JP2013251671A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2013251671A
JP2013251671A JP2012124110A JP2012124110A JP2013251671A JP 2013251671 A JP2013251671 A JP 2013251671A JP 2012124110 A JP2012124110 A JP 2012124110A JP 2012124110 A JP2012124110 A JP 2012124110A JP 2013251671 A JP2013251671 A JP 2013251671A
Authority
JP
Japan
Prior art keywords
voltage
signal line
transistor
semiconductor device
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012124110A
Other languages
English (en)
Other versions
JP5863183B2 (ja
Inventor
Yutaka Hayashi
豊 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2012124110A priority Critical patent/JP5863183B2/ja
Priority to US13/893,436 priority patent/US8975940B2/en
Publication of JP2013251671A publication Critical patent/JP2013251671A/ja
Priority to US14/612,365 priority patent/US20150145583A1/en
Application granted granted Critical
Publication of JP5863183B2 publication Critical patent/JP5863183B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/013Modifications of generator to prevent operation by noise or interference
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/08104Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L5/00Automatic control of voltage, current, or power

Abstract

【課題】半導体装置のノイズ耐性を高める。
【解決手段】本半導体装置(10(20))は、第1外部端子(LDD、(HDD、VREG、VCC))に接続される第1信号線(L_LD(L_HD))と第2外部端子(LDS(GND、VSS))に接続される第2信号線(L_LS(L_LGND))との間に設けられ、ゲート電極が第3信号線(L_LG(L_EG))に接続されるパワートランジスタ(DMNL(DMNE))を有する。本半導体装置は更に第1信号線と第3信号線との間の電圧をクランプするクランプ回路(144)と、第3信号線と第2信号線との間に設けられた第1抵抗素子(R1)と、第3信号線と第2信号線との間の電圧を監視する監視部(143)とを有する。クランプ回路は、クランプ電圧が変更可能に構成され、監視部は、第3信号線と第2信号線との間の電圧が所定の閾値を超えたら、クランプ電圧が小さくなるように制御する。
【選択図】図4

Description

本発明は、高耐圧が要求される半導体装置に関し、特に出力段に高耐圧のトランジスタを備える半導体装置に適用して有効な技術に関する。
自動車用のECU(Electrical Control Unit)に搭載される負荷駆動回路等の高耐圧が要求される半導体装置には、高いノイズ耐性が要求される。例えば、自動車のエアバックシステムにおける、エアバックの点火装置(スクイブ)を駆動するためのパワートランジスタを備えるローサイドドライバは、絶対最大定格電圧(例えば30V程度)以下では正常動作が要求され、それを超えるような電圧では、パワートランジスタの破壊や誤動作等が起こらないように保護しなければならない。例えば、上記のローサイドドライバは、ハーネス(信号線)によってスクイブと接続されるが、自動車の内部に存在する他のハーネスとの間の相互インダクタンス成分により、ローサイドドライバに接続されるハーネスに誘導性電流ノイズが印加され、素子耐圧を超えるような大きな電圧が、ローサイドドライバの出力端子に印加される虞がある。そこで、ローサイドドライバの出力端子に容量やツェナーダイオードなどの外部保護デバイスを接続するとともに、ローサイドドライバ自身で電流ノイズを吸収する動作(アクティブクランプ動作)を行うための機構を内蔵することで、誘導性電流ノイズ等に起因するパワートランジスタの破壊や誤動作等を防止している。具体的には、特許文献1に開示されているように、出力段のパワートランジスタのゲート・ドレイン間にアクティブクランプ回路を設け、大きな誘導性電流ノイズの印加により、絶対最大定格を超えるような電圧が出力端子に印加されたら、パワートランジスタのゲート電圧を持ち上げてパワートランジスタをオンさせることで誘導性電流ノイズを吸収する。更に、出力端子に接続された外部保護デバイスによって、パワートランジスタの吸収能力を超える電流ノイズエネルギーを吸収することで、出力端子の電圧がパワートランジスタの耐圧を超えないようにしている。
アクティブクランプ動作中、ローサイドドライバの出力端子の電圧は、パワートランジスタのゲート・ソース間の電圧VGSとクランプ回路のクランプ電圧によって決まり、ドレイン電流の増加に伴い増加する。そして、ローサイドドライバの出力端子の電圧がパワートランジスタの耐圧Bvdsに達すると、パワートランジスタが破壊される。また、電流ノイズの印加時間が長くなるほど電力が大きくなるため、パワートランジスタの電流能力が小さい(トランジスタサイズが小さい)ほど、耐圧は下がる。したがって、これらの特性を考慮し、パワートランジスタを設計する必要がある。
特開2008−35067号公報
ローサイドドライバは、出力端子の電圧が絶対最大定格以内ではパワートランジスタは意図しないオン動作をしてはならない。そのため、アクティブクランプ動作は、ローサイドドライバの出力端子の電圧(パワートランジスタのドレイン・ソース間電圧VDS)が絶対最大定格以上であってパワートランジスタの耐圧Bvdsより低い電圧範囲で開始されなければならない。したがって、アクティブクランプ動作が開始される電圧が上記の電圧範囲内となるように、クランプ回路のクランプ電圧を決定する必要がある。特許文献1に示されるような回路構成の場合、クランプ電圧が大きい程、所定のドレイン・ソース間電圧VDSにおけるゲート・ソース間電圧は小さくなる。そのため、アクティブクランプ動作時のパワートランジスタの電流吸収能力を高めるためには、パワートランジスタのトランジスタサイズを大きくする必要があり、チップコストの増大を招いていた。また、ローサイドドライバのノイズ耐性を高める別の方法として、外部保護デバイスの電流吸収能力を高める方法もあるが、そのためには、出力端子に接続する外部容量のサイズを大きくしたり、破壊耐圧や許容電流に合わせたツェナーダイオードを更に出力端子に接続したりする必要があり、上記と同様にコストの増大を招く。このようなノイズ耐性の向上とコストの増大は、高耐圧が要求される半導体装置のESD保護素子についても同様に問題となっている。
このような課題を解決するための手段等を以下に説明するが、その他の課題と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
本願において開示される実施の形態のうち代表的なものの概要を簡単に説明すれば下記のとおりである。
すなわち、本半導体装置は、第1外部端子に接続される第1信号線と第2外部端子に接続される第2信号線との間に設けられ、ゲート電極が第3信号線に接続されるパワートランジスタと、第1信号線と第3信号線との間の電圧をクランプするクランプ回路と、第3信号線と第2信号線との間に設けられた第1抵抗素子と、第3信号線と第2信号線との間の電圧を監視する監視部とを有する。前記クランプ回路は、クランプ電圧が変更可能に構成され、前記監視部は、第3信号線と第2信号線との間の電圧が所定の閾値を超えたら、前記クランプ電圧が小さくなるように制御する。
本願において開示される実施の形態のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。
すなわち、これによれば、コストの増大を抑えつつ、半導体装置のノイズ耐性を高めることができる。
図1は、本願の一実施の形態に係る半導体装置を例示するブロック図である。 図2は、スクイブドライバ回路10の出力段における詳細な接続関係を例示する説明図である。 図3は、ハーネスを介して誘導性電流ノイズが印加された場合の電流経路を例示する説明図である。 図4は、ローサイドドライバ回路14の内部構成を例示する回路図である。 図5は、破壊耐圧Bvds及び絶対最大定格電圧Avdsと過電圧に係る検出閾値電圧VDTとの関係を例示する説明図である。 図6は、ローサイドドライバ回路14のアクティブクランプ動作における動作負荷線を例示する説明図である。 図7は、逆極性の誘導性電流ノイズが印加された場合の電流経路を例示する説明図である 図8は、ESD保護回路16の内部構成を例示する回路図である。 図9は、高電圧電源から電圧を生成するレギュレータ回路を備える半導体装置を例示する説明図である。
1.実施の形態の概要
先ず、本願において開示される代表的な実施の形態について概要を説明する。代表的な実施の形態についての概要説明で括弧を付して参照する図面中の参照符号はそれが付された構成要素の概念に含まれるものを例示するに過ぎない。
〔1〕(パワートランジスタのゲート電圧に応じてアクティブクランプ時のクランプ電圧を小さくする半導体装置)
本願の代表的な実施の形態に係る半導体装置(10(20))は、第1外部端子(LDD、(HDD、VREG、VCC))に接続される第1信号線(L_LD(L_HD))と、第2外部端子(LDS(GND、VSS))に接続される第2信号線(L_LS(L_LGND))と、第3信号線(L_LG(L_EG))と、を有する。また本半導体装置は、前記第1信号線と前記第2信号線との間に設けられ、ゲート電極が前記第3信号線に接続されるパワートランジスタ(DMNL(DMNE))を有する。前記半導体装置は更に、前記第1信号線と前記第3信号線との間に設けられ、前記第1信号線と前記第3信号線との間の電圧をクランプするクランプ回路(144)と、前記第3信号線と前記第2信号線との間に設けられた第1抵抗素子(R1)と、前記パワートランジスタのゲート電圧を監視する監視部(143)と、を有する。前記クランプ回路は、クランプ電圧が変更可能に構成され、前記監視部は、前記ゲート電圧が所定の閾値を超えたら、前記クランプ回路のクランプ電圧が小さくなるように制御する。
これによれば、アクティブクランプ動作開始後に前記パワートランジスタのゲート電圧をより高くすることができるから、アクティブクランプ動作中のパワートランジスタの電流吸収能力を高めることができる。これにより、パワートランジスタのトランジスタサイズを大きくしたり、前記第1外部端子に接続する外部容量等の外部保護デバイスを大きくしたりすることなく、半導体装置のノイズ耐性を高めることができる。
〔2〕(一部のダイオードと並列に電流経路を形成することでクランプ電圧を小さくする)
項1の半導体装置において、前記クランプ回路は、直列接続された複数のダイオード(ZD1〜ZD5)を含んで構成され、前記監視部は、前記複数のダイオードのうち一部のダイオード(ZD1)に並列に電流経路を形成させることにより、前記クランプ回路のクランプ電圧を小さくする。
これによれば、クランプ電圧が小さくなるように制御することが容易となる。
〔3〕(一部のダイオードの両端に設けたスイッチを制御する)
項2の半導体装置において、前記クランプ回路は、前記一部のダイオードの両端に接続されたスイッチ素子(DMP1)を更に有し、前記監視部は、前記スイッチ素子をオンさせることで前記電流経路を形成させる。
これによれば、前記一部のダイオードに並列に電流経路を形成することが容易となる。
〔4〕(ツェナーダイオード)
項1乃至3の何れかの半導体装置において、前記複数のダイオードは、ツェナーダイオードを含む。
〔5〕(ゲート電圧検出回路の構成)
項3又は4の半導体装置において、前記監視部は、ゲート電極が前記第3信号線に接続される第1トランジスタ(DMN1)と、一端が前記第1トランジスタのソース電極に接続され、他端が前記第2信号線に接続され、入力された電流に応じて両端に電圧を発生させる電圧生成部(146)とを有する。前記監視部は、更に、一端が前記第1トランジスタのドレイン電極と前記第1信号線との間に設けられた負荷素子(R3)を有する。前記スイッチ素子は、前記負荷素子の両端の電位差に応じてオン・オフが制御される。
これによれば、前記スイッチ素子のオン・オフを容易に制御することができる。また、上記構成によれば、前記電圧生成部によって発生する電圧に基づいて前記所定の閾値が決定されるので、前記所定の閾値の調整が容易となる。
〔6〕(ローサイドドライバと検出用トランジスタは同一種類のトランジスタ)
項5の半導体装置において、前記パワートランジスタと前記第1トランジスタは、同一種類のトランジスタ(DMOS)である。
これによれば、前記パワートランジスタの特性と前記第1トランジスタの特性が、バラつきや温度変動等において同じような傾向となるので、前記所定の閾値の調整が容易となる。
〔7〕(DMOS)
項1乃至6の何れかの半導体装置において、前記パワートランジスタは、DMOSトランジスタである。
〔8〕(ゲート駆動回路:ローサイドドライバ)
項1乃至8の何れかの半導体装置(140)において、前記パワートランジスタのオン・オフを指示する制御信号(SL)に応じて、前記第3信号線に前記パワートランジスタを駆動するための駆動電圧を出力する駆動電圧生成部(141)を更に有する。
これによれば、前記パワートランジスタを負荷駆動素子とするドライバ回路(例えばローサイドドライバ)においても、高いノイズ耐性を実現することができる。
〔9〕(絶対最大定格)
項8の半導体装置において、前記監視部は、前記クランプ回路の前記クランプ電圧を、第1電圧(VCLMP1)から前記第1電圧よりも小さい第2電圧(VCLMP2)に切り替えることで、クランプ電圧が小さくなるように制御する。前記第2電圧は、切り替えた後の前記第1信号線と前記第2信号線との間の電圧が前記パワートランジスタの絶対最大定格よりも大きくなるように調整された電圧である。
これによれば、絶対最大定格電圧以下での半導体装置の動作を保証しつつ、アクティブクランプ動作時の電流吸収能力を高めることができる。
〔10〕(過電圧検出を行うローサイドドライバ)
項8又は9の半導体装置において、前記第1信号線と前記第2信号線との間の電圧が所定の電圧値を超えたことを検出したら検出信号(SD)を活性化させる過電圧検出部(142)を更に有し、前記駆動電圧生成部は、前記検出信号が活性化されたら前記駆動電圧の出力を停止する。
これによれば、前記パワートランジスタが前記駆動電圧によって駆動されている制御状態であっても、それを停止させて、確実にアクティブクランプ動作に移行させることができる。
〔11〕(コントロール部:負荷駆動装置)
項8乃至10の何れかの半導体装置(10)において、外部から入力された信号に基づいて、前記制御信号を生成する制御部(15)を更に有する。
〔12〕(電源間のESD保護素子)
項1乃至7の何れかの半導体装置(16、16_2)において、前記第1外部端子は、第1電源電圧(VDDH)の供給を受ける電源端子(HDD、VCC)であり、前記第2外部端子は、前記第1電源電圧より低い第2電源電圧(グラウンド電圧)の供給を受ける電源端子(GND、VSS)である。
これによれば、電源端子間のESD保護素子として、より高いESD耐性を実現することができる。
〔13〕(I/O端子のESD保護素子)
項1乃至7の何れかの半導体装置(16_1)において、前記第1外部端子は、信号を入力又は出力するための信号端子(VREG)であり、前記第2外部端子は、前記信号端子に供給される電圧よりも低い電源電圧(グラウンド電圧)の供給を受ける電源端子(VSS)である。
これによれば、前記信号端子と電源端子との間のESD保護素子として、より高いESD耐性を実現することができる。
2.実施の形態の詳細
実施の形態について更に詳述する。
≪実施の形態1≫
図1は、本願の一実施の形態に係る半導体装置を例示するブロック図である。同図に示されるシステムU1は、例えば自動車の制御システムの一部であって、自動車における運転席のエアバックや助手席のエアバック等の作動を制御するエアバック制御システムである。
エアバック制御システム(SYS_AIRBAG)U1は、例えば、ECU(Electronic control unit)1、センサ部(SNSR)2、及びエアバックユニット(AIRBAG_UNT)3から構成される。センサ部2は、例えば車両への衝撃を検出するトリガセンサや加速度センサ等を含んで構成されるセンサ群である。センサ部2から出力される検出信号は、特に制限されないが、図示されないフィルタ回路等を介してECU1に入力される。エアバックユニット3は、エアバック31とエアバックを展開させるための点火装置(スクイブ)30等から構成される。
ECU1は、センサ部2からの検出信号を受けてエアバックユニット3の作動を制御するため制御装置である。ECU1は、例えば、マイクロコントローラ(MPU)11とスクイブドライバ回路10を含んで構成された半導体装置である。マイクロコントローラ11とスクイブドライバ回路10とは、特に制限されないが、別個の半導体チップに構成される。例えば、マイクロコントローラ11は、例えば公知のCMOS集積回路の製造技術によって1個の単結晶シリコンのような半導体基板に形成された半導体集積回路であり、スクイブドライバ回路10は、例えば、公知のBiC−DMOSプロセスの製造技術によって1個の単結晶シリコンのような半導体基板に形成された半導体集積回路である。
マイクロコントローラ11は、センサ部2から出力された検出信号に基づいて各種の演算処理を行い、演算結果に基づいて生成した制御信号を出力する。スクイブドライバ回路10は、マイクロコントローラ11から出力された制御信号とセンサ部2からの検出信号とを入力し、エアバックユニット3の作動を制御する。具体的には、スクイブドライバ回路10は、マイクロコントローラ11からの制御信号とセンサ部2からの検出信号とに応じて、エアバックユニット3におけるスクイブ30に電流を流すことによりエアバック31を展開させる。
スクイブドライバ回路10は、例えば、制御信号生成部(CNT_GEN)15、ドライバ部(DR_CIR)12、及び複数の外部接続端子から構成される。図1には、外部接続端子として、端子HDD、端子HDS、端子LDD、端子LDS、及び端子GNDが代表的に図示されている。
ドライバ部12は、例えば、ハイサイドドライバ回路(H_DRVR)13及びローサイドドライバ回路(L_DRVR)14から構成される。ハイサイドドライバ回路13は、スクイブ点火用電源VDDHとスクイブ30のハイ(Hi)側の端子との間に電流経路を形成するためのドライバ回路である。ローサイドドライバ回路14は、スクイブ30のロー(Low)側の端子と接地電位(グラウンドノード)との間に電流経路を形成するためのドライバ回路である。制御信号生成部15は、マイクロコントローラ11からの制御信号とセンサ部2からの検出信号とに応じて、ハイサイドドライバ回路13を制御するための制御信号SHと、ローサイドドライバ回路14を制御するための制御信号SLと、を生成して出力する。
図2は、スクイブドライバ回路10の出力段における詳細な接続関係を例示する説明図である。
スクイブドライバ回路10内部の接続関係は以下である。
端子HDDは信号線L_HDに接続され、端子HDSは信号線L_HSに接続され、端子LDDは信号線L_LDに接続され、端子LDSは信号線L_LSに接続され、端子GNDは信号線L_LGNDに接続される。信号線L_HDと信号線L_LGNDとの間にはESD保護回路(ESD_CIR)16が接続され、信号線L_HSと信号線L_LGNDとの間にはESD保護ダイオード17が接続される。
信号線L_LDと信号線L_LSとの間には、ローサイドドライバ回路14が接続される。ローサイドドライバ回路14は、例えば、出力段のパワートランジスタDMNLと、パワートランジスタDMNLを駆動するためのプリドライバ回路140とから構成される。出力段のパワートランジスタDMNLは、例えばDMOS(Double−Diffused MOSFET)トランジスタであり、高耐圧のトランジスタである。パワートランジスタDMNLのドレインは信号線L_LDに接続され、ソースは信号線L_LSに接続される。プリドライバ回路140は、制御信号生成部15から出力された制御信号SLに基づいて生成した駆動電圧をパワートランジスタDMNLのゲートに供給することで、パワートランジスタDMNLのオン・オフを制御する。
信号線L_HDと信号線L_HSとの間には、ハイサイドドライバ回路13が接続される。ハイサイドドライバ回路13は、例えば、出力段のパワートランジスタDMNHと、パワートランジスタDMNHを駆動するためのプリドライバ回路130とから構成される。出力段のパワートランジスタDMNHは、上記ローサイドドライバ回路14のパワートランジスタDMNLと同様に、例えば高耐圧のDMOSトランジスタである。パワートランジスタDMNHのドレインは信号線L_HDに接続され、ソースは信号線L_HSに接続される。プリドライバ回路130は、制御信号生成部15から出力された制御信号SHに基づいて駆動電圧を生成し、パワートランジスタDMNHのゲートに供給することで、パワートランジスタDMNHのオン・オフを制御する。
スクイブドライバ回路10の外部における接続関係は以下である。
端子HDDは、信号線を介してスクイブ点火用電源VDDHに接続される。スクイブ点火用電源VDDHは、特に制限されないが、例えば23V程度の電圧である。また端子HDDには、ノイズを吸収するための外部保護デバイスとして、例えば、外部容量Cext1及び外部ツェナーダイオードZext1が接続される。端子HDSは、ハーネス32_1を介してスクイブ30の一端に接続される。また、端子HDSには、ノイズを吸収するための外部保護デバイスとして、例えば、外部容量Cext3が接続される。端子LDDは、ハーネス32_2を介してスクイブ30の他端に接続される。また、端子LDDには、ノイズを吸収するための外部保護デバイスとして、例えば、外部容量Cext2及び外部ツェナーダイオードZext2が接続される。端子LDSは、信号線を介してグラウンドノードに接続される。同様に端子GNDも信号線を介してグラウンドノードに接続される。
上記のようにスクイブドライバ回路10は、ハーネス32_1、32_2によってスクイブ30と電気的に接続される。前述したように、自動車の内部にはその他複数のハーネスが存在している。そのため、大きなノイズ成分を持つ他のハーネスがスクイブドライバ回路10に接続されるハーネス32_1、32_2の近傍に存在する場合、ハーネス間の相互インダクタンス成分により、ハーネス32_1、32_2に大きな誘導性電流ノイズが印加される可能性がある。このような誘導性電流ノイズが印加されたときに、誘導性電流を流すことができる電流経路が存在しない、又はその電流経路のインピーダンスが高いと、スクイブドライバ回路10の素子耐圧を超えるような大きな電圧がスクイブドライバ回路10の端子間に印加され、スクイブドライバ回路10の特性劣化や破壊が起こる虞がある。そこで、スクイブドライバ回路10では、上記のように、ESD保護回路16やESD保護ダイオード17等を内部に備えるとともに、ローサイドドライバ回路14自身で電流ノイズを吸収する動作(アクティブクランプ動作)を行うことで、電流ノイズを吸収する。
図3は、ハーネスを介して誘導性電流ノイズが印加された場合の電流経路を例示する説明図である。同図には、ローサイドドライバ回路14の出力となる端子LDDに正の誘導性電流Inpが印加される場合が例示される。また、同図には、ハーネス間の相互インダクタンスに起因する誘導性電流Inpを発生させる機構が、ノイズ源50として模式的に図示される。
同図に示されるように、端子LDDに正の誘導性電流Inpが印加された場合、接地された端子GNDからESD保護ダイオード17を介して端子HDSから出力される電流と、外部保護デバイス(外部容量Cext3)から供給される電流とが合わさり、電流Inpとしてスクイブ30に入力される。そして、スクイブ30を通った電流Inpは、一部が外部保護デバイス(外部容量Cext2、外部ツェナーダイオードZext2)に吸収され、残りが端子LDDに入力される。端子LDDに入力された電流は、ローサイドドライバ回路14のアクティブクランプ動作によりパワートランジスタDMNLに流れ込み、端子LDSを介してグラウンドノードに吸収される。これにより、スクイブドライバ回路10の端子間(主に、端子LDDと端子LDSとの間)に素子耐圧を超えるような電圧印加が起こらないようにしている。以下、アクティブクランプ動作を行うローサイドドライバ回路14について、詳細に説明する。
図4は、ローサイドドライバ回路14の内部構成を例示する回路図である。
前述したように、ローサイドドライバ回路14は、出力段のパワートランジスタDMNLとプリドライバ回路140とから構成される。同図に示されるように、プリドライバ回路140は、例えば、ゲート駆動回路141、過電圧検出回路142、ゲート電圧監視回路143、クランプ回路144、及びプルダウン回路145から構成される。
ゲート駆動回路141は、制御信号生成部15から出力された制御信号SLに応じたゲート駆動電圧を生成してパワートランジスタDMNLのゲート端子に供給する。具体的には、ゲート駆動回路141は、例えば、Pチャネル型のMOSトランジスタMP1と、Nチャネル型のMOSトランジスタMN1と、スイッチ素子SW1、SW2とから構成される。スイッチ素子SW2の一端は電源電圧が供給されるノードに接続され、他端はMOSトランジスタMP1のソースに接続される。スイッチ素子SW1の一端はグラウンドノードに接続され、他端はMOSトランジスタMN1のソースに接続される。MOSトランジスタMN1のゲートはMOSトランジスタMP1のゲートに共通に接続され、制御信号SLを受ける。MOSトラジスタMN1のドレインとMOSトランジスタMP1のドレインとは、信号線L_LGに共通に接続される。例えば、スイッチSW1、SW2がオンしている場合、ゲート駆動回路141は、制御信号SLの論理値に応じたゲート駆動電圧を信号線L_LGに供給する。他方、スイッチSW1、SW2がオフしている場合、ゲート駆動回路141の出力はハイインピーダンス状態となり、信号線L_LGにゲート駆動電圧は供給されない。詳細は後述するが、スイッチ素子SW1、SW2のオン・オフは、過電圧検出回路142から出力される検出信号SDの活性・非活性状態に応じて切り替わる。
プルダウン回路145は、パワートランジスタDMNLのゲート・ソース間に接続され、ゲートの電荷を放電する機能を備える。プルダウン回路145は、例えば、信号線L_LGと信号線L_LSとの間に接続された抵抗素子R1から構成され、ローサイドドライバ回路14に電源や制御信号SLが供給されていない状態でも、パワートランジスタDMNLを静的にオフさせる。
クランプ回路144は、信号線L_LDと信号線L_LGとの間の電圧(パワートランジスタDMNLのドレイン・ゲート間の電圧)をクランプする。クランプ回路14は、例えば、パワートランジスタDMNLのドレイン・ゲート間に直列接続された複数のツェナーダイオードZD1〜ZDn(nは2以上の整数)と、P型のDMOSトランジスタDMP1とから構成される。直列接続されるツェナーダイオードZD1〜ZDnの個数は、設定したいクランプ電圧の値に応じて調整可能である。同図では、5つのツェナーダイオードZD1〜ZD5が直列接続される場合が例示されている。
クランプ回路144は、クランプ電圧が変更可能に構成される。具体的には、複数のツェナーダイオードZD1〜ZD5のうち一部のツェナーダイオードと並列に電流経路を形成することにより、クランプ電圧を調整する。例えば、ツェナーダイオードZD1と並列にトランジスタDMP1を接続し、トランジスタDMP1をオンさせることにより、クランプ回路144のクランプ電圧が、5つのツェナーダイオードZD1〜ZD5のツェナー電圧で決定される電圧VCLMP1から、4つのツェナーダイオードZD2〜ZD5のツェナー電圧で決定される電圧VCLMP2(<VCLMP1)に切り替わる。トランジスタDMP1は、特に制限されないが、P型のDMOSトランジスタである。
過電圧検出回路142は、クランプ回路144を介して信号線L_LDと信号線L_LSとの間の電圧(端子LDDの電圧)を監視し、その電圧が検出閾値電圧VDTを超えたら、検出信号SDを活性化することで、ゲート駆動回路141によるゲート駆動電圧の出力を停止させる。具体的には、過電圧検出回路142は、電圧検出用の抵抗素子R4、R5と、スイッチ制御回路147とから構成される。例えば、抵抗素子R4の一端はクランプ回路144におけるツェナーダイオードZD1〜ZD5の直列接続された何れかのノードに接続される。特に制限されないが、同図では、抵抗素子R4の一端が、ツェナーダイオードZD4とツェナーダイオードZD5とが接続されるノードに接続される場合が例示される。また、抵抗素子R4の他端は抵抗素子R5の一端に接続され、抵抗素子R5の他端は信号線L_LS(グラウンドノード)に接続される。スイッチ制御回路147は、抵抗素子R4と抵抗素子R5が接続されるノードの電圧に基づいて、端子LDDの電圧が検出閾値電圧VDTを超えているか否かを判別し、判別結果に応じてゲート駆動回路141におけるスイッチ素子SW1、SW2のオン・オフを制御する。例えば、端子LDDの電圧が検出閾値電圧VDTを超えていないと判別した場合には、スイッチ制御回路147は、検出信号SDを非活性化させることでスイッチSW1、SW2をオンさせ、端子LDDの電圧が検出閾値電圧VDTを超えていると判別した場合には、検出信号SDを活性化させることでスイッチSW1、SW2をオフさせる。これにより、パワートランジスタDMNLがゲート駆動回路141によって駆動されている状態であっても、それを停止させて、確実にパワートランジスタDMNLをアクティブクランプ動作に移行させることができる。
過電圧検出に係る検出閾値電圧VDTは、パワートランジスタDMNLの破壊耐圧Bvdsの特性と、パワートランジスタDMNLの絶対最大定格電圧Avdsを考慮して決定する。
図5は、パワートランジスタDMNLの破壊耐圧Bvds及び絶対最大定格電圧Avdsと、過電圧に係る検出閾値電圧VDTとの関係を例示する説明図である。同図には、パワートランジスタDMNLのゲート・ソース間電圧VGSを0V、2V、4V、8Vにしたときの夫々のId−Vds特性501〜504が例示される。また、パワートランジスタDMNLのドレイン・ソース間の破壊耐圧Bvdsの特性が参照符号500で示される。更に、同図には、パワートランジスタDMNLのドレイン・ソース間の絶対最大定格電圧Avdsと、過電圧に係る検出閾値電圧VDTが示される。
図5の参照符号500に示されるように、パワートランジスタDMNLの破壊耐圧Bvdsは、ゲート・ソース間電圧VGSによって変化し、ゲート電圧が高くなるほど低くなる特性となる。これは、ドレイン・ソース間電圧vdsが真の破壊耐圧に達する前に、寄生NPNが動作することにより、ドレイン電流idが増加することで破壊し易くなるからである。
スクイブドライバ回路10の動作を保証するため、絶対最大定格電圧Avdsよりも低い電圧範囲ではアクティブクランプ動作が開始されてはならない。そのため、ローサイドドライバ回路14のアクティブクランプ動作の開始を決定する電圧となる過電圧に係る検出閾値電圧VDT(クランプ電圧)は、絶対最大定格電圧Avdsよりも高い電圧値とされる。また、アクティブクランプ動作は、パワートランジスタDMNLのドレイン・ソース間電圧vdsが破壊耐圧Bvdsに達する前に開始されなければならないので、検出閾値電圧VDT(クランプ電圧)は、破壊耐圧BVdsの特性500よりも低い電圧範囲の電圧値とされる。したがって、図5に示されるように、過電圧に係る検出閾値電圧VDT(クランプ電圧)は、パワートランジスタDMNLのドレイン・ソース間の絶対最大定格電圧Avdsよりも大きく、パワートランジスタDMNLのドレイン・ソース間の破壊耐圧Bvdsよりも小さい電圧とされる。過電圧に係る検出閾値電圧VDTは、主にクランプ回路144のクランプ電圧で決定されるため、クランプ回路144におけるツェナーダイオードZD1〜ZD4の段数を調整することにより、検出閾値電圧VDTを調整することができる。
ゲート電圧監視回路143は、出力段のパワートランジスタDMNLのゲート電圧を監視し、ゲート電圧の大きさに応じてクランプ回路144のクランプ電圧を調整する。具体的には、ゲート電圧監視回路143は、出力段のパワートランジスタDMNLのゲート電圧(信号線L_LGと信号線L_LSとの間の電圧)が所定のゲート検出閾値電圧VGTを超えたら、クランプ回路144におけるトランジスタDMP1をオンさせ、クランプ電圧が小さくなるように調整する。ゲート電圧監視回路143は、例えば、トランジスタDMN1と、閾値調整回路146と、抵抗素子R3とから構成される。閾値調整回路146の一端はトランジスタDMN1のソースに接続され、他端は信号線L_LS(グラウンドノード)に接続される。抵抗素子R3の一端は信号線L_LD(トランジスタDMP1のソース)に接続され、他端はトランジスタDMN1のドレインに接続されるとともに、トランジスタDMP1のゲートに接続される。また、トランジスタDMN1のゲートは信号線L_LGに接続される。
閾値調整回路146は、例えば、抵抗素子R2とダイオードD1、D2とが直列接続されて構成される。パワートランジスタDMNLのゲート電圧が上昇し、トランジスタDMN1がオンすると、抵抗素子R3に電流が流れて抵抗素子R3の両端に電圧降下が発生し、クランプ回路144のトランジスタDMP1がオンする。これにより、クランプ電圧を小さくするように制御する。クランプ電圧を切り替えるためのゲート検出閾値電圧VGTは、トランジスタDMN1のスレッショルド電圧Vthと、閾値調整回路146の両端の電圧によって決定される。閾値調整回路146によれば、抵抗素子R3の抵抗値やダイオードD1、D2の段数を調整することにより、ゲート検出閾値電圧VGTを所望の値に容易に設定することができる。
トランジスタDMN1は、特に制限されないが、出力段のパワートランジスタDMNLと同一種類のトランジスタであり、例えば、N型のDMOSトランジスタである。これにより、パワートランジスタDMNLの特性とトランジスタDMN1の特性が、バラつきや温度変動等において同じような傾向となるので、ゲート検出閾値電圧VGTの調整が容易となる。
上記のような回路構成により、ローサイドドライバ回路14は以下のように動作する。例えば、端子LDDにスクイブドライバ回路10の絶対最大定格を超えるような電圧が印加されていない通常状態では、過電圧検出回路142の検出信号SDが活性化されないため、ゲート駆動回路141のスイッチ素子SW1、SW2はオン状態とされる。これにより、ゲート駆動回路141は、制御信号SLに応じたゲート駆動電圧をパワートランジスタDMNLのゲート端子に供給し、パワートランジスタDMNLのオン・オフを制御する。
他方、図3に示されるように、ローサイドドライバ回路のドレイン(端子LDD)に入力される方向に誘導性電流ノイズInpが印加された場合、以下のように動作する。
図6は、ローサイドドライバ回路14のアクティブクランプ動作における動作負荷線を例示する説明図である。同図には、前述の図5と同様に、パワートランジスタDMNLのゲート・ソース間電圧VGS毎のId−Vds特性501〜504と、パワートランジスタDMNLのドレイン・ソース間の破壊耐圧Bvdsの特性500と、パワートランジスタDMNLのドレイン・ソース間の絶対最大定格電圧Avdsと、過電圧に係る検出閾値電圧VDTが示される。また、同図には、ローサイドドライバ回路14のアクティブクランプ動作における動作負荷線701と、ゲート電圧監視回路143によるゲート検出閾値電圧VGTの特性703が例示される。更に同図には、動作負荷線701の比較例として、アクティブクランプ動作時にクランプ電圧を可変しない場合の動作負荷線702が例示される。
同図に示されるように、端子LDDに入力される方向に誘導性電流ノイズが発生すると、パワートランジスタDMNLのドレイン・ソース間電圧vds(端子LDDの電圧)が上昇する。ドレイン・ソース間電圧vdsが、過電圧検出に係る検出閾値電圧VDTを超えない範囲では、上記通常状態と同様に、パワートランジスタDMNLはゲート駆動回路141によってオン・オフが制御される。例えば、制御信号SLの信号レベルがハイ(High)レベルであれば、トランジスタMN1がオン状態とされ、パワートランジスタDMNLのゲート・ソース間電圧VGSが0Vに制御される。これにより、パワートランジスタDMNLは静的にオフ状態を保ち、端子LDDに接続された外部保護デバイスによって誘導性電流ノイズが吸収され、誤作動が防止される。
更に誘導性電流ノイズが大きくなると、パワートランジスタDMNLのドレイン・ソース間電圧vdsが更に上昇する。そして、ドレイン・ソース間電圧vdsが検出閾値電圧VDTを超えると、過電圧検出が行われる。過電圧の検出によりゲート駆動回路141の出力がハイインピーダンス状態となり、クランプ回路144の直列接続されたツェナーダイオードZD1〜ZD5を介して抵抗素子R1に電流が流れると、パワートランジスタDMNLのゲート・ソース間電圧VGSが持ち上がる。そして、ゲート・ソース間電圧VGSがパワートランジスタDMNLのスレッショルド電圧Vthを超えると、パワートランジスタDMNLが電流を流し、アクティブクランプ動作が開始される。このとき、クランプ回路144と抵抗素子R1とパワートランジスタDMNLとの間でフィードバックループが形成されるため、パワートランジスタDMNLのドレイン・ソース間vdsは、クランプ回路144のクランプ電圧と、抵抗素子R1の抵抗値と、パワートランジスタDMNLのゲート・ソース間電圧VGSにより決定される。したがって、誘導性電流Inp(ドレイン電流id)の上昇につれて、パワートランジスタDMNLのドレイン・ソース間電圧vdsも上昇する。その後、更に誘導性電流ノイズが大きくなり、ドレイン・ソース間電圧vdsが上昇すると、クランプ回路144を介してゲート電圧VGSも更に上昇する。そして、図6に示されるように、ドレイン・ソース間電圧vdsが電圧VDS1に達したところでゲート・ソース間電圧VGSがゲート検出閾値電圧VGT(図6の特性703)を超えると、ゲート電圧監視回路143がトランジスタDMP1をオンさせ、クランプ回路144のクランプ電圧をVCLMP1からVCLMP2に切り替える。これにより、パワートランジスタDMNLのドレイン・ゲート間電圧が小さくなり、ゲート電圧VGSが更に上昇する。すなわち、パワートランジスタDMNLは、より大きなドレイン電流idを流すことができるバイアス状態に遷移する。これにより、パワートランジスタDMNLのドレイン・ソース間電圧vdsは、図6に示されるように、例えば電圧VDS1から電圧VDS2まで低下する。その後は、誘導性電流Inpの増大に伴って、ドレイン電流id及びドレイン・ソース間電圧vdsが増加する。そして、ドレイン電流idが電流idb2まで上昇してドレイン・ソース間電圧vdsが破壊耐圧Bvds2に達したところで、パワートランジスタDMNLは破壊に至る。クランプ電圧VCLM2は、図6に示されるように、クランプ電圧を切り替えた後のドレイン・ソース間電圧VDS2がパワートランジスタDMNLの絶対最大定格Avdsよりも大きくなるように設定する。これによれば、絶対最大定格電圧以下でのスクイブドライバ回路10の動作を保証しつつ、アクティブクランプ動作時の電流吸収能力を高めることができる。
他方、従来のようにアクティブクランプ動作中にクランプ電圧を切り替えない構成のローサイドドライバ回路では、図6の参照符号702に示されるような動作負荷線となる。すなわち、ドレイン・ソース間電圧vdsの過電圧の検出後、アクティブクランプ動作によってドレイン電流idとドレイン・ソース間電圧vdsが上昇するが、途中でクランプ電圧が切り替わらないため、パワートランジスタDMNLのゲート・ソース間電圧VGSは大きく変化せず、フィードバックループ制御によって微増するに止む。その結果、ドレイン・ソース間電圧vdsが低下することなく、ドレイン電流id及びドレイン・ソース間電圧vdsが上昇する。その結果、パワートランジスタは“idb2”よりも少ない“idb1”までしかドレイン電流を流すことができず、ドレイン・ソース間電圧vdsが破壊耐圧Bvds1に達したところで破壊に至る。
以上のように、本実施の形態に係るローサイドドライバ回路14によれば、従来のようにアクティブクランプ動作中にクランプ電圧を切り替えない構成のローサイドドライバ回路に比べて、アクティブクランプ動作時により大きな電流(idb2)を流すことができるから、より高いノイズ耐性を実現することができる。また、アクティブクランプ動作時のパワートランジスタDMNLの電流能力を高めるために、パワートランジスタDMNLのトランジスタサイズを大きくしないので、チップ面積の増大を抑えることができる。更に、ローサイドドライバ回路14によれば、ローサイドドライバ回路14自身の電流ノイズ吸収能力を高めることができるから、例えば端子LDD等に接続される外部保護デバイス(Cext2,Zext2等)のサイズを小さくすることができ、ひいては外部保護デバイスを削減することが可能となる。したがって、本実施の形態に係るローサイドドライバ回路14によれば、コストの増大を抑えつつ、ノイズ耐性を高めることができる。
≪実施の形態2≫
実施の形態2では、ESD保護回路に上記ローサイドドライバ回路14の出力段の回路構成を適用した応用例を示す。
図7は、逆極性の誘導性電流ノイズが印加された場合の電流経路を例示する説明図である。同図には、ローサイドドライバ回路14の出力となる端子LDDに、図3とは逆極性の誘導性電流Innが印加される場合が例示される。また、同図には、ハーネス間の相互インダクタンスに起因する誘導性電流Innを発生させる機構が、ノイズ源51として模式的に図示される。
同図に示されるように、端子LDDに負の誘導性ノイズが印加された場合、接地された端子LDSからローサイドドライバ回路14におけるパワートランジスタDMNLの寄生ダイオードを介して供給される電流と、外部保護デバイス(外部容量Cext2及び外部ツェナーダイオードZext2)から供給される電流とが合わさり、電流Innとしてスクイブ30に入力される。そして、スクイブ30を流れた電流Innは、一部が外部保護デバイス(外部容量Cext3)に吸収され、残りが端子HDSに入力される。端子HDSに入力された電流は、ハイサイドドライバ回路13におけるパワートランジスタDMNHの寄生ダイオードを介して信号線L_HDに供給される。そして、その電流の一部は端子HDDを介して外部保護デバイス(外部容量Cext1,外部ツェナーダイオードZext1)により吸収され、残りはESD保護回路16を介して端子GNDからグラウンドノードに吸収される。ESD保護回路16に、上記ローサイドドライバ回路14の出力段の回路構成を適用することで、ESD耐性をより向上させることができる。
図8に、ESD保護回路16の回路構成を例示する。同図において、ローサイドドライバ回路14と同様の構成要素には同一の符号を付して、その詳細な説明を省略する。
同図に示されるように、ESD保護回路16は、上記ローサイドドライバ回路14におけるゲート駆動回路141等を除いた回路構成とされる。すなわち、ESD保護回路16は、例えば、パワートランジスタDMNE、ゲート電圧監視回路143、クランプ回路144、及びプルダウン回路145から構成される。パワートランジスタDMNEは、例えば、ローサイドドライバ回路14のパワートランジスタDMNLと同様に、N型のDMOSトランジスタであり、ドレインが信号線L_HDに接続され、ソースが信号線L_GNDに接続され、ゲートが信号線L_EGに接続される。パワートランジスタDMNEが電流を流し始める電圧(端子HDDと端子GNDとの間の電圧)は、ローサイドドライバ回路14と同様に、主にクランプ回路144におけるツェナーダイオードZD1〜ZD5のツェナー電圧によって決定される。同図には、クランプ回路144のツェナーダイオードZD1〜ZD5が例示されるが、ツェナーダイオードの段数は、特に制限されず、必要とされるクランプ電圧に応じて調整可能である。
ESD保護回路16は、以下のように動作する。例えば、端子HDDと端子GNDとの間に電圧が印加され、その電圧がクランプ回路144におけるツェナーダイオードZD1〜ZD5のツェナー電圧を超えたら、クランプ回路144を通して抵抗素子R1に電流が流れ始め、トランジスタDMNEのゲート電圧を持ち上げる。そして、ゲート・ソース間電圧がパワートランジスタDMNEのスレッショルド電圧Vthを超えると、パワートランジスタDMNEに電流が流れ、端子HDDに供給された電流を吸収する。その後、端子HDDと端子GNDとの間に電圧が大きくなり、ゲート電圧がゲート電圧閾値電圧VGTを超えると、ゲート電圧監視回路143がトランジスタDMP1をオンさせ、クランプ回路144のクランプ電圧を下げる。これにより、ローサイドドライバ回路14と同様に、パワートランジスタDMNEは、より大きなドレイン電流idを流すことができるようになる。
以上実施の形態2に係るESD保護回路16によれば、ESD耐性を高めるために、ESD保護回路におけるパワートランジスタDMNEのトランジスタサイズを大きくする必要がない。したがって、チップコストの増大を抑えつつ、ESD耐性を高めることができる。
≪実施の形態3≫
図9に、上記ESD保護回路16の別の適用例として、高電圧電源から電圧を生成するレギュレータ回路を備える半導体装置を例示する。
同図に示される半導体装置20は、被保護回路としてのレギュレータ回路201と、高電圧の電源の供給を受ける電源端子VCCと、接地電位の供給を受けるグラウンド端子VSSと、レギュレータ回路201によって生成された電圧を出力するための外部端子VREGと、ESD保護回路(ESD_CIR)16_1、16_2を備える。
レギュレータ回路201は、電源端子VCCに供給された電源からの給電により動作する。レギュレータ201は、外部端子VREGの電圧を分圧抵抗R10〜R13によって分圧してオペアンプOPによりモニタし、フィードバック制御を行うことで、レギュレーションされた電圧を生成する。したがって、外部端子VREGは、レギュレーションされた電圧を出力する出力端子であるとともに、出力電圧をモニタする入力端子でもある。レギュレータ回路201の外部端子VREGに接続される信号経路には、逆バイアスされた高耐圧のダイオードDHが接続される。これにより、外部端子VREGに対する正サージに対して電源への電流逆流を防ぐ。また、オペアンプOPの入力は、分圧抵抗R10〜R13によって分圧することで保護される。これにより、オペアンプOPの入力は、高耐圧のDMOSではなく、CMOS素子で構成することができる。更に、レギュレータ回路201において、P型のトランジスタDMP3、DMP4と、N型のトランジスタDMN2とをESD保護回路16_1、16_2のクランプ電圧よりも高耐圧な素子(DMOS)で構成することでサージによる破壊から保護される。
外部端子VREGとグラウンド端子VSSとの間には、ESD保護回路16_1が接続される。また、電源端子VCCとグラウンド端子VSSとの間には、ESD保護回路16_2が接続される。ESD保護回路16_1、16_2は、前述の図8に示したESD保護回路16と同様の回路構成とされ、回路定数等は適宜必要に応じて調整される。これにより、ESD保護回路16_1、16_2は従来のESD保護回路よりも、より大きな電流を流すことができるので、半導体装置20のESD耐性をより向上させることができる。
以上実施の形態3に係る半導体装置20によれば、実施の形態2と同様に、チップコストの増大を抑えつつ、半導体装置20のESD耐性をより高めることができる。
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
例えば、クランプ回路144において、複数のツェナーダイオードZD1〜ZD5を直列接続する回路構成を例示したが、これに限られず、パワートランジスタDMNLのドレイン・ゲート間をクランプすることができれば、別の回路構成でもよい。例えば、PNダイオードを直列接続する回路構成でも良いし、クランプ電圧の微調整を可能にするために、ツェナーダイオードを直列接続する構成にPNダイオードを適宜接続したような回路構成でもよい。
また、実施の形態1、2、3では、パワートランジスタDMNLのゲート電圧の上昇によってクランプ電圧を1回切り替える方法を例示したが、これに限られず、クランプ電圧を複数回切り替えてもよい。例えば、クランプ回路144のツェナーダイオードZD2の両端に、更にトランジスタを設けておく。そして、ゲート電圧が大きくなりトランジスタDMP1をオンさせたあとに、更にゲート電圧が大きくなったら、ツェナーダイオードZD2間のトランジスタをオンさせる。これにより、アクティブクランプ動作中に、更に大きな電流を流すことができる。この場合、絶対最大定格電圧以下でのスクイブドライバ回路10の動作を保証するため、2回目の切り替え後のクランプ電圧は、絶対最大定格Avdsよりも大きくなるようにする必要がある。
また、実施の形態3では、信号を出力するための外部端子VREGとグラウンド端子VSSとの間に接続されるESD素子として、ESD保護回路16_1を適用する場合を例示したが、これに限られず、信号を入力するための入力端子とグラウンド端子との間に接続されるESD素子として適用することも可能である。
更に、実施の形態1乃至3において、パワートランジスタDMNLがDMOSである場合を例示したが、IGBT(Insulated Gate Bipolar Transistor)やスーパージャンクション構造のMOSトランジスタ等であってもよく、高耐圧のパワートランジスタであれば特に限定されない。
U1 エアバック制御システム
1 ECU
2 センサ部
3 エアバックユニット
30 スクイブ
31 エアバック
10 スクイブドライバ回路
11 マイクロコントローラ
12 ドライバ部
13 ハイサイドドライバ回路
DMNH パワートランジスタ
130 プリドライバ回路
14 ローサイドドライバ回路
DMNL パワートランジスタ
140 プリドライバ回路
15 制御信号生成部
HDD、HDS、LDD、LDS、GND 端子
L_HD、L_HS、L_LD、L_LS、L_LGND 信号線
VDDH スクイブ点火用電源
32_1,32_2 ハーネス
Cext1、Cext2、Cext3 外部容量
Zext1、Zext2 外部ツェナーダイオード
15 制御信号生成部
16 ESD保護素子
17 ESD保護ダイオード
SL、SH 制御信号
Inp 誘導性電流
50 ノイズ源
141 ゲート駆動回路
SW1、SW2 スイッチ素子
MP1 Pチャネル型のMOSトランジスタ
MN1 Nチャネル型のMOSトランジスタ
142 過電圧検出回路
SD 検出信号
R1〜R5 抵抗素子
147 スイッチ制御回路
143 ゲート電圧監視回路
144 クランプ回路
ZD1〜ZDn ツェナーダイオード
DMP1 P型のDMOSトランジスタ
145 プルダウン回路
DMN1 トランジスタ
146 閾値調整回路
D1、D2 ダイオード
500 破壊耐圧BVdsの特性
501 ids−vds特性(VGS=0V)
502 ids−vds特性(VGS=2V)
503 ids−vds特性(VGS=4V)
504 ids−vds特性(VGS=8V)
Avds 絶対最大定格電圧
VDT 過電圧に係る検出閾値電圧
VGT ゲート検出閾値電圧
701 ローサイドドライバ回路14のアクティブクランプ動作における動作負荷線
702 アクティブクランプ動作時クランプ電圧を可変しない場合の動作負荷線(比較例)
703 ゲート検出閾値電圧VGTの特性
VDS1 ゲート電圧検出時のドレイン・ソース間電圧
VDS2 クランプ電圧の切替後のドレイン・ソース間電圧
Idb2 実施の形態1に係るパワートランジスタDMNLの破壊時のドレイン電流
Idb1 比較例に係るパワートランジスタDMNLの破壊時のドレイン電流
Bvds2 実施の形態1に係るパワートランジスタDMNLの破壊時の電圧
Bvds1 比較例に係るパワートランジスタDMNLの破壊時の電圧
DMNE ESD保護回路におけるパワートランジスタ
L_EG 信号線
20 半導体装置
VCC 電源端子
VREG 外部端子
VSS グラウンド端子
16_1、16_2 ESD保護回路
201 レギュレータ回路(被保護回路)
DMP3、DMP4 P型のトランジスタ
DMN2 N型のトランジスタ
R10〜R13 分圧抵抗
DH 高耐圧のダイオード
OP オペアンプ

Claims (13)

  1. 第1外部端子に接続される第1信号線と、
    第2外部端子に接続される第2信号線と、
    第3信号線と、
    前記第1信号線と前記第2信号線との間に設けられ、ゲート電極が前記第3信号線に接続されるパワートランジスタと、
    前記第1信号線と前記第3信号線との間に設けられ、前記第1信号線と前記第3信号線との間の電圧をクランプするクランプ回路と、
    前記第3信号線と前記第2信号線との間に設けられた第1抵抗素子と、
    前記パワートランジスタのゲート電圧を監視する監視部と、を有し、
    前記クランプ回路は、クランプ電圧が変更可能に構成され、
    前記監視部は、前記ゲート電圧が所定の閾値を超えたら、前記クランプ回路のクランプ電圧が小さくなるように制御する半導体装置。
  2. 前記クランプ回路は、直列接続された複数のダイオードを含んで構成され、
    前記監視部は、前記複数のダイオードのうち一部のダイオードに並列に電流経路を形成させることにより、前記クランプ回路のクランプ電圧を小さくする請求項1に記載の半導体装置。
  3. 前記クランプ回路は、前記一部のダイオードの両端に接続されたスイッチ素子を更に有し、
    前記監視部は、前記スイッチ素子をオンさせることで前記電流経路を形成させる請求項2に記載の半導体装置。
  4. 前記複数のダイオードは、ツェナーダイオードを含む請求項2の半導体装置。
  5. 前記監視部は、ゲート電極が前記第3信号線に接続される第1トランジスタと、
    一端が前記第1トランジスタのソース電極に接続され、他端が前記第2信号線に接続され、入力された電流に応じて両端に電圧を発生させる電圧生成部と、
    一端が前記第1トランジスタのドレイン電極と前記第1信号線との間に設けられた負荷素子と、を有し、
    前記スイッチ素子は、前記負荷素子の両端の電位差に応じてオン・オフが制御される請求項3に記載の半導体装置。
  6. 前記パワートランジスタと前記第1トランジスタは、同一種類のトランジスタである請求項5に記載の半導体装置。
  7. 前記パワートランジスタは、DMOSトランジスタである請求項2に記載の半導体装置。
  8. 前記パワートランジスタのオン・オフを指示する制御信号に応じて、前記第3信号線に前記パワートランジスタを駆動するための駆動電圧を出力する駆動電圧生成部を更に有する、請求項2に記載の半導体装置。
  9. 前記監視部は、前記クランプ回路の前記クランプ電圧を、第1電圧から前記第1電圧よりも小さい第2電圧に切り替えることで、クランプ電圧が小さくなるように制御し、
    前記第2電圧は、切り替えた後の前記第1信号線と前記第2信号線との間の電圧が前記パワートランジスタの絶対最大定格よりも大きくなるように調整された電圧である請求項8に記載の半導体装置。
  10. 前記第1信号線と前記第2信号線との間の電圧が所定の電圧値を超えたことを検出したら検出信号を活性化させる過電圧検出部を更に有し、
    前記駆動電圧生成部は、前記検出信号が活性化されたら前記駆動電圧の出力を停止する請求項9に記載の半導体装置。
  11. 外部から入力された信号に基づいて、前記制御信号を生成する制御部を更に有する請求項10に記載の半導体措置。
  12. 前記第1外部端子は、第1電源電圧の供給を受ける電源端子であり、
    前記第2外部端子は、前記第1電源電圧より低い第2電源電圧の供給を受ける電源端子である請求項1に記載の半導体装置。
  13. 前記第1外部端子は、信号を入力又は出力するための信号端子であり、
    前記第2外部端子は、前記信号端子に供給される電圧よりも低い電源電圧の供給を受ける電源端子である請求項1に記載の半導体装置。
JP2012124110A 2012-05-31 2012-05-31 半導体装置 Expired - Fee Related JP5863183B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012124110A JP5863183B2 (ja) 2012-05-31 2012-05-31 半導体装置
US13/893,436 US8975940B2 (en) 2012-05-31 2013-05-14 Semiconductor device
US14/612,365 US20150145583A1 (en) 2012-05-31 2015-02-03 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012124110A JP5863183B2 (ja) 2012-05-31 2012-05-31 半導体装置

Publications (2)

Publication Number Publication Date
JP2013251671A true JP2013251671A (ja) 2013-12-12
JP5863183B2 JP5863183B2 (ja) 2016-02-16

Family

ID=49714786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012124110A Expired - Fee Related JP5863183B2 (ja) 2012-05-31 2012-05-31 半導体装置

Country Status (2)

Country Link
US (2) US8975940B2 (ja)
JP (1) JP5863183B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078730A (zh) * 2014-10-22 2017-08-18 株式会社电装 温度保护装置
JP2017192113A (ja) * 2016-04-15 2017-10-19 富士電機株式会社 駆動装置および誘導性負荷駆動装置
JP2018046393A (ja) * 2016-09-14 2018-03-22 日立オートモティブシステムズ株式会社 出力保護回路及び車両用電子装置
JP2019165542A (ja) * 2018-03-19 2019-09-26 富士電機株式会社 半導体装置
US11879930B2 (en) 2021-10-22 2024-01-23 Fuji Electric Co., Ltd. Test circuit and testing method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6453634B1 (en) 2000-12-01 2002-09-24 Simpson Strong-Tie Company, Inc. Moment-resisting strap connection
JP5863183B2 (ja) * 2012-05-31 2016-02-16 ルネサスエレクトロニクス株式会社 半導体装置
US9499115B2 (en) * 2014-05-02 2016-11-22 Takata Protection Systems, Inc. Apparatus, system, and method for diagnosing initiators in airbag systems
US9973091B2 (en) * 2015-01-14 2018-05-15 Semiconductor Components Industries, Llc Precise and dynamic control of synchronous rectification switch voltage in a switched mode power supply
JP6468148B2 (ja) * 2015-09-22 2019-02-13 株式会社デンソー 電子制御装置
JP6679992B2 (ja) 2016-03-03 2020-04-15 株式会社デンソー 半導体装置
US10270239B2 (en) * 2016-06-15 2019-04-23 Texas Instruments Incorporated Overvoltage protection and short-circuit withstanding for gallium nitride devices
JP6749184B2 (ja) * 2016-09-01 2020-09-02 日立オートモティブシステムズ株式会社 半導体装置
CN106841823B (zh) * 2016-10-11 2023-06-06 豪威模拟集成电路(北京)有限公司 一种开环电压检测系统
JP7134632B2 (ja) * 2018-02-06 2022-09-12 ローム株式会社 パワートランジスタのゲートドライバ回路、モータドライバ回路
US11309887B2 (en) 2018-02-09 2022-04-19 Delta Electronics, Inc. Conversion circuit
US10784795B1 (en) * 2019-08-21 2020-09-22 Delta Electronics, Inc. Conversion circuit
CN108471304B (zh) * 2018-03-29 2020-05-26 苏州汇川联合动力系统有限公司 功率开关的有源钳位电压应力抑制电路、方法及驱动电路
EP3683941A3 (en) * 2018-12-28 2020-10-07 Delta Electronics, Inc. Conversion circuit
US11139811B2 (en) * 2019-04-30 2021-10-05 Stmicroelectronics S.R.L. Driver circuit, corresponding device and system
US11641198B1 (en) * 2021-11-30 2023-05-02 Texas Instruments Incorporated Wide voltage gate driver using low gate oxide transistors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103927U (ja) * 1989-02-04 1990-08-17
JPH06326579A (ja) * 1993-05-12 1994-11-25 Tokai Rika Co Ltd Mos−fet を用いた負荷駆動回路
JPH1132429A (ja) * 1997-07-09 1999-02-02 Nissan Motor Co Ltd 半導体集積回路
JP2007166734A (ja) * 2005-12-12 2007-06-28 Mitsubishi Electric Corp 電力変換装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19808987C1 (de) * 1998-03-03 1999-11-11 Siemens Ag Verlustsymmetrierte Treiberschaltung aus MOS-Highside-/Lowside-Schaltern
EP1456926B1 (en) * 2001-12-14 2013-03-27 STMicroelectronics Asia Pacific Pte Ltd. Transient voltage clamping circuit
JP2005255032A (ja) * 2004-03-12 2005-09-22 Denso Corp 車両用乗員保護装置
DE102006047243A1 (de) * 2006-05-15 2007-11-22 Infineon Technologies Ag Bordnetz mit mindestens einem Leistungstransistor und Verfahren zum Schutz eines Bordnetzes
JP4866672B2 (ja) 2006-07-27 2012-02-01 ルネサスエレクトロニクス株式会社 負荷駆動回路
US8456794B2 (en) * 2009-11-12 2013-06-04 Infineon Technologies Ag Clock-pulsed safety switch
US8044699B1 (en) * 2010-07-19 2011-10-25 Polar Semiconductor, Inc. Differential high voltage level shifter
JP5863183B2 (ja) * 2012-05-31 2016-02-16 ルネサスエレクトロニクス株式会社 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103927U (ja) * 1989-02-04 1990-08-17
JPH06326579A (ja) * 1993-05-12 1994-11-25 Tokai Rika Co Ltd Mos−fet を用いた負荷駆動回路
JPH1132429A (ja) * 1997-07-09 1999-02-02 Nissan Motor Co Ltd 半導体集積回路
JP2007166734A (ja) * 2005-12-12 2007-06-28 Mitsubishi Electric Corp 電力変換装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078730A (zh) * 2014-10-22 2017-08-18 株式会社电装 温度保护装置
JP2017192113A (ja) * 2016-04-15 2017-10-19 富士電機株式会社 駆動装置および誘導性負荷駆動装置
JP2018046393A (ja) * 2016-09-14 2018-03-22 日立オートモティブシステムズ株式会社 出力保護回路及び車両用電子装置
JP2019165542A (ja) * 2018-03-19 2019-09-26 富士電機株式会社 半導体装置
JP7052452B2 (ja) 2018-03-19 2022-04-12 富士電機株式会社 半導体装置
US11879930B2 (en) 2021-10-22 2024-01-23 Fuji Electric Co., Ltd. Test circuit and testing method

Also Published As

Publication number Publication date
US20130328610A1 (en) 2013-12-12
US20150145583A1 (en) 2015-05-28
US8975940B2 (en) 2015-03-10
JP5863183B2 (ja) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5863183B2 (ja) 半導体装置
JP6315786B2 (ja) Esd保護回路、半導体装置、車載用電子装置及び車載用電子システム
US10879692B2 (en) Semiconductor device and electronic control system having the same
TWI568179B (zh) 高壓閘極驅動電路
JP5067786B2 (ja) 電力用半導体装置
KR101926607B1 (ko) 클램핑 회로, 이를 포함하는 반도체 장치 및 반도체 장치의 클램핑 방법
US8299841B2 (en) Semiconductor device
JP6303410B2 (ja) 電力供給装置
JP5767734B2 (ja) 電力用半導体装置
JP2014086580A (ja) 保護回路
US9431823B2 (en) ESD protection circuit
WO2007066626A1 (ja) 静電破壊保護回路及びこれを備えた半導体集積回路装置
JP2020205553A (ja) 半導体装置
US11496125B2 (en) Switch circuit capable of overcurrent protection with small and simple circuit, and with simple operation, without affecting normal operation
WO2023101999A1 (en) Wide voltage gate driver using low gate oxide transistors
JP7291495B2 (ja) 半導体装置
JP2007116388A (ja) 半導体装置
US20230223746A1 (en) Clamper, input circuit, and semiconductor device
JP7257164B2 (ja) クランプ回路
JP2013258524A (ja) 半導体装置
CN112913128A (zh) 半导体装置
JP2004208469A (ja) 保護回路
JP2010010891A (ja) 半導体集積回路装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5863183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees