JP2014009869A - ヒートポンプサイクル - Google Patents

ヒートポンプサイクル Download PDF

Info

Publication number
JP2014009869A
JP2014009869A JP2012146058A JP2012146058A JP2014009869A JP 2014009869 A JP2014009869 A JP 2014009869A JP 2012146058 A JP2012146058 A JP 2012146058A JP 2012146058 A JP2012146058 A JP 2012146058A JP 2014009869 A JP2014009869 A JP 2014009869A
Authority
JP
Japan
Prior art keywords
refrigerant
air
compressor
pressure
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012146058A
Other languages
English (en)
Other versions
JP2014009869A5 (ja
Inventor
Toshihiro Tawara
敏博 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012146058A priority Critical patent/JP2014009869A/ja
Priority to PCT/JP2013/003846 priority patent/WO2014002441A1/ja
Priority to CN201380033880.6A priority patent/CN104412050B/zh
Priority to EP13810107.6A priority patent/EP2869001B1/en
Publication of JP2014009869A publication Critical patent/JP2014009869A/ja
Publication of JP2014009869A5 publication Critical patent/JP2014009869A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00978Control systems or circuits characterised by failure of detection or safety means; Diagnostic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】圧縮機の耐久寿命に悪影響を与えてしまうことを抑制しつつ、低外気温時であっても加熱対象流体を加熱可能なヒートポンプサイクルを提供する。
【解決手段】外気温Tamが基準外気温KTamより低くなっている低外気温時には、圧縮機11を作動させた状態で高圧側冷媒圧力Pdが基準圧力KPdより低くなっているときに冷媒不足状態であると判定する冷媒不足判定手段を設け、この冷媒不足判定手段によって冷媒不足状態が判定された際に圧縮機11を停止させる。これにより、低外気温時であっても高圧側冷媒圧力Pdが基準圧力KPdより高くなっている時には圧縮機11を作動させて加熱能力を発揮できる。
【選択図】図3

