JP7310358B2 - オーバーシュート量検出方法、オーバーシュート量検出システム、ロボットシステムおよびオーバーシュート量調整方法 - Google Patents

オーバーシュート量検出方法、オーバーシュート量検出システム、ロボットシステムおよびオーバーシュート量調整方法 Download PDF

Info

Publication number
JP7310358B2
JP7310358B2 JP2019119685A JP2019119685A JP7310358B2 JP 7310358 B2 JP7310358 B2 JP 7310358B2 JP 2019119685 A JP2019119685 A JP 2019119685A JP 2019119685 A JP2019119685 A JP 2019119685A JP 7310358 B2 JP7310358 B2 JP 7310358B2
Authority
JP
Japan
Prior art keywords
signal
arm
detection signal
overshoot amount
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019119685A
Other languages
English (en)
Other versions
JP2021003781A (ja
Inventor
竜太郎 関
公威 溝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2019119685A priority Critical patent/JP7310358B2/ja
Priority to CN202010589448.7A priority patent/CN112140127B/zh
Priority to US16/912,811 priority patent/US11440186B2/en
Publication of JP2021003781A publication Critical patent/JP2021003781A/ja
Application granted granted Critical
Publication of JP7310358B2 publication Critical patent/JP7310358B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1638Programme controls characterised by the control loop compensation for arm bending/inertia, pay load weight/inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/087Controls for manipulators by means of sensing devices, e.g. viewing or touching devices for sensing other physical parameters, e.g. electrical or chemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0095Means or methods for testing manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1653Programme controls characterised by the control loop parameters identification, estimation, stiffness, accuracy, error analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion

Description

本発明は、オーバーシュート量検出方法、オーバーシュート量検出システム、ロボットシステムおよびオーバーシュート量調整方法に関するものである。
特許文献1に記載されているロボット制御システムは、エンドエフェクターに設けられた加速度センサーを有し、この加速度センサーから出力される検出信号に基づいてアームの設定停止位置からのオーバーシュート量を検出する。具体的には、ロボット制御システムは、加速度センサーから出力される検出信号である加速度信号を2回積分することによりアームの位置を検出し、検出した位置と設定停止位置とのずれの最大値をオーバーシュート量として検出する。
特開2018-118353号公報
加速度センサーから出力される加速度信号を2回積分するとノイズ起因によるドリフトが発生するため、積分を行う際に加速度信号から当該信号に含まれる低周波成分の信号をフィルター処理等によって除去する必要がある。しかしながら、低周波成分は、アームの移動を示す重要な成分であり、このような低周波成分を除去してしまうと、アームのオーバーシュート量を精度よく検出することができないという問題がある。
本発明のオーバーシュート量検出方法は、変位するアームの作業部における慣性を検出する慣性センサーから出力される第1検出信号に対して2回積分と、前記第1検出信号に含まれる低周波成分の除去とを行って第1信号を生成し、
前記アームの変位量を検出するエンコーダーから出力される第2検出信号から前記第1信号の前記低周波成分を補う第2信号を生成し、
前記第1信号と前記第2信号とに基づいて前記アームのオーバーシュート量を検出することを特徴とする。
本発明の好適な実施形態に係るロボットシステムの全体構成を示す図である。 制御装置の構成を示すブロック図である。 オーバーシュート量の検出方法を示すフローチャートである。
以下、本発明のオーバーシュート量検出方法、オーバーシュート量検出システム、ロボットシステムおよびオーバーシュート量調整方法を添付図面に示す実施形態に基づいて詳細に説明する。
図1は、本発明の好適な実施形態に係るロボットシステムの全体構成を示す図である。図2は、制御装置の構成を示すブロック図である。図3は、オーバーシュート量の検出方法を示すフローチャートである。
図1に示すロボットシステム1は、ロボット本体100と、ロボット本体100の駆動を制御する制御装置200と、を有する。
まず、ロボット本体100について簡単に説明する。図1に示すように、ロボット本体100は、水平多関節ロボットすなわちスカラロボットであり、例えば、電子部品等のワークの保持、搬送、組立および検査等の各作業で用いられる。なお、ロボット本体100の用途は、特に限定されない。
ロボット本体100は、基台110と、基台110に接続されているアーム120と、を有する。また、アーム120は、基端部が基台110に接続され、基台110に対して第1軸J1まわり回動可能な第1アーム121と、基端部が第1アーム121の先端部に接続され、第1アーム121に対して第1軸J1と平行な第2軸J2まわりに回動可能な第2アーム122と、を有する。また、第2アーム122の先端部には作業ヘッド130が設けられている。
基台110は、例えば、図示しない床面にボルト等によって固定されている。また、基台110内には基台110に対して第1アーム121を鉛直方向に沿う第1軸J1まわりに回動させる駆動装置141が設けられており、第2アーム122内には第1アーム121に対して第2アーム122を第2軸J2まわりに回動させる駆動装置142が設けられている。
駆動装置141には、第1アーム121を基台110に対して第1軸J1まわりに回動させる駆動源としてのモーターM1、モーターM1の駆動を制御するコントローラーC1、第1アーム121の第1軸J1まわりの変位量(回動角)を検出するエンコーダーE1等が含まれている。同様に、駆動装置142には、第2アーム122を第1アーム121に対して第2軸J2まわりに回動させる駆動源としてのモーターM2、モーターM2の駆動を制御するコントローラーC2、第2アーム122の第2軸J2まわりの変位量(回動角)を検出するエンコーダーE2等が含まれている。
作業ヘッド130は、第2アーム122の先端部に同軸的に配置されたスプラインナット131およびボールネジナット132と、スプラインナット131およびボールネジナット132に挿通されたスプラインシャフト133と、を有する。スプラインシャフト133は、第2アーム122に対して、その中心軸であり、第1、第2軸J1、J2と平行な第3軸J3まわりに回転可能であり、かつ、第3軸J3に沿った方向に昇降可能である。
第2アーム122内にはスプラインナット131を回転させてスプラインシャフト133を第3軸J3まわりに回転させる駆動装置143と、ボールネジナット132を回転させてスプラインシャフト133を第3軸J3に沿った方向に昇降させる駆動装置144と、が設けられている。
駆動装置143には、スプラインシャフト133を第2アーム122に対して第3軸J3まわりに回動させる駆動源としてのモーターM3、モーターM3の駆動を制御するコントローラーC3、スプラインシャフト133の第3軸J3まわりの変位量(回動角)を検出するエンコーダーE3等が含まれている。同様に、駆動装置144には、スプラインシャフト133を第2アーム122に対して第3軸J3方向に昇降させる駆動源としてのモーターM4、モーターM4の駆動を制御するコントローラーC4、スプラインシャフト133の第3軸J3方向の変位量(昇降量)を検出するエンコーダーE4等が含まれている。
ここで、各エンコーダーE1~E4は、共通の固定座標系D1を有する。固定座標系D1は、互いに直交するX軸、Y軸およびZ軸を有しており、X軸およびY軸が水平方向に延び、Z軸が鉛直方向に延びている。このような固定座標系D1は、基台110に対して固定されており、そのため、アーム120の変位に関わらず、その位置は固定されている。
スプラインシャフト133の下端部には、エンドエフェクター160を装着するためのペイロード150が設けられている。ペイロード150に装着するエンドエフェクター160としては、目的の動作を行うことができれば、特に限定されないが、本実施形態では、対象物Xを把持するためのハンドが用いられている。なお、把持方法としては、特に限定されず、複数の爪部で挟み込んでもよいし、エアチャック、静電チャック等によって吸着させてもよい。
