JP2015125082A - 光学モジュール、電子機器、及び光学モジュールの駆動方法 - Google Patents

光学モジュール、電子機器、及び光学モジュールの駆動方法 Download PDF

Info

Publication number
JP2015125082A
JP2015125082A JP2013270760A JP2013270760A JP2015125082A JP 2015125082 A JP2015125082 A JP 2015125082A JP 2013270760 A JP2013270760 A JP 2013270760A JP 2013270760 A JP2013270760 A JP 2013270760A JP 2015125082 A JP2015125082 A JP 2015125082A
Authority
JP
Japan
Prior art keywords
wavelength
drive
time
light
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013270760A
Other languages
English (en)
Other versions
JP6311307B2 (ja
JP2015125082A5 (ja
Inventor
丹俊 趙
Danjun Zhao
丹俊 趙
哲男 多津田
Tetsuo Tatsuta
哲男 多津田
荒崎 真一
Shinichi Arasaki
真一 荒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013270760A priority Critical patent/JP6311307B2/ja
Priority to US14/580,925 priority patent/US9182279B2/en
Priority to CN201410815698.2A priority patent/CN104749765B/zh
Publication of JP2015125082A publication Critical patent/JP2015125082A/ja
Publication of JP2015125082A5 publication Critical patent/JP2015125082A5/ja
Application granted granted Critical
Publication of JP6311307B2 publication Critical patent/JP6311307B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/32Investigating bands of a spectrum in sequence by a single detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • G01J2003/2826Multispectral imaging, e.g. filter imaging

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Studio Devices (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

【課題】測定時間を短縮可能な光学モジュール、電子機器、及び光学モジュールの駆動方法を提供する。【解決手段】分光測定装置1は、入射光から所定の波長の光を選択し、かつ出射する出射光の波長を変更可能な波長可変干渉フィルター5と、グローバルシャッター方式で、出射光の露光により電荷を蓄積し、蓄積された電荷に応じた検出信号を出力する撮像素子11と、撮像素子11に電荷を蓄積させる受光期間と、蓄積された電荷をリセットするスタンバイ期間とを設定する撮像素子制御手段(受光制御部22)と、波長可変干渉フィルター5において、出射光の波長変更駆動を制御する分光制御手段(フィルター駆動部21)と、を備え、撮像素子制御手段は、スタンバイ期間の長さを波長変更に要する駆動時間以上に設定し、分光制御手段は、スタンバイ期間の開始時点で波長変更駆動を開始させる。【選択図】図1

