done.
  • the surface of the first nitride semiconductor layer 5 is composed of a high-level central portion 5A, a low-level peripheral edge portion 5B, and a connecting portion 5C connecting them.
  • an etching gas for example, a chlorine-based gas such as Cl 2 or BCl 3 is used.
  • an inactive region 102 is formed in which the two-dimensional electron gas 19 is not formed.
  • a region corresponding to the central portion 5A of the surface of the first nitride semiconductor layer 5 in plan view is the active region 101, and a region corresponding to the peripheral portion 5B of the surface of the first nitride semiconductor layer 5 in plan view is inactive. area 102;
  • This etching may be performed until the bottom of the etching reaches the upper surface of the semi-insulating nitride layer 4, or may be performed until the thickness of the semi-insulating nitride layer 4 reaches halfway. This etching may be performed until the etching bottom surface reaches the upper surface of the buffer layer 3 or may be performed until the thickness of the buffer layer 3 reaches halfway.
  • the peripheral edge portion 5B and the connecting portion 5C and the second contact portion 5C on the surface of the first nitride semiconductor layer 5 are subjected to a plasma CVD method, a low pressure CVD (LPCVD) method, an MOCVD method, a sputtering method, or the like.
  • An insulating material film 31 which is a material film for insulating film 7 , is formed to cover the exposed surface of nitride semiconductor layer 6 .
  • a resist film (not shown) is formed on the insulating material film 31 except for the regions where the source contact holes 8 and the drain contact holes 9 are to be formed.
  • a resist film By dry etching the insulating material film 31 through the resist film, the source contact hole 8 and the drain contact hole 9 are formed in the insulating material film 31 as shown in FIG. 4D.
  • Source contact hole 8 and drain contact hole 9 penetrate insulating material film 31 and reach second nitride semiconductor layer 6 .
  • the widths of the source contact hole 8 and the drain contact hole 9 are approximately 3 to 5 ⁇ m.
  • CF 4 gas for example, is used as the etching gas. After that, the resist film is removed.
  • an electrode film which is a material film for the source electrode 10 and the drain electrode 11, is formed on the insulating material film 31 by, for example, a vapor deposition method, a sputtering method, or the like. Thereafter, a resist film is formed to cover the source electrode formation scheduled region and the drain electrode formation scheduled region on the surface of the electrode film. Using this resist film as a mask, the electrode film is selectively etched to obtain the source electrode 10 and the drain electrode 11 as shown in FIG. 4E. After that, the resist film is removed.
  • a plurality of trenches 14 extending halfway through the thickness of the substrate 2 from the second main surface 2b toward the first main surface 2a are formed in the inactive region 102 by photolithography and etching. It is formed on the substrate 2 .
  • a Bosch process may be used for this etching.
  • the plurality of trenches 14 are arranged in a matrix in plan view.
  • a barrier metal film 16 made of, for example, a TiN layer is formed on the inner surfaces (side and bottom surfaces) of the trenches 14 and the second main surface 2b of the substrate 2 by, for example, sputtering.
  • the heat dissipation structure 15 is formed of the embedded metal 15A embedded in each trench 14 and the lead metal 15B formed on the second main surface 2b.
  • a resist film (not shown) is formed on the insulating material film 31, the source electrode 10 and the drain electrode 11 except for the region where the gate contact hole 12 is to be formed.
  • a gate contact hole 12 is formed in the insulating material film 31 as shown in FIG. 4I.
  • the insulating material film 31 is patterned and the insulating film 7 is obtained.
  • Gate contact hole 12 penetrates insulating film 7 and reaches second nitride semiconductor layer 6 .
  • CF 4 gas for example, is used as the etching gas.
  • the gate electrode 13 is formed to obtain the nitride semiconductor device 1 as shown in FIGS. 1 to 3.
  • FIG. The gate electrode 13 is made of, for example, a Ni/Au laminated film in which a Ni film and an Au film are laminated in that order from the bottom.
  • FIG. 5 is a plan view for explaining the configuration of the nitride semiconductor device according to the second embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view along line VI-VI of FIG.
  • FIG. 7 is a cross-sectional view along line VII-VII of FIG.
  • FIGS. 5, 6 and 7 the same reference numerals as in FIGS. 1, 2 and 3 are used for the parts corresponding to the parts in FIGS. 1, 2 and 3 described above.
  • trenches 14 are formed in the substrate 2 not only in the inactive region 102 but also in the active region 101, which is different from that of the nitride semiconductor device 1A according to the first embodiment. is different from
  • a plurality of trenches 14 are formed in the active region 101 and the inactive region 102 .
  • the plurality of trenches 14 are arranged in a matrix in plan view.
  • the plurality of trenches 14 may be arranged in a zigzag pattern in plan view.
  • a barrier metal film 16 is formed on the inner surfaces of the plurality of trenches 14 .
  • a heat dissipation metal 17 is embedded in these trenches 14 while being surrounded by a barrier metal film 16 .
  • the barrier metal film 16 in the trench 14 and the buried portion 17A surrounded by the barrier metal film 16 constitute the buried metal 15A in the present disclosure.
  • the barrier metal film 16 formed on the second main surface 2b of the substrate 2 and the lead portion 17B constitute the lead metal 15B in the present disclosure.
  • a heat dissipation structure 15 is composed of all the embedded metals 15A in the trenches 14 and the extraction metals 15B. In other words, the heat dissipation structure 15 is formed by the barrier metal film 51 and the heat dissipation metal 17 formed in the active region 101 and the inactive region 102 .
  • the embedded metal 15A since the embedded metal 15A is provided, heat dissipation can be improved. Moreover, since it has the lead metal 15B, heat dissipation can be further improved.
  • a plurality of trenches 14 are formed not only in the inactive region 102 but also in the active region 101, and the heat dissipation metal 17 is embedded in the plurality of trenches 14 via the barrier metal film 16. Therefore, it is possible to further improve heat dissipation compared to the first embodiment.
  • FIGS. 8A to 8D are cross-sectional views for explaining an example of the manufacturing process of the nitride semiconductor device 1A described above, showing cross-sectional structures at a plurality of stages in the manufacturing process.
  • FIG. 8A When the process shown in FIG. 4E is completed, as shown in FIG. 8A, photolithography and etching are performed in both the active region 101 and the inactive region 102 from the second major surface 2b toward the first major surface 2a.
  • a plurality of trenches 14 extending halfway through the thickness of the substrate 2 are formed in the substrate 2 .
  • a Bosch process may be used for this etching.
  • the plurality of trenches 14 are arranged in a matrix in plan view.
  • a barrier metal film 16 made of, for example, a TiN layer is formed on the inner surfaces (side and bottom surfaces) of the trenches 14 and the second main surface 2b of the substrate 2 by, for example, sputtering.
  • the heat dissipation structure 15 composed of the barrier metal film 16 and the heat dissipation metal 17 is obtained.
  • the heat dissipation structure 15 is obtained which is composed of the embedded metal 15A embedded in each trench 14 and the lead metal 15B formed on the second main surface 2b.
  • a resist film (not shown) is formed on the insulating material film 31, the source electrode 10 and the drain electrode 11 except for the region where the gate contact hole 12 is to be formed.
  • a gate contact hole 12 is formed in the insulating material film 31 as shown in FIG. 8D.
  • the insulating material film 31 is patterned and the insulating film 7 is obtained.
  • Gate contact hole 12 penetrates insulating film 7 and reaches second nitride semiconductor layer 6 .
  • CF 4 gas for example, is used as the etching gas.
  • the gate electrode 13 is formed to obtain the nitride semiconductor device 1A as shown in FIGS.
  • the gate electrode 13 is made of, for example, a Ni/Au laminated film in which a Ni film and an Au film are laminated in that order from the bottom.
  • FIG. 9 is a plan view for explaining the configuration of the nitride semiconductor device according to the third embodiment of the present disclosure.
  • 10 is a cross-sectional view taken along line XX of FIG. 9.
  • FIG. 11 is a cross-sectional view taken along line XI-XI of FIG. 10.
  • FIG. 10 is a cross-sectional view taken along line XX of FIG. 9.
  • FIGS. 9, 10 and 11 the same reference numerals as in FIGS. 1, 2 and 3 are used for the parts corresponding to the parts in FIGS. 1, 2 and 3 described above.
  • the horizontal direction of the paper surface of FIG. 9 may be referred to as the horizontal direction
  • the vertical direction of the paper surface of FIG. 9 may be referred to as the vertical direction
  • the structure of the source electrode 10 and the drain electrode 11 and the fact that the trenches 14 are formed in the substrate 2 not only in the inactive region 102 but also in the active region 101 are It differs from the nitride semiconductor device 1 according to the first embodiment.
  • the nitride epitaxial layer 20 and the insulating film 7 , the insulating film 7 and the nitride epitaxial layer 20 are continuously formed from the surface of the insulating film 7 on the opposite side of the source contact hole 8 from the gate contact hole 12 .
  • a back contact hole 18 is formed that penetrates through the substrate 2 and extends halfway through the thickness of the substrate 2 .
  • the source electrode 10 includes a main electrode portion 10A and an extension portion 10B.
  • the main electrode portion 10A covers the source contact hole 8 and the peripheral portion of the source contact hole 8 on the surface of the insulating film 7 .
  • a portion of the main electrode portion 10A enters the source contact hole 8 and contacts the surface of the second nitride semiconductor layer 6 within the source contact hole 8 .
  • the extension part 10B covers the back contact hole 18 and the peripheral edge of the back contact hole 18 on the surface of the insulating film 7 .
  • the side edge of the extension portion 10B on the side of the main electrode portion 10A and the side edge of the main electrode portion 10A on the side of the extension portion 10B are connected.
  • a part of the extension 10B enters the back contact hole 18 and contacts the substrate 2 inside the back contact hole 18 .
  • the extension 10B is an example of "a conductive member that electrically connects the source electrode and the embedded metal" in the present disclosure.
  • the source electrode 10 is composed of a barrier metal film 41 and an electrode metal 42 formed on the barrier metal film 41 .
  • the barrier metal film 41 is formed on the inner surface (side and bottom surfaces) of the source contact hole 8, the peripheral edge of the source contact hole 8 on the surface of the insulating film 7, the inner surface of the back contact hole 18, and the peripheral edge of the back contact hole 18 on the surface of the insulating film 7. covering the The barrier metal film 41 is made of, for example, a TiN film.
  • the electrode metal 42 is made of Au, for example.
  • the electrode metal 42 may be made of Cu.
  • the drain electrode 11 covers the drain contact hole 9 and the periphery of the drain contact hole 9 on the surface of the insulating film 7 . A portion of the drain electrode 11 enters the drain contact hole 9 and contacts the surface of the second nitride semiconductor layer 6 within the drain contact hole 9 .
  • the drain electrode 11 is composed of a barrier metal film 43 covering the drain contact hole 9 and the peripheral portion of the drain contact hole 9 on the surface of the insulating film 7 and an electrode metal 44 formed on the barrier metal film 43 .
  • the barrier metal film 51 is made of, for example, a TiN film.
  • the electrode metal 44 is made of Au, for example.
  • the electrode metal 44 may be made of Cu.
  • a plurality of trenches 14 are formed in the substrate 2 in the active region 101 and the inactive region 102 .
  • the multiple trenches 14 include contact trenches 14A reaching the barrier metal film 41 formed on the bottom surface of the back contact hole 18 .
  • a plurality of trenches 14 other than the contact trenches 14A are arranged in a matrix in plan view. These multiple trenches 14 may be arranged in a zigzag pattern in plan view.
  • a barrier metal film 16 is formed on the inner surfaces of the plurality of trenches 14 including the contact trenches 14A.
  • a heat dissipation metal 17 is embedded in these trenches 14 while being surrounded by a barrier metal film 16 .
  • the heat dissipation metal 17 is made of metal with high thermal conductivity and electrical conductivity, such as gold (Au) and copper (Cu). In this embodiment, the heat dissipation metal 17 is made of gold (Au).
  • the heat dissipation metal 17 includes an embedded portion 17A inside the trench 14 and an extraction portion 17B extracted along the second main surface 2b of the substrate 2 from the opening end of the trench 14 outside the trench 14 .
  • the lead portions 17B are uniformly led out from each trench 14 and cover the entire second main surface 2b of the substrate 2 .
  • the rear surface of the heat dissipation metal 17 (the rear surface of the lead portion 22B) is formed flat throughout.
  • the barrier metal film 16 in the trench 14 (including the contact trench 14A) and the buried portion 17A surrounded by the barrier metal film 16 constitute the buried metal 15A in the present disclosure.
  • the barrier metal film 16 formed on the second main surface 2b of the substrate 2 and the lead portion 17B constitute the lead metal 15B in the present disclosure.
  • a heat dissipation structure 15 is composed of all the embedded metals 15A in the trenches 14 and the extraction metals 15B. In other words, the barrier metal film 16 and the heat dissipation metal 17 formed in the active region 101 and the inactive region 102 constitute the heat dissipation structure 15 .
  • the embedded metal 15A since the embedded metal 15A is provided, heat dissipation can be improved. Moreover, since it has the lead metal 15B, heat dissipation can be further improved.
  • a plurality of trenches 14 are formed not only in the inactive region 102 but also in the active region 101, and the heat dissipation metal 17 is embedded in the plurality of trenches 14 via the barrier metal film 16. Therefore, it is possible to further improve heat dissipation compared to the first embodiment.
  • the main electrode portion 10A of the source electrode 10 is electrically connected to the lead metal 15B via the extension portion 10B and the embedded metal 15A in the contact trench 14A. Therefore, the lead metal 15B can be used as the back electrode of the source electrode 10.
  • 12A to 12H are cross-sectional views for explaining an example of the manufacturing process of the nitride semiconductor device 1B described above, showing cross-sectional structures at a plurality of stages in the manufacturing process.
  • a resist film (not shown) is formed on regions other than regions where the back contact hole 18, the source contact hole 8 and the drain contact hole 9 are to be formed.
  • a resist film By dry-etching the insulating material film 31 through the resist film, a portion 18A of the back contact hole 18, the source contact hole 8 and the drain contact hole 9 are formed in the insulating material film 31 as shown in FIG. 12A. be.
  • CF 4 gas for example, is used as the etching gas. After that, the resist film is removed.
  • a resist film (not shown) is formed on the insulating material film 31 except for the region where the back contact hole 18 is to be formed.
  • Part of nitride epitaxial layer 20 and substrate 2 is etched through this resist film.
  • a hole 18B penetrating the nitride epitaxial layer 20 and reaching the inside of the substrate 2, that is, the remaining portion 18B of the back contact hole 18 is formed.
  • a back contact hole 18 consisting of a portion 18A and a remaining portion 18B is obtained.
  • the resist film is removed.
  • the material of the barrier metal films 41 and 43 is applied to the surface of the insulating material film 31, the inner surfaces (side and bottom surfaces) of the back contact holes 18, the inner surfaces of the source contact holes 8, and the inner surfaces of the drain contact holes 9 by, for example, a sputtering method.
  • a barrier metal material film (for example, a TiN film), which is a film, is formed. By patterning the barrier metal material film, barrier metal films 41 and 43 are formed as shown in FIG. 12C.
  • Source electrode 10 composed of the barrier metal film 41 and the electrode metal 42 and the drain electrode 11 composed of the barrier metal film 43 and the electrode metal 45 are obtained.
  • Source electrode 10 includes main electrode portion 10A and extension portion 10B.
  • both the active region 101 and the inactive region 102 are formed in the middle of the thickness of the substrate 2 from the second main surface 2b toward the first main surface 2a.
  • a plurality of trenches 14 extending to the substrate 2 are formed.
  • the plurality of trenches 14 include contact trenches 14 ⁇ /b>A extending from the second main surface 2 b of the substrate 2 to the bottom surface of the barrier metal film 41 formed on the bottom surface of the back contact hole 18 .
  • a Bosch process may be used as the etching.
  • the plurality of trenches 14 other than the contact trenches 14A are arranged in a matrix in plan view.
  • a barrier metal film 16 made of, for example, a TiN layer is formed on the inner surfaces (side and bottom surfaces) of the trenches 14 and the second main surface 2b of the substrate 2 by, for example, sputtering.
  • the barrier metal film 16 is deposited on the barrier metal film 16 by, for example, plating.
  • the trench 14 is filled with gold (Au), which is the material of the heat dissipation metal 17 .
  • Au is the material of the heat dissipation metal 17 .
  • the heat dissipation metal 17 including the buried portion 17A and the lead portion 17B is formed.
  • the heat dissipation structure 15 composed of the barrier metal film 16 and the heat dissipation metal 17 is obtained.
  • a heat dissipation structure 15 consisting of embedded metal 15A embedded in each trench 14 and lead metal 15B formed on the second main surface 2b is obtained. Also, the source electrode 10 is electrically connected to the lead metal 15B via the extension 10B and the buried metal 15A in the contact trench 14A.
  • a resist film (not shown) is formed on the insulating material film 31, the source electrode 10 and the drain electrode 11 except for the region where the gate contact hole 12 is to be formed.
  • a gate contact hole 12 is formed in the insulating material film 31 as shown in FIG. 12H.
  • the insulating material film 31 is patterned and the insulating film 7 is obtained.
  • Gate contact hole 12 penetrates insulating film 7 and reaches second nitride semiconductor layer 6 .
  • CF 4 gas for example, is used as the etching gas.
  • the gate electrode 13 is formed to obtain the nitride semiconductor device 1B as shown in FIGS. 9 to 11.
  • FIG. The gate electrode 13 is made of, for example, a Ni/Au laminated film in which a Ni film and an Au film are laminated in that order from the bottom.
  • FIGS. 13, 14 and 15 are cross-sectional views showing modifications of the first, second and third embodiments, respectively, and are cross-sectional views corresponding to the cross-sectional planes of FIGS. 2, 6 and 10.
  • the trench 14 extends halfway through the thickness of the substrate 2 from the second main surface 2b toward the first main surface 2a. However, as shown in FIGS. 13, 14 and 15, the trench 14 penetrates the substrate 2 from the second main surface 2b toward the first main surface 2a and extends into the buffer layer 3 (nitride epitaxial layer 20). ).
  • the semi-insulating nitride layer 4 is formed on the buffer layer 3 in the first to third embodiments described above, the semi-insulating nitride layer 4 may not be formed.
  • the first nitride semiconductor layer (electron transit layer) 5 is made of a GaN layer
  • the second nitride semiconductor layer (electron supply layer) 6 is made of an AlGaN layer.
  • the first nitride semiconductor layer 5 and the second nitride semiconductor layer 6 have different bandgaps (for example, Al composition), and other combinations are also possible.
  • the combination of the first nitride semiconductor layer 5/second nitride semiconductor layer 6 can be GaN/AlN, AlGaN/AlN, or the like.
  • Reference Signs List 1 1A, 1B nitride semiconductor device 2 substrate 3 buffer layer 4 semi-insulating nitride layer 5 first nitride semiconductor layer 6 second nitride semiconductor layer 7 insulating film 8 source contact hole 9 drain contact hole 10 source electrode 10A Main electrode portion 10B Extension portion 11 Drain electrode 12 Gate contact hole 13 Gate electrode 14 Trench 14A Contact trench 15 Heat dissipation structure 15A Embedded metal 15B Lead metal 16 Barrier metal film 17 Heat dissipation metal 17A Embedded portion 17B Lead portion 18 Back contact hole 19 Two Dimensional electron gas 20 nitride epitaxial layer 31 insulating material film 41, 43 barrier metal film 42, 44 electrode metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