Description

本発明は、外気から吸熱した熱によって加熱対象流体を加熱するヒートポンプサイクルに関する。
従来、空調装置に適用されて空調対象空間へ送風される送風空気を冷却する蒸気圧縮式の冷凍サイクル(ヒートポンプサイクル)が知られている。この種のヒートポンプサイクルでは、冷媒が外部へ漏れてしまった場合や低外気温時等のようにサイクルを循環する冷媒流量が少なくなると、冷媒とともにサイクルを循環して圧縮機へ戻る冷凍機油の戻り量が減少して、圧縮機の耐久寿命に悪影響を与えてしまうことがある。
これに対して、特許文献1のヒートポンプサイクルでは、圧縮機の耐久寿命に悪影響を与えてしまう程度に冷媒流量が少なくなる冷媒不足状態になっていると判定された場合や、低外気温時(具体的には、外気温が−5℃未満の場合)には、圧縮機を停止させて、圧縮機の保護を図っている。
より詳細には、特許文献1のヒートポンプサイクルでは、外気温が0℃以上の場合には、圧縮機を停止させた状態で、圧縮機の冷媒吐出口から減圧手段である膨張弁の冷媒入口へ至る高圧側冷媒圧力が第1基準圧力以下となっている際に冷媒不足状態になっていると判定し、さらに、外気温が−5℃以上かつ0℃未満の場合のように高圧側冷媒圧力が低くなりやすい場合には、圧縮機を3秒〜10秒程度作動させた後に高圧側冷媒圧力が第2基準圧力以下となっている際に冷媒不足状態になっていると判定している。
特許第3279001号公報
ところで、特許文献1のヒートポンプサイクルは、送風空気を冷却して空調対象空間を冷房するために用いられているので、低外気温時に圧縮機を停止させて、ヒートポンプサイクルが冷却能力を発揮できなくなったとしても、ユーザの空調フィーリング(冷房感)を大きく損なうことはない。
しかしながら、ヒートポンプサイクルにて送風空気を加熱して空調対象空間を暖房する場合は、外気温が低い場合にこそ圧縮機を作動させて、ヒートポンプサイクルに加熱能力を発揮させる必要がある。従って、特許文献1のように低外気温時に冷媒流量が不足するものと判定して圧縮機を停止させてしまうと、送風空気を加熱することができず、空調対象空間を暖房することができなくなってしまう。
上記点に鑑み、本発明は、圧縮機の耐久寿命に悪影響を与えてしまうことを抑制しつつ、低外気温時であっても加熱対象流体を加熱可能なヒートポンプサイクルを提供することを目的とする。
本発明は、上記目的を達成するために案出されたもので、請求項1に記載の発明では、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機(11)から吐出された高圧冷媒と加熱対象流体とを熱交換させて加熱対象流体を加熱する加熱用熱交換器(12)と、加熱用熱交換器(12)から流出した冷媒を減圧させる減圧手段(13)と、減圧手段(13)にて減圧された低圧冷媒と外気とを熱交換させて低圧冷媒を蒸発させる室外熱交換器(16)と、サイクルを循環する冷媒流量が不足している冷媒不足状態であることを判定する冷媒不足判定手段(S2…S12)と、圧縮機(11)の作動を制御する圧縮機制御手段とを備え、
冷媒不足判定手段(S2…S12)は、外気温(Tam)が予め定めた基準外気温(KTam)より高くなっている際には、圧縮機(11)の吐出口から減圧手段(13)の入口へ至る高圧側冷媒圧力(Pd)が予め定めた第1基準圧力(KPdH)より低くなっているときに冷媒不足状態であると判定し、さらに、外気温(Tam)が基準外気温(KTam)より低くなっている際には、圧縮機(11)を作動させた状態で高圧側冷媒圧力(Pd)が予め定めた第2基準圧力(KPdL)より低くなっているときに冷媒不足状態であると判定するように構成され、
圧縮機制御手段は、冷媒不足判定手段(S2…S12)が冷媒不足状態であると判定した際に、圧縮機(11)の冷媒吐出能力を低下させるように構成されているヒートポンプサイクルを特徴としている。
これによれば、冷媒不足判定手段(S2…S12)によって冷媒不足状態が判定された際に、圧縮機制御手段が圧縮機(11)の冷媒吐出能力を低下させるので、冷凍機油の戻り量が減少することによって圧縮機(11)の耐久寿命に悪影響を与えてしまうことを抑制できる。
さらに、冷媒不足判定手段(S2…S12)は、外気温(Tam)が基準外気温(KTam)より低くなる低外気温時には、圧縮機(11)を作動させた状態で高圧側冷媒圧力(Pd)が第2基準圧力(KPdL)より低くなっているときに冷媒不足状態であると判定する。従って、高圧側冷媒圧力(Pd)が第2基準圧力(KPdL)より高くなっているときには、低外気温時であっても加熱対象流体を加熱することができる。
その結果、圧縮機の耐久寿命に悪影響を与えてしまうことを抑制しつつ、低外気温時であっても加熱対象流体を加熱できるヒートポンプサイクルを提供することができる。
なお、本請求項における「冷媒不足状態」とは、少なくとも圧縮機(11)の耐久寿命に悪影響を与えてしまう程度に冷媒流量が不足している状態を意味している。また、本請求項における「圧縮機(11)の冷媒吐出能力を低下させる」とは、単に圧縮機(11)の冷媒吐出能力を低下させることを意味するだけでなく、圧縮機(11)を停止させることを含む意味である。
さらに、請求項2に記載の発明のように、請求項1に記載のヒートポンプサイクルにおいて、室外熱交換器(16)へ向けて外気を送風する送風機(16a)と、送風機(16a)の作動を制御する送風機制御手段とを備え、送風機制御手段は、外気温(Tam)が予め定めた基準温度範囲内になっている際に、送風機(16a)の送風能力を増加させるようになっていてもよい。
ここで、例えば、外気温(Tam)が−10℃〜0℃程度になると、室外熱交換器(16)に着霜が生じやすい。さらに、室外熱交換器(16)に着霜が生じると室外熱交換器(16)にて冷媒が冷却されてしまうため、冷媒不足判定手段(S2…S12)が冷媒不足状態を誤判定してしまうおそれがある。
これに対して、本請求項に記載の発明によれば、室外熱交換器(16)に着霜が生じやすい外気温(Tam)になった際に、送風機(16a)の送風能力を増加させて着霜を抑制することができるので、冷媒不足判定手段(S2…S12)が冷媒不足状態を誤判定してしまうことを抑制できる。
さらに、請求項3に記載の発明のように、請求項1または2に記載のヒートポンプサイクルにおいて、室外熱交換器(16)へ向けて外気を送風する送風機(16a)と、送風機(16a)の作動を制御する送風機制御手段とを備え、送風機制御手段は、サイクルの熱負荷の上昇に伴って送風機(16a)の送風能力を増加させるようになっていてもよい。
ここで、サイクルの熱負荷が上昇した際には、室外熱交換器(16)において冷媒が外気から吸熱する熱量を増加させるために、室外熱交換器(16)における冷媒蒸発温度を低下させる必要がある。従って、サイクルの熱負荷が上昇すると、室外熱交換器(16)に着霜が生じやすい。
これに対して、本請求項に記載の発明によれば、サイクルの熱負荷の上昇に伴って送風機(16a)の送風能力を増加させて室外熱交換器(16)の着霜を抑制することができるので、冷媒不足判定手段(S2…S12)が冷媒不足状態を誤判定してしまうことを抑制できる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
一実施形態の車両用空調装置の全体構成図である。 一実施形態の車両用空調装置の制御処理のうち送風ファンの回転数を決定する際の制御特性を示す説明図である。 一実施形態の車両用空調装置の制御処理の要部を示すフローチャートである。
以下、図面を用いて、本発明の一実施形態を説明する。本実施形態では、ヒートポンプサイクル(蒸気圧縮式の冷凍サイクル)10を車両用空調装置1に適用している。このヒートポンプサイクル10は、車両用空調装置1において、空調対象空間である車室内へ送風される送風空気を冷却あるいは加熱する機能を果たす。従って、本実施形態の熱交換対象流体は送風空気である。
また、本実施形態の車両用空調装置1は、車両走行用の駆動力を走行用電動モータから得る電気自動車に適用されている。この電気自動車では、車両停止時に外部電源(商用電源)から供給される電力を蓄電手段であるバッテリに充電し、車両走行時にバッテリに蓄えられた電力を走行用電動モータへ供給して走行する。
次に、図1を用いて車両用空調装置1の詳細構成を説明する。本実施形態の車両用空調装置1は、前述したヒートポンプサイクル10、ヒートポンプサイクル10によって温度調整された送風空気を車室内へ吹き出すための室内空調ユニット30、および車両用空調装置1の各種電動式の構成機器の作動を制御する図示しない空調制御装置等を備えている。
まず、ヒートポンプサイクル10は、送風空気を冷却して車室内を冷房する冷房モードの冷媒回路、送風空気を加熱して車室内を暖房する暖房モードの冷媒回路、さらに、暖房モード時にヒートポンプサイクル10にて冷媒を蒸発させる蒸発器として機能する室外熱交換器16に着霜が生じた際に、これを除霜する除霜モードの冷媒回路を切替可能に構成されている。
なお、図1では、冷房モードにおける冷媒の流れを破線矢印で示し、暖房モードにおける冷媒の流れを実線矢印で示し、さらに、除霜モードにおける冷媒の流れを二重線矢印で示している。
ヒートポンプサイクル10は、冷媒を圧縮して吐出する圧縮機11、送風空気を加熱あるいは冷却する室内熱交換器としての室内凝縮器12および室内蒸発器20、冷媒を減圧膨張させる減圧手段としての暖房用固定絞り13および冷房用固定絞り18、並びに、冷媒回路切替手段としての開閉弁15および三方弁17等を備えている。
また、このヒートポンプサイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。もちろん、HFO系冷媒(例えば、R1234yf)等を採用してもよい。さらに、冷媒には圧縮機11の摺動部を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
圧縮機11は、車室外となる車両ボンネット内に配置され、ヒートポンプサイクル10において冷媒を吸入し、圧縮して吐出するもので、吐出容量が固定された固定容量型圧縮機構11aを電動モータ11bにて駆動する電動圧縮機として構成されている。固定容量型圧縮機構11aとしては、具体的に、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用できる。
電動モータ11bは、図示しないインバータから出力される交流電圧によって、その作動(回転数)が制御される交流モータである。また、インバータは、空調制御装置から出力される制御信号に応じた周波数の交流電圧を出力する。そして、この周波数(回転数)制御によって、圧縮機11の冷媒吐出能力が変更される。従って、電動モータ11bは、圧縮機11の吐出能力変更手段を構成している。
圧縮機11の吐出口側には、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、室内空調ユニット30において車室内へ送風される送風空気の空気通路を形成するケーシング31内に配置されて、その内部を流通する冷媒と送風空気とを熱交換させることで送風空気を加熱する加熱用熱交換器である。
室内凝縮器12の冷媒出口側には、暖房用固定絞り13を介して室外熱交換器16の冷媒入口側が接続されている。この暖房用固定絞り13は、暖房モード時に室内凝縮器12から流出した冷媒を減圧させる減圧手段であって、オリフィス、キャピラリチューブ等を採用できる。もちろん、減圧手段は、暖房モード時に冷媒を減圧させる機能を発揮できれば、固定絞りに限定されることなく全開機能付き電気式膨張弁等の可変絞り機構を採用してもよい。
さらに、本実施形態では、室内凝縮器12から流出した冷媒を、暖房用固定絞り13を迂回させて室外熱交換器16の冷媒入口側へ導くバイパス通路14が設けられている。このバイパス通路14には、バイパス通路14を開閉する開閉弁15が配置されている。
開閉弁15は、各運転モードにおける冷媒回路を切り替える冷媒回路切替手段を構成するもので、空調制御装置から出力される制御信号によって、その作動が制御される電磁弁である。具体的には、本実施形態の開閉弁15は、冷房モード時および除霜モード時に開き、暖房モード時に閉じる。
なお、開閉弁15が開いた状態で冷媒がバイパス通路14を通過する際に生じる圧力損失は、開閉弁15が閉じた状態で冷媒が暖房用固定絞り13を通過する際に生じる圧力損失に対して極めて小さい。従って、開閉弁15が開いた状態では、室外熱交換器16から流出した冷媒のほぼ全流量がバイパス通路14を介して室外熱交換器16側へ流れる。
室外熱交換器16は、車両ボンネット内に配置されて、内部を流通する室内凝縮器12下流側の冷媒と送風ファン16aから送風された車室外空気(外気)とを熱交換させるものである。送風ファン16aは、空調制御装置から出力される制御電圧によって回転数(送風能力)が制御される電動式送風機である。
室外熱交換器16の冷媒出口側には、三方弁17が接続されている。この三方弁17は、開閉弁15とともに上述した各運転モードにおける冷媒回路を切り替える冷媒回路切替手段を構成しており、空調制御装置から出力される制御信号によって、その作動が制御される電気式の三方弁である。
具体的には、三方弁17は、冷房モード時には図1の破線矢印で示すように室外熱交換器16の冷媒出口側と冷房用固定絞り18とを接続する冷媒回路に切り替え、暖房モード時および除霜モード時には図1の実線矢印あるいは二重線矢印で示すように室外熱交換器16の冷媒出口側と圧縮機11の吸入口側に配置されたアキュムレータ19の冷媒入口側とを接続する冷媒回路に切り替える。
冷房用固定絞り18の基本的構成は暖房用固定絞り13と同様である。冷房用固定絞り18の冷媒出口側には、室内蒸発器20の冷媒入口側が接続されている。室内蒸発器20は、室内空調ユニット30のケーシング31内のうち、室内凝縮器12の送風空気流れ上流側に配置されて、その内部を流通する冷媒と送風空気とを熱交換させて送風空気を冷却する冷却用熱交換器である。
室内蒸発器20の冷媒出口側には、アキュムレータ19の入口側が接続されている。アキュムレータ19は、内部に流入した冷媒の気液を分離して、サイクル内の余剰冷媒を蓄える気液分離器である。さらに、アキュムレータ19の気相冷媒出口には、圧縮機11の吸入口側が接続されている。
次に、室内空調ユニット30について説明する。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置され、その外殻を形成するケーシング31内に送風機32、前述の室内蒸発器20、室内凝縮器12、エアミックスドア34等を収容して構成されたものである。
ケーシング31は、車室内に送風される車室内送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。ケーシング31内の送風空気流れ最上流側には、ケーシング31内へ内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替手段としての内外気切替装置33が配置されている。
内外気切替装置33は、ケーシング31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置から出力される制御信号によって、その作動が制御される。
内外気切替装置33の空気流れ下流側には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風機(ブロワ)32が配置されている。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置から出力される制御電圧によって回転数(送風量)が制御される。
送風機32の空気流れ下流側には、前述の室内蒸発器20および室内凝縮器12が、送風空気の流れに対して、室内蒸発器20→室内凝縮器12の順に配置されている。換言すると、室内蒸発器20は室内凝縮器12よりも送風空気流れ上流側に配置されている。
さらに、冷媒蒸発器20の空気流れ下流側であって、かつ、室内凝縮器12の空気流れ上流側には、冷媒蒸発器20通過後の送風空気のうち、室内凝縮器12を通過させる風量割合を調整するエアミックスドア34が配置されている。また、室内凝縮器12の空気流れ下流側には、室内凝縮器12にて冷媒と熱交換して加熱された送風空気と室内凝縮器12を迂回して加熱されていない送風空気とを混合させる混合空間35が設けられている。
ケーシング31の空気流れ最下流部には、混合空間35にて混合された送風空気(空調風)を、空調対象空間である車室内へ吹き出す開口穴が配置されている。具体的には、この開口穴としては、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴、乗員の足元に向けて空調風を吹き出すフット開口穴、および車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴(いずれも図示せず)が設けられている。
これらのフェイス開口穴、フット開口穴およびデフロスタ開口穴の空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。
従って、エアミックスドア34が室内凝縮器12を通過させる風量の割合を調整することによって、混合空間35にて混合される空調風の温度が調整されて、各吹出口から車室内へ吹き出される空調風の温度が調整される。つまり、エアミックスドア34は、車室内へ送風される空調風の温度を調整する温度調整手段を構成している。
なお、エアミックスドア34は、エアミックスドア駆動用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置から出力される制御信号によって、その作動が制御される。
さらに、本実施形態の室内空調ユニット30では、室内凝縮器12の空気流れ下流側に、空調制御装置からの出力制御信号によって発熱して送風空気を加熱する電気ヒータ(PTCヒータ)36を配置している。このPTCヒータ36は、エアミックスドア34を送風空気の全流量を室内凝縮器12へ流入させる最大暖房位置に変位させても、車室内へ吹き出される空調風の温度を充分に上昇させることができない場合に電力を供給されて、送風空気を補助的に加熱する補助加熱手段である。
また、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。
これらのフェイスドア、フットドア、デフロスタドアは、開口穴モードを切り替える開口穴モード切替手段を構成するものであって、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。なお、この電動アクチュエータも、空調制御装置から出力される制御信号によって、その作動が制御される。
吹出口モード切替手段によって切り替えられる吹出口モードとしては、具体的に、フェイス吹出口を全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出すフェイスモード、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出すバイレベルモード、フット吹出口を全開するとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出すフットモード、およびフット吹出口およびデフロスタ吹出口を同程度開口して、フット吹出口およびデフロスタ吹出口の双方から空気を吹き出すフットデフロスタモードがある。
さらに、乗員が操作パネルに設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタ吹出口を全開してデフロスタ吹出口から車両フロント窓ガラス内面に空気を吹き出すデフロスタモードとすることもできる。
次に、本実施形態の電気制御部について説明する。空調制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された圧縮機11用のインバータ、冷媒回路切替手段を構成する開閉弁15および三方弁17、送風ファン16a、送風機32、前述した各種電動アクチュエータといった各種空調制御機器の作動を制御する。
また、空調制御装置の入力側には、車室内温度(内気温)Trを検出する内気温検出手段としての内気センサ、車室外温度(外気温)Tamを検出する外気温検出手段としての外気センサ、車室内へ照射される日射量Tsを検出する日射量検出手段としての日射センサ、圧縮機11吐出冷媒の吐出冷媒温度Tdを検出する吐出温度センサ、圧縮機11吐出冷媒の吐出冷媒圧力(高圧側冷媒圧力)Pdを検出する吐出圧力センサ、室内蒸発器20における冷媒蒸発温度(蒸発器温度)Teを検出する蒸発器温度センサ、混合空間35から車室内へ送風される送風空気の送風空気温度TAVを検出する送風空気温度センサ、室外熱交換器16の室外器温度Tsを検出する室外熱交換器温度センサ等の空調制御用のセンサ群の検出信号が入力される。
なお、本実施形態の吐出冷媒圧力Pdは、冷房モードでは、圧縮機11の冷媒吐出口側から冷房用固定絞り18入口側へ至るサイクルの高圧側冷媒圧力となり、暖房モードでは、圧縮機11の冷媒吐出口側から暖房用固定絞り17入口側へ至るサイクルの高圧側冷媒圧力となる。また、本実施形態では、送風空気温度TAVを検出する送風空気温度センサを設けているが、この送風空気温度TAVとして、蒸発器温度Te、吐出冷媒温度Td等に基づいて算出された値を採用してもよい。
さらに、空調制御装置の入力側には、車室内前部の計器盤付近に配置された操作パネルに設けられた各種空調操作スイッチからの操作信号が入力される。この操作パネルに設けられた各種空調操作スイッチとしては、具体的に、車両用空調装置1の作動スイッチ、車両用空調装置1の自動制御を設定あるいは解除するオートスイッチ、運転モードを切り替える運転モード切替スイッチ、吹出口モードを切り替える吹出モード切替スイッチ、送風機32の風量設定スイッチ、車室内の目標温度Tsetを設定する目標温度設定手段としての車室内温度設定スイッチ等がある。
なお、空調制御装置は、その出力側に接続された各種空調用構成機器を制御する制御手段が一体に構成されたものであるが、それぞれの空調用構成機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの空調用構成機器の作動を制御する制御手段を構成している。
例えば、本実施形態では、空調制御装置のうち、圧縮機11の作動を制御する構成(ハードウェアおよびソフトウェア)が特許請求の範囲に記載された圧縮機制御手段を構成し、送風ファン16aの作動を制御する構成(ハードウェアおよびソフトウェア)が送風機制御手段を構成している。
次に、上記構成における本実施形態の車両用空調装置1の作動を説明する。前述の如く、本実施形態の車両用空調装置1では、車室内を冷房する冷房モード、車室内を暖房する暖房モード、並びに、室外熱交換器16に着霜が生じた際にこれを除霜する除霜モードの運転を切り替えることができる。以下に各運転における作動を説明する。
(a)冷房モード
冷房モードは、操作パネルのオートスイッチが投入(ON)された状態で、選択スイッチによって冷房モードが選択されると開始される。冷房モードでは、空調制御装置が、開閉弁15を開き、室外熱交換器16の冷媒出口側と冷房用固定絞り18の冷媒入口側とを接続するように三方弁17の作動を制御する。
これにより、図1の破線矢印に示すように、圧縮機11→室内凝縮器12(→バイパス通路14)→室外熱交換器16(→三方弁17)→冷房用固定絞り18→室内蒸発器20→アキュムレータ19→圧縮機11の順に冷媒が循環する冷凍サイクルが構成される。つまり、室内凝縮器12および室外熱交換器16を冷媒に放熱させる放熱器として機能させ、室内蒸発器20を冷媒を蒸発させる蒸発器として機能させる冷凍サイクルが構成される。
この冷媒回路の構成で、空調制御装置が上述の空調制御用のセンサ群の検出信号および操作パネルの操作信号を読み込む。そして、検出信号および操作信号の値に基づいて車室内へ吹き出す空気の目標温度である目標吹出温度TAOを算出する。さらに、算出された目標吹出温度TAOおよびセンサ群の検出信号に基づいて、空調制御装置の出力側に接続された各種空調制御機器の作動状態を決定する。
例えば、送風機32の送風量(すなわち、送風機32の電動モータに出力されるブロワモータ電圧)については、目標吹出温度TAOに基づいて、予め空調制御装置のROM内に記憶された制御マップを参照して決定される。具体的には、本実施形態では、目標吹出温度TAOの極低温域(最大冷房域)および極高温域(最大暖房域)でブロワモータ電圧を最大値付近の高電圧にして、送風機32の送風量が最大風量に近づくように制御する。
また、エアミックスドア34の開度(すなわち、エアミックスドア駆動用の電動アクチュエータに出力される制御信号)は、送風空気温度TAVが目標吹出温度TAOに近づくように決定される。
また、吹出口モード(すなわち、吹出口モードドア駆動用の電動アクチュエータに出力される制御信号)は、目標吹出温度TAOに基づいて、予め空調制御装置に記憶された制御マップを参照して決定される。本実施形態では、目標吹出温度TAOが低温域から高温域へと上昇するに伴って吹出口モードをフェイスモード→バイレベルモード→フットモードへと順次切り替える。
また、吸込口モード(すなわち、内外気切替装置33の電動アクチュエータに出力される制御信号)も、目標吹出温度TAOに基づいて、予め空調制御装置に記憶された制御マップを参照して決定される。本実施形態では、基本的に外気を導入する外気モードが優先されるが、目標吹出温度TAOが極低温域となって高い冷房性能を得たい場合等には内気を導入する内気モードが選択される。
また、送風ファン16aの送風量(すなわち、送風ファン16aに出力される制御電圧)は、外気温Tamに基づいて、予め空調制御装置に記憶された制御マップを参照して決定される。本実施形態では、図2の制御特性図に示すように、外気温Tamが予め定めた基準温度範囲内(具体的には、−10℃以上かつ0°以下)になっている際に、送風ファン16aの送風量(送風能力)を増加させるように決定する。さらに、車速の増加に伴って送風ファン16aの送風量(送風能力)を減少させるように決定する。
また、圧縮機11の冷媒吐出能力(すなわち、圧縮機11の電動モータ11bに接続されたインバータに出力される制御信号)については、目標吹出温度TAO等に基づいて、予め空調制御装置に記憶されている制御マップを参照して、空調フィーリングを悪化させないように、蒸発器温度センサによって検出される冷媒蒸発温度Teの目標蒸発温度TEOを決定する。
さらに、この目標蒸発温度TEOと冷媒蒸発温度Teの偏差En(TEO−Te)を算出し、今回算出された偏差Enから前回算出された偏差En−1を減算した偏差変化率Edot(En−(En−1))とを用いて、予め空調制御装置に記憶されたメンバシップ関数とルールとに基づいたファジー推論に基づいて、前回の圧縮機回転数fCn−1に対する回転数変化量Δf_Cを求め、これに応じてインバータに出力される制御信号が決定される。
そして、上記の如く決定された制御信号等を各種空調制御機器へ出力する。その後、操作パネルによって車両用空調装置1の作動停止が要求されるまで、所定の制御周期毎に、検出信号および操作信号の読み込み→目標吹出温度TAOの算出→各種空調制御機器の作動状態決定→制御電圧および制御信号の出力といった制御ルーチンが繰り返される。なお、このようなルーチンの繰り返しは、本実施形態の空調制御のメインルーチンとして他の運転モード時にも同様に行われる。
従って、冷房モード時のヒートポンプサイクル10では、圧縮機11にて圧縮された高圧高温冷媒が、室内凝縮器12にて室内蒸発器20通過後の送風空気の一部と熱交換して送風空気の一部が加熱される。さらに、室内蒸発器20から流出した冷媒は、バイパス通路14を介して室外熱交換器16へ流入し、室外熱交換器16にて送風ファン16aから送風された外気と熱交換して放熱する。
室外熱交換器16から流出した冷媒は、三方弁17を介して冷房用固定絞り18へ流入し、冷房用固定絞り18にて減圧膨張される。冷房用固定絞り18にて減圧された低圧冷媒は室内蒸発器20へ流入し、送風機32から送風された送風空気から吸熱して蒸発する。この冷媒の吸熱作用により、室内蒸発器20を通過する送風空気が冷却される。
そして、前述の如く、室内蒸発器20にて冷却された送風空気の一部が室内凝縮器12にて加熱されることによって、送風空気温度TAVが目標吹出温度TAOに近づくように調整され、車室内の冷房が実現される。また、室内蒸発器20から流出した冷媒は、アキュムレータ19へ流入する。アキュムレータ19にて気液分離された気相冷媒は、圧縮機11に吸入されて再び圧縮される。
(b)暖房モード
暖房モードは、操作パネルのオートスイッチが投入(ON)された状態で、選択スイッチによって暖房モードが選択されると開始される。暖房モードでは、空調制御装置が、開閉弁15を閉じ、室外熱交換器16の冷媒出口側とアキュムレータ19の冷媒入口側とを接続するように三方弁17の作動を制御する。さらに、空調制御装置が、室内蒸発器20通過後の送風空気の全風量が室内凝縮器12へ流入するようにエアミックスドア34を変位させる。
これにより、図1の実線矢印に示すように、圧縮機11→室内凝縮器12→暖房用固定絞り13→室外熱交換器16(→三方弁17)→アキュムレータ19→圧縮機11の順に冷媒が循環する冷凍サイクルが構成される。つまり、室内凝縮器12を放熱器として機能させ、室外熱交換器16を蒸発器として機能させる冷凍サイクルが構成される。
また、暖房モードでは、圧縮機11の冷媒吐出能力を以下のように決定する。暖房モードでは、目標吹出温度TAO等に基づいて、予め空調制御装置に記憶されている制御マップを参照して、吐出圧力センサによって検出される吐出冷媒圧力Pdの目標高圧PDOを決定する。
そして、この目標高圧PDOと吐出冷媒圧力Pdの偏差Pn(PDO−Pd)を算出し、今回算出された偏差Pnから前回算出された偏差Pn−1を減算した偏差変化率Pdot(Pn−(Pn−1))とを用いて、予め空調制御装置に記憶されたメンバシップ関数とルールとに基づいたファジー推論に基づいて、前回の圧縮機回転数fHn−1に対する回転数変化量Δf_Hを求め、これに応じてインバータに出力される制御信号が決定される。
従って、暖房モード時のヒートポンプサイクル10では、圧縮機11にて圧縮された冷媒は、室内凝縮器12にて送風機32から送風された送風空気に放熱する。これにより、室内凝縮器12を通過する送風空気が加熱され、車室内の暖房が実現される。また、室内凝縮器12から流出した冷媒は、暖房用固定絞り13にて減圧されて室外熱交換器16へ流入する。
室外熱交換器16へ流入した冷媒は、送風ファン16aから送風された車室外空気から吸熱して蒸発する。室外熱交換器16から流出した冷媒は、三方弁17を介してアキュムレータ19へ流入する。アキュムレータ19にて気液分離された気相冷媒は、圧縮機11に吸入されて再び圧縮される。
(c)除霜モード
除霜モードは、暖房モード時に室外熱交換器16に着霜が生じていると判定されると開始される。このような着霜の判定は、様々な手法を採用できる。例えば、室外熱交換器温度センサによって検出された室外器温度Tsが予め定めた基準温度(例えば、0℃)以下となった際に、室外熱交換器16に着霜が生じていると判定してもよい。
除霜モードでは、空調制御装置が、開閉弁15を開き、室外熱交換器16の冷媒出口側とアキュムレータ19の冷媒入口側とを接続するように三方弁17の作動を制御する。さらに、空調制御装置が、室内蒸発器20通過後の送風空気の全風量が室内凝縮器12を迂回するようにエアミックスドア34を変位させる。
これにより、図1の二重線矢印に示すように、圧縮機11(→室内凝縮器12→バイパス通路14)→室外熱交換器16(→三方弁17)→アキュムレータ19→圧縮機11の順に冷媒が循環するホットガスサイクルが構成される。なお、除霜モードでは、エアミックスドア34の作用によって、送風空気が室内凝縮器12へ流入しないので、室内凝縮器12では冷媒は殆ど放熱しない。
従って、除霜モード時のヒートポンプサイクル10では、圧縮機11にて圧縮された高圧高温冷媒は、室外熱交換器16へ流入して放熱する。これにより、室外熱交換器16が加熱されて室外熱交換器16の除霜が実現される。室外熱交換器16から流出した冷媒は、三方弁17を介してアキュムレータ19へ流入する。アキュムレータ19にて気液分離された気相冷媒は、圧縮機11に吸入される。
本実施形態の車両用空調装置1では、以上の如く作動して、車室内の冷房、暖房を実現することができるとともに、室外熱交換器16に着霜が生じた際に室外熱交換器16を除霜することもできる。
さらに、本実施形態では、空調制御装置が図3に示す制御フローを、上述したメインルーチンのサブルーチンとして実行する。このサブルーチンでは、サイクル内を循環する冷媒の流量が圧縮機11の耐久寿命に悪影響を与えてしまう程度に不足する冷媒不足状態になっているか否かを判定し、冷媒不足状態になっていることが判定された際には、圧縮機11を停止させて、圧縮機11の保護を図っている。
図3に示すように、サブルーチンのステップS1では、タイマ等の初期化がなされる。具体的には、タイマ用のフラグであるTIMERを0とする。続くステップS2では、外気温Tamが予め定めた基準外気温KTam(本実施形態では2℃)より低くなっているか否かを判定する。
ステップS2にて、外気温Tamが基準外気温KTamより低くなっていないと判定された場合、すなわちTam≧KTamとなっている場合はステップS3へ進む。ステップS3では、吐出冷媒圧力Pdが予め定めた第1基準圧力KPdHより低くなっているか否かを判定する。この第1基準圧力KPdHは、基準外気温KTamにおける冷媒の飽和圧力よりも低い値に決定されている。さらに、本実施形態では、吐出冷媒圧力Pdが第1基準圧力KPdHより低くなっている場合に冷媒不足状態になっていると判定している。
なお、このステップS3で用いられる第1基準圧力KPdHについては、一旦、冷媒不足状態であることが検知された際には、制御ハンチング防止のためのヒステリシスとして、冷媒不足状態でなくなるまで、冷媒不足状態であることが検知される前よりも僅かに高い値を用いてもよい。
従って、ステップS3にて、吐出冷媒圧力Pdが第1基準圧力KPdHより低くなっていると判定された場合はステップS4へ進み、圧縮機11の作動を停止させてステップS1へ戻る。一方、ステップS3にて、吐出冷媒圧力Pdが第1基準圧力KPdHより低くなっていない、すなわちPd≧KPdHとなっている場合は、冷媒不足状態になっていないと判定してステップS5へ進む。
ステップS5では、メインルーチンにおける圧縮機11の作動を許可するとともに、冷媒不足状態になったことを示すフラグであるLEAKを0として、ステップS1へ戻る。なお、本実施形態では、LEAK=1の場合に冷媒不足状態になったことを示し、LEAK=0の場合に冷媒不足状態になっていないことを示している。つまり、本実施形態の空調制御装置は、ヒートポンプサイクル10が冷媒不足状態になっているか否かを記憶しておく冷媒不足記憶手段としての機能も果たしている。
また、ステップS2にて、外気温Tamが基準外気温KTamより低くなっていると判定された場合は、ステップS6へ進み、冷媒不足状態になっているか否かを判定する。具体的には、ステップS6では、LEAKが1になっているか否かを判定する。ステップS6にて、LEAK=1になっており、冷媒不足状態になっていることが判定された場合は、ステップS7へ進む。
ステップS7では、吐出冷媒圧力Pdが予め定めた第2基準圧力KPdLより低くなっているか否かを判定する。なお、本実施形態では、第2基準圧力KPdLとして、制御ステップS3にて説明した第1基準圧力KPdHと同じ値を採用している。もちろん、第1基準圧力KPdHおよび第2基準圧力KPdLは、車両用空調装置の使用環境に応じて異なる値を採用してもよい。
そして、ステップS7にて、吐出冷媒圧力Pdが第2基準圧力KPdLより低くなっていると判定された場合は、冷媒不足状態になっていると判定してステップS4へ進み、圧縮機11の作動を停止させてステップS1へ戻る。一方、ステップS7にて、吐出冷媒圧力Pdが第2基準圧力KPdLより低くなっていない、すなわちPd≧KPdLとなっている場合は、冷媒不足状態になっていないと判定してステップS5へ進む。
なお、このステップS7で用いられる第2基準圧力KPdLについては、ステップS3にて説明したように、制御ハンチング防止のために後述するステップS9にて用いられる第2基準圧力KPdLよりも僅かに高い値を用いてもよい。
また、ステップS6にて、LEAK=1になっておらず、冷媒不足状態になっていないと判定された場合は、ステップS8へ進み、圧縮機11を作動させる。次に、ステップS9にて、ステップS3と同様に、吐出冷媒圧力Pdが予め定めた基準圧力KPdより低くなっているか否かを判定する。
ステップS9にて、吐出冷媒圧力Pdが第2基準圧力KPdLより低くなっていない、すなわちPd≧KPdLとなっている場合は、冷媒不足状態になっていないと判定してステップS10へ進む。ステップS10では、TIMERを0としてステップS2へ戻る。一方、ステップS9にて、吐出冷媒圧力Pdが基準圧力KPdより低くなっていると判定された場合はステップS11へ進む。
ステップS11では、TIMERに1を加算する。続くステップS12では、TIMERが予め定めた基準カウントCより大きくなっているか否かを判定する。TIMERが基準カウントCより大きくなっていない場合にはステップS2へ戻り、TIMERが基準カウントCより大きくなっている場合には、ステップ13へ進み、LEAK=1としてステップS4へ進む。
以上の説明から明らかなように、制御ステップS2→S3では、外気温Tamが基準外気温KTamより高くなっている際には、高圧側冷媒圧力Pdが第1基準圧力KPdHより低くなっているときに冷媒不足状態であると判定している。
さらに、制御ステップS2→S6→S8〜S12では、外気温Tamが基準外気温KTamより低くなっている際には、圧縮機11を所定時間が経過するまで(具体的には、TIMERが基準カウントCより大きくなるまで)作動させた状態で高圧側冷媒圧力Pdが第2基準圧力KPdLより低くなっているときに冷媒不足状態であると判定している。
つまり、本実施形態の制御ステップS2、S3、S6、S8〜S12は特許請求の範囲に記載された冷媒不足判定手段を構成している。そして、冷媒不足判定手段を構成する各制御ステップ(S2…S12)によって冷媒不足状態が判定された際に、制御ステップS4にて圧縮機11を停止させて、冷凍機油の戻り量が減少することによって圧縮機11の耐久寿命に悪影響を与えてしまうことを抑制している。
さらに、本実施形態の冷媒不足判定手段は、外気温Tamが基準外気温KTamより低くなる低外気温時(具体的には0℃以下)でも、圧縮機11を作動させた状態で高圧側冷媒圧力Pdが第2基準圧力KPdL以下になっているときに冷媒不足状態であると判定する。従って、本実施形態のヒートポンプサイクル10では、高圧側冷媒圧力Pdが第2基準圧力KPdLより高くなっているときには、低外気温時であっても圧縮機11を作動させて送風空気を加熱することができる。
また、本実施形態のヒートポンプサイクル10では、外気温Tamが−10℃以上かつ0°以下になっている際に、送風機制御手段が送風ファン16aの送風能力を増加させるので、冷媒不足判定手段が冷媒不足状態を誤判定してしまうことを抑制できる。
このことをより詳細に説明すると、本発明者らの検討によれば、外気温Tamが−10℃〜0℃程度になると、室外熱交換器16に着霜が生じやすい。さらに、室外熱交換器16に着霜が生じると室外熱交換器16にて冷媒が冷却されてしまうので、冷媒不足判定手段が冷媒不足状態を誤判定してしまうおそれがある。
これに対して、本実施形態では、室外熱交換器16に着霜が生じやすい外気温Tamになった際に、送風ファン16aの送風能力を増加させて着霜を抑制することができるので、冷媒不足判定手段が冷媒不足状態を誤判定してしまうことを抑制できる。
また、本実施形態のヒートポンプサイクル10では、冷媒不足状態になっているか否かを記憶しておく冷媒不足記憶手段を備えており、さらに、制御ステップS6にて説明したように、冷媒不足記憶手段が冷媒不足状態になったこと記憶している際には、制御ステップS8へ進んで圧縮機11を作動させることがない。従って、冷媒不足状態になっている際に圧縮機11を作動させてしまうことを回避して、より一層効果的に、圧縮機11の保護を図ることができる。
換言すると、本実施形態のヒートポンプサイクル10は、
冷媒不足判定手段(S2…S12)によって冷媒不足状態であると判定されたことを記憶する冷媒不足記憶手段を備え、
冷媒不足判定手段(S2…S12)は、
外気温(Tam)が予め定めた基準外気温(KTam)より高くなっている際には、圧縮機(11)の吐出口から減圧手段(13)の入口へ至る高圧側冷媒圧力(Pd)が予め定めた第1基準圧力(KPdH)より低くなっているときに冷媒不足状態であると判定し、
さらに、外気温(Tam)が基準外気温(KTam)より低くなっており、かつ、冷媒不足記憶手段が冷媒不足状態であると判定されたことを記憶していない際には、圧縮機(11)を作動させた状態で高圧側冷媒圧力(Pd)が第2基準圧力(KPdL)より低くなっているときに冷媒不足状態であると判定するように構成されていると表現することもできる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(1)上述の実施形態では、外気温Tamが基準温度範囲内になっている際に、送風機制御手段が送風ファン16aの送風量(送風能力)を増加させる例を説明したが、さらに、送風機制御手段がサイクルの熱負荷の上昇に伴って送風ファン16aの送風量を増加させるようになっていてもよい。
ここで、サイクルの熱負荷が上昇すると、室外熱交換器16において冷媒が外気から吸熱する熱量を増加させるために、室外熱交換器16における冷媒蒸発温度を低下させる必要がある。従って、サイクルの熱負荷が上昇すると、室外熱交換器16に着霜が生じやすい。これに対して、サイクルの熱負荷の上昇に伴って送風ファン16aの送風量(送風能力)を増加させることで、室外熱交換器16の着霜を抑制することができるので、冷媒不足判定手段が冷媒不足状態を誤判定してしまうことを抑制できる。
さらに、具体的には、a.外気温Tamが予め定めた所定値以下の場合、b.送風空気温度TAVが予め定めた所定値以下の場合、c.内気温Trが予め定めた所定値以下の場合、d.送風機32の電動モータに出力されるブロワモータ電圧が予め定めた所定値以上の場合等にサイクルの熱負荷が高負荷になっているものと判定して送風ファン16aの送風量を増加させればよい。
もちろん、上記a〜dの全ての条件が成立した場合に、サイクルの熱負荷が高負荷になっていると判定してもよいし、a〜dのうち少なくとも1つが成立した場合に、サイクルの熱負荷が高負荷になっていると判定してもよい。
また、室外熱交換器16の着霜を抑制する手段は、外気温Tamが基準温度範囲内になっている際に、あるいは、サイクルの熱負荷が上昇した際に、送風ファン16aの送風量を増加させることに限定されない。例えば、室外熱交換器16に着霜が生じやすい運転条件となった際に、あるいは、着霜が生じ始めた際に、圧縮機11の回転数および送風機32の送風量のうち少なくとも一方を減少させるようにしてもよい。
より具体的には、送風機32の作動を制御するブロワ制御手段を備え、ブロワ制御手段が、送風空気の目標温度から室内凝縮器12にて加熱された送風空気の温度を減算した温度差が予め定めた所定温度差以上となっている際に、送風機32の送風能力を低下させるように構成されていてもよい。
これによれば、送風空気の風量は低下するものの、室内凝縮器12にて加熱された送風空気の温度を上昇させることができる。従って、圧縮機11の冷媒吐出能力を低下させて、室外熱交換器16の冷媒蒸発圧力を上昇させることができ、室外熱交換器16の着霜を抑制できる。
さらに、送風空気の目標温度として上述の実施形態で説明した目標吹出温度TAOを採用し、室内凝縮器12にて加熱された送風空気の温度として上述の実施形態で説明した送風空気温度TAVを採用してもよい。同様に、温度差が予め定めた所定温度差以上となっている際に、圧縮機制御手段が圧縮機11の冷媒吐出能力を低下させるように構成されていてもよい。
(2)上述の実施形態では、第1基準圧力KPdHおよび第2基準圧力KPdLとして固定値を採用した例を説明したが、KPdHおよびKPdLはこれに限定されない。例えば、KPdHおよびKPdLを外気温Tamに応じて変化する関数値としてもよい。その一例としては、外気温Tamが所定値よりも高い場合には、KPdL>KPdHとなるようにしておき、外気温Tamが所定値よりも低い場合には、KPdL<KPdHとなるように変化させてもよい。
(3)上述の実施形態では、冷房モード、暖房モードおよび除霜モードの冷媒回路を切替可能に構成されたヒートポンプサイクル10を説明したが、ヒートポンプサイクル10は、少なくとも加熱対象流体(送風空気)を加熱する運転モードでの冷媒回路にて運転可能に構成されたものであればよい。
(4)上述の実施形態では、圧縮機11として電動圧縮機を採用した例を説明したが、圧縮機11の形式はこれに限定されない。例えば、ベルトおよび電磁クラッチ等を介してエンジンから駆動力を得る圧縮機11を採用してもよい。
従って、本発明の車両用空調装置1の適用は電気自動車に限定されることなく、内燃機関(エンジン)および走行用電動モータの双方から走行用の駆動力を得て走行するハイブリッド車両や、内燃機関から走行用の駆動力を得て走行する通常の車両に適用することができる。
(5)上述の実施形態では、本発明のヒートポンプサイクル10を車両用空調装置に適用した例を説明したが、本発明のヒートポンプサイクル10の適用はこれに限定されない。例えば、据え置き型の空調装置に適用してもよい。さらに、加熱対象流体として水道水等を加熱する給湯機等に適用してもよい。
10 ヒートポンプサイクル
11 圧縮機
13 暖房用固定絞り
16 室外熱交換器

Claims (3)

  1. 冷媒を圧縮して吐出する圧縮機(11)と、
    前記圧縮機(11)から吐出された高圧冷媒と加熱対象流体とを熱交換させて前記加熱対象流体を加熱する加熱用熱交換器(12)と、
    前記加熱用熱交換器(12)から流出した冷媒を減圧させる減圧手段(13)と、
    前記減圧手段(13)にて減圧された低圧冷媒と外気とを熱交換させて前記低圧冷媒を蒸発させる室外熱交換器(16)と、
    サイクルを循環する冷媒流量が不足している冷媒不足状態であることを判定する冷媒不足判定手段(S2…S12)と、
    前記圧縮機(11)の作動を制御する圧縮機制御手段とを備え、
    前記冷媒不足判定手段(S2…S12)は、外気温(Tam)が予め定めた基準外気温(KTam)より高くなっている際には、前記圧縮機(11)の吐出口から前記減圧手段(13)の入口へ至る高圧側冷媒圧力(Pd)が予め定めた第1基準圧力(KPdH)より低くなっているときに前記冷媒不足状態であると判定し、さらに、前記外気温(Tam)が前記基準外気温(KTam)より低くなっている際には、前記圧縮機(11)を作動させた状態で前記高圧側冷媒圧力(Pd)が予め定めた第2基準圧力(KPdL)より低くなっているときに前記冷媒不足状態であると判定するように構成され、
    前記圧縮機制御手段は、前記冷媒不足判定手段(S2…S12)が前記冷媒不足状態であると判定した際に、前記圧縮機(11)の冷媒吐出能力を低下させるように構成されていることを特徴とするヒートポンプサイクル。
  2. さらに、前記室外熱交換器(16)へ向けて外気を送風する送風機(16a)と、
    前記送風機(16a)の作動を制御する送風機制御手段とを備え、
    前記送風機制御手段は、前記外気温(Tam)が予め定めた基準温度範囲内になっている際には、前記送風機(16a)の送風能力を増加させることを特徴とする請求項1に記載のヒートポンプサイクル。
  3. さらに、前記室外熱交換器(16)へ向けて外気を送風する送風機(16a)と、
    前記送風機(16a)の作動を制御する送風機制御手段とを備え、
    前記送風機制御手段は、サイクルの熱負荷の上昇に伴って前記送風機(16a)の送風能力を増加させることを特徴とする請求項1または2に記載のヒートポンプサイクル。
JP2012146058A 2012-06-28 2012-06-28 ヒートポンプサイクル Pending JP2014009869A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012146058A JP2014009869A (ja) 2012-06-28 2012-06-28 ヒートポンプサイクル
PCT/JP2013/003846 WO2014002441A1 (ja) 2012-06-28 2013-06-20 ヒートポンプサイクル
CN201380033880.6A CN104412050B (zh) 2012-06-28 2013-06-20 热泵循环系统
EP13810107.6A EP2869001B1 (en) 2012-06-28 2013-06-20 Heat pump cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012146058A JP2014009869A (ja) 2012-06-28 2012-06-28 ヒートポンプサイクル

Publications (2)

Publication Number Publication Date
JP2014009869A true JP2014009869A (ja) 2014-01-20
JP2014009869A5 JP2014009869A5 (ja) 2014-09-11

Family

ID=49782640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012146058A Pending JP2014009869A (ja) 2012-06-28 2012-06-28 ヒートポンプサイクル

Country Status (4)

Country Link
EP (1) EP2869001B1 (ja)
JP (1) JP2014009869A (ja)
CN (1) CN104412050B (ja)
WO (1) WO2014002441A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241070A (zh) * 2015-11-06 2016-01-13 珠海格力电器股份有限公司 空气能热水器缺氟保护控制方法、装置和空气能热水器
US10451327B2 (en) 2015-06-24 2019-10-22 Denso Corporation Refrigeration cycle device
CN113124537A (zh) * 2021-05-08 2021-07-16 珠海格力电器股份有限公司 空调器控制方法、装置、空调器和存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016067567A1 (ja) * 2014-10-31 2017-08-17 パナソニックIpマネジメント株式会社 空調制御装置および車両用空調装置、および空調制御装置の電磁弁故障判定方法
CN106016867A (zh) * 2016-04-28 2016-10-12 广东美的暖通设备有限公司 一种冷媒充注方法、冷媒充注系统及空调器
CN109564033B (zh) * 2016-08-25 2020-11-17 三菱电机株式会社 热泵装置
JP6269756B1 (ja) * 2016-09-02 2018-01-31 ダイキン工業株式会社 冷凍装置
JP6767841B2 (ja) 2016-10-14 2020-10-14 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN110940046B (zh) * 2018-09-21 2021-08-24 奥克斯空调股份有限公司 一种制冷剂泄漏的检测方法及空调器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267672U (ja) * 1975-11-14 1977-05-19
JPS61213565A (ja) * 1985-03-20 1986-09-22 株式会社デンソー 冷凍サイクルの圧力スイツチ
JPH053865U (ja) * 1991-07-03 1993-01-22 日本電子機器株式会社 空調装置
JPH06123529A (ja) * 1992-10-08 1994-05-06 Mitsubishi Heavy Ind Ltd 冷凍ユニットにおける冷媒の漏洩診断装置
JPH0796737A (ja) * 1993-09-28 1995-04-11 Nippondenso Co Ltd 自動車用空調装置
JPH0820234A (ja) * 1994-07-06 1996-01-23 Sanden Corp 空気調和装置
JP2002333186A (ja) * 1993-06-01 2002-11-22 Hitachi Ltd 空気調和機
JP2004245457A (ja) * 2003-02-12 2004-09-02 Japan Climate Systems Corp 車両用空調装置
JP2011017526A (ja) * 2009-06-12 2011-01-27 Daikin Industries Ltd 冷凍装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100529562C (zh) * 1993-06-01 2009-08-19 日立空调·家用电器株式会社 空调设备
JP3404990B2 (ja) * 1995-05-17 2003-05-12 日産自動車株式会社 車両用ヒートポンプ式冷暖房装置
US5918475A (en) * 1995-10-11 1999-07-06 Denso Corporation Air conditioning apparatus for vehicle, using a flammable refrigerant
JP2001012830A (ja) * 1999-06-29 2001-01-19 Denso Corp 冷凍サイクル装置
JP2004036985A (ja) * 2002-07-03 2004-02-05 Fujitsu General Ltd 冷媒回路の冷媒漏洩検出方法
JP2004360952A (ja) * 2003-06-03 2004-12-24 Sanyo Electric Co Ltd ヒートポンプ装置
CN1755341A (zh) * 2004-09-29 2006-04-05 乐金电子(天津)电器有限公司 空调器的冷媒泄漏检测装置及其方法
CN1782577A (zh) * 2004-11-29 2006-06-07 乐金电子(天津)电器有限公司 空调器的冷媒不足提示装置及其方法
JP4990702B2 (ja) * 2007-07-19 2012-08-01 シャープ株式会社 冷媒漏洩検出装置、空気調和機及び冷媒漏洩検出方法
KR101404105B1 (ko) * 2007-09-04 2014-06-05 엘지전자 주식회사 공기조화기
CN101813358B (zh) * 2009-02-20 2013-09-11 乐金电子(天津)电器有限公司 空调器及其运行状态检测方法
JP5446524B2 (ja) * 2009-07-08 2014-03-19 株式会社デンソー 車両用空調装置
JP2011140291A (ja) * 2010-01-11 2011-07-21 Denso Corp 車両用空調装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267672U (ja) * 1975-11-14 1977-05-19
JPS61213565A (ja) * 1985-03-20 1986-09-22 株式会社デンソー 冷凍サイクルの圧力スイツチ
JPH053865U (ja) * 1991-07-03 1993-01-22 日本電子機器株式会社 空調装置
JPH06123529A (ja) * 1992-10-08 1994-05-06 Mitsubishi Heavy Ind Ltd 冷凍ユニットにおける冷媒の漏洩診断装置
JP2002333186A (ja) * 1993-06-01 2002-11-22 Hitachi Ltd 空気調和機
JPH0796737A (ja) * 1993-09-28 1995-04-11 Nippondenso Co Ltd 自動車用空調装置
JPH0820234A (ja) * 1994-07-06 1996-01-23 Sanden Corp 空気調和装置
JP2004245457A (ja) * 2003-02-12 2004-09-02 Japan Climate Systems Corp 車両用空調装置
JP2011017526A (ja) * 2009-06-12 2011-01-27 Daikin Industries Ltd 冷凍装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10451327B2 (en) 2015-06-24 2019-10-22 Denso Corporation Refrigeration cycle device
CN105241070A (zh) * 2015-11-06 2016-01-13 珠海格力电器股份有限公司 空气能热水器缺氟保护控制方法、装置和空气能热水器
CN105241070B (zh) * 2015-11-06 2019-01-15 珠海格力电器股份有限公司 空气能热水器缺氟保护控制方法、装置和空气能热水器
CN113124537A (zh) * 2021-05-08 2021-07-16 珠海格力电器股份有限公司 空调器控制方法、装置、空调器和存储介质

Also Published As

Publication number Publication date
EP2869001A1 (en) 2015-05-06
EP2869001A4 (en) 2017-05-17
EP2869001B1 (en) 2018-03-14
WO2014002441A1 (ja) 2014-01-03
CN104412050B (zh) 2016-08-10
CN104412050A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2014002441A1 (ja) ヒートポンプサイクル
US10137758B2 (en) Vehicle air conditioner
JP6332560B2 (ja) 車両用空調装置
JP5532095B2 (ja) 車両用空調装置
JP5423181B2 (ja) 車両用空調装置
JP5445569B2 (ja) 車両用空調装置
JP2011140291A (ja) 車両用空調装置
CN113423596B (zh) 制冷循环装置
JP2014160594A (ja) 冷却システム
JP5935625B2 (ja) 冷凍サイクル制御装置
JP2018091536A (ja) 冷凍サイクル装置
JP2011005980A (ja) 車両用空調装置
JP2014104889A (ja) 車両用空調装置
JP5895787B2 (ja) 車両用空調装置
JP6544287B2 (ja) 空調装置
JP6024305B2 (ja) 車両用空調装置
JP5892018B2 (ja) 車両用空調装置
JP6540881B2 (ja) 車両用空調装置を制御する空調制御装置
JP5888126B2 (ja) 車両用空調装置
JP2016008792A (ja) ヒートポンプサイクル装置
JP2014054932A (ja) 車両用空調装置
JP2014000905A (ja) ヒートポンプサイクル
JP6897185B2 (ja) 空調装置
JP2013252795A (ja) 車両用空調装置
JP2005212652A (ja) 車両用冷凍サイクル

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170110