JP2016213484A - 向上した機械的安定性を有する密封電解コンデンサ - Google Patents

向上した機械的安定性を有する密封電解コンデンサ Download PDF

Info

Publication number
JP2016213484A
JP2016213484A JP2016136705A JP2016136705A JP2016213484A JP 2016213484 A JP2016213484 A JP 2016213484A JP 2016136705 A JP2016136705 A JP 2016136705A JP 2016136705 A JP2016136705 A JP 2016136705A JP 2016213484 A JP2016213484 A JP 2016213484A
Authority
JP
Japan
Prior art keywords
capacitor
capacitor element
housing
polymer
capacitor assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016136705A
Other languages
English (en)
Inventor
ゼドニコヴァ イヴァナ
Zednickova Ivana
ゼドニコヴァ イヴァナ
ビラー マルティン
Biler Martin
ビラー マルティン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Avx Components Corp
Original Assignee
AVX Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVX Corp filed Critical AVX Corp
Publication of JP2016213484A publication Critical patent/JP2016213484A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/06Mounting in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Conductive Materials (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】高温環境で熱的及び機械的に安定したコンデンサアセンブリを提供する。【解決手段】不活性ガスを含む気体雰囲気中でハウジング122内にコンデンサ素子120を封入して密封し、コンデンサの固体電解質に供給される酸素及び水分の量を制限し熱安定性をもたらす。コンデンサアセンブリ100に良好な機械的安定性を与えるために、コンデンサ素子の1又はそれ以上の表面(上面181、後面177)に隣接して、かつ、これらに接触させて配置したポリマー拘束物197を使用する。ポリマー拘束物は、通常は導電性でないことが望ましい。ポリマー拘束物の強度及び剛性は、コンデンサ素子が、使用中に受ける振動力に、層間剥離を伴わずにより良好に耐えるのに役立つ。このようにして、コンデンサアセンブリは、極限状態でより良好に機能する。【選択図】図1

