JP2014013177A - 分光測定装置 - Google Patents

分光測定装置 Download PDF

Info

Publication number
JP2014013177A
JP2014013177A JP2012150346A JP2012150346A JP2014013177A JP 2014013177 A JP2014013177 A JP 2014013177A JP 2012150346 A JP2012150346 A JP 2012150346A JP 2012150346 A JP2012150346 A JP 2012150346A JP 2014013177 A JP2014013177 A JP 2014013177A
Authority
JP
Japan
Prior art keywords
voltage
gap
unit
wavelength
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012150346A
Other languages
English (en)
Other versions
JP6098051B2 (ja
Inventor
Akiyuki Nishimura
晃幸 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2012150346A priority Critical patent/JP6098051B2/ja
Priority to US13/933,726 priority patent/US9291502B2/en
Priority to CN201310276320.5A priority patent/CN103528685B/zh
Publication of JP2014013177A publication Critical patent/JP2014013177A/ja
Application granted granted Critical
Publication of JP6098051B2 publication Critical patent/JP6098051B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/433Modulation spectrometry; Derivative spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0264Electrical interface; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

【課題】迅速な分光測定が可能な分光測定装置を提供する。
【解決手段】分光測定装置1は、固定反射膜を有する固定基板、可動反射膜を有する可動基板、固定反射膜及び可動反射膜の間の反射膜間ギャップのギャップ量を変更する静電アクチュエーターを備えた波長可変干渉フィルター5と、波長可変干渉フィルター5により取り出された光の光強度を検出する検出部11と、静電アクチュエーターに対して連続的に変化するアナログ電圧を印加する電圧設定部21及び電圧制御部15と、静電アクチュエーターに印加された電圧を監視する電圧監視部22と、V−λデータを記憶する記憶部30と、電圧監視部22により監視される電圧に基づき、波長可変干渉フィルター5を透過する光が測定対象波長となるタイミングで、検出部11により検出される光強度を取得する光強度取得部24と、を具備した。
【選択図】図1