Description

本発明は、光学モジュール、電子機器、及び光学モジュールの駆動方法に関する。
従来、入射光から所定波長の光を取り出すことができ、取り出す波長を変更可能な分光素子と、分光素子によって取り出された光を受光する撮像素子と、を備え撮像素子の受光量を検出することで分光測定を行う電子機器としての分光測定装置が知られている(例えば、特許文献1参照)。
特許文献1には、遮光期間及び露光期間を交互に繰り返す撮像素子と、対向する光学基板間の面間隔を変更可能に構成された分光素子と、当該面間隔を制御する面間隔制御部と、を備える分光画像装置(分光測定装置)が記載されている。
この特許文献1に記載の分光測定装置では、面間隔制御部は、撮像素子における所定の遮光期間で、分光素子の面間隔を次の測定対象の波長に対応する間隔に変更している。
特開2013−17507号公報
特許文献1では、面間隔制御部は、制御信号の出力タイミングに対して、分光素子の変更動作の開始タイミング及び終了タイミングが遅延することを考慮して制御信号を出力し、遮光期間の終了タイミングに変更動作を終了させるようにしている。
しかしながら、特許文献1では、所定の遮光期間の長さが、変更動作の所要時間に関わらず変更動作よりも十分に長く設定されている。このため、遮光期間が始まってから変更動作が始まるまでの時間の分だけ測定時間が長くなるという問題がある。
本発明は、測定時間を短縮可能な光学モジュール、電子機器、及び光学モジュールの駆動方法を提供することを目的とする。
本発明の光学モジュールは、入射光から所定の波長の光を選択し、かつ出射する出射光の波長を変更可能な分光素子と、グローバルシャッター方式で、前記出射光の露光により電荷を蓄積し、蓄積された前記電荷に応じた検出信号を出力する撮像素子と、露光により前記撮像素子に前記電荷を蓄積させる受光期間と、前記撮像素子に蓄積された前記電荷をリセットするスタンバイ期間とを設定する撮像素子制御手段と、前記分光素子において、前記出射光の波長変更駆動を制御する分光制御手段と、を備え、前記撮像素子制御手段は、前記スタンバイ期間の長さを前記分光素子における前記出射光の波長変更に要する駆動時間以上に設定し、前記分光制御手段は、前記スタンバイ期間の開始時点で、前記分光素子における前記波長変更駆動を開始させることを特徴とする。
なお、本発明における駆動時間とは、分光素子を駆動させて、所定の波長の出射光が安定(波長変動量が所定閾値以内となる状態)して出射されるまでの時間を指す。例えば、分光素子として、一対の反射膜のギャップを変動させて所定波長の出射光を得る波長可変型ファブリーペローエタロンを用いる場合では、反射膜間のギャップが変動し始めてから、反射膜間のギャップの変動量が所定の閾値以内となるまでの時間である。
本発明では、1組の受光期間とスタンバイ期間とにより、撮像素子により1フレーム分の光が取得される。すなわち、撮像素子制御手段により設定された受光期間において、撮像素子が分光素子からの出射光を受光する。そして、スタンバイ期間において、受光期間で蓄積された電荷に応じた検出信号が出力され、かつ分光素子の波長変更駆動が実施される。この際、スタンバイ期間の開始時点において、分光素子の波長変更駆動の動作が開始され、かつ、スタンバイ期間が波長変更駆動に要する駆動時間以上となる。
このようにスタンバイ期間内にて分光素子が駆動されるので、受光期間に分光素子が駆動されることがなく、受光期間に分光素子が駆動されることによる分解能の低下を抑制できる。また、スタンバイ期間が開始されると、分光素子の駆動も開始されるので、スタンバイ期間の長さを不必要に長く設定することがなく、1フレームの時間が長くなるという不具合を抑制できる。
本発明の光学モジュールにおいて、前記分光制御手段は、前記分光素子から出射される前記出射光の波長を順次切り替え、前記撮像素子制御手段は、前記分光制御手段による前記波長変更駆動の波長変更量が、所定の量以下である前記分光素子の駆動に対応する各駆動時間のうちの最長の駆動時間を前記スタンバイ期間の時間として設定することが好ましい。
本発明では、撮像素子制御手段は、波長の変更量が、所定の量以下である場合の駆動時間のうちの最長時間をスタンバイ期間の時間として設定する。すなわち、本発明では、複数波長について波長を変更する際の、波長の変更量が所定の量を超える際の駆動時間は、スタンバイ期間の時間としない。このため、駆動時間が、所定時間を超える駆動時間を最長駆動時間に設定しないようにでき、1フレームの時間の短縮を図ることができる。
本発明の光学モジュールにおいて、前記分光制御手段は、前記分光素子を制御して、前記出射光の波長を、第1波長から、前記第1波長よりも短い第2波長までの間の複数の波長に、大きい順又は小さい順に順次変更するステップ駆動を実施し、前記撮像素子制御手段は、各ステップ駆動における前記駆動時間のうち、最長の駆動時間を前記スタンバイ期間の時間として設定することが好ましい。
本発明では、第1波長から第2波長の間の複数波長で分光素子をステップ駆動させ、撮像素子制御手段は、各ステップ駆動における最長駆動時間をステップ期間の長さとして設定する。すなわち、第2波長から第1波長に戻す際の駆動時間(初期化時間とも称する)は、最長駆動時間として設定されない。初期化時間は、通常、ステップ駆動における上記各駆動時間よりも長い。このため、初期化時間を最長駆動時間として設定しないことで、スタンバイ期間が必要以上に長くなることを抑制でき、1フレームの光の取得時間の短縮を図ることができる。
本発明の光学モジュールにおいて、前記撮像素子制御手段は、前記分光制御手段による前記波長変更駆動を実施した際の駆動時間のうちの最長の駆動時間を前記スタンバイ期間の時間として設定することが好ましい。
本発明では、撮像素子制御手段は、波長を変更した際の駆動時間が最長となる時間をスタンバイ期間の時間として設定する。例えば、出射光として最短波長が出射される状態から、最長波長が出射される状態に、波長変更駆動を行う場合の駆動時間をスタンバイ期間の時間として設定する。この場合、分光素子から出射させる出射光をどの波長に変更した場合でも、波長変更駆動が受光期間中に実施されることがなく、測定精度の低下をより確実に抑制できる。
本発明の光学モジュールにおいて、前記分光素子の前記出射光の波長の変動量が所定閾値以内となる安定化タイミングを検出する安定化検出部を備え、前記撮像素子制御手段は、前記安定化検出部によって検出された安定化タイミングで、前記撮像素子に前記出射光の受光による前記電荷の蓄積を開始させることが好ましい。
本発明では、分光素子が安定化された安定化タイミングで受光動作(露光により電荷を蓄積する処理)を開始する。
このような構成では、安定化した波長の出射光が分光素子から出力されたタイミングでスタンバイ期間を終了させ、受光動作を開始させることができる。従って、各フレームの所要時間を最適化でき、更なる測定時間の短縮を図ることができる。また、撮像素子において、所定波長以外の光が受光されることをより確実に抑制でき、測定精度の低下をより確実に抑制できる。
本発明の電子機器は、入射光から所定の波長の光を選択し、かつ出射する出射光の波長を変更可能な分光素子、グローバルシャッター方式で、前記出射光の露光により電荷を蓄積し、蓄積された前記電荷に応じた検出信号を出力する撮像素子、露光により前記撮像素子に前記電荷を蓄積させる受光期間と、前記撮像素子に蓄積された前記電荷をリセットするスタンバイ期間とを設定する撮像素子制御手段、及び、前記分光素子において、前記出射光の波長変更駆動を制御する分光制御手段、を備え、前記撮像素子制御手段は、前記スタンバイ期間の長さを前記分光素子における前記出射光の波長変更に要する駆動時間以上に設定し、前記分光制御手段は、前記スタンバイ期間の開始時点で、前記分光素子における前記波長変更駆動を開始させる光学モジュールと、前記光学モジュールを制御する制御部と、を具備することを特徴とする。
本発明の電子機器では、上記光学モジュールに係る発明と同様に、スタンバイ期間の開始時点において、分光素子の波長変更駆動の動作が開始され、かつ、スタンバイ期間が波長変更駆動に要する駆動時間以上となる。このようにスタンバイ期間内にて分光素子が駆動されるので、受光期間に分光素子が駆動されることがなく、受光期間に分光素子が駆動されることによる分解能の低下を抑制できる。また、スタンバイ期間が開始されると、分光素子の駆動も開始されるので、スタンバイ期間の長さを不必要に長く設定することがなく、1フレームの時間が長くなるという不具合を抑制できる。
本発明の光学モジュールの駆動方法は、入射光から所定の波長の光を選択し、かつ出射する出射光の波長を変更可能な分光素子と、グローバルシャッター方式で、前記出射光の露光により電荷を蓄積し、蓄積された前記電荷に応じた検出信号を出力する撮像素子と、を備える光学モジュールの駆動方法であって、露光により前記撮像素子に前記電荷を蓄積させる受光期間において蓄積された前記電荷をリセットするスタンバイ期間の長さを、前記分光素子における前記出射光の波長変更に要する駆動時間以上に設定し、前記スタンバイ期間の開始時点で、前記分光素子における前記出射光の波長変更駆動を開始させることを特徴とする。
本発明の光学モジュールの駆動方法では、上記光学モジュールに係る発明と同様に、スタンバイ期間の開始時点において、分光素子の波長変更駆動の動作が開始され、かつ、スタンバイ期間が波長変更駆動に要する駆動時間以上となる。このようにスタンバイ期間内にて分光素子が駆動されるので、受光期間に分光素子が駆動されることがなく、受光期間に分光素子が駆動されることによる分解能の低下を抑制できる。また、スタンバイ期間が開始されると、分光素子の駆動も開始されるので、スタンバイ期間の長さを不必要に長く設定することがなく、1フレームの時間が長くなるという不具合を抑制できる。
第一実施形態の分光測定装置の概略構成を示すブロック図。 波長可変干渉フィルターの概略構成を示す図。 波長可変干渉フィルター及び撮像素子の駆動タイミングを示す図。 分光測定装置の分光測定処理の一例を示すフローチャート。 比較例の波長可変干渉フィルター及び撮像素子の駆動タイミングを示す図。 波長可変干渉フィルターの駆動パターンの一例を示す図。 第二実施形態の分光測定装置の概略構成を示すブロック図。 波長可変干渉フィルターの概略構成を示す図。 波長可変干渉フィルター及び撮像素子の駆動タイミングを示す図。 分光測定装置の分光測定処理の一例を示すフローチャート。