Description

(タンタルコンデンサなどの)電解コンデンサは、これらの容積効率、信頼性、及びプロセス互換性により、回路設計においてますます使用されている。例えば、開発されてきたコンデンサの1つの種類に、(タンタルなどの)陽極と、陽極上に形成された(五酸化タンタル、Ta25などの)誘電性酸化膜と、固体電解質層と、陰極とを含む固体電解コンデンサがある。固体電解質層は、Sakata他に付与された米国特許第5,457,862号、Sakata他に付与された米国特許第5,473,503号、Sakata他に付与された米国特許第5,729,428号、及びKudoh他に付与された米国特許第5,812,367号に記載されるような導電性ポリマーから形成することができる。しかしながら、残念なことに、このような固体電解質の安定性は、ドープ状態から非ドープ状態に変化しやすい傾向、又はこの逆の傾向に起因して高温では不十分である。これらの及びその他の問題に対応して、使用中に酸素が導電性ポリマーと接触するのを制限するように密封されたコンデンサが開発されてきた。例えば、Rawal他に付与された米国特許出願第2009/0244812号には、不活性ガスの存在下でセラミックハウジング内に封入されて密封された導電性ポリマーコンデンサを含むコンデンサアセンブリが記載されている。Rawal他によれば、このセラミックハウジングは、高温環境で酸化しにくくするように、導電性ポリマーに供給される酸素及び水分の量を制限し、従ってコンデンサアセンブリの熱安定性を高める。しかしながら、この利点は得られるものの、依然として問題は残る。例えば、(約175℃を超える高温及び/又は約35ボルトを超える高電圧などの)極限状態では、コンデンサ素子が機械的に不安定になり、コンデンサ素子の層間剥離及び不十分な電気的性能を招くことがある。このことは、高容量用途で使用されるような比較的大きな陰極を使用した場合に特に問題となる。
米国特許第5,457,862号明細書 米国特許第5,473,503号明細書 米国特許第5,729,428号明細書 米国特許第5,812,367号明細書 米国特許出願公開第2009/0244812号明細書 米国特許第4,945,452号明細書 米国特許第6,987,663号明細書 米国特許第5,111,327号明細書 米国特許第6,635,729号明細書 米国特許第7,515,396号明細書 米国特許第6,674,635号明細書 米国特許出願公開第2003/0105207号明細書 米国特許出願公開第2010/0234517号明細書 米国特許出願公開第2006/0038304号明細書 米国特許第7,554,793号明細書
Bruanauer、Emmet及びTeller著、Journal of American Chemical Society、第60巻、1938年、309頁
従って、現在、極限状態での性能が向上した固体電解コンデンサが必要とされている。
本発明の1つの実施形態では、コンデンサ素子と、このコンデンサ素子を収容する内部キャビティを定めるハウジングとを含むコンデンサアセンブリを開示する。コンデンサ素子の表面及びハウジングの表面に隣接して、かつこれらに接触させてポリマー拘束物(Polymetric Restraint)を配置し、内部キャビティの少なくとも一部が、コンデンサ素子及びポリマー拘束物によって占められていない状態を保つようにする。このアセンブリは、陽極体に電気的に接触する陽極端子、及び固体電解質に電気的に接続する陰極端子も含む。
本発明の別の実施形態では、コンデンサアセンブリの形成方法を開示する。この方法は、固体電解質で被覆された陽極酸化した焼結陽極体を含むコンデンサ素子をハウジングの内部キャビティ内に配置するステップを含む。陽極体は陽極終端に電気的に接続され、固体電解質は陰極終端に電気的に接続される。その後、コンデンサ素子の表面及びハウジングの表面に隣接して、かつこれらに接触させて熱硬化性材料を配置する。この熱硬化性材料を硬化させてポリマー拘束物を形成する。コンデンサ素子及びポリマー拘束物は、不活性ガスを含む気体雰囲気中でハウジング内に密封される。
以下、本発明のその他の特徴及び態様をより詳細に示す。
当業者を対象とする本発明の最良の形態を含む本発明の完全かつ実施可能な開示について、本明細書の残りの部分において添付図を参照しながらより詳細に説明する。
本発明のアセンブリのコンデンサアセンブリの1つの実施形態の断面図である。 本発明のアセンブリのコンデンサアセンブリの別の実施形態の断面図である。 本発明のアセンブリのコンデンサアセンブリのさらに別の実施形態の断面図である。 本発明のアセンブリのコンデンサアセンブリのさらに別の実施形態の平面図である。
本明細書及び図面における参照文字の反復使用は、本発明の同じ又は類似の特徴又は要素を示すことを意図するものである。
当業者であれば、本考察は例示的な実施形態についての説明にすぎず、例示的な構成で具体化される本発明のより広い態様を限定することを意図するものではないと理解すべきである。
大まかに言えば、本発明は、極限状態で熱的及び機械的に安定したコンデンサアセンブリに関する。不活性ガスを含む気体雰囲気中でハウジング内にコンデンサ素子を封入して密封し、これによりコンデンサの固体電解質に供給される酸素及び水分の量を制限することにより熱安定性がもたらされる。アセンブリに良好な機械的安定性を与えるために、コンデンサ素子の1又はそれ以上の表面に隣接して、かつこれらに接触させて配置したポリマー拘束物も使用する。理論によって制限することを意図するわけではないが、ポリマー拘束物の強度及び剛性は、コンデンサ素子が、使用中に受ける振動力に、層間剥離を伴わずにより良好に耐えるのに役立つことができると考えられる。このようにして、コンデンサアセンブリは、極限状態でより良好に機能することができる。
ここで、本発明の様々な実施形態についてより詳細に説明する。
I.コンデンサ素子
高電圧用途では、多くの場合、コンデンサ素子の陽極は、1グラム当たり約70,000マイクロファラド*ボルト(「μF*V/g」)未満、実施形態によっては約2,000μF*V/g〜約65,000μF*V/g、及び実施形態によっては約5,000μF*V/g〜約50,000μF*V/gなどの比較的比電荷の低い粉末から形成されることが望ましい。当然ながら、低比電荷の粉末が望ましいこともあり得るが、これは決して必須条件ではない。すなわち、この粉末は、1グラム当たり約70,000マイクロファラド*ボルト(「μF*V/g」)又はそれ以上、実施形態によっては約80,000μF*V/g又はそれ以上、実施形態によっては約90,000μF*V/g又はそれ以上、実施形態によっては約100,000μF*V/g又はそれ以上、及び実施形態によっては約120,000μF*V/g〜約250,000μF*V/gの比較的高い比電荷を有することもできる。
粉末は、タンタル、ニオブ、アルミニウム、ハフニウム、チタニウム、これらの合金、これらの酸化物、これらの窒化物などのバルブ金属(すなわち、酸化できる金属)又はバルブ金属ベースの化合物を含むことができる。例えば、バルブ金属組成物は、ニオブの酸素に対する原子比が1:1.0±1.0、実施形態によっては1:1.0±0.3、実施形態によっては1:1.0±0.1、及び実施形態によっては1:1.0±0.05の酸化ニオブなどのニオブの導電性酸化物を含むことができる。例えば、酸化ニオブは、NbO0.7、NbO1.0、NbO1.1、及びNbO2とすることができる。このようなバルブ金属酸化物の例が、Fifeに付与された米国特許第6,322,912号、Fife他に付与された第6,391,275号、Fife他に付与された第6,416,730号、Fifeに付与された第6,527,937号、Kimmel他に付与された第6,576,099号、Fife他に付与された第6,592,740号、Kimmel他に付与された第6,639,787号、及びKimmel他に付与された第7,220,397号、並びにSchnitterに付与された米国特許出願公開第2005/0019581号、Schnitter他に付与された米国特許出願公開第2005/0103638号、Thomas他に付与された米国特許出願公開第2005/0013765号に記載されており、これらの特許は全てあらゆる目的によるこれらへの参照によりその全体が本明細書に組み入れられる。
粉末の粒子は、フレーク状、角状、瘤状、及びこれらの混合又は変形であってもよい。これらの粒子は、通常少なくとも約60メッシュの、実施形態によっては約60メッシュ〜約325メッシュの、及び実施形態によっては約100〜約200メッシュの篩サイズ分布も有する。さらに比表面積は、約0.1〜約10.0m2/g、実施形態によっては約0.5〜約5.0m2/g、及び実施形態によっては約1.0〜約2.0m2/gである。「比表面積」という用語は、吸着ガスとして窒素を使用する、Bruanauer、Emmet及びTeller著、Journal of American Chemical Society、第60巻、1938年、309頁の物理的ガス吸着法(B.E.T.)により測定される表面積を意味する。同様に、バルク(又はScott)密度は、通常約0.1〜約5.0g/cm3、実施形態によっては約0.2〜約4.0g/cm3、及び実施形態によっては約0.5〜約3.0g/cm3である。
粉末に他の成分を加えて、陽極体の構築を容易にすることもできる。例えば、結合剤及び/又は潤滑剤を使用して、陽極体を形成すべく加圧したときに粒子が相互に正確に付着し合うのを確実にすることができる。好適な結合剤として、樟脳、ステアリン酸及びその他の石鹸状の脂肪酸、Carbowax(Union Carbide社)、Glyptal(General Electric社)、ポリビニルアルコール、ナフタリン、植物性ワックス、及びマイクロワックス(精製パラフィン)を挙げることができる。結合剤は、溶媒内で溶解又は分散することができる。例示的な溶媒として、水、アルコールなどを挙げることができる。利用する場合、結合剤及び/又は潤滑剤の割合は、全質量の約0.1重量%〜約8重量%まで様々であってよい。しかしながら、本発明では結合剤及び潤滑剤が必須ではないことを理解されたい。
結果として得られた粉末を、いずれかの従来の粉末プレス成形を使用して圧縮することができる。例えば、プレス成形は、ダイと1又は複数のパンチとを使用する単一ステーション圧縮プレスであってもよい。或いは、ダイ及び単一の下方パンチのみを使用するアンビル型圧縮プレス成型を使用することができる。単一ステーション圧縮プレス成型は、単動、複動、フローティングダイ、可動プラテン、対向ラム、ねじプレス、インパクトプレス、加熱プレス、鋳造又は定寸などの様々な能力を有するカムプレス、トグル/ナックルプレス及び偏心/クランクプレスのようないくつかの基本型で利用可能である。圧縮後、結果として得られた陽極体を、正方形、矩形、円形、長円形、三角形、六角形、八角形、七角形、五角形などのあらゆる所望の形状にダイスカットすることができる。陽極体は、容積に対する表面の割合を増やして、ESRを最小化するとともに静電容量の周波数応答を拡げるために、1又はそれ以上の畝、溝、凹部、又は窪みを含むという点において「溝付き」形状を有することもできる。次に、陽極体に、あらゆる結合剤/潤滑剤の全てではないがほとんどを除去する加熱ステップを施すことができる。例えば、通常、陽極体は、約150℃〜約500℃の温度で動作する炉によって加熱される。或いは、例えば、Bishop他に付与された米国特許第6,197,252号に記載されるように、ペレットを水溶液と接触させることによって結合剤/潤滑剤を除去することもできる。
形成されたら、陽極体を焼結する。焼結の温度、雰囲気、及び時間は、陽極の種類、陽極のサイズなどの様々な因子に依存することができる。通常、焼結は、約800℃〜1900℃、実施形態によっては約1000℃〜約1500℃、及び実施形態によっては約1100℃〜約1400℃の温度で、約5分〜約100分間、及び実施形態によっては約30分〜約60分間行われる。必要に応じて、酸素原子が陽極に移動するのを制限する雰囲気内で焼結を行うこともできる。例えば、真空、不活性ガス、水素などの還元性雰囲気内で焼結を行うことができる。還元性雰囲気は、約10Torr〜約2000Torr、実施形態によっては約100Torr〜1000Torr、及び実施形態によっては約100Torr〜約930Torrの圧力とすることができる。水素と(アルゴン又は窒素などの)その他のガスの混合物を使用することもできる。
陽極体には、陽極体から縦方向に延びる陽極リードも接続される。陽極リードは、ワイヤ、シートなどの形をとることができ、タンタル、ニオブ、酸化ニオブなどのバルブ金属から形成することができる。リードの接続は、リードを陽極体に溶接すること、或いは(圧縮及び/又は焼結の前などの)陽極体の形成中にリードを埋め込むことなどの公知の技術を使用して行うことができる。
陽極はまた、誘電体で被覆される。誘電体は、陽極上及び/又は陽極内に誘電体層が形成されるように焼結陽極を陽極的に酸化(「陽極酸化」)することにより形成することができる。例えば、タンタル(Ta)陽極を五酸化タンタル(Ta25)に陽極酸化することができる。通常、陽極酸化は、陽極を電解質内に浸漬するなどして最初に陽極に溶液を加えることにより行われる。一般的には、(脱イオン水のような)水などの溶媒を使用する。イオン伝導率を高めるために、溶媒内で解離してイオンを形成できる化合物を使用することができる。このような化合物の例として、例えば、以下で電解質に関して説明するような酸が挙げられる。例えば、(リン酸などの)酸は、陽極酸化溶液の約0.01重量%〜約5重量%、実施形態によっては約0.05重量%〜約0.8重量%、及び実施形態によっては約0.1重量%〜約0.5重量%を構成することができる。必要であれば、酸の混和物を使用することもできる。
陽極酸化溶液を電流が通過して誘電体層を形成する。形成電圧の値が誘電体層の厚みを管理する。例えば、必要な電圧に達するまで、最初は電源装置を定電流モードに設定することができる。その後、電源装置を定電位モードに切り換えて、陽極の表面を覆って所望の誘電体の厚みが形成されるのを確実にすることができる。言うまでもなく、パルス又はステップ式定電位法などのその他の公知の方法を使用することもできる。陽極酸化が行われる電圧は、通常、約4〜約250V、実施形態によっては約9〜約200V、及び実施形態によっては約20〜約150Vである。陽極酸化中は、陽極酸化溶液を約30℃又はそれ以上、実施形態によっては約40℃〜約200℃、及び実施形態によっては約50℃〜約100℃などの高い温度に維持することができる。陽極酸化を大気温度以下で行うこともできる。結果として生じる誘電体層を陽極の表面上又はその細孔内に形成することができる。
コンデンサ素子は、コンデンサの陰極として機能する固体電解質も含む。例えば、硝酸マンガン(Mn(NO32)を熱分解することにより二酸化マンガン固体電解質を形成することができる。このような技術は、例えば、Sturmer他に付与された米国特許第4,945,452号に記載されており、該特許はあらゆる目的によるこの特許への参照によりその全体が本明細書に組み入れられる。
或いは、固体電解質を1又はそれ以上の導電性ポリマー層から形成することができる。通常、このような層に使用される(単複の)導電性ポリマーはπ共役であり、酸化又還元後の導電率は、例えば酸化後で少なくとも1μScm-1になる。このようなπ共役導電性ポリマーの例として、例えば、(ポリピロール、ポリチオフェン、ポリアニリンなどの)ポリヘテロ環、ポリアセチレン、ポリ−p−フェニレン、ポリフェノレートなどが挙げられる。特に適した導電性ポリマーは、以下の一般構造を有する置換ポリチオフェンである。
Figure 2016213484
この構造中、
Tは、O又はSであり、
Dは、任意に置換されたC1〜C5のアルキレン基(例えば、メチレン、エチレン、n−プロピレン、n−ブチレン、n−ペンチレンなど)であり、
7は、直鎖又は分岐の、任意に置換されたC1〜C18のアルキル基(例えば、メチル、エチル、n−又はiso−プロピル、n−,iso−,sec−又はtert−ブチル、n−ペンチル、1−メチルブチル、2−メチルブチル、3−メチルブチル、1−エチルプロピル、1,1−ジメチルプロピル、1,2−ジメチルプロピル、2,2−ジメチルプロピル、n−ヘキシル、n−ヘプチル、n−オクチル、2−エチルヘキシル、n−ノニル、n−デシル、n−ウンデシル、n−ドデシル、n−トリデシル、n−テトラデシル、n−ヘキサデシル、n−オクタデシルなど)、任意に置換されたC5〜C12のシクロアルキル基(例えば、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシルなど)、任意に置換されたC6〜C14のアリル基(例えば、フェニル、ナフチルなど)、任意に置換されたC7〜C18のアラルキル基(例えば、ベンジル、o−,m−,p−トリル,2,3−,2,4−,2,5−,2,6−,3,4−,3,5−キシリル、メシチルなど)、任意に置換されたC1〜C4のヒドロキシアルキル基、又はヒドロキシル基であり、
qは、0〜8の、実施形態によっては0〜2の、及び1つの実施形態では0の整数であり、
nは、2〜5,000、実施形態によっては4〜2,000、及び実施形態によっては5〜1,000である。化学基「D」又は「R7」の置換基の例としては、例えば、アルキル、シクロアルキル、アリル、アラルキル、アルコキシ、ハロゲン、エーテル、チオエーテル、ジスルフィド、スルホキシド、スルホン、スルホネート、アミノ、アルデヒド、ケト、カルボン酸エステル、カルボン酸、カーボネート、カルボキシレート、シアノ、アルキルシラン及びアルコキシシラン基、カルボキシアミド基などが挙げられる。