Description

本発明は、分光測定装置に関する。
従来、互いに対向する一対の反射膜を有し、この反射膜間の距離を変化させることで、測定対象の光から所定波長の光を取り出す波長可変干渉フィルターが知られている。また、このような波長可変干渉フィルターを用いて、測定対象の光の分光スペクトルを測定する分光測定装置が知られている(例えば、特許文献1参照)。
特許文献1に記載の光共振器(波長可変干渉フィルター)は、表面に凹部が形成された第一基板と、第二基板とを備え、第二基板が第一基板の凹部内部を閉塞するように接合されている。また、第一基板の凹部の底部、及び第二基板の凹部に対向する面には、互いに対向する高反射膜、及び、これらの反射膜の間のギャップ(反射膜間ギャップ)を調整する電極が設けられている。そして、第二基板は、凹部に対向する領域に、厚肉部と薄肉部とが設けられており、薄肉部が撓むことで、厚肉部が凹部側に進退可能となる。
このような波長可変干渉フィルターでは、電極間に電圧を印加することで、ダイアフラムの薄肉部を変形させ、厚肉部を第一基板に対して進退させることで、反射膜間ギャップを調整することが可能となる。
特開平7−243963号公報
ところで、上記のような波長可変干渉フィルターにより目的波長の光を取り出す場合、目的波長に応じた電圧を電極間に印加する。この時、第二基板の厚肉部には、電圧印加に伴う静電引力と、第二基板の薄肉部の弾性力とが作用するため、当該厚肉部が振動する。
したがって、従来、このような波長可変干渉フィルターを用いた分光測定装置では、目的波長の光を精度よく測定するために、厚肉部の振動が静止するまで待機し、厚肉部の振動が静止した後に光量測定処理を実施していた。このため、測定に要する時間が大きくなるという課題があった。
特に、分光測定装置では、所定の波長域における測定対象の波長を順次変更して、各波長に対する光量を測定する必要がある。このため、全ての測定対象毎に上記のような待機時間を設けると、更に測定に要する時間が増大してしまうという課題があった。
本発明は、迅速な分光測定が可能な分光測定装置を提供することを目的とする。
本発明の分光測定装置は、第一基板と、前記第一基板に対向する第二基板と、前記第一基板に設けられた第一反射膜と、前記第二基板に設けられて前記第一反射膜に所定の反射膜間ギャップを介して対向する第二反射膜と、電圧印加により前記第二基板を撓ませて前記反射膜間ギャップのギャップ量を変更するギャップ量変更部と、前記第一反射膜及び前記第二反射膜により取り出された光の光強度を検出する検出部と、前記ギャップ量変更部に対して連続的に変化するアナログ電圧を印加するフィルター駆動部と、前記ギャップ量変更部に印加された電圧を監視する電圧監視部と、前記ギャップ量変更部に印加する電圧と、前記第一反射膜及び前記第二反射膜により取り出される光の波長との関係であるV−λデータを記憶する記憶部と、前記電圧監視部により監視される電圧に基づき、前記第一反射膜及び前記第二反射膜により取り出される光が所望の測定対象波長となるタイミングで、前記検出部により検出される前記光強度を取得する光強度取得部と、を具備したことを特徴とする。
本発明によれば、分光測定装置は、第一反射膜及び第二反射膜の反射膜間ギャップのギャップ量を変化させるギャップ量変更部を備えており、このギャップ量変更部は、電圧が印加されることで第二基板を第一基板側に撓ませて、反射膜間ギャップのギャップ量を変化させる。
ここで、ギャップ量変更部に対して、反射膜間ギャップのギャップ量を所望の値に設定するために、所定ステップ電圧を印加した場合、第二基板には、ギャップ量変更部から受ける駆動力と、第二基板自身が有する弾性力(バネ力)とが作用するため、第二基板が振動してしまい、反射膜間ギャップの変動が収まるまで待機する必要がある。
これに対して、本発明では、フィルター駆動部は、ギャップ量変更部に対して、連続的に変化するアナログ電圧を印加する。このため、反射膜間ギャップは、アナログ電圧の大きさに応じて、連続的にギャップ量が変動する。したがって、光強度取得部は、V−λデータに基づいて、電圧監視部により監視されるギャップ量変更部への印可電圧を監視し、測定対象波長に対応する光が第一反射膜及び第二反射膜により取り出されるタイミングで、検出部で検出された光強度を取得する。この場合、第二基板の振動が静止するまで待機する必要がないため、迅速に測定対象波長に対する光強度の検出を実施することができ、測定対象光の分光スペクトルの迅速な測定を実施することができる。
また、ギャップ量変更部に対して電圧を印加したタイミングでは、電圧制御用回路における信号遅延や、第二基板の物性(第二基板の剛性やバネ力等)に起因する遅延が発生する。これに対して、本発明では、ギャップ量変更部に印加する電圧を監視して、第一反射膜及び第二反射膜により取り出される光が測定対象波長となるタイミングで光強度を取得するため、上記のような遅延が考慮された光強度が取得されることになる。これにより、迅速、かつ高精度に分光測定を実施することができる。
本発明の分光測定装置において、前記フィルター駆動部は、時間に対する電圧の変動パターンが所定の固定パターンである前記アナログ電圧を前記ギャップ変更部に印加し、前記V−λデータは、前記変動パターンのアナログ電圧を前記ギャップ変更部に印加した際の、前記ギャップ量変更部に印加する電圧と、その電圧を前記ギャップ量変更部に印加したタイミングで前記第一反射膜及び前記第二反射膜により取り出される光の波長との関係を示すデータであり、前記光強度取得部は、前記V−λデータに基づいて測定対象波長に対する目標電圧を取得し、前記電圧監視部により監視される電圧が前記目標電圧になったタイミングで、前記検出部により検出される光強度を取得することが好ましい。
本発明では、フィルター駆動部によりギャップ量変更部に対して印加するアナログ電圧の変動パターン(電圧波形)は、ある特定の固定パターンに設定されている。そして、V−λデータは、この変動パターンに基づいてギャップ量変更部に電圧を印加した際に、所定の電圧が印加されたタイミングでの第一反射膜及び第二反射膜により取り出された光の波長が記録されている。したがって、このV−λデータは、電圧制御用回路での信号遅延や、第二基板の物性に基づいた振動遅延等の遅延時間を考慮した電圧と波長との関係を示すデータとなる。なお、アナログ電圧の変動パターンとしては、1つの固定パターンに限られず、複数のパターンを有してもよく、この場合、各パターンに対するV−λデータがそれぞれ記憶部に記憶されていればよい。
これにより、光強度取得手段は、V−λデータから測定対象波長に対応する目標電圧を取得し、電圧監視部により監視される電圧が、目標電圧になるタイミングで光強度を取得することで、所望の測定対象波長に対する正確な光強度を取得することができ、高精度な分光測定を実施することができる。
本発明の分光測定装置において、前記フィルター駆動部は、時間に対する電圧の変動パターンが所定の固定パターンである前記アナログ電圧を前記ギャップ変更部に印加し、前記V−λデータは、前記ギャップ量変更部に印加する電圧と、その電圧を前記ギャップ量変更部に印加した後、前記反射膜間ギャップの変動が収束した状態における前記第一反射膜及び前記第二反射膜により取り出される光の波長との関係を示すデータであり、前記記憶部は、前記ギャップ変更部に対して前記変動パターンのアナログ電圧を印加した際に、所定の電圧が前記ギャップ変更部に印加されてから、前記V−λデータの前記電圧に対応する波長の光が前記第一反射膜及び前記第二反射膜により取り出されるまでの遅延時間を記憶し、前記光強度取得部は、前記電圧監視部により監視される電圧が、前記測定対象波長に対する目標電圧になるタイミングから前記遅延時間だけ経過したタイミングで、前記検出部により検出される光強度を取得することが好ましい。
本発明では、V−λデータとして、ギャップ量変更部に印加する電圧と、その電圧をギャップ量変更部に印加した後、反射膜間ギャップの変動が収束(静止)した状態で、第一反射膜及び第二反射膜により取り出される光の波長との関係が記録される。
一方、フィルター駆動部によりギャップ量変更部に対して印加するアナログ電圧の変動パターンは、上述した発明と同様、ある特定の固定パターンに固定されている。そして、記憶部には、この変動パターンに基づいてギャップ量変更部に電圧を印加した際に、所定の電圧が印加されてから、当該電圧に対する波長の光(V−λデータに基づいた当該電圧に対する波長の光)が、第一反射膜及び第二反射膜により取り出されるまでの遅延時間が記憶される。なお、アナログ電圧の変動パターンとしては、1つの固定パターンに限られず、複数のパターンを有してもよく、この場合、各パターンに対する遅延時間がそれぞれ記憶部に記憶されていればよい。
このような構成の本発明では、光強度取得手段は、V−λデータから測定対象波長に対応する目標電圧を取得し、電圧監視部により監視される電圧が、目標電圧になるタイミングから、記憶部に記憶された遅延時間経過後のタイミングで、検出部で検出される光強度を取得する。この場合でも、信号遅延や第二基板の物性に基づいた振動遅延を考慮した光強度の検出を実施でき、所望の測定対象波長に対する正確な光強度を取得することができるので、高精度な分光測定を実施することができる。
本発明の分光測定装置において、前記フィルター駆動部は、前記アナログ電圧として、前記第二基板を周期的に進退駆動させる周期駆動電圧を前記ギャップ量変更部に印加することが好ましい。
本発明によれば、アナログ電圧として、周期的に第二基板を進退駆動させる周期駆動電圧を印加する。
この場合、第二基板の駆動速度が速い場合であっても、進退駆動中のいずれかのタイミングで光強度の検出を行えばよい。
例えば、第二基板の撓みがない状態から第二基板が第一基板側に最大変位した状態までの間に、複数の測定対象波長に対する光強度を取得する場合、例えば、ギャップ量変更部に印加するアナログ電圧の時間当たりの電圧変化率が大きい場合では、測定を実施する時間間隔も短くなるため、光強度の取得が困難になる場合がある。
これに対して、本発明では、ギャップ量変更部に周期駆動電圧を印加することで第二基板が周期的に進退駆動する。したがって、例えば時間に対する反射膜間ギャップのギャップ量が正弦波状に周期的に変化する場合、最初の1/4周期内に全ての測定対象電圧に対する光強度が取得できない場合であっても、次の1/4周期やそれ以降の駆動周期内で測定対象電圧に対する光強度を取得することができる。これにより、測定対象光の正確な分光スペクトルの測定を実施することができる。
本発明の分光測定装置において、前記周期駆動電圧の周期は、前記第二基板が持つ固有周期より大きいことが好ましい。
本発明によれば、周期駆動電圧の周期が、第二基板が有する固有周期よりも大きい周期に設定されている。ここで、第二基板が持つ固有周期とは、第二基板に対して、特定のステップ電圧を印加した際に、第二基板に作用する静電引力及び第二基板の弾性力(バネ力)により発生する振動の周期である。周期駆動電圧の周期がこのような固有周期よりも小さい場合、周期駆動電圧の印加により第二基板を進退駆動させる際に、固有周期の振動の影響により、第二基板の駆動が不安定になる場合があり、測定精度が悪化するおそれがある。これに対して、周期駆動電圧の周期が第二基板の固有周期よりも大きい場合、第二基板の固有周期の振動が励起されず、第二基板を安定して周期駆動させることができる。つまり、第二基板が持つ固有周期により励起される振動の影響を受けず、光強度の測定精度を向上させることができる。
本発明の分光測定装置において、前記光強度取得部は、前記測定対象波長の光に対する前記光強度を複数回取得し、取得した複数回の光強度の平均値を測定値とすることが好ましい。
上述のように、第二基板を周期駆動させると、測定対象電圧に対する光強度を複数回取得することが可能となる。本発明では、このように測定された測定対象電圧に対する複数の光強度の平均値を求めるので、測定対象電圧に対するより正確な測定値を求めることができ、分光測定装置における測定精度を向上させることができる。
本発明の分光測定装置では、前記フィルター駆動部は、前記反射膜間ギャップのギャップ量を、前記第二基板の撓みがない初期ギャップ量から所定の最小ギャップ量まで変化させ、前記最小ギャップ量は、測定対象波長域における最小波長に対応した下限ギャップ量よりも小さいことが好ましい。
本発明によれば、分光測定装置による測定において、フィルター駆動部は、測定対象波長域における最小波長に対応した下限ギャップ量よりも小さい最小ギャップ量まで、反射膜間ギャップを変化させる。つまり、フィルター駆動部は、測定対象波長域に対するギャップ範囲に一定のマージンを設けた変位量で第二基板を駆動させる。
これにより、例えば測定環境等によりフィルター駆動部により駆動される第二基板の変位量が変化する場合であっても、測定対象波長域をカバーすることができ、精度のよい分光スペクトルの測定を実施できる。
本発明の分光測定装置は、反射膜間ギャップを介して対向する第一反射膜および第二反射膜と、前記反射膜間ギャップのギャップ量を変更するギャップ量変更部と、前記第一反射膜及び前記第二反射膜により取り出された光の光強度を検出する検出部と、前記ギャップ量変更部に対して連続的に変化するアナログ電圧を印加するフィルター駆動部と、前記ギャップ量変更部に印加された電圧を監視する電圧監視部と、前記ギャップ量変更部に印加する電圧と、前記第一反射膜及び前記第二反射膜により取り出される光の波長との関係であるV−λデータを記憶する記憶部と、前記電圧監視部により監視される電圧に基づき、前記第一反射膜及び前記第二反射膜により取り出される光が所望の測定対象波長となるタイミングで、前記検出部により検出される前記光強度を取得する光強度取得部と、を具備したことを特徴とする。
本発明では、上記した発明と同様に、電圧監視部は、ギャップ量変更部に印加する電圧を監視し、光強度取得部は、第一反射膜及び第二反射膜により取り出される光が測定対象波長となるタイミングで光強度を取得する。したがって、反射膜間ギャップの変位の遅延が考慮された光強度が取得されることになり、迅速、かつ高精度に分光測定を実施することができる。
本発明の分光測定装置において、前記フィルター駆動部は、時間に対する電圧の変動パターンが所定の固定パターンである前記アナログ電圧を前記ギャップ変更部に印加し、前記V−λデータは、前記変動パターンのアナログ電圧を前記ギャップ変更部に印加した際の、前記ギャップ量変更部に印加する電圧と、その電圧を前記ギャップ量変更部に印加したタイミングで前記第一反射膜及び前記第二反射膜により取り出される光の波長との関係を示すデータであり、前記光強度取得部は、前記V−λデータに基づいて測定対象波長に対する目標電圧を取得し、前記電圧監視部により監視される電圧が前記目標電圧になったタイミングで、前記検出部により検出される光強度を取得することが好ましい。