本実施形態のエンドエフェクター160は、ペイロード150に装着された基部161と、基部161に対して開閉自在な一対の爪部162、163と、を有する。そして、爪部162、163を接近させることにより対象物を把持し、爪部162、163を離間させることにより、把持した対象物を離脱させることができる。ただし、エンドエフェクター160の構成としては、特に限定されない。
また、ロボット本体100は、エンドエフェクター160の基部161に設けられた慣性センサーとしての加速度センサー170を有する。この加速度センサー170は、互いに直交する3軸方向の加速度をそれぞれ独立して検出することのできる3軸加速度センサーである。加速度センサー170は、可動座標系D2を有する。可動座標系D2は、互いに直交するX’軸、Y’軸およびZ’軸を有しており、X’軸およびY’軸が水平方向に延び、Z’軸が鉛直方向に延びている。このような可動座標系D2は、基部161に対して固定されており、基部161がX軸方向、Y軸方向またはZ軸方向に移動・回動すればそれに伴って移動・回動するし、基部161が第3軸J3まわりに回転すればそれに伴って回転する。
このように、慣性センサーとして加速度センサー170を用いることにより、回転を伴わない並進方向(直線方向)についてもアーム120の移動や振動を検出することができる。ただし、慣性センサーとしては、加速度センサー170に限定されず、例えば、角速度センサーを用いることもできる。この場合は、アーム120の並進方向の移動や振動が生じないロボット本体と組み合わせることが好ましい。
以上、ロボット本体100の全体構成について簡単に説明した。ただし、ロボット本体100の構成については、特に限定されず、例えば、アーム120は、第1アーム121を省略し、第2アーム122が基台110に接続されている構成となっていてもよいし、第1アーム121と第2アーム122との間に、さらに、第1、第2軸J1、J2と平行な軸まわりに回転可能な少なくとも1つのアームが介在していてもよい。また、水平多関節ロボットではなく、複数のアームの回転軸が捩じれの関係にある6軸ロボット、双腕ロボット等の多関節ロボットであってもよい。
また、基台110内には、例えば、図示しないホストコンピューターからの指令に基づいて駆動装置141、142、143、144の駆動を制御する制御装置200が設けられている。ただし、制御装置200の設置位置は、特に限定されず、例えば、基台110の外部であってもよい。
制御装置200は、例えば、コンピューターから構成され、情報を処理するプロセッサー(CPU)と、プロセッサーに通信可能に接続されたメモリーと、外部インターフェースと、を有する。また、メモリーにはプロセッサーにより実行可能な各種プログラムが保存され、プロセッサーは、メモリーに記憶された各種プログラム等を読み込んで実行することができる。
図2に示すように、制御装置200は、アーム120のオーバーシュート量を検出するオーバーシュート量検出部210と、オーバーシュート量検出部210での検出結果に基づいてアーム120の駆動条件を調整する駆動条件調整部220と、を有する。なお、アーム120のオーバーシュート量とは、アーム120を目標停止位置まで移動させた際の、前記目標停止位置に対するアーム120の行き過ぎ量の最大値である。
オーバーシュート量検出部210は、前述したようにアーム120のオーバーシュート量を検出する機能を有する。本実施形態のアーム120のオーバーシュート量とは、具体的には作業部であるエンドエフェクター160の基部161のオーバーシュート量を意味する。基部161は対象物を把持する爪部162、163すなわちロボット本体100の作業部の十分近くに設けられている。そのため、当該部分のオーバーシュート量を検出することにより、作業部におけるオーバーシュート量をより精度よく検出することができる。そして、この検出結果を用いることにより、エンドエフェクター160の軌道をより精度よく制御することができ、その結果、ロボット本体100の作業精度および作業効率がそれぞれ向上する。
オーバーシュート量検出部210は、加速度センサー170から出力される第1検出信号Aを取得し、取得した第1検出信号Aから第1信号AAを生成する第1信号生成部211と、各エンコーダーE1~E4から出力される第2検出信号Bを取得し、取得した第2検出信号Bから第2信号BBを生成する第2信号生成部212と、第1信号AAと第2信号BBとを加算して第3信号CCを生成し、この第3信号CCに基づいてアーム120のオーバーシュート量を算出する算出部213と、を有する。以下、図3に示すフローチャートに基づいて、各部の機能およびオーバーシュート量の検出方法について詳細に説明する。
まず、第1信号生成部211での処理について説明する。第1信号生成部211は、まず、ステップS11として、加速度センサー170から出力される加速度信号である第1検出信号Aを取得する。次に、第1信号生成部211は、ステップS12として、加速度センサー170から取得した第1検出信号Aの座標系である可動座標系D2をエンコーダーE1~E4の座標系である固定座標系D1に変換する。当該変換は、例えば、同次変換行列を用いて行うことができる。このように、第1検出信号Aの座標系である可動座標系D2をエンコーダーE1~E4の座標系である固定座標系D1に変換し、第1検出信号Aと第2検出信号Bとの座標系を合わせることにより、後の第3信号CCからアーム120のオーバーシュート量を精度よく算出することができる。
次に、第1信号生成部211は、ステップS13として、第1検出信号Aと第2検出信号B、具体的には後述する位置信号B1とを同期させる。これにより、後の第3信号CCをより精度よく生成することができる。同期の方法としては、特に限定されないが、例えば、アーム120を駆動させた際に、第1検出信号Aの立ち上がりを検出して、当該立ち上がり時刻をアーム120の動作開始時刻T1とし、第2検出信号Bの立ち上がりを検出して、当該立ち上がり時刻をアーム120の動作開始時刻T2とし、これら2つの動作開始時刻T1、T2を同時刻とすることにより、第1検出信号Aと第2検出信号Bとを同期させることができる。