特に適したチオフェンポリマーは、「D」を任意に置換されたC2〜C3のアルキレン基とするものである。例えば、このポリマーは、以下の一般構造を有する任意に置換されたポリ(3,4−エチレンジオキシチオフェン)とすることができる。
Figure 2016213484
上述したような導電性ポリマーの形成方法は、当業で周知である。例えば、Merker他に付与された米国特許第6,987,663号には、モノマー前駆体から置換ポリチオフェンを形成するための様々な技術が記載されており、該特許はあらゆる目的によるこの特許への参照によりその全体が本明細書に組み入れられる。例えば、このモノマー前駆体は、以下の構造を有する。
Figure 2016213484
この構造中、T、D、R7、及びqについては既に定義している。特に適したチオフェンモノマーは、「D」を任意に置換されたC2〜C3のアルキレン基とするものである。例えば、以下の一般構造を有する任意に置換された3,4−アルキレンジオキシチオフェンを使用することができる。
Figure 2016213484
この構造中、R7及びqは、上記で定義した通りである。1つの特定の実施形態では、「q」が0である。3,4−エチレンジオキシチオフェンの1つの商業的に適した例が、Heraeus Clevious社からClevios(商標)Mの名称で市販されている。Blohm他に付与された米国特許第5,111,327号、及びGroenendaal他に付与された米国特許第6,635,729号にもその他の好適なモノマーが記載されており、これらの特許は全てあらゆる目的によるこれらへの参照によりその全体が本明細書に組み入れられる。例えば、上記のモノマーのダイマー又はトライマーであるこれらのモノマーの誘導体を使用することもできる。本発明で使用するには、より高分子の誘導体、すなわちモノマーのテトラマー、ペンタマーなどが適している。誘導体は、同一の又は異なるモノマー単位で構成することができ、純粋な形で、及び互いの及び/又はモノマーとの混合物の形で使用することができる。これらの前駆体の酸化形態又は還元形態を使用することもできる。
チオフェンモノマーは、酸化触媒の存在下で化学重合される。通常、酸化触媒としては、鉄(III)、銅(II)、クロム(VI)、セリウム(IV)、マンガン(IV)、マンガン(VII)、又はルテニウム(III)カチオンなどの遷移金属カチオンが挙げられる。ドーパントを使用して、導電性ポリマーに過剰電荷を与え、ポリマーの導電性を安定化させることもできる。通常、ドーパントとしては、スルホン酸のイオンなどの無機又は有機アニオンが挙げられる。いくつかの実施形態では、前駆体溶液内で使用する酸化触媒が、(遷移金属などの)カチオン及び(スルホン酸などの)アニオンを含むという点で、触媒機能とドーピング機能の両方を有する。例えば、酸化触媒は、(FeCl3などの)ハロゲン化(III)鉄又はFe(ClO43又はFe2(SO43などの他の無機酸の鉄(III)塩、並びに有機酸及び有機基を備える無機酸の鉄(III)塩などの鉄(III)カチオンを含む遷移金属塩とすることができる。有機基を有する無機酸の鉄(III)塩の例としては、例えば、(ラウリルサルフェートの鉄(III)塩などの)C1〜C20アルカノールの硫酸モノエステルの鉄(III)塩が挙げられる。同様に、有機酸の鉄(III)塩としては、(メタン、エタン、プロパン、ブタン、又はドデカンスルホン酸などの)C1〜C20のアルカンスルホン酸の鉄(III)塩、(トリフルオロメタンスルホン酸、ペルフルオロブタンスルホン酸、又はペルフルオロオクタンスルホン酸などの)脂肪族ペルフルオロスルホン酸の鉄(III)塩、(2−エチルヘキシルカルボン酸などの)C1〜C20の脂肪族カルボン酸の鉄(III)塩、(トリフルオロ酢酸、又はペルフルオロオクタン酸などの)脂肪族ペルフルオロカルボン酸の鉄(III)塩、(ベンゼンスルホン酸、o−トルエンスルホン酸、p−トルエンスルホン酸、又はドデシルベンゼンスルホン酸などの)C1〜C20のアルキル基によって任意に置換された芳香族スルホン酸の鉄(III)塩、(カンファースルホン酸などの)シクロアルカンスルホン酸の鉄(III)塩などが挙げられる。これらの上述した鉄(III)塩の混合物を使用することもできる。本発明で使用するには、鉄(III)−p−トルエンスルホネート、鉄(III)−o−トルエンスルホネート、及びこれらの混合物が特に適している。鉄(III)−p−トルエンスルホネートの商業的に適した例が、H.C.Starck GmbH社から、Clevios(商標)Cの名称で市販されている。
様々な方法を利用して、導電性ポリマー層を形成することができる。1つの実施形態では、酸化触媒及びモノマーが、部品上の原位置で重合反応が生じるように順番に又は同時に付加される。導電性ポリマー被覆を形成するために使用できる好適な付加技術としては、スクリーン印刷法、浸漬法、電着塗装法、及び噴霧法が挙げられる。一例として、最初にモノマーを酸化触媒と混合して前駆体溶液を生成することができる。混合物が生成されると、これを部品に付加して重合を可能にすることにより、表面上に導電性被覆を形成できるようになる。或いは、酸化触媒とモノマーを順番に付加することができる。1つの実施形態では、例えば、酸化触媒が(ブタノールなどの)溶媒に溶解され、その後浸漬溶液として付加される。次にこの部品を乾燥させて、ここから溶媒を除去することができる。その後、モノマーを含む溶液にこの部品を浸漬することができる。
通常、重合は、使用する酸化剤及び所望の反応時間に応じて、約−10℃〜約250℃、及び実施形態によっては約0℃〜約200℃の温度で行われる。上述したような好適な重合技術は、Bilerに付与された米国特許第7,515,396号により詳細に記載されている。このような(単複の)導電性被覆を施すためのさらに他の方法が、Sakata他に付与された米国特許第5,457,862号、Sakata他に付与された第5,473,503号、Sakata他に付与された第5,729,428号、及びKudoh他に付与された第5,812,367号に記載されており、これらの特許はあらゆる目的によるこれらへの参照によりその全体が本明細書に組み入れられる。
原位置付加に加え、導電性ポリマー粒子が分散した形の導電性ポリマー層を施すこともできる。これらの粒子のサイズは様々であってよいが、通常は陽極部品に付着できる表面積を増やすために直径が小さいことが望ましい。例えば、粒子は、約1〜約500ナノメートル、実施形態によっては約5〜約400ナノメートル、及び実施形態によっては約10〜約300ナノメートルの平均直径を有することができる。粒子のD90値(D90値以下の直径を有する粒子が、全ての固体粒子の総容積の90%を構成する)は、約15マイクロメートル以下、実施形態によっては約10マイクロメートル以下、及び実施形態によっては約1ナノメートル〜約8マイクロメートルとすることができる。粒子の直径は、超遠心法、レーザ回折法などの公知の技術を使用して測定することができる。
別個の対イオンを使用して、置換ポリチオフェンが運ぶ正電荷の影響を弱めることにより、導電性ポリマーの微粒子形態への形成を促進することができる。場合によっては、ポリマーが構造単位内に陽及び陰電荷を有し、陽電荷が主鎖上に位置し、陰電荷が、任意にスルホネート基又はカルボキシレート基などの化学基「R」の置換基上に位置するようにすることもできる。主鎖の陽電荷を、化学基「R」上に任意に存在するアニオン基で部分的又は全体的に飽和させることができる。全体的に見れば、これらの場合、ポリチオフェンはカチオン性、中性、さらにはアニオン性であってもよい。にもかかわらず、これらは全て、ポリチオフェン主鎖が陽電荷を有しているためカチオン性ポリチオフェンとみなされる。
対イオンは、モノマーアニオンであっても、又はポリマーアニオンであってもよい。ポリマーアニオンは、例えば、(ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸などの)ポリマーカルボン酸、(ポリスチレンスルホン酸(「PSS」)、ポリビニルスルホン酸などの)ポリマースルホン酸などとすることができる。酸もまた、ビニルカルボン酸及びビニルスルホン酸と、アクリル酸エステル及びスチレンなどの他の重合可能モノマーとのコポリマーなどのコポリマーとすることができる。同様に、好適なモノマーアニオンとして、例えば、C1〜C20のアルカンスルホン酸(例えば、ドデカンスルホン酸)、脂肪族ペルフルオロスルホン酸(例えば、トリフルオロメタンスルホン酸、ペルフルオロブタンスルホン酸、又はペルフルオロオクタンスルホン酸)、C1〜C20の脂肪族カルボン酸(例えば、2−エチルヘキシルカルボン酸)、脂肪族ペルフルオロカルボン酸(例えば、トリフルオロ酢酸、又はペルフルオロオクタン酸)、C1〜C20のアルキル基によって任意に置換された芳香族スルホン酸(例えば、ベンゼンスルホン酸、o−トルエンスルホン酸、p−トルエンスルホン酸、又はドデシルベンゼンスルホン酸)、シクロアルカンスルホン酸(例えば、カンファースルホン酸又はテトラフルオロボレート、ヘキサフルオロホスフェート、パークロレート、ヘキサフルオロアンチモネート、ヘキサフルオロアルセネート又はヘキサクロロアンチモネート)などのアニオンが挙げられる。特に適した対イオンは、ポリマーカルボン酸又は(ポリスチレンスルホン酸(「PSS」)などの)ポリマースルホン酸のようなポリマーアニオンである。このようなポリマーアニオンの分子量は、通常、約1,000〜約2,000,000、及び実施形態によっては約2,000〜約500,000である。
これらを使用する場合、所定の層におけるこのような対イオンの置換ポリチオフェンに対する重量比は、通常約0.5:1〜約50:1、実施形態によっては約1:1〜約30:1、及び実施形態によっては約2:1〜約20:1である。上記の重量比で参照した置換ポリチオフェンの重量は、重合中に完全な変換が行われると仮定した場合、使用するモノマーの計量部分を示す。
分散液は、ポリマー層の付着特性をさらに向上させて分散液中の粒子の安定性も高めるために、1又はそれ以上の結合剤を含むこともできる。結合剤は、例えばポリビニルアルコール、ポリビニルピロリドン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリ酪酸ビニル、ポリアクリル酸エステル、ポリアクリル酸アミド、ポリメタクリル酸エステル、ポリメタクリル酸アミド、ポリアクリロニトリル、スチレン/アクリル酸エステル、酢酸ビニル/アクリル酸エステル及びエチレン/酢酸ビニルコポリマー、ポリブタジエン、ポリイソプレン、ポリスチレン、ポリエーテル、ポリエステル、ポリカーボネート、ポリウレタン、ポリアミド、ポリイミド、ポリスルホン、メラミン・ホルムアミド樹脂、エポキシ樹脂、シリコン樹脂又はセルロースなどの本質的に有機性のものとすることができる。結合剤の付着力を高めるために架橋剤を使用することもできる。このような架橋剤として、例えば、メラミン化合物、マスクドイソシアネート又は3−グリシドキシプロピルトリアルコキシシラン、テトラエトキシシラン及びテトラエトキシシラン・ハイドロライゼートなどの官能性シラン、或いはポリウレタン、ポリアクリレート又はポリオレフィンなどの架橋可能ポリマー、及びこれに続く架橋が挙げられる。(水などの)分散剤、界面活性物質などの、当業で公知のその他の成分を分散液に含めることもできる。
必要であれば、所望の被覆厚が得られるまで、上述した付加ステップの1又はそれ以上を繰り返すことができる。いくつかの実施形態では、一度に比較的薄い被覆層しか形成されない。全体的な目標被覆厚は、一般にコンデンサの所望の特性によって様々であってよい。通常、結果的に得られる導電性ポリマー被覆は、約0.2マイクロメートル(「μm」)〜約50μm、実施形態によっては約0.5μm〜約20μm、及び実施形態によっては約1μm〜約5μmの厚みを有する。なお、被覆厚は、必ずしも部品上の全ての位置で等しいとは限らない。とは言うものの、一般に平均被覆厚は上記の範囲内に収まる。
導電性ポリマー被覆は、任意にヒーリング処理することができる。ヒーリング処理は、導電性ポリマー層を各々付加した後、又は被覆全体を付加した後に行うことができる。いくつかの実施形態では、電解質溶液内に部品を浸漬し、その後、電流が予め選択したレベルに低下するまで溶液に定電圧を印加することにより、導電性ポリマーをヒーリング処理することができる。必要であれば、このようなヒーリング処理を複数のステップで行うことができる。例えば、電解質溶液を、(エタノールなどの)アルコール溶媒にモノマー、触媒、又はドーパントを入れた希薄溶液とすることができる。必要であれば、被覆を洗浄して、様々な副生物、過剰試薬などを除去することもできる。
必要であれば、コンデンサは、当業で公知のように他の層を含むこともできる。例えば、誘電体と固体電解質の間に、比較的絶縁性の高い樹脂性材料(天然又は合成)で作製したような保護被覆を任意に形成することができる。このような材料は、約10Ω/cmを越える、実施形態によっては約100を越える、実施形態によっては約1000Ω/cmを越える、実施形態によっては約1×105Ω/cmを越える、及び実施形態によっては約1×1010Ω/cmを越える特異的な抵抗率を有することができる。本発明で利用できるいくつかの樹脂性材料としては、以下に限定されるわけではないが、ポリウレタン、ポリスチレン、(グリセライドなどの)不飽和又は飽和脂肪酸のエステルなどが挙げられる。例えば、好適な脂肪酸のエステルとして、以下に限定されるわけではないが、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、エレオステアリン酸、オレイン酸、リノール酸、リノレン酸、アレウリチン酸、シェロール酸などのエステルが挙げられる。これらの脂肪酸のエステルは、結果として生じる被膜を安定層に迅速に重合できるようにする「乾性油」を形成するために比較的複雑な組み合わせで使用する場合、特に有用であることが判明している。このような乾性油として、モノグリセリド、ジグリセリド、及び/又はトリグリセリドを挙げることができ、これらはそれぞれ1つ、2つ、及び3つのエステル化された脂肪酸アシル残基を含むグリセロール骨格を有する。例えば、使用できるいくつかの好適な乾性油として、以下に限定されるわけではないが、オリーブ油、アマニ油、ヒマシ油、キリ油、大豆油、及びシェラックが挙げられる。これらの及びその他の保護被覆材料は、Fife他に付与された米国特許第6,674,635号にさらに詳細に記載されており、該特許はあらゆる目的によるこの特許への参照によりその全体が本明細書に組み入れられる。
部品に(グラファイトなどの)カーボン層及び銀層をそれぞれ施すこともできる。銀被覆は、例えば、コンデンサのための半田付け可能な導体、接触層、及び/又は電荷コレクタとして機能することができ、カーボン被覆は、銀被覆の固体電解質との接触を制限することができる。このような被覆は、固体電解質の一部又は全部を覆うことができる。
II.ポリマー拘束物
本発明のコンデンサアセンブリで使用するポリマー拘束物は、コンデンサ素子がハウジングから層間剥離する可能性を低下させるように構成される。この点、通常、このポリマー拘束物は、振動力を受けた場合でもコンデンサ素子を比較的一定の位置に保持するが、ヒビが入るほど強くはないある程度の強度を有する。例えば、この拘束物は、約25℃の温度で測定した場合、約1メガパスカル〜約150メガパスカル(「MPa」)、実施形態によっては約2MPa〜約100MPa、実施形態によっては約10MPa〜約80MPa、及び実施形態によっては約20MPa〜約70MPaの引張強度を有することができる。拘束物は、通常は導電性でないことが望ましい。
上述した所望の強度特性を有するあらゆる様々な材料を使用することができるが、本発明での使用には、熱硬化性樹脂が特に適していることが判明している。このような樹脂の例として、例えば、エポキシ樹脂、ポリイミド、メラミン樹脂、尿素ホルムアルデヒド樹脂、ポリウレタン、シリコンポリマー、フェノール樹脂などが挙げられる。例えば、いくつかの実施形態では、拘束物に1又はそれ以上のポリオルガノシロキサンを使用することができる。これらのポリマーに使用されるケイ素結合有機基は、一価の炭化水素及び/又は一価のハロゲン化炭化水素基を含むことができる。通常、このような一価の基は、1個〜約20個の炭素原子、好ましくは1個〜10個の炭素原子を有し、以下に限定されるわけではないが、アルキル(例えば、メチル、エチル、プロピル、ペンチル、オクチル、ウンデシル、及びオクタデシル)、シクロアルキル(例えば、シクロヘキシル)、アルケニル(例えば、ビニル、アリル、ブテニル、及びヘキセニル)、アリル(例えば、フェニル、トリル、キシリル、ベンジル、及び2−フェニルエチル)、及びハロゲン化炭化水素基(例えば、3,3,3−トリフロオロプロピル、3−クロロプロピル、及びジクロロフェニル)により例示される。通常は、有機基の少なくとも50%、及びより好ましくは少なくとも80%がメチルである。このようなメチルポリシロキサンの例として、例えば、ポリジメチルシロキサン(「PDMS」)、ポリメチル水素シロキサンなどを挙げることができる。さらに他の好適なメチルポリシロキサンとしては、ジメチルジフェニルポリシロキサン、ジメチル/メチルフェニルポリシロキサン、ポリメチルフェニルシロキサン、メチルフェニル/ジメチルシロキサン、ビニルジメチル終端ポリジメチルシロキサン、ビニルメチル/ジメチルポリシロキサン、ビニルジメチル終端ビニルメチル/ジメチルポリシロキサン、ジビニルメチル終端ポリジメチルシロキサン、ビニルフェニルメチル終端ポリジメチルシロキサン、ジメチルヒドロ終端ポリジメチルシロキサン、メチルヒドロ/ジメチルポリシロキサン、メチルヒドロ終端メチルオクチルポリシロキサン、メチルヒドロ/フェニルメチルポリシロキサンなどを挙げることができる。