本発明では、光強度取得手段は、V−λデータから測定対象波長に対応する目標電圧を取得し、電圧監視部により監視される電圧が、目標電圧になるタイミングで光強度を取得することで、所望の測定対象波長に対する正確な光強度を取得することができ、高精度な分光測定を実施することができる。
本発明の分光測定装置において、前記フィルター駆動部は、時間に対する電圧の変動パターンが所定の固定パターンである前記アナログ電圧を前記ギャップ変更部に印加し、前記V−λデータは、前記ギャップ量変更部に印加する電圧と、その電圧を前記ギャップ量変更部に印加した後、前記反射膜間ギャップの変動が収束した状態における前記第一反射膜及び前記第二反射膜により取り出される光の波長との関係を示すデータであり、前記記憶部は、前記ギャップ変更部に対して前記変動パターンのアナログ電圧を印加した際に、所定の電圧が前記ギャップ変更部に印加されてから、前記V−λデータの前記電圧に対応する波長の光が前記第一反射膜及び前記第二反射膜により取り出されるまでの遅延時間を記憶し、前記光強度取得部は、前記電圧監視部により監視される電圧が、前記測定対象波長に対する目標電圧になるタイミングから前記遅延時間だけ経過したタイミングで、前記検出部により検出される光強度を取得することが好ましい。
本発明では、光強度取得手段は、V−λデータから測定対象波長に対応する目標電圧を取得し、電圧監視部により監視される電圧が、目標電圧になるタイミングから、記憶部に記憶された遅延時間経過後のタイミングで、検出部で検出される光強度を取得する。この場合でも、信号遅延や第二基板の物性に基づいた振動遅延を考慮した光強度の検出を実施でき、所望の測定対象波長に対する正確な光強度を取得することができるので、高精度な分光測定を実施することができる。
本発明に係る第一実施形態の分光測定装置の概略構成を示すブロック図。 第一実施形態の波長可変干渉フィルターの概略構成を示す平面図。 第一実施形態の波長可変干渉フィルターの概略構成を示す断面図。 第一実施形態において、測定対象波長の光の光強度の検出タイミングを説明するための図。 第一実施形態において、測定対象波長の光の光強度の検出タイミングを説明するための図。 第一実施形態の分光測定方法を示すフローチャート。 第二実施形態の分光測定方法を示すフローチャート。 第二実施形態において、測定対象波長の光の光強度の検出タイミングを説明するための図。 第三実施形態において、測定対象波長の光の光強度の検出タイミングを説明するための図。
[第一実施形態]
以下、本発明に係る第一実施形態を図面に基づいて説明する。
[分光測定装置の構成]
図1は、本発明に係る分光測定装置の概略構成を示すブロック図である。
分光測定装置1は、例えば測定対象物Xで反射した測定対象光における各波長の光強度を分析し、分光スペクトルを測定する装置である。なお、本実施形態では、測定対象物Xで反射した測定対象光を測定する例を示すが、測定対象物Xとして、例えば液晶パネル等の発光体を用いる場合、当該発光体から発光された光を測定対象光としてもよい。
そして、この分光測定装置1は、図1に示すように、波長可変干渉フィルター5と、検出部11と、I−V変換器12と、アンプ13と、A/D変換器14と、電圧制御部15と、制御回路部20と、を備えている。
検出部11は、波長可変干渉フィルター5を透過した光を受光し、受光した光の光強度(光量)に応じた検出信号(電流)を出力する。
I−V変換器12は、検出部11から入力された検出信号を電圧に変換し、アンプ13に出力する。
アンプ13は、I−V変換器12から入力された検出信号に応じた電圧(検出電圧)を増幅する。
A/D変換器14は、アンプ13から入力された検出電圧(アナログ信号)をデジタル信号に変換し、制御回路部20に出力する。
電圧制御部15は、制御回路部20の制御に基づいて、波長可変干渉フィルター5の後述する静電アクチュエーター56に対して電圧を印加する。
[波長可変干渉フィルターの構成]
ここで、分光測定装置1に組み込まれる波長可変干渉フィルター5について、以下説明する。図2は、波長可変干渉フィルターの概略構成を示す平面図である。図3は、図2をIII−III線で断面にした断面図である。
波長可変干渉フィルター5は、図2に示すように、例えば矩形板状の光学部材である。この波長可変干渉フィルター5は、図3に示すように、固定基板51および可動基板52を備えている。これらの固定基板51及び可動基板52は、それぞれ例えば、ソーダガラス、結晶性ガラス、石英ガラス、鉛ガラス、カリウムガラス、ホウケイ酸ガラス、無アルカリガラスなどの各種ガラスや、水晶などにより形成されている。そして、これらの固定基板51及び可動基板52は、固定基板51の第一接合部513及び可動基板の第二接合部523が、例えばシロキサンを主成分とするプラズマ重合膜などにより構成された接合膜53(第一接合膜531及び第二接合膜532)により接合されることで、一体的に構成されている。
固定基板51には、本発明の第一反射膜を構成する固定反射膜54が設けられ、可動基板52には、本発明の第二反射膜を構成する可動反射膜55が設けられている。これらの固定反射膜54および可動反射膜55は、反射膜間ギャップG(本発明のギャップ)を介して対向配置されている。そして、波長可変干渉フィルター5には、この反射膜間ギャップGのギャップ量を調整(変更)するのに用いられる静電アクチュエーター56が設けられている。この静電アクチュエーター56は、本発明におけるギャップ量変更部に相当する。この静電アクチュエーター56は、固定基板51に設けられた固定電極561と、可動基板52に設けられた可動電極562とにより構成されている。これらの固定電極561,可動電極562は、電極間ギャップを介して対向する。ここで、これらの電極561,562は、それぞれ固定基板51及び可動基板52の基板表面に直接設けられる構成であってもよく、他の膜部材を介して設けられる構成であってもよい。ここで、電極間ギャップのギャップ量は、反射膜間ギャップGのギャップ量より大きい。
また、波長可変干渉フィルター5を固定基板51(可動基板52)の基板厚み方向から見た図2に示すようなフィルター平面視において、固定基板51及び可動基板52の平面中心点Oは、固定反射膜54及び可動反射膜55の中心点と一致し、かつ後述する可動部521の中心点と一致する。
なお、以降の説明に当たり、固定基板51または可動基板52の基板厚み方向から見た平面視、つまり、固定基板51、接合膜53、及び可動基板52の積層方向から波長可変干渉フィルター5を見た平面視を、フィルター平面視と称する。
(固定基板の構成)
固定基板51には、エッチングにより電極配置溝511および反射膜設置部512が形成されている。この固定基板51は、可動基板52に対して厚み寸法が大きく形成されており、固定電極561および可動電極562間に電圧を印加した際の静電引力や、固定電極561の内部応力による固定基板51の撓みはない。
また、固定基板51の頂点C1には、切欠部514が形成されており、波長可変干渉フィルター5の固定基板51側に、後述する可動電極パッド564Pが露出する。
電極配置溝511は、フィルター平面視で、固定基板51の平面中心点Oを中心とした環状に形成されている。反射膜設置部512は、前記平面視において、電極配置溝511の中心部から可動基板52側に突出して形成されている。この電極配置溝511の溝底面は、固定電極561が配置される電極設置面511Aとなる。また、反射膜設置部512の突出先端面は、反射膜設置面512Aとなる。
また、固定基板51には、電極配置溝511から、固定基板51の外周縁の頂点C1,頂点C2に向かって延出する電極引出溝511Bが設けられている。
電極配置溝511の電極設置面511Aには、固定電極561が設けられている。より具体的には、固定電極561は、電極設置面511Aのうち、後述する可動部521の可動電極562に対向する領域に設けられている。また、固定電極561上に、固定電極561及び可動電極562の間の絶縁性を確保するための絶縁膜が積層される構成としてもよい。
そして、固定基板51には、固定電極561の外周縁から、頂点C2方向に延出する固定引出電極563が設けられている。この固定引出電極563の延出先端部(固定基板51の頂点C2に位置する部分)は、電圧制御部15に接続される固定電極パッド563Pを構成する。
なお、本実施形態では、電極設置面511Aに1つの固定電極561が設けられる構成を示すが、例えば、平面中心点Oを中心とした同心円となる2つの電極が設けられる構成(二重電極構成)などとしてもよい。
反射膜設置部512は、上述したように、電極配置溝511と同軸上で、電極配置溝511よりも小さい径寸法となる略円柱状に形成され、当該反射膜設置部512の可動基板52に対向する反射膜設置面512Aを備えている。
この反射膜設置部512には、図3に示すように、固定反射膜54が設置されている。この固定反射膜54としては、例えばAg等の金属膜や、Ag合金等の合金膜を用いることができる。また、例えば高屈折層をTiO、低屈折層をSiOとした誘電体多層膜を用いてもよい。さらに、誘電体多層膜上に金属膜(又は合金膜)を積層した反射膜や、金属膜(又は合金膜)上に誘電体多層膜を積層した反射膜、単層の屈折層(TiOやSiO等)と金属膜(又は合金膜)とを積層した反射膜などを用いてもよい。
また、固定基板51の光入射面(固定反射膜54が設けられない面)には、固定反射膜54に対応する位置に反射防止膜を形成してもよい。この反射防止膜は、低屈折率膜および高屈折率膜を交互に積層することで形成することができ、固定基板51の表面での可視光の反射率を低下させ、透過率を増大させる。
そして、固定基板51の可動基板52に対向する面のうち、エッチングにより、電極配置溝511、反射膜設置部512、及び電極引出溝511Bが形成されない面は、第一接合部513を構成する。この第一接合部513には、第一接合膜531が設けられ、この第一接合膜531が、可動基板52に設けられた第二接合膜532に接合されることで、上述したように、固定基板51及び可動基板52が接合される。
(可動基板の構成)
可動基板52は、図2に示すようなフィルター平面視において、平面中心点Oを中心とした円形状の可動部521と、可動部521と同軸であり可動部521を保持する保持部522と、保持部522の外側に設けられた基板外周部525と、を備えている。
また、可動基板52には、図2に示すように、頂点C2に対応して、切欠部524が形成されており、波長可変干渉フィルター5を可動基板52側から見た際に、固定電極パッド563Pが露出する。
可動部521は、保持部522よりも厚み寸法が大きく形成され、例えば、本実施形態では、可動基板52の厚み寸法と同一寸法に形成されている。この可動部521は、フィルター平面視において、少なくとも反射膜設置面512Aの外周縁の径寸法よりも大きい径寸法に形成されている。そして、この可動部521には、可動電極562及び可動反射膜55が設けられている。
なお、固定基板51と同様に、可動部521の固定基板51とは反対側の面には、反射防止膜が形成されていてもよい。このような反射防止膜は、低屈折率膜および高屈折率膜を交互に積層することで形成することができ、可動基板52の表面での可視光の反射率を低下させ、透過率を増大させることができる。
可動電極562は、電極間ギャップを介して固定電極561に対向し、固定電極561と同一形状となる環状に形成されている。また、可動基板52には、可動電極562の外周縁から可動基板52の頂点C1に向かって延出する可動引出電極564を備えている。この可動引出電極564の延出先端部(可動基板52の頂点C1に位置する部分)は、電圧制御部15に接続される可動電極パッド564Pを構成する。
可動反射膜55は、可動部521の可動面521Aの中心部に、固定反射膜54と反射膜間ギャップGを介して対向して設けられる。この可動反射膜55としては、上述した固定反射膜54と同一の構成の反射膜が用いられる。
なお、本実施形態では、上述したように、電極間ギャップが反射膜間ギャップGよりも大きい例を示すがこれに限定されない。例えば、測定対象光として赤外線や遠赤外線を用いる場合等、測定対象光の波長域によっては、反射膜間ギャップGが、電極間ギャップよりも大きくなる構成としてもよい。
保持部522は、可動部521の周囲を囲うダイアフラムであり、可動部521よりも厚み寸法が小さく形成されている。このような保持部522は、可動部521よりも撓みやすく、僅かな静電引力により、可動部521を固定基板51側に変位させることが可能となる。この際、可動部521が保持部522よりも厚み寸法が大きく、剛性が大きくなるため、保持部522が静電引力により固定基板51側に引っ張られた場合でも、可動部521の形状変化が起こらない。したがって、可動部521に設けられた可動反射膜55の撓みも生じず、固定反射膜54及び可動反射膜55を常に平行状態に維持することが可能となる。
なお、本実施形態では、ダイアフラム状の保持部522を例示するが、これに限定されず、例えば、平面中心点Oを中心として、等角度間隔で配置された梁状の保持部が設けられる構成などとしてもよい。
基板外周部525は、上述したように、フィルター平面視において保持部522の外側に設けられている。この基板外周部525の固定基板51に対向する面は、第一接合部513に対向する第二接合部523を備えている。そして、この第二接合部523には、第二接合膜532が設けられ、上述したように、第二接合膜532が第一接合膜531に接合されることで、固定基板51及び可動基板52が接合されている。
以上のような波長可変干渉フィルター5では、固定電極パッド563P及び可動電極パッド564Pがそれぞれ電圧制御部15に接続されている。したがって、電圧制御部15により、固定電極561及び可動電極562間に電圧が印加されることで、静電引力により可動部521が固定基板51側に変位する。これにより、反射膜間ギャップGのギャップ量を所定量に変更することが可能となる。
[制御回路部の構成]
図1に戻り、分光測定装置1の制御回路部20について、説明する。
制御回路部20は、例えばCPUやメモリー等が組み合わされることで構成され、分光測定装置1の全体動作を制御する。この制御回路部20は、図1に示すように、電圧設定部21と、電圧監視部22と、測定電圧取得部23と、光強度取得部24と、分光測定部25と、を備えている。
また、制御回路部20は、記憶部30を備え、記憶部30には、V-λデータが記憶されている。
このV-λデータは、波長可変干渉フィルター5の静電アクチュエーター56に印加する電圧に対する、波長可変干渉フィルター5により取り出される光の波長の関係を示すデータである。