次に、第1信号生成部211は、第1検出信号Aを2回積分し、第1検出信号Aから低周波成分を除去する。具体的には、第1信号生成部211は、まず、ステップS14として、第1検出信号Aを積分して速度信号A1を得る。次に、第1信号生成部211は、ステップS15として、ハイパスフィルター等を用いて速度信号A1から低周波成分を除去する。次に、第1信号生成部211は、ステップS16として、速度信号A1を積分して位置信号A2を得る。次に、第1信号生成部211は、ステップS17として、ハイパスフィルター等を用いて位置信号A2から低周波成分を除去する。これにより、第1信号AAが得られる。
ステップS15、S17で除去する低周波成分としては、その信号の周波数帯の中で相対的に低い周波数帯の成分を言い、絶対的な周波数帯を有する意味ではない。例えば、通常のロボット本体100の作動では、第1検出信号Aの周波数帯が1Hz~100Hz程度であるため、例えば、10Hz以下の成分とすることが好ましい。
第1検出信号Aから低周波成分を除去するのは、次の理由による。上述のように加速度信号である第1検出信号Aを1回積分すれば速度信号A1が得られ、2回積分すれば位置信号A2が得られることは公知である。そのため、位置信号A2からエンドエフェクター160の基部161の位置を検出することも可能である。しかしながら、第1検出信号Aを2回積分した位置信号では低い周波数のノイズが強調されてしまう。そのため、第1検出信号Aを2回積分しただけの位置信号からは基部161の正確な位置を検出することが困難である。
以上の理由から、上述のノイズを除去すべく、第1検出信号Aから低周波成分を除去する必要がある。なお、第1検出信号Aから低周波成分を除去するタイミングや回数は、特に限定されない。例えば、ステップS15、S17のいずれか一方を省略してもよい。また、ステップS15、S17を省略し、その代わりに、ステップS14に先立って第1検出信号Aから低周波成分を除去してもよい。
上述のように、第1検出信号Aから低周波成分を除去することにより位置信号A2からノイズが除去されるが、除去した低周波成分は、アーム120の移動を示す重要な信号である。つまり、第1検出信号Aから低周波成分を除去すると、ノイズを除去すると共にアーム120の移動を示す重要な信号まで除去してしまう。そのため、低周波成分を除去した位置信号A2に基づいても、やはり、エンドエフェクター160の基部161の正確な位置を検出することが困難である。そこで、第2信号生成部212によって、第1検出信号Aから除去した低周波成分を補う第2信号BBを生成する。
次に、第2信号生成部212での処理について説明する。第2信号生成部212は、まずステップS21として、各エンコーダーE1~E4から出力される第2検出信号Bを取得し、これら各第2検出信号Bからエンドエフェクター160の基部161の位置信号B1を得る。次に、第2信号生成部212は、ステップS22として、位置信号B1と第1検出信号Aとを同期させる。この工程は、前述したステップS13と同工程である。次に、第2信号生成部212は、ステップS23として、ローパスフィルター等を用いて位置信号B1から高周波成分を除去する。これにより、第1信号AAから除去した低周波成分を補うための第2信号BBが得られる。
ステップS23で除去する高周波成分としては、第2信号BBの周波数帯が第1信号AAから除去した周波数帯を含んでいることが好ましい。これにより、第1信号AAから除去した低周波成分を第2信号BBによって補うことができる。前述したように、本実施形態では、第1信号AAから10Hz以下の低周波成分が除去されているため、第2信号BBには0Hz~10Hzまでの低周波成分が含まれていることが好ましい。言い換えると、ステップS23では、10Hzを超える周波数成分を除去するようにローパスフィルターを設定することが好ましい。
また、第2信号生成部212は、ステップS23とは別に、ステップS24として、前記ホストコンピューターからの位置指令(アーム120の目標停止位置に関する情報)と位置信号B1とに基づいて、アーム120の目標停止位置到達時における速度ベクトルV1を算出する。
以上、第1信号生成部211および第2信号生成部212の処理について、第1信号AAと第2信号BBとが生成されたところまで説明した。次に、算出部213の処理について説明する。算出部213は、まず、ステップS31として、第1信号生成部211で得られた第1信号AAと第2信号生成部212で得られた第2信号BBとを加算して第3信号CCを得る。第3信号CCは、第1信号AAの低周波成分を第2信号BBで補った信号であり、エンドエフェクター160の基部161の三次元移動軌跡を示す合成信号である。
次に、算出部213は、ステップS32として、速度ベクトルV1と第3信号CCとの内積をとり、速度方向すなわち基部161の移動方向の信号変位を算出する。次に、算出部213は、ステップS33として、ステップS32で算出した信号変位に基づいて、基部161のオーバーシュート量を算出する。具体的には、算出部213は、信号変位のピーク値(最大値)を基部161のオーバーシュート量として算出する。次に、ステップS34として、ステップS33で算出されたオーバーシュート量に基づいて、アーム120の駆動条件を調整する。ただし、ステップS34は、省略してもよい。
以上、ロボットシステム1、ロボットシステム1により実現されるオーバーシュート量検出方法、および、ロボットシステム1に適用されたオーバーシュート量の検出システムおよび調整システムについて説明した。
オーバーシュート量検出部210によれば、加速度センサー170から出力された第1検出信号Aから生成され、ノイズの大きい低周波成分が除去された第1信号AAに、各エンコーダーE1~E4から出力された第2検出信号Bから生成され、第1信号AAから除去された低周波成分を補うための第2信号BBを加算して生成される第3信号CCに基づいてオーバーシュート量を算出している。第2信号BBの低周波成分は、第1検出信号Aから除去された低周波成分よりもノイズが小さいため、第3信号CCに基づいてアーム120のオーバーシュート量を算出することにより、例えば、従来のように、第1検出信号Aを2回積分しただけで低周波成分が除去されていない信号に基づいてアーム120のオーバーシュート量を検出する場合と比べて、より精度よくアーム120のオーバーシュート量を検出することができる。なお、第2信号BBの低周波成分のノイズが第1検出信号Aから除去された低周波成分のノイズよりも小さいのは、第2信号BBが第1信号AAのような積分処理を受けていないためである。