オルガノポリシロキサンは、ポリマーにある程度の親水性を与える、ヒドロキシ、エポキシ、カルボキシル、アミノ、アルコキシ、メタクリル、又はメルカプト基などの1又はそれ以上のペンダント及び/又は終端極性官能基を含むこともできる。例えば、オルガノポリシロキサンは、少なくとも1つのヒドロキシ基、及び任意に1分子当たり平均少なくとも2つのケイ素結合ヒドロキシ基(シラノール基)を含むことができる。このようなオルガノポリシロキサンの例として、例えば、ジヒドロキシポリジメチルシロキサン、ヒドロキシ−トリメチルシロキシポリジメチルシロキサンなどが挙げられる。Kleyer他に付与された米国特許出願公開第2003/0105207号にヒドロキシ修飾オルガノポリシロキサンのその他の例が記載されており、該特許はあらゆる目的によるこの特許への参照によりその全体が本明細書に組み入れられる。ジメトキシポリジメチルシロキサン、メトキシ−トリメチルシロキシポリジメチルシロキサン、ジエトキシポリジメチルシロキサン、エトキシートリメチルシロキシーポリジメチルシロキサンなどのアルコキシ修飾オロガノポリシロキサンを使用することもできる。さらに他の好適なオルガノポリシロキサンには、少なくとも1つのアミノ官能基で修飾されたものがある。このようなアミノ官能基ポリシロキサンの例として、例えば、ジアミノ官能基ポリジメチルシロキサンが挙げられる。Plantenberg他に付与された米国特許出願公開第2010/0234517号には、オルガノポリシロキサンのための他の様々な好適な極性官能基も記載されており、該特許はあらゆる目的によるこの特許への参照によりその全体が本明細書に組み入れられる。
ポリマー拘束物としての使用には、エポキシ樹脂も特に適している。例えば、好適なエポキシ樹脂の例として、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、臭素化エポキシ樹脂及びビフェニル型エポキシ樹脂、環状脂肪族エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、シクロペンダジエン型エポキシ樹脂、複素環式エポキシ樹脂などの、グリシジルエーテル型エポキシ樹脂が挙げられる。Osako他に付与された米国特許出願公開第2006/0038304号、及びChackoに付与された米国特許第7,554,793号には、さらに他の好適な導電性接着樹脂が記載されており、これらの特許はあらゆる目的によるこれらへの参照によりその全体が本明細書に組み入れられる。
必要であれば、ポリマー拘束物に硬化剤を使用して、硬化を促進する役に立てることもできる。通常、硬化剤は、拘束物の約0.1重量パーセント〜約20重量パーセントを構成する。例示的な硬化剤として、例えば、アミン、過酸化物、無水化物、フェノール化合物、シラン、酸無水化物化合物及びこれらの組み合わせが挙げられる。好適な硬化剤の具体的な例には、ジシアンジアミド、1−(2シアノエチル)2−エチル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、エチルシアノプロピルイミダゾール、2−メチルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、1−シアノエチル−2−メチルイミダゾール、2,4−ジシアノ−6,2−メチルイミダゾリル−(1)−エチル−s−トリアジン、及び2,4−ジシアノ−6,2−ウンデシルイミダゾリル−(1)−エチル−s−トリアジン、イミダゾリウム塩(1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテート、2−メチルイミダゾリウムイソシアヌレート、2−エチル−4−メチルイミダゾリウムテトラフェニルボレート、及び2−エチル−1,4−ジメチルイミダゾリウムテトラフェニルボレートなど)などがある。さらに他の有用な硬化剤として、トリブチルホスフィン、トリフェニルホスフィン、トリス(ジメトキシフェニル)ホスフィン、トリス(ヒドロキシプロピル)ホスフィン、及びトリス(シアノエチル)ホスフィンなどのホスフィン化合物、テトラフェニルホソホニウム−テトラフェニルボレート、メチルトリブチルホスホニウム−テトラフェニルボレート、及びメチルトリシアノエチルホスホニウムテトラフェニルボレートなどのホスホニウム塩、2,4,6−トリス(ジメチルアミノメチル)フェノール、ベンジルメチルアミン、テトラメチルブチルグアニジン、N−メチルピペラジン、及び2−ジメチルアミノ−1−ピロリンなどのアミン、トリエチルアンモニウムテトラフェニルボレートのようなアンモニウム塩、1,5−ジアザビシクロ[5,4,0]−7−ウンデセン、1,5−ジアザビシクロ[4,3,0]−5−ノネン、及び1,4−ジアザビシクロ[2,2,2]−オクタンなどのジアザビシクロ化合物、テトラフェニルボレート、フェノール塩、フェノールノボラック塩、及び2−エチルヘキサン酸塩、及びその他などのジアザビシクロ化合物の塩などが挙げられる。
光開始剤、粘度調整剤、懸濁助剤、色素、応力低減剤、結合剤(シラン結合剤など)、非導電性充填剤(粘土、シリカ、アルミナなど)、安定剤などの、さらに他の添加剤を使用することもできる。好適な光開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn−プロピルエーテル、ベンゾインイソブチルエーテル、2,2ジヒドロキシ−2−フェニルアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、2,2−ジエトキシアセトフェノン、ベンゾフェノン、4,4−ビスジアリルアミノベンゾフェノン、4−ジメチルアミノ安息香酸、4−ジメチルアミノ安息香酸アルキル、2−エチルアントラキノン、キサントン、チオキサントン、2−クロロチオキサントンなどを挙げることができる。使用した場合、通常、このような添加剤は、総組成物の約0.1重量パーセント〜約20重量パーセントを構成する。
III.ハウジング
上述したように、ポリマー拘束物は、コンデンサ素子の1又はそれ以上の面に隣接して、かつこれらに接触して配置される。その後、ポリマー拘束物及びコンデンサ素子を、いずれもハウジング内に密封する。通常、密封は、使用中に固体電解質が酸化しないようにするために、少なくとも1つの不活性ガスを含む気体雰囲気中で行われる。不活性ガスとして、例えば、窒素、ヘリウム、アルゴン、キセノン、ネオン、クリプトン、ラドンなど、並びにこれらの混合物を挙げることができる。通常、不活性ガスは、約50重量%〜約100重量%、実施形態によっては約75重量%〜約100重量%、及び実施形態によっては約90重量%〜約99重量%などのように、ハウジング内の雰囲気の大部分を構成する。必要であれば、比較的少量の、二酸化炭素、酸素、水蒸気などの非不活性ガスを使用することもできる。しかしながら、このような場合、通常、非不活性ガスは、ハウジング内の雰囲気の15重量%又はそれ以下、実施形態によっては10重量%又はそれ以下、実施形態によっては約5重量%又はそれ以下、実施形態によっては約1重量%又はそれ以下、及び実施形態によっては約0.01重量%〜約1重量%を構成する。例えば、(相対湿度によって示される)水分含量は、約10%又はそれ以下、実施形態によっては約5%又はそれ以下、実施形態によっては約1%又はそれ以下、及び実施形態によっては約0.01〜約5%であることができる。
ハウジングを形成するためには、金属、プラスチック、セラミックなどのあらゆる様々な異なる材料を使用することができる。例えば、1つの実施形態では、ハウジングが、タンタル、ニオブ、アルミニウム、ニッケル、ハフニウム、チタン、銅、銀、(ステンレスなどの)鋼、(導電性酸化物などの)これらの合金、及び(導電性酸化物で被覆された金属などの)これらの複合体などの金属の1又はそれ以上の層を含む。別の実施形態では、ハウジングが、窒化アルミニウム、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、酸化カルシウム、ガラスなど、並びにこれらの組み合わせなどのセラミック材料の1又はそれ以上の層を含むことができる。
ハウジングは、円筒形、D字形、矩形、三角形、角柱形などのあらゆる所望の形状を有することができる。例えば、図1を参照すると、ハウジング122及びコンデンサ素子120を含むコンデンサアセンブリ100の1つの実施形態を示している。この特定の実施形態では、ハウジング122が概ね矩形である。通常、ハウジング及びコンデンサ素子は、コンデンサ素子を内部キャビティ内に容易に収容できるように同じ又は同様の形状を有する。例えば、図示の実施形態では、コンデンサ素子120及びハウジング122が、いずれも概ね矩形である。
必要に応じ、本発明のコンデンサアセンブリは、比較的高い容積効率を示すことができる。このような高効率を容易にするために、通常、コンデンサ素子は、ハウジングの内部キャビティの容量の大部分を占める。例えば、コンデンサ素子は、ハウジングの内部キャビティの約30容量パーセント又はそれ以上、実施形態によっては約50容量パーセント又はそれ以上、実施形態によっては約60容量パーセント又はそれ以上、実施形態によっては約70容量パーセント又はそれ以上、実施形態によっては約80容量パーセント〜約98容量パーセント、及び実施形態によっては約85容量パーセント〜97容量パーセントを占めることができる。このため、通常、ハウジングが定めるコンデンサ素子の寸法と内部キャビティの寸法の差分は比較的小さい。
例えば、図1を参照すると、コンデンサ素子120は、ハウジング122が定める内部キャビティ126の長さと比較的似通った長さ(陽極リード6の長さを除く)を有することができる。例えば、陽極の長さの内部キャビティの長さに対する比率は、約0.40〜1.00、実施形態によっては約0.50〜約0.99、実施形態によっては約0.60〜約0.99、及び実施形態によっては約0.70〜約0.98である。コンデンサ素子120は、約5ミリメートル〜約10ミリメートルの長さを有することができ、内部キャビティ126は、約6ミリメートル〜約15ミリメートルの長さを有することができる。同様に、コンデンサ素子120の高さ(−z方向)の内部キャビティ126の高さに対する比率も、約0.40〜1.00、実施形態によっては約0.50〜約0.99、実施形態によっては約0.60〜約0.99、及び実施形態によっては約0.70〜約0.98であることができる。コンデンサ素子120の幅(−x方向)の内部キャビティ126の幅に対する比率も、約0.50〜1.00、実施形態によっては約0.60〜約0.99、実施形態によっては約0.70〜約0.99、実施形態によっては約0.80〜約0.98、及び実施形態によっては約0.85〜約0.95であることができる。例えば、コンデンサ素子120の幅を約2ミリメートル〜約7ミリメートルとして、内部キャビティ126の幅を約3ミリメートル〜約10ミリメートルとすることができ、またコンデンサ素子120の高さを約0.5ミリメートル〜約2ミリメートルとして、内部キャビティ126の幅を約0.7ミリメートル〜約6ミリメートルとすることができる。
決して必須ではないが、コンデンサ素子を、後で回路内に一体化するために陽極終端及び陰極終端をハウジングの外部に形成するようにしてハウジングに取り付けることができる。終端の特定の構成は、目的の用途に依存することができる。例えば、1つの実施形態では、コンデンサアセンブリを、表面実装可能であり、なおかつ依然として機械的に強固であるように形成することができる。例えば、陽極リードを、外部の表面実装可能な(パッド、シート、プレート、フレームなどの)陽極及び陰極終端に電気的に接続することができる。このような終端は、ハウジングを貫いて延び、コンデンサと接続することができる。一般に、終端の厚み又は高さは、コンデンサアセンブリの厚みを最小限に抑えるように選択される。例えば、終端の厚みは、約0.05ミリメートル〜約1ミリメートル、実施形態によっては約0.05ミリメートル〜約0.5ミリメートル、及び約0.1ミリメートル〜約0.2ミリメートルとすることができる。必要であれば、当業で公知のように、終端の表面をニッケル、銀、金、スズなどで電気メッキして、最終部品を回路基板に確実に実装できるようにすることができる。1つの特定の実施形態では、(単複の)終端にニッケル及び銀フラッシュをそれぞれ堆積させ、実装面もスズ半田層でメッキする。別の実施形態では、さらに導電性を高めるために、(銅合金などの)ベース金属層上に(金などの)薄い外側金属層を施したものを(単複の)終端に堆積させる。
いくつかの実施形態では、ハウジングの内部キャビティ内に接続部材を使用して、機械的に安定した形で終端への接続を容易にすることができる。例えば、再び図1を参照して分かるように、コンデンサアセンブリ100は、第1の部分167及び第2の部分165から形成された接続部材162を含むことができる。接続部材162は、外部終端と同様の導電材料から形成することができる。第1の部分167及び第2の部分165は、一体要素であっても、或いは直接又は(金属などの)追加の導電要素を介してともに接続された別個の要素であってもよい。図示の実施形態では、リード6が延びる(−y方向などの)横方向に概ね平行な平面内に第2の部分165が設けられる。第1の部分167は、リード6が延びる縦方向に概ね垂直な平面内に設けられるという意味で「直立」している。このようにして、第1の部分167がリード6の水平方向の動きを制限して、使用中の表面接触及び機械的安定性を高めることができる。必要に応じて、リード6の周囲に(Teflon(商標)ウォッシャーなどの)絶縁材料7を使用することもできる。
第1の部分167は、陽極リード6に接続された実装領域(図示せず)を有することができる。この領域は、リード6の表面接触及び機械的安定性をさらに高めるために「U字形状」を有することができる。この領域のリード6への接続は、溶接、レーザ溶接、導電性接着剤などの様々な公知の技術のいずれかを使用して行うことができる。例えば、1つの特定の実施形態では、この領域が陽極リード6にレーザ溶接される。しかしながら、選択した技術に関わらず、第1の部分167は、陽極リード6を実質的に水平な配置に保持してコンデンサアセンブリ100の寸法安定性をさらに高めることができる。
再び図1を参照すると、接続部材162及びコンデンサ素子120が、それぞれ陽極終端127及び陰極終端129を介してハウジング122に接続された本発明の1つの実施形態を示している。より具体的には、この実施形態のハウジング122は、外壁123と、コンデンサ素子120を含むキャビティ126を間に形成する2つの向かい合う側壁124とを含む。外壁123及び側壁124は、上述したような金属、プラスチック又はセラミック材料の1又はそれ以上の層から形成することができる。この特定の実施形態では、陽極終端127が、ハウジング122内に位置して接続部材162に電気的に接続された第1の領域127a、及びハウジング122の外部に位置して実装面201を提供する第2の領域127bを含む。同様に、陰極終端129は、ハウジング122内に位置してコンデンサ素子120の固体電解質に電気的に接続された第1の領域129a、及びハウジング122の外部に位置して実装面203を提供する第2の領域129bを含む。なお、このような領域部分は、その全体がハウジングの内部又はハウジングの外部に位置する必要はない。
図示の実施形態では、ハウジングの外壁123内に導電性トレース127cが延びて、第1の領域127aと第2の領域127bを接続する。同様に、ハウジングの外壁123内に導電性トレース129cが延びて、第1の領域127aと第2の領域127bを接続する。これらの導電性トレース及び/又は終端領域は、分離していても又は一体化していてもよい。これらのトレースは、ハウジングの外壁を貫いて延びることに加え、外壁の外部などの他の場所に位置することもできる。言うまでもなく、本発明は、所望の終端を形成するために導電性トレースを使用することに決して限定されるものではない。
使用する特定の構成に関わらず、終端127及び129のコンデンサ素子120への接続は、溶接、レーザ溶接、導電性接着剤などのいずれかの公知の技術を用いて行うことができる。1つの特定の実施形態では、例えば、導電性接着剤131を使用して、接続部材162の第2の部分165を陽極終端127に接続する。同様に、導電性接着剤133を使用して、コンデンサ素子120の陰極を陰極終端129に接続する。導電性接着剤は、樹脂組成物を含む導電性金属粒子から形成することができる。金属粒子は、銀、銅、金、プラチナ、ニッケル、亜鉛、ビスマスなどとすることができる。樹脂組成物は、(エポキシ樹脂などの)熱硬化性樹脂、(酸無水物などの)硬化剤、及び(シラン結合剤などの)結合剤を含むことができる。Osako他に付与された米国特許出願公開第2006/0038304号に好適な導電性接着剤が記載されており、該特許出願はあらゆる目的によるこの特許への参照によりその全体が本明細書に組み入れられる。
コンデンサ素子を所望の態様で配置した後、本発明のポリマー拘束物を、コンデンサ素子の後面、前面、上面、下面、(単複の)側面、又はこれらのあらゆる組み合わせなどの1又はそれ以上の面に接触させて配置することができる。例えば、再び図1を参照すると、コンデンサ素子120の上面181及び後面177に接触させて単一のポリマー拘束物197を配置した1つの実施形態を示している。図1には単一の拘束物を示しているが、別の拘束物を使用して同じ機能を達成することもできると理解されたい。実際のところ、より一般的には、あらゆる数のポリマー拘束物を使用して、コンデンサ素子のあらゆる所望の面に接触させることができる。複数の拘束物を使用する場合、これらを互いに接触させても又は物理的に分離したままにしてもよい。例えば、1つの実施形態では、コンデンサ素子120の上面181及び前面179に接触する第2のポリマー拘束物(図示せず)を使用することができる。第1のポリマー拘束物197及び第2のポリマー拘束物(図示せず)は、互いに接触しても又は接触しなくてもよい。さらに別の実施形態では、ポリマー拘束物が、他の面とともに又はこれらの代わりに、コンデンサ素子120の下面183及び/又は(単複の)側面に接触することもできる。