図4は、第一実施形態において、測定対象波長の光の光強度の検出タイミングを説明するための図である。具体的には、図4(A)は、波長可変干渉フィルター5の静電アクチュエーター56に印加するアナログ電圧の時間に対する電圧変動パターン(電圧波形)を示す図であり、(B)は、前記時間と、反射膜間ギャップGのギャップ量との関係を示す図である。また、図4(B)において、破線は、信号遅延や可動部521の振動による遅延がないと仮定した場合における時間と反射膜間ギャップとの関係を示し、実線は、信号遅延や可動部521の振動による遅延が発生した場合の時間と反射膜間ギャップとの関係を示す。なお、ギャップ量Gn(G1、G2、G3、G4)は、それぞれ、波長λn(λ1、λ2、λ3、λ4)に対応した反射膜間ギャップGのギャップ量である。
本実施形態では、電圧制御部15及び電圧設定部21により静電アクチュエーター56に印加される駆動電圧は、連続的に変化する周期駆動電圧(アナログ電圧)となる。また、詳細は後述するが、本実施形態では、周期駆動電圧の時間に対する電圧の変動パターン(駆動電圧波形)は、図4(A)に示すような所定の固定の変動パターンとなり、静電アクチュエーター56は、この変動パターンの周期駆動電圧により、駆動されることになる。
ここで、静電アクチュエーター56に周期駆動電圧を印加して可動部521を変位させると、制御回路部20や電圧制御部15における僅かな信号遅延や、可動部521が所定位置まで変位するまで駆動時間の遅延等が生じる。このため、例えば図4に示すように、所定の電圧V1を静電アクチュエーター56に印加したタイミングt1では、当該電圧V1を静電アクチュエーター56に印加し続けて可動部521の振動が静止した状態で取り出される光の波長(測定対象波長)が得られない。実際に、測定対象波長が得られるのは、電圧V1が静電アクチュエーター56に印加された後、所定の遅延時間△tだけ遅延したタイミングt1´となる。ここで、本実施形態では、図4(A)に示すように、連続的に変化するアナログ電圧が印加されるので、タイミングt1´は、電圧がV1から△Vだけ変動し、電圧V1´(又はV1´´)となったタイミングとなる。
そこで、本実施形態におけるV−λデータは、図4(A)に示すような、予め設定された変動パターンの周期駆動電圧を静電アクチュエーター56に印加した際に、波長可変干渉フィルター5から、所定の波長λn(λ1、λ2、λ3…)が透過されるタイミングにおける電圧Vn´(V1´、V2´、V3´…、又は、V1´´、V2´´、V3´´…)と、その電圧Vn´(又はVn´´)に対応する波長λnとが関連付けられて記憶されている。なお、波長λnの代わりに、反射膜間ギャップGのギャップ量Gnが記憶されていてもよい。すなわち、本実施形態のV−λデータは、制御回路部20や電圧制御部15における信号遅延や、可動基板52のバネ力に起因する可動部521(保持部522)の振動遅延等を考慮したデータとなる。
このようなV−λデータは、例えば波長可変干渉フィルター5の製造時において、上述した変動パターンのアナログ電圧を静電アクチュエーター56に印加し、所定の電圧が印加されたタイミングにおいて検出部11で受光された光の波長を検出することで、実測値に基づいて作成される。
電圧設定部21は、電圧制御部15とともに本発明のフィルター駆動部を構成する。この電圧設定部21は、分光測定装置1による分光測定処理において、電圧制御部15を制御して、静電アクチュエーター56に、連続的に変化するアナログ電圧である周期駆動電圧(交流波形の電圧)を印加する。
ここで、電圧設定部21は、周期駆動電圧として、可動基板52における可動部521の固有振動における固有周期よりも大きい周期を有する周期駆動電圧を印加する。可動部521の固有周期は、保持部522が有する弾性力(バネ力)や、測定環境(例えば空気圧等)によって変化するが、100μs程度となる。したがって、電圧設定部21は、例えば2ms程度の周期を有する周期駆動電圧を設定すればよい。
静電アクチュエーター56に印加する周期駆動電圧の電圧波形は、図4(A)に示すように、所定の変動パターンで固定されている。このような変動パターンの電圧を静電アクチュエーター56に印加すると、可動部521は、周期的に固定基板51に向かって進退駆動する。これにより、図4(B)に示すように、反射膜間ギャップGのギャップ量は、初期ギャップ量gから最小ギャップ量gの間(駆動振幅A)で連続的に変化する。
ここで、測定対象波長域の光を取り出すために必要な反射膜間ギャップGのギャップ量の範囲を、上限ギャップ量gから下限ギャップ量gまでのギャップ範囲(測定対象ギャップ範囲Gm)とすると、電圧の変動パターンは、駆動振幅A≧測定対象ギャップ範囲Gmとなるように設定されている。つまり、上限ギャップ量gが初期ギャップ量g以下となり、下限ギャップ量gが最小ギャップ量g以上となるように、周期駆動電圧の変動パターンが設定されている。
このような周期駆動電圧を設定することで、初期ギャップ量gから上限ギャップ量gの間の上限マージン、及び下限ギャップ量gから最小ギャップ量gまでの下限マージンが設けられることとなる。下限マージンを設けることで、測定対象波長域に対する光を確実に取り出すことが可能となる。例えば、測定対象波長域の下限ギャップ量gと最小ギャップ量gとが一致する(下限マージンを設けない)構成とした場合、測定環境等により可動部521の変位量が小さくなった際に、測定対象波長域の最小波長の光を取り出せなくなるおそれがある。これに対して、本実施形態では、下限マージンを設けられるため、確実に最小波長の光を取り出すことが可能となる。また、上限マージンを設けることで、測定環境変化による影響を軽減できる。
なお、本実施形態では、上限マージン及び下限マージンを設ける例を示すが、これらのマージンのいずれか一方または双方が設けられないよう、周期駆動電圧が設定されてもよい。
電圧監視部22は、例えば分光測定装置1による分光測定処理が行われている間、電圧制御部15から静電アクチュエーター56に印加される電圧を常時監視する。
測定電圧取得部23は、記憶部30に記憶されるV-λデータに基づいて、測定対象電圧を設定する。すなわち、測定電圧取得部23は、測定対象波長域内の所定波長間隔(測定ピッチ)毎の測定対象波長を設定し、これらの測定対象波長に対応した測定対象電圧をV-λデータから読み込む。なお、測定対象波長域や測定ピッチは、例えば測定者の設定入力等によって適宜変更されるものであってもよい。この場合、測定電圧取得部23は、設定入力に従って、測定対象波長域を設定し、この測定対象波長域内における測定ピッチ間隔の測定対象波長を設定する。
ここで、周期駆動電圧が最小電圧Vmin(例えば0V)から最大電圧Vmaxに上昇する電圧上昇過程と、最大電圧Vmaxから最小電圧Vminに下降する電圧下降過程では、所定の測定対象波長に対する電圧が異なる。例えば、図4に示すように、反射膜間ギャップGがギャップ量G1の時に透過される光(波長λ1)の光強度を電圧上昇過程において検出する場合、測定電圧取得部23は、電圧上昇過程における電圧V1´を測定電圧として取得する。また、同じ光(波長λ1)の光強度を電圧下降過程において検出する場合、測定電圧取得部23は、電圧下降過程における電圧V1´´の電圧を測定電圧として取得する。
なお、図4では、電圧V1´´が電圧下降過程内に現れる例を示すが、例えばマージンが小さい場合や、遅延時間が大きい場合、電圧V1´´が電圧下降過程に含まれない場合も生じる。この場合、電圧V1´及びV1´´が検出された回数に基づいて、測定対象波長に対する電圧を判定することが可能となる。例えば上記の例では、電圧V1´の検出された回数が奇数である場合、当該電圧V1´を測定電圧とし、偶数回である場合は、測定電圧としない。一方、電圧V1´´の検出回数が偶数である場合は、当該電圧V1´´を測定電圧とし、奇数回である場合測定電圧としない。この場合でも、同様に、測定対象波長が検出されるタイミングでの印加電圧を、測定電圧として設定することができる。
光強度取得部24は、測定電圧取得部23により取得された測定対象電圧が静電アクチュエーター56に印加されたタイミング(t1´、t2´、t3´、t4´)で、検出部11から出力される検出信号を検出し、測定対象波長の光の光強度を取得する。
なお、図4に示す例では、光強度取得部24は、可動部521が、初期状態から1/4周期駆動するまでの間(電圧上昇過程)に、全ての測定対象電圧に対する光強度を取得する例を示すが、これに限定されない。
例えば、可動部521の周期駆動速度が速い場合等では、可動部521が初期状態から1/4周期駆動するまでの間に、複数の測定対象電圧に対する光強度を取得することが困難な場合がある。このような場合、例えば、図5に示すように、初期状態から1/4周期駆動するまでの間のタイミング(t1´、t3´)で、全測定対象電圧のうち、幾つか(図5では2つ)の測定対象電圧に対する光強度を測定し、1/4周期目から1/2周期目までの間(t2´´、t4´´)で、残りの測定対象電圧に対する光強度を測定してもよい。この場合でも、上述したように、測定電圧取得部23により、測定対象波長に対する電圧下降過程での測定電圧(V2´´,V4´´)が取得されることで、精度よく所望の測定対象波長に対する光強度を取得することができる。また、設定された測定対象電圧の数に応じて、更に1/2周期目以降における測定を実施してもよい。この場合でも同様であり、電圧上昇過程及び電圧下降過程に対応した測定電圧が設定されることで、所望の測定対象波長の光の光強度を取得できる。
分光測定部25は、光強度取得部24により取得された各測定対象波長に対する光強度に基づいて、測定対象光の分光スペクトルを測定する。また、分光測定部25は、測定した分光スペクトルに基づいてスペクトル曲線を生成してもよい。そして、分光測定部25は、測定結果やスペクトル曲線を、例えばディスプレイや印刷機器等の出力装置に出力する。
[分光測定装置による分光測定方法]
次に、上述した分光測定装置1による分光測定方法について、図面に基づいて説明する。
図6は、本実施形態の分光測定方法のフローチャートである。
図6に示すように、本実施形態の分光測定方法では、測定が開始されると、まず、測定電圧取得部23により、測定対象波長及び当該測定対象波長に対する測定対象電圧を取得する(ステップS1)。具体的には、例えば測定者により設定入力がない場合では、記憶部30に記憶されるV-λデータから、予め設定された測定ピッチ間隔となる測定対象波長(λn)に対する測定対象電圧(Vn´又はVn´´)を取得する。また、例えば測定者による設定入力に基づいて、測定対象波長域や測定ピッチが指定された場合は、指定された測定波長域内で、指定された測定ピッチ間隔となる測定対象波長を算出し、V-λデータに基づいて、当該測定対象波長に対応した測定対象電圧を取得する。
例えば、図4に示すように、電圧上昇過程において、4つの測定対象波長の光強度を検出する場合、電圧上昇過程の電圧V1´,V2´,V3´,V4´を測定対象電圧として取得する。また、図5に示すように、電圧上昇過程において、ギャップ量G1,G3に対応した波長λ1、λ3の光の光強度を検出し、電圧下降過程において、ギャップ量G2,G4に対応した波長λ2、λ4の光の光強度を検出する場合では、電圧上昇過程の電圧V1´,V3´、電圧下降過程の電圧V2´´,V4´´を測定対象電圧として取得する。
この後、電圧設定部21及び電圧制御部15は、波長可変干渉フィルター5の静電アクチュエーター56に予め設定された変動パターン(電圧波形)の周期駆動電圧を印加する(ステップS2)。このステップS2では、電圧設定部21は、連続的に変化し、かつ、周期が可動部521の固有周期よりも大きい周期駆動電圧(交流電圧)を設定し、電圧制御部15により静電アクチュエーター56に印加させる。これにより、可動部521が固定基板51に対して周期的に進退駆動し、図4(B)や図5(B)の実線に示すように、反射膜間ギャップGのギャップ量が周期的に変動する。
また、このステップS2の処理と同時に、電圧監視部22は、静電アクチュエーター56に印加された電圧を監視する電圧監視処理を開始する(ステップS3)。この際、電圧監視部22は、印加される電圧の変動傾向が、電圧上昇過程であるか電圧下降過程であるかも同時に監視する。
そして、光強度取得部24は、ステップS3で電圧監視部22により監視される電圧が、ステップS1により設定された測定対象電圧になったか否かを判定する(ステップS4)。
このステップS4において、電圧監視部22により監視される電圧が測定対象電圧ではないと判定された場合(「No」と判定された場合)、ステップS2及びステップS3の処理に戻り、静電アクチュエーター56への周期駆動電圧の印加及び電圧監視部22による電圧監視を継続する。
一方、ステップS4において、電圧監視部22により監視される電圧が測定対象電圧になったと判定された場合(「Yes」と判定された場合)、光強度取得部24は、検出部11から入力される検出信号に基づいて、測定対象波長の光強度を取得(測定)する(ステップS5)。
また、光強度取得部24は、取得した光強度と、当該光強度が測定された際の測定対象電圧(又は当該測定対象電圧に対応した測定対象ギャップ量、又は測定対象波長)とを関連付けて、記憶部30に記憶する。
この後、制御回路部20は、測定処理が完了したか否かを判定する(ステップS6)。本実施形態では、各測定対象波長に対してそれぞれ1回の光強度測定を実施する。したがって、ステップS6では、ステップS1により取得された全ての測定対象電圧に対して、光強度取得部24による光強度の取得が終了したか否かを判定することで、測定処理が完了したか否かを判定する。そして、このステップS6において、「No」と判定された場合、つまり、測定処理が完了していないと判定された場合、ステップS2及びステップS3の処理に戻り、静電アクチュエーター56への周期駆動電圧の印加及び電圧監視部22による電圧監視を継続する。
一方、ステップS6において、「Yes」と判定された場合、つまり、測定処理が完了したと判定された場合、電圧設定部21及び電圧制御部15は、静電アクチュエーター56への電圧印加を停止する。そして、分光測定部25は、ステップS5により取得され、記憶部30に記憶された各測定対象電圧(各測定対象波長)に対する光強度から、測定対象光の分光スペクトルを測定する(ステップS7)。
[実施形態の作用効果]
本実施形態の分光測定装置1では、電圧設定部21は、静電アクチュエーター56に印加する電圧として、連続的に変化するアナログ電圧である周期駆動電圧を設定し、電圧制御部15から静電アクチュエーター56に印加させる。これにより、波長可変干渉フィルター5の可動部521は、固定基板51に対して、連続的に変化し、反射膜間ギャップGのギャップ量は、測定対象波長域に対応した測定対象ギャップ範囲において、連続的に変化する。そして、光強度取得部24は、電圧監視部22により監視される静電アクチュエーター56への印加電圧に基づいて、波長可変干渉フィルター5から測定対象波長の光が透過されるタイミングで検出部11にて検出される光強度を取得する。
このような構成の分光測定装置1では、可動部521の振動の静止を待つ必要がなく、光強度取得部24により迅速に測定対象波長に対する光強度を取得することができる。したがって、分光測定装置1における測定対象光の分光スペクトルの測定も迅速に実施することができる。
本実施形態では、電圧設定部21及び電圧制御部15により静電アクチュエーター56に印加される周期駆動電圧は、予め設定された固定の変動パターンである。そして、記憶部30に記憶されるV−λデータは、静電アクチュエーター56にその駆動波形の周期駆動電圧を印加した際、電圧Vn´(又はVn´´)が印加されたタイミングで検出部11により検出される光の波長λn(又は反射膜間ギャップGのギャップ量Gn)の関係を示すデータとなる。
したがって、V−λデータから測定対象波長λnに対する測定対象電圧Vn´(又はVn´´)を読み出すことで、光強度取得部24は、電圧監視部22により監視される電圧が測定対象電圧Vn´(又はVn´´)となるタイミングで、検出部11により検出された光強度を取得すれば、遅延時間等を算出等する必要なく、容易に測定対象波長λnを取得することができる。
また、電圧設定部21は、電圧制御部15を制御して、周期的に変化する周期駆動電圧を静電アクチュエーター56に印加する。これにより、可動部521は、固定基板51に対して、周期的に進退駆動する。つまり、反射膜間ギャップが1/4周期に一回の頻度で測定対象ギャップ範囲内を変位することとなる。したがって、例えば、1/4周期内に、測定対象電圧に対する光強度の取得が困難である場合であっても、次の1/4周期以降において、取得できなかった測定対象電圧に対する光強度を取得することができる。これにより、設定された全ての測定対象電圧に対する光強度を取得することができ、分光測定部により、正確な分光スペクトルの測定を実施することができる。
本実施形態では、電圧設定部21により設定される周期駆動電圧の駆動周期は、可動部521が有する固有周期よりも大きい値に設定されている。
このため、周期駆動電圧を静電アクチュエーター56に印加した際、可動部521の進退駆動が、当該可動部521の固有周期に基づいた振動励起の影響を受けない。また、周期駆動電圧に基づいた可動部521の振動以外の振動成分(例えば固有周期に基づいた振動等)は、ノイズ成分として例えばローパスフィルター等により除去しやすくなる。したがって、所定の測定対象電圧に対して、より正確な光強度の測定を実施することができ、分光スペクトルの測定精度を向上させることができる。
本実施形態では、電圧設定部21は、測定対象光の測定対象波長域に対する、反射膜間ギャップGの測定対象ギャップ範囲の上下に下限マージン、及び上限マージンが設定されるよう、周期駆動電圧を設定する。これにより、測定環境の変化等により、測定波長域に対する光強度が取得できなくなる不都合を回避でき、高精度な分光スペクトルの測定を実施できる。
[第二実施形態]
次に、本発明に係る第二実施形態について、図面に基づいて説明する。
上述した第一実施形態の分光測定装置では、V−λデータとして、所定の変動パターンの周期駆動電圧を静電アクチュエーター56に印加した際に、電圧Vn´(又はVn´´)と、その電圧Vn´(又はVn´´)を印加したタイミングにおける検出部11により検出される光の波長λnとの関係を示すデータを用いた。つまり、記憶部30には、遅延を考慮したV−λデータが記憶される例を示した。これに対して、本実施形態では、V−λデータとして、電圧Vnと、その電圧Vnを印加した後、可動部521の振動が収束(静止)した状態で検出部11により検出される光の波長λの関係を示すデータ(反射膜間ギャップの遅延を考慮しないV−λデータ)を用いる点で、上記第一実施形態と相違する。
なお、本実施形態の分光測定装置を構成する各構成は、上記第一実施形態と同一であるため、ここでの説明は省略する。
本実施形態では、上記第一実施形態と同様、電圧設定部21及び電圧制御部15は、静電アクチュエーター56に対して、予め設定された変動パターンの周期駆動電圧を印加する。
また、本実施形態の記憶部30には、上述したように、V−λデータとして、遅延を考慮しないデータが記憶されている。また、記憶部30には、所定の電圧Vnを印加した後、V−λデータに示される電圧Vnに対応した波長λnの光が検出部11で検出されるまでの遅延時間△tが記憶される。この遅延時間△tは、製造時や検査時において、予め測定され、記憶部30に記憶される。
図7は、本実施形態における分光測定方法のフローチャートである。図8は、第二実施形態において、測定対象波長の光の光強度の検出タイミングを説明するための図であり、具体的には、図8(A)は、静電アクチュエーター56に印加するアナログ電圧の変動パターン(電圧波形)を示す図であり、図8(B)は、時間と、反射膜間ギャップGのギャップ量との関係を示す図である。
上記のような本実施形態分光測定装置では、図7に示すように、第一実施形態と略同様の方法により分光測定を実施する。
すなわち、ステップS1において、まず、測定電圧取得部23は、V−λデータに基づいて、測定対象波長λn及び測定対象電圧Vnを取得する。なお、図8において、ギャップ量Gn(G1、G2、G3、G4)は、それぞれ、測定対象波長λn(λ1、λ2、λ3、λ4)に対応した反射膜間ギャップGのギャップ量である。
この後、ステップS2、ステップS3の処理を実施して、電圧設定部21及び電圧制御部15は、静電アクチュエーター56に対して、予め設定された変動パターンの周期駆動電圧を印加し、電圧監視部22は、静電アクチュエーター56に印加される電圧を監視する。
そして、ステップS4の処理を実施し、光強度取得部24は、静電アクチュエーター56に印加されている電圧が、ステップS1により設定された測定対象電圧Vn(図8におけるV1,V2,V3,V4)になったか否かを判定する。
そして、第二実施形態では、このステップS4において、「Yes」と判定されると、光強度取得部24は、計時部により計測される時間に基づいて、静電アクチュエーター56に印加される電圧が測定対象電圧Vnとなるタイミングtn(図8におけるt1、t2、t3、t4)から経過時間△tの間待機する(ステップS10)。
そして、光強度取得部24は、ステップS10の後、ステップS5の処理を実施する。つまり、光強度取得部24は、静電アクチュエーター56に印加される電圧が測定対象電圧Vnとなるタイミングから経過時間△tだけ経過したタイミングで、検出部11で検出された光強度を取得する。
この後、ステップS6、ステップS7の処理を実施する。
[第二実施形態の作用効果]
本実施形態では、V−λデータとして、遅延を考慮していないデータ、つまり、電圧Vnと、その電圧Vnを印加した後、可動部521の振動が収束(静止)した状態で検出部11により検出される光の波長λとの関係を示すデータを用いる。そして、電圧Vnが印加された後、測定対象波長λnが検出されるまでの遅延時間△tが予め記憶部30に記憶されている。このような構成では、上記のように、光強度取得部24は、静電アクチュエーター56への印可電圧が測定対象電圧Vnになったタイミングから、遅延時間△tだけ経過したタイミングで、検出部11で検出される光強度を取得することで、上記発明と同様に、所望の測定対象波長λnに対する光強度を精度よく取得することができる。
また、電圧監視部22により監視される電圧がVnになったのち、遅延時間△tだけ待機する必要があるが、この遅延時間△tは、可動部521の振動が収束するまでの時間に対して十分短いため、測定対象波長の光の光強度を取得する時間も短く、分光測定装置1による迅速な分光測定を実施することができる。
さらに、上記第一実施形態では、電圧上昇過程及び電圧下降過程で、測定対象波長λnに対して取得すべき測定対象電圧が異なっていた(Vn´、Vn´´)が、本実施形態では、電圧上昇過程及び電圧下降過程に関わらず、測定対象電圧Vnを取得すればよい。したがって、電圧監視部22は、電圧が上昇中であるか下降中であるかまで監視する必要がなく、処理の簡略化を図れる。
[第三実施形態]
次に、本発明に係る第三実施形態について、以下に説明する。
上述した第一及び第二実施形態の分光測定装置では、光強度取得部24は、設定された各測定対象電圧に対して、それぞれ1回の光強度の取得する例を示した。これに対して、第三実施形態の分光測定装置では、各測定対象電圧に対して、複数の光強度を取得する点で上記第一実施形態と相違する。
なお、第三実施形態の分光測定装置を構成する各構成は、上記第一実施形態と同一であるため、ここでの説明は省略する。
図9は、第三実施形態において、測定対象波長の光の光強度の検出タイミングを説明するための図である。
図9に示すように、本実施形態の光強度取得部24は、測定電圧取得部23により取得された各測定対象電圧に対して、少なくとも2回以上光強度の取得を実施する。
そして、光強度取得部24は、各測定対象電圧に対して取得された複数の光強度から、平均値を算出し、当該測定対象電圧に対する測定値とする。
本実施形態では、複数取得された光強度の平均値に基づいて、測定対象波長の光の光強度の測定値を求めるため、より精度の高い測定結果を得ることができる。
また、本実施形態では、遅延が考慮されたV−λデータに基づいて、所定の測定対象波長に対応する光強度を複数回取得する例を以下に示すが、第二実施形態のように、遅延が考慮されていないV−λデータと、予め測定された遅延時間△tに基づいて、測定対象波長に対する光強度を取得する場合においても、本実施形態を適用できる。
[変形例]
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、上記各実施形態において、波長可変干渉フィルター5が反射膜間ギャップGのギャップ量を検出するギャップ検出手段を備える構成としてもよい。このようなギャップ検出手段としては、例えば、固定基板51及び可動基板52の互いに対向する位置に、ギャップ検出用電極を設け、これらのギャップ検出用電極の静電容量に基づいて、ギャップ量を検出する構成等が例示できる。
このような構成では、静電アクチュエーター56に所定の変動パターンの駆動電圧を印加した際の反射膜間ギャップGの変化をギャップ検出手段により検出することで、所定の電圧が静電アクチュエーター56に印加されたタイミングでの反射膜間ギャップGのギャップ量を検出することができる。つまり、測定対象電圧に対して検出部11により検出される光の中心波長を検出することができ、より精度の高い分光測定を実施することができる。
また、例えば使用環境の変化等により、波長可変干渉フィルター5の特性が変化する場合がある。例えば、第一及び第三実施形態において、出荷時に測定対象電圧V1´に対して測定対象波長λ1の光が透過されるように設定されている場合であっても、測定対象電圧V1´に対して、測定対象波長λ1´の光が透過する状態に、波長可変干渉フィルター5の特性が変化する場合がある。
これに対して、上記のように、ギャップ検出手段が設けられる構成では、測定対象電圧V1´を印加した際の反射膜間ギャップGのギャップ量を測定することができ、測定した反射膜間ギャップGのギャップ量に基づいて、V−λデータを適切に補正することができる。例えば、上記例では、V−λデータにおいて、測定対象電圧V1´に対する測定対象波長を、λ1からλ1´に修正する。
第二実施形態においても同様であり、出荷時に遅延時間として△t1が設定されている場合であっても、環境変化等によって、遅延時間が△t1´に変化する場合がある。
この場合、制御回路部は、ギャップ検出手段により検出される反射膜間ギャップGのギャップ量を監視し、測定対象電圧V1を印加したタイミングから、ギャップ検出手段により検出される反射膜間ギャップのギャップ量が測定対象波長λ1に対応したギャップ量となるまでの時間(遅延時間△t1´)を取得する。そして、取得した遅延時間△t1´が、記憶部30に記憶されているデフォルトの遅延時間△t1と異なる場合、新たに取得した遅延時間△t1´を記憶部30に記憶する。
以上のような校正処理を実施することで、分光測定装置1の分光処理の精度の低下を抑制でき、分光測定装置1の長寿命化を図れる。
上記各実施形態では、反射膜間ギャップGのギャップ量を変化させるギャップ量変更部として、静電アクチュエーター56を例示したが、これに限定されない。
例えば、固定電極561の代わりに、第一誘電コイルを配置し、可動電極562の代わりに第二誘電コイルまたは永久磁石を配置した誘電アクチュエーターを用いる構成としてもよい。
さらに、静電アクチュエーター56の代わりに圧電アクチュエーターを用いる構成としてもよい。この場合、例えば保持部522に下部電極層、圧電膜、および上部電極層を積層配置させ、下部電極層および上部電極層の間に印加する電圧を入力値として可変させることで、圧電膜を伸縮させて保持部522を撓ませることができる。
電圧設定部21は、電圧制御部15を制御して、静電アクチュエーター56に周期駆動電圧を印加させたが、例えば、初期状態から、所定の最大電圧まで連続的に増加するアナログ電圧、つまり図4,5における電圧上昇過程を変動パターンとする駆動電圧を印加してもよい。
電圧設定部21は、可動部521の固有周期より大きい周期の周期駆動電圧を設定したが、これに限定されず、可動部521の固有周期と同一、または小さい周期の周期駆動電圧を設定してもよい。
また、電圧設定部21及び電圧制御部15は、予め設定された1つの変動パターン(駆動波形)の周期駆動電圧を静電アクチュエーター56に印加する例を示すが、これに限定されず、静電アクチュエーター56に印加する周期駆動電圧のパターンが予め複数設定されている構成としてもよい。この場合、例えば第一実施形態では、各変動パターンに対してそれぞれ個別にV−λデータが設定され、静電アクチュエーター56に印加する周期駆動電圧の変動パターンに応じて、光強度検出時に用いるV−λデータを切り替えればよい。また、第二実施形態においても、各変動パターンに対してそれぞれ遅延時間△tを測定しておき、分光測定時に静電アクチュエーター56に印加する周期駆動電圧の変動パターンに応じて、遅延時間△tを切り替えればよい。
その他、本発明の実施の際の具体的な構造は、本発明の目的を達成できる範囲で他の構造等に適宜変更できる。
1…分光測定装置、5…波長可変干渉フィルター、11…検出部、15…電圧制御部、20…制御回路部、21…電圧設定部、22…電圧監視部、23…測定電圧取得部、24…光強度取得部、25…分光測定部、30…記憶部、51…第一基板である固定基板、52…第二基板である可動基板、54…固定反射膜(第一反射膜)、55…可動反射膜(第二反射膜)、56…静電アクチュエーター(ギャップ量変更部)、561…固定電極、562…可動電極、G1…反射膜間ギャップ。

Claims (10)

  1. 第一基板と、
    前記第一基板に対向する第二基板と、
    前記第一基板に設けられた第一反射膜と、
    前記第二基板に設けられて前記第一反射膜に所定の反射膜間ギャップを介して対向する第二反射膜と、
    電圧印加により前記第二基板を撓ませて前記反射膜間ギャップのギャップ量を変更するギャップ量変更部と、
    前記第一反射膜及び前記第二反射膜により取り出された光の光強度を検出する検出部と、
    前記ギャップ量変更部に対して連続的に変化するアナログ電圧を印加するフィルター駆動部と、
    前記ギャップ量変更部に印加された電圧を監視する電圧監視部と、
    前記ギャップ量変更部に印加する電圧と、前記第一反射膜及び前記第二反射膜により取り出される光の波長との関係であるV−λデータを記憶する記憶部と、
    前記電圧監視部により監視される電圧に基づき、前記第一反射膜及び前記第二反射膜により取り出される光が所望の測定対象波長となるタイミングで、前記検出部により検出される前記光強度を取得する光強度取得部と、
    を具備したことを特徴とする分光測定装置。
  2. 請求項1に記載の分光測定装置において、
    前記フィルター駆動部は、時間に対する電圧の変動パターンが所定の固定パターンである前記アナログ電圧を前記ギャップ変更部に印加し、
    前記V−λデータは、前記変動パターンのアナログ電圧を前記ギャップ変更部に印加した際の、前記ギャップ量変更部に印加する電圧と、その電圧を前記ギャップ量変更部に印加したタイミングで前記第一反射膜及び前記第二反射膜により取り出される光の波長との関係を示すデータであり、
    前記光強度取得部は、前記V−λデータに基づいて測定対象波長に対する目標電圧を取得し、前記電圧監視部により監視される電圧が前記目標電圧になったタイミングで、前記検出部により検出される光強度を取得する
    ことを特徴とする分光測定装置。
  3. 請求項1に記載の分光測定装置において、
    前記フィルター駆動部は、時間に対する電圧の変動パターンが所定の固定パターンである前記アナログ電圧を前記ギャップ変更部に印加し、
    前記V−λデータは、前記ギャップ量変更部に印加する電圧と、その電圧を前記ギャップ量変更部に印加した後、前記反射膜間ギャップの変動が収束した状態における前記第一反射膜及び前記第二反射膜により取り出される光の波長との関係を示すデータであり、
    前記記憶部は、前記ギャップ変更部に対して前記変動パターンのアナログ電圧を印加した際に、所定の電圧が前記ギャップ変更部に印加されてから、前記V−λデータの前記電圧に対応する波長の光が前記第一反射膜及び前記第二反射膜により取り出されるまでの遅延時間を記憶し、
    前記光強度取得部は、前記電圧監視部により監視される電圧が、前記測定対象波長に対する目標電圧になるタイミングから前記遅延時間だけ経過したタイミングで、前記検出部により検出される光強度を取得する
    ことを特徴とする分光測定装置。
  4. 請求項1から請求項3のいずれかに記載の分光測定装置において、
    前記フィルター駆動部は、前記アナログ電圧として、前記第二基板を周期的に進退駆動させる周期駆動電圧を前記ギャップ量変更部に印加する
    ことを特徴とする分光測定装置。
  5. 請求項4に記載の分光測定装置において、
    前記周期駆動電圧の周期は、前記第二基板が持つ固有周期より大きい
    ことを特徴とする分光測定装置。
  6. 請求項4または請求項5に記載の分光測定装置において、
    前記光強度取得部は、前記測定対象波長の光に対する前記光強度を複数回取得し、取得した複数回の光強度の平均値を測定値とする
    ことを特徴とする分光測定装置。
  7. 請求項1から請求項6のいずれかに記載の分光測定装置において、
    前記フィルター駆動部は、前記反射膜間ギャップのギャップ量を、前記第二基板の撓みがない初期ギャップ量から所定の最小ギャップ量まで変化させ、
    前記最小ギャップ量は、測定対象波長域における最小波長に対応した下限ギャップ量よりも小さい
    ことを特徴とする分光測定装置。
  8. 反射膜間ギャップを介して対向する第一反射膜および第二反射膜と、
    前記反射膜間ギャップのギャップ量を変更するギャップ量変更部と、
    前記第一反射膜及び前記第二反射膜により取り出された光の光強度を検出する検出部と、
    前記ギャップ量変更部に対して連続的に変化するアナログ電圧を印加するフィルター駆動部と、
    前記ギャップ量変更部に印加された電圧を監視する電圧監視部と、
    前記ギャップ量変更部に印加する電圧と、前記第一反射膜及び前記第二反射膜により取り出される光の波長との関係であるV−λデータを記憶する記憶部と、
    前記電圧監視部により監視される電圧に基づき、前記第一反射膜及び前記第二反射膜により取り出される光が所望の測定対象波長となるタイミングで、前記検出部により検出される前記光強度を取得する光強度取得部と、
    を具備したことを特徴とする分光測定装置。
  9. 請求項8に記載の分光測定装置において、
    前記フィルター駆動部は、時間に対する電圧の変動パターンが所定の固定パターンである前記アナログ電圧を前記ギャップ変更部に印加し、
    前記V−λデータは、前記変動パターンのアナログ電圧を前記ギャップ変更部に印加した際の、前記ギャップ量変更部に印加する電圧と、その電圧を前記ギャップ量変更部に印加したタイミングで前記第一反射膜及び前記第二反射膜により取り出される光の波長との関係を示すデータであり、
    前記光強度取得部は、前記V−λデータに基づいて測定対象波長に対する目標電圧を取得し、前記電圧監視部により監視される電圧が前記目標電圧になったタイミングで、前記検出部により検出される光強度を取得する
    ことを特徴とする分光測定装置。
  10. 請求項8に記載の分光測定装置において、
    前記フィルター駆動部は、時間に対する電圧の変動パターンが所定の固定パターンである前記アナログ電圧を前記ギャップ変更部に印加し、
    前記V−λデータは、前記ギャップ量変更部に印加する電圧と、その電圧を前記ギャップ量変更部に印加した後、前記反射膜間ギャップの変動が収束した状態における前記第一反射膜及び前記第二反射膜により取り出される光の波長との関係を示すデータであり、
    前記記憶部は、前記ギャップ変更部に対して前記変動パターンのアナログ電圧を印加した際に、所定の電圧が前記ギャップ変更部に印加されてから、前記V−λデータの前記電圧に対応する波長の光が前記第一反射膜及び前記第二反射膜により取り出されるまでの遅延時間を記憶し、
    前記光強度取得部は、前記電圧監視部により監視される電圧が、前記測定対象波長に対する目標電圧になるタイミングから前記遅延時間だけ経過したタイミングで、前記検出部により検出される光強度を取得する
    ことを特徴とする分光測定装置。
JP2012150346A 2012-07-04 2012-07-04 分光測定装置 Active JP6098051B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012150346A JP6098051B2 (ja) 2012-07-04 2012-07-04 分光測定装置
US13/933,726 US9291502B2 (en) 2012-07-04 2013-07-02 Spectroscopic measurement device and spectroscopic measurement method
CN201310276320.5A CN103528685B (zh) 2012-07-04 2013-07-03 分光测定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012150346A JP6098051B2 (ja) 2012-07-04 2012-07-04 分光測定装置

Publications (2)

Publication Number Publication Date
JP2014013177A true JP2014013177A (ja) 2014-01-23
JP6098051B2 JP6098051B2 (ja) 2017-03-22

Family

ID=49878309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012150346A Active JP6098051B2 (ja) 2012-07-04 2012-07-04 分光測定装置

Country Status (3)

Country Link
US (1) US9291502B2 (ja)
JP (1) JP6098051B2 (ja)
CN (1) CN103528685B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9976899B2 (en) 2015-06-18 2018-05-22 Seiko Epson Corporation Spectroscopic measurement device, image forming apparatus, and spectroscopic measurement method
JP2018165775A (ja) * 2017-03-28 2018-10-25 セイコーエプソン株式会社 光学モジュール及び光学モジュールの駆動方法
US10175108B2 (en) 2016-02-02 2019-01-08 Seiko Epson Corporation Spectroscopic measurement apparatus, driving circuit, and spectroscopic measurement method
JP2019082349A (ja) * 2017-10-30 2019-05-30 セイコーエプソン株式会社 分光測定装置及び分光測定方法
JP7497622B2 (ja) 2020-06-05 2024-06-11 セイコーエプソン株式会社 画像生成装置、及び画像生成方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5811789B2 (ja) * 2011-11-09 2015-11-11 セイコーエプソン株式会社 分光測定装置
JP5987573B2 (ja) * 2012-09-12 2016-09-07 セイコーエプソン株式会社 光学モジュール、電子機器、及び駆動方法
KR102289043B1 (ko) 2017-07-25 2021-08-10 삼성전자주식회사 스펙트럼 측정 장치 및 방법
JP7110081B2 (ja) * 2018-12-18 2022-08-01 浜松ホトニクス株式会社 制御装置、光学フィルタシステム、制御方法
JP7484139B2 (ja) * 2019-11-22 2024-05-16 セイコーエプソン株式会社 分光装置、及び分光装置の駆動方法
US20220206284A1 (en) * 2020-12-24 2022-06-30 Seiko Epson Corporation Wavelength variable optical filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248952A (ja) * 1992-03-06 1993-09-28 Anritsu Corp 光スペクトラムアナライザ
JP2002071562A (ja) * 2000-09-04 2002-03-08 Yokogawa Electric Corp 赤外分光測定装置
JP2011150108A (ja) * 2010-01-21 2011-08-04 Seiko Epson Corp 光フィルター、特性測定方法、分析機器、および光機器
US20120109584A1 (en) * 2010-10-28 2012-05-03 Seiko Epson Corporation Light measurement device

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660761A (en) 1970-01-29 1972-05-02 Datamax Corp Automatic equalization system for data transmission channels
US6674562B1 (en) 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
JPH07243963A (ja) 1994-03-07 1995-09-19 Yazaki Corp 光共振器とその製造方法
US7826120B2 (en) 1994-05-05 2010-11-02 Qualcomm Mems Technologies, Inc. Method and device for multi-color interferometric modulation
US7839556B2 (en) 1994-05-05 2010-11-23 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US5999240A (en) 1995-05-23 1999-12-07 Colorlink, Inc. Optical retarder stack pair for transforming input light into polarization states having saturated color spectra
US7898722B2 (en) 1995-05-01 2011-03-01 Qualcomm Mems Technologies, Inc. Microelectromechanical device with restoring electrode
DE60142383D1 (de) 2000-07-03 2010-07-29 Sony Corp Optische mehrschichtige Struktur, optische Schalteinrichtung, und Bildanzeigevorrichtung
US6934033B2 (en) 2000-12-28 2005-08-23 Coretek, Inc. Single-etalon, multi-point wavelength calibration reference
JP3835525B2 (ja) 2001-03-19 2006-10-18 ホーチキ株式会社 波長可変フィルタ制御装置
JP2002277640A (ja) 2001-03-22 2002-09-25 Sumitomo Osaka Cement Co Ltd 波長追尾型光フィルタモジュール、光フィルタモジュールの波長追尾方法、及び波長追尾型レーザ光受信装置
JP2003177093A (ja) 2001-12-12 2003-06-27 Yokogawa Electric Corp 赤外分析装置
JP3517409B2 (ja) 2001-12-20 2004-04-12 サンテック株式会社 光信号分析装置
JP3812550B2 (ja) 2003-07-07 2006-08-23 セイコーエプソン株式会社 波長可変光フィルタ
JP2005099206A (ja) 2003-09-22 2005-04-14 Seiko Epson Corp 波長可変フィルタおよび波長可変フィルタの製造方法
JP3770326B2 (ja) 2003-10-01 2006-04-26 セイコーエプソン株式会社 分析装置
JP2005165067A (ja) 2003-12-03 2005-06-23 Seiko Epson Corp 波長可変フィルタおよび波長可変フィルタの製造方法
JP2005250376A (ja) 2004-03-08 2005-09-15 Seiko Epson Corp 光変調器及び光変調器の製造方法
JP2005305614A (ja) 2004-04-23 2005-11-04 Seiko Epson Corp 微小構造体の製造方法、微小構造体、波長可変光フィルタ及びマイクロミラー
JP2006220623A (ja) 2005-02-14 2006-08-24 Denso Corp ファブリペロー干渉計、それを用いた赤外線センサ装置
GB0521251D0 (en) 2005-10-19 2005-11-30 Qinetiq Ltd Optical modulation
GB0521248D0 (en) 2005-10-19 2005-11-30 Qinetiq Ltd Optical communications
US7958776B2 (en) 2007-09-06 2011-06-14 Chunhai Wang Atomic force gradient microscope and method of using this microscope
DE102008011123B4 (de) * 2008-02-26 2012-09-06 Eads Deutschland Gmbh Verfahren zur Bestimmung der Entfernung eines eine IR-Signatur emittierenden Objekts
US8228492B2 (en) 2008-08-25 2012-07-24 Regina Reimer Solar-powered light intensity measurement device
JP5151944B2 (ja) * 2008-12-09 2013-02-27 セイコーエプソン株式会社 光フィルタ及びそれを備えた光モジュール
US8384905B2 (en) 2009-11-10 2013-02-26 Corning Incorporated Tunable light source for label-independent optical reader
JP2011106936A (ja) 2009-11-17 2011-06-02 Seiko Epson Corp 分光測定装置、および分析装置
JP5428805B2 (ja) 2009-11-30 2014-02-26 セイコーエプソン株式会社 干渉フィルター、光センサー、および光モジュール
JP2011164374A (ja) 2010-02-10 2011-08-25 Seiko Epson Corp 波長可変干渉フィルター、及び波長可変干渉フィルターの製造方法。
JP2011169943A (ja) 2010-02-16 2011-09-01 Seiko Epson Corp 波長可変干渉フィルター、光センサーおよび分析機器
JP2011170137A (ja) 2010-02-19 2011-09-01 Seiko Epson Corp 波長可変干渉フィルター、光センサーおよび分析機器
JP5589459B2 (ja) 2010-03-15 2014-09-17 セイコーエプソン株式会社 光フィルター及び光フィルターモジュール並びに分析機器及び光機器
JP5458983B2 (ja) 2010-03-15 2014-04-02 セイコーエプソン株式会社 光フィルターの製造方法
JP2011191555A (ja) 2010-03-15 2011-09-29 Seiko Epson Corp 光フィルターの製造方法、分析機器および光機器
JP6010275B2 (ja) * 2010-03-15 2016-10-19 セイコーエプソン株式会社 光フィルター並びにそれを用いた分析機器及び光機器
JP5348032B2 (ja) 2010-03-16 2013-11-20 セイコーエプソン株式会社 光フィルター並びにそれを用いた分析機器及び光機器
JP5682165B2 (ja) 2010-07-23 2015-03-11 セイコーエプソン株式会社 干渉フィルター、光モジュール、及び分析装置
JP2012027226A (ja) 2010-07-23 2012-02-09 Seiko Epson Corp 干渉フィルター、光モジュール、及び分析装置
JP2012042584A (ja) 2010-08-17 2012-03-01 Seiko Epson Corp 光フィルター、光フィルターモジュール、分光測定器および光機器
JP5779852B2 (ja) 2010-08-25 2015-09-16 セイコーエプソン株式会社 波長可変干渉フィルター、光モジュール、および光分析装置
JP5928992B2 (ja) 2010-10-07 2016-06-01 セイコーエプソン株式会社 波長可変干渉フィルターの製造方法
JP5641220B2 (ja) 2010-11-12 2014-12-17 セイコーエプソン株式会社 波長可変干渉フィルター、光モジュール、及び光分析装置
JP2012150353A (ja) 2011-01-20 2012-08-09 Seiko Epson Corp 波長可変干渉フィルター、光モジュール、および光分析装置
JP5724557B2 (ja) 2011-04-07 2015-05-27 セイコーエプソン株式会社 波長可変干渉フィルター、光モジュール、および光分析装置
JP5895414B2 (ja) 2011-09-16 2016-03-30 セイコーエプソン株式会社 分光測定装置、及び分光測定方法
JP5919728B2 (ja) 2011-10-26 2016-05-18 セイコーエプソン株式会社 分光測定装置
JP5811789B2 (ja) 2011-11-09 2015-11-11 セイコーエプソン株式会社 分光測定装置
JP5942482B2 (ja) 2012-03-02 2016-06-29 セイコーエプソン株式会社 波長可変干渉フィルターの駆動方法、光学モジュール、及び電子機器
JP6015090B2 (ja) 2012-04-18 2016-10-26 セイコーエプソン株式会社 波長可変干渉フィルター、光学フィルターデバイス、光学モジュール、及び電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248952A (ja) * 1992-03-06 1993-09-28 Anritsu Corp 光スペクトラムアナライザ
JP2002071562A (ja) * 2000-09-04 2002-03-08 Yokogawa Electric Corp 赤外分光測定装置
JP2011150108A (ja) * 2010-01-21 2011-08-04 Seiko Epson Corp 光フィルター、特性測定方法、分析機器、および光機器
US20120109584A1 (en) * 2010-10-28 2012-05-03 Seiko Epson Corporation Light measurement device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
末村剛彦、外4名: "圧電アクチュエータを用いた小型アダプティブ波長可変光フィルタの応答高速化", 1994年電子情報通信学会秋季大会講演論文集, vol. 1994年秋季、第2分冊, JPN6016007425, 5 September 1994 (1994-09-05), pages 549 - 951, ISSN: 0003265440 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9976899B2 (en) 2015-06-18 2018-05-22 Seiko Epson Corporation Spectroscopic measurement device, image forming apparatus, and spectroscopic measurement method
US10175108B2 (en) 2016-02-02 2019-01-08 Seiko Epson Corporation Spectroscopic measurement apparatus, driving circuit, and spectroscopic measurement method
JP2018165775A (ja) * 2017-03-28 2018-10-25 セイコーエプソン株式会社 光学モジュール及び光学モジュールの駆動方法
JP2019082349A (ja) * 2017-10-30 2019-05-30 セイコーエプソン株式会社 分光測定装置及び分光測定方法
JP7497622B2 (ja) 2020-06-05 2024-06-11 セイコーエプソン株式会社 画像生成装置、及び画像生成方法

Also Published As

Publication number Publication date
CN103528685A (zh) 2014-01-22
CN103528685B (zh) 2017-05-24
US20140009761A1 (en) 2014-01-09
JP6098051B2 (ja) 2017-03-22
US9291502B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP6098051B2 (ja) 分光測定装置
JP5811789B2 (ja) 分光測定装置
JP5919728B2 (ja) 分光測定装置
JP5569002B2 (ja) 分析機器および特性測定方法
JP5895414B2 (ja) 分光測定装置、及び分光測定方法
JP5641220B2 (ja) 波長可変干渉フィルター、光モジュール、及び光分析装置
JP2011106936A (ja) 分光測定装置、および分析装置
JP5720200B2 (ja) 光モジュール、および光測定装置
JP6897226B2 (ja) 光学モジュール及び光学モジュールの駆動方法
JP2011169943A (ja) 波長可変干渉フィルター、光センサーおよび分析機器
JP2011053510A (ja) 波長可変干渉フィルター、測色センサー、測色モジュール、および波長可変干渉フィルターの制御方法
JP2013092474A5 (ja)
US20120188552A1 (en) Variable wavelength interference filter, optical module, spectroscopic analyzer, and analyzer
JP6337467B2 (ja) 光学モジュール、電子機器、及び光学モジュールの駆動方法
JP2015099074A (ja) 分光測定装置及び分光測定方法
JP2011170137A (ja) 波長可変干渉フィルター、光センサーおよび分析機器
JP2015125082A (ja) 光学モジュール、電子機器、及び光学モジュールの駆動方法
JP6844355B2 (ja) 光学モジュール、及び光学モジュールの駆動方法
JP5874776B2 (ja) 分光装置
JP2016050804A (ja) 分光測定装置、及び分光測定方法
JP5673075B2 (ja) 波長可変干渉フィルター、光モジュール、および光分析装置
JP6194776B2 (ja) 分光測定装置及び分光測定方法
JP2015043103A (ja) 波長可変干渉フィルター、光モジュール、及び光分析装置
JP2017040491A (ja) 光学モジュール及び分光装置
JP2018084460A (ja) 波長選択装置及び分光測定装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160609

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6098051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150