また、オーバーシュート量検出部210によれば、モーターM1~M4の駆動によってもたらされるアーム120の位置変化と、それに伴って基部161に生じる振動(加速度)の両方を考慮して、基部161の位置を算出することができるため、基部161の三次元軌跡をより精度よく算出することができる。また、基部161の進行方向の軌跡だけを抽出することができ、加速度センサー170の基部161に対する配置向きによらず、どのような進行方向においても基部161のオーバーシュート量を精度よく算出することができる。特に、エンコーダーE1~E4から出力される第2検出信号Bに基づくことにより、基部161の静止時の残留振動によらず、精度よく基部161の進行方向を検出することができる。
以上、オーバーシュート量検出部210について説明した。次に、駆動条件調整部220について説明する。駆動条件調整部220は、オーバーシュート量検出部210によって検出されたオーバーシュート量が小さくなるように、好ましくはゼロとなるようにアーム120の駆動条件を調整する。調整可能な駆動条件としては、特に限定されないが、例えば、(1)アーム120の駆動開始直後の加速度、(2)加速が終わって等速で移動する際の速度すなわち最高速度、(3)目標位置に停止するための減速を開始する位置、(4)減速時の減速度、等が挙げられる。これら条件(1)から条件(4)の少なくとも1つを適宜調整してオーバーシュート量を小さく抑えることにより、アーム120の移動精度がより高まり、かつ、作業効率も高まる。
具体的には、オーバーシュート量ができるだけ小さくなるように、モーターM1~M4のうちの少なくとも1つの駆動量を調整し、実行する。すなわち、図2に示すように、駆動条件調整部220は、オーバーシュート量に相当する補正値を加味した命令信号Fを調整すべきモーターM1~M4に対応するコントローラーC1~C4へ出力し、対応するモーターM1~M4の駆動量、駆動タイミングを調整する。ただし、当該調整は、ユーザーが手動で行ってもよい。
以上、ロボットシステム1について説明した。このようなロボットシステム1に用いられたオーバーシュート量検出方法は、前述したように、変位するアーム120の作業部であるエンドエフェクター160における慣性、本実施形態では加速度を検出する慣性センサーとしての加速度センサー170から出力される第1検出信号Aに対して2回積分と、第1検出信号Aに含まれる低周波成分の除去とを行って第1信号AAを生成し、アーム120の変位量を検出するエンコーダーE1~E4から出力される第2検出信号Bから第1信号AAの低周波成分を補う第2信号BBを生成し、第1信号AAと第2信号BBとに基づいてアーム120のオーバーシュート量を検出する。
また、言い換えると、オーバーシュート量検出方法は、変位するアーム120の作業部であるエンドエフェクター160における慣性、本実施形態では加速度を検出する慣性センサーとしての加速度センサー170から出力される第1検出信号Aから第1信号AAを生成する第1ステップとしてのステップS11~S17と、アーム120の変位量を検出するエンコーダーE1~E4から出力される第2検出信号Bを用いて第2信号BBを生成する第2ステップとしてのステップS21~S24と、第1信号AAと第2信号BBとを合成した第3信号CCに基づいてアーム120のオーバーシュート量を検出する第3ステップとしてのステップS31~S33と、を含む。さらに、第1ステップは、第1検出信号Aを2回積分するステップと、第1検出信号Aに含まれる低周波成分を除去するステップと、を含む。
このようなオーバーシュート量検出方法によれば、ノイズの大きい低周波成分が除去された第1信号AAに、第1信号AAから除去された低周波成分よりもノイズの小さい第2信号BBを加算して生成される第3信号CCに基づいてオーバーシュート量を算出している。そのため、第3信号CCに基づいてオーバーシュート量を算出することにより、例えば、従来のように、第1検出信号Aを2回積分しただけで低周波成分が除去されていない信号に基づいてオーバーシュート量を検出する場合と比べて、より精度よくオーバーシュート量を検出することができる。
さらには、オーバーシュート量検出方法によれば、モーターM1~M4によってもたらされるアーム120の位置変化と、それに伴って基部161に生じる振動(加速度)の両方を考慮して、エンドエフェクター160の位置を算出することができるため、エンドエフェクター160の三次元軌跡をより精度よく算出することができる。また、エンドエフェクター160の進行方向の軌跡だけを抽出することができ、加速度センサー170の配置向きによらず、どのような進行方向においてもオーバーシュート量を精度よく算出することができる。特に、エンコーダーE1~E4から出力される第2検出信号Bに基づくことにより、エンドエフェクター160の静止時の残留振動によらず、精度よくエンドエフェクター160の進行方向を検出することができる。
また、前述したように、ステップS12では、第1検出信号Aの座標系である可動座標系D2を第2検出信号Bの座標系である固定座標系D1に座標変換する。このように、第1検出信号Aの座標系を第2検出信号Bの座標系である固定座標系D1に変換し、第1検出信号Aと第2検出信号Bとの座標系を合わせることにより、これらを加算した第3信号CCからオーバーシュート量を精度よく算出することができる。
また、前述したように、ステップS13およびステップS22において、第1検出信号Aおよび第2検出信号Bを同期させる。これにより、第3信号CCをより精度よく生成することができる。
また、前述したように、エンドエフェクター160は、アーム120の先端部に設けられている。また、加速度センサー170は、アーム120の先端部に設けられている。これにより、加速度センサー170を作業部であるエンドエフェクター160の近傍に配置することができる。そのため、加速度センサー170は、エンドエフェクター160に加わる加速度をより精度よく検出することができる。
また、前述したように、加速度センサー170は、エンドエフェクター160に設けられている。そのため、加速度センサー170は、エンドエフェクター160に加わる加速度をより精度よく検出することができる。
また、前述したように、慣性センサーは、加速度センサー170である。これにより、回転を伴わない並進方向へのアーム120の移動、振動についても検出することができる。
また、前述したように、アーム120は、少なくとも、第1軸J1まわりに回動する第1アーム121と、第1アーム121に対して第2軸J2まわりに回動し、エンドエフェクター160を有する第2アーム122と、を有する。また、エンコーダーは、少なくとも、第1アーム121の第1軸J1まわりの変位量を検出する第1エンコーダーとしてのエンコーダーE1と、第2アーム122の第2軸J2まわりの変位量を検出する第2エンコーダーとしてのエンコーダーE2と、を有する。そして、ステップS21~S24では、少なくとも、エンコーダーE1から出力される第2検出信号BおよびエンコーダーE2から出力される第2検出信号Bから第2信号BBを生成する。これにより、より精度のよい第2信号BBが生成される。
また、前述したように、ロボットシステム1は、変位するアーム120と、アーム120の作業部であるエンドエフェクター160における慣性、本実施形態では加速度を検出する慣性センサーとしての加速度センサー170と、アーム120の変位量を検出するエンコーダーE1~E4と、加速度センサー170から出力される第1検出信号Aに対して2回積分と第1検出信号Aに含まれる低周波成分の除去とを行って第1信号AAを生成し、エンコーダーE1から出力される第2検出信号Bから第1信号AAの低周波成分を補う第2信号BBを生成し、第1信号AAと第2信号BBとに基づいてアーム120の目標停止位置からのオーバーシュート量を検出するオーバーシュート量検出部210と、を有する。
また、このようなロボットシステム1に組み込まれたオーバーシュート量検出システムは、前述したように、変位するアーム120の作業部であるエンドエフェクター160における慣性、本実施形態では加速度を検出する慣性センサーとしての加速度センサー170と、アーム120の変位量を検出するエンコーダーE1~E4と、加速度センサー170から出力される第1検出信号Aに対して2回積分と第1検出信号Aに含まれる低周波成分の除去とを行って第1信号AAを生成し、エンコーダーE1から出力される第2検出信号Bから第1信号AAの低周波成分を補う第2信号BBを生成し、第1信号AAと第2信号BBとに基づいてアーム120のオーバーシュート量を検出するオーバーシュート量検出部210と、を有する。
このようなロボットシステム1およびオーバーシュート量検出システムによれば、ノイズの大きい低周波成分が除去された第1信号AAに、第1信号AAから除去された低周波成分よりもノイズの小さい第2信号BBを加算して生成される第3信号CCに基づいてオーバーシュート量を算出している。そのため、第3信号CCに基づいてオーバーシュート量を算出することにより、例えば、従来のように、第1検出信号Aを2回積分しただけで低周波成分が除去されていない信号に基づいてオーバーシュート量を検出する場合と比べて、より精度よくオーバーシュート量を検出することができる。
さらには、ロボットシステム1およびオーバーシュート量検出システムによれば、モーターM1~M4によってもたらされるアーム120の位置変化と、それに伴って基部161に生じる振動(加速度)の両方を考慮して、エンドエフェクター160の位置を算出することができるため、エンドエフェクター160の三次元軌跡をより精度よく算出することができる。また、エンドエフェクター160の進行方向の軌跡だけを抽出することができ、加速度センサー170の配置向きによらず、どのような進行方向においてもオーバーシュート量を精度よく算出することができる。特に、エンコーダーE1~E4から出力される第2検出信号Bに基づくことにより、エンドエフェクター160の静止時の残留振動によらず、精度よくエンドエフェクター160の進行方向を検出することができる。
また、前述したように、ロボットシステム1は、オーバーシュート量検出部210で検出されたオーバーシュート量に基づいて、アーム120の駆動条件を調整する駆動条件調整部220を有する。これにより、アーム120の移動精度がより高まり、かつ、作業効率も高まる。
また、ロボットシステム1で行われるオーバーシュート量調整方法は、前述したように、変位するアーム120の作業部であるエンドエフェクター160における慣性、本実施形態では加速度を検出する慣性センサーとしての加速度センサー170から出力される第1検出信号Aに対して2回積分と、第1検出信号Aに含まれる低周波成分の除去とを行って第1信号AAを生成し、アーム120の変位量を検出するエンコーダーE1~E4から出力される第2検出信号Bから第1信号AAの低周波成分を補う第2信号BBを生成し、第1信号AAと第2信号BBとに基づいてアーム120のオーバーシュート量を検出し、検出されたオーバーシュート量に基づいて、オーバーシュート量が小さくなるようにアーム120の駆動条件を調整する。これにより、アーム120の移動精度がより高まり、かつ、作業効率も高まる。
以上、本発明のオーバーシュート量検出方法、オーバーシュート量検出システム、ロボットシステムおよびオーバーシュート量調整方法を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置換することができる。また、他の任意の構成物が付加されていてもよい。
1…ロボットシステム、10…オーバーシュート量検出システム、100…ロボット本体、110…基台、120…アーム、121…第1アーム、122…第2アーム、130…作業ヘッド、131…スプラインナット、132…ボールネジナット、133…スプラインシャフト、141、142、143、144…駆動装置、150…ペイロード、160…エンドエフェクター、161…基部、162、163…爪部、170…加速度センサー、200…制御装置、210…オーバーシュート量検出部、211…第1信号生成部、212…第2信号生成部、213…算出部、220…駆動条件調整部、A…第1検出信号、AA…第1信号、B…第2検出信号、BB…第2信号、C1、C2、C3、C4…コントローラー、D1…固定座標系、D2…可動座標系、E1、E2、E3、E4…エンコーダー、F…命令信号、J1…第1軸、J2…第2軸、J3…第3軸、M1、M2、M3、M4…モーター、S11~S17、S21~S24、S31~S34…ステップ

Claims (12)

  1. 変位するアームの作業部における慣性を検出する慣性センサーから出力される第1検出
    信号に対して2回積分と、前記第1検出信号に含まれる低周波成分の除去とを行って第1
    信号を生成し、
    前記アームの変位量を検出するエンコーダーから出力される第2検出信号から高周波成
    分の除去を行って前記第1信号の前記低周波成分を補う第2信号を生成し、
    前記第1信号と前記第2信号とを加算した第3信号に基づいて前記アームのオーバーシ
    ュート量を検出することを特徴とするオーバーシュート量検出方法。
  2. 変位するアームの作業部における慣性を検出する慣性センサーから出力される第1検出
    信号から第1信号を生成する第1ステップと、
    前記アームの変位量を検出するエンコーダーから出力される第2検出信号を用いて第2
    信号を生成する第2ステップと、
    前記第1信号と前記第2信号とを加算した第3信号に基づいて前記アームのオーバーシ
    ュート量を検出する第3ステップと、を含み、
    前記第1ステップは、前記第1検出信号を2回積分するステップと、前記第1検出信号
    に含まれる低周波成分を除去するステップと、を含み、
    前記第2ステップは、前記第2検出信号に含まれる高周波成分を除去するステップを含
    むことを特徴とするオーバーシュート量検出方法。
  3. 前記第1ステップでは、前記第1検出信号の座標系を前記第2検出信号の座標系に座標
    変換する請求項2に記載のオーバーシュート量検出方法。
  4. 前記第1ステップおよび前記第2ステップにおいて、前記第1検出信号および前記第2
    検出信号を同期させる請求項2または3に記載のオーバーシュート量検出方法。
  5. 前記作業部は、前記アームの先端部に設けられ、
    前記慣性センサーは、前記アームの先端部に設けられている請求項2ないし4のいずれ
    か1項に記載のオーバーシュート量検出方法。
  6. 前記慣性センサーは、前記作業部に設けられている請求項2ないし5のいずれか1項に
    記載のオーバーシュート量検出方法。
  7. 前記慣性センサーは、加速度センサーである請求項2ないし6のいずれか1項に記載の
    オーバーシュート量検出方法。
  8. 前記アームは、第1軸まわりに回動する第1アームと、前記第1アームに対して第2軸
    まわりに回動し、前記作業部を有する第2アームと、を有し、
    前記エンコーダーは、前記第1アームの前記第1軸まわりの変位量を検出する第1エン
    コーダーと、前記第2アームの前記第2軸まわりの変位量を検出する第2エンコーダーと
    、を有し、
    前記第2ステップでは、前記第1エンコーダーから出力される前記第2検出信号および
    前記第2エンコーダーから出力される前記第2検出信号から前記第2信号を生成する請求
    項2ないし7のいずれか1項に記載のオーバーシュート量検出方法。
  9. 変位するアームの作業部における慣性を検出する慣性センサーと、
    前記アームの変位量を検出するエンコーダーと、
    前記慣性センサーから出力される第1検出信号に対して2回積分と前記第1検出信号に
    含まれる低周波成分の除去とを行って第1信号を生成し、前記エンコーダーから出力され
    る第2検出信号から高周波成分の除去を行って前記第1信号の低周波成分を補う第2信号
    を生成し、前記第1信号と前記第2信号とを加算した第3信号に基づいて前記アームのオ
    ーバーシュート量を検出するオーバーシュート量検出部と、を有することを特徴とするオ
    ーバーシュート量検出システム。
  10. 変位するアームと、
    前記アームの作業部における慣性を検出する慣性センサーと、
    前記アームの変位量を検出するエンコーダーと、
    前記慣性センサーから出力される第1検出信号に対して2回積分と前記第1検出信号に
    含まれる低周波成分の除去とを行って第1信号を生成し、前記エンコーダーから出力され
    る第2検出信号から高周波成分の除去を行って前記第1信号の低周波成分を補う第2信号
    を生成し、前記第1信号と前記第2信号とを加算した第3信号に基づいて前記アームの目
    標停止位置からのオーバーシュート量を検出するオーバーシュート量検出部と、を有する
    ことを特徴とするロボットシステム。
  11. 前記オーバーシュート量検出部で検出されたオーバーシュート量に基づいて、前記アー
    ムの駆動条件を調整する駆動条件調整部を有する請求項10に記載のロボットシステム。
  12. 変位するアームの作業部における慣性を検出する慣性センサーから出力される第1検出
    信号に対して2回積分と、前記第1検出信号に含まれる低周波成分の除去とを行って第1
    信号を生成し、
    前記アームの変位量を検出するエンコーダーから出力される第2検出信号から高周波成
    分の除去を行って前記第1信号の前記低周波成分を補う第2信号を生成し、
    前記第1信号と前記第2信号とを加算した第3信号に基づいて前記アームのオーバーシ
    ュート量を検出し、検出された前記オーバーシュート量に基づいて、前記オーバーシュー
    ト量が小さくなるように前記アームの駆動条件を調整することを特徴とするオーバーシュ
    ート量調整方法。
JP2019119685A 2019-06-27 2019-06-27 オーバーシュート量検出方法、オーバーシュート量検出システム、ロボットシステムおよびオーバーシュート量調整方法 Active JP7310358B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019119685A JP7310358B2 (ja) 2019-06-27 2019-06-27 オーバーシュート量検出方法、オーバーシュート量検出システム、ロボットシステムおよびオーバーシュート量調整方法
CN202010589448.7A CN112140127B (zh) 2019-06-27 2020-06-24 超调量检测方法、检测系统和调整方法以及机器人系统
US16/912,811 US11440186B2 (en) 2019-06-27 2020-06-26 Overshoot amount detection method, overshoot amount detection system, robot system, and overshoot amount adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019119685A JP7310358B2 (ja) 2019-06-27 2019-06-27 オーバーシュート量検出方法、オーバーシュート量検出システム、ロボットシステムおよびオーバーシュート量調整方法

Publications (2)

Publication Number Publication Date
JP2021003781A JP2021003781A (ja) 2021-01-14
JP7310358B2 true JP7310358B2 (ja) 2023-07-19

Family

ID=73888630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019119685A Active JP7310358B2 (ja) 2019-06-27 2019-06-27 オーバーシュート量検出方法、オーバーシュート量検出システム、ロボットシステムおよびオーバーシュート量調整方法

Country Status (3)

Country Link
US (1) US11440186B2 (ja)
JP (1) JP7310358B2 (ja)
CN (1) CN112140127B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114474045A (zh) * 2021-12-23 2022-05-13 上海新时达机器人有限公司 一种机器人的绝对精度检测方法、装置及机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050264251A1 (en) 2004-05-28 2005-12-01 Rainer Bischoff Method and device for operating a machine, such as a multiaxial industrial robot
WO2006022201A1 (ja) 2004-08-25 2006-03-02 Kabushiki Kaisha Yaskawa Denki ロボットの評価システム及び評価方法
JP2011136395A (ja) 2009-12-28 2011-07-14 Kawasaki Heavy Ind Ltd ロボットの制振方法およびロボットの制御装置
JP2012196749A (ja) 2011-03-23 2012-10-18 Seiko Epson Corp ロボット装置
JP2014148040A (ja) 2014-05-21 2014-08-21 Seiko Epson Corp 位置制御方法、ロボット
JP2018118353A (ja) 2017-01-26 2018-08-02 ファナック株式会社 学習制御機能を備えた制御システム及び制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5370117B2 (ja) 2009-12-15 2013-12-18 トヨタ自動車株式会社 ロボットの制御装置
US8710777B2 (en) * 2012-04-20 2014-04-29 Linestream Technologies Method for automatically estimating inertia in a mechanical system
JP6155780B2 (ja) * 2013-04-10 2017-07-05 セイコーエプソン株式会社 ロボット、ロボット制御装置およびロボットシステム
JP2014205197A (ja) * 2013-04-10 2014-10-30 セイコーエプソン株式会社 ロボット、ロボット制御装置およびロボットシステム
JP5986125B2 (ja) 2014-02-28 2016-09-06 ファナック株式会社 無線センサを有する機械システム
JP2018126797A (ja) * 2017-02-06 2018-08-16 セイコーエプソン株式会社 制御装置、ロボットおよびロボットシステム
JP7155562B2 (ja) * 2018-03-22 2022-10-19 トヨタ自動車株式会社 姿勢角演算装置、移動装置、姿勢角演算方法、およびプログラム
JP2022019093A (ja) * 2020-07-17 2022-01-27 セイコーエプソン株式会社 オーバーシュート量検出方法およびロボットシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050264251A1 (en) 2004-05-28 2005-12-01 Rainer Bischoff Method and device for operating a machine, such as a multiaxial industrial robot
WO2006022201A1 (ja) 2004-08-25 2006-03-02 Kabushiki Kaisha Yaskawa Denki ロボットの評価システム及び評価方法
JP2011136395A (ja) 2009-12-28 2011-07-14 Kawasaki Heavy Ind Ltd ロボットの制振方法およびロボットの制御装置
JP2012196749A (ja) 2011-03-23 2012-10-18 Seiko Epson Corp ロボット装置
JP2014148040A (ja) 2014-05-21 2014-08-21 Seiko Epson Corp 位置制御方法、ロボット
JP2018118353A (ja) 2017-01-26 2018-08-02 ファナック株式会社 学習制御機能を備えた制御システム及び制御方法

Also Published As

Publication number Publication date
JP2021003781A (ja) 2021-01-14
CN112140127B (zh) 2023-07-11
US11440186B2 (en) 2022-09-13
US20200406458A1 (en) 2020-12-31
CN112140127A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
JP7314475B2 (ja) ロボット制御装置、及び、ロボット制御方法
US10618164B2 (en) Robot system having learning control function and learning control method
US9415518B2 (en) Robot control device and robot
KR102469258B1 (ko) 엔드 이펙터 위치 추정을 위한 로봇의 적응형 배치 시스템
US9298179B2 (en) Robot and robot controller
JP5929224B2 (ja) ロボット
WO2015111298A1 (ja) モータ制御装置
US9555548B2 (en) Robot control device for controlling robot moved according to applied force
JP2016198828A (ja) ロボット制御方法、ロボット装置、プログラム及び記録媒体
JP6153316B2 (ja) ロボットシステム及びロボットシステムの制御方法
CN113942008B (zh) 过冲量检测方法及机器人系统
WO2014061681A1 (ja) 多関節ロボットのウィービング制御装置
JP7310358B2 (ja) オーバーシュート量検出方法、オーバーシュート量検出システム、ロボットシステムおよびオーバーシュート量調整方法
WO2017175340A1 (ja) 最適化装置及びそれを備えた垂直型多関節ロボット
WO2018088199A1 (ja) ロボット制御装置、ロボット、ロボットシステム、及び、ロボット制御方法
JP6238110B2 (ja) ロボットハンドの制御方法と制御装置
US20230286152A1 (en) Robot system and controller
JP2014121788A (ja) ロボット、およびロボットシステム
WO2023013739A1 (ja) ロボット制御装置、ロボット制御システム、及びロボット制御方法
US20220314450A1 (en) Method For Controlling Robot, Robot System, And Storage Medium
JP6926882B2 (ja) ロボットの制御装置
US20230138649A1 (en) Following robot
JP6915470B2 (ja) ロボットの制御装置
CN116887954A (zh) 控制装置、机器人系统、学习装置、控制方法以及程序
JP2022174858A (ja) 直接教示装置及び直接教示方法

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20200811

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210916

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20211102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R150 Certificate of patent or registration of utility model

Ref document number: 7310358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150