JP2014205196A - ロボット、ロボット制御装置およびロボットシステム - Google Patents

ロボット、ロボット制御装置およびロボットシステム Download PDF

Info

Publication number
JP2014205196A
JP2014205196A JP2013082273A JP2013082273A JP2014205196A JP 2014205196 A JP2014205196 A JP 2014205196A JP 2013082273 A JP2013082273 A JP 2013082273A JP 2013082273 A JP2013082273 A JP 2013082273A JP 2014205196 A JP2014205196 A JP 2014205196A
Authority
JP
Japan
Prior art keywords
arm
axis
angular velocity
robot
rotation axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013082273A
Other languages
English (en)
Other versions
JP6155780B2 (ja
Inventor
篤 浅田
Atsushi Asada
篤 浅田
俊介 年光
Shunsuke Toshimitsu
俊介 年光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013082273A priority Critical patent/JP6155780B2/ja
Priority to US14/195,913 priority patent/US9339933B2/en
Priority to CN201410089677.7A priority patent/CN104097199B/zh
Publication of JP2014205196A publication Critical patent/JP2014205196A/ja
Application granted granted Critical
Publication of JP6155780B2 publication Critical patent/JP6155780B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1651Programme controls characterised by the control loop acceleration, rate control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • Y10T74/20311Robotic arm including power cable or connector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • Y10T74/20329Joint between elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

【課題】容易かつ確実に、振動を抑制することができるロボット、ロボット制御装置およびロボットシステムを提供すること。
【解決手段】ロボット1は、基台11と、基台11に対し、第1回動軸を回動中心として回動可能に連結された第1アーム12と、第1アーム12に対し、第1回動軸に直交する軸であるかまたは第1回動軸に直交する軸と平行な軸である第2回動軸を回動中心として回動可能に連結された第2アーム13と、第2アーム13に対し、第2回動軸と平行な軸である第3回動軸を回動中心として回動可能に連結された第3アーム14と、第3アーム14に設置され、互いに直交する第1検出軸、第2検出軸および第3検出軸を備え、第1検出軸が第3回動軸と平行である3軸慣性センサーと、を有する。
【選択図】図1

Description

本発明は、ロボット、ロボット制御装置およびロボットシステムに関するものである。
特許文献1に記載のロボットでは、先端部、すなわち、最も先端側の第6のリンクに、互いに直交するX軸、Y軸、Z軸のそれぞれの方向の加速度、X軸、Y軸、Z軸のそれぞれ回りの加速度を検出する6軸センサーを設置し、その6軸センサーの検出結果に基づいて、各リンクについて、それぞれ、目的の軸回りの角速度の振動成分を求め、振動を抑制する制御を行っている。なお、リンクの角速度の振動成分は、「ねじれ角速度」または「振動角速度」等と呼ばれている。
特開2011−136395号公報
特許文献1に記載のロボットでは、ロボットの動きによって6軸センサーの姿勢が変わるので、その6軸センサーの検出結果から、ヤコビ変換と呼ばれる座標軸変換等を行い、各リンクの角速度の振動成分を求める必要がある。しかも、刻一刻と変化するモーターの回動角度に合わせて計算を行う必要がある。
このため、複雑で膨大な演算処理が必要となるので、性能が高く、高価なCPU(Central Processing Unit)等を有する制御装置を必要とし、コストが増大するという問題がある。
また、複雑で膨大な演算処理が必要となるので、演算誤差が生じ易く、その演算誤差により、振動を十分に抑制することができないという問題がある。
本発明の目的は、容易かつ確実に、振動を抑制することができるロボット、ロボット制御装置およびロボットシステムを提供することにある。
このような目的は、下記の本発明により達成される。
本発明のロボットは、基台と、
前記基台に対し、第1回動軸を回動中心として回動可能に連結された第1アームと、
前記第1アームに対し、前記第1回動軸に直交する軸であるかまたは前記第1回動軸に直交する軸と平行な軸である第2回動軸を回動中心として回動可能に連結された第2アームと、
前記第2アームに対し、前記第2回動軸と平行な軸である第3回動軸を回動中心として回動可能に連結された第3アームと、
互いに直交する第1検出軸、第2検出軸および第3検出軸を備え、前記第1検出軸が前記第3回動軸と平行であり、前記第3アームに設置された3軸慣性センサーと、を有することを特徴とする。
これにより、容易かつ確実に、振動を抑制することができる。
すなわち、3軸慣性センサーにより、第1アームおよび第2アームの回動分を含めて第3アームの慣性を検出することができる。そして、これらの検出結果に基づいて、振動を抑制することができる。そのため、より確実に振動を抑制することができる。また、第1アームおよび第2アームにも慣性センサーを設置する場合に比べて、慣性センサーの数を削減することができ、コストを低減することができ、また、構成を簡素化することができる。
また、ロボットの姿勢が変化、例えば、第1アームが回動しても、また、第2アームが回動しても、角速度センサーの第1検出軸は、一定である。このため、角速度センサーにより検出された第3アームの第1検出軸まわりの角速度に対して、角速度センサーの向きによる補正を行う必要がない。これにより、複雑で膨大な演算が不要であり、これによって、演算誤差が生じ難く、振動を確実に抑制することができ、また、ロボットの制御における応答速度を速くすることができる。
本発明のロボットでは、前記3軸慣性センサーは、前記第1検出軸まわりの角速度と、前記第2検出軸まわりの角速度と、前記第3検出軸まわりの角速度とを検出する3軸角速度センサーであることが好ましい。
これにより、第1アームおよび第2アームと第3アームの合成角速度を検出することができるため、より容易かつ確実に、振動を抑制することができる。
本発明のロボットでは、ハウジングと、前記ハウジング内に設けられ、前記3軸慣性センサーおよび前記3軸慣性センサーから出力される信号をAD変換し送信する回路部とを有する慣性センサーユニットとを備え、
前記慣性センサーユニットが前記第3アームに設置されているのが好ましい。
これにより、前記回路部を別途設ける場合に比べ、構成を簡素化することができる。
本発明のロボットでは、前記ハウジングの外形は、直方体であり、
前記3軸慣性センサーの前記第1検出軸は、前記ハウジングの前記直方体の一番大きな面の法線と一致することが好ましい。
これにより、容易かつ確実に、3軸慣性センサーの第1検出軸の方向を認識することができ、容易に、3軸慣性センサーを適正な姿勢にすることができる。
本発明のロボットでは、前記3軸慣性センサーの前記第2検出軸は、前記ハウジングの直方体の前記一番大きな面に接続される4つの面のうちの対向する1組の面の法線と一致し、
前記3軸慣性センサーの前記第3検出軸は、前記ハウジングの直方体の前記一番大きな面に接続される4つの面のうちの対向する他の1組の面の法線と一致することが好ましい。
これにより、容易かつ確実に、3軸慣性センサーの第2、第3検出軸の方向を認識することができ、容易に、3軸慣性センサーを適正な姿勢にすることができる。
本発明のロボットでは、前記ハウジングは、前記ハウジングの角部に前記第3アームに取り付けられる取付部を有することが好ましい。
これにより、慣性センサーユニットを確実に第3アームに取り付けることができる。
本発明のロボットでは、導電性を有し、前記ハウジングの前記取付部を前記第3アームに固定する固定部材を有し、前記固定部材により、前記慣性センサーユニットの前記回路部は、前記第3アームにアースされていることが好ましい。
これにより、部品点数を削減することができ、構成を簡素化することができる。
本発明のロボットでは、前記第3アームは、筐体と、前記筐体と一体的に形成されたアーム側取付部とを有し、
前記慣性センサーユニットは、前記アーム側取付部に直接取り付けられていることが好ましい。
これにより、慣性センサーユニットは、確実に、第3アームと一体的に回動することができる。
本発明のロボットでは、前記第3アームに配設され、当該ロボットに電力を供給するケーブルを有し、
前記3軸慣性センサーは、前記第3アームの前記ケーブルと反対側の端部に配置されていることが好ましい。
これにより、3軸慣性センサーが、ケーブルから発せられるノイズの影響を受けることを防止することができ、また、3軸慣性センサー側の回路や配線がケーブルによりショートしてしまうことを防止することができる。
本発明のロボットでは、前記第3アームに対し、前記第3回動軸に直交する軸であるかまたは前記第3回動軸に直交する軸と平行な軸である第4回動軸を回動中心として回動可能に連結された第4アームと、
前記第4アームに対し、前記第4回動軸に直交する軸であるかまたは前記第4回動軸に直交する軸と平行な軸である第5回動軸を回動中心として回動可能に連結された第5アームと、
前記第5アームに対し、前記第5回動軸に直交する軸であるかまたは前記第5回動軸に直交する軸と平行な軸である第6回動軸を回動中心として回動可能に連結された第6アームとを備えることが好ましい。
これにより、より複雑な動きを容易に行うことができる。
本発明のロボットでは、前記第1回動軸は、前記基台の設置面の法線と一致することが好ましい。
これにより、ロボットの制御を容易に行うことができる。
本発明のロボット制御装置は、基台と、前記基台に対し、第1回動軸を回動中心として回動可能に連結された第1アームと、前記第1アームに対し、前記第1回動軸に直交する軸であるかまたは前記第1回動軸に直交する軸と平行な軸である第2回動軸を回動中心として回動可能に連結された第2アームと、前記第2アームに対し、前記第2回動軸と平行な軸である第3回動軸を回動中心として回動可能に連結された第3アームとを備えるロボットの作動を制御するロボット制御装置であって、
互いに直交する第1検出軸、第2検出軸および第3検出軸を備え、前記第1検出軸が前記第3回動軸と平行であり、前記第3アームに設置された3軸慣性センサーから出力される信号を受信する受信部と、
前記受信部により受信された前記信号のうちの前記第2検出軸および前記第3検出軸に関する信号に基づいて前記第1アームの慣性の振動成分を求め、前記第1検出軸に関する信号に基づいて前記第3アームの慣性の振動成分を求める演算部と、
前記演算部により求められた前記第1アームの慣性の振動成分および前記第3アームの慣性の振動成分に基づいて、前記ロボットの作動を制御する制御部とを備えることを特徴とする。
これにより、容易かつ確実に、振動を抑制することができる。
すなわち、3軸慣性センサーにより、第1アームおよび第2アームの回動分を含めて第3アームの慣性を検出することができる。そして、これらの検出結果に基づいて、振動を抑制することができる。そのため、より確実に振動を抑制することができる。
また、ロボットの姿勢が変化、例えば、第1アームが回動しても、また、第2アームが回動しても、角速度センサーの第1検出軸は、一定である。このため、角速度センサーにより検出された第3アームの第1検出軸まわりの角速度に対して、角速度センサーの向きによる補正を行う必要がない。これにより、複雑で膨大な演算が不要であり、これによって、演算誤差が生じ難く、振動を確実に抑制することができ、また、ロボットの制御における応答速度を速くすることができる。
本発明のロボットシステムは、本発明のロボットと、
前記ロボットの作動を制御するロボット制御装置とを備えることを特徴とする。
これにより、容易かつ確実に、振動を抑制することができる。
すなわち、3軸慣性センサーにより、第1アームおよび第2アームの回動分を含めて第3アームの慣性を検出することができる。そして、これらの検出結果に基づいて、振動を抑制することができる。そのため、より確実に振動を抑制することができる。また、第1アームおよび第2アームにも慣性センサーを設置する場合に比べて、慣性センサーの数を削減することができ、コストを低減することができ、また、構成を簡素化することができる。
また、ロボットの姿勢が変化、例えば、第1アームが回動しても、また、第2アームが回動しても、角速度センサーの第1検出軸は、一定である。このため、角速度センサーにより検出された第3アームの第1検出軸まわりの角速度に対して、角速度センサーの向きによる補正を行う必要がない。これにより、複雑で膨大な演算が不要であり、これによって、演算誤差が生じ難く、振動を確実に抑制することができ、また、ロボットの制御における応答速度を速くすることができる。
本発明のロボットの実施形態を正面側から見た斜視図である。 図1に示すロボットを背面側から見た斜視図である。 図1に示すロボットの概略図である。 図1に示すロボットを有するロボットシステムの主要部のブロック図である。 図1に示すロボットの正面図である。 図1に示すロボットの第3アームにおける角速度センサー付近を示す図である。 図1に示すロボットの角速度センサーユニットの断面図である。 角速度センサーが有するジャイロ素子の平面図である。 図8に示すジャイロ素子の作動を示す図である。 図1に示すロボットの主要部のブロック図である。 図1に示すロボットの主要部のブロック図である。 図1に示すロボットの主要部のブロック図である。 図1に示すロボットの主要部のブロック図である。 図1に示すロボットの主要部のブロック図である。
以下、本発明のロボット、ロボット制御装置およびロボットシステムを添付図面に示す好適な実施形態に基づいて詳細に説明する。
図1は、本発明のロボットの実施形態を正面側から見た斜視図である。図2は、図1に示すロボットを背面側から見た斜視図である。図3は、図1に示すロボットの概略図である。図4は、図1に示すロボットを有するロボットシステムの主要部のブロック図である。図5は、図1に示すロボットの正面図である。図6は、図1に示すロボットの第3アームにおける角速度センサー付近を示す図である。図7は、図1に示すロボットの第1角速度センサーユニットの断面図である。図8は、角速度センサーが有するジャイロ素子の平面図である。図9は、図8に示すジャイロ素子の作動を示す図である。図10〜図14は、それぞれ、図1に示すロボットの主要部のブロック図である。
なお、以下では、説明の都合上、図1〜図3、図5、図6中の上側を「上」または「上方」、下側を「下」または「下方」と言う。また、図1〜図3、図5、図6中の基台側を「基端」、その反対側を「先端」と言う。
図1〜図4に示すロボットシステム(産業用ロボットシステム)1は、例えば腕時計のような精密機器等を製造する製造工程で用いることができ、ロボット(産業用ロボット)1と、ロボット1の作動を制御するロボット制御装置(制御手段)20(図4参照)とを有している。ロボット1と、ロボット制御装置20とは、電気的に接続されている。また、ロボット制御装置20は、例えば、CPU(Central Processing Unit)が内蔵されたパーソナルコンピューター(PC)等で構成することができる。なお、ロボット制御装置20については、後で詳述する。
ロボット1は、基台11と、4本のアーム(リンク)12、13、14、15と、リスト(リンク)16と、6つの駆動源401、402、403、404、405、406とを備えている。このロボット1は、基台11と、アーム12、13、14、15と、リスト16とが基端側から先端側に向ってこの順に連結された垂直多関節(6軸)ロボット(ロボット本体)である。垂直多関節ロボットでは、基台11と、アーム12〜15と、リスト16とを総称して「アーム」と言うこともでき、アーム12を「第1アーム」、アーム13を「第2アーム」、アーム14を「第3アーム」、アーム15を「第4アーム」、リスト16を「第5アーム、第6アーム」と分けて言うことができる。なお、本実施形態では、リスト16は、第5アームと、第6アームとを有している。リスト16にはエンドエフェクタ等を取り付けることができる。
アーム12〜15、リスト16は、それぞれ、基台11に対し独立して変位可能に支持されている。このアーム12〜15、リスト16の長さは、それぞれ、特に限定されないが、図示の構成では、第1アーム12、第2アーム13、第4アーム15の長さが、第3アーム14およびリスト16よりも長く設定されている。
基台11と第1アーム12とは、関節(ジョイント)171を介して連結されている。そして、第1アーム12は、基台11に対し、鉛直方向と平行な第1回動軸O1を回動中心とし、その第1回動軸O1回りに回動可能となっている。第1回動軸O1は、基台11の設置面である床101の上面の法線と一致している。この第1回動軸O1回りの回動は、モーター401Mを有する第1駆動源401の駆動によりなされる。また、第1駆動源401はモーター401Mとケーブル(図示せず)によって駆動され、このモーター401Mは電気的に接続されたモータードライバー301を介してロボット制御装置20により制御される(図4参照)。なお、第1駆動源401はモーター401Mとともに設けた減速機(図示せず)によってモーター401Mからの駆動力を伝達するように構成してもよく、また、減速機が省略されていてもよいが、本実施形態では、第1駆動源401は、減速機を有している。
第1アーム12と第2アーム13とは、関節(ジョイント)172を介して連結されている。そして、第2アーム13は、第1アーム12に対し、水平方向と平行な第2回動軸O2を軸中心として回動可能となっている。第2回動軸O2は、第1回動軸O1と直交している。この第2回動軸O2回りの回動は、モーター402Mを有する第2駆動源402の駆動によりなされる。また、第2駆動源402はモーター402Mとケーブル(図示せず)によって駆動され、このモーター402Mは電気的に接続されたモータードライバー302を介してロボット制御装置20により制御される(図4参照)。なお、第2駆動源402はモーター402Mとともに設けた減速機45(図5参照)によってモーター402Mからの駆動力を伝達するように構成してもよく、また、減速機が省略されていてもよいが、本実施形態では、第2駆動源402は、減速機45を有している。また、第2回動軸O2は、第1回動軸O1に直交する軸と平行であってもよい。
第2アーム13と第3アーム14とは、関節(ジョイント)173を介して連結されている。そして、第3アーム14は、第2アーム13に対して水平方向と平行な回動軸O3を回動中心とし、その第3回動軸O3回りに回動可能となっている。第3回動軸O3は、第2回動軸O2と平行である。この第3回動軸O3回りの回動は、第3駆動源403の駆動によりなされる。また、第3駆動源403は、モーター403Mとケーブル(図示せず)によって駆動され、このモーター403Mは電気的に接続されたモータードライバー303を介してロボット制御装置20により制御される(図4参照)。なお、第3駆動源403はモーター403Mとともに設けた減速機(図示せず)によってモーター403Mからの駆動力を伝達するように構成してもよく、また、減速機が省略されていてもよいが、本実施形態では、第3駆動源403は、減速機を有している。
第3アーム14と第4アーム15とは、関節(ジョイント)174を介して連結されている。そして、第4アーム15は、第3アーム14(基台11)に対し、第3アーム14の中心軸方向と平行な第4回動軸O4を回動中心とし、その第4回動軸O4回りに回動可能となっている。第4回動軸O4は、第3回動軸O3と直交している。この第4回動軸O4回りの回動は、第4駆動源404の駆動によりなされる。また、第4駆動源404は、モーター404Mとケーブル(図示せず)によって駆動され、このモーター404Mは電気的に接続されたモータードライバー304を介してロボット制御装置20により制御される(図4参照)。なお、第4駆動源404はモーター404Mとともに設けた減速機(図示せず)によってモーター404Mからの駆動力を伝達するように構成してもよく、また、減速機が省略されていてもよいが、本実施形態では、第4駆動源404は、減速機を有している。第4回動軸O4は、第3回動軸O3に直交する軸と平行であってもよい。
第4アーム15と第5リスト16とは、関節(ジョイント)175を介して連結されている。そして、リスト16は、第4アーム15に対して水平方向と平行な第5回動軸O5を回動中心とし、その第5回動軸O5回りに回動可能となっている。第5回動軸O5は、第4回動軸O4と直交している。この第5回動軸O5回りの回動は、第5駆動源405の駆動によりなされる。また、第5駆動源405は、モーター405Mとケーブル(図示せず)によって駆動され、このモーター405Mは電気的に接続されたモータードライバー305を介してロボット制御装置20により制御される(図4参照)。なお、第5駆動源405はモーター405Mとともに設けた減速機(図示せず)によってモーター405Mからの駆動力を伝達するように構成してもよく、また、減速機が省略されていてもよいが、本実施形態では、第5駆動源405は、減速機を有している。また、リスト16は、関節(ジョイント)176を介して、第5回動軸O5と垂直な第6回動軸O6を回動中心とし、その第6回動軸O6回りにも回動可能となっている。回動軸O6は、回動軸O5と直交している。この第6回動軸O6回りの回動は、第6駆動源406の駆動によりなされる。また、第6駆動源406の駆動は、モーターとケーブル(図示せず)によって駆動され、このモーター406Mは電気的に接続されたモータードライバー306を介してロボット制御装置20により制御される(図4参照)。なお、第6駆動源406はモーター406Mとともに設けた減速機(図示せず)によってモーター406Mからの駆動力を伝達するように構成してもよく、また、減速機が省略されていてもよいが、本実施形態では、第6駆動源406は、減速機を有している。また、第5回動軸O5は、第4回動軸O4に直交する軸と平行であってもよく、また、第6回動軸O6は、第5回動軸O5に直交する軸と平行であってもよい。
また、図6に示すように、第3アーム14には、角速度センサー32、すなわち、角速度センサー32を有する角速度センサーユニット72が設置されている。この角速度センサー32により第3アーム14の第1回動軸O1回りの角速度および第2回動軸O2回りの角速度を検出する。
ここで、このロボット1では、第1アーム12、第2アーム13および第3アーム14の振動を抑制することにより、ロボット1全体の振動を抑制する。但し、第1アーム12、第2アーム13および第3アーム14の振動を抑制するために、第1アーム12、第2アーム13および第3アーム14のすべてに角速度センサーを設置するのではなく、前記のように第3アーム14のみに角速度センサー32を設置し、その角速度センサー32の検出結果に基づいて駆動源401、402の作動を制御する。これにより、第1アーム12、第2アーム13および第3アーム14のすべてに角速度センサーを設置する場合に比べ、角速度センサーの数を削減することができ、コストを低減することができ、また、回路構成を簡素化することができる。また、角速度センサー32により、第2アーム13の角速度ではなく、第2アーム13の回動分を含めて第3アーム14の角速度を検出するので、より確実に振動を抑制することができる。また、第3アーム14よりも基端側の第2アーム13を回動させる第2駆動源402の作動を制御することにより、ロボット1の振動を抑制する効果を高めることができる。
駆動源401〜406には、それぞれのモーターまたは減速機に、第1位置センサー411、第2位置センサー412、第3位置センサー413、第4位置センサー414、第5位置センサー415、第6位置センサー416が設けられている。これらの位置センサーとしては、それぞれ、特に限定されず、例えば、エンコーダー、ロータリーエンコーダー、レゾルバー、ポテンショメーター等を用いることができる。これらの位置センサー411〜416により、それぞれ、駆動源401〜406のモーターまたは減速機の軸部の回動角度を検出する。この駆動源401〜406のモーターとしては、それぞれ、特に限定されず、例えば、ACサーボモーター、DCサーボモーター等のサーボモーターを用いるのが好ましい。また、前記各ケーブルは、それぞれ、ロボット1を挿通していてもよい。
図4に示すように、ロボット1は、ロボット制御装置20と電気的に接続されている。すなわち、駆動源401〜406、位置センサー411〜416、角速度センサー32は、それぞれ、ロボット制御装置20と電気的に接続されている。
そして、ロボット制御装置20は、アーム12〜15、リスト16をそれぞれ独立して作動させることができる、すなわち、モータードライバー301〜306を介して、駆動源401〜406をそれぞれ独立して制御することができる。この場合、ロボット制御装置20は、位置センサー411〜416、角速度センサー32により検出を行い、その検出結果に基づいて、駆動源401〜406の駆動、例えば、角速度や回動角度等をそれぞれ制御する。この制御プログラムは、ロボット制御装置20に内蔵された記録媒体に予め記憶されている。
図1、図2に示すように、基台11は、ロボット1が垂直多関節ロボットの場合、当該垂直多関節ロボットの最も下方に位置し、設置スペースの床101に固定される部分である。この固定方法としては、特に限定されず、例えば、図1、図2に示す本実施形態では、複数本のボルト111による固定方法を用いている。なお、基台11の設置スペースでの固定箇所としては、床の他に、設置スペースの壁や天井とすることもできる。
基台11は、中空の基台本体(ハウジング)112を有している。基台本体112は、円筒状をなす円筒状部113と、当該円筒状部113の外周部に一体的に形成された、箱状をなす箱状部114とに分けることができる。そして、このような基台本体112には、例えば、モーター401Mやモータードライバー301〜306が収納されている。
アーム12〜15は、それぞれ、中空のアーム本体(筺体)2と、駆動機構3と、封止手段4とを有している。なお、以下では、説明の都合上、第1アーム12が有するアーム本体2、駆動機構3、封止手段4をそれぞれ「アーム本体2a」、「駆動機構3a」、「封止手段4a」と言い、第2アーム13が有するアーム本体2、駆動機構3、封止手段4をそれぞれ「アーム本体2b」、「駆動機構3b」、「封止手段4b」と言い、第3アーム14が有するアーム本体2、駆動機構3、封止手段4をそれぞれ「アーム本体2c」、「駆動機構3c」、「封止手段4c」と言い、第4アーム15が有するアーム本体2、駆動機構3、封止手段4をそれぞれ「アーム本体2d」、「駆動機構3d」、「封止手段4d」と言うことがある。
また、関節171〜176は、それぞれ、回動支持機構(図示せず)を有している。この回動支持機構は、互いに連結された2本のアームのうちの一方を他方に対し回動可能に支持する機構、互いに連結された基台11と第1アーム12のうちの一方を他方に対し回動可能に支持する機構、互いに連結された第4アーム15と第5リスト16のうちの一方を他方に対し回動可能に支持する機構である。互いに連結された第4アーム15とリスト16とを一例とした場合、回動支持機構は、リスト16を第4アーム15に対し回動させることができる。また、各回動支持機構は、それぞれ、対応するモーターの回動速度を所定の減速比で減速して、その駆動力を対応するアーム、リスト16のリスト本体161、支持リング162に伝達する減速機(図示せず)を有している。なお、前述したように、本実施形態では、この減速機とモーターとを含めて駆動源とする。
第1アーム12は、基台11の上端部(先端部)に水平方向に対し傾斜した姿勢で連結されている。この第1アーム12では、駆動機構3aがモーター402Mを有しており、アーム本体2a内に収納している。また、アーム本体2a内は、封止手段4aにより気密封止されている。アーム本体2aは、先端側の1対の舌片部241a、241bと、基端側の根元部251とを有している。舌片部241aと舌片部241bとは、離間し、互いに対向している。また、舌片部241a、241bは、根元部251に対して傾斜しており、これにより、第1アーム12は、水平方向に対し傾斜する。そして、舌片部241aと舌片部241bとの間に、第2アーム13の基端部が配置されている。
ここで、駆動機構3および減速機について、代表的に、第1アーム12のアーム本体2a内に設けられ、第2アーム13を回動させる駆動機構3を説明する。
図5に示すように、駆動機構3は、モーター402Mの軸部に連結された第1プーリー91と、第1プーリー91に離間して配置された第2プーリー92と、第1プーリー91と第2プーリー92とに掛け渡されたベルト(タイミングベルト)93とを有している。そして、第2プーリー92と第2アーム13の軸部とが、減速機45により連結されている。
減速機45としては、特に限定されず、例えば、複数の歯車で構成されたものや、ハーモニックドライブ(「ハーモニックドライブ」は登録商標)と呼ばれるもの等が挙げられる。
ロボット1のアーム12〜15、リスト16の振動の主な原因としては、例えば、減速機45のねじれや撓み、ベルト93の伸縮、アーム12〜15、リスト16の撓み等が挙げられる。
第2アーム13は、第1アーム12の先端部に連結されている。この第2アーム13では、駆動機構3bがモーター403Mを有しており、アーム本体2b内に収納している。また、アーム本体2a内は、封止手段4bにより気密封止されている。アーム本体2bは、先端側の1対の舌片部242a、242bと、基端側の根元部252とを有している。舌片部242aと舌片部242bとは、離間し、互いに対向している。そして、舌片部242aと舌片部242bとの間に、第3アーム14の基端部が配置されている。
第3アーム14は、第2アーム13の先端部に連結されている。この第3アーム14では、駆動機構3cがモーター404Mを有しており、アーム本体2c内に収納している。また、アーム本体2c内は、封止手段4cにより気密封止されている。なお、アーム本体2cは、前記アーム本体2aの根元部251、前記アーム本体2bの根元部252に相当する部材で構成されている。
また、第3アーム14における角速度センサー32の設置位置は、特に限定されないが、本実施形態では、図6に示すように、角速度センサー32、すなわち、角速度センサーユニット72は、第3アーム14のアーム本体2cの内部のケーブル85と反対側の端部に設置されている。これにより、角速度センサー32がケーブル85から発せられるノイズの影響を受けることを防止することができ、また、角速度センサーユニット72の回路部723、配線、角速度センサー32がケーブル85によりショートしてしまうことを防止することができる。
第4アーム15は、第3アーム14の先端部に、その中心軸方向と平行に連結されている。この第4アーム15では、駆動機構3dがモーター405M、406Mを有しており、アーム本体2d内に収納している。また、アーム本体2d内は、封止手段4dにより気密封止されている。アーム本体2dは、先端側の1対の舌片部244a、244bと、基端側の根元部254とを有している。舌片部244aと舌片部244bとは、離間し、互いに対向している。そして、舌片部244aと舌片部244bとの間に、リスト16の支持リング162が配置されている。
第4アーム15の先端部(基台11と反対側の端部)には、リスト16が連結されている。このリスト16には、その先端部(第4アーム15と反対側の端部)に、機能部(エンドエフェクタ)として、例えば、腕時計等のような精密機器を把持するマニピュレーター(図示せず)が着脱可能に装着される。なお、マニピュレーターとしては、特に限定されず、例えば、複数本の指部(フィンガー)を有する構成のものが挙げられる。そして、このロボット1は、マニピュレーターで精密機器を把持したまま、アーム12〜15やリスト16等の動作を制御することにより、当該精密機器を搬送することができる。
リスト16は、円筒状をなすリスト本体(第6アーム)161と、リスト本体161と別体で構成され、当該リスト本体161の基端部に設けられ、リング状をなす支持リング(第5アーム)162とを有している。
リスト本体161の先端面163は、平坦な面となっており、マニピュレーターが装着される装着面となる。また、リスト本体161は、関節176を介して、第4アーム15の駆動機構3dに連結されており、当該駆動機構3dのモーター406Mの駆動により、回動軸O6回りに回動する。
支持リング162は、関節175を介して、第4アーム15の駆動機構3dに連結されており、当該駆動機構3dのモーター405Mの駆動により、リスト本体161ごと回動軸O5回りに回動する。
アーム本体2の構成材料としては、特に限定されず、例えば、各種金属材料を用いることができ、これらの中でも、特にアルミニウムまたはアルミニウム合金が好ましい。アーム本体2が金型を用いて成形される鋳物である場合、当該アーム本体2の構成材料にアルミニウムまたはアルミニウム合金を用いることにより、金型成形を容易に行なうことができる。
また、基台11の基台本体112、リスト16のリスト本体161、支持リング162の構成材料としては、それぞれ、特に限定されず、例えば、前記アーム本体2の構成材料と同様のもの等が挙げられる。なお、リスト16のリスト本体161の構成材料は、ステンレス鋼を用いるのが好ましい。
また、封止手段4の構成材料としては、特に限定されず、例えば、各種樹脂材料、各種金属材料を用いることができる。なお、封止手段4の構成材料として、樹脂材料を用いることにより、軽量化を図ることができる。
次に、角速度センサーユニット72について説明する。
図7に示すように、角速度センサーユニット(慣性センサーユニット)72は、ハウジング721と、ハウジング721内に設けられ、配線を有する回路基板722、回路基板722上に電気的に接続された角速度センサー(慣性センサー)32および回路部723とを有している。本実施形態では、ハウジング721は、封止材で構成され、その封止材により、角速度センサー32、回路部723および回路基板722全体が封止されている。このように、角速度センサー32および回路部723をパッケージ化することで、構成を簡素化することができる。
回路部723は、角速度センサー32から出力される信号をAD変換、すなわち、アナログ信号をデジタル信号に変換するAD変換部と、前記変換された信号をロボット制御装置20に送信する送信部とを有している。
また、ハウジング721の外形は、立方体である。
また、角速度センサー32は、互いに直交する第1検出軸32a、第2検出軸32bおよび第3検出軸32cを備える3軸角速度センサーであり、第1検出軸32aまわりの角速度、第2検出軸32bまわりの角速度および第3検出軸32cまわりの角速度をそれぞれ独立して検出することができる。このような角速度センサー32の構成としては、各軸まわりの角速度を検出することができれば、特に限定されないが、例えば、1つの検出軸を備えるジャイロ素子33を3つ用意し、これらを互いの検出軸が直交するように配置した構成とすることができる。各ジャイロ素子33の構成としては、特に限定されないが、例えば、以下のようなジャイロ素子を用いることができる。また、以下では、図8および図9に示すように、互いに直交する軸をX軸、Y軸およびZ軸とする。
図8に示すように、ジャイロ素子33は、基部331、基部331の両側からY軸方向へかつ互いに反対側へ延びる1対の検出用振動腕332a、332b、基部331の両側からX軸方向へかつ互いに反対側へ延びる1対の連結腕333a、333b、連結腕333aの先端部の両側からY軸方向へかつ互いに反対側へ延びる1対の駆動用振動腕334a、334b、および、連結腕333bの先端部の両側からY軸方向へかつ互いに反対側へ延びる1対の駆動用振動腕334c、334dを有する水晶基板と、各検出用振動腕332a、333bに設けられた図示しない検出用電極と、各駆動用振動腕334a、334b、334c、334dに設けられた図示しない駆動用電極とを有している。
このようなジャイロ素子33は、次のようにして作動する。なお、図9(a)、(b)では、振動形態を簡易に表現するために各振動腕を線で表している。
まず、図9(a)に示すように、ジャイロ素子33に角速度が加わらない状態において、駆動用電極に電圧を印加することにより各駆動用振動腕334a、334b、334c、334dを矢印Eで示す方向に屈曲振動させる。この屈曲振動は、実線で示す振動姿態と二点鎖線で示す振動姿態を所定の周波数で繰り返している。このとき、駆動用振動腕334a、334bと駆動用振動腕334c、334dとが、重心Gを通るY軸に対して線対称の振動を行っている。
図9(b)に示すように、この振動を行っている状態で、ジャイロ素子33にZ軸(検出軸)回りの角速度ωが加わると、駆動用振動腕334a、334b、334c、334dおよび連結腕333a、333bに矢印B方向のコリオリ力が働き、これらに新たな振動が励起される。また、これと同時に、検出用振動腕332a、332bに矢印Bの振動に呼応した矢印C方向の振動が励起される。そして、この検出用振動腕332a、332bの振動により発生した検出用振動腕332a、332bの歪に応じた信号(電圧)が検出用電極から出力される。
以上、ジャイロ素子33について簡単に説明した。
角速度センサー32の第1検出軸32aは、ハウジング721の直方体の一番大きな面(以下、「主面」とも言う)の法線と一致している。また、角速度センサー32の第2検出軸32bは、主面に接続されている4つの側面のうちの対向する1組の側面の法線と一致し、第3検出軸32cは、他の1組の側面の法線と一致している。これにより、容易かつ確実に、角速度センサー32の3つの検出軸の方向を認識することができ、容易に、角速度センサー32を適正な姿勢にすることができる。そして、角速度センサーユニット72は、図6に示すように、第1検出軸32aが第3回動軸O3と平行となるように設置されている。
また、図6および図7に示すように、ハウジング721は、その4つの角部に、第3アーム14に取り付けられる取付部7211を有している。各取付部7211には、それぞれ、雄ネジ81が挿入される孔7212が形成されている。
また、図6に示すように、第3アーム14は、アーム本体2cと一体的に形成され、角速度センサーユニット72(ハウジング721)が取り付けられるアーム側取付部141を有している。アーム側取付部141は、ハウジング721に対応した形状をなしている。すなわち、アーム側取付部141は、板状をなし、平面視での形状は、四角形、本実施形態では、長方形をなしている。また、アーム側取付部141の各角部には、それぞれ、雄ネジ81が螺合する雌ネジ142が形成されている。
なお、前記アーム本体2cと一体的に形成されたアーム側取付部141における「一体的」とは、別々に部材を形成し、それらを接合するのではなく、例えば、ダイキャスト等により、アーム本体2cとアーム側取付部141とを同時に形成する場合を言う。
角速度センサーユニット72を第3アーム14に取り付ける際は、4つの雄ネジ81をそれぞれハウジング721の孔7212に挿入し、第3アーム14のアーム側取付部141の先端部の雌ネジに螺合する。これにより、各雄ネジ81により、ハウジング721の4つの取付部7211がそれぞれ第3アーム14のアーム側取付部141に固定される。すなわち、第3アーム14のアーム側取付部141に、角速度センサーユニット72が取り付けられる。この場合、アーム側取付部141と角速度センサーユニット72との間には、何も介在しておらず、すなわち、角速度センサーユニット72は、アーム側取付部141に直接取り付けられる。これにより、角速度センサーユニット72を確実に第3アーム14に取り付けることができ、また、角速度センサーユニット72は、確実に、第3アーム14と一体的に回動することができる。
なお、角速度センサーユニット72がアーム側取付部141に直接取り付けられるにおける「直接」とは、角速度センサーユニット72を別の基板等の中間体に取り付けて、その中間体を、アーム側取付部141に取り付けでいるのではないことを言う。すなわち、アーム側取付部141と角速度センサーユニット72との間に、接着剤等を除き、何も介在していないことを言う。
また、雄ネジ81は、導電性を有しており、例えば、各種の金属材料で形成されている。この雄ネジ81は、ハウジング721の孔7212に挿入し、アーム側取付部141の雌ネジ142に螺合した際、回路部723のアース用の端子に電気的に接続された回路基板722の配線に電気的に接続され、また、雄ネジ81の先端部は、アーム側取付部141に電気的に接続される。これにより、回路部723のアース用の端子は、配線および雄ネジ81を介して、第3アーム14のアーム本体2cに電気的に接続され、アースされる。これにより、アースに要する部品点数を削減することができ、構成を簡素化することができる。
次に、図4、図10〜図14を参照し、ロボット制御装置20の構成について説明する。
ロボット制御装置20は、角速度センサー32から出力される信号(具体的には、第1検出軸に関する第1信号、第2検出軸に関する第2信号および第3検出軸に関する第3信号)と、位置センサー411〜416から出力される各信号とをそれぞれ受信する受信部と、この受信部により受信された各信号に基づいて、第1アーム12の角速度の振動成分および第2アーム13と第3アーム14の合成角速度の振動成分を求める演算部と、この演算部により求められた第1アーム12の角速度の振動成分および第3アーム14の角速度の振動成分に基づいて、ロボット1の作動を制御する制御部と、を有している。
具体的には、図4、図10〜図14に示すように、ロボット制御装置20は、前記受信部と、第1駆動源401の作動を制御する第1駆動源制御部201と、第2駆動源402の作動を制御する第2駆動源制御部202と、第3駆動源403の作動を制御する第3駆動源制御部203と、第4駆動源404の作動を制御する第4駆動源制御部204と、第5駆動源405の作動を制御する第5駆動源制御部205と、第6駆動源406の作動を制御する第6駆動源制御部206とを有している。
なお、前記演算部は、第1駆動源制御部201の後述する角速度算出部561、減算器571、第2駆動源制御部202の後述する角速度算出部562、加減算器622、第3駆動源制御部203の後述する角速度算出部563により構成される。
図10に示すように、第1駆動源制御部201は、減算器511と、位置制御部521と、減算器531と、角速度制御部541と、回動角度算出部551と、角速度算出部561と、減算器571と、変換部581と、補正値算出部591と、加算器601とを有している。
図11に示すように、第2駆動源制御部202は、減算器512と、位置制御部522と、減算器532と、角速度制御部542と、回動角度算出部552と、角速度算出部562と、加減算器622と、変換部582と、補正値算出部592と、加算器602とを有している。
図11に示すように、第3駆動源制御部203は、減算器513と、位置制御部523と、減算器533と、角速度制御部543と、回動角度算出部553と、角速度算出部563とを有している。
図12に示すように、第4駆動源制御部204は、減算器514と、位置制御部524と、減算器534と、角速度制御部544と、回動角度算出部554と、角速度算出部564とを有している。
図13に示すように、第5駆動源制御部205は、減算器515と、位置制御部525と、減算器535と、角速度制御部545と、回動角度算出部555と、角速度算出部565とを有している。
図14に示すように、第6駆動源制御部206は、減算器516と、位置制御部526と、減算器536と、角速度制御部546と、回動角度算出部556と、角速度算出部566とを有している。
ここで、ロボット制御装置20は、ロボット1が行う処理の内容に基づいてリスト16の目標位置を演算し、その目標位置にリスト16を移動させるための軌道を生成する。そして、ロボット制御装置20は、その生成した軌道に沿ってリスト16が移動するように、各駆動源401〜406の回動角度を所定の制御周期ごとに測定し、この測定結果に基づいて演算した値をそれぞれ各駆動源401〜406の位置指令Pcとして駆動源制御部201〜206に出力する(図10〜図14参照)。なお、前記および以下では、「値が入力、出力」等と表記しているが、これは、「その値に対応する信号が入力、出力」の意味である。
図10に示すように、第1駆動源制御部201には、第1駆動源401の位置指令Pcの他、第1位置センサー411、角速度センサー32からそれぞれ検出信号が入力される。第1駆動源制御部201は、第1位置センサー411の検出信号から算出される第1駆動源の回動角度(位置フィードバック値Pfb)が位置指令Pcになり、かつ、後述する角速度フィードバック値ωfbが後述する角速度指令ωcになるように、各検出信号を用いたフィードバック制御によって第1駆動源401を駆動する。
すなわち、第1駆動源制御部201の減算器511には、位置指令Pcが入力され、また、回動角度算出部551から後述する位置フィードバック値Pfbが入力される。回動角度算出部551では、第1位置センサー411から入力されるパルス数がカウントされるとともに、そのカウント値に応じた第1駆動源401の回動角度が位置フィードバック値Pfbとして減算器511に出力される。減算器511は、これら位置指令Pcと位置フィードバック値Pfbとの偏差(第1駆動源401の回動角度の目標値から位置フィードバック値Pfbを減算した値)を位置制御部521に出力する。
位置制御部521は、減算器511から入力された偏差と、予め定められた係数である比例ゲイン等を用いた所定の演算処理を行うことで、その偏差に応じた第1駆動源401の角速度の目標値を演算する。位置制御部521は、その第1駆動源401の角速度の目標値(指令値)を示す信号を角速度指令ωcとして減算器531に出力する。なお、ここでは、本実施形態では、フィードバック制御として、比例制御(P制御)がなされるが、これに限定されるものではない。
減算器531には、角速度指令ωcが入力され、また、後述する角速度フィードバック値ωfbが入力される。減算器531は、これら角速度指令ωcと角速度フィードバック値ωfbとの偏差(第1駆動源401の角速度の目標値から角速度フィードバック値ωfbを減算した値)を角速度制御部541に出力する。
角速度制御部541は、減算器531から入力された偏差と、予め定められた係数である比例ゲイン、積分ゲイン等を用い、積分を含む所定の演算処理を行うことで、その偏差に応じた第1駆動源401の駆動信号(駆動電流)を生成し、モータードライバー301を介してモーター401Mに供給する。なお、ここでは、本実施形態では、フィードバック制御として、PI制御がなされるが、これに限定されるものではない。
このようにして、位置フィードバック値Pfbが位置指令Pcと可及的に等しくなり、かつ、角速度フィードバック値ωfbが角速度指令ωcと可及的に等しくなるように、フィードバック制御がなされ、第1駆動源401の駆動電流が制御される。
次に、第1駆動源制御部201における角速度フィードバック値ωfbについて説明する。
角速度算出部561では、第1位置センサー411から入力されるパルス信号の周波数に基づいて、第1駆動源401の角速度ωm1が算出され、その角速度ωm1は、加算器601に出力される。
また、角速度算出部561では、第1位置センサー411から入力されるパルス信号の周波数に基づいて、第1アーム12の第1回動軸O1回りの角速度ωA1mが算出され、その角速度ωA1mは、減算器571に出力される。なお、角速度ωA1mは、角速度ωm1を、第1駆動源401のモーター401Mと第1アーム12との間、すなわち、関節171における減速比で除算した値である。
また、角速度センサー32から第1検出軸まわりの角速度ω1、第2検出軸まわりの角速度ω2および第3検出軸まわりの角速度ω3がそれぞれ検出され、各角速度ω1、ω2、ω3が角速度変換部611に入力される。角速度変換部611では、入力された角速度ω2、ω3から第1アーム12の第1回動軸O1回りの角速度ωA1が算出され、その角速度ωA1は、減算器571に出力される。
減算器571には、角速度ωA1および角速度ωA1mが入力され、減算器571は、この角速度ωA1から角速度ωA1mを減算した値ωA1s(=ωA1−ωA1m)を変換部581に出力する。この値ωA1sは、第1アーム12の第1回動軸O1回りの角速度の振動成分(振動角速度)に相当する。以下、ωA1sを振動角速度と言う。本実施形態では、この振動角速度ωA1s(詳細には、振動角速度ωA1sに基づいて生成した値であるモーター401Mにおける角速度ωm1s)が後述するゲインKa倍されて第1駆動源401の入力側に戻るフィードバック制御を行う。具体的には、振動角速度ωA1sが可及的に0になるように、第1駆動源401に対してフィードバック制御がなされる。これにより、ロボット1の振動を抑制することができる。なお、このフィードバック制御では、第1駆動源401の角速度が制御される。
変換部581は、振動角速度ωA1sを第1駆動源401における角速度ωm1sに変換し、その角速度ωm1sを補正値算出部591に出力する。この変換は、振動角速度ωA1sに、第1駆動源401のモーター401Mと第1アーム12との間、すなわち、関節171における減速比を乗算することで得ることができる。
補正値算出部591は、角速度ωm1sに予め定められた係数であるゲイン(フィードバックゲイン)Kaを乗算し、補正値Ka・ωm1sを求め、その補正値Ka・ωm1sを加算器601に出力する。
加算器601には、角速度ωm1が入力され、また、補正値Ka・ωm1sが入力される。加算器601は、角速度ωm1と補正値Ka・ωm1sとの加算値を角速度フィードバック値ωfbとして減算器531に出力する。なお、以降の動作は、前述した通りである。
図11に示すように、第2駆動源制御部202には、第2駆動源402の位置指令Pcの他、第2位置センサー412、角速度センサー32からそれぞれ検出信号が入力される。また、第2駆動源制御部202には、第3駆動源制御部203から第3アーム14の第3回動軸O3回りの角速度ωA3mが入力される。第2駆動源制御部202は、第2位置センサー412の検出信号から算出される第2駆動源402の回動角度(位置フィードバック値Pfb)が位置指令Pcになり、かつ、後述する角速度フィードバック値ωfbが後述する角速度指令ωcになるように、各検出信号を用いたフィードバック制御によって第2駆動源402を駆動する。
すなわち、第2駆動源制御部202の減算器512には、位置指令Pcが入力され、また、回動角度算出部552から後述する位置フィードバック値Pfbが入力される。回動角度算出部552では、第2位置センサー412から入力されるパルス数がカウントされるとともに、そのカウント値に応じた第2駆動源402の回動角度が位置フィードバック値Pfbとして減算器512に出力される。減算器512は、これら位置指令Pcと位置フィードバック値Pfbとの偏差(第2駆動源402の回動角度の目標値から位置フィードバック値Pfbを減算した値)を位置制御部522に出力する。
位置制御部522は、減算器512から入力された偏差と、予め定められた係数である比例ゲイン等を用いた所定の演算処理を行うことで、その偏差に応じた第2駆動源402の角速度の目標値を演算する。位置制御部522は、その第2駆動源402の角速度の目標値(指令値)を示す信号を角速度指令ωcとして減算器532に出力する。なお、ここでは、本実施形態では、フィードバック制御として、比例制御(P制御)がなされるが、これに限定されるものではない。
減算器532には、角速度指令ωcが入力され、また、後述する角速度フィードバック値ωfbが入力される。減算器532は、これら角速度指令ωcと角速度フィードバック値ωfbとの偏差(第2駆動源402の角速度の目標値から角速度フィードバック値ωfbを減算した値)を角速度制御部542に出力する。
角速度制御部542は、減算器532から入力された偏差と、予め定められた係数である比例ゲイン、積分ゲイン等を用い、積分を含む所定の演算処理を行うことで、その偏差に応じた第2駆動源402の駆動信号(駆動電流)を生成し、モータードライバー302を介してモーター402Mに供給する。なお、ここでは、本実施形態では、フィードバック制御として、PI制御がなされるが、これに限定されるものではない。
このようにして、位置フィードバック値Pfbが位置指令Pcと可及的に等しくなり、かつ、角速度フィードバック値ωfbが角速度指令ωcと可及的に等しくなるように、フィードバック制御がなされ、第2駆動源402の駆動電流が制御される。なお、第2回動軸O2は、第1回動軸O1に対して直交しているので、第1アーム12の動作や振動の影響を受けず、第1駆動源401に対して独立して第2駆動源402の作動を制御することができる。
次に、第2駆動源制御部202における角速度フィードバック値ωfbについて説明する。
角速度算出部562では、第2位置センサー412から入力されるパルス信号の周波数に基づいて、第2駆動源402の角速度ωm2が算出され、その角速度ωm2は、加算器602に出力される。
また、角速度算出部562では、第2位置センサー412から入力されるパルス信号の周波数に基づいて、第2アーム13の第2回動軸O2回りの角速度ωA2mが算出され、その角速度ωA2mは、加減算器622に出力される。なお、角速度ωA2mは、角速度ωm2を、第2駆動源402のモーター402Mと第2アーム13との間、すなわち、関節172における減速比で除算した値である。
また、第3駆動源制御部203の角速度算出部563では、第3位置センサー413から入力されるパルス信号の周波数に基づいて、第3アーム14の第3回動軸O3回りの角速度ωA3mが算出され、その角速度ωA3mは、加減算器622に出力される。なお、角速度ωA3mは、角速度ωm3を、第3駆動源403のモーター403Mと第3アーム14との間、すなわち、関節173における減速比で除算した値である。
また、角速度センサー32から第1検出軸まわりの角速度ω1、第2検出軸まわりの角速度ω2および第3検出軸まわりの角速度ω3がそれぞれ検出され、各角速度ω1、ω2、ω3が角速度変換部611に入力される。角速度変換部611では、入力された角速度ω1から第3アーム14の第2回動軸O2回りの角速度(第2アーム12と第3アーム13の合成角速度)ωA3が算出され、その角速度ωA3は、加減算器622に出力される。なお、第2回動軸O2、第3回動軸O3は、第1回動軸O1に対して直交しているので、第1アーム12の動作や振動の影響を受けずに、容易かつ確実に、第3アーム14の第2回動軸O2回りの角速度を求めることができる。
加減算器622には、角速度ωA3、角速度ωA2mおよび角速度ωA3mが入力され、加減算器622は、角速度ωA3から角速度ωA2mおよび角速度ωA3mを減算した値ωA2s(=ωA3−ωA2m−ωA3m)を変換部582に出力する。この値ωA2sは、第2アーム13と第3アーム14の第2回動軸O2回りの合計の角速度の振動成分(振動角速度)に相当する。以下、ωA2sを振動角速度と言う。本実施形態では、この振動角速度ωA2s(詳細には、振動角速度ωA2sに基づいて生成した値であるモーター402Mにおける角速度ωm2s)が後述するゲインKa倍されて第2駆動源402の入力側に戻るフィードバック制御を行う。具体的には、振動角速度ωA2sが可及的に0になるように、第2駆動源402に対してフィードバック制御がなされる。これにより、ロボット1の振動を抑制することができる。なお、このフィードバック制御では、第2駆動源402の角速度が制御される。
変換部582は、振動角速度ωA2sを第2駆動源402における角速度ωm2sに変換し、その角速度ωm2sを補正値算出部592に出力する。この変換は、振動角速度ωA2sに、第2駆動源402のモーター402Mと第2アーム13との間、すなわち、関節172における減速比を乗算することで得ることができる。
補正値算出部592は、角速度ωm2sに予め定められた係数であるゲイン(フィードバックゲイン)Kaを乗算し、補正値Ka・ωm2sを求め、その補正値Ka・ωm2sを加算器602に出力する。なお、この第2駆動源制御部202におけるゲインKaと、第1駆動源制御部201におけるゲインKaとは、同一でもよく、また、異なっていてもよい。
加算器602には、角速度ωm2が入力され、また、補正値Ka・ωm2sが入力される。加算器602は、角速度ωm2と補正値Ka・ωm2sとの加算値を角速度フィードバック値ωfbとして減算器532に出力する。なお、以降の動作は、前述した通りである。
図11に示すように、第3駆動源制御部203には、第3駆動源403の位置指令Pcの他、第3位置センサー413から検出信号が入力される。第3駆動源制御部203は、第3位置センサー413の検出信号から算出される第3駆動源403の回動角度(位置フィードバック値Pfb)が位置指令Pcになり、かつ、後述する角速度フィードバック値ωfbが後述する角速度指令ωcになるように、各検出信号を用いたフィードバック制御によって第3駆動源403を駆動する。
すなわち、第3駆動源制御部203の減算器513には、位置指令Pcが入力され、また、回動角度算出部553から後述する位置フィードバック値Pfbが入力される。回動角度算出部553では、第3位置センサー413から入力されるパルス数がカウントされるとともに、そのカウント値に応じた第3駆動源403の回動角度が位置フィードバック値Pfbとして減算器513に出力される。減算器513は、これら位置指令Pcと位置フィードバック値Pfbとの偏差(第3駆動源403の回動角度の目標値から位置フィードバック値Pfbを減算した値)を位置制御部523に出力する。
位置制御部523は、減算器513から入力された偏差と、予め定められた係数である比例ゲイン等を用いた所定の演算処理を行うことで、その偏差に応じた第3駆動源403の角速度の目標値を演算する。位置制御部523は、その第3駆動源403の角速度の目標値(指令値)を示す信号を角速度指令ωcとして減算器533に出力する。なお、ここでは、本実施形態では、フィードバック制御として、比例制御(P制御)がなされるが、これに限定されるものではない。
また、角速度算出部563では、第3位置センサー413から入力されるパルス信号の周波数に基づいて、第3駆動源403の角速度が算出され、その角速度が角速度フィードバック値ωfbとして減算器533に出力される。
減算器533には、角速度指令ωcが入力され、また、角速度フィードバック値ωfbが入力される。減算器533は、これら角速度指令ωcと角速度フィードバック値ωfbとの偏差(第3駆動源403の角速度の目標値から角速度フィードバック値ωfbを減算した値)を角速度制御部543に出力する。
角速度制御部543は、減算器533から入力された偏差と、予め定められた係数である比例ゲイン、積分ゲイン等を用い、積分を含む所定の演算処理を行うことで、その偏差に応じた第3駆動源403の駆動信号(駆動電流)を生成し、モータードライバー303を介してモーター403Mに供給する。なお、ここでは、本実施形態では、フィードバック制御として、PI制御がなされるが、これに限定されるものではない。
このようにして、位置フィードバック値Pfbが位置指令Pcと可及的に等しくなり、かつ、角速度フィードバック値ωfbが角速度指令ωcと可及的に等しくなるように、フィードバック制御がなされ、第3駆動源403の駆動電流が制御される。
なお、駆動源制御部204〜206については、それぞれ、前記第3駆動源制御部203と同様であるので、その説明は省略する。
以上説明したように、このロボット1およびロボットシステム10では、角速度センサー32により、第1アーム12の角速度を検出することができる。さらに、第3回動軸O3は、第2回動軸O2と平行であるので、角速度センサー32により、第2アーム13の回動分を含めて第3アーム14の角速度を検出することができる。そして、これらの検出結果に基づいて、振動を抑制することができる。
また、ロボット1の姿勢が変化しても、角速度センサー32の第1検出軸は、一定である。すなわち、ロボット1の姿勢に影響されることなく、第1検出軸が第2回動軸O2と一致または平行な状態が維持される。このため、角速度センサー32により検出された第3アーム14の角速度に対して、角速度センサー32の向きによる補正を行う必要がない。一方、ロボット1の姿勢が変化すると、第2検出軸および第3検出軸が互いの検出軸を直角に保ったまま、第1検出軸まわり回動する。すなわち、ロボット1の姿勢によって第2、第3検出軸の第1回動軸O1に対する姿勢(傾き)が変化する。しかしながら、第2検出軸まわりの角速度ω2および第3検出軸まわりの角速度ω3を合成することによって、第1アーム12の角速度を簡単に求めることができ、角速度センサー32の向きによる補正を行う必要がない(または補正を行うとしても、比較的簡単な補正で対処することができる)。これにより、複雑で膨大な演算が不要であり、これによって、演算誤差が生じ難く、振動を確実に抑制することができ、また、ロボット1の制御における応答速度を速くすることができる。
また、角速度センサー32により、第2アーム13の角速度ではなく、第2アーム13の回動分を含めて第3アーム14の角速度を検出するので、より確実に振動を抑制することができる。また、1つの角速度センサー32によって、第1アーム12の角速度と、第2アーム13の回動分を含めた第3アーム14の角速度を検出するため、第1アームおよび第2アームにも同様の角速度センサーを設置する場合に比べて、角速度センサーの数を削減することができ、コストを低減することができ、また、構成を簡素化することができる。
また、第3アーム14よりも基端側に位置する第2アーム13を回動させる第2駆動源402の作動を制御することにより、ロボット1の振動を抑制する効果を高めることができる。
また、第3アーム14は、第1、第2アーム12、13よりも先端側に位置し、基台11とはより多くの部材を介して連結されているため、第1、第2アーム12、13よりも剛性が低くなり易い。また、第3アーム14には、第1、第2アーム12、13の不要振動が伝播される。そのため、第1、第2アーム12、13よりも不要振動が発生し易い。そこで、第3アーム14に角速度センサー32を設置することにより、第3アームの振動を効果的に抑制することが可能となる。
以上、本発明のロボット、ロボット制御装置およびロボットシステムを、図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置換することができる。また、本発明に、他の任意の構成物が付加されていてもよい。
なお、各駆動源のモーターとしては、それぞれ、前記サーボモーターの他、例えば、ステッピングモーター等が挙げられる。また、モーターとしてステッピングモーターを用いる場合は、位置センサーとして、例えば、ステッピングモーターへ入力する駆動パルスの数を計測することで、モーターの回動角度を検出するものを用いてもよい。
また、前記実施形態では、慣性センサーとして互いに直交する第1検出軸、第2検出軸および第3検出軸を備えた3軸角速度センサーを用いた構成について説明したが、慣性センサーとしては、第1アームの第1回動軸まわりの角速度と、第2アームの回動分を含めた第3アームの角速度を検出することができれば、特に限定されない。慣性センサーとしては、例えば、第1検出軸方向の加速度と、第2検出軸方向の加速度と、第3検出軸方向の加速度とを検出することができる加速度センサーを用いてもよい。加速度を角速度に近似できる条件で用いる場合には、角速度センサーと同等の性能を発揮することができる。また、慣性センサーとしては、加速度センサーと角速度センサーを組み合わせて用いてもよい。
また、各位置センサー、各角速度センサーの方式は、それぞれ、特に限定されず、例えば、光学式、磁気式、電磁式、電気式等が挙げられる。
また、前記実施形態では、角速度センサーの検出結果に基づいて第2アームを回動させる第2駆動源の作動を制御するようになっているが、これに限らず、例えば、第2角速度センサーの検出結果に基づいて第3アームを回動させる第3駆動源の作動を制御するようになっていてもよい。
また、前記実施形態では、ロボットの回動軸の数は、6つであるが、本発明では、これに限定されず、ロボットの回動軸の数は、3つ、4つ、5つまたは7つ以上でもよい。
すなわち、前記実施形態では、リストが2本のアームを有しているので、ロボットのアームの本数は、6本であるが、本発明では、これに限定されず、ロボットのアームの本数は、3本、4本、5本または7本以上でもよい。
また、前記実施形態では、ロボットは、複数のアームを回動可能に連結してなるアーム連結体を1つ有する単腕ロボットであるが、本発明では、これに限定されず、例えば、複数のアームを回動可能に連結してなるアーム連結体を2つ有する双腕ロボット等、前記アーム連結体を複数有するロボットであってもよい。
1……ロボット(産業用ロボット) 10……ロボットシステム 11……基台 12、13、14、15……アーム(リンク) 16……リスト(リンク) 161……リスト本体 162……支持リング 163……先端面 171、172、173、174、175、176……関節(ジョイント) 2、2a、2b、2c、2d……アーム本体 3、3a、3b、3c、3d……駆動機構 32……角速度センサー 32a……第1検出軸 32b……第2検出軸 32c……第3検出軸 33……ジャイロ素子 331……基部 332a、332b……検出用振動腕 333a、333b……連結腕 334a、334b、334c、334d……駆動用振動腕 4、4a、4b、4c、4d……封止手段 20……ロボット制御装置 201、202、203、204、205、206……駆動源制御部 301、302、303、304、305、306……モータードライバー 401、402、403、404、405、406……駆動源 401M、402M、403M、404M、405M、406M……モーター 411、412、413、414、415、416……位置センサー 511、512、513、514、515、516……減算器 521、522、523、524、525、526……位置制御部 531、532、533、534、535、536……減算器 541、542、543、544、545、546……角速度制御部 551、552、553、554、555、556……回動角度算出部 561、562、563、564、565、566……角速度算出部 571……減算器 581、582……変換部 591、592……補正値算出部 601、602……加算器 611……角速度変換部 622……加減算器 45……減速機 72……角速度センサーユニット 721……ハウジング 7211……取付部 722……回路基板 723……回路部 7212……孔 81……雄ネジ 85……ケーブル 91、92……プーリー 93……ベルト 101……床 111……ボルト 112……基台本体 113……円筒状部 114……箱状部 141……アーム側取付部 142……雌ネジ 241a、241b、242a、242b、244a、244b……舌片部 251、252、254……根元部 G……重心 O1、O2、O3、O4、O5、O6……回動軸

Claims (13)

  1. 基台と、
    前記基台に対し、第1回動軸を回動中心として回動可能に連結された第1アームと、
    前記第1アームに対し、前記第1回動軸に直交する軸であるかまたは前記第1回動軸に直交する軸と平行な軸である第2回動軸を回動中心として回動可能に連結された第2アームと、
    前記第2アームに対し、前記第2回動軸と平行な軸である第3回動軸を回動中心として回動可能に連結された第3アームと、
    互いに直交する第1検出軸、第2検出軸および第3検出軸を備え、前記第1検出軸が前記第3回動軸と平行であり、前記第3アームに設置された3軸慣性センサーと、を有することを特徴とするロボット。
  2. 前記3軸慣性センサーは、前記第1検出軸まわりの角速度と、前記第2検出軸まわりの角速度と、前記第3検出軸まわりの角速度とを検出する3軸角速度センサーである請求項1に記載のロボット。
  3. ハウジングと、前記ハウジング内に設けられ、前記3軸慣性センサーおよび前記3軸慣性センサーから出力される信号をAD変換し送信する回路部とを有する慣性センサーユニットとを備え、
    前記慣性センサーユニットが前記第3アームに設置されている請求項1または2に記載のロボット。
  4. 前記ハウジングの外形は、直方体であり、
    前記3軸慣性センサーの前記第1検出軸は、前記ハウジングの前記直方体の一番大きな面の法線と一致する請求項3に記載のロボット。
  5. 前記3軸慣性センサーの前記第2検出軸は、前記ハウジングの直方体の前記一番大きな面に接続される4つの面のうちの対向する1組の面の法線と一致し、
    前記3軸慣性センサーの前記第3検出軸は、前記ハウジングの直方体の前記一番大きな面に接続される4つの面のうちの対向する他の1組の面の法線と一致する請求項4に記載のロボット。
  6. 前記ハウジングは、前記ハウジングの角部に前記第3アームに取り付けられる取付部を有する請求項3ないし5のいずれか1項に記載のロボット。
  7. 導電性を有し、前記ハウジングの前記取付部を前記第3アームに固定する固定部材を有し、前記固定部材により、前記慣性センサーユニットの前記回路部は、前記第3アームにアースされている請求項6に記載のロボット。
  8. 前記第3アームは、筐体と、前記筐体と一体的に形成されたアーム側取付部とを有し、
    前記慣性センサーユニットは、前記アーム側取付部に直接取り付けられている請求項3ないし7のいずれか1項に記載のロボット。
  9. 前記第3アームに配設され、当該ロボットに電力を供給するケーブルを有し、
    前記3軸慣性センサーは、前記第3アームの前記ケーブルと反対側の端部に配置されている請求項1ないし8のいずれか1項に記載のロボット。
  10. 前記第3アームに対し、前記第3回動軸に直交する軸であるかまたは前記第3回動軸に直交する軸と平行な軸である第4回動軸を回動中心として回動可能に連結された第4アームと、
    前記第4アームに対し、前記第4回動軸に直交する軸であるかまたは前記第4回動軸に直交する軸と平行な軸である第5回動軸を回動中心として回動可能に連結された第5アームと、
    前記第5アームに対し、前記第5回動軸に直交する軸であるかまたは前記第5回動軸に直交する軸と平行な軸である第6回動軸を回動中心として回動可能に連結された第6アームとを備える請求項1ないし9のいずれか1項に記載のロボット。
  11. 前記第1回動軸は、前記基台の設置面の法線と一致する請求項1ないし9のいずれか1項に記載のロボット。
  12. 基台と、前記基台に対し、第1回動軸を回動中心として回動可能に連結された第1アームと、前記第1アームに対し、前記第1回動軸に直交する軸であるかまたは前記第1回動軸に直交する軸と平行な軸である第2回動軸を回動中心として回動可能に連結された第2アームと、前記第2アームに対し、前記第2回動軸と平行な軸である第3回動軸を回動中心として回動可能に連結された第3アームとを備えるロボットの作動を制御するロボット制御装置であって、
    互いに直交する第1検出軸、第2検出軸および第3検出軸を備え、前記第1検出軸が前記第3回動軸と平行であり、前記第3アームに設置された3軸慣性センサーから出力される信号を受信する受信部と、
    前記受信部により受信された前記信号のうちの前記第2検出軸および前記第3検出軸に関する信号に基づいて前記第1アームの慣性の振動成分を求め、前記第1検出軸に関する信号に基づいて前記第3アームの慣性の振動成分を求める演算部と、
    前記演算部により求められた前記第1アームの慣性の振動成分および前記第3アームの慣性の振動成分に基づいて、前記ロボットの作動を制御する制御部とを備えることを特徴とするロボット制御装置。
  13. 請求項1ないし11のいずれか1項に記載のロボットと、
    前記ロボットの作動を制御するロボット制御装置とを備えることを特徴とするロボットシステム。
JP2013082273A 2013-04-10 2013-04-10 ロボット、ロボット制御装置およびロボットシステム Active JP6155780B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013082273A JP6155780B2 (ja) 2013-04-10 2013-04-10 ロボット、ロボット制御装置およびロボットシステム
US14/195,913 US9339933B2 (en) 2013-04-10 2014-03-04 Robot, robot control device, and robot system
CN201410089677.7A CN104097199B (zh) 2013-04-10 2014-03-12 机器人、机器人控制装置以及机器人系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013082273A JP6155780B2 (ja) 2013-04-10 2013-04-10 ロボット、ロボット制御装置およびロボットシステム

Publications (2)

Publication Number Publication Date
JP2014205196A true JP2014205196A (ja) 2014-10-30
JP6155780B2 JP6155780B2 (ja) 2017-07-05

Family

ID=51665942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013082273A Active JP6155780B2 (ja) 2013-04-10 2013-04-10 ロボット、ロボット制御装置およびロボットシステム

Country Status (3)

Country Link
US (1) US9339933B2 (ja)
JP (1) JP6155780B2 (ja)
CN (1) CN104097199B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087301A (ja) * 2015-11-02 2017-05-25 セイコーエプソン株式会社 ロボット、制御装置およびロボットシステム
US11745364B2 (en) 2018-10-17 2023-09-05 Fanuc Corporation Robot and first arm member

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104302454B (zh) * 2012-05-21 2016-08-17 株式会社安川电机 机器人
JP2015182143A (ja) * 2014-03-20 2015-10-22 セイコーエプソン株式会社 ロボットおよびロボットシステム
JP5898743B1 (ja) * 2014-09-25 2016-04-06 上銀科技股▲分▼有限公司 関節式ロボットアームの手首構造
CN104537944B (zh) * 2014-12-30 2017-09-26 浙江钱江机器人有限公司 一种六轴机器人的六连杆示教装置
JP5975129B1 (ja) 2015-03-02 2016-08-23 株式会社安川電機 ロボット
JP2016190298A (ja) * 2015-03-31 2016-11-10 セイコーエプソン株式会社 ロボットおよびロボットシステム
JP6339534B2 (ja) * 2015-07-17 2018-06-06 ファナック株式会社 最大で二つのワークを把持するハンドを備えたロボットの制御方法およびロボット制御装置
CN105856231B (zh) * 2016-01-25 2018-04-10 广东工业大学 一种特定构型六轴工业机器人的运动控制方法
CN107972066A (zh) * 2017-11-24 2018-05-01 广东南方职业学院 一种六轴机械手
CN108237528A (zh) * 2018-02-11 2018-07-03 苏州三德精密机械有限公司 调整臂
JP7121599B2 (ja) * 2018-07-06 2022-08-18 川崎重工業株式会社 ロボットシステム及びロボットシステムの制御方法
JP7310358B2 (ja) * 2019-06-27 2023-07-19 セイコーエプソン株式会社 オーバーシュート量検出方法、オーバーシュート量検出システム、ロボットシステムおよびオーバーシュート量調整方法
CN117001713A (zh) * 2023-09-20 2023-11-07 贵州航天控制技术有限公司 一种高耐辐照大负载一体化关节装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020888A (ja) * 1983-07-11 1985-02-02 松下電器産業株式会社 ノイズ防止形ロボツトア−ム
JPS62212702A (ja) * 1986-03-13 1987-09-18 Yokogawa Electric Corp ロボツト用軌道決定装置
JPH07314360A (ja) * 1994-05-31 1995-12-05 Ishikawajima Harima Heavy Ind Co Ltd カメラ操作ロボット
JPH10197546A (ja) * 1997-01-10 1998-07-31 Sumitomo Electric Ind Ltd 磁気変量検出用センサ
US20030178964A1 (en) * 2003-04-07 2003-09-25 The Boeing Company Low cost robot manipulator
JP2005242794A (ja) * 2004-02-27 2005-09-08 Toshiba Corp ロボット制御装置およびロボットの制御方法
US20100042357A1 (en) * 2008-08-15 2010-02-18 Oceaneering International, Inc. Manipulator Position Sensor System
JP2010253566A (ja) * 2009-04-21 2010-11-11 Seiko Epson Corp ロボット
JP2011085441A (ja) * 2009-10-14 2011-04-28 Tamagawa Seiki Co Ltd 慣性センサを収容するモールド構造およびそれを用いたセンサシステム
JP2011136395A (ja) * 2009-12-28 2011-07-14 Kawasaki Heavy Ind Ltd ロボットの制振方法およびロボットの制御装置
JP2011224727A (ja) * 2010-04-20 2011-11-10 Fanuc Ltd ロボットシステム
JP2012035361A (ja) * 2010-08-06 2012-02-23 Seiko Epson Corp ロボット装置、ロボット装置の制御方法およびプログラム
JP2013061834A (ja) * 2011-09-14 2013-04-04 Seiko Epson Corp ロボット装置およびロボット装置の制御方法

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937759A (en) 1986-02-18 1990-06-26 Robotics Research Corporation Industrial robot with controller
JP2566665B2 (ja) * 1990-06-27 1996-12-25 川崎重工業株式会社 慣性系におけるロボットの制御装置
US5550953A (en) 1994-04-20 1996-08-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration On-line method and apparatus for coordinated mobility and manipulation of mobile robots
US5710870A (en) 1995-09-07 1998-01-20 California Institute Of Technology Decoupled six degree-of-freedom robot manipulator
JP3207728B2 (ja) 1995-10-11 2001-09-10 三菱重工業株式会社 冗長マニピュレータの制御方法
US6216056B1 (en) * 1996-12-16 2001-04-10 Kabushiki Kaisha Sanyo Seiki Seisakusho Method of controlling force assisting device and control apparatus using the same
US5944476A (en) * 1997-03-26 1999-08-31 Kensington Laboratories, Inc. Unitary specimen prealigner and continuously rotatable multiple link robot arm mechanism
JP4269129B2 (ja) * 1998-10-19 2009-05-27 株式会社安川電機 干渉検出装置を備えたクリーンロボット
KR100598567B1 (ko) * 2000-01-26 2006-07-13 삼성전자주식회사 회전체의 회전각도 측정장치 및 측정방법
EP1215019A3 (en) 2000-11-17 2003-01-22 Honda Giken Kogyo Kabushiki Kaisha Method for designing a robot arm
JP2003026005A (ja) * 2001-07-18 2003-01-29 Matsushita Electric Ind Co Ltd 自動車
EP2298506B1 (en) 2002-03-18 2013-09-11 Sony Corporation Mobile device and method for controlling a mobile device
JP2004264060A (ja) * 2003-02-14 2004-09-24 Akebono Brake Ind Co Ltd 姿勢の検出装置における誤差補正方法及びそれを利用した動作計測装置
KR20060015557A (ko) * 2003-04-28 2006-02-17 스티븐 제임스 크램톤 외골격을 구비한 cmm 암
JP4587738B2 (ja) 2003-08-25 2010-11-24 ソニー株式会社 ロボット装置及びロボットの姿勢制御方法
JP4735795B2 (ja) 2003-12-26 2011-07-27 独立行政法人 宇宙航空研究開発機構 冗長マニピュレータの制御方法
JP4286684B2 (ja) 2004-02-27 2009-07-01 株式会社ダイヘン アーク溶接ロボットにおけるケーブル配設構造
EP1803536A1 (en) * 2004-08-25 2007-07-04 Kabushiki Kaisha Yaskawa Denki Robot evaluation system and evaluation method
JP4754572B2 (ja) * 2005-09-20 2011-08-24 利晃 島田 産業用ロボット
JP2007098464A (ja) * 2005-10-07 2007-04-19 Nissan Motor Co Ltd レーザー加工ロボット制御装置、レーザー加工ロボット制御方法およびレーザー加工ロボット制御プログラム
JP4552037B2 (ja) * 2007-12-10 2010-09-29 本田技研工業株式会社 ロボット
JP5213023B2 (ja) * 2008-01-15 2013-06-19 本田技研工業株式会社 ロボット
EP2322071A4 (en) * 2008-08-08 2012-01-18 Panasonic Corp CONTROL DEVICE AND CONTROL METHOD FOR CLEANING APPARATUS, CLEANING APPARATUS, CONTROL PROGRAM FOR CLEANING APPARATUS, AND INTEGRATED ELECTRONIC CIRCUIT
US20110082566A1 (en) * 2008-09-04 2011-04-07 Herr Hugh M Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
WO2010027968A2 (en) * 2008-09-04 2010-03-11 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
JP4998506B2 (ja) * 2009-04-22 2012-08-15 トヨタ自動車株式会社 ロボット制御装置、ロボット制御方法、及び脚式ロボット
JP4957753B2 (ja) 2009-06-15 2012-06-20 セイコーエプソン株式会社 ロボット、搬送装置、及び慣性センサーを用いた制御方法
JP5549129B2 (ja) * 2009-07-06 2014-07-16 セイコーエプソン株式会社 位置制御方法、ロボット
JP5499647B2 (ja) * 2009-11-10 2014-05-21 株式会社安川電機 ロボット及びロボットシステム
JP5450223B2 (ja) 2010-04-14 2014-03-26 株式会社ダイヘン 産業用ロボット
JP5685842B2 (ja) * 2010-07-12 2015-03-18 セイコーエプソン株式会社 ロボット装置およびロボット装置の制御方法
US8650965B2 (en) * 2010-08-31 2014-02-18 Kabushiki Kaisha Yaskawa Denki Robot, robot system, robot control device, and state determining method
JP5652155B2 (ja) 2010-11-24 2015-01-14 セイコーエプソン株式会社 振動片、センサーユニット、電子機器、振動片の製造方法、および、センサーユニットの製造方法
JP5817142B2 (ja) * 2011-02-22 2015-11-18 セイコーエプソン株式会社 水平多関節ロボット
JP5821210B2 (ja) * 2011-02-22 2015-11-24 セイコーエプソン株式会社 水平多関節ロボット及び水平多関節ロボットの制御方法
JP5834473B2 (ja) * 2011-04-28 2015-12-24 セイコーエプソン株式会社 ロボット
US8886359B2 (en) 2011-05-17 2014-11-11 Fanuc Corporation Robot and spot welding robot with learning control function
JP2013000856A (ja) * 2011-06-20 2013-01-07 Seiko Epson Corp ロボット制御システム、ロボットシステム
FR2977184B1 (fr) * 2011-07-01 2013-08-02 Advanced Echo Technology Systeme robotise pour le deplacement d'un outil guide a distance
JP5929061B2 (ja) * 2011-09-15 2016-06-01 セイコーエプソン株式会社 ロボット制御装置、ロボットシステム、ロボット
US9140598B2 (en) * 2011-09-20 2015-09-22 Ishida Co., Ltd. Mass measurement device
JP2013066954A (ja) * 2011-09-21 2013-04-18 Seiko Epson Corp ロボット及びロボットの制御方法
KR20130034082A (ko) 2011-09-28 2013-04-05 삼성전자주식회사 로봇 및 그 제어 방법
CN102501242B (zh) 2011-09-28 2014-10-08 华南理工大学 一种三自由度柔性机械臂控制装置与方法
JP6332899B2 (ja) 2012-08-31 2018-05-30 セイコーエプソン株式会社 ロボット
JP6111562B2 (ja) 2012-08-31 2017-04-12 セイコーエプソン株式会社 ロボット

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020888A (ja) * 1983-07-11 1985-02-02 松下電器産業株式会社 ノイズ防止形ロボツトア−ム
JPS62212702A (ja) * 1986-03-13 1987-09-18 Yokogawa Electric Corp ロボツト用軌道決定装置
JPH07314360A (ja) * 1994-05-31 1995-12-05 Ishikawajima Harima Heavy Ind Co Ltd カメラ操作ロボット
JPH10197546A (ja) * 1997-01-10 1998-07-31 Sumitomo Electric Ind Ltd 磁気変量検出用センサ
US20030178964A1 (en) * 2003-04-07 2003-09-25 The Boeing Company Low cost robot manipulator
JP2005242794A (ja) * 2004-02-27 2005-09-08 Toshiba Corp ロボット制御装置およびロボットの制御方法
US20100042357A1 (en) * 2008-08-15 2010-02-18 Oceaneering International, Inc. Manipulator Position Sensor System
JP2010253566A (ja) * 2009-04-21 2010-11-11 Seiko Epson Corp ロボット
JP2011085441A (ja) * 2009-10-14 2011-04-28 Tamagawa Seiki Co Ltd 慣性センサを収容するモールド構造およびそれを用いたセンサシステム
JP2011136395A (ja) * 2009-12-28 2011-07-14 Kawasaki Heavy Ind Ltd ロボットの制振方法およびロボットの制御装置
JP2011224727A (ja) * 2010-04-20 2011-11-10 Fanuc Ltd ロボットシステム
JP2012035361A (ja) * 2010-08-06 2012-02-23 Seiko Epson Corp ロボット装置、ロボット装置の制御方法およびプログラム
JP2013061834A (ja) * 2011-09-14 2013-04-04 Seiko Epson Corp ロボット装置およびロボット装置の制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087301A (ja) * 2015-11-02 2017-05-25 セイコーエプソン株式会社 ロボット、制御装置およびロボットシステム
US11745364B2 (en) 2018-10-17 2023-09-05 Fanuc Corporation Robot and first arm member

Also Published As

Publication number Publication date
US9339933B2 (en) 2016-05-17
US20140309776A1 (en) 2014-10-16
JP6155780B2 (ja) 2017-07-05
CN104097199A (zh) 2014-10-15
CN104097199B (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
JP6155780B2 (ja) ロボット、ロボット制御装置およびロボットシステム
JP6332900B2 (ja) ロボットシステム及びロボット制御装置
JP6354122B2 (ja) ロボット
JP2014205198A (ja) ロボット、ロボット制御装置およびロボットシステム
JP2014205197A (ja) ロボット、ロボット制御装置およびロボットシステム
JP2014205199A (ja) ロボット、ロボット制御装置およびロボットシステム
JP6111562B2 (ja) ロボット
US10688659B2 (en) Robot
JP6111563B2 (ja) ロボット
JP6575200B2 (ja) ロボット、制御装置およびロボットシステム
JP2015182143A (ja) ロボットおよびロボットシステム
JP6011412B2 (ja) ロボット
JP2014050935A (ja) ロボット制御装置、ロボットおよびロボットシステム
JP6036476B2 (ja) ロボット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6155780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150