どのように施すかにかかわらず、通常は、ポリマー拘束物をハウジングの少なくとも1つの面に接触させて、起こり得る層間剥離に対してコンデンサ素子をさらに機械的に安定化させる役に立てることが望ましい。例えば、拘束物は、1又はそれ以上の側壁、外壁、蓋部などの内面に接触することができる。例えば、図1では、ポリマー拘束物197が、側壁124の内面107及び外壁123の内面109に接触している。ハウジングと接触するとは言うものの、ハウジングが定めるキャビティの少なくとも一部を空けて、不活性ガスがキャビティ内を流れて酸素と固体電解質の接触を制限できるようにすることが望ましい。例えば、通常は、キャビティ容量の少なくとも約5%、及び実施形態によってはキャビティ容量の約10%〜約50%がコンデンサ素子及びポリマー拘束物によって占められていない状態を保つ。
所望の方法で接続したら、結果として得られたパッケージを上述したように密封する。例えば、再び図1を参照すると、ハウジング122は、コンデンサ素子120及びポリマー拘束物197をハウジング122内に配置した後に側壁124の上面上に配置される蓋部125を含むこともできる。蓋部125は、セラミック、金属(鉄、銅、ニッケル、コバルトなど、並びにこれらの合金)、プラスチックなどから形成することができる。必要であれば、蓋部125と側壁124の間に密封部材187を配置して、良好な密封を行う役に立てることができる。例えば、1つの実施形態では、密封部材が、ガラス対金属シール、Kovar(登録商標)リング(Goodfellow Camridge社)などを含むことができる。一般に、側壁124の高さは、蓋部125が汚染されないように、蓋部125がコンデンサ素子120のいずれの面にも接触しないようにされる。ポリマー拘束物197は、蓋部125と接触しても又は接触しなくてもよい。所望の位置に配置したら、(抵抗溶接、レーザ溶接などの)溶接、半田付けなどの公知の技術を使用して、蓋部125を側壁124に対して密封する。一般に、密封は、結果として得られるアセンブリが実質的に酸素又は水蒸気などの反応性ガスを含まないように不活性ガス雰囲気中で行われる。
なお、説明した実施形態は例示にすぎず、本発明では、コンデンサ素子及びポリマー拘束物をハウジング内に密封するための他の様々な構成を使用することができる。例えば、図2を参照すると、コンデンサ素子120及びポリマー拘束物197を含むキャビティ126を間に形成する外壁123及び蓋部225を含むハウジング222を使用するコンデンサアセンブリ200の別の実施形態を示している。蓋部225は、少なくとも1つの側壁224と一体化した外壁223を含む。例えば、図示の実施形態では、2つの向かい合う側壁224を断面で示している。外壁223及び123は、いずれも横方向(−y方向)に延び、互いに及び陽極リード6の横方向に対して概ね平行である。側壁224は、外壁223から、外壁123に対してほぼ垂直な縦方向に延びる。蓋部225の遠位端500は外壁223により定められ、近位端501は側壁224のリップ253により定められる。
リップ253は、側壁224から、外壁123の横方向に対して概ね平行となり得る横方向に延びる。側壁224とリップ253の間の角度は様々であってよいが、通常は約60°〜約120°、実施形態によっては約70°〜約110°、及び実施形態によっては約80°〜約100°(約90°など)である。リップ253は、リップ253及び外壁123が延びる横方向に対して概ね垂直となり得る周縁部251も定める。周縁部251は、側壁224の外周を越えて位置し、外壁123の端部151とほぼ同一平面上に存在することができる。リップ253は、(抵抗溶接又はレーザ溶接などの)溶接、半田付け、接着などのあらゆる公知の技術を使用して外壁123に封止することができる。例えば、図示の実施形態では、要素間に(ガラス対金属シール、Kovar(登録商標)リングなどの)密封部材287を使用して、これらの要素の取り付けを容易にする。いずれにせよ、上述したリップを使用して、要素間の接続をより安定させ、コンデンサアセンブリの密封及び機械的安定性を向上させることができる。
本発明では、さらに他の考えられるハウジング構成を使用することができる。例えば、図3に、陽極及び陰極にそれぞれ外部終端として端子ピン327b及び329bを使用する点を除き、図2のハウジング構成と同様のハウジング構成を有するコンデンサアセンブリ300を示す。より詳細には、端子ピン327aは、外壁323内に形成されたトレース327cを貫いて延び、(溶接などの)公知の技術を使用して陽極リード6に接続される。追加部分327aを使用してピン327bを固定することができる。同様に、端子ピン329bは、上述したように、外壁323内に形成されたトレース329cを貫いて延び、導電性接着剤133により陰極に接続される。
本明細書では、図1〜図3に示す実施形態を、単一のコンデンサ素子の観点からのみ説明している。しかしながら、ハウジング内には、複数のコンデンサ素子を密封することもできると理解されたい。様々な異なる技術のいずれかを使用して、複数のコンデンサ素子をハウジングに取り付けることができる。例えば、図4を参照すると、2つのコンデンサ素子を含むコンデンサアセンブリ400の1つの特定の実施形態を示しており、以下、これについてより詳細に説明する。より詳細には、コンデンサアセンブリ400は、第2のコンデンサ素子420bと電気的に連通する第1のコンデンサ素子420aを含む。この実施形態では、コンデンサ素子が、これらの主要面が水平構成になるように整列している。すなわち、コンデンサ素子420aの幅(−x方向)及び長さ(−y方向)によって定められる主要面が、コンデンサ素子420bの対応する主要面に隣接して位置する。従って、これらの主要面は、ほぼ同一平面上にある。或いは、これらのコンデンサ素子を、主要面が同一平面上になく、−z方向又は−x方向などのある方向に対して互いに垂直になるように配置することもできる。言うまでもなく、コンデンサ素子は、同じ方向に延びる必要はない。
コンデンサ素子420a及び420bは、ともにキャビティ426を定める外壁423並びに側壁424及び425を含むハウジング422内に位置する。図示してはいないが、上述したように、側壁424及び425の上面を覆ってアセンブリ400を密封する蓋部を使用することもできる。本発明によれば、ポリマー拘束物を使用して、コンデンサ素子の振動を制限する役に立てることもできる。例えば、図4では、別個のポリマー拘束物497a及び497bが、それぞれコンデンサ素子420a及び420bに隣接して、かつこれらに接触して存在する。上記でより詳細に説明したように、ポリマー拘束物497a及び497bは、様々な異なる場所に位置することができる。さらに、拘束物の一方を排除することもでき、或いは追加の拘束物を使用することもできる。例えば、いくつかの実施形態では、コンデンサ素子間にポリマー拘束物を使用して機械的安定性をさらに向上させることが望ましい場合もある。
コンデンサアセンブリは、コンデンサ素子及びポリマー拘束物に加え、それぞれのコンデンサ素子の陽極リードが電気的に接続される陽極終端、及びそれぞれのコンデンサ素子の陰極が電気的に接続される陰極終端も含む。例えば、再び図4を参照すると、共通の陰極終端429に平行に接続されたコンデンサ素子を示している。この特定の実施形態では、コンデンサ素子の底面に対して概ね平行な平面内にまず陰極終端429を設けて、導電性トレース(図示せず)と電気的に接触させることができる。コンデンサアセンブリ400は、コンデンサ素子420a及び420bの陽極リード407a及び407bにそれぞれ接続された接続部材427及び527も含む。より詳細には、接続部材427は、直立部分465、及び陽極終端(図示せず)に接続する平面部分463を含む。同様に、接続部材527は、直立部分565、及び陽極終端(図示せず)に接続する平面部分563を含む。言うまでもなく、様々な他の種類の接続機構も使用できると理解されたい。
本発明の結果、コンデンサアセンブリは、高温及び高電圧環境にさらされた場合でも、優れた電気的特性を示すことができる。例えば、このコンデンサアセンブリは、漏れ電流が1mAに達するまで印加電圧を3ボルトずつ増分させることにより求められるような、約35ボルト又はそれ以上、実施形態によっては約50ボルト又はそれ以上、実施形態によっては約60ボルト又はそれ以上、及び実施形態によっては約60ボルト〜約100ボルトなどの比較的高い「絶縁破壊電圧」(コンデンサが機能しなくなる電圧)を示すことができる。同様に、このコンデンサは、やはり高電圧用途でよく見られる比較的高いサージ電流に耐えることもできる。例えば、ピークサージ電流は、約40アンペア又はそれ以上、実施形態によっては約60アンペア又はそれ以上、及び実施形態によっては約120アンペア〜約250アンペアなどの、定格電圧の約2倍又はそれ以上になり得る。
同様に、静電容量は、1平方センチメートル当たり約1ミリファラド(「mF/cm2」)又はそれ以上、実施形態によっては約2mF/cm2又はそれ以上、実施形態によっては約5mF/cm2〜約50mF/cm2、及び実施形態によっては約8mF/cm2〜約20mF/cm2になり得る。静電容量は、120Hzの動作周波数及び25℃の温度で求めることができる。また、このコンデンサアセンブリは、比較的高い割合の湿潤静電容量を示すこともでき、これにより雰囲気湿度の存在下でのコンデンサの静電容量の損失及び/又は変動がごくわずかなものとなる。この性能特性は、次式によって定められる「乾燥対湿潤静電容量割合」により定量化される。
乾燥対湿潤静電容量=(1−([湿潤−乾燥]/湿潤))×100
本発明のコンデンサアセンブリは、例えば、約80%又はそれ以上の、実施形態によっては約85%又はそれ以上の、実施形態によっては約90%又はそれ以上の、及び実施形態によっては約92%〜100%の乾燥対湿潤静電容量割合を示すことができる。
このコンデンサアセンブリは、100kHzの動作周波数で測定した場合、約50オーム未満、実施形態によっては約25オーム未満、実施形態によっては約0.01〜約10オーム、及び実施形態によっては約0.05〜約5オームの等価直列抵抗(「ESR」)を有することができる。また、一般に絶縁体を介して1つの導体から隣接する導体へ流れる電流のことを意味する漏れ電流を比較的低レベルに維持することができる。例えば、本発明のコンデンサの正規化した漏れ電流の数値は、実施形態によっては約1μA/μF*V未満、実施形態によっては約0.5μA/μF*V未満、及び実施形態によっては約0.1μA/μF*V未満であり、この場合μAはマイクロアンペアであり、μF*Vは静電容量と定格電圧の積である。
高温でかなりの時間が経過した後でも、上述したような電気的特性を維持することができる。例えば、この値を、100℃〜約250℃、実施形態によっては約100℃〜約225℃、及び実施形態によっては約100℃〜約225℃の温度(例えば100℃、125℃、175℃、又は200℃)で、約100時間又はそれ以上、実施形態によっては約300時間〜約3000時間、及び実施形態によっては約400時間〜約2500時間(例えば、500時間、600時間、700時間、800時間、900時間、1000時間、1100時間、1200時間、又は2000時間)にわたって維持することができる。
以下の実施例を参照することにより、本発明をより良く理解することができる。
試験手順
等価直列抵抗(ESR)
Kelvinリードを付したKeithley3330Precision LCZメータを使用して2.2ボルトのDCバイアス及び0.5ボルトのピーク間正弦波信号で等価直列抵抗を測定することができる。動作周波数は100kHzであり、温度は23℃±2℃であった。
静電容量
Kelvinリードを付したKeithley3330Precision LCZメータを使用して2.2ボルトDCバイアス及び0.5ボルトのピーク間正弦波信号で静電容量を測定した。動作周波数は120Hzであり、温度は23℃±2℃であった。
振動試験:
部品を10Hz〜2,000Hzの周波数範囲全体にさらし、その後10Hzに戻し、20分で逆にした。この周期を3方向のそれぞれで12回(合計36回)実行し、合計約12時間にわたって動きが加わるようにした。振動振幅は、10Hzからそれよりも高いクロスオーバー周波数までは3.0mmとし、その後2,000Hzまで20g加速させた。10個のコンデンサのサンプルを試験プレート上に半田付けしてこの試験を行った。
液体電解質内で、タンタル陽極(5.20mm×3.70mm×0.85mm)を75Vで22μFに陽極酸化した。次に、陽極全体をポリ(3,4−エチレンジオキシチオフェン)(「PEDT」)分散液(Clevious(商標)K、固体含有量1.1%)中に浸漬することにより導電性ポリマー皮膜を形成した。次に、この部品を125℃で20分間乾燥させた。この処理を10回繰り返した。その後、部品をPEDT分散液(2.8%の固体含有量)中に0.1mm/sの速度で浸漬して、分散液が部品の段部に達するようにした。この部品を分散液中に10秒間放置し、125℃で30分間乾燥させ、その後室温まで冷却した。この処理を5回繰り返した。次に、この部品を黒鉛及び銀で被覆した。銅ベースのリードフレーム材料を使用して組み立て工程を終了した。銀接着剤を使用して、コンデンサ素子の下面に単一の陰極接続部材を取り付けた。次に、コンデンサ素子のタンタルワイヤを陽極接続部材にレーザ溶接した。
次に、このリードフレームの陽極及び陰極接続部材を、長さ11.00mm、幅6.00mm、及び厚み2.20mmのセラミックハウジングの内部に位置する金の陰極終端に接着し、金の陽極終端に溶接した。ハウジングは、セラミックハウジングの底部の内部上に金メッキ半田パッドを有していた。陰極の接続に使用する接着剤は、スズ半田ペースト(EPO−Tek E3035)であり、この接着剤を、リードフレーム部分と金メッキ半田パッドの間にのみ塗布した。陽極接続に使用する溶接は抵抗溶接であり、リードフレーム部分とセラミックハウジングの金メッキ半田パッドの間に190Wのエネルギーを90msにわたって印加した。
次に、アセンブリを対流式リフロー炉内に入れてペーストを半田付けした。リフロー後、コンデンサ素子の陽極及び陰極部分の上部を覆ってポリマー拘束物材料(Dow Corning(登録商標)736耐熱シーラント)を付加し、165℃で1.5時間乾燥させた。その後、容器の上部を覆って、長さ9.95mm、幅4.95mm、及び厚み0.10mmのKovar(登録商標)の蓋部を、セラミックハウジングのシールリング(厚み0.30mmのKovar(登録商標)リング)上に密接に配置して、蓋部の内面と取り付けたコンデンサの外面が直接接触しないようにした。結果として得られたアセンブリを溶接チャンバ内に配置し、窒素ガスで120分間パージした後にシールリングと蓋部の間をシーム溶接した。シーム溶接後は、追加のバーンイン処理又はヒーリング処理は行わなかった。ポリマー拘束物材料を含まない比較サンプルも作成した。このようにして複数の部品(100個)を作成した。
次に、この部品の、25℃の温度における上述したような「振動試験」の前後の電気的性能(すなわち、静電容量(「CAP」)及び等価直列抵抗(「ESR」))を試験した。以下に中間結果を示す。
Figure 2016213484
この表に示すように、ポリマー拘束物材料を含むコンデンサアセンブリの振動試験後にはESR値が減少した。
半田ペーストを使用して部品をPCB基板に取り付けることにより、実施例1のコンデンサの電気的性能(すなわち、漏れ電流、ESR、及び静電容量)を試験した。25℃で測定を行い、その後電圧を印加せずに215℃の温度で500時間にわたって保管した後にこの測定を繰り返した。以下に結果を示す。
Figure 2016213484
この表に示すように、温度サイクル試験後には、ESR値は実質的に同じままであった。
液体電解質内で、タンタル陽極(4.15mm×3.45mm×1.05mm)を245Vで3.8μFに陽極処理した。次に、陽極全体をポリ(3,4−エチレンジオキシチオフェン)(「PEDT」)分散液(Clevious(商標)K、固体含有量1.1%)中に浸漬することにより導電性ポリマー皮膜を形成した。次に、この部品を125℃で20分間乾燥させた。この処理を10回繰り返した。その後、部品をPEDT分散液(2.1%の固体含有量)中に0.1mm/sの速度で浸漬して、分散液が部品の段部に達するようにした。この部品を分散液中に10秒間放置し、125℃で30分間乾燥させ、その後室温まで冷却した。この処理を10回繰り返した。次に、この部品を黒鉛及び銀で被覆した。その後、上述した方法と同じ方法で、コンデンサ素子から100個のコンデンサアセンブリを形成した。次に、この部品の、25℃の温度における上述したような「振動試験」の前後の電気的性能(すなわち、静電容量(「CAP」)及び等価直列抵抗(「ESR」))を試験した。以下に中間結果を示す。
Figure 2016213484
この表に示すように、ポリマー拘束物材料を含むコンデンサアセンブリの温度周期試験後にはESR値が減少した。
当業者であれば、本発明の思想及び範囲から逸脱することなく本発明のこれらの及びその他の修正及び変更を行うことができる。また、様々な実施形態の態様を、全部又は一部の両方の形で置き替えできることを理解されたい。さらに、当業者であれば、上述の説明は例示を目的としたものにすぎず、以下に添付する特許請求の範囲にさらに記載するように本発明を限定することを意図するものではないことが理解できよう。

Claims (21)

  1. 陽極酸化した焼結多孔質体から形成された陽極と、該陽極の上にある固体電解質とを含むコンデンサ素子と、
    前記コンデンサ素子が中に配置される内部キャビティを定めるハウジングと、
    ポリマー拘束物と、
    前記陽極体に電気的に接続された陽極終端と、
    前記固体電解質に電気的に接続された陰極終端と、
    を備え、前記内部キャビティが、不活性ガスを含む気体雰囲気を有し、前記ポリマー拘束物が、前記コンデンサ素子の表面及び前記ハウジングの表面に隣接して、かつこれらに接触して位置し、前記内部キャビティの少なくとも一部が、前記コンデンサ素子及び前記ポリマー拘束物によって占められていない状態を保つようにする、
    ことを特徴とするコンデンサアセンブリ。
  2. 前記多孔質体が、タンタル又は酸化ニオブから形成される、
    ことを特徴とする請求項1に記載のコンデンサアセンブリ。
  3. 前記固体電解質が導電性ポリマーを含む、
    ことを特徴とする請求項1に記載のコンデンサアセンブリ。
  4. 前記導電性ポリマーが、粒子分散の形をとる、
    ことを特徴とする請求項3に記載のコンデンサアセンブリ。
  5. 前記固体電解質が二酸化マンガンを含む、
    ことを特徴とする請求項1に記載のコンデンサアセンブリ。
  6. 前記コンデンサ素子が、前記内部キャビティの約30容量パーセント又はそれ以上を占める、
    ことを特徴とする請求項1に記載のコンデンサアセンブリ。
  7. 前記気体雰囲気の約50重量パーセント〜100重量パーセントを不活性ガスが構成する、
    ことを特徴とする請求項1に記載のコンデンサアセンブリ。
  8. 前記ポリマー拘束物が、熱硬化性材料から形成される、
    ことを特徴とする請求項1に記載のコンデンサアセンブリ。
  9. 前記熱硬化性材料が、ポリオルガノシロキサン、エポキシ樹脂、又はこれらの組み合わせを含む、
    ことを特徴とする請求項8に記載のコンデンサアセンブリ。
  10. 前記ポリマー拘束物が、約25℃の温度で測定した約2メガパスカル〜約100メガパスカルの引張強度を有する、
    ことを特徴とする請求項1に記載のコンデンサアセンブリ。
  11. 前記ポリマー拘束物が、前記コンデンサ素子の複数の面に接触する、
    ことを特徴とする請求項1に記載のコンデンサアセンブリ。
  12. 前記コンデンサアセンブリが複数のポリマー拘束物を含み、これらの各々が、前記コンデンサ素子の表面及び前記ハウジングの表面に隣接し、かつこれらに接触する、
    ことを特徴とする請求項1に記載のコンデンサアセンブリ。
  13. 前記ハウジングが、金属、プラスチック、セラミック、又はこれらの組み合わせから形成される、
    ことを特徴とする請求項1に記載のコンデンサアセンブリ。
  14. 前記陽極の前記多孔質体から横方向に延びるリードをさらに備え、前記リードが、前記ハウジングの前記内部キャビティ内に位置する、
    ことを特徴とする請求項1に記載のコンデンサアセンブリ。
  15. 前記陽極リードの前記横方向に対して概ね垂直に位置して前記陽極リードに接続された第1の部分を含む接続部材をさらに備える、
    ことを特徴とする請求項14に記載のコンデンサアセンブリ。
  16. 前記接続部材が、前記陽極リードが延びる前記横方向に対して概ね平行な第2の部分をさらに含む、
    ことを特徴とする請求項15に記載のコンデンサアセンブリ。
  17. 前記第2の部分が、前記ハウジング内に位置する、
    ことを特徴とする請求項16に記載のコンデンサアセンブリ。
  18. 前記内部キャビティの前記容量の少なくとも約5%が、前記コンデンサ素子及び前記ポリマー拘束物によって占められていない状態を保つ、
    ことを特徴とする請求項1に記載のコンデンサアセンブリ。
  19. コンデンサアセンブリの形成方法であって、
    酸化マンガンを含む固体電解質で被覆された陽極酸化した焼結陽極体を含むコンデンサ素子をハウジングの内部キャビティ内に配置するステップと、
    前記コンデンサ素子の前記陽極体を陽極終端に電気的に接続し、前記コンデンサ素子の前記固体電解質を陰極終端に電気的に接続するステップと、
    その後、前記コンデンサ素子の表面及び前記ハウジングの表面に隣接させて、かつこれらに接触させて熱硬化性材料を配置するステップと、
    前記熱硬化性材料を硬化させてポリマー拘束物を形成するステップと、
    前記コンデンサ素子及び前記ポリマー拘束物を、不活性ガスを含む気体雰囲気中で前記ハウジング内に密封するステップと、
    を含むことを特徴とする方法。
  20. 前記熱硬化性材料が、前記コンデンサ素子の複数の面に接触する、
    ことを特徴とする請求項19に記載の方法。
  21. 前記内部キャビティの前記容量の少なくとも約5%が、前記コンデンサ素子及び前記ポリマー拘束物によって占められていない状態を保つ、
    ことを特徴とする請求項19に記載の方法。
JP2016136705A 2011-04-07 2016-07-11 向上した機械的安定性を有する密封電解コンデンサ Pending JP2016213484A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/081,955 2011-04-07
US13/081,955 US8300387B1 (en) 2011-04-07 2011-04-07 Hermetically sealed electrolytic capacitor with enhanced mechanical stability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012048537A Division JP6202780B2 (ja) 2011-04-07 2012-02-16 向上した機械的安定性を有する密封電解コンデンサ

Publications (1)

Publication Number Publication Date
JP2016213484A true JP2016213484A (ja) 2016-12-15

Family

ID=46026252

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012048537A Active JP6202780B2 (ja) 2011-04-07 2012-02-16 向上した機械的安定性を有する密封電解コンデンサ
JP2016136705A Pending JP2016213484A (ja) 2011-04-07 2016-07-11 向上した機械的安定性を有する密封電解コンデンサ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012048537A Active JP6202780B2 (ja) 2011-04-07 2012-02-16 向上した機械的安定性を有する密封電解コンデンサ

Country Status (7)

Country Link
US (1) US8300387B1 (ja)
JP (2) JP6202780B2 (ja)
KR (1) KR102003320B1 (ja)
CN (1) CN102751103B (ja)
DE (1) DE102012205607A1 (ja)
FR (1) FR2973928A1 (ja)
GB (1) GB2490564B (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US9767964B2 (en) 2011-04-07 2017-09-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
US8947857B2 (en) 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
JP2013219362A (ja) 2012-04-11 2013-10-24 Avx Corp 過酷な条件下で強化された機械的安定性を有する固体電解コンデンサ
US9941056B2 (en) * 2013-01-25 2018-04-10 Kemet Electronics Corporation Solid electrolytic capacitor and method
GB2512480B (en) 2013-03-13 2018-05-30 Avx Corp Solid electrolytic capacitor for use in extreme conditions
KR101436426B1 (ko) * 2013-04-05 2014-09-01 신재영 칩형 전기이중층 커패시터
US10204737B2 (en) 2014-06-11 2019-02-12 Avx Corporation Low noise capacitors
US9620293B2 (en) * 2014-11-17 2017-04-11 Avx Corporation Hermetically sealed capacitor for an implantable medical device
US9620294B2 (en) * 2014-12-30 2017-04-11 Avx Corporation Wet electrolytic capacitor containing a recessed planar anode and a restraint
US9754730B2 (en) 2015-03-13 2017-09-05 Avx Corporation Low profile multi-anode assembly in cylindrical housing
US10014108B2 (en) * 2015-03-13 2018-07-03 Avx Corporation Low profile multi-anode assembly
US9928963B2 (en) 2015-03-13 2018-03-27 Avx Corporation Thermally conductive encapsulant material for a capacitor assembly
US10297393B2 (en) 2015-03-13 2019-05-21 Avx Corporation Ultrahigh voltage capacitor assembly
CN105140040A (zh) * 2015-09-25 2015-12-09 株洲宏达电子有限公司 一种陶瓷封装结构片式固体钽电容器及其封装方法
US9947479B2 (en) * 2015-11-16 2018-04-17 Vishay Sprague, Inc. Volumetric efficiency wet electrolyte capacitor having a fill port and terminations for surface mounting
US10763046B2 (en) * 2016-09-15 2020-09-01 Avx Corporation Solid electrolytic capacitor with improved leakage current
WO2019005535A1 (en) 2017-06-29 2019-01-03 Avx Corporation MODULE CONTAINING HERMETICALLY SEALED CAPACITORS
CN107731554A (zh) * 2017-09-26 2018-02-23 华为技术有限公司 一种聚合物电容器及其制备方法
EP3534385A1 (en) * 2018-03-02 2019-09-04 Greatbatch Ltd. Titanium clad nickel termination-pad welded to a titanium tab for a capacitor
US11189431B2 (en) 2018-07-16 2021-11-30 Vishay Sprague, Inc. Low profile wet electrolytic tantalum capacitor
US11024464B2 (en) 2018-08-28 2021-06-01 Vishay Israel Ltd. Hermetically sealed surface mount polymer capacitor
CN118213199A (zh) * 2018-12-11 2024-06-18 京瓷Avx元器件公司 含有本征导电聚合物的固体电解电容器
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
EP4238116A1 (en) * 2020-10-27 2023-09-06 KYOCERA AVX Components Corporation Surface mountable ultracapacitor device including a resin layer having vents
US11742149B2 (en) 2021-11-17 2023-08-29 Vishay Israel Ltd. Hermetically sealed high energy electrolytic capacitor and capacitor assemblies with improved shock and vibration performance

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120150U (ja) * 1979-02-19 1980-08-26
JPH01315122A (ja) * 1988-04-21 1989-12-20 Siemens Ag 回路板に固定するためのチツプ形デバイス
JP2003109878A (ja) * 2001-09-28 2003-04-11 Tdk Corp 高分子固体電解コンデンサおよびその製造方法
JP2005311263A (ja) * 2004-03-26 2005-11-04 Kyocera Corp セラミック容器およびそれを用いたタンタル電解コンデンサ
JP2006128247A (ja) * 2004-10-27 2006-05-18 Nec Tokin Corp 表面実装型コンデンサ及びその製造方法
JP2009224627A (ja) * 2008-03-18 2009-10-01 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法
JP2009253278A (ja) * 2008-04-01 2009-10-29 Avx Corp 密封されたコンデンサアセンブリ
JP2010212650A (ja) * 2009-03-09 2010-09-24 Samsung Electro-Mechanics Co Ltd 固体コンデンサ及びその製造方法

Family Cites Families (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345545A (en) 1964-11-27 1967-10-03 Johnson Matthey & Mallory Ltd Solid electrolytic capacitor having minimum anode impedance
GB1069685A (en) 1965-08-31 1967-05-24 Mallory & Co Inc P R Atmosphere control within the hermetic enclosure of electrolytic-capacitor assemblies
US4085435A (en) 1976-06-14 1978-04-18 Avx Corporation Tantalum chip capacitor
US3922773A (en) 1974-07-17 1975-12-02 Corning Glass Works Method of forming a hermetic enclosure
US4479168A (en) 1983-12-19 1984-10-23 Sprague Electric Company Electrolytic capacitor with a hermetic seal
US4755908A (en) 1987-08-17 1988-07-05 Gardner Edward P Capacitor
DE3843412A1 (de) 1988-04-22 1990-06-28 Bayer Ag Neue polythiophene, verfahren zu ihrer herstellung und ihre verwendung
DE3814730A1 (de) 1988-04-30 1989-11-09 Bayer Ag Feststoff-elektrolyte und diese enthaltende elektrolyt-kondensatoren
JPH0320008A (ja) * 1989-03-10 1991-01-29 Nippon Chemicon Corp 電解コンデンサの素子固定構造体
JPH03127813A (ja) 1989-10-13 1991-05-30 Kao Corp 固体電解コンデンサの製造方法
US4945452A (en) 1989-11-30 1990-07-31 Avx Corporation Tantalum capacitor and method of making same
DE59010247D1 (de) 1990-02-08 1996-05-02 Bayer Ag Neue Polythiophen-Dispersionen, ihre Herstellung und ihre Verwendung
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
US5198968A (en) 1992-07-23 1993-03-30 Avx Corporation Compact surface mount solid state capacitor and method of making same
US5357399A (en) 1992-09-25 1994-10-18 Avx Corporation Mass production method for the manufacture of surface mount solid state capacitor and resulting capacitor
US5314606A (en) 1993-02-16 1994-05-24 Kyocera America, Inc. Leadless ceramic package with improved solderabilty
US5394295A (en) 1993-05-28 1995-02-28 Avx Corporation Manufacturing method for solid state capacitor and resulting capacitor
JP2765462B2 (ja) 1993-07-27 1998-06-18 日本電気株式会社 固体電解コンデンサおよびその製造方法
US5495386A (en) 1993-08-03 1996-02-27 Avx Corporation Electrical components, such as capacitors, and methods for their manufacture
JPH07135126A (ja) 1993-11-10 1995-05-23 Nec Corp 固体電解コンデンサ及びその製造方法
JP3070408B2 (ja) 1993-12-28 2000-07-31 日本電気株式会社 固体電解コンデンサおよびその製造方法
US5638253A (en) 1994-04-28 1997-06-10 Rohm Co. Ltd. Package-type solid electrolytic capacitor
JP2770746B2 (ja) 1994-09-02 1998-07-02 日本電気株式会社 固体電解コンデンサ及びその製造方法
JP2778495B2 (ja) 1994-12-28 1998-07-23 日本電気株式会社 耐熱性導電性高分子並びにその導電性高分子を用いた固体電解コンデンサ及びその製造方法
US5608261A (en) 1994-12-28 1997-03-04 Intel Corporation High performance and high capacitance package with improved thermal dissipation
JP3068430B2 (ja) 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
JPH09129519A (ja) 1995-10-30 1997-05-16 Matsushita Electric Ind Co Ltd 安全機構付き電解コンデンサ
JP3127813B2 (ja) 1995-12-05 2001-01-29 ヤマハ株式会社 オーディオ用アンプの保護回路
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
JPH1097958A (ja) * 1996-09-24 1998-04-14 Nippon Chemicon Corp 電解コンデンサの製造方法
JP3863232B2 (ja) 1996-09-27 2006-12-27 ローム株式会社 固体電解コンデンサに使用するコンデンサ素子の構造及びコンデンサ素子におけるチップ体の固め成形方法
GB9700566D0 (en) 1997-01-13 1997-03-05 Avx Ltd Binder removal
TW388043B (en) 1997-04-15 2000-04-21 Sanyo Electric Co Solid electrolyte capacitor
JPH11112157A (ja) 1997-09-30 1999-04-23 Kyocera Corp 電子部品用ケースとこれを用いた電子部品及び電解コンデンサ
US6042624A (en) * 1998-04-03 2000-03-28 Medtronic, Inc. Method of making an implantable medical device having a flat electrolytic capacitor
JP3080922B2 (ja) * 1998-04-13 2000-08-28 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6191936B1 (en) 1999-04-12 2001-02-20 Vishay Sprague, Inc. Capacitor having textured pellet and method for making same
US6602741B1 (en) * 1999-09-14 2003-08-05 Matsushita Electric Industrial Co., Ltd. Conductive composition precursor, conductive composition, solid electrolytic capacitor, and their manufacturing method
DE10004725A1 (de) 2000-02-03 2001-08-09 Bayer Ag Verfahren zur Herstellung von wasserlöslichen pi-konjugierten Polymeren
JP3959220B2 (ja) 2000-02-04 2007-08-15 株式会社エスアイアイ・マイクロパーツ 表面実装用非水電解電池および表面実装用電気二重層キャパシタ
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
DE10016723A1 (de) 2000-04-04 2001-10-11 Bayer Ag Verfahren zur Herstellung von Dialkoxythiophenen und Alkylendioxythiophenen
DE10029075A1 (de) 2000-06-13 2001-12-20 Bayer Ag Verfahren zur Herstellung von 3,4-Alkylendioxythiophen-2,5-dicarbonsäurederivaten
US6534581B1 (en) 2000-07-20 2003-03-18 Dow Corning Corporation Silicone composition and electrically conductive silicone adhesive formed therefrom
JP2004513514A (ja) 2000-11-06 2004-04-30 キャボット コーポレイション 酸素を低減した改質バルブ金属酸化物
EP1339772B1 (de) 2000-11-22 2011-01-12 H.C. Starck Clevios GmbH Dispergierbare polymerpulver
JP4248756B2 (ja) * 2001-03-29 2009-04-02 Tdk株式会社 固体電解コンデンサ内蔵基板およびその製造方法
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
JP2003109877A (ja) * 2001-09-28 2003-04-11 Tdk Corp 固体電解コンデンサ
DE10164260A1 (de) 2001-12-27 2003-07-17 Bayer Ag Verfahren zur Herstellung von undotiertem, neutralem Polyethylendioxythiophen, sowie entsprechende Polyethylendioxythiophene
JP2003283086A (ja) * 2002-01-21 2003-10-03 Hitachi Cable Ltd 配線基板、配線基板の製造方法及び配線基板を用いた電子部品
DE10229218A1 (de) 2002-06-28 2004-01-22 H.C. Starck Gmbh Alkylendioxythiophen-Dimere und Trimere
DE10237577A1 (de) 2002-08-16 2004-02-26 H.C. Starck Gmbh Substituierte Poly(alkylendioxythiophene) als Feststoffelektrolyte in Elektrolytkondensatoren
JP2004146724A (ja) * 2002-10-28 2004-05-20 Matsushita Electric Ind Co Ltd 金属化フィルムコンデンサ
DE10257539A1 (de) 2002-12-10 2004-07-01 H.C. Starck Gmbh Verfahren zur Herstellung von 2,2'-Di(3,4-ethylendioxythiophen)en
DE10302086A1 (de) 2003-01-21 2004-07-29 Bayer Ag Alkylendioxythiophene und Poly(alkylendioxythiophene) mit mesogenen Gruppen
EP1614122A1 (de) 2003-04-02 2006-01-11 H.C. Starck GmbH & Co. KG Spezielle oxidationsmittel zur herstellung leitfähiger polymere
US7348097B2 (en) * 2003-06-17 2008-03-25 Medtronic, Inc. Insulative feed through assembly for electrochemical devices
JP2005039168A (ja) * 2003-06-27 2005-02-10 Kyocera Corp セラミック容器およびそれを用いたタンタル電解コンデンサ
DE10331673A1 (de) 2003-07-14 2005-02-10 H.C. Starck Gmbh Polythiophen mit Alkylenoxythiathiophen-Einheiten in Elektrolytkondensatoren
DE502004011120D1 (de) 2003-07-15 2010-06-17 Starck H C Gmbh Niobsuboxidpulver
DE10333156A1 (de) 2003-07-22 2005-02-24 H.C. Starck Gmbh Verfahren zur Herstellung von Niobsuboxid
DE10343873A1 (de) 2003-09-23 2005-04-21 Starck H C Gmbh Verfahren zur Reinigung von Thiophenen
DE10347702B4 (de) 2003-10-14 2007-03-29 H.C. Starck Gmbh Sinterkörper auf Basis Niobsuboxid
EP1524678B2 (de) 2003-10-17 2018-06-20 Heraeus Deutschland GmbH & Co. KG Elektrolytkondensatoren mit polymerer Aussenschicht
DE10357571A1 (de) 2003-12-10 2005-07-28 H.C. Starck Gmbh Multifunktionelle 3,4-Alkylendioxythiophen-Derivate und diese enthaltende elektrisch leitfähige Polymere
US7948069B2 (en) 2004-01-28 2011-05-24 International Rectifier Corporation Surface mountable hermetically sealed package
JP2005217129A (ja) 2004-01-29 2005-08-11 Kyocera Corp セラミック容器およびそれを用いたタンタル電解コンデンサ
US7088573B2 (en) * 2004-03-02 2006-08-08 Vishay Sprague, Inc. Surface mount MELF capacitor
US7116548B2 (en) 2004-04-23 2006-10-03 Kemet Electronics Corporation Fluted anode with minimal density gradients and capacitor comprising same
DE102004022110A1 (de) 2004-05-05 2005-12-01 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
JP2006028214A (ja) 2004-07-12 2006-02-02 Nagase Chemtex Corp ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体の製造方法
JP4550519B2 (ja) 2004-08-10 2010-09-22 セイコーインスツル株式会社 電気化学セルおよびその製造方法
CN1737072B (zh) 2004-08-18 2011-06-08 播磨化成株式会社 导电粘合剂及使用该导电粘合剂制造物件的方法
JP2006108185A (ja) * 2004-09-30 2006-04-20 Nippon Chemicon Corp 電解コンデンサ
JP2006128343A (ja) * 2004-10-28 2006-05-18 Rohm Co Ltd 固体電解コンデンサ
TWI283879B (en) * 2005-02-17 2007-07-11 Sanyo Electric Co Solid electrolytic capacitor and manufacturing method thereof
JP4903421B2 (ja) 2005-02-23 2012-03-28 京セラ株式会社 セラミック容器およびこれを用いた電池または電気二重層キャパシタ
JP2006278875A (ja) 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 固体電解コンデンサ
DE102005016727A1 (de) 2005-04-11 2006-10-26 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zu ihrer Herstellung
US20060260713A1 (en) 2005-04-22 2006-11-23 Pyszczek Michael F Method and apparatus for providing a sealed container containing a detectable gas
JP2007013043A (ja) * 2005-07-04 2007-01-18 Nichicon Corp 電子素子搭載用電極アセンブリ及びこれを用いた電子部品、並びに固体電解コンデンサ
DE102005033839A1 (de) 2005-07-20 2007-01-25 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zur ihrer Herstellung
US7092242B1 (en) * 2005-09-08 2006-08-15 Greatbatch, Inc. Polymeric restraints for containing an anode in an electrolytic capacitor from high shock and vibration conditions
DE102005043829A1 (de) 2005-09-13 2007-04-05 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit hoher Nennspannung
DE102005043828A1 (de) 2005-09-13 2007-03-22 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102005053646A1 (de) 2005-11-10 2007-05-16 Starck H C Gmbh Co Kg Polymerbeschichtungen mit verbesserter Lösungsmittelbeständigkeit
KR101327242B1 (ko) 2005-11-17 2013-11-12 헤레우스 프레셔스 메탈스 게엠베하 운트 코. 카게 폴리(3,4-디알콕시티오펜)과 폴리음이온의 복합체의수분산체의 제조방법
US7582958B2 (en) 2005-12-08 2009-09-01 International Rectifier Corporation Semiconductor package
DE102006002797A1 (de) 2006-01-20 2007-08-02 H. C. Starck Gmbh & Co. Kg Verfahren zur Herstellung von Polythiophenen
JP2007200950A (ja) 2006-01-23 2007-08-09 Fujitsu Media Device Kk 積層型固体電解コンデンサ
JP5013772B2 (ja) 2006-01-31 2012-08-29 三洋電機株式会社 電気二重層キャパシタ
US7352563B2 (en) * 2006-03-13 2008-04-01 Avx Corporation Capacitor assembly
DE102006020744A1 (de) 2006-05-04 2007-11-08 H. C. Starck Gmbh & Co. Kg Verfahren zur Stabilisierung von Thiophenderivaten
US7563290B2 (en) 2006-07-06 2009-07-21 Kemet Electronics Corporation High voltage solid electrolytic capacitors using conductive polymer slurries
DE102006044067A1 (de) 2006-09-20 2008-03-27 H.C. Starck Gmbh Verfahren zur Herstellung von Polythiophenen
JP4440911B2 (ja) 2006-10-13 2010-03-24 ニチコン株式会社 固体電解コンデンサ
US7554793B2 (en) 2006-11-16 2009-06-30 Kemet Electronics Corporation Low temperature curable conductive adhesive and capacitors formed thereby
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer
DE102007041722A1 (de) 2007-09-04 2009-03-05 H.C. Starck Gmbh Verfahren zur Herstellung von leitfähigen Polymeren
DE102007046904A1 (de) 2007-09-28 2009-04-09 H.C. Starck Gmbh Partikel mit Kern-Schale-Struktur für leitfähige Schichten
DE102007048212A1 (de) 2007-10-08 2009-04-09 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Zwischenschicht
EP2231754B1 (de) 2007-12-14 2011-07-20 Henkel AG & Co. KGaA Härtbare zusammensetzungen enthaltend wässrige dispersionen von organopolysiloxanen
US7826200B2 (en) * 2008-03-25 2010-11-02 Avx Corporation Electrolytic capacitor assembly containing a resettable fuse
DE102008023008A1 (de) 2008-05-09 2009-11-12 H.C. Starck Gmbh Neuartige Polythiophene-Polyanion-Komplexe in unpolaren organischen Lösungsmitteln
CN101329951B (zh) * 2008-05-23 2011-05-04 电子科技大学 一种高频无极性有引线固体钽电解电容器及其制造方法
DE102008024805A1 (de) 2008-05-23 2009-12-03 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102008032578A1 (de) 2008-07-11 2010-01-14 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102008036525A1 (de) 2008-08-06 2010-02-11 H.C. Starck Gmbh Verfahren zur Herstellung von Polythiophenen
JP2010153625A (ja) * 2008-12-25 2010-07-08 Hitachi Chemical Electronics Co Ltd チップ形固体電解コンデンサおよびその製造方法
US8075640B2 (en) * 2009-01-22 2011-12-13 Avx Corporation Diced electrolytic capacitor assembly and method of production yielding improved volumetric efficiency
DE102009007594A1 (de) 2009-02-05 2010-08-12 H.C. Starck Clevios Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Außenschicht.
US8310815B2 (en) 2009-04-20 2012-11-13 Kemet Electronics Corporation High voltage and high efficiency polymer electrolytic capacitors
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120150U (ja) * 1979-02-19 1980-08-26
JPH01315122A (ja) * 1988-04-21 1989-12-20 Siemens Ag 回路板に固定するためのチツプ形デバイス
JP2003109878A (ja) * 2001-09-28 2003-04-11 Tdk Corp 高分子固体電解コンデンサおよびその製造方法
JP2005311263A (ja) * 2004-03-26 2005-11-04 Kyocera Corp セラミック容器およびそれを用いたタンタル電解コンデンサ
JP2006128247A (ja) * 2004-10-27 2006-05-18 Nec Tokin Corp 表面実装型コンデンサ及びその製造方法
JP2009224627A (ja) * 2008-03-18 2009-10-01 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法
JP2009253278A (ja) * 2008-04-01 2009-10-29 Avx Corp 密封されたコンデンサアセンブリ
JP2010212650A (ja) * 2009-03-09 2010-09-24 Samsung Electro-Mechanics Co Ltd 固体コンデンサ及びその製造方法

Also Published As

Publication number Publication date
DE102012205607A1 (de) 2012-10-11
GB2490564A (en) 2012-11-07
US20120257327A1 (en) 2012-10-11
GB2490564B (en) 2015-03-11
KR102003320B1 (ko) 2019-07-24
CN102751103B (zh) 2017-11-14
KR20120115173A (ko) 2012-10-17
CN102751103A (zh) 2012-10-24
US8300387B1 (en) 2012-10-30
FR2973928A1 (fr) 2012-10-12
JP6202780B2 (ja) 2017-09-27
GB201204144D0 (en) 2012-04-25
JP2012222343A (ja) 2012-11-12

Similar Documents

Publication Publication Date Title
JP6202780B2 (ja) 向上した機械的安定性を有する密封電解コンデンサ
JP5988475B2 (ja) 多陽極固体電解コンデンサアセンブリ
JP2016136642A (ja) 固体電解コンデンサアセンブリのためのハウジング構成
US9214285B2 (en) Solid electrolytic capacitor with enhanced mechanical stability under extreme conditions
KR102486981B1 (ko) 누설 전류가 개선된 고체 전해질 커패시터
JP6184661B2 (ja) 極限環境で使用するための酸化マンガンコンデンサ
US9224541B2 (en) Solid electrolytic capacitor for use in high voltage and high temperature applications
US8279584B2 (en) Solid electrolytic capacitor assembly
JP6965282B2 (ja) 高温で使用される固体電解キャパシタ
JP2019505993A (ja) 改良された漏れ電流を有する固体電解キャパシタ
JP2011091408A (ja) 密閉されたコンデンサアセンブリ
KR20120066600A (ko) 전해 커패시터에서 사용하기 위한 전도성 코팅
JP2017022367A (ja) 多湿雰囲気中で使用するための固体電解キャパシタアセンブリ
US11270847B1 (en) Solid electrolytic capacitor with improved leakage current

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180226