JP2013044879A - 光学顕微鏡装置及びこれを備えた検査装置 - Google Patents

光学顕微鏡装置及びこれを備えた検査装置 Download PDF

Info

Publication number
JP2013044879A
JP2013044879A JP2011181633A JP2011181633A JP2013044879A JP 2013044879 A JP2013044879 A JP 2013044879A JP 2011181633 A JP2011181633 A JP 2011181633A JP 2011181633 A JP2011181633 A JP 2011181633A JP 2013044879 A JP2013044879 A JP 2013044879A
Authority
JP
Japan
Prior art keywords
aperture
optical system
image
light
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011181633A
Other languages
English (en)
Other versions
JP5611149B2 (ja
Inventor
Hiroshi Shimura
啓 志村
Tetsuya Shimbori
哲也 新堀
Mizuki Oku
瑞希 奥
Naoya Nakai
直也 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2011181633A priority Critical patent/JP5611149B2/ja
Priority to PCT/JP2012/068300 priority patent/WO2013027514A1/ja
Priority to US14/240,323 priority patent/US9851548B2/en
Publication of JP2013044879A publication Critical patent/JP2013044879A/ja
Application granted granted Critical
Publication of JP5611149B2 publication Critical patent/JP5611149B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/10Condensers affording dark-field illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2206Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【課題】パターン段差の小さいウエハなど、明視野観察では十分なコントラストが得られない試料に対してコントラストの高い画像の観察又は撮像を可能にする。
【解決手段】撮像に用いる対物レンズを通して試料を照明し、撮像光学系に開口フィルタを設けて、明視野観察成分の光を大幅に減衰させて撮像する。
【選択図】図1

Description

本発明は、明視野観察ではコントラストが低く観察が困難な試料を、高いコントラストで顕微観察又は撮像する光学顕微鏡装置及びこれを備えた検査装置に関する。
光又は荷電粒子線を用い、半導体ウエハその他の試料を検査する検査装置においては、検査対象とする試料(例えば半導体ウエハ)を検査ステージに搭載する際に、試料面の法線を回転軸とする回転と、試料面に平行な面内での直交2軸方向の位置を正確に定めること(アライメント)が必要とされている。
従来装置(例えば、特許文献1を参照)においては、低倍率の光学顕微鏡を用いて試料上の複数箇所にある特定パターンを撮像し、当該特定パターンが所定の位置に見えるように試料を回転及び/又は平行移動し、位置決めを行っている。光学顕微鏡には、明視野の光学顕微鏡が用いられる。なお、撮像された画像から特定パターンを認識するには、特定パターンが背景に対して高いコントラストを有していることが必要とされる。
特開2008−166320号公報 特開2003−149169号公報