[第一実施形態]
以下、本発明に係る第一実施形態を図面に基づいて説明する。
[分光測定装置の構成]
図1は、本発明に係る第一実施形態の分光測定装置の概略構成を示すブロック図である。
分光測定装置1は、本発明の電子機器であり、測定対象Xで反射された測定対象光における所定波長の光強度を取得する分光測定を実施する装置である。分光測定装置1は、図1に示すように、分光モジュール10と、制御部20と、を備えている。分光モジュール10は、本発明の分光素子に相当する波長可変干渉フィルター5と、撮像素子11と、検出信号処理部12と、電圧制御部13と、を少なくとも備えて構成されている。
この分光測定装置1では、制御部20による指令信号に応じて波長可変干渉フィルター5が駆動され、当該指令信号に応じた波長の光が波長可変干渉フィルター5から出射される。分光測定装置1は、波長可変干渉フィルター5から出射された光を撮像素子11で受光し、受光した光の光強度に応じた検出信号を出力する。この際、本実施形態では、分光測定装置1は、波長可変干渉フィルター5の駆動タイミングと、撮像素子11による受光タイミングとを設定し、設定したタイミングに基づいて波長可変干渉フィルター5及び撮像素子11を駆動する。
なお、本実施形態では、測定対象Xで反射した測定対象光を測定する例を示すが、測定対象Xとして、例えば液晶パネル等の発光体を用いる場合、当該発光体から発光された光を測定対象光としてもよい。
[分光モジュールの構成]
以下、分光モジュール10の各部の構成について説明する。
[波長可変干渉フィルターの構成]
波長可変干渉フィルター5は、例えば四角形板状の光学部材であり、図2に示すように、固定基板51、可動基板52、一対の反射膜541,542、静電アクチュエーター55を備えている。
波長可変干渉フィルター5は、電圧制御部13から静電アクチュエーター55に駆動電圧が印加されることで、一対の反射膜541,542間のギャップG1の寸法を制御し、当該ギャップG1の寸法に応じた波長の光を干渉光として取り出すことができる。
波長可変干渉フィルター5では、固定基板51及び可動基板52は、それぞれ各種ガラスや水晶等により形成されている。固定基板51の第一接合部513及び可動基板52の第二接合部523が、例えばシロキサンを主成分とするプラズマ重合膜などにより構成された接合膜53により接合されることで、一体的に構成されている。
固定基板51には、固定反射膜541が設けられ、可動基板52には、可動反射膜542が設けられている。固定反射膜541及び可動反射膜542は、反射膜間ギャップG1を介して対向配置されている。反射膜間ギャップG1のギャップ量は、固定反射膜541及び可動反射膜542の表面間の距離に相当する。
(固定基板の構成)
固定基板51は、図2に示すように、例えばエッチング等により形成された電極配置溝511及び反射膜設置部512を備える。
電極配置溝511は、フィルター平面視で、固定基板51の外周部を除く位置に設けられた溝である。電極配置溝511の溝底面は、静電アクチュエーター55を構成する電極が配置される電極設置面511Aとなる。
この電極設置面511Aには、静電アクチュエーター55を構成する固定電極551が設けられている。固定電極551は、反射膜設置部512の外周側に設けられている。
なお、図2では、図示を省略しているが、固定基板51には、電極配置溝511に連続し、基板の外周部に向かう電極引出溝が設けられている。そして、固定電極551は、電極配置溝511及び電極引出溝に設けられ、基板外周部で外部に露出する接続電極を備えている。この接続電極の露出部分は、接地されている。
反射膜設置部512は、電極配置溝511の中心部から可動基板52側に突出して形成されている。反射膜設置部512の突出先端面は反射膜設置面512Aとなり、固定反射膜541が設置されている。
この固定反射膜541としては、例えばAg等の金属膜や、Ag合金等、導電性の合金膜を用いることができる。また、例えば高屈折層をTiO、低屈折層をSiOとした誘電体多層膜を用いてもよく、この場合、誘電体多層膜の最下層又は表層に導電性の金属合金膜が形成されていることが好ましい。
また、固定基板51の光入射面(固定反射膜541が設けられない面)には、固定反射膜541に対応する位置に反射防止膜を形成してもよい。この反射防止膜は、低屈折率膜及び高屈折率膜を交互に積層することで形成することができ、固定基板51の表面での可視光の反射率を低下させ、透過率を増大させる。
そして、固定基板51の可動基板52に対向する面のうち、電極配置溝511、及び反射膜設置部512が形成されない面は、第一接合部513を構成する。この第一接合部513は、接合膜53により、可動基板52の第二接合部523に接合される。
(可動基板の構成)
可動基板52は、その中心部分に例えば円形状の可動部521と、可動部521を保持する保持部522と、保持部522の外側に設けられた基板外周部524と、を備えている。
可動部521は、保持部522よりも厚み寸法が大きく形成され、例えば、本実施形態では、可動基板52の厚み寸法と同一寸法に形成されている。この可動部521の固定基板51に対向する可動面521Aには、可動反射膜542、可動電極552が設けられている。
なお、固定基板51と同様に、可動部521の固定基板51とは反対側の面には、反射防止膜が形成されていてもよい。
可動反射膜542は、可動部521の可動面521Aの中心部に、固定反射膜541と反射膜間ギャップG1を介して対向して設けられる。この可動反射膜542としては、上述した固定反射膜541と同一の構成の反射膜が用いられる。
また、可動面521Aには、静電アクチュエーター55を構成する可動電極552が設けられている。可動電極552は、可動反射膜542の外周側に設けられている。
可動電極552は、基板厚み方向から見た平面視において、それぞれ固定電極551に対して電極間ギャップG2を介して対向配置されている。
静電アクチュエーター55は、固定電極551を備える。なお、静電アクチュエーター55の詳細については後述する。
なお、図2では、図示を省略しているが、可動電極552は、それぞれ外周縁の一部から、固定基板51に形成された上述の可動電極引出溝に対向する位置に沿って配置され、基板外周部で外部に露出する接続電極を備えている。この接続電極の露出部分は、例えばFPC(Flexible printed circuits)やリード線等により電圧制御部13に接続されている。
保持部522は、可動部521の周囲を囲うダイアフラムであり、可動部521よりも厚み寸法が小さく形成されている。このような保持部522は、可動部521よりも撓みやすく、僅かな静電引力により、可動部521を固定基板51側に変位させることが可能となる。なお、本実施形態では、ダイアフラム状の保持部522を例示するが、これに限定されず、例えば、フィルター中心点Oを中心として、等角度間隔で配置された梁状の保持部が設けられる構成などとしてもよい。
基板外周部524は、上述したように、フィルター平面視において保持部522の外側に設けられている。この基板外周部524の固定基板51に対向する面には、第一接合部513に対向する第二接合部523が設けられ、接合膜53を介して第一接合部513に接合される。
[撮像素子、検出信号処理部、及び電圧制御部の構成]
図1に戻り、分光モジュール10が備える撮像素子11、検出信号処理部12、及び電圧制御部13について説明する。
撮像素子11は、2次元平面上にアレイ状に配列された複数の画素を有している。この撮像素子11は、各画素に対して、露光の開始と終了とが同一であるグローバルシャッター方式を採用している。このような撮像素子11としては、例えばCCDやCMOS等のイメージセンサである。撮像素子11では、各画素が、例えばフォトダイオードで構成された受光部を有し、各受光部の露光量に応じて発生した電荷がそれぞれ蓄積される。撮像素子11は、この蓄積電荷を転送させることで、蓄積電荷に応じた検出信号を出力し、当該検出信号は検出信号処理部12に入力される。
ここで、本実施形態では、撮像素子11は、複数の画素行(例えば、Line1〜Linenのn行)が一方向に配列されている。そして、これら画素行がそれぞれ同時に、各構成画素の蓄積電荷を転送(すなわち検出信号を出力)する。
なお、蓄積電荷の転送には所定時間(以下、電荷転送時間とも称する)を要する。この電荷転送時間は、例えばμ秒オーダーの時間であり、後述する受光期間や、スタンバイ期間、波長可変干渉フィルター5の駆動時間に対して十分小さく、無視できるものとする。
検出信号処理部12は、入力された検出信号(アナログ信号)を増幅したのち、デジタル信号に変換して制御部20に出力する。検出信号処理部12は、検出信号を増幅するアンプや、アナログ信号をデジタル信号に変換するA/D変換器等により構成される。
電圧制御部13は、制御部20の制御に基づいて、波長可変干渉フィルター5の静電アクチュエーター55に対して駆動電圧を印加する。これにより、静電アクチュエーター55の固定電極551及び可動電極552間で静電引力が発生し、可動部521が固定基板51側に変位する。
[制御部の構成]
次に、制御部20について説明する。
制御部20は、例えばCPUやメモリー等が組み合わされることで構成され、分光測定装置1の全体動作を制御する。この制御部20は、図1に示すように、フィルター駆動部21と、受光制御部22と、最長駆動時間取得部23、スタンバイ時間設定部24と、タイミング取得部25と、光量取得部26と、分光測定部27と、記憶部28と、を備えている。記憶部28は、波長可変干渉フィルター5を透過させる光の波長と、当該波長に対応して静電アクチュエーター55に印加する駆動電圧との関係を示すV−λデータが記憶されている。
なお、受光制御部22、最長駆動時間取得部23、スタンバイ時間設定部24、及びタイミング取得部25は、本発明の撮像素子制御手段に相当する。また、電圧制御部13及びフィルター駆動部21は、本発明の分光制御手段に相当する。すなわち、電圧制御部13、フィルター駆動部21、受光制御部22、最長駆動時間取得部23、スタンバイ時間設定部24、タイミング取得部25は、本発明の光学モジュールに相当する。
フィルター駆動部21は、波長可変干渉フィルター5により取り出す光の目的波長を設定し、V−λデータに基づいて、設定した目的波長に対応する駆動電圧を静電アクチュエーター55に印加させる旨の指令信号を電圧制御部13に出力する。
ここで、図3は、本実施形態における、波長可変干渉フィルター5及び撮像素子11のそれぞれの駆動タイミングの関係を示す図である。
フィルター駆動部21は、図3に示すように、受光制御部22によって制御される撮像素子11の露光開始タイミングに合わせて、波長可変干渉フィルター5を駆動開始させるように、電圧制御部13に指令信号を出力する。
受光制御部22は、撮像素子11に所定の受光時間だけ測定光の露光量に応じた電荷を蓄積させ、露光量に基づく検出信号を出力させる受光処理を実施させる。本実施形態では、受光制御部22は、撮像素子11に、予め設定された受光時間だけ電荷を蓄積させる。そして、受光制御部22は、所定の受光時間が経過した後、撮像素子11に、電荷の蓄積を終了させ、蓄積電荷の転送(電荷転送)を実施させることで、露光量に応じた検出信号を出力させる。
また、受光制御部22は、図3に示すように、受光時間が終了してから、所定のスタンバイ時間だけ電荷の蓄積を行わず、スタンバイ時間が経過した後に、次のフレームの露光を撮像素子11に開始させる。このように、受光制御部22は、露光量に応じた電荷を蓄積する受光期間(受光時間に対応)と、蓄積された電荷を出力してリセットし、かつ、電荷の蓄積を行わないスタンバイ期間(スタンバイ時間に対応)とを交互に繰り返すように、撮像素子11を制御する。
なお、受光時間とスタンバイ時間とを合わせた所定時間が、1フレームの画像の撮像に要する時間であり、以下、フレーム所要時間とも称する。スタンバイ時間については後に詳述する。
最長駆動時間取得部23は、波長可変干渉フィルター5と撮像素子11とが同期して連続して画像を撮像する際に、予め設定された測定パターンに基づいて、波長可変干渉フィルター5の駆動に要する最長駆動時間を取得する。
分光測定装置1では、分光測定を実施する際に、測定パターンとして、複数の測定対象波長及び当該測定対象波長の測定順が予め設定される。この測定パターンに基づいた複数の測定対象波長を測定するために、フィルター駆動部21は、各測定対象波長に対応する指令信号を、順次、電圧制御部13に出力し、波長可変干渉フィルター5のギャップ寸法を順次変化させる。
ここで、波長可変干渉フィルター5のギャップ寸法が変更されるのに要する駆動時間は、ギャップ変動量や、ギャップの変動方法等に応じて異なる。例えば、ギャップ変動量が大きければ、駆動時間が長くなり、逆に、小さければ、駆動時間が短くなる。また、例えば、ギャップ寸法を大きくする時よりも、ギャップ寸法を小さくする時の方が、駆動時間が長くなる。
また、例えば、ギャップ寸法を徐々に狭める又は広めるように変更させながら受光処理を行うステップ駆動を行う場合の各駆動時間と、例えば最終波長に対応するギャップ寸法から初期波長に対応するギャップ寸法に戻す場合の駆動時間とでは、後者の駆動時間が長くなる。
測定対象波長や測定順等を示す測定パターンは、測定開始時に、ユーザーによって指定される。具体的には、分光測定装置1は、ユーザーが図示しない操作部を操作することにより、記憶部28に予め記憶された複数の測定パターンから選択可能に構成されてもよいし、測定パターンを設定可能に構成されてもよい。
なお、測定パターンが選択可能に構成されている場合、測定パターンに応じた最長駆動時間を予め記憶部28に記憶しておき、最長駆動時間取得部23は、測定パターンに応じた最長駆動時間を取得する。
また、ギャップ寸法の変動量と、駆動時間との関係を示すデータ等を予め記憶部28に記憶しておき、最長駆動時間取得部23は、これらデータ等を用いて最長駆動時間を取得する。
スタンバイ時間設定部24は、最長駆動時間取得部23によって取得された最長駆動時間をスタンバイ時間として設定する。ここで、図3に示すように、スタンバイ時間は、電荷転送時間を含んでいる。従って、スタンバイ時間設定部24は、この電荷転送時間と、当該電荷転送時間以外のブランク時間との和が、最長駆動時間となるように、スタンバイ時間を設定する。
ここで、駆動時間は、通常、数ミリ秒オーダーの時間であり、電荷転送時間(例えば数μ秒オーダーの時間)を無視できる程度に長い。従って、スタンバイ時間設定部24は、電荷転送時間は一定であるとして、スタンバイ時間を設定できる。
なお、スタンバイ時間設定部24は、スタンバイ時間が最長駆動時間よりも長くなるように設定してもよい。この場合、最長駆動時間以上、所定値未満となるようにスタンバイ時間を設定することが好ましく、このような場合も本発明に含まれる。上記所定値は、波長可変干渉フィルター5の仕様や測定パターン等に応じて、予測された駆動時間の許容誤差よりも大きければよい。これにより、より確実に、波長可変干渉フィルター5が安定した状態で露光開始させることができる。
この場合、電荷転送時間を無視して、最長駆動時間に上記所定値を加えた時間をスタンバイ時間としてもよい。
タイミング取得部25は、スタンバイ時間設定部24により設定されたスタンバイ時間と、予め設定された受光時間とに基づいて、フレーム所要時間を設定する。タイミング取得部25は、図3に示すように、撮像素子11が連続的に駆動される際の、撮像素子11の駆動開始タイミングに対する受光時間開始タイミング及び受光時間終了タイミング(すなわちスタンバイ時間開始タイミング)を、フレーム所要時間に基づいて取得する。このようにして、露光量を検出する受光期間と、検出しないスタンバイ期間とが設定される。なお、フィルター駆動部21は、設定された受光期間及びスタンバイ期間とに基づいて、波長可変干渉フィルター5を駆動する。
光量取得部26は、撮像素子11から出力された検出信号を、検出信号処理部12を介して取得する。光量取得部26は、取得した信号に基づいて、波長可変干渉フィルター5を透過した測定波長の光の光量を取得する。
分光測定部27は、光量取得部26により取得された光量に基づいて、測定対象光のスペクトル特性を測定する。
[分光測定装置の動作]
次に、上述したような分光測定装置1の動作について、図面に基づいて以下に説明する。
図4は、分光測定システムの動作の一例を示すフローチャートである。
まず、分光測定装置1では、ユーザー操作によって、測定パターンが設定される。
測定パターンが設定されると、最長駆動時間取得部23は、設定された測定パターンに基づいて、最長駆動時間を取得する(ステップS1)。
次に、スタンバイ時間設定部24は、最長駆動時間取得部23によって取得された最長駆動時間に基づいて、スタンバイ時間を設定する(ステップS2)。
次に、タイミング取得部25は、波長可変干渉フィルター5と撮像素子11との駆動タイミングを取得する(ステップS3)。
タイミング取得部25は、スタンバイ時間と受光時間とに基づいてフレーム所要時間を設定する。そして、タイミング取得部25は、撮像素子11が連続的に駆動される際の、撮像素子11の駆動開始タイミングに対する受光時間開始タイミング及び受光時間終了タイミング(すなわちスタンバイ時間開始タイミング)を、フレーム所要時間に基づいて取得する。これにより、図3に示すように、撮像素子11が連続的に駆動される場合の撮像素子11の受光期間及びスタンバイ期間(駆動パターン)が設定される。
次に、波長可変干渉フィルター5と撮像素子11との駆動が開始される。すなわち、フィルター駆動部21は、測定パターンに基づいて、目的波長に対応する駆動電圧を静電アクチュエーター55に印加させる旨の指令信号を電圧制御部13に出力し、波長可変干渉フィルター5の駆動を開始させる。同時に、受光制御部22は、撮像素子11に電荷転送を実施させ、検出信号を出力させる(ステップS4)。
なお、分光測定装置1では、駆動開始直後に転送される電荷は、検出値としては参照せずに消去される。
上述のように、電荷転送時間は、駆動時間よりも短いので、図3に示すように、撮像素子11による電荷転送の終了後であり、かつ、予め設定されたスタンバイ期間の終了タイミングより前に、ギャップ寸法が目標値に設定され、駆動時間が経過する。
次に、受光制御部22は、タイミング取得部25により設定された駆動パターンに基づいて、スタンバイ期間の終了タイミング、すなわち受光期間の開始タイミングに合わせて、撮像素子11に受光処理を開始させる(ステップS5)。
なお、撮像素子11による受光処理が開始されたタイミングでは、波長可変干渉フィルター5の駆動時間が経過し(図3参照)、波長可変干渉フィルター5が目標波長に対応するギャップ寸法に設定されている。
次に、フィルター駆動部21は、測定終了か否かを判断する(ステップS6)。フィルター駆動部21は、撮像素子11による受光期間が終了する前に、次の測定波長に変更する必要があるか否か、すなわち今回の測定で測定終了か否かを判断する。なお、測定終了の指示を受信している場合も測定終了と判断する。
測定終了の判断は、例えば、設定された測定パターンに基づいて、全測定波長に対する測定が終了するか否かで判断する。また、タイミング取得部25による駆動タイミングの設定時に、測定終了タイミングも設定しておき、設定された測定終了タイミングであることを検出することで判断してもよい。
ステップS6において、測定終了ではないと判断した場合、ステップS4に戻る。ここで、ステップS4に戻ると、フィルター駆動部21が波長可変干渉フィルター5を駆動させ、かつ、受光制御部22が撮像素子11に電荷転送を実施させ、検出信号を出力させる。ここで出力された検出信号は、露光量に対応する信号である。従って、光量取得部26は、撮像素子11から出力された検出信号を、検出信号処理部12を介して取得する。
一方、ステップS6で測定終了と判断した場合、受光制御部22は、受光期間の終了タイミングに合わせて、撮像素子11に電荷転送を実施させ、検出信号を出力させる(ステップS7)。そして、光量取得部26は、撮像素子11から出力された検出信号を、検出信号処理部12を介して取得する。
次に、光量取得部26は、取得した信号に基づいて、波長可変干渉フィルター5を透過した測定波長の光の光量を取得する(ステップS8)。
そして、分光測定部27は、光量取得部26により取得された光量に基づいて、測定対象光のスペクトル特性を測定する(ステップS9)。
以上のようにして、分光測定装置1は、設定された測定パターンに基づいて、測定対象Xのスペクトル特性を取得する。
なお、図4では、測定パターンに基づいて測定を実施して、露光量に対応する検出信号を取得しておき、測定終了後に、光量を取得し、取得した光量に基づく分析を実施する場合を例示した。分光測定装置1では、これ以外でも、例えば、検出信号を取得しながら、測定波長に対応する光量を順次取得してもよい。
[第一実施形態の作用効果]
分光測定装置1では、1組の受光期間とスタンバイ期間とにより、撮像素子により1フレーム分の光が取得される。すなわち、予め設定された受光期間において、撮像素子11が波長可変干渉フィルター5からの出射光を受光する。そして、スタンバイ期間において、受光期間で蓄積された電荷に応じた検出信号が出力され、かつ波長可変干渉フィルター5の波長変更駆動が実施される。この際、スタンバイ期間の開始時点において、波長可変干渉フィルター5の波長変更駆動が開始され、かつ、スタンバイ期間が波長変更駆動に要する駆動時間以上となる。
ここで、図5は、スタンバイ時間にブランク時間を含まない場合の波長可変干渉フィルター5及び撮像素子11の駆動タイミングの一例を示す図である。
波長可変干渉フィルター5の駆動時間は、通常、撮像素子11の電荷転送時間よりも長い。このため、図5に示すように、仮にスタンバイ時間にブランク時間を含めない場合、波長可変干渉フィルター5の駆動時間が終了しておらず、波長可変干渉フィルター5からの出射光が目標波長に変更される前に、次のフレームの露光が開始される。このため、測定値には、目標波長以外の波長の光の光量も含まれてしまう。従って、測定精度の低下を抑制するためには、撮像素子11の駆動時間と重なっているフレームを非有効なフレーム(Invalid Frame)として測定値を消去し、次のフレームの有効なフレーム(Valid Frame)として測定値を取得する。すなわち、有効なフレームと、非有効なフレームとが交互に繰り返されることになり、非有効なフレームのフレーム所要時間のうち、波長可変干渉フィルター5の駆動時間が終了した後の時間の分だけ測定時間が長くなる。
上述のように非有効なフレームが発生することがないように、波長可変干渉フィルター5の駆動時間に対して十分なスタンバイ時間を設けることが考えられる。この場合、波長可変干渉フィルター5の駆動時間等の動作特性や、駆動態様(複数の波長を選択する際の波長の選択順、波長間の間隔等)といった各種条件に基づいて、考え得る最長のスタンバイ時間を設けなければ、非有効なフレームが発生するおそれがある。この場合も、多くのフレームで、実際の駆動時間よりも長いスタンバイ時間が設定されることになり、測定時間が長くなるおそれがある。
これに対して、本実施形態の分光測定装置1では、スタンバイ期間内に波長可変干渉フィルター5の波長変更駆動を実施することにより、受光期間に波長変更駆動が実施されることによる分解能の低下を抑制できる。また、スタンバイ期間が開始されると、波長可変干渉フィルター5の波長変更駆動も開始されるので、スタンバイ期間内に波長可変干渉フィルター5を駆動させるために、スタンバイ期間の長さを不必要に長く設定しておく必要がなく、1フレームの時間が長くなるという不具合を抑制できる。
より具体的には、分光測定装置1は、撮像素子11を複数フレームに亘って連続して駆動する際に、波長可変干渉フィルター5の最長駆動時間をスタンバイ時間として設定する。そして、分光測定装置1は、受光時間及びスタンバイ時間を含むフレーム所要時間を取得し、受光期間及びスタンバイ期間を設定する。また、分光測定装置1は、スタンバイ期間の開始に合わせて波長可変干渉フィルター5の波長変更駆動を開始する。
このような構成では、波長可変干渉フィルター5による選択波長を複数の波長の間で変更する際の、駆動パターンに応じた波長可変干渉フィルター5の最長駆動時間に合わせてスタンバイ時間が設定されている。このため、受光時間と最長駆動時間とからフレーム所要時間が取得でき、撮像素子11を連続駆動した際の受光期間の終了タイミングが取得できる。この終了タイミングに合わせて、波長可変干渉フィルター5を駆動させることで、各フレームのスタンバイ期間内で波長可変干渉フィルター5を駆動させるとともに、測定時間を短縮することができる。
また、撮像素子11の連続駆動させる際の駆動開始タイミングと、分光素子の駆動制御の開始タイミングとを、同期させることにより、予め取得された受光期間の終了タイミング、すなわちスタンバイ時間の開始タイミングで波長可変干渉フィルター5の波長変更駆動を実施するだけで、波長可変干渉フィルター5と撮像素子11との駆動タイミングを同期させることができる。従って、波長可変干渉フィルター5及び撮像素子11のそれぞれの駆動タイミングを常時又は定期的に同期させながら、波長可変干渉フィルター5及び撮像素子11を制御しなくとも、波長可変干渉フィルター5及び撮像素子11の駆動タイミングを容易に合わせることができる。
分光測定装置1は、波長を変更した際の駆動時間が最長となる時間をスタンバイ時間として設定する。例えば、上述のようにステップ駆動を繰り返す場合、最終波長に対応するギャップ寸法から初期波長に対応するギャップ寸法に戻す場合の駆動時間(初期化時間と称する)をスタンバイ時間として設定する。この初期化時間は、ステップ駆動の駆動時間よりも長くなる。このように、最長の駆動時間をスタンバイ時間に設定することにより、波長可変干渉フィルター5から出射させる出射光をどの波長に変更した場合でも、波長変更駆動が受光期間中に実施されることがなく、測定精度の低下をより確実に抑制できる。
[第一実施形態の変形例]
第一実施形態では、駆動パターンにおける全駆動時間のうちの最長駆動時間を、スタンバイ時間とする構成について例示した。これに対して本変形例では、波長可変干渉フィルター5のギャップ寸法(選択波長)を順次増大又は減少させるステップ駆動を繰り返し実施する際のステップ駆動に係る駆動時間から最長駆動時間を取得する。
図6は、波長可変干渉フィルター5のギャップ寸法を複数の値に設定し、各ギャップ寸法で測定する際に、ギャップ寸法を小さくする方、又は大きくする方に段階的に変更する場合(以下、ステップ駆動とも称する)の時間と変動量とを模式的に示すグラフである。図6には、異なる5つのギャップ寸法に設定しながら測定を行う場合の一例を示している。なお、駆動時間と変動量とは厳密には非線形の関係を有するが、図6では、簡単のため線形の関係を有するものとして説明する。また、図6では、実際の測定では確保されるブランク時間は省略され、ギャップ寸法が変動しない部分は、受光時間t0としている。
図6に示す測定パターンでは、初期ギャップに対する変動量を徐々に増大させながら、5つのギャップ寸法で測定している。図6では、4回の駆動に対応する駆動時間を、駆動順にそれぞれt1〜t4としている。
図6に示す例では、4回の駆動のうち3回目の駆動における変動量が最大であり、駆動時間t1〜t4のうち、駆動時間t3が最長となる。また、ステップ駆動の最後のギャップ寸法(変動量が最大であり、最終ギャップとも称する)から最初のギャップ寸法(変動量が最小であり、第1ギャップとも称する)に戻す際、上記4回の駆動分の変動量をまとめて変動させる。このため、最終ギャップから第1ギャップに戻す際の駆動時間t5は、上記駆動時間t1〜t4よりも長くなっている。
このようなステップ駆動を行う測定パターンが設定されている場合、最長駆動時間取得部23は、最終ギャップから第1ギャップに戻す駆動時間については、最長駆動時間の判定には含めず、ステップ駆動の各駆動時間から最長駆動時間を取得する。
具体的には、本変形例では、4回の駆動のうち各駆動時間t1〜t4のうちの最長である駆動時間t3を最長であると判定し、最長駆動時間を取得する。この際、最終ギャップから第1ギャップに戻す駆動時間t5については、最長駆動時間の判定対象に含めない。
このように、分光測定装置1は、ステップ駆動する際に、最終ギャップから第1ギャップに戻す駆動時間t5については最長駆動時間の判定対象とせず、ステップ駆動の各駆動時間t1〜t4を判定対象とする。図6では、最長駆動時間はt3に設定され、最終ギャップから第1ギャップに戻す際は、駆動時間t5がスタンバイ時間を越える。このため、波長可変干渉フィルター5のギャップ寸法が第1ギャップに設定される前に、受光期間が始まる。従って、1フレーム分で適切に測定できないことになる。従って、分光測定装置1は、6フレーム目の測定結果を削除する。
すなわち、分光測定装置1では、N回のステップ駆動に対応する(N+1)フレーム分の測定を実施したのち、1フレーム分を最終ギャップから第1ギャップに戻す駆動に割いて、(N+2)フレーム分を1セットとするステップ駆動を実施する。すなわち、連続する(N+1)フレームでそれぞれ測定値を取得し、(N+2)フレーム目の測定結果は削除する。
ここで、図6に示す例では、最長駆動時間をt3に設定した場合、最長駆動時間をt5に設定した場合よりも、1回の駆動において(t5−t3)だけスタンバイ時間が短くなる。このため、4回分のステップ駆動において、(t5−t3)×4だけ所要時間が短くなる。この4回分のステップ駆動で短縮された(t5−t3)×4が、フレーム所要時間よりも長ければ、最長駆動時間をt5に設定した場合よりも5回の測定の所要時間が短くなる。すなわち、(t5−t3)×4が、フレーム所要時間よりも長ければ、1フレーム分を最終ギャップから第1ギャップに戻す駆動に割いても、最長駆動時間をt5に設定して連続的にステップ駆動を行って測定を実施した場合よりも、フレーム所要時間の短縮を図ることができる。
なお、ステップ駆動における最長の駆動時間tk及び最終ギャップから第1ギャップに戻す駆動の駆動時間trの差と、ステップ駆動の回数Nとの積(tr−tk)×Nが、駆動時間tkを最長駆動時間に設定した際のフレーム所要時間よりも大きい場合、最長駆動時間をtkに設定し、一方、小さい場合、最長駆動時間をtrに設定するようにしてもよい。
また、最長駆動時間取得部23は、波長の変更量が所定の量以下である場合の各駆動時間のうちのいずれかを最長駆動時間とするようにしてもよい。すなわち、複数波長について波長を変更する際の、波長の変更量が所定の量を超える際の駆動時間は最長駆動時間とせず、波長の変更量が所定の量以下に対応する、所定時間以内の駆動時間から最長駆動時間を取得するように、最長駆動時間取得部23を構成してもよい。この場合、駆動時間が、所定時間を超える駆動時間を最長駆動時間に設定しないようにでき、1フレームの所要時間の短縮を図ることができる。
ここで、所定の波長の変更量としては、例えば、複数フレームに亘って連続して測定する際の、測定波長の変更量の最大値である。この変更量の最大値は、上述のようにステップ駆動する際の駆動パターンから取得してもよいし、考えられる全駆動パターンに対して変更量の最大値を予め設定してもよい。
[第二実施形態]
以下、本発明に係る第二実施形態を図面に基づいて説明する。
上記第一実施形態では、分光測定装置1は、最長駆動時間をスタンバイ時間を設定することでフレーム所要時間を取得し、このフレーム所要時間で撮像素子を連続駆動した。第二実施形態では、波長可変干渉フィルター5を駆動させた後、目標波長に対応するギャップ寸法に安定化したことを検出し、検出したタイミングで撮像素子の露光を開始する。
第二実施形態では、第一実施形態の最長駆動時間を取得する構成に替えて、波長可変干渉フィルター5の安定化を検出する構成を備える点以外は、第一実施形態と同様の構成を有する。以下の説明では、第一実施形態と同様の構成については、同一の符号を付してその説明は省略又は簡略化する。
[分光測定装置の構成]
図7は、第二実施形態の分光測定装置の概略構成を示すブロック図である。
図8は、第二実施形態の波長可変干渉フィルター5の概略構成を示す断面図である。
分光測定装置1Aは、図7に示すように、分光モジュール10Aと、制御部20Aと、を備えている。
[分光モジュールの構成]
分光モジュール10Aは、波長可変干渉フィルター5と、撮像素子11と、検出信号処理部12と、電圧制御部13と、安定化検出部14と、を少なくとも備えて構成されている。
安定化検出部14は、波長可変干渉フィルター5のギャップ寸法の変動が治まり、ギャップ寸法が設定値に設定されたことを検出する。この安定化検出部14は、容量検出部141と、安定信号出力部142と、を備える。
容量検出部141は、図8に示すように、各反射膜541,542に接続されている。容量検出部141は、各反射膜541,542間のギャップG1の寸法に応じた静電容量を検出する。容量検出部141は、C/V変換器(Capacitance to Voltage Converter)等を備え、検出した静電容量に対応する検出信号を出力する。
安定信号出力部142は、容量検出部141からの検出信号に基づいて、静電容量が所定値となり、ギャップ寸法が設定値に設定されると、安定化したことを検出して安定化信号を出力する。
図9は、第二実施形態における、波長可変干渉フィルター5及び撮像素子11のそれぞれの駆動タイミングの関係を示す図である。
安定信号出力部142は、例えば図9に示すように、波長可変干渉フィルター5のギャップ寸法が設定値で安定していない場合はLow、安定している場合はHighとなる信号を安定信号として出力する。
[制御部の構成]
制御部20Aは、フィルター駆動部21と、受光制御部22と、光量取得部26と、分光測定部27と、記憶部28と、を備えている。
受光制御部22は、安定化検出部14からの安定化信号を示す安定信号(High)を受信すると、撮像素子11の受光処理を開始させる。
なお、本発明の撮像素子制御手段は、安定化検出部14を少なくとも含み構成され、さらに、受光制御部22を含み構成される。
[分光測定装置の動作]
次に、上述したような分光測定装置1の動作について、図面に基づいて以下に説明する。
図10は、分光測定システムの動作の一例を示すフローチャートである。
まず、分光測定装置1Aでは、第一実施形態同様に、ユーザー操作によって、測定パターンが設定される。
測定パターンが設定されると、フィルター駆動部21は、測定パターンに基づいて、目的波長に対応する駆動電圧を静電アクチュエーター55に印加させる旨の指令信号を電圧制御部13に出力し、波長可変干渉フィルター5の駆動を開始させる。同時に、受光制御部22は、撮像素子11に電荷転送を実施させ、検出信号を出力させる(ステップS11)。なお、分光測定装置1Aでは、第一実施形態同様に、駆動開始直後に転送される電荷は、検出値としては参照せずに消去される。
次に、安定化検出部14が、波長可変干渉フィルター5のギャップ寸法が設定値に安定したことを検出する(ステップS12)。
波長可変干渉フィルター5の駆動が開始され、波長可変干渉フィルター5のギャップ寸法が設定値となり、ギャップ寸法が安定すると、安定信号出力部142から出力されている安定信号がLowからHighに変わる。このようにして、安定化検出部14は、安定化の検出を示すHighの安定信号を出力する。
受光制御部22は、安定化の検出を示すHighの安定信号を安定化検出部14から受信すると、撮像素子11に受光処理を開始させる(ステップS13)。なお、受光制御部22は、安定化の検出を示していないLowの安定信号を受信している間は、受光処理を実施しないスタンバイ期間を継続させる。
次に、フィルター駆動部21は、第一実施形態のステップS6と同様に、撮像素子11による受光時間が終了する前に、今回の測定で測定が終了するか否かを判断する(ステップS14)。
ステップS14において、測定終了ではないと判断した場合、所定の受光時間が経過したら、ステップS11に戻る。ステップS11に戻ると、フィルター駆動部21は波長可変干渉フィルター5を駆動させ、かつ、受光制御部22は撮像素子11に電荷転送を実施させ、検出信号を出力させる。ここで出力された検出信号は、露光量に対応する信号である。従って、光量取得部26は、撮像素子11から出力された検出信号を、検出信号処理部12を介して取得する。
一方、ステップS14で測定終了と判断した場合、受光制御部22は、受光時間の終了タイミングに合わせて、撮像素子11に電荷転送を実施させ、検出信号を出力させる(ステップS15)。そして、光量取得部26は、撮像素子11から出力された検出信号を、検出信号処理部12を介して取得する。
以下、第一実施形態と同様に、光量取得部26は、取得した信号に基づいて、波長可変干渉フィルター5を透過した測定波長の光の光量を取得する(ステップS16)。
そして、分光測定部27は、光量取得部26により取得された光量に基づいて、測定対象光のスペクトル特性を測定する(ステップS17)。
以上のようにして、分光測定装置1は、設定された測定パターンに基づいて、測定対象Xのスペクトル特性を取得する。
[第二実施形態の作用効果]
分光測定装置1Aでは、波長可変干渉フィルター5が安定化したことを検出したタイミングで撮像素子11の受光処理を開始する。これにより、波長可変干渉フィルター5のギャップ寸法が安定化したタイミング、すなわち安定化した波長の出射光が分光素子から出力されたタイミングでスタンバイ期間を終了させ、受光期間を開始させることができる。従って、各フレームの所要時間を最適化でき、所要時間の短縮を図ることができる。
また、波長可変干渉フィルター5が安定して所定波長の光を出射可能な状態となったタイミングで、撮像素子11に露光を開始させることができる。従って、所定波長以外の光が撮像素子11に受光されることをより確実に抑制でき、測定精度の低下をより確実に抑制できる。
[実施形態の変形]
本発明は上述の各実施形態及び変形例に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
上記各実施形態では、分光測定装置1,分光測定装置1Aの例を示したが、測定対象の成分分析等を実施する分析装置に適用することができる。
また、上記各実施形態では、分光測定装置1,分光測定装置1Aとして、測定結果に基づいて分光スペクトルを取得する構成を例示したが、本発明はこれに限定されず、分光画像を取得する分光カメラ等にも本発明を適用することができる。すなわち、各波長の各画素について検出信号を選択し、選択された各画素の検出信号に基づいて各波長の分光画像を取得するように構成してもよい。また、取得した分光画像に基づいて測色処理を行ってもよい。このような構成でも、各画素について適性露光の範囲の露光量に対応する検出信号が選択されるので、高精度の分光画像を取得でき、高精度の測色を実施できる。
上記各実施形態において、波長可変干渉フィルター5がパッケージ内に収納された状態で10に組み込まれる構成などとしてもよい。この場合、パッケージ内を真空密閉することで、波長可変干渉フィルター5の静電アクチュエーター55に電圧を印加した際の駆動応答性を向上させることができる。
上記各実施形態において、波長可変干渉フィルター5は、電圧印加により反射膜541,542間のギャップ寸法を変動させる静電アクチュエーター55を備える構成としたが、これに限定されない。
例えば、固定電極551の代わりに、第一誘電コイルを配置し、可動電極552の代わりに第二誘電コイル又は永久磁石を配置した誘電アクチュエーターを用いる構成としてもよい。
さらに、静電アクチュエーター55の代わりに圧電アクチュエーターを用いる構成としてもよい。この場合、例えば保持部522に下部電極層、圧電膜、及び上部電極層を積層配置させ、下部電極層及び上部電極層の間に印加する電圧を入力値として可変させることで、圧電膜を伸縮させて保持部522を撓ませることができる。
上記各実施形態において、ファブリーペローエタロンとして、固定基板51及び可動基板52が互いに対向する状態で接合され、固定基板51に固定反射膜541が設けられ、可動基板52に可動反射膜542が設けられる波長可変干渉フィルター5を例示したが、これに限らない。
例えば、固定基板51及び可動基板52が接合されておらず、これらの基板間に圧電素子等の反射膜間ギャップを変更するギャップ変更部が設けられる構成などとしてもよい。
また、2つ基板により構成される構成に限られない。例えば、1つの基板上に犠牲層を介して2つの反射膜を積層し、犠牲層をエッチング等により除去してギャップを形成した波長可変干渉フィルターを用いてもよい。
上記各実施形態では、分光素子として、波長可変干渉フィルター5を例示したが、本発明はこれに限定されず、例えばAOTF(Acousto Optic Tunable Filter)やLCTF(Liquid Crystal Tunable Filter)が用いられてもよい。ただし、装置の小型化の観点から上記各実施形態のようにファブリーペローフィルターを用いることが好ましい。
その他、本発明の実施の際の具体的な構造は、本発明の目的を達成できる範囲で上記各実施形態及び変形例を適宜組み合わせることで構成してもよく、また他の構造などに適宜変更してもよい。
1,1A…分光測定装置、5…波長可変干渉フィルター、10,10A…分光モジュール、11…撮像素子、13…電圧制御部、14…安定化検出部、20,20A…制御部、21…フィルター駆動部、22…受光制御部、23…最長駆動時間取得部、24…スタンバイ時間設定部、25…タイミング取得部。

Claims (7)

  1. 入射光から所定の波長の光を選択し、かつ出射する出射光の波長を変更可能な分光素子と、
    グローバルシャッター方式で、前記出射光の露光により電荷を蓄積し、蓄積された前記電荷に応じた検出信号を出力する撮像素子と、
    露光により前記撮像素子に前記電荷を蓄積させる受光期間と、前記撮像素子に蓄積された前記電荷をリセットするスタンバイ期間とを設定する撮像素子制御手段と、
    前記分光素子において、前記出射光の波長変更駆動を制御する分光制御手段と、を備え、
    前記撮像素子制御手段は、前記スタンバイ期間の長さを前記分光素子における前記出射光の波長変更に要する駆動時間以上に設定し、
    前記分光制御手段は、前記スタンバイ期間の開始時点で、前記分光素子における前記波長変更駆動を開始させる
    ことを特徴とする光学モジュール。
  2. 請求項1に記載の光学モジュールにおいて、
    前記分光制御手段は、前記分光素子から出射される前記出射光の波長を順次切り替え、
    前記撮像素子制御手段は、前記分光制御手段による前記波長変更駆動の波長変更量が、所定の量以下である前記分光素子の駆動に対応する各駆動時間のうちの最長の駆動時間を前記スタンバイ期間の時間として設定する
    ことを特徴とする光学モジュール。
  3. 請求項1又は請求項2に記載の光学モジュールにおいて、
    前記分光制御手段は、前記分光素子を制御して、前記出射光の波長を、第1波長から、前記第1波長よりも短い第2波長までの間の複数の波長に、大きい順又は小さい順に順次変更するステップ駆動を実施し、
    前記撮像素子制御手段は、各ステップ駆動における前記駆動時間のうち、最長の駆動時間を前記スタンバイ期間の時間として設定する
    ことを特徴とする光学モジュール。
  4. 請求項1に記載の光学モジュールにおいて、
    前記撮像素子制御手段は、前記分光制御手段による前記波長変更駆動を実施した際の駆動時間のうちの最長の駆動時間を前記スタンバイ期間の時間として設定する
    ことを特徴とする光学モジュール。
  5. 請求項1に記載の光学モジュールにおいて、
    前記分光素子の前記出射光の波長の変動量が所定閾値以内となる安定化タイミングを検出する安定化検出部を備え、
    前記撮像素子制御手段は、前記安定化検出部によって検出された安定化タイミングで、前記撮像素子に前記出射光の受光による前記電荷の蓄積を開始させる
    ことを特徴とする光学モジュール。
  6. 入射光から所定の波長の光を選択し、かつ出射する出射光の波長を変更可能な分光素子、グローバルシャッター方式で、前記出射光の露光により電荷を蓄積し、蓄積された前記電荷に応じた検出信号を出力する撮像素子、露光により前記撮像素子に前記電荷を蓄積させる受光期間と、前記撮像素子に蓄積された前記電荷をリセットするスタンバイ期間とを設定する撮像素子制御手段、及び、前記分光素子において、前記出射光の波長変更駆動を制御する分光制御手段、を備え、前記撮像素子制御手段は、前記スタンバイ期間の長さを前記分光素子における前記出射光の波長変更に要する駆動時間以上に設定し、前記分光制御手段は、前記スタンバイ期間の開始時点で、前記分光素子における前記波長変更駆動を開始させる光学モジュールと、
    前記光学モジュールを制御する制御部と、を具備する
    ことを特徴とする電子機器。
  7. 入射光から所定の波長の光を選択し、かつ出射する出射光の波長を変更可能な分光素子と、グローバルシャッター方式で、前記出射光の露光により電荷を蓄積し、蓄積された前記電荷に応じた検出信号を出力する撮像素子と、を備える光学モジュールの駆動方法であって、
    露光により前記撮像素子に前記電荷を蓄積させる受光期間において蓄積された前記電荷をリセットするスタンバイ期間の長さを、前記分光素子における前記出射光の波長変更に要する駆動時間以上に設定し、
    前記スタンバイ期間の開始時点で、前記分光素子における前記出射光の波長変更駆動を開始させる
    ことを特徴とする光学モジュールの駆動方法。
JP2013270760A 2013-12-27 2013-12-27 光学モジュール、電子機器、及び光学モジュールの駆動方法 Active JP6311307B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013270760A JP6311307B2 (ja) 2013-12-27 2013-12-27 光学モジュール、電子機器、及び光学モジュールの駆動方法
US14/580,925 US9182279B2 (en) 2013-12-27 2014-12-23 Optical module, electronic apparatus, and method of driving optical module
CN201410815698.2A CN104749765B (zh) 2013-12-27 2014-12-24 光学模块、电子设备及光学模块的驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013270760A JP6311307B2 (ja) 2013-12-27 2013-12-27 光学モジュール、電子機器、及び光学モジュールの駆動方法

Publications (3)

Publication Number Publication Date
JP2015125082A true JP2015125082A (ja) 2015-07-06
JP2015125082A5 JP2015125082A5 (ja) 2017-01-26
JP6311307B2 JP6311307B2 (ja) 2018-04-18

Family

ID=53481347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013270760A Active JP6311307B2 (ja) 2013-12-27 2013-12-27 光学モジュール、電子機器、及び光学モジュールの駆動方法

Country Status (3)

Country Link
US (1) US9182279B2 (ja)
JP (1) JP6311307B2 (ja)
CN (1) CN104749765B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150801A1 (ja) * 2017-02-20 2018-08-23 ソニーセミコンダクタソリューションズ株式会社 センサ、固体撮像装置及び電子装置
US10837831B2 (en) 2018-03-02 2020-11-17 Seiko Epson Corporation Inspection apparatus, inspection system, and inspection method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6337467B2 (ja) * 2013-12-27 2018-06-06 セイコーエプソン株式会社 光学モジュール、電子機器、及び光学モジュールの駆動方法
JP6244945B2 (ja) 2014-01-29 2017-12-13 セイコーエプソン株式会社 電子機器
JP7238385B2 (ja) * 2018-12-20 2023-03-14 セイコーエプソン株式会社 分光フィルターモジュール、分光カメラおよび電子機器
JP7497622B2 (ja) * 2020-06-05 2024-06-11 セイコーエプソン株式会社 画像生成装置、及び画像生成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09261668A (ja) * 1996-03-18 1997-10-03 Fuji Photo Film Co Ltd カラー画像入力装置のフィルタ切り換え方法
US20070242920A1 (en) * 2006-04-18 2007-10-18 Xerox Corporation Fabry-Perot tunable filter using a bonded pair of transparent substrates
JP2011150108A (ja) * 2010-01-21 2011-08-04 Seiko Epson Corp 光フィルター、特性測定方法、分析機器、および光機器
JP2012018226A (ja) * 2010-07-06 2012-01-26 Seiko Epson Corp 光フィルター、光フィルターモジュール、分光測定器および光機器
JP2012022083A (ja) * 2010-07-13 2012-02-02 Seiko Epson Corp 光フィルター、光フィルターモジュール、分光測定器および光機器
JP2012198268A (ja) * 2011-03-18 2012-10-18 Seiko Epson Corp 光フィルター及び光フィルターモジュール並びに分析機器及び光機器
JP2013076727A (ja) * 2011-09-29 2013-04-25 Seiko Epson Corp 波長可変干渉フィルター、光学フィルターデバイス、光学モジュール、及び電子機器
JP2013182143A (ja) * 2012-03-02 2013-09-12 Seiko Epson Corp 波長可変干渉フィルターの駆動方法、光学モジュール、及び電子機器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255087A (en) * 1986-11-29 1993-10-19 Olympus Optical Co., Ltd. Imaging apparatus and endoscope apparatus using the same
JPH01303461A (ja) * 1988-05-31 1989-12-07 Sharp Corp 画像形成装置
JP3930164B2 (ja) 1998-11-05 2007-06-13 日本放送協会 波長選択型液晶カメラ装置
JP3297737B2 (ja) 2000-02-16 2002-07-02 埼玉大学長 分光画像撮像装置
CN100552879C (zh) * 2004-02-02 2009-10-21 尼康股份有限公司 载台驱动方法及载台装置、曝光装置、及元件制造方法
JP5556449B2 (ja) * 2010-07-02 2014-07-23 株式会社島津製作所 分光器
JP5218513B2 (ja) * 2010-09-30 2013-06-26 オムロン株式会社 変位センサ
JP5757807B2 (ja) 2011-07-07 2015-08-05 オリンパス株式会社 分光画像装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09261668A (ja) * 1996-03-18 1997-10-03 Fuji Photo Film Co Ltd カラー画像入力装置のフィルタ切り換え方法
US20070242920A1 (en) * 2006-04-18 2007-10-18 Xerox Corporation Fabry-Perot tunable filter using a bonded pair of transparent substrates
JP2011150108A (ja) * 2010-01-21 2011-08-04 Seiko Epson Corp 光フィルター、特性測定方法、分析機器、および光機器
JP2012018226A (ja) * 2010-07-06 2012-01-26 Seiko Epson Corp 光フィルター、光フィルターモジュール、分光測定器および光機器
JP2012022083A (ja) * 2010-07-13 2012-02-02 Seiko Epson Corp 光フィルター、光フィルターモジュール、分光測定器および光機器
JP2012198268A (ja) * 2011-03-18 2012-10-18 Seiko Epson Corp 光フィルター及び光フィルターモジュール並びに分析機器及び光機器
JP2013076727A (ja) * 2011-09-29 2013-04-25 Seiko Epson Corp 波長可変干渉フィルター、光学フィルターデバイス、光学モジュール、及び電子機器
JP2013182143A (ja) * 2012-03-02 2013-09-12 Seiko Epson Corp 波長可変干渉フィルターの駆動方法、光学モジュール、及び電子機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150801A1 (ja) * 2017-02-20 2018-08-23 ソニーセミコンダクタソリューションズ株式会社 センサ、固体撮像装置及び電子装置
US11221256B2 (en) 2017-02-20 2022-01-11 Sony Semiconductor Solutions Corporation Sensor, solid-state imaging apparatus, and electronic apparatus
US10837831B2 (en) 2018-03-02 2020-11-17 Seiko Epson Corporation Inspection apparatus, inspection system, and inspection method
US11209313B2 (en) 2018-03-02 2021-12-28 Seiko Epson Corporation Inspection apparatus, inspection system, and inspection method

Also Published As

Publication number Publication date
JP6311307B2 (ja) 2018-04-18
CN104749765A (zh) 2015-07-01
CN104749765B (zh) 2018-01-12
US20150185074A1 (en) 2015-07-02
US9182279B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP6311307B2 (ja) 光学モジュール、電子機器、及び光学モジュールの駆動方法
JP6337467B2 (ja) 光学モジュール、電子機器、及び光学モジュールの駆動方法
JP2015087144A (ja) 分光測定装置及び分光測定方法
CN105391920B (zh) 分光图像取得装置以及分光图像取得方法
US9880055B2 (en) Spectroscopic imaging apparatus and spectroscopic imaging method
JP5569002B2 (ja) 分析機器および特性測定方法
US9459147B2 (en) Electronic apparatus and control method of electronic apparatus
JP6492532B2 (ja) 光学モジュール、電子機器、及び光学モジュールの駆動方法
JP2017083314A (ja) 測定装置、電子機器、及び測定方法
JP6098051B2 (ja) 分光測定装置
US20150138561A1 (en) Spectroscopic measurement apparatus and spectroscopic measurement method
JP6467801B2 (ja) 分光画像取得装置、及び受光波長取得方法
US8848196B2 (en) Spectrophotometer having prompt spectrophotometric measurement
CN104754210A (zh) 照相机及图像处理方法
JP2015212750A (ja) 光学モジュール及び撮像システム
CN111352283B (zh) 分光滤光器模块、分光相机以及电子机器
JP2016050804A (ja) 分光測定装置、及び分光測定方法
JP5874776B2 (ja) 分光装置
US20210157125A1 (en) Spectral apparatus and method of driving spectral apparatus
JP2016031328A (ja) 光学モジュール、電子機器、及び光学モジュールの駆動方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160617

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180305

R150 Certificate of patent or registration of utility model

Ref document number: 6311307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150