窒化物半導体装置1は、第1主面2aとその反対側の第2主面2bとを有する基板2と、第1主面2a上に形成された窒化物エピタキシャル層20とを含む窒化物半導体装置である。窒化物半導体装置1は、平面視において、窒化物エピタキシャル層20内に二次元電子ガス19が形成され得る活性領域101と、窒化物エピタキシャル層20内に二次元電子ガス19が形成されない不活性領域102とを有しており、活性領域101および不活性領域102のうちの少なくとも不活性領域102において、基板2に形成され、第2主面2bから第1主面2aに向かって掘り下げられたトレンチ14と、トレンチ14内に形成された埋め込みメタル15Aとを含む。

Description

窒化物半導体装置
 本開示は、III族窒化物半導体(以下単に「窒化物半導体」という場合がある。)からなる窒化物半導体装置に関する。
 III族窒化物半導体とは、III-V族半導体においてV族元素として窒素を用いた半導体である。窒化アルミニウム(AlN)、窒化ガリウム(GaN)、窒化インジウム(InN)が代表例である。一般には、AlInGa1-x-yN(0≦x≦1,0≦y≦1,0≦x+y≦1)と表わすことができる。
 特許文献1には、窒化物半導体を用いたHEMT(High Electron Mobility Transistor;高電子移動度トランジスタ)が開示されている。特許文献1のHEMTは、p型Si基板と、p型Si基板上に形成されたバッファ層と、バッファ層上に形成されたGaNからなる電子走行層と、電子走行層上に形成されたAlGaNからなる電子供給層とを含んでいる。この電子供給層に接するようにドレイン電極およびゲート電極が形成されている。
 また、電子供給層、電子走行層およびバッファ層を貫通してp型Si基板に接するようにソース電極が形成されている。p型Si基板の裏面には、p型Si基板を介してソース電極に電気的に接続される裏面電極が形成されている。
 GaNとAlGaNとの格子不整合に起因する分極のために、電子走行層内において、電子走行層と電子供給層との界面から数Åだけ内方の位置に、二次元電子ガスが形成される。この二次元電子ガスをチャネルとして、ソース・ドレイン間が接続される。ゲート電極に制御電圧を印加することで、二次元電子ガスを遮断すると、ソース・ドレイン間が遮断される。
特開2004-363563号公報
 本開示の目的は、放熱性の高い窒化物半導体装置を提供することにある。
 本開示の一実施形態は、第1主面とその反対側の第2主面とを有する基板と、前記第1主面上に形成された窒化物エピタキシャル層とを含む窒化物半導体装置であって、前記窒化物半導体装置は、平面視において、前記窒化物エピタキシャル層内に二次元電子ガスが形成され得る活性領域と、前記窒化物エピタキシャル層内に二次元電子ガスが形成されない不活性領域とを有しており、前記活性領域および前記不活性領域のうちの少なくとも前記不活性領域において、前記基板の第2主面から前記基板の第1主面に向かって掘り下げられたトレンチと、前記トレンチ内に形成された埋め込みメタルとを含む、窒化物半導体装置を提供する。
 この構成では、放熱性の高い窒化物半導体装置を実現できる。
 本開示における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
図1は、本開示の第1実施形態に係る窒化物半導体装置の構成を説明するための平面図である。 図2は、図1のII-II線に沿う断面図である。 図3は、図2のIII-III線に沿う断面図である。 図4Aは、前記窒化物半導体装置の製造工程の一例を示す断面図である。 図4Bは、図4Aの次の工程を示す断面図である。 図4Cは、図4Bの次の工程を示す断面図である。 図4Dは、図4Cの次の工程を示す断面図である。 図4Eは、図4Dの次の工程を示す断面図である。 図4Fは、図4Eの次の工程を示す断面図である。 図4Gは、図4Fの次の工程を示す断面図である。 図4Hは、図4Gの次の工程を示す断面図である。 図4Iは、図4Hの次の工程を示す断面図である。 図5は、本開示の第2実施形態に係る窒化物半導体装置の構成を説明するための平面図である。 図6は、図5のVI-VI線に沿う断面図である。 図7は、図6のVII-VII線に沿う断面図である。 図8Aは、前記窒化物半導体装置の製造工程の一例を示す断面図である。 図8Bは、図8Aの次の工程を示す断面図である。 図8Cは、図8Bの次の工程を示す断面図である。 図8Dは、図8Cの次の工程を示す断面図である。 図9は、本開示の第3実施形態に係る窒化物半導体装置の構成を説明するための平面図である。 図10は、図9のX-X線に沿う断面図である。 図11は、図10のXI-XI線に沿う断面図である。 図12Aは、前記窒化物半導体装置の製造工程の一例を示す断面図である。 図12Bは、図12Aの次の工程を示す断面図である。 図12Cは、図12Bの次の工程を示す断面図である。 図12Dは、図12Cの次の工程を示す断面図である。 図12Eは、図12Dの次の工程を示す断面図である。 図12Fは、図12Eの次の工程を示す断面図である。 図12Gは、図12Fの次の工程を示す断面図である。 図12Hは、図12Gの次の工程を示す断面図である。 図13は、図2の窒化物半導体装置の変形例を示す断面図である。 図14は、図6の窒化物半導体装置の変形例を示す断面図である。 図15は、図10の窒化物半導体装置の変形例を示す断面図である。
 [本開示の実施形態の説明]
 本開示の一実施形態は、第1主面とその反対側の第2主面とを有する基板と、前記第1主面上に形成された窒化物エピタキシャル層とを含む窒化物半導体装置であって、前記窒化物半導体装置は、平面視において、前記窒化物エピタキシャル層内に二次元電子ガスが形成され得る活性領域と、前記窒化物エピタキシャル層内に二次元電子ガスが形成されない不活性領域とを有しており、前記活性領域および前記不活性領域のうちの少なくとも前記不活性領域において、前記基板の第2主面から前記基板の第1主面に向かって掘り下げられたトレンチと、前記トレンチ内に形成された埋め込みメタルとを含む、窒化物半導体装置を提供する。
 本開示の一実施形態では、前記トレンチが、前記活性領域および前記不活性領域のうちの前記不活性領域のみに形成されている。
 本開示の一実施形態では、前記トレンチが、前記活性領域および前記不活性領域の両方に形成されている。
 本開示の一実施形態では、前記不活性領域内に存在するトレンチの総体積が、前記不活性領域内の前記基板の体積の1/3以上である。
 本開示の一実施形態では、前記第2主面上に形成され、前記埋め込みメタルと熱的に接続された引出しメタルを含む。
 本開示の一実施形態では、前記トレンチが、前記第2主面から前記第1主面に向かって、前記基板の途中まで掘り下げられている。
 本開示の一実施形態では、前記トレンチが、前記基板を貫通して、前記窒化物エピタキシャル層に達している。
 本開示の一実施形態では、前記窒化物エピタキシャル層上に配置された、ソース電極、ドレイン電極およびゲート電極と、前記窒化物エピタキシャル層を貫通し、前記ソース電極と前記埋め込みメタルとを電気的に接続するコンタクトメタルと含む。
 本開示の一実施形態では、前記窒化物エピタキシャル層は、電子走行層を構成する第1窒化物半導体層と、前記第1窒化物半導体層上に形成され、電子供給層を構成し、前記第1窒化物半導体層よりもバンドギャップの高い第2窒化物半導体層とを含む。
 本開示の一実施形態では、前記基板と前記第1窒化物半導体層との間に配置され、アクセプタ濃度がドナー濃度よりも高い半絶縁性窒化物層を含む。
 本開示の一実施形態では、前記基板と前記半絶縁性窒化物層との間に配置され、窒化物半導体からなるバッファ層を含む。
 本開示の一実施形態では、前記第1窒化物半導体層がGaN層からなり、前記第2窒化物半導体層がAlGaN層からなる。
 本開示の一実施形態では、前記第1窒化物半導体層がGaN層からなり、前記第2窒化物半導体層がAlGaN層からなり、前記半絶縁性窒化物層が炭素を含むGaN層からなる。
 本開示の一実施形態では、前記第1窒化物半導体層がGaN層からなり、前記第2窒化物半導体層がAlGaN層からなり、前記半絶縁性窒化物層が炭素を含むGaN層からなり、前記バッファ層が、前記第1主面上に形成されたAlN層と前記AlN層上に積層されAlGaN層との積層膜からなる。
 本開示の一実施形態では、前記第1窒化物半導体層がGaN層からなり、前記第2窒化物半導体層がAlGaN層からなり、前記半絶縁性窒化物層が炭素を含むGaN層からなり、前記バッファ層が、AlN層またはAlGaN層からなる。
 [本開示の実施形態の詳細な説明]
 以下では、本開示の実施形態を、添付図面を参照して詳細に説明する。
 図1は、本開示の第1実施形態に係る窒化物半導体装置の構成を説明するための平面図である。図2は、図1のII-II線に沿う断面図である。図3は、図2のIII-III線に沿う断面図である。
 以下において、図1の紙面の左右方向を横方向といい、図1の紙面の上下方向を縦方向という場合がある。
 窒化物半導体装置1は、図1に示すように、例えば横方向に長い直方体状である。
 窒化物半導体装置1は、第1主面(表面)2aおよびその反対側の第2主面(裏面)2bとを有する基板2と、基板2の第1主面2aに形成された窒化物エピタキシャル層20とを含む。窒化物エピタキシャル層20は、基板2の第1主面2a上に形成されたバッファ層3と、バッファ層3上に形成された半絶縁性窒化物層4と、半絶縁性窒化物層4上に形成された第1窒化物半導体層5と、第1窒化物半導体層5上に形成された第2窒化物半導体層6とを含む。
 さらに、この窒化物半導体装置1は、第2窒化物半導体層6上に形成された絶縁膜7を含む。さらに、この窒化物半導体装置1は、絶縁膜7に形成されたソースコンタクトホール8およびドレインコンタクトホール9を貫通して第2窒化物半導体層6にオーミック接触するソース電極10およびドレイン電極11を含む。ソース電極10およびドレイン電極11は、間隔を開けて配置されている。
 さらに、この窒化物半導体装置1は、絶縁膜7に形成されたゲートコンタクトホール12を貫通して第2窒化物半導体層6に接触するゲート電極13を含む。ゲート電極13は、ソース電極10とドレイン電極11との間に配置されている。さらに、この窒化物半導体装置1は、放熱構造15を有している。
 基板2は、この実施形態では、低抵抗のSi(シリコン)基板からなる。基板2は、例えば、p型不純物を含んでいてもよい。p型不純物濃度は、例えば、1×1017cm-3~1×1020cm-3であってもよい。基板2の厚さは、例えば100μm~700μm程度である。この実施形態では、基板2の厚さは、200μm程度である。
 バッファ層3は、バッファ層3上に形成される半絶縁性窒化物層4の格子定数と、基板2の格子定数との相違によって生じる歪を緩和するための緩衝層である。バッファ層3は、この実施形態では、複数の窒化物半導体膜を積層した多層バッファ層から構成されている。この実施形態では、バッファ層3は、基板2の表面に接するAlN膜と、このAlN膜の表面(基板2とは反対側の表面)に積層されたAlGaN膜との積層膜から構成されている。バッファ層3は、AlN膜の単膜またはAlGaNの単膜から構成されてもよい。バッファ層3の厚さは、例えば0.1μm~5μm程度である。この実施形態では、バッファ層3の厚さは、0.5μm程度である。
 半絶縁性窒化物層4は、リーク電流を抑制するために設けられている。半絶縁性窒化物層4は、不純物がドーピングされたGaN層からなり、その厚さは1μm~10μm程度である。この実施形態では、半絶縁性窒化物層4の厚さは、2μm程度である。不純物は例えばC(炭素)であり、アクセプタ濃度Naとドナー濃度Ndとの差(Na-Nd)が1×1017cm-3程度となるようにドーピングされている。
 第1窒化物半導体層5は、電子走行層を構成している。この実施形態では、第1窒化物半導体層5は、ドナー型不純物がドーピングされたn型GaN層からなり、その厚さは例えば0.05μm~1μm程度である。この実施形態では、第1窒化物半導体層5の厚さは、0.2μm程度である。なお、第1窒化物半導体層5は、アンドープのGaN層から構成されてもよい。
 第1窒化物半導体層5について、半絶縁性窒化物層4側の下面を裏面といい、その反対側の上面を表面ということにする。第1窒化物半導体層5の表面における平面視で横長長方形状の中央部5Aは、当該表面における平面視で矩形環状の周縁部5Bよりも突出している。これにより、第1窒化物半導体層5の表面の中央部5Aと周縁部5Bとの間には、段差が形成されている。したがって、第1窒化物半導体層5の表面(上面)は、高段部の中央部5Aと、低段部の周縁部5Bと、それらを連結する連結部5Cとからなる。
 第2窒化物半導体層6は、第1窒化物半導体層5の表面の中央部5A上に形成されている。第2窒化物半導体層6は、電子供給層を構成している。第2窒化物半導体層6は、第1窒化物半導体層5よりもバンドギャップの大きい窒化物半導体からなっている。具体的には、第2窒化物半導体層6は、第1窒化物半導体層5よりもAl組成の高い窒化物半導体からなっている。窒化物半導体においては、Al組成が高いほどバッドギャップは大きくなる。この実施形態では、第2窒化物半導体層6は、Alx1Ga1-x1N層(0<x1≦1)からなり、その厚さは例えば1nm~100nm程度である。この実施形態では、第2窒化物半導体層6の厚さは20nm程度であり、x1=0.2である。
 このように第1窒化物半導体層5(電子走行層)と第2窒化物半導体層6(電子供給層)とは、バンドギャップ(Al組成)の異なる窒化物半導体からなっており、それらの間には格子不整合が生じている。そして、第1窒化物半導体層5および第2窒化物半導体層6の自発分極ならびにそれらの間の格子不整合に起因するピエゾ分極によって、第1窒化物半導体層5と第2窒化物半導体層6との界面における第1窒化物半導体層5の伝導帯のエネルギーレベルはフェルミ準位よりも低くなる。これにより、第1窒化物半導体層5内には、第2窒化物半導体層6との界面に近い位置(たとえば界面から数Å程度の距離)に二次元電子ガス(2DEG)19が広がっている。
 平面視において、二次元電子ガス19が形成され得る領域を活性領域101といい、二次元電子ガス(2DEG)19が形成されない領域を不活性領域102ということにする。この実施形態では、平面視において第1窒化物半導体層5の表面の中央部5Aが存在する領域が活性領域101であり、平面視において第1窒化物半導体層5の表面の周縁部5Bが存在する領域が不活性領域102である。
 絶縁膜7は、第2窒化物半導体層6の表面のほぼ全域に形成されている。絶縁膜7は、この実施形態では、SiNからなる。絶縁膜7の厚さは、例えば10nm~200nm程度である。この実施形態では、絶縁膜7の厚さは100nm程度である。絶縁膜7は、SiNの他、SiO、SiN、SiON、Al、AlN、AlON、HfO、HfN、HfON、HfSiON、AlON等から構成されてもよい。
 ソース電極10は、ソースコンタクトホール8と、絶縁膜7表面におけるソースコンタクトホール8の周縁部とを覆っている。ソース電極10の一部はソースコンタクトホール8に入り込み、ソースコンタクトホール8内において第2窒化物半導体層6の表面に接触している。
 ドレイン電極11は、ドレインコンタクトホール9と、絶縁膜7表面におけるドレインコンタクトホール9の周縁部とを覆っている。ドレイン電極11の一部はドレインコンタクトホール9に入り込み、ドレインコンタクトホール9内において第2窒化物半導体層6の表面に接触している。
 ソース電極10およびドレイン電極11は、例えば、Ti膜およびAl膜が、下層からその順に積層されたTi/Al積層膜から構成されている。下層側のTi膜の厚さは、例えば20nm程度であり、上層側のAl膜の厚さは、例えば300nm程度である。
 ソース電極10およびドレイン電極11は、第2窒化物半導体層6(AlGaN層)に対してオーミック接触が取れる材料から構成されていればよい。ソース電極10およびドレイン電極11は、Ti膜、Al膜、Ni膜およびAu膜が、下層からその順に積層されたTi/Al/Ni/Au積層膜から構成されてもよい。
 ゲート電極13は、ゲートコンタクトホール12と、絶縁膜7表面におけるゲートコンタクトホール12の周縁部とを覆っている。ゲート電極13の一部はゲートコンタクトホール12に入り込み、ゲートコンタクトホール12内において第2窒化物半導体層6の表面に接触している。
 ゲート電極13は、例えば、Ni膜およびAu膜が、下層からその順に積層されたNi/Au積層膜から構成されている。下層側のNi膜の厚さは、例えば10nm程度であり、上層側のAu膜の厚さは、例えば600nm程度である。ゲート電極13は、第2窒化物半導体層6(AlGaN層)に対してショットキーバリアを形成できる材料から構成されていればよい。
 放熱構造15について説明する。この実施形態では、不活性領域102において、基板2には、第2主面2bから第1主面2aに向かって掘り下げられた複数のトレンチ14が形成されている。この実施形態では、トレンチ14は、第2主面2bから第1主面2aに向かって、基板2の厚さ途中まで掘り下げられている。トレンチ14の横断面形状は、この実施形態では楕円形状である。複数のトレンチ14は、平面視において、格子状に配置されている。この実施形態では、複数のトレンチ14は、平面視において、行列状に配置されている。複数のトレンチ14は、平面視において、千鳥状に配置されてもよい。
 トレンチ14の横断面の形状は任意であり、円形状、多角形状(三角形状、四角形状、六角形状等)であってもよい。また、トレンチ14の横断面の大きさ(横断面の面積)および隣り合う2つのトレンチ14の間隔は、任意に設定することができる。トレンチ14の深さは、基板2の厚さの1/2以上が好ましく、基板2の厚さの2/3以上がより好ましく、基板2の厚さの3/4以上がさらに好ましい。不活性領域102に存在する複数のトレンチ14の体積の総和(総体積)は、不活性領域102内の基板2の体積の1/3以上であることが好ましい。
 各トレンチ14の内面(側面および底面)の全域および基板2の第2主面2bの全域には、バリアメタル膜16が形成されている。バリアメタル膜16は、例えば、TiNからなる。
 また、各トレンチ14内には、バリアメタル膜16に包囲された状態で放熱メタル17が埋め込まれている。放熱メタル17は、金(Au)、銅(Cu)等の熱伝導率の高い金属からなる。この実施形態では、放熱メタル17は、金(Au)からなる。放熱メタル17は、トレンチ14内の埋め込み部17Aと、トレンチ14外においてトレンチ14の開口端から基板2の第2主面2bに沿って引き出された引出し部17Bとを含む。引出し部17Bは、各トレンチ14から一様に引き出されており、基板2の第2主面2bの全域を覆っている。放熱メタル17の裏面(引出し部22Bの裏面)は、全体にわたって平坦状に形成されている。
 トレンチ14内のバリアメタル膜16と、当該バリアメタル膜16に包囲されている埋め込み部17Aとによって、本開示における埋め込みメタル15Aが構成されている。基板2の第2主面2bに形成されたバリアメタル膜16と、引出し部17Bとによって、本開示における引出しメタル15Bが構成されている。全てのトレンチ14内の埋め込みメタル15Aと、引出しメタル15Bとによって放熱構造15が構成されている。言い換えれば、バリアメタル膜16と放熱メタル17とによって、放熱構造15が構成されている。
 なお、放熱メタル17は、トレンチ14内に完全に埋め込まれていなくてもよい。その場合には、放熱メタル17の裏面は、平坦になっていなくてもよい。また、基板2の第2主面2b上に、バリアメタル膜16および放熱メタル17が形成されていなくてもよい。
 この窒化物半導体装置1では、第1窒化物半導体層5(電子走行層)上にバンドギャップ(Al組成)の異なる第2窒化物半導体層6(電子供給層)が形成されてヘテロ接合が形成されている。これにより、第1窒化物半導体層5と第2窒化物半導体層6との界面付近の第1窒化物半導体層5内に二次元電子ガス19が形成され、この二次元電子ガス19をチャネルとして利用したHEMTが形成されている。
 ゲート電極13に制御電圧が印可されていない状態では、二次元電子ガス19をチャネルとして、ソース電極10とドレイン電極11との間が接続される。したがって、このHEMTはノーマリーオン型である。ソース電極10に対してゲート電極13の電位が負となるような制御電圧がゲート電極13に印加されると、二次元電子ガス19が遮断され、HEMTがオフ状態となる。
 この実施形態では、埋め込みメタル15Aを有しているので、放熱性を高めることができる。また、この実施形態では、引出しメタル15Bを有しているので、放熱性をさらに高めることができる。
 図4A~図4Iは、前述の窒化物半導体装置1の製造工程の一例を説明するための断面図であり、製造工程における複数の段階における断面構造が示されている。
 まず、図4Aに示すように、例えばMOCVD(Metal Organic Chemical Vapor Deposition)法によって、基板2の第1主面2aに、バッファ層3および半絶縁性窒化物層4が順にエピタキシャル成長される。さらに、MOCVD法によって、半絶縁性窒化物層4上に第1窒化物半導体層(電子走行層)5および第2窒化物半導体層(電子供給層)6が順にエピタキシャル成長される。これにより、バッファ層3、半絶縁性窒化物層4、第1窒化物半導体層5および第2窒化物半導体層6からなる窒化物エピタキシャル層20が、基板2の第1主面2a上に形成される。
 次に、第2窒化物半導体層6上に、第1窒化物半導体層5の表面の中央部5Aの予定形成領域の真上領域を覆うレジスト膜(図示略)形成される。このレジスト膜をマスクとするドライエッチングにより、図4Bに示すように、第2窒化物半導体層6の周縁部が除去されるともに、第1窒化物半導体層5の周縁部が厚さ途中まで除去される。これにより、第1窒化物半導体層5の表面は、高段部の中央部5Aと、低段部の周縁部5Bと、それらを接続する連結部5Cとから構成されるようになる。エッチングガスとしては、例えば、Cl、BCl等の塩素系ガスが用いられる。
 これにより、二次元電子ガス19が形成されない不活性領域102が形成される。平面視において第1窒化物半導体層5の表面の中央部5Aに対応する領域が活性領域101であり、平面視において第1窒化物半導体層5の表面の周縁部5Bに対応する領域が不活性領域102である。
 なお、このエッチングは、エッチング底面が、半絶縁性窒化物層4の上面に達するまで行なってもよいし、半絶縁性窒化物層4の厚さ途中に達するまで行なってもよい。また、このエッチングは、エッチング底面が、バッファ層3の上面に達するまで行ってもよいし、バッファ層3の厚さ途中に達するまで行ってもよい。
 次に、図4Cに示すように、プラズマCVD法、LPCVD(Low Pressure CVD)法、MOCVD法、スパッタ法等によって、第1窒化物半導体層5の表面における周縁部5Bおよび連結部5Cならびに第2窒化物半導体層6の露出面を覆うように、絶縁膜7の材料膜である絶縁材料膜31が形成される。
 次に、絶縁材料膜31上に、ソースコンタクトホール8およびドレインコンタクトホール9を形成すべき領域を除いた領域にレジスト膜(図示略)が形成される。このレジスト膜を介して絶縁材料膜31が例えばドライエッチングされることにより、図4Dに示すように、絶縁材料膜31にソースコンタクトホール8およびドレインコンタクトホール9が形成される。
 ソースコンタクトホール8およびドレインコンタクトホール9は、絶縁材料膜31を貫通して、第2窒化物半導体層6に達している。ソースコンタクトホール8およびドレインコンタクトホール9の幅は、3~5μm程度である。エッチングガスとしては、例えばCFガスが用いられる。この後、レジスト膜が除去される。
 次に、例えば、蒸着法、スパッタ法等によって、絶縁材料膜31上に、ソース電極10およびドレイン電極11の材料膜である電極膜が形成される。この後、電極膜表面におけるソース電極作成予定領域およびドレイン電極作成予定領域を覆うレジスト膜が形成される。そして、このレジスト膜をマスクとして、電極膜が選択的にエッチングされることにより、図4Eに示すように、ソース電極10とドレイン電極11とが得られる。この後、レジスト膜が除去される。
 次に、図4Fに示すように、フォトリソグラフィおよびエッングにより、不活性領域102において、第2主面2bから第1主面2aに向かって基板2の厚さ途中まで延びた複数のトレンチ14が基板2に形成される。このエッチングとしては、ボッシュプロセス(Bosch Process)が用いられてもよい。この実施形態では、複数のトレンチ14は、平面視において行列状に配置されている。
 次に、図4Gに示すように、例えばスパッタ法によってトレンチ14の内面(側面および底面)および基板2の第2主面2b上に、例えばTiN層からなるバリアメタル膜16が形成される。
 次に、図4Hに示すように、例えばメッキ法によって、バリアメタル膜16上に例えば金(Au)が成膜される。これにより、トレンチ14内に放熱メタル17の材料である金(Au)が埋め込まれる。これにより、埋め込み部17Aおよび引出し部17Bからなる放熱メタル17が形成される。これにより、バリアメタル膜16と放熱メタル17とからなる放熱構造15が形成される。言い換えれば、各トレンチ14内に埋め込まれた埋め込みメタル15Aと、第2主面2b上に形成された引出しメタル15Bとからなる放熱構造15が形成される。
 次に、絶縁材料膜31、ソース電極10およびドレイン電極11上に、ゲートコンタクトホール12を形成すべき領域を除いた領域にレジスト膜(図示略)が形成される。このレジスト膜を介して絶縁材料膜31がエッチングされることにより、図4Iに示すように、絶縁材料膜31にゲートコンタクトホール12が形成される。これにより、絶縁材料膜31がパターニングされて絶縁膜7が得られる。ゲートコンタクトホール12は、絶縁膜7を貫通して、第2窒化物半導体層6に達している。エッチングガスとしては、例えば、CFガスが用いられる。
 次に、レジスト膜が除去された後、ゲート電極13が形成されることにより、図1~図3に示されるような窒化物半導体装置1が得られる。ゲート電極13は、例えば、Ni膜およびAu膜が、下層からその順に積層されたNi/Au積層膜からなる。
 図5は、本開示の第2実施形態に係る窒化物半導体装置の構成を説明するための平面図である。図6は、図2のVI-VI線に沿う断面図である。図7は、図6のVII-VII線に沿う断面図である。
 図5、図6および図7において、前述の図1、図2および図3の各部に対応する部分には、図1、図2および図3と同じ符号を付して示す。
 第2実施形態に係る窒化物半導体装置1Aでは、不活性領域102のみならず、活性領域101にも基板2にトレンチ14が形成されている点が、第1実施形態に係る窒化物半導体装置1Aと異なっている。
 活性領域101および不活性領域102内に複数のトレンチ14が形成されている。複数のトレンチ14は、平面視において、行列状に配置されている。複数のトレンチ14は、は、平面視において、千鳥状に配置されてもよい。複数のトレンチ14の内面には、バリアメタル膜16が形成されている。そして、これらのトレンチ14内には、バリアメタル膜16に包囲された状態で放熱メタル17が埋め込まれている。
 トレンチ14内のバリアメタル膜16と、当該バリアメタル膜16に包囲されている埋め込み部17Aとによって、本開示における埋め込みメタル15Aが構成されている。基板2の第2主面2bに形成されたバリアメタル膜16と、引出し部17Bとによって、本開示における引出しメタル15Bが構成されている。全てのトレンチ14内の埋め込みメタル15Aと、引出しメタル15Bとによって放熱構造15が構成されている。言い換えれば、活性領域101および不活性領域102に形成された、バリアメタル膜51と放熱メタル17とによって放熱構造15が形成されている。
 第2実施形態においても、埋め込みメタル15Aを有しているので、放熱性を高めることができる。また、引出しメタル15Bを有しているので、放熱性をさらに高めることができる。第2実施形態では、不活性領域102のみならず、活性領域101にも、複数のトレンチ14が形成され、これらの複数のトレンチ14内にバリアメタル膜16を介して放熱メタル17が埋め込まれているので、第1実施形態に比べて放熱性をより高めることができる。
 図8A~図8Dは、前述の窒化物半導体装置1Aの製造工程の一例を説明するための断面図であり、製造工程における複数の段階における断面構造が示されている。
 図5~図7に示される窒化物半導体装置1Aを製造する場合にも、図1~図3に示される窒化物半導体装置1を製造する場合と同様に、図4A~図4Eに示される工程が実施される。
 図4Eに示される工程が完了すると、図8Aに示すように、フォトリソグラフィおよびエッングにより、活性領域101および不活性領域102の両方の領域において、第2主面2bから第1主面2aに向かって基板2の厚さ途中まで延びた複数のトレンチ14が基板2に形成される。このエッチングとしては、ボッシュプロセスが用いられてもよい。この実施形態では、複数のトレンチ14は、平面視において行列状に配置されている。
 次に、図8Bに示すように、例えばスパッタ法によってトレンチ14の内面(側面および底面)ならびに基板2の第2主面2bに、例えばTiN層からなるバリアメタル膜16が形成される。
 次に、図8Cに示すように、例えばメッキ法によって、バリアメタル膜16上に例えば金(Au)が成膜される。これにより、トレンチ14内に放熱メタル17の材料である金(Au)が埋め込まれる。これにより、埋め込み部17Aおよび引出し部17Bからなる放熱メタル17が形成される。これにより、バリアメタル膜16と放熱メタル17とからなる放熱構造15が得られる。言い換えれば、各トレンチ14内に埋め込まれた埋め込みメタル15Aと、第2主面2b上に形成された引出しメタル15Bとからなる放熱構造15が得られる。
 次に、絶縁材料膜31、ソース電極10およびドレイン電極11上に、ゲートコンタクトホール12を形成すべき領域を除いた領域にレジスト膜(図示略)が形成される。このレジスト膜を介して絶縁材料膜31がドライエッチングされることにより、図8Dに示すように、絶縁材料膜31にゲートコンタクトホール12が形成される。これにより、絶縁材料膜31がパターニングされて絶縁膜7が得られる。ゲートコンタクトホール12は、絶縁膜7を貫通して、第2窒化物半導体層6に達している。エッチングガスとしては、例えば、CFガスが用いられる。
 次に、レジスト膜が除去された後、ゲート電極13が形成されることにより、図5~図7に示されるような窒化物半導体装置1Aが得られる。ゲート電極13は、例えば、Ni膜およびAu膜が、下層からその順に積層されたNi/Au積層膜からなる。
 図9は、本開示の第3実施形態に係る窒化物半導体装置の構成を説明するための平面図である。図10は、図9のX-X線に沿う断面図である。図11は、図10のXI-XI線に沿う断面図である。
 図9、図10および図11において、前述の図1、図2および図3の各部に対応する部分には、図1、図2および図3と同じ符号を付して示す。
 以下において、図9の紙面の左右方向を横方向といい、図9の紙面の上下方向を縦方向という場合がある。
 第3実施形態に係る窒化物半導体装置1Bでは、ソース電極10およびドレイン電極11の構成と、不活性領域102のみならず、活性領域101においても基板2にトレンチ14が形成されている点が、第1実施形態に係る窒化物半導体装置1と異なっている。
 基板2、窒化物エピタキシャル層20および絶縁膜7には、ソースコンタクトホール8に対してゲートコンタクトホール12とは反対側に、絶縁膜7の表面から、絶縁膜7および窒化物エピタキシャル層20を連続して貫通し、基板2の厚さ途中まで延びたバックコンタクトホール18が形成されている。
 ソース電極10は、主電極部10Aと延長部10Bとを含む。主電極部10Aは、ソースコンタクトホール8と、絶縁膜7表面におけるソースコンタクトホール8の周縁部とを覆っている。主電極部10Aの一部はソースコンタクトホール8に入り込み、ソースコンタクトホール8内において第2窒化物半導体層6の表面に接触している。
 延長部10Bは、バックコンタクトホール18と、絶縁膜7表面におけるバックコンタクトホール18の周縁部とを覆っている。延長部10Bにおける主電極部10A側の側縁と、主電極部10Aにおける延長部10B側の側縁とは繋がっている。延長部10Bの一部はバックコンタクトホール18に入り込み、バックコンタクトホール18内において基板2に接触している。延長部10Bは、本開示における「ソース電極と埋め込みメタルとを電気的に接続する導電部材」の一例である。
 ソース電極10は、バリアメタル膜41と、バリアメタル膜41上に形成された電極メタル42とからなる。バリアメタル膜41は、ソースコンタクトホール8の内面(側面および底面)、絶縁膜7表面におけるソースコンタクトホール8の周縁部、バックコンタクトホール18の内面および絶縁膜7表面におけるバックコンタクトホール18の周縁部を覆っている。バリアメタル膜41は、例えばTiN膜からなる。電極メタル42は、例えばAuからなる。電極メタル42は、Cuから構成されてもよい。
 ドレイン電極11は、ドレインコンタクトホール9と、絶縁膜7表面におけるドレインコンタクトホール9の周縁部とを覆っている。ドレイン電極11の一部はドレインコンタクトホール9に入り込み、ドレインコンタクトホール9内において第2窒化物半導体層6の表面に接触している。
 ドレイン電極11は、ドレインコンタクトホール9と絶縁膜7表面におけるドレインコンタクトホール9の周縁部とを覆うバリアメタル膜43と、バリアメタル膜43上に形成された電極メタル44とからなる。バリアメタル膜51は、例えばTiN膜からなる。電極メタル44は、例えばAuからなる。電極メタル44は、Cuから構成されてもよい。
 活性領域101および不活性領域102において、基板2には、複数のトレンチ14が形成されている。複数のトレンチ14は、バックコンタクトホール18の底面に形成されたバリアメタル膜41に達するコンタクト用トレンチ14Aを含む。コンタクト用トレンチ14Aを除く複数のトレンチ14は、平面視において、行列状に配置されている。これらの複数のトレンチ14は、平面視において、千鳥状に配置されてもよい。
 コンタクト用トレンチ14Aを含む複数のトレンチ14の内面には、バリアメタル膜16が形成されている。そして、これらのトレンチ14内には、バリアメタル膜16に包囲された状態で放熱メタル17が埋め込まれている。
 放熱メタル17は、金(Au)、銅(Cu)等の熱伝導率および導電性の高い金属からなる。この実施形態では、放熱メタル17は、金(Au)からなる。放熱メタル17は、トレンチ14内の埋め込み部17Aと、トレンチ14外においてトレンチ14の開口端から基板2の第2主面2bに沿って引き出された引出し部17Bとを含む。引出し部17Bは、各トレンチ14から一様に引き出されており、基板2の第2主面2bの全域を覆っている。放熱メタル17の裏面(引出し部22Bの裏面)は、全体にわたって平坦状に形成されている。
 トレンチ14(コンタクト用トレンチ14Aを含む)内のバリアメタル膜16と、当該バリアメタル膜16に包囲されている埋め込み部17Aとによって、本開示における埋め込みメタル15Aが構成されている。基板2の第2主面2bに形成されたバリアメタル膜16と、引出し部17Bとによって、本開示における引出しメタル15Bが構成されている。全てのトレンチ14内の埋め込みメタル15Aと、引出しメタル15Bとによって放熱構造15が構成されている。言い換えれば、活性領域101および不活性領域102に形成された、バリアメタル膜16と放熱メタル17とによって、放熱構造15が構成されている。
 第3実施形態においても、埋め込みメタル15Aを有しているので、放熱性を高めることができる。また、引出しメタル15Bを有しているので、放熱性をさらに高めることができる。第3実施形態では、不活性領域102のみならず、活性領域101にも、複数のトレンチ14が形成され、これらの複数のトレンチ14内にバリアメタル膜16を介して放熱メタル17が埋め込まれているので、第1実施形態に比べて放熱性をより高めることができる。
 また、第3実施形態では、ソース電極10の主電極部10Aは、延長部10Bおよびコンタクト用トレンチ14A内の埋め込みメタル15Aを介して、引出しメタル15Bに電気的に接続されている。したがって、引出しメタル15Bをソース電極10のバック電極として用いることが可能となる。
 図12A~図12Hは、前述の窒化物半導体装置1Bの製造工程の一例を説明するための断面図であり、製造工程における複数の段階における断面構造が示されている。
 図9~図11に示される窒化物半導体装置1Bを製造する場合にも、図1~図3に示される窒化物半導体装置1を製造する場合と同様に、図4A~図4Cに示される工程が実施される。
 図4Cに示される工程が完了すると、バックコンタクトホール18、ソースコンタクトホール8およびドレインコンタクトホール9を形成すべき領域を除いた領域にレジスト膜(図示略)が形成される。このレジスト膜を介して絶縁材料膜31がドライエッチングされることにより、図12Aに示すように、絶縁材料膜31にバックコンタクトホール18の一部分18A、ソースコンタクトホール8およびドレインコンタクトホール9が形成される。
 バックコンタクトホール18の一部分18A、ソースコンタクトホール8およびドレインコンタクトホール9は、絶縁材料膜31を貫通して、第2窒化物半導体層6に達している。バックコンタクトホール18の一部分18A、ソースコンタクトホール8およびドレインコンタクトホール9の幅は、3~5μm程度である。エッチングガスとしては、例えばCFガスが用いられる。この後、レジスト膜が除去される。
 次に、絶縁材料膜31上に、バックコンタクトホール18を形成すべき領域を除いた領域にレジスト膜(図示略)が形成される。このレジスト膜を介して窒化物エピタキシャル層20および基板2の一部がエッチングされる。これにより、図12Bに示すように、窒化物エピタキシャル層20を貫通して基板2内部に達する孔18B、すなわち、バックコンタクトホール18の残り部分18Bが形成される。これにより、一部分18Aおよび残り部分18Bからなるバックコンタクトホール18が得られる。この後、レジスト膜が除去される。
 次に、例えばスパッタ法によって、絶縁材料膜31の表面、バックコンタクトホール18の内面(側面および底面)、ソースコンタクトホール8の内面およびドレインコンタクトホール9の内面に、バリアメタル膜41,43の材料膜であるバリアメタル材料膜(例えばTiN膜)が形成される。そして、バリアメタル材料膜がパターニングされることにより、図12Cに示すように、バリアメタル膜41,43が形成される。
 次に、図12Dに示すように、例えばメッキ法によって、バリアメタル膜41上に例えばAuからなる電極メタル42が形成されるとともに,バリアメタル膜43上に例えばAuからなる電極メタル44が形成される。これにより、バリアメタル膜41および電極メタル42からなるソース電極10と、バリアメタル膜43および電極メタル45からなるドレイン電極11とが得られる。ソース電極10は主電極部10Aと延長部10Bとを含む。
 次に、図12Eに示すように、フォトリソグラフィおよびエッングにより、活性領域101および不活性領域102の両方の領域において、第2主面2bから第1主面2aに向かって基板2の厚さ途中まで延びた複数のトレンチ14が基板2に形成される。複数のトレンチ14は、基板2の第2主面2bから、バックコンタクトホール18の底面に形成されたバリアメタル膜41の下面に達するコンタクト用トレンチ14Aを含む。エッチングとしては、ボッシュプロセスが用いられてもよい。この実施形態では、コンタクト用トレンチ14Aを除く複数のトレンチ14は、平面視において行列状に配置されている。
 次に、図12Fに示すように、例えばスパッタ法によってトレンチ14の内面(側面および底面)ならびに基板2の第2主面2bに、例えばTiN層からなるバリアメタル膜16が形成される。
 次に、図12Gに示すように、例えばメッキ法によって、バリアメタル膜16上に例えば金(Au)が成膜される。これにより、トレンチ14内に放熱メタル17の材料である金(Au)が埋め込まれる。これにより、埋め込み部17Aおよび引出し部17Bからなる放熱メタル17が形成される。これにより、バリアメタル膜16と放熱メタル17とからなる放熱構造15が得られる。
 言い換えれば、各トレンチ14内に埋め込まれた埋め込みメタル15Aと、第2主面2b上に形成された引出しメタル15Bとからなる放熱構造15が得られる。また、ソース電極10は、延長部10B、コンタクト用トレンチ14A内の埋め込みメタル15Aを介して、引出しメタル15Bに電気的に接続される。
 次に、絶縁材料膜31、ソース電極10およびドレイン電極11上に、ゲートコンタクトホール12を形成すべき領域を除いた領域にレジスト膜(図示略)が形成される。このレジスト膜を介して絶縁材料膜31がドライエッチングされることにより、図12Hに示すように、絶縁材料膜31にゲートコンタクトホール12が形成される。これにより、絶縁材料膜31がパターニングされて絶縁膜7が得られる。ゲートコンタクトホール12は、絶縁膜7を貫通して、第2窒化物半導体層6に達している。エッチングガスとしては、例えばCFガスが用いられる。
 次に、レジスト膜が除去された後、ゲート電極13が形成されることにより、図9~図11に示されるような窒化物半導体装置1Bが得られる。ゲート電極13は、例えば、Ni膜およびAu膜が、下層からその順に積層されたNi/Au積層膜からなる。
 図13、図14および図15は、それぞれ第1、第2および第3実施形態の変形を示す断面図であって、図2、図6および図10の切断面に対応した断面図である。図13、図14および図15において、それぞれ図2、図6および図10に各部に対応する部分には、図2、図6および図10と同じ符号を付して示す。
 前述の第1、第2および第3実施形態では、トレンチ14は、第2主面2bから第1主面2aに向かって、基板2の厚さ途中まで延びている。しかし、図13、図14および図15に示すように、トレンチ14は、第2主面2bから第1主面2aに向かって、基板2を貫通して、バッファ層3(窒化物エピタキシャル層20)に達するように形成されてもよい。
 また、前述の第1~第3実施形態では、バッファ層3上に、半絶縁性窒化物層4が形成されているが、半絶縁性窒化物層4は形成されなくてもよい。
 また、前述の第1~第3実施形態では、第1窒化物半導体層(電子走行層)5がGaN層からなり、第2窒化物半導体層(電子供給層)6がAlGaN層からなる例について説明したが、第1窒化物半導体層5と第2窒化物半導体層6とはバンドギャップ(例えばAl組成)が異なっていればよく、他の組み合わせも可能である。たとえば、第1窒化物半導体層5/第2窒化物半導体層6の組み合わせとしては、GaN/AlN、AlGaN/AlNなどを例示できる。
 本開示の実施形態について詳細に説明してきたが、これらは本開示の技術的内容を明らかにするために用いられた具体例に過ぎず、本開示はこれらの具体例に限定して解釈されるべきではなく、本開示の範囲は添付の請求の範囲によってのみ限定されるその他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
 この出願は、2021年3月26日に日本国特許庁に提出された特願2021-053735号に対応しており、それらの出願の全開示はここに引用により組み込まれるものとする。
 1,1A,1B 窒化物半導体装置
 2 基板
 3 バッファ層
 4 半絶縁性窒化物層
 5 第1窒化物半導体層
 6 第2窒化物半導体層
 7 絶縁膜
 8 ソースコンタクトホール
 9 ドレインコンタクトホール
 10 ソース電
 10A 主電極部
 10B 延長部
 11 ドレイン電極
 12 ゲートコンタクトホール
 13 ゲート電極
 14 トレンチ
 14A コンタクト用トレンチ
 15 放熱構造
 15A 埋め込みメタル
 15B 引出しメタル
 16 バリアメタル膜
 17 放熱メタル
 17A 埋め込み部
 17B 引出し部
 18 バックコンタクトホール
 19 二次元電子ガス
 20 窒化物エピタキシャル層
 31 絶縁材料膜
 41,43 バリアメタル膜
 42,44 電極メタル

Claims (15)

  1.  第1主面とその反対側の第2主面とを有する基板と、前記第1主面上に形成された窒化物エピタキシャル層とを含む窒化物半導体装置であって、
     前記窒化物半導体装置は、平面視において、前記窒化物エピタキシャル層内に二次元電子ガスが形成され得る活性領域と、前記窒化物エピタキシャル層内に二次元電子ガスが形成されない不活性領域とを有しており、
     前記活性領域および前記不活性領域のうちの少なくとも前記不活性領域において、前記基板の第2主面から前記基板の第1主面に向かって掘り下げられたトレンチと、
     前記トレンチ内に形成された埋め込みメタルとを含む、窒化物半導体装置。
  2.  前記トレンチが、前記活性領域および前記不活性領域のうちの前記不活性領域のみに形成されている、請求項1に記載の窒化物半導体装置。
  3.  前記トレンチが、前記活性領域および前記不活性領域の両方に形成されている、請求項1に記載の窒化物半導体装置。
  4.  前記不活性領域内に存在するトレンチの総体積が、前記不活性領域内の前記基板の体積の1/3以上である、請求項1~3のいずれか一項に記載の窒化物半導体装置。
  5.  前記第2主面上に形成され、前記埋め込みメタルと熱的に接続された引出しメタルを含む、請求項1~4のいずれか一項に記載の窒化物半導体装置。
  6.  前記トレンチが、前記第2主面から前記第1主面に向かって、前記基板の途中まで掘り下げられている、請求項1~5のいずれか一項に記載の窒化物半導体装置。
  7.  前記トレンチが、前記基板を貫通して、前記窒化物エピタキシャル層に達している、請求項1~5のいずれか一項に記載の窒化物半導体装置。
  8.  前記窒化物エピタキシャル層上に配置された、ソース電極、ドレイン電極およびゲート電極と、
     前記窒化物エピタキシャル層を貫通し、前記ソース電極と前記埋め込みメタルとを電気的に接続するコンタクトメタルと含む、請求項1~7のいずれか一項に記載の窒化物半導体装置。
  9.  前記窒化物エピタキシャル層は、
     電子走行層を構成する第1窒化物半導体層と、
     前記第1窒化物半導体層上に形成され、電子供給層を構成し、前記第1窒化物半導体層よりもバンドギャップの高い第2窒化物半導体層とを含む、請求項1~8のいずれか一項に記載の窒化物半導体装置。
  10.  前記基板と前記第1窒化物半導体層との間に配置され、アクセプタ濃度がドナー濃度よりも高い半絶縁性窒化物層を含む、請求項9に記載の窒化物半導体装置。
  11.  前記基板と前記半絶縁性窒化物層との間に配置され、窒化物半導体からなるバッファ層を含む、請求項10に記載の窒化物半導体装置。
  12.  前記第1窒化物半導体層がGaN層からなり、前記第2窒化物半導体層がAlGaN層からなる、請求項9~11のいずれか一項に記載の窒化物半導体装置。
  13.  前記第1窒化物半導体層がGaN層からなり、前記第2窒化物半導体層がAlGaN層からなり、前記半絶縁性窒化物層が炭素を含むGaN層からなる、請求項10に記載の窒化物半導体装置。
  14.  前記第1窒化物半導体層がGaN層からなり、前記第2窒化物半導体層がAlGaN層からなり、前記半絶縁性窒化物層が炭素を含むGaN層からなり、前記バッファ層が、前記第1主面上に形成されたAlN層と前記AlN層上に積層されAlGaN層との積層膜からなる、請求項11に記載の窒化物半導体装置。
  15.  前記第1窒化物半導体層がGaN層からなり、前記第2窒化物半導体層がAlGaN層からなり、前記半絶縁性窒化物層が炭素を含むGaN層からなり、前記バッファ層が、AlN層またはAlGaN層からなる、請求項11に記載の窒化物半導体装置。
PCT/JP2022/003094 2021-03-26 2022-01-27 窒化物半導体装置 WO2022201841A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023508713A JPWO2022201841A1 (ja) 2021-03-26 2022-01-27
DE112022001240.4T DE112022001240T5 (de) 2021-03-26 2022-01-27 Nitrid-halbleiterbauteil
CN202280024228.7A CN117121214A (zh) 2021-03-26 2022-01-27 氮化物半导体装置
US18/471,333 US20240014094A1 (en) 2021-03-26 2023-09-21 Nitride semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021053735 2021-03-26
JP2021-053735 2021-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/471,333 Continuation US20240014094A1 (en) 2021-03-26 2023-09-21 Nitride semiconductor device

Publications (1)

Publication Number Publication Date
WO2022201841A1 true WO2022201841A1 (ja) 2022-09-29

Family

ID=83395357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003094 WO2022201841A1 (ja) 2021-03-26 2022-01-27 窒化物半導体装置

Country Status (5)

Country Link
US (1) US20240014094A1 (ja)
JP (1) JPWO2022201841A1 (ja)
CN (1) CN117121214A (ja)
DE (1) DE112022001240T5 (ja)
WO (1) WO2022201841A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197357A (ja) * 2012-03-21 2013-09-30 Hitachi Cable Ltd 窒化物半導体デバイス及びその製造方法
CN105140122A (zh) * 2015-08-10 2015-12-09 中国电子科技集团公司第五十五研究所 一种改善GaN HEMT器件散热性能的方法
JP2016163017A (ja) * 2015-03-05 2016-09-05 富士通株式会社 半導体装置及びその製造方法、電源装置、高周波増幅器
JP2017228621A (ja) * 2016-06-21 2017-12-28 富士通株式会社 半導体装置及び半導体装置の製造方法
JP2019169551A (ja) * 2018-03-22 2019-10-03 ローム株式会社 窒化物半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197357A (ja) * 2012-03-21 2013-09-30 Hitachi Cable Ltd 窒化物半導体デバイス及びその製造方法
JP2016163017A (ja) * 2015-03-05 2016-09-05 富士通株式会社 半導体装置及びその製造方法、電源装置、高周波増幅器
CN105140122A (zh) * 2015-08-10 2015-12-09 中国电子科技集团公司第五十五研究所 一种改善GaN HEMT器件散热性能的方法
JP2017228621A (ja) * 2016-06-21 2017-12-28 富士通株式会社 半導体装置及び半導体装置の製造方法
JP2019169551A (ja) * 2018-03-22 2019-10-03 ローム株式会社 窒化物半導体装置

Also Published As

Publication number Publication date
US20240014094A1 (en) 2024-01-11
JPWO2022201841A1 (ja) 2022-09-29
DE112022001240T5 (de) 2023-12-21
CN117121214A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
US10707324B2 (en) Group IIIA-N HEMT with a tunnel diode in the gate stack
JP4712459B2 (ja) トランジスタ及びその動作方法
JP5595685B2 (ja) 半導体装置
WO2009116223A1 (ja) 半導体装置
JP2007329350A (ja) 半導体装置
WO2011010418A1 (ja) 窒化物半導体装置及びその製造方法
JP7137947B2 (ja) 窒化物半導体装置
JP7426786B2 (ja) 窒化物半導体装置
US11908927B2 (en) Nitride semiconductor device
JP2011238931A (ja) エンハンスメントモード電界効果デバイスおよびそれを製造する方法
JP2010103425A (ja) 窒化物半導体装置
US20220209001A1 (en) Nitride semiconductor device and method for manufacturing same
TW202025486A (zh) 用於矽上iii-v族元件的摻雜緩衝層
JP4474292B2 (ja) 半導体装置
US20240105812A1 (en) Nitride-based semiconductor device and method for manufacturing the same
US20240162165A1 (en) Nitride semiconductor device and method for manufacturing the same
JP5721782B2 (ja) 半導体装置
JP2020080362A (ja) 窒化物半導体装置
JP2011066464A (ja) 電界効果トランジスタ
JP2007207820A (ja) 電界効果トランジスタおよびその製造方法
WO2022201841A1 (ja) 窒化物半導体装置
US20230043312A1 (en) Method for manufacturing nitride semiconductor device and nitride semiconductor device
US11600721B2 (en) Nitride semiconductor apparatus and manufacturing method thereof
JP5364760B2 (ja) 半導体装置
JP2015156510A (ja) 電界効果トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508713

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112022001240

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774643

Country of ref document: EP

Kind code of ref document: A1