近年におけるパターンの微細化に伴い、アライメントに用いる撮像画像において、パターンのコントラストが十分に取れなくなっている。結果的に、パターンの認識に失敗し、アライメントがうまく行かない問題が生じている。これは、リソグラフィーの工程で堆積されるレジスト膜や、デバイスを構成する導体や半導体材料の膜厚の減少が一因であると考えられている。膜厚の減少により、レジスト膜に形成されたパターンや、導体や半導体材料にエッチングにより形成されたパターンの段差が、パターンの撮像に用いる可視光の波長と比べて1桁以上小さくなっている。この結果、明視野の光学顕微鏡によっては、パターンのコントラストが十分に得られなくなっている。
コントラスト不足に対する対策として、画像処理によるパターン強調や、明暗視野対物レンズを用いた暗視野観察によるエッジ強調が考えられる。しかし、前者は画像のノイズも強調することになるため、パターンの認識が難しくなるケースが生じている。一方、後者は、その照明効率の低さから撮像画像の明るさが不足し、撮像に時間をかけてスループットを落とさないとアライメントができないという問題がある。さらに、後者は、太い対物レンズを必要とする。この対物レンズは、光学顕微鏡を半導体ウエハ等の試料を検査する検査装置に実装する際の制約条件となり、装置の大型化を招く等の問題がある。
本発明は、以上の課題を考慮してなされたものであり、パターン段差の小さい試料においても、パターン像を十分なコントラストにより安定的に得ることができる小型の光学顕微鏡装置とこれを備えた検査装置を実現する。
本発明は、観察又は撮像に用いる対物レンズを通して試料を照明し、撮像光学系に開口フィルタを設けて、明視野観察成分の光を大幅に減衰させて撮像することにある。
本発明により、パターンの段差が小さく明視野観察では十分なコントラストが得られない試料においても、パターン像を十分なコントラストで安定的に得ることができる。上述した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
光学顕微鏡装置の概略構成を示す図。 光学顕微鏡装置に設置して好適な一組の開口フィルタのうち一方の構成を示す図。 光学顕微鏡装置に設置して好適な一組の開口フィルタのうち他方の構成を示す図。 光学顕微鏡装置に設置して好適な開口フィルタの他の構成を示す図。 光学顕微鏡装置のビームスプリッタの構造例を示す図。 光学顕微鏡装置のビームスプリッタの構造例を示す図。 光学顕微鏡装置の他の概略構成を示す図。 光学顕微鏡装置のビームスプリッタの構造例を示す図。 光学顕微鏡装置のビームスプリッタの構造例を示す図。 光学顕微鏡装置の他の概略構成を示す図。 光学顕微鏡装置の他の概略構成を示す図。 光を透過する試料を観察する場合の光学顕微鏡装置の概略構成を示す図。 照明光と光学系の組み合わせによる照明効果を説明する図。 照明光と光学系の組み合わせによる照明効果を説明する図。 照明光と光学系の組み合わせによる照明効果を説明する図。 照明光と光学系の組み合わせによる照明効果を説明する図。 光学顕微鏡装置を備えた検査装置の概略構成を示す図。 光学顕微鏡装置により観察する試料の構造例を示す図。 光学顕微鏡装置によって撮像される画像の信号例を示す図。 光学顕微鏡装置のセンサ出力例を示す図。 光学顕微鏡装置のセンサ出力例を示す図。 光学顕微鏡装置のセンサ出力例を示す図。
以下、図面に基づいて、本発明の実施の形態を説明する。なお、本発明の実施態様は、後述する形態例に限定されるものではなく、その技術思想の範囲において、種々の変形が可能である。
[装置構成1]
図1に、実施例に係る光学顕微鏡装置100aの概略的な構成を示す。図1は、試料を落斜照明で照明し、試料からの反射光を取得して撮像する装置について表している。
光学顕微鏡装置100aは、照明光源110、照明光学系120、結像光学系165、カメラ195、AD変換器197、画像処理装置198から構成され、結像光学系165の物体面170に載置された試料の画像199を出力する。
照明光源110には、ハロゲンランプ、メタルハライドランプ、水銀ランプ、キセノンランプなどが用いられる。なお、照明光は、照明光源110からライドガイドを用いて照明光学系120に導いても良い。また、照明光源110には、発光ダイオード(LED)やレーザダイオード(LD)を用いても良い。照明光源110から放射された光は、照明光学系120、ビームスプリッタ150、対物レンズ160を経て、結像光学系165の物体面170に載置された試料に照射される。
照明光学系120は、照明レンズ、試料面と共役な位置に配置された視野絞り130、対物レンズ160の瞳面に配置された照明光学系の開口フィルタ140bを備える。試料で反射された光は、結像光学系165を経てカメラ195の撮像素子193に導かれる。
結像光学系165は、対物レンズ160、ビームスプリッタ150、結像光学系の開口フィルタ180d、結像レンズ190を備える。結像光学系の開口フィルタ180dは、対物レンズ160の瞳面、すなわち、照明光学系の開口フィルタ140bと共役な位置に配置される。ビームスプリッタ150は、表面に概略一様な透過率分布を持つ薄膜が形成された平板型の素子、又は、内部に概略一様な透過率分布を持つ薄膜が形成されたキューブ型の素子が用いられる。
カメラ195の撮像素子193には、画素が2次元に配置されたCCDエリアセンサが用いられる。ただし、CCDリニアセンサやTDI(Time Delay Integration)センサのように、画素が直線上に並んだリニアセンサを用い、試料を移動させて2次元の画像を取得しても良い。また、撮像素子193の形式は、CMOSセンサ、又はフォトダイオードアレイ等でも良い。カメラ195で光電変換された画像信号は、AD変換器197でデジタル信号に変換され、画像処理装置198に送られる。画像処理装置198は、階調変換、ノイズ低減処理等の画像処理を実行し、最終的に得られた画像199を出力する。
[開口フィルタの構成]
光学顕微鏡装置100aで使用する一対の開口フィルタ140b及び180dの構造例を、図2A、図2B及び図3に示す。なお、図2Aに示す開口フィルタと図2Bに示す開口フィルタで一対の開口フィルタを構成し、図2Aに示す開口フィルタと図3に示す開口フィルタで他の一対の開口フィルタを構成する。
図2Aは、照明光学系120に用いる開口フィルタ140bの例である。図2Aに示す開口フィルタは、中央に円形状の開口を有している。対物レンズ160の瞳の直径をd1とすると、開口フィルタ140bは、d1より小さい直径d3の開口内で透過率100%、その外側で透過率0%(遮光)の透過特性を有している。この構造の開口フィルタ140bを用いると、コヒーレンスファクタσ=d3/d1(<1)の照明が実現される。このように、光軸付近の光を照明に用いると、物体面170の照明光の強度分布を一様にし易く、視野端での明るさの低下が小さい画像を得ることが可能となる。このため、開口ファイルタ140bの構成は、画像処理におけるパターン認識の際に、高い認識率を確保するのに適している。
図2Bは、結像光学系165の開口フィルタ180dの例である。対物レンズ160の瞳の直径をd1とすると、開口フィルタ180dは、その直径をd1とする円とそれより小さい直径d2の円により挟まれた輪帯の開口内で透過率100%、直径d1の円の外側と直径d2の円の内側で透過率0%(遮光)の透過特性を有している。本明細書においては、この輪帯の開口を有する開口フィルタを、「輪帯開口絞り」ともいう。本実施例の場合、開口フィルタ180dは薄い板材で作製され、中心部分の直径d2の円形状の遮光部材を外側の4方向から支持する構成を採用する。このために、支持部が形成された部分だけは、直径d1と直径d2の間の領域であっても透過率0%(遮光)である。なお、図2Bにおいて、支持部材は、x軸とy軸に対して平行に形成される。
本実施例の場合、直径d3>直径d2を満たす例を示している。この条件を満たす場合、物体面170に導かれた照明光125bのうち物体面170で散乱又は回折を受けずに正反射された成分(正反射光成分)の一部(結像光学系165内の開口フィルタ180dの設置面において、光軸から離れた位置を通る成分185d)は、開口フィルタ180dの中心付近の遮光部で遮られることなくカメラ195の撮像素子193面に到達し、像形成に寄与する。
また、物体面170に導かれた照明光125bのうち物体面170で散乱又は回折を受けた成分の一部(結像光学系165内の開口フィルタ180dの設置面において、光軸から離れた位置を通る成分185b)は、開口フィルタ180dの輪帯開口部分を通ってカメラ195の撮像素子193面に到達し、像形成に寄与する。
前者の成分は明視野光成分に相当し、後者の成分は暗視野光成分に相当する。従って、この例では、カメラ195で撮影される画像は、エッジが強調された暗視野画像的な画像に、全体が明るい明視野画像的な画像成分が加算された画像となる。
なお、図2Bにおいては、輪帯開口の中心側に設けられる遮光部を支える4本の支持部材が、物体面170に形成されたパターンと平行又は直角になるように配置する例を示している。すなわち、4本の支持部材がx軸とy軸に対して平行に形成される例を示している。支持部材の配置をこのようにすることで、半導体ウエハ等の縦横パターン(図1のx軸方向又はy軸方向に平行なパターン)が主である試料を観察する際に、画像の見え方の等方性を維持し、歪のない良好な画像を観察することが可能になる。
これに対し、図3に示すように、4本の支持部材を光軸に対して45度回転させた位置に配置した開口フィルタを、結像光学系165の開口フィルタ180dに用いたとしても、図2Bに示す構成の開口フィルタを用いる場合と同等の効果を得ることができる。
なお、従来の光学顕微鏡で用いられる明暗視野対物レンズ用の開口フィルタは、輪帯開口の中心側に設ける遮光部を3方向から支持することが多い。しかし、画像の見え方の等方性が問題とならない場合には、本実施例の開口フィルタにおいても、輪帯開口の中心側に設ける遮光部を3方向から支持する構成を採用しても良い。
[ビームスプリッタの構成]
図4A及び図4Bに、ビームスプリッタ150の他の構造例を示す。ビームスプリッタ150の平面領域は、透過領域150aと反射領域150bで構成される。この実施例の場合、ビームスプリッタ150は透過性の基板で構成され、反射領域150bに対応する基板表面には、光を50%以上反射させる膜を形成する。因みに、透過領域150aは、透過性の基板で構成されているため、光が透過する。
この構造のビームスプリッタ150を用いる場合、物体面170で反射された光185bの透過率を高くすることができる。この場合、より明るい画像199を得ることができる。
しかし、図4Aに示すように、照明光学系120に開口フィルタ140bを設け、ビームスプリッタ150の反射領域150bと透過領域150aの境界面に照明光が当たらないように、開口フィルタ140bの遮光領域を設定することが必要である。もしそのような設定が存在しない場合、ビームスプリッタ150の反射領域150bと透過領域150aの境界面で散乱された照明光が結像レンズ190を経て撮像素子193に入射し、画像199のコントラストを低下させてしまうためである。
また、試料の特性に応じて照明特性を変える必要がある場合には、ビームスプリッタ150も交換(切り替え)することが必要となる。もっとも、ビームスプリッタ150の交換(切り替え)は、照明光学系120の開口フィルタ140bを単に切り替える場合又は可変型の開口フィルタにより開口サイズを変える場合と比し、格段に高精度の切り替え機構が必要となり、実現が難しいものとなる。
なお、ビームスプリッタ150の反射領域150bの反射率は、用途によって最適化することが望ましい。照明効率を高めたい場合には、反射率を100%近くに設定すれば良い。ただし、反射率が100%の場合には、物体面170において散乱及び/又は回折を受けずに正反射された成分(正反射光成分)のうちの一部の成分185d(結像光学系の開口フィルタ180dの設置面で、光軸から離れた位置にある成分185d)が、ビームスプリッタ150で反射されてしまい像形成に寄与しなくなってしまうことに注意が必要である。
正反射性分による像形成への寄与が必要な場合には、ビームスプリッタ150のうち反射領域150bの反射率を、50%から100%の間の低めの値に設定することが好ましい。反射率は、像の明るさと見え方のバランスが試料面上のパターンの認識に最適となるように設定すれば良い。
[装置構成2]
図5に、実施例に係る光学顕微鏡装置100bの概略的な構成を示す。図5には、図1との対応部分に同一符号を付して表している。図5と図1の違いは、照明光学系120の開口フィルタ140aと結像光学系165の開口フィルタ180cの特性である。
この実施例の場合、照明光学系の開口フィルタ140aとして、図2B又は図3に示す構造の輪帯開口を使用する。また、結像光学系の開口フィルタ180cとして、図2Aに示す円形状の開口を使用する。
さらに、照明光学系の開口フィルタ140aの中心の遮光部の直径d2と、結像光学系の開口フィルタ180cの円形開口の直径d3は、d3>d2の関係を満たすものとする。このとき、照明光学系120から射出される輪帯照明光125aのうち物体面170(試料)で散乱及び/又は回折を受けずに正反射された成分(正反射光成分)の一部(結像光学系165の開口フィルタ180cの設置面において、光軸に近い位置を通る成分185c)は、開口フィルタ180cで遮られることなくカメラ195の撮像素子193に到達し、像形成に寄与する。
また、物体面170(試料)で散乱及び/又は回折を受けた成分のうち結像光学系の開口フィルタ180cの設置面で光軸に近い位置を通る成分185aは、結像光学系の開口フィルタ180cの開口部分を通ってカメラ195の撮像素子193に到達し、像形成に寄与する。
前者の成分は明視野光成分に相当し、後者の成分は暗視野光成分に相当する。従って、この例の場合にも、図1と類似の原理により、カメラ195で撮影される画像は、エッジが強調された暗視野画像的な画像に、全体が明るい明視野画像的な画像成分が加算された画像となる。
なお、この実施例に示したような輪帯照明は、照明光学系内に開口フィルタ140aを用いなくても実現することができる。例えばビームスプリッタ150を構成する透明な基体の表面に、光軸から遠ざかる周辺領域は光を反射する一方で、光軸付近の中心部分は光を透過させる膜を形成しても良い。
しかし、この場合には、ビームスプリッタ150の反射領域と透過領域の境界面で散乱された照明光が結像レンズ190を経て撮像素子193に入射する。このため、画像199のコントラストが低下することが避けられない。
そこで、図5に示すように、ビームスプリッタ150には、概略一様な透過率分布を有する薄膜が基体表面に形成された素子を用い、照明光学系の開口フィルタ140aと組み合わせて輪帯状の照明を実現する。この組み合わせ構成により、コントラストの高い鮮明な画像を取得することが可能となる。
また、照明光学系の開口フィルタ140aを設けた上で、さらに図6A及び図6Bに示す構成のビームスプリッタ150を用いても良い。図6A及び図6Bに示すビームスプリッタ150のうち外周部分の黒く塗りつぶした領域が光の反射領域150bであり、中央部分が光を透過させる透過領域150aである。具体的には、反射領域150bに対応する形状の反射膜をビームスプリッタ150の表面に形成すれば良い。
なお、ビームスプリッタ150の反射領域150b(反射率50%以上)と透過領域150aの境界面には照明光が当たらないように、照明光学系120側の開口フィルタ140aの遮光領域を設定する。これにより、前述した散乱光の影響を回避し、コントラストの高い画像を得ることが可能となる。
この実施例の場合、上述した効果に加え、試料面で反射された光成分に対するビームスプリッタ150の透過率を高めることができる。このため、本実施例は、より明るい画像を得ることができる。ビームスプリッタ150の反射領域150bの反射率は、前述の通り、用途に応じて最適化することが望ましい。
[装置構成3]
図7に、実施例に係る光学顕微鏡装置100cの概略的な構成を示す。図7には、図1との対応部分に同一符号を付して表している。図7と図1の違いは、照明光学系120の開口フィルタ140bと結像光学系165の開口フィルタ180bの特性である。
この実施例の場合、図1に示す実施例と同様に、照明光学系120の開口フィルタ140bとして、図2Aに示す円形状の開口を有するものを使用する。また、結像光学系165の開口フィルタ180bとして、図2B又は図3に示す輪帯開口を有するものを使用する。
ただし、照明光学系の開口フィルタ140bの円形開口の直径d3と、結像光学系の開口フィルタ180bの中心に位置する遮光部の直径d2との関係は、d3≦d2の関係を満たすものとする。このとき、照明光学系120から射出される照明光125bのうち試料で散乱及び/又は回折を受けずに正反射された成分(正反射光成分)は、結像光学系の開口フィルタ180bで完全に遮光され、像形成には寄与しない。一方、試料で散乱及び/又は回折を受けた成分のうち、結像光学系の開口フィルタ180bの面内において光軸から離れた位置を通る成分185bは、結像光学系の開口フィルタ180bの輪帯開口部分を通ってカメラ195の撮像素子193に到達し、像形成に寄与する。
この実施例では、明視野光成分に相当する光の成分が結像に寄与せず、暗視野光成分だけが結像に寄与する。従って、この実施例の場合、カメラ195で撮影される画像は、エッジが強調された暗視野画像となる。
なお、図1及び図7に示したように、結像光学系の開口フィルタが輪帯状の開口を有する場合には、空間周波数の低い領域のMTFの係数が回折限界のMTFに比べて低くなる。この結果、撮像された画像の先鋭度が低くなる場合がある。先鋭度が低くなる場合には、画像処理装置198において、撮像された画像に対して逆フィルタを適用し、コントラストが低下した空間周波数成分を強調すれば良い。
開口フィルタによるMTFの低下は、焦点ずれによるボケと異なり、MTFの係数がゼロになる空間周波数が無い。従って、逆フィルタによってノイズが支配的になってしまうことも無く、画像の先鋭度を回復することが可能となる。
[装置構成4]
図8に、実施例に係る光学顕微鏡装置100dの他の概略的な構成を示す。図8には、図1との対応部分に同一符号を付して表している。図8と図1の違いは、照明光学系120の開口フィルタ140aと結像光学系の開口フィルタ180aの特性である。
この実施例の場合、照明光学系の開口フィルタ140aとして、図2B又は図3に示した輪帯状の開口を有するものを使用する。また、結像光学系の開口フィルタ180aとして、図2Aに示した円形状の開口を有するものを使用する。
さらに、照明光学系の開口フィルタ140aの中心に位置する遮光部の直径d2と、結像光学系の開口フィルタ180aの円形開口の直径d3は、d3≦d2の関係を満たしている。このとき、照明光学系120から射出される輪帯照明光125aのうち試料で散乱及び/又は回折を受けずに正反射された成分(正反射光成分)は、結像光学系の開口フィルタ180aで完全に遮光され、像形成には寄与しない。一方、試料で散乱及び/又は回折を受けた成分のうち結像光学系の開口フィルタ180aの面内において光軸に近い位置を通る成分185aは、結像光学系の開口フィルタ180aの開口部分を通ってカメラ195の撮像素子193に到達し、像形成に寄与する。
この実施例の場合、明視野光成分に相当する光の成分が結像に寄与せず、暗視野光成分だけが結像に寄与する。従って、この実施例の場合、カメラ195で撮影される画像は、エッジが強調された暗視野画像となる。
[装置構成5]
図9に、実施例に係る光学顕微鏡装置100eの概略的な構成を示す。図9には、図1との対応部分に同一符号を付して表している。本実施例に係る光学顕微鏡装置100eは、透過物体の観察向けに、透過照明光学系を採用する点を特徴とする。例えば光学顕微鏡装置100eは、ガラス基板等の観察や検査に適用して好適である。
この実施例の場合、照明光学系の開口フィル140aとして、図2B又は図3に示した輪帯状の開口を使用する。また、結像光学系の開口フィルタ180cとして、図2Aに示した円形状の開口を使用する。
さらに、照明光学系の開口フィルタ140aの中心に位置する遮光部の直径d2と、結像光学系の開口フィルタ180cの円形開口の直径d3は、d3>d2の関係を満たしている。このとき、照明光学系120から射出される輪帯照明光125aのうち試料で散乱及び/又は回折を受けずに透過した成分(透過光成分)の一部(結像光学系の開口フィルタ180cの面内において、光軸に近い側を通る成分185c)は、結像光学系の開口フィルタ180cで遮られずにカメラ195の撮像素子193に到達し、像形成に寄与する。
また、試料で散乱及び/又は回折を受けた成分であって、結像光学系の開口フィルタ180cの面内にて光軸付近を通る成分185aは、結像光学系の開口フィルタ180cの開口部分を通ってカメラ195の撮像素子193に到達し、像形成に寄与する。
前者の成分は明視野光成分に相当し、後者の成分は暗視野光成分に相当する。従って、この実施例の場合にも、図1と類似の原理により、カメラ195で撮影される画像は、エッジが強調された暗視野画像的な画像に、全体が明るい明視野画像的な画像成分が加算された画像となる。
[各装置による撮像の効果]
図10A及び図10Bを用い、各実施例に係る撮像方法の効果を説明する。図10Aは、輪帯照明で試料を照明して暗視野観察する場合における照明光の光路と試料表面における反射光の光路を示している。
実際には、試料に入射する照明光と、当該照明光に対して光軸を挟んで対向する位置から入射する照明光による試料での反射光は重なり合う。しかし、図10A及び図10Bにおいては、反射光の散乱による広がりが分かるように、対向関係にある他方の照明光の光路を省略して表している。
図中に示す角度θ1 は、結像光学系の物体側NAに対応する角度であり、照明光の入射角の最小値でもある角度を示している。一方、角度θ2 は、照明光の入射角の最大値を示している。角度θ3 は、反射光の試料面法線に対する角度の最小値を示している。
試料面にパターンが形成されている場合、回折及び/又は散乱の影響により反射光は広がり、θ3 はθ1 より小さくなる。この場合、反射光の一部(角度θ3 と角度θ1 の間にある成分)が、結像光学系の開口フィルタ180aの開口を通り抜け、カメラ195の撮像素子193に到達し、明るい点として撮像される。
一方、図10Bは、結像用の対物レンズ160の外側に暗視野照明用の光学素子162を備えたレンズ構成を採用する場合を示している。この場合、暗視野照明用の光学素子162を通る輪帯照明により試料(対物面170)を照明し、暗視野観察する。この図の場合も、図10Aの場合と同様に、散乱による反射光の広がりが分かるように、光軸を挟んで対向する位置から入射する照明光は、図では省略して表している。
図中に示す角度θ1 は、結像光学系の物体側NAに対応する角度を示している。角度θ2 は照明光の入射角の最大値を示し、角度θ4 は照明光の入射角の最小値を示している。一方、角度θ5 は、反射光の試料面法線に対する角度の最小値を示している。
試料面にパターンがある場合には、回折や散乱の影響で反射光が広がり、θ5 はθ4 より小さくなる。特にθ5 がθ1 より小さくなる場合には、反射光の一部が、結像光学系の開口フィルタ180aの開口を通り抜けてカメラ195の撮像素子193に到達し、明るい点として撮像される。
図10Bが図10Aと異なるのは、θ5 がθ4 とθ1 の間にある場合には像に寄与しない点である。試料面上のパターンの段差が、例えば波長の1/10以下の場合のように、波長に比べて非常に小さい場合には、散乱光の広がり(すなわち、θ5 とθ4 の差)は小さく、θ5 がθ4 とθ1 の間に入ってしまうことがある。θ4 とθ1 の差が小さくなるように対物レンズ160と暗視野照明用の光学素子162のホルダを構成すれば良いが、構造的限界でゼロにすることはできない。
従って、図10Bの場合には、非常に小さい段差を持ったパターンは、像として捕らえることができない場合がある。これに対し、図10Aに示す構成(各実施例の方法)は
、図10Bのθ4 とθ1 の差に相当する角度をゼロにすることが可能であり、非常に小さい段差を持ったパターンを像として捕らえることに適している。
[応用装置1]
図11A及び図11Bに、図5に示す光学顕微鏡装置100bに用いて好適な他の光学系の構成例を示す。ここでは、光学顕微鏡装置100bによる撮像を、結像用の対物レンズ160の外側に配置した暗視野照明用の光学素子162を用いて実現する方法について説明する。
図11Aは、完全な暗視野で撮像する場合の設定を示している。このため、暗視野照明用の光学素子162を通して照明光を試料(物体面170)に照射し、直接の反射光を結像光学系の開口フィルタ180aで完全に遮光する。
図11Bは、図5に示す光学顕微鏡装置100bにおいて、明視野光成分と暗視野光成分を合せて撮像する方式の実施例を示している。図11Bの場合、輪帯状に入射される照明光の幅を輪帯の内側方向に広げ、照明光の一部が対物レンズ160を通して試料(物体面170)に到達するようにしている。こうすることで、暗視野照明用の光学素子162を通過した暗視野照明成分と、対物レンズ160を通過した明視野照明成分の両者が寄与した像を撮像することが可能となる。
[応用装置2]
図12に、前述した装置構成を応用した検査装置の全体構成例を示す。図12に示す検査装置は、検査用の画像の取得に用いられる荷電粒子線装置と、試料を所定位置にアライメントする際に用いられる光学顕微鏡装置100fにより構成される。
本実施例の場合、荷電粒子線装置には、走査型電子顕微鏡(SEM:Scanning Electron Microscope)装置を使用する。SEM装置は、SEM装置制御部330により制御される。一方、光学顕微鏡装置100fは、光学顕微鏡制御部320により制御される。検査装置の全体は、ユーザインターフェースを備えたシステム制御部310により制御される。
SEM装置では、電子源1から発生された電子が一次電子加速電極2で加速され、コンデンサレンズ4を経て対物レンズ7に導かれる。ここでの電子は対物レンズ7より集束され、一次電子線として試料8に照射される。一次電子線の照射位置からは二次電子9が発生される。
二次電子9は反射板5に衝突して新たな二次電子を発生し、反射板5で発生された二次電子が二次電子検出器10で補足される。二次電子検出器10に入射する電子の量に応じ、二次電子検出器10の出力が変化する。
SEM装置では、走査コイル6による電子ビームの偏向により、電子ビームが試料表面を走査する。走査に同期して、二次電子検出器10の出力を画像の濃淡に変換して記録することにより、試料表面の形状を二次元画像として取得することができる。この画像を用いることにより、試料上のパターンの寸法検査、試料上のパターン欠陥の検査、試料上の異物等の検査を実行することができる。
光学顕微鏡装置100fには、図1、図5、図7、図8に示す光学顕微鏡装置のいずれをも使用することができる。本実施例では、図8に示す構成の光学顕微鏡装置100dを使用する。なお、本例の場合、ビームスプリッタ150には、概略一様な透過率分布を有する薄膜を形成した平板型の素子を使用する。また、本例の場合、照明光学系の開口フィルタ140aと結像光学系の開口フィルタ180aのそれぞれに、フィルタ切り替え機構142及び182を搭載する。
照明光学系のフィルタ切り替え機構142は、輪帯開口を有する開口フィルタ140aと円形開口を有する開口フィルタ140bの2種を切り替え対象とする。一方、結像光学系のフィルタ切り替え機構182は、円形開口を有する開口フィルタ180aと輪帯開口を有する開口フィルタ180bの2種を切り替え対象とする。
照明光学系の開口フィルタと結像光学系の開口フィルタは、いずれも透過で使用する開口フィルタであり、0.1mm程度のずれは許容可能である。このため、安価な切り替え機構を用いることができる。
このフィルタ切り替え機構142及び182の搭載により、1台の光学顕微鏡装置100fを、図7に示す光学顕微鏡装置100c又は図8に示す光学顕微鏡装置100dとして選択的に使用することが可能となる。または、フィルタ切り替え機構142及び182の搭載により、1台の光学顕微鏡装置100fを、図1に示す光学顕微鏡装置100a又は図5に示す光学顕微鏡装置100bとして選択的に使用することが可能となる。すなわち、開口フィルタの切り替えにより、1台の光学顕微鏡装置100fにより2種類の光学系構造を実現することができる。
さらに、虹彩絞り(iris diaphragms)を個々の開口フィルタに適用し、開口フィルタの開口サイズを可変とすれば、図1、図5、図7、図8に示す4種類の光学系を1つの光学顕微鏡装置により実現することができる。
なお、コスト高になるが、図4A、図4B及び図6A、図6Bに示すように、反射領域150bと透過領域150aを有するビームスプリッタ150を採用し、複数のビームスプリッタ150を切り替え可能としても良い。切り替え機構の搭載により、照明光の利用効率を最適化することが可能となり、消費電力の少ない光源を用いて、より明るい画像を得ることが可能となる。
[試料の観察]
図13に、明視野観察では、低いコントラストしか得られない試料の例を示す。(a)は試料170の平面図を、(b)は試料170のA−A’断面図を示している。試料170は、基板172とパターン174から構成される。半導体ウエハの場合、パターン174は、直線で構成されることが多い。もっとも、孤立パターンでは、曲線形状のパターン174もあり得る。図13では、線幅Wでパターン高さ(段差)hの直線から構成される矩形パターンを示した。
パターン174の材質は、Si基板上のエッチングパターンの場合のように基板172と同一の場合もあるが、レジスト等の光を透過する材料の場合もある。前者の場合には、パターン174の高さhが観察又は撮像する光の波長より小さくなると、明視野観察ではコントラストが低く、パターンの判別が困難となる。一方、後者の場合には、パターン174の高さhが比較的大きくても明視野観察ではコントラストが低く、パターンