JP2013140252A - ブレ補正装置、レンズ鏡筒および撮影装置 - Google Patents

ブレ補正装置、レンズ鏡筒および撮影装置 Download PDF

Info

Publication number
JP2013140252A
JP2013140252A JP2012000282A JP2012000282A JP2013140252A JP 2013140252 A JP2013140252 A JP 2013140252A JP 2012000282 A JP2012000282 A JP 2012000282A JP 2012000282 A JP2012000282 A JP 2012000282A JP 2013140252 A JP2013140252 A JP 2013140252A
Authority
JP
Japan
Prior art keywords
axis
blur
blur correction
center
drive unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012000282A
Other languages
English (en)
Inventor
Kenta Nakamura
建太 中村
Toshihisa Tanaka
稔久 田中
Takayuki Shinohara
隆之 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012000282A priority Critical patent/JP2013140252A/ja
Priority to PCT/JP2012/084128 priority patent/WO2013103137A1/ja
Priority to CN201811167857.7A priority patent/CN109683345B/zh
Priority to CN201280066334.8A priority patent/CN104040420B/zh
Publication of JP2013140252A publication Critical patent/JP2013140252A/ja
Priority to US14/323,555 priority patent/US9529209B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture

Abstract

【課題】制御性能に優れるブレ補正装置、そのブレ補正装置を備えるレンズ鏡筒および撮影装置を提供する。
【解決手段】固定部材(140)に対して相対的に移動可能な移動部材(130)と、前記移動部材(130)に備えられ、像ブレを補正するブレ補正光学部材(L3)と、前記ブレ補正光学部材(L3)の光軸(L)と交差する駆動平面上において、前記移動部材(130)を第1軸(X’)に沿って移動させる第1駆動部(132,142)と、前記駆動平面上において、前記移動部材(130)を前記第1軸(X’)に交差する第2軸(Y’)に沿って移動させる第2駆動部(134,144)とを有し、前記駆動平面上において、前記第1軸(X’)と前記第2軸(Y’)との交点(M)が、前記ブレ補正光学部材(L3)の中心(O)よりも前記移動部材(130)の重心(G)に近い位置に配置あるブレ補正装置。
【選択図】図6

Description

本発明は、ブレ補正装置、レンズ鏡筒および撮影装置に関する。
近年、ブレ補正装置の小型化に関する要請等から、ブレ補正装置の可動部材の形状が、特許文献1に示すように、レンズ中心に対して、非対称な形状になっている。このような形状の可動部材においては、レンズ中心と可動部材の重心とが一致していない場合が殆んどである。
従来では、特許文献1に示すように、可動部材を駆動するボイスコイルモータ(VCM)の駆動軸をレンズ中心に向けて、ボイスコイルモータを配置していた。このため、従来技術では、可動部材を移動させる際に、可動部材の重心に対して回転トルクが作用してしまい、ブレ補正動作を行う際に、可動部材の目標位置への収束性や制御安定性等のブレ補正装置の制御性能に悪影響を及ぼす問題があった。また、重心調整部材を用いる場合は可動部材の質量が増加し駆動性能を損なうという問題があった。
特開2009−169359
本発明の目的は、制御性能に優れるブレ補正装置、そのブレ補正装置を備えるレンズ鏡筒および撮影装置を提供することである。
上記の目的を達成するために、本発明のブレ補正装置(100)は、
固定部材(140)に対して相対的に移動可能な移動部材(130)と、
前記移動部材(130)に備えられ、像ブレを補正するブレ補正光学部材(L3)と、
前記ブレ補正光学部材(L3)の光軸(L)と交差する駆動平面上において、前記移動部材(130)を第1軸(X’)に沿って移動させる第1駆動部(132,142)と、
前記駆動平面上において、前記移動部材(130)を前記第1軸(X’)に交差する第2軸(Y’)に沿って移動させる第2駆動部(134,144)とを有し、
前記駆動平面上において、前記第1軸(X’)と前記第2軸(Y’)との交点(M)を、前記ブレ補正光学部材(L3)の中心(O)よりも前記移動部材(130)の重心(G)に近い位置に配置する。
なお、本発明をわかりやすく説明するために、実施形態を示す図面の符号に対応付けて説明したが、本発明は、これに限定されるものでない。後述の実施形態の構成を適宜改良してもよく、また、少なくとも一部を他の構成に代替させてもよい。更に、その配置について特に限定のない構成要件は、実施形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。
図1は、本発明の一実施形態に係るカメラの概略ブロック図である。 図2は、図1に示すブレ補正装置の正面斜視図である。 図3は、図2に示すブレ補正装置の背面斜視図である。 図4は、図2および図3に示すブレ補正装置の組立図である。 図5は、図1に示すカメラにおけるブレ補正動作の制御の一例を示す制御ブロック図である。 図6(a)〜図6(c)は、図3〜図5に示すブレ補正装置の検出部、可動部および保持部の位置関係および検出部の検出軸とVCMの駆動軸との関係を示す。 図7は、X軸に沿って可動部を移動させる際の検出部の検出軸とVCMの駆動軸との関係を示す。 図8は、Y軸に沿って可動部を移動させる際の検出部の検出軸とVCMの駆動軸との関係を示す。 図9は、KKファクタと可動部の移動量に係る定常偏差との関係を示すグラフである。 図10は、VCMの駆動軸の傾き角度に対するKKファクタおよび可動部重心とVCM駆動軸原点との間の距離の関係を示すグラフである。 図11は、本発明に係るブレ補正装置の周波数応答線図である。 図12は、重力方向に対する可動部の配置の向きを決定するための概念図である。 図13は、可動部の配置の向きとVCMの消費電流との関係を示すグラフである。 図14は、可動部の最適な配置の向きを示す。 図15は、従来技術のブレ補正装置における検出部、可動部および保持部の位置関係および検出部の検出軸とVCMの駆動軸との関係を示す。 図16は、従来技術のブレ補正装置の周波数応答線図である。
第1実施形態
図1に示すように、本発明の一実施形態に係るカメラ1は、いわゆるコンパクトデジタルカメラであり、カメラボディ1aとレンズ鏡筒2とが一体化してある。なお、以下の実施形態では、コンパクトデジタルカメラを例に説明するが、本発明はこれに限定されない。たとえば、レンズとカメラボディとが別個に構成される一眼レフデジタルカメラであっても良い。さらに、ミラー機構を省いたミラーレスタイプのカメラであっても良い。また、コンパクトデジタルカメラや一眼レフデジタルカメラに限らず、ビデオカメラ、双眼鏡、顕微鏡、望遠鏡、携帯電話などの光学機器にも適用できる。
レンズ鏡筒2は、被写体側から順に、第1レンズ群L1、第2レンズ群L2、第3レンズ群(ブレ補正レンズ群)L3を配列して構成された撮像光学系を備えている。また、本実施形態のカメラ1では、第3レンズ群L3の背後(像面側)に、CCDやCMOSに代表される撮像素子3を具備してある。
第1レンズ群L1は、撮像光学系のうち最も被写体側に設けられ、駆動機構6により光軸Lに沿った方向に移動自在に駆動され、ズーミングが可能になっている。第2レンズ群L2は、駆動機構8により光軸Lに沿った方向に移動自在に駆動され、フォーカシングが可能になっている。
第3レンズ群(ブレ補正レンズ群)L3は、ブレ補正装置100の一部を構成する。ブレ補正レンズ群L3は、CPU14からの信号を受けたブレ補正装置100により、光軸Lと交差する面内で移動され、カメラの動きに起因する像ブレを低減する。
絞り機構4は、カメラの露光を制御するように駆動機構10により駆動される。撮像素子3は、撮像光学系が撮像面上に結像する被写体像の光に基づいて、電気的な画像出力信号を生成する。その画像出力信号は、信号処理回路16で、A/D変換やノイズ処理されてCPU14へ入力する。
レンズ鏡筒2には、ジャイロセンサなどの角速度センサ12が内蔵してあり、角速度センサ12は、カメラ1に生じる手ブレなどによる角速度を検出し、CPU14に出力する。CPU14には、AFセンサ18からの検出信号も出力され、その検出信号に基づき、駆動機構8を制御し、オートフォーカス(AF)機構を実現している。
CPU14には、記憶媒体20、不揮発性メモリ22および各種操作ボタン24などが接続されている。記憶媒体20は、CPU14からの出力信号を受けて、撮影画像を記憶したり、読み出されたりするメモリであり、たとえば着脱自在なカード式メモリである。着脱自在なメモリとしては、メモリカードやSDカード等さまざまなタイプがあるが、特に限定されるものではない。
不揮発性メモリ22は、ジャイロセンサのゲイン値などの調整値情報が記憶してあり、CPU14と共にカメラの内部に内蔵してある半導体メモリなどで構成される。各種操作ボタン24としては、たとえばレリーズスイッチが例示され、レリーズスイッチを半押しまたは全押しすることで、その信号がCPU14に入力される。
図1に示すブレ補正装置100の構成を図2〜図4を用いて説明する。なお、以下の説明では、光軸Lに平行な軸をZ軸とする。
ブレ補正装置100は、図4に示すように、可動部130および固定部140を備える。固定部140は、図2および図4に示すように、シャッター部110および位置検出部120を含み、これらは、ビス150にて固定部140に固定されている。シャッター部110は、カメラの露光を制御する構成であり、固定部140から独立した構成であってもよい。
位置検出部120には、第1ホール素子122および第2ホール素子124が備えられ、可動部130の位置を検出する。第1ホール素子122は光軸Lに垂直なX軸に検出軸を持ち、第2ホール素子124は光軸Lに垂直なY軸に検出軸を持つ。
第1ホール素子122および第2ホール素子124は、可動部130に備えられる第1磁石132および第2磁石134の磁界を検出して、可動部130の位置を検出する。
可動部130は、第1磁石132、第2磁石134およびブレ補正レンズ群L3を備える。以下の説明では、本実施形態の理解を容易にするために、ブレ補正レンズ群L3を1枚のブレ補正レンズL3として説明する。
可動部130は、3つの引張コイルばね145により、3箇所で固定部140に取り付けられる。引張コイルばね145は、図3に示す固定部側ばね取付部146と図4に示す可動部側ばね取付部136との間に取り付けられる。可動部130は、図4に示す3個のセラミックボール148を介して摺動することで、光軸Lに交差する平面上(たとえば、X軸とY軸を含む面、光軸Lに直交する面)を固定部140に対して相対移動する。なお、引張コイルばね145およびセラミックボール148の数量は、可動部130および固定部140の形状等に合わせて、適宜変更可能である。
可動部130は、可動部130に備えられる第1磁石132および第2磁石134と、固定部140に備えられる第1駆動コイル142および第2駆動コイル144との相互作用によって発生する駆動力により、光軸Lに交差する平面上を移動する。第1磁石132と第1駆動コイル142とが第1VCM152を構成し、第2磁石134と第2駆動コイル144とが第2VCM154を構成する。VCMとはボイスコイルモータの略称である。
図1〜4に示すブレ補正装置100によるブレ補正動作の一例を図5に示す。ブレ補正装置100は、図5に示すように、目標位置生成部162、減算器164、フィードフォワードコントローラ166、フィードバックコントローラ168および加算器170をさらに備える。これらの構成は、たとえば、図1に示すカメラボディ1aのCPU14が備えても良いし、レンズ鏡筒2のレンズCPU(不図示)が備えても良い。
角速度センサ12は、図1に示すカメラ1に備えられており、カメラ1に生じるピッチ方向およびヨー方向のブレ角速度信号ω、ω(rad/s)を検出し、目標位置生成部162に出力する。
目標位置生成部162は、ブレ角速度信号ω、ωを積分してブレ角度θ、θ(rad)に変換し、ブレ角度θ、θを光軸に交差する平面に投影して、可動部目標位置x、y(mm)に関する信号を生成する。可動部目標位置x、yに関する信号は、ブレ角速度信号ω、ωに基づくブレを打ち消すための可動部130の目標位置に関する信号である。
この可動部目標位置x、yとホール素子122,124からの可動部位置座標x、y(mm)とを利用して、コイル142,144を駆動するためのコイル駆動電流I、I(A)が生成される。
具体的には、可動部目標位置x、yに関する信号が、フィードフォワードコントローラ166を介して、加算器170に入力される。また、可動部目標位置x、yに関する信号と可動部位置座標x、yに関する信号とが、減算器164およびフィードバックコントローラ168を介して、加算器170に入力される。加算器170は、入力されたこれらの信号を利用して、コイル駆動電流I、Iを生成し、第1VCM152(第1駆動コイル142)および第2VCM154(第2駆動コイル144)に出力する。
第1VCM152および第2VCM154にコイル駆動電流I、Iが入力されると、図6に示すように、可動部130に電磁駆動力Fx’、Fy’が作用する。可動部130は、電磁駆動力Fx’、Fy’により、光軸Lに交差する平面上で目標位置に向けて移動される。
図5に示すホール素子122,124は、可動部位置座標x、yを検出して、フィードバックコントローラ168に出力する。ブレ補正動作中においては、角速度センサ12とブレ補正装置100とで上記の制御を繰り返し、ブレ補正を行う。
次に、図6を用いて、本実施形態のブレ補正装置100の可動部130と固定部140との位置関係を詳細に説明する。以下の説明では、光軸Lに垂直なX,Y軸平面上にある相互に垂直な軸をA1軸およびA2軸とする。A1,A2軸は、光軸Lに垂直な平面において光軸Lを通り、相互に垂直である。A1軸およびA2軸は、X軸とY軸とが光軸Lにおいて交差する角度を二等分する。
検出部120には、図6(a)に示すように、第1ホール素子122および第2ホール素子124が配置されており、第1ホール素子122はX軸方向に検出軸を有し、第2ホール素子124はY軸方向に検出軸を有する。本実施形態では、X軸とY軸とは相互に垂直であるが、垂直以外の角度で交差してもよい。
第1ホール素子122は、図6(b)に示す可動部130に備えられる第1磁石132のX軸方向の位置を検出し、第2ホール素子124は、第2磁石134のY軸方向の位置を検出する。このため、第1ホール素子122および第2ホール素子124を備える検出部120は、可動部130のX軸およびY軸に沿った位置座標を検出することができる。
本実施形態では、可動部130は、図6(b)に示すように、A1軸に沿って非対称な形状である。図2および図4に示すように、ブレ補正装置100の小型化等の観点から、シャッター部110がブレ補正装置100に組み込まれており、固定部140の下側の約半分の領域がシャッター部110によって占領されているからである。このため、可動部130の可動部重心Gが、レンズ中心Oではなく、A2軸に沿ったレンズ中心Oの上側に存在する。なお、可動部130の形状は、A1軸に沿って対称な形状であっても良く、A2軸に沿って非対称な形状であっても良い。
可動部130には、第1磁石132および第2磁石134が備えられ、図6(c)に示す第1駆動コイル142および第2駆動コイル144との相互作用により、可動部130にX’軸およびY’軸に沿った電磁駆動力Fx’、Fy’が作用する。図6(c)に示すように、X’軸はX軸に対して駆動軸傾斜角度θで傾斜しており、Y’軸はY軸に対して駆動軸傾斜角度θで傾斜している。図6(b)に示すように、X’軸 とY’軸との交点を軸駆動軸原点Mとする。
可動部130は、電磁駆動力Fx’、Fy’により、X’軸およびY’軸に沿って、固定部140に対して相対移動する。可動部130が、その駆動中心である駆動軸原点Mに位置するとき、レンズ中心Oが光軸Lを通る。第1磁石132はその中心がX’軸を通るように配置してあり、第2磁石132はその中心がY’軸を通るように配置してある。
固定部140では、図6(c)に示すように、第1駆動コイル142および第2駆動コイル144が配置される。すなわち、第1駆動コイル142と図6(b)に示す第1磁石132とからなる第1VCM152の駆動軸であるX’軸が、図6(c)に示すように、レンズ中心Oよりも可動部重心Gの近くを通るように、第1駆動コイル142を固定部140に配置する。本実施形態では、ホール素子検出軸Xに対してVCM駆動軸X’を、駆動軸傾斜角度θ(deg)傾けるようにして、第1駆動コイル142を配置する。
また、第2駆動コイル144と第2磁石134とからなる第2VCM154の駆動軸であるY’軸が、レンズ中心Oよりも可動部重心Gの近くを通るように、第2駆動コイル144を固定部140に配置する。すなわち、ホール素子検出軸Yに対してVCM駆動軸Y’を、駆動軸傾斜角度θ(deg)傾けるようにして、第2駆動コイル144を配置する。なお、X軸に対するX’軸の傾き角度とY軸に対するY’軸の傾き角度とが異なっても良い。また、コイル142,144の固定部140に対する配置位置を変化させて、X’軸およびY’軸がレンズ中心Oよりも可動部重心Gの近くを通るように調整しても良い。
本実施形態では、第1駆動コイル142および第2駆動コイル144を上記のように配置してあるので、駆動軸X’と駆動軸Y’との交点である駆動軸原点Mが、A2軸に沿ってレンズ中心Oよりも可動部重心Gに近い位置に存在する。好適には、駆動軸原点Mは可動部重心Gに一致する。このとき、駆動軸X’と駆動軸Y’とは直角以外の角度θで交差し、本実施形態ではθは鈍角(例えば、91度〜120度)である。
上記のように、本実施形態では、図6に示すように、VCM駆動軸X’,Y’が、ホール素子検出軸X,Yに対して駆動軸傾斜角度θで傾いている。このため、駆動軸原点Mが可動部重心Gに一致する場合の図7に示すように、第1VCM152の駆動軸X’に沿って、駆動力Fx’を作用させると、その駆動力Fx’はホール素子検出軸のX軸方向成分の駆動力Fx’xとY軸方向成分の駆動力Fx’yとにベクトル分解される。X軸方向成分の駆動力Fx’xは、図5に示す可動部目標位置xへの駆動力として用いられる一方で、Y軸方向成分の駆動力Fx’yは可動部目標位置yへの収束に悪影響を及ぼす。
このとき、第2VCM154を用いて、Y’軸に駆動力Fy’を作用させて、駆動力Fx’yをキャンセルする。すなわち、駆動力Fy’のY軸方向成分の駆動力Fy’yによって、駆動力Fx’yをキャンセルする。このとき、駆動力Fx’yと駆動力Fy’yとの間で、以下の関係を成り立たせる。
Figure 2013140252
なお、駆動力Fy’の作用に伴って駆動力Fy’xも作用するので、可動部目標位置xへの駆動力は、最終的に、Fx’x−Fy’xである。図7に示すVCM駆動軸X’およびY’の向きを正として、その大きさをスカラ量fx’、fy’とすると以下の関係が成り立つ。
Figure 2013140252
Figure 2013140252
ここで、数式2および数式3において、iおよびjは、それぞれ、X軸方向およびY軸方向の単位ベクトルである。数式1に、数式2および数式3を代入すると、以下の数式4が求まる。
Figure 2013140252
上記より、可動部目標位置xへのX軸方向の目標駆動力Fは、数式5で表される。
Figure 2013140252
ここで、図7に示すホール素子検出軸XおよびY軸の向きを正として、その大きさをスカラ量f、fとすると以下の数式6が導かれる。
Figure 2013140252
数式4に数式6を代入すると、数式7が求まる。
Figure 2013140252
また、図8に示すように、第2VCM154の駆動軸Y’に沿って、駆動力Fy’を作用させて、可動部目標位置yに収束させるときは、上記と同様にして、以下に示す数式8が導かれる。
Figure 2013140252
数式6と数式8との合成により、X’軸上の第1VCM152への駆動力Fx’は、ホール素子検出軸XおよびY方向の駆動力F,Fを用いて以下の数式9−1にて表される。
Figure 2013140252
数式9−1は、Fx’、、Fを用いて以下の数式9−2にて表される。
Figure 2013140252
同様にして、Y’軸上のVCMへの駆動力Fy’は、以下の数式10−1にて表される。
Figure 2013140252
数式10−1は、Fy’、、Fを用いて以下の数式10−2にて表される。
Figure 2013140252
数式9−1および数式10−1によるベクトル変換を用いてVCMを駆動することにより、ホール素子の検出軸とVCMの駆動軸との整合性が保たれる。
次に、本実施形態に係るブレ補正装置100を力学的にモデル化して、ブレ補正装置の制御性能について説明する。以下では、本実施形態の理解を容易にするために、X軸方向の制御の説明のみを行う。Y軸方向の制御については、X軸方向の制御と同様なので、以下では説明を省略する。
図6において、可動部130のX方向の変位をx(mm)、可動部重心Gを通るZ軸まわりの回転角をθGZ(rad)、可動部130の質量をm(kg)、可動部重心Gを通るZ軸まわりの慣性モーメントをJGZ(kg・mm)、VCM142からのX軸方向の駆動力をf(N)、駆動力fの重心ずれ(駆動軸原点M−可動部重心G間距離)をδ(mm)、ホール素子122の重心ずれをB(mm)、引張コイルばね145によるX方向の合成ばね定数をk(N/m)、またそれに伴うX方向の合成粘性係数をc(N・s/m)、X方向合成ばね成分の重心ずれをl(mm)とする。
上記のように、各物理量を設定すると、以下の数式11および数式12に示すように、可動部130のX軸方向に沿った動作が運動方程式で表される。可動部130の重心位置の並進に係る運動方程式が数式11で表され、可動部130の重心位置の回転に係る運動方程式が数式12で表される。
Figure 2013140252
Figure 2013140252
上記の数式11および数式12に示す運動方程式をラプラス変換すると、以下に示す数式13および数式14が導かれる。
Figure 2013140252
Figure 2013140252
上記の数式13と数式14から、ホール素子が検出するX軸方向の変位XSensor(s)(mm)は、数式15で表される。
Figure 2013140252
ここで、可動部に作用するX軸方向の加速度をa(mm/s2)とすると、f(s)が、数式16で表される。
Figure 2013140252
数式16を数式15に代入すると、X軸方向の加速度aを入力とし、ホール素子が検出するX軸方向の変位XSensorを出力とする以下に示す伝達関数が得られる。
Figure 2013140252
ここで、ωおよびωは、それぞれ並進方向(X軸方向)、回転方向(可動部重心Gを通るZ軸方向まわりの回転)の固有角振動数(rad/s)を表し、ζおよびζはそれぞれ並進方向、回転方向の減衰比(−)(無次元数)を表す。
数式17に示す伝達関数において、第1項は並進方向の伝達関数を表し、第2項は回転方向の伝達関数を表す。この伝達関数は、図5の制御ブロック図において、可動部からホール素子までの伝達関数を表しており、コントローラ部およびVCM部は含まれない。
数式17において、「mδB/JGZ」は、本発明に係るブレ補正装置の制御性能を論じる上で重要なパラメータである。これを、KKファクタと定義し、数式18に表す。
Figure 2013140252
ここで、ブレ補正装置の制御性能の理解を容易にするために、数式19に示すように並進方向および回転方向の共振周波数および減衰比が等しいと仮定し、数式17に示す伝達関数から数式20に示す伝達関数を導く。
Figure 2013140252
Figure 2013140252
数式20から明らかなように、KKファクタの値が−1以下の場合は、数式20に示す伝達関数が全周波数帯域に渡って負になる。したがって、この場合は、フィードバックが正帰還になってしまうので、制御不能となる。
KKファクタの値が−1よりも大きく且つ0よりも小さい場合は、数式20に示す伝達関数は正になる。しかしながら、並進成分と回転成分が分割された数式17に示す伝達関数では、回転成分が負となる。したがって、この場合は、回転成分の振舞いが不安定であることが分かる。
KKファクタの値が0以上の場合は、数式20に示す伝達関数が正になり、しかも数式17に示す伝達関数において回転成分も正となり、安定的である。
上記より、KKファクタの値が正であるときは制御が安定し、逆に負であるときは制御が不安定である。したがって、KKファクタの極性は、制御性能に密接に関係する。
数式18に示すように、KKファクタの極性は、駆動力Fの重心ずれδの向きとホール素子位置の重心ずれBの向きとの関係で決まる。つまり、図6(b)および図6(c)において、X軸とX’軸とが、可動部重心Gに対して同じ方向にずれているときに、KKファクタの値が正となり、ブレ補正部100に関する伝達関数が安定になる。
本実施形態では、上記のように、図6に示す駆動軸原点Mが、レンズ中心Oよりも可動部重心Gに近い位置に存在し、且つX軸とY軸との交点および駆動軸原点Mが、可動部重心Gに対して同じ方向にずれるように第1VCM152と第2VCM154とを配置する。このとき、駆動軸原点Mは、レンズ中心Oと可動部重心Gとの間に存在する。
図9に、KKファクタの値に応じた、ステップ応答における可動部の変位に係る所定時間後のレンズ中心位置基準の偏差の関係を示す。図9に示すように、KKファクタの値が0に近い領域では偏差が小さく制御性能に優れ、KKファクタが負の範囲では偏差が大きく制御性能に劣る。本実施形態では、KKファクタが正の領域であり、且つ偏差の値がD1以下に収まる範囲内でKKファクタを設定する。ここで、偏差D1は、偏差の極大値ピークD2の70%の値である。したがって、本実施形態におけるKKファクタの値は、0以上であり且つ0.2以下である。
本実施形態では、上記のように、図6(c)において、駆動軸傾斜角度θを調整して、駆動軸原点M−可動部重心G間距離δおよびKKファクタの値を調整する。すなわち、駆動軸原点Mがレンズ中心Oよりも可動部重心Gに近い位置になるように、および/またはKKファクタの値が0以上であり且つ0.2以下となるように、駆動軸傾斜角度θを調整する。
図10に、駆動軸傾斜角度θに対する距離δおよびKKファクタの関係を示す。図10において、横軸が駆動軸傾斜角度θ(deg)、左側の縦軸が距離δ(mm)、右側の縦軸がKKファクタであり、距離δは黒四角のプロットで表示され、KKファクタは黒ひし形のプロットで表示される。図10に示すように、駆動軸傾斜角度θが−αから+αの範囲で、距離δおよびKKファクタが変化する。
距離δは、駆動軸傾斜角度θがθの時に0になる。このとき、図6において、駆動軸原点Mが可動部重心Gに一致する。図10に示す角度θを含む範囲R1(θ≦θ≦θ)にて、駆動軸原点Mが、レンズ中心Oに対して可動部重心Gに近い位置に存在する。駆動軸原点Mが、可動部重心Gに近い位置になるように、駆動軸傾斜角度θを調整することで、可動部を移動させる際の回転成分を抑制することができる。
また、KKファクタは、駆動軸傾斜角度θがθ以下の時に0以上になり、駆動軸傾斜角度θがθ以上の時に0.2以下になる。つまり、KKファクタは、範囲R2(θ≦θ≦θ)にて、0以上であり且つ0.2以下になる。KKファクタが、0以上であり且つ0.2以下になるように、駆動軸傾斜角度θを調整することで、可動部を移動させる際に安定した制御を行うことができる。
本実施形態では、範囲R1の条件を満たすとともに範囲R2の条件を満たす範囲R3(θ≦θ≦θ)内で、駆動軸傾斜角度θを調整することが好ましい。範囲R3内に駆動軸傾斜角度θを調整することで、可動部を移動させる際の回転成分を抑制し且つ安定した制御を行うことができるからである。
なお、さらに好適には、前述した範囲R3内において、駆動軸原点M−可動部重心G間距離δが0に近づきしかもKKファクタが正となる(このとき、数式18からも明らかなように、KKファクタの値も0に近づく)ように、駆動軸傾斜角度θをθに調整する。このように、駆動軸傾斜角度θを調整することで、さらに好適に回転成分を抑制し且つ安定した制御を行うことができる。
本実施形態では、図6に示すように、第1VCM152の駆動軸であるX’軸と第2VCM154の駆動軸であるY’軸との交点である駆動軸原点Mを、ブレ補正光学部材L3のレンズ中心Oよりも可動部130の可動部重心Gに近い位置に配置している。このため、可動部130の駆動軸原点Mを、可動部130の可動部重心Gに近づけることができるので、可動部130を移動させる際に悪影響となる回転成分の影響を抑制し、可動部130の移動に有効な並進成分を効率よく作用させることができる。好ましくは、駆動軸原点Mは可動部重心Gに一致し、このときは回転成分の影響を完全に除去することができる。したがって、本実施形態では、可動部130の目標位置への収束性や可動部130の制御安定性等を向上させ、ブレ補正装置100の制御性能を向上させることができる。また、重心調整部材などを用いずに回転成分の影響を完全に除去できるので可動部質量を増大させることなく駆動性能を維持できる。
本実施形態に係るブレ補正部100の制御性能を図11に示し、図16に示す従来技術(図15)の場合の制御性能と比較する。図11および図16に示すのは、ボード線図であり、入力に対する出力のゲイン・位相を示す。入力は可動部を駆動する電磁駆動力によって作用する加速度であり、出力は可動部重心位置である。
図16に示すように、図15に示す従来技術では、周波数H(Hz)にて、共振成分を有する。これは、図15に示す従来技術では、VCMの駆動軸がレンズ中心に向けて配置されているため、可動部の重心まわりに回転トルクが発生しているからである。
これに対して、本実施形態では、上記のように、VCMの駆動軸を可動部重心に近い位置に向けているので、可動部の重心まわりに発生する回転トルクが非常に小さい。したがって、本実施形態では、図11に示すように、共振成分が発生しない。
また、本実施形態では、図6に示すように、第1ホール素子122は、X軸とX’軸との交点を含む位置に配置してあり、第2ホール素子124はY軸とY’軸との交点を含む位置に配置してある。好適には、第1ホール素子122の中心をX軸とX’軸との交点に配置し、第2ホール素子124の中心をY軸とY’軸との交点に配置する。このため、駆動部と検出部とで磁石を共有することが可能になり、しかも検出部による検出特性と、駆動部による駆動特性の双方の特性を向上させることができる。
本実施形態では、図6に示すように、可動部重心Gとレンズ中心Oとの間に駆動軸原点Mが存在する。このため、ブレ補正装置の伝達関数に関するKKファクタの値が正の値になる。したがって、本発明に係るブレ補正装置では安定した制御を行うことができる。
本実施形態では、図5に示すように、ブレ検出部12が検出するブレ角速度信号ωp、ωyと、第1ホール素子122,第2ホール素子124が検出する可動部位置座標x、yとを利用して可動部130の制御を行っているので、可動部130を正確な目標位置に収束させることができる。
本実施形態では、第1ホール素子122,第2ホール素子124の検出軸X,Yに沿った目標位置座標を、可動部130の駆動軸X’,Y’に沿った目標移動量に変換して、可動部130を移動させているので、ブレ補正装置の制御を好適に行うことができる。
第2実施形態
本発明の第2実施形態では、重力方向に対するブレ補正装置100の配置が第1実施形態と異なる以外は第1実施形態と同様である。以下の説明において、上記の実施形態と重複する部分の説明を省略する。
図12において、水平軸hに対するVCMの駆動軸X’,Y’の傾き角度をα(deg)、可動部130に作用する重力をmg(N)(gは重力加速度(m/s))、水平軸hに対する重力mgの傾き角度をβ(deg)とすると、以下に示す力の平衡式が成り立つ。
Figure 2013140252
Figure 2013140252
上記の数式21と数式22との連立方程式を解くと、以下に示す数式23および数式24が得られる。
Figure 2013140252
Figure 2013140252
ここで、VCMの駆動電流をI,I(A)、VCMの推力定数をk,k(N/A、本実施形態ではk=k=k)とすると、以下の関係となる。
Figure 2013140252
上記より、VCMの駆動電流に関して以下の関係が成立する。
Figure 2013140252
Figure 2013140252
ここで、VCMの抵抗成分をRx’、Ry’(Ω、本実施形態ではRx’=Ry’=R)とすると、第1VCM152と第2VCM154とを駆動する際の消費電力P(W)は、以下の数式28で表される。
Figure 2013140252
数式28より、重力の傾き角度βと消費電流Pとは、図13に示す関係になる。すなわち、重力の傾き角度βが0(deg)または180(deg)となるときに、消費電流Pが最小になる。反対に、β=90(deg)となるときに、消費電流Pが最大になる。このことより、図14に示すように、β=0またはβ=180となるように可動部130を配置した時に、可動部130を支持するための消費電流が最小になる。
本実施形態では、図14(a)および図14(b)に示すように、X’軸とY’軸とが交差する角度のうち鋭角の角度θの内側に重力方向が向くように、可動部130に対して第1VCM152および第2VCM154を配置する。好適には、X’軸とY’軸とからなる角度θの二等分線が、重力方向に向くように、可動部130に対して図6に示す第1VCM152および第2VCM154を配置する。このように配置することで、第1VCM152および第2VCM154が可動部130を移動させる際に、重力を利用して、あるいは重力をキャンセルさせて、駆動力を可動部130に効率良く作用させることができる。
図14(a)に、カメラ1におけるブレ補正装置100(可動部130)の配置の一例を示す。カメラ1は、その上部にレリーズスイッチ24を備え、カメラ1を使用する撮影者は、このレリーズスイッチ24を上部に向けた状態で使用する頻度が高い。このとき、ブレ補正装置100の角度θの二等分線を、重力方向に向けるようにして配置することで、ブレ補正動作の消費電力を低減させ、カメラ1全体の消費電力を低減することができる。
なお、本発明は、上記の実施形態に限定されない。
上記の実施形態では、図1に示すブレ補正レンズL3を駆動するタイプの光学系移動型ブレ補正装置であるが、本発明においては、図1に示す撮像素子3が移動するタイプの撮像素子移動型ブレ補正装置にも適用することができる。
上記の実施形態では、可動部を駆動する手段として、2個のVCMを適用したが、これに限定されず、たとえば、2個以上のVCMであってもよい。また、圧電アクチュエータ等のその他のアクチュエータを使用してもよい。
上記の実施形態では、可動部の位置を検出する手段として、2個のホール素子を適用したが、これに限定されず、2個以上のホール素子であってもよく、また、PSDセンサ等のその他の位置検出手段を使用してもよい。
1 カメラ
1a カメラボディ
2 レンズ鏡筒
12 角速度センサ
14 CPU
100 ブレ補正装置
110 シャッター部
120 位置検出部
122 第1ホール素子
124 第2ホール素子
130 可動部
132 第1磁石
134 第2磁石
140 固定部
142 第1駆動コイル
144 第2駆動コイル
145 引張コイルばね
148 セラミックボール
150 ビス
152 第1VCM
154 第2VCM
162 目標位置生成部
164 減算器
166 フィードフォワードコントローラ
168 フィードバックコントローラ
170 加算器
L3 ブレ補正レンズ
G 可動部重心
M 駆動軸原点
O レンズ中心

Claims (13)

  1. 固定部材に対して相対的に移動可能な移動部材と、
    前記移動部材に備えられ、像ブレを補正するブレ補正光学部材と、
    前記ブレ補正光学部材の光軸と交差する駆動平面上において、前記移動部材を第1軸に沿って移動させる第1駆動部と、
    前記駆動平面上において、前記移動部材を前記第1軸に交差する第2軸に沿って移動させる第2駆動部とを有し、
    前記駆動平面上において、前記第1軸と前記第2軸との交点が、前記ブレ補正光学部材の中心よりも前記移動部材の重心に近い位置にあることを特徴とするブレ補正装置。
  2. 前記第1軸と前記第2軸とが直角以外の角度で交差することを特徴とする請求項1に記載のブレ補正装置。
  3. 前記光軸と直交する位置検出平面上で前記光軸を通る第3軸に検出軸を有し、前記ブレ補正光学部材の位置を検出する第1検出手段と、
    前記位置検出平面上で前記光軸を通り、前記第3軸に直交する第4軸に検出軸を有し、前記ブレ補正光学部材の位置を検出する第2検出手段とをさらに有し、
    前記第1検出手段が前記第3軸と前記第1軸との交点を含む位置に配置してあり、
    前記第2検出手段が前記第4軸と前記第2軸との交点を含む位置に配置してあることを特徴とする請求項1または2に記載のブレ補正装置。
  4. 前記駆動平面上において、前記移動部材の重心と前記ブレ補正光学部材の前記ブレ補正光学部材の前記中心との間に、前記第1軸と前記第2軸との交点があることを特徴とする請求項1〜3のいずれかに記載のブレ補正装置。
  5. 像ブレを検出しブレ信号を出力するブレ検出部と、
    前記ブレ信号を用いて前記第1駆動部および前記第2駆動部を制御する制御部とをさらに有する請求項1〜4のいずれかに記載のブレ補正装置。
  6. 前記制御部は、前記移動部材の位置座標と前記ブレ信号とを用いて、前記移動部材の前記第3軸および前記第4軸に平行な目標位置座標を算出し、前記目標位置座標を用いて前記移動部材の前記第1軸および前記第2軸に沿った目標移動量を算出し、前記目標移動量を用いて前記第1駆動部および前記第2駆動部を制御することを特徴とする請求項5に記載のブレ補正装置。
  7. 前記第1軸と前記第2軸とが交差する角度のうち鋭角の範囲内に重力方向が向くように、前記移動部材に対して前記第1駆動部および前記第2駆動部を配置することを特徴とする請求項1〜6のいずれかに記載のブレ補正装置。
  8. 前記ブレ補正光学部材が光学レンズを含むことを特徴とする請求項1〜7のいずれかに記載のブレ補正装置。
  9. 前記ブレ補正光学部材が撮像素子を含むことを特徴とする請求項1〜8のいずれかに記載のブレ補正装置。
  10. 固定部材に対して相対的に移動可能な移動部材と、
    前記移動部材に備えられ、像ブレを補正するブレ補正光学系と、
    前記固定部材と前記移動部材とを相対的に移動させるための第1方向の駆動力を生じさせる第1駆動部と、
    前記固定部材と前記移動部材とを相対的に移動させるための前記第1方向とは異なる第2方向の駆動力を生じさせる第2駆動部と、
    前記像ブレの量に対応するブレ信号が供給され、前記ブレ信号を用いて前記第1駆動部及び前記第2駆動部を制御する制御部とを含み、
    前記ブレ補正光学系の光軸と直交する平面上において、前記第1駆動部から前記第1方向に向かう直線と、前記第2駆動部から前記第2方向に向かう直線との交点は、前記ブレ補正光学系の中心よりも前記移動部材の重心に近い位置にあることを特徴とするブレ補正装置。
  11. 固定部材に対して相対的に移動可能な移動部材と、
    前記移動部材に備えられた撮像素子と、
    前記固定部材と前記移動部材とを相対的に移動させるための第1方向の駆動力を生じさせる第1駆動部と、
    前記固定部材と前記移動部材とを相対的に移動させるための前記第1方向とは異なる第2方向の駆動力を生じさせる第2駆動部と、
    前記像ブレの量に対応するブレ信号が供給され、前記ブレ信号を用いて前記第1駆動部及び前記第2駆動部を制御する制御部とを含み、
    前記撮像素子の撮像面と平行な平面上において、前記第1駆動部から前記第1方向に向かう直線と、前記第2駆動部から前記第2方向に向かう直線との交点は、前記撮像素子の中心よりも前記移動部材の重心に近い位置にあることを特徴とするブレ補正装置。
  12. 請求項1〜7、9、11のいずれかに記載のブレ補正装置を含む撮影装置。
  13. 請求項1〜8、10のいずれかに記載のブレ補正装置を含むレンズ鏡筒。
JP2012000282A 2012-01-04 2012-01-04 ブレ補正装置、レンズ鏡筒および撮影装置 Pending JP2013140252A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012000282A JP2013140252A (ja) 2012-01-04 2012-01-04 ブレ補正装置、レンズ鏡筒および撮影装置
PCT/JP2012/084128 WO2013103137A1 (ja) 2012-01-04 2012-12-28 ブレ補正装置、レンズ鏡筒および撮影装置
CN201811167857.7A CN109683345B (zh) 2012-01-04 2012-12-28 抖动校正装置、镜头镜筒以及摄影装置
CN201280066334.8A CN104040420B (zh) 2012-01-04 2012-12-28 抖动校正装置、镜头镜筒以及摄影装置
US14/323,555 US9529209B2 (en) 2012-01-04 2014-07-03 Blur compensation device, lens barrel, and camera device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000282A JP2013140252A (ja) 2012-01-04 2012-01-04 ブレ補正装置、レンズ鏡筒および撮影装置

Publications (1)

Publication Number Publication Date
JP2013140252A true JP2013140252A (ja) 2013-07-18

Family

ID=48745197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000282A Pending JP2013140252A (ja) 2012-01-04 2012-01-04 ブレ補正装置、レンズ鏡筒および撮影装置

Country Status (4)

Country Link
US (1) US9529209B2 (ja)
JP (1) JP2013140252A (ja)
CN (2) CN104040420B (ja)
WO (1) WO2013103137A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104869295A (zh) * 2015-05-28 2015-08-26 上海集成电路研发中心有限公司 一种可前后拍摄的电子设备
CN105629643A (zh) * 2014-11-06 2016-06-01 联想(北京)有限公司 电子设备及其控制方法
TWI672555B (zh) * 2015-07-14 2019-09-21 日商日本電產三協股份有限公司 帶有振動校正功能之光學單元及其製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123004B2 (en) * 2016-01-28 2018-11-06 Olympus Corporation Image stabilization apparatus and image pickup apparatus using image stabilization apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169359A (ja) * 2008-01-21 2009-07-30 Canon Inc 像振れ補正装置、撮像装置および光学装置
JP2009169360A (ja) * 2008-01-21 2009-07-30 Canon Inc 像振れ補正装置、撮像装置および光学装置
JP2009265180A (ja) * 2008-04-22 2009-11-12 Canon Inc 撮像装置
JP2010117671A (ja) * 2008-11-14 2010-05-27 Samsung Digital Imaging Co Ltd 像ぶれ補正装置
JP2011004075A (ja) * 2009-06-17 2011-01-06 Olympus Imaging Corp ブレ補正装置
JP2011028029A (ja) * 2009-07-27 2011-02-10 Panasonic Corp レンズ鏡筒およびそれを用いた撮像装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274056A (ja) * 1994-03-25 1995-10-20 Sony Corp カメラの手振れ補正装置
JP3792827B2 (ja) 1997-03-14 2006-07-05 キヤノン株式会社 光学装置
JPH1144898A (ja) * 1997-07-24 1999-02-16 Canon Inc 補正光学装置及び像振れ補正装置
JP3869660B2 (ja) * 2001-01-11 2007-01-17 ペンタックス株式会社 像振れ補正装置および像振れ補正機能付き光学機器
JP2005173372A (ja) 2003-12-12 2005-06-30 Matsushita Electric Ind Co Ltd 光学装置の手振れ補正装置
JP2006023556A (ja) * 2004-07-08 2006-01-26 Konica Minolta Photo Imaging Inc 姿勢制御機構及びこれを用いた撮像装置
KR100677357B1 (ko) * 2004-09-21 2007-02-02 엘지전자 주식회사 카메라 내장 통신 단말기의 이미지 수평각 보정 장치 및방법
JP4495564B2 (ja) 2004-10-04 2010-07-07 Hoya株式会社 ステージ装置及びこのステージ装置を利用したカメラの手振れ補正装置
JP4981341B2 (ja) 2006-02-07 2012-07-18 キヤノン株式会社 光学部材駆動装置及び光学機器
CN101017309B (zh) * 2006-02-08 2010-10-27 松下电器产业株式会社 图像抖动补正装置以及照相机
JP4564930B2 (ja) 2006-02-28 2010-10-20 三星電子株式会社 手振れ補正装置
JP4994695B2 (ja) 2006-04-13 2012-08-08 キヤノン株式会社 像振れ補正装置、鏡筒及び撮像装置
JP5012085B2 (ja) 2007-02-23 2012-08-29 株式会社ニコン ブレ補正装置及び光学装置
JP5109450B2 (ja) 2007-04-09 2012-12-26 株式会社ニコン ブレ補正装置及び光学機器
CN101681081B (zh) 2007-06-20 2011-12-28 松下电器产业株式会社 成像模糊校正装置以及摄影装置
JP4910998B2 (ja) * 2007-11-19 2012-04-04 ソニー株式会社 像ぶれ補正装置、レンズ鏡筒及び撮像装置
JP5132295B2 (ja) 2007-12-17 2013-01-30 キヤノン株式会社 撮像装置および光学機器
CN102016708B (zh) * 2008-04-30 2013-07-31 日本电产三协株式会社 带抖动修正功能的光学单元
WO2009139543A1 (ko) * 2008-05-14 2009-11-19 (주)하이소닉 떨림 보정기능이 구비된 영상 촬영 장치
WO2010038685A1 (ja) * 2008-09-30 2010-04-08 日本電産コパル株式会社 像振れ補正装置、撮像レンズユニット、及びカメラユニット
JP5347193B2 (ja) * 2008-12-25 2013-11-20 株式会社タムロン 防振アクチュエータ、及びそれを備えたレンズユニット、カメラ
JP5369725B2 (ja) * 2009-01-30 2013-12-18 株式会社ニコン 撮像装置
JP5137036B2 (ja) 2009-07-13 2013-02-06 三星電子株式会社 像ぶれ補正装置および撮像装置
JP5463583B2 (ja) * 2009-07-14 2014-04-09 株式会社タムロン 防振アクチュエータ、及びそれを備えたレンズユニット、カメラ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169359A (ja) * 2008-01-21 2009-07-30 Canon Inc 像振れ補正装置、撮像装置および光学装置
JP2009169360A (ja) * 2008-01-21 2009-07-30 Canon Inc 像振れ補正装置、撮像装置および光学装置
JP2009265180A (ja) * 2008-04-22 2009-11-12 Canon Inc 撮像装置
JP2010117671A (ja) * 2008-11-14 2010-05-27 Samsung Digital Imaging Co Ltd 像ぶれ補正装置
JP2011004075A (ja) * 2009-06-17 2011-01-06 Olympus Imaging Corp ブレ補正装置
JP2011028029A (ja) * 2009-07-27 2011-02-10 Panasonic Corp レンズ鏡筒およびそれを用いた撮像装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105629643A (zh) * 2014-11-06 2016-06-01 联想(北京)有限公司 电子设备及其控制方法
CN105629643B (zh) * 2014-11-06 2018-06-26 联想(北京)有限公司 电子设备及其控制方法
CN104869295A (zh) * 2015-05-28 2015-08-26 上海集成电路研发中心有限公司 一种可前后拍摄的电子设备
TWI672555B (zh) * 2015-07-14 2019-09-21 日商日本電產三協股份有限公司 帶有振動校正功能之光學單元及其製造方法

Also Published As

Publication number Publication date
WO2013103137A1 (ja) 2013-07-11
US9529209B2 (en) 2016-12-27
CN104040420A (zh) 2014-09-10
CN109683345B (zh) 2021-04-16
CN104040420B (zh) 2018-11-06
CN109683345A (zh) 2019-04-26
US20140313583A1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP6654658B2 (ja) 手振れ補正装置及び手振れ補正回路並びに手振れ補正方法
US8446672B2 (en) Vibration reduction apparatus with a center of gravity adjusting member to reduce detection errors and optical apparatus
US7856177B2 (en) Lens apparatus and camera
JP2009122544A (ja) 光学素子駆動装置及び撮像装置
JP2008242207A (ja) ぶれ補正装置及び撮像装置
JP2007171234A (ja) 手振れ補正装置,およびその方法
JP2010286810A (ja) ブレ補正装置および光学機器
WO2013103137A1 (ja) ブレ補正装置、レンズ鏡筒および撮影装置
JP2014228623A (ja) ブレ補正装置、レンズ鏡筒および撮影装置
JP5820667B2 (ja) 光学式像振れ補正機構
US11825198B2 (en) Drive device that drives movable unit by using actuator, image blur correcting device, image pickup apparatus, and lens barrel
JP2006126712A (ja) 手振れ補正システムおよび撮影装置
JP2014228621A (ja) ブレ補正装置および撮影装置
JP5458521B2 (ja) レンズ鏡筒、レンズ鏡筒の調整方法、光学装置、および光学装置の調整方法
JP2015099204A (ja) 像ブレ補正装置、レンズ鏡筒、カメラボディおよび撮影装置
JP2010276842A (ja) 像振れ補正装置
WO2014189027A1 (ja) ブレ補正装置、レンズ鏡筒および撮影装置
JP2014228622A (ja) ブレ補正装置、レンズ鏡筒および撮影装置
JP2009175241A (ja) 光学装置およびその調整方法
JP2014228625A (ja) ブレ補正装置、レンズ鏡筒および撮影装置
JP5061982B2 (ja) 光学装置およびカメラ
KR20200088999A (ko) 영상촬영장치의 떨림 보정을 위한 틸트구동장치
JP2007057998A (ja) 撮影装置
JP2014228624A (ja) ブレ補正装置、レンズ鏡筒および撮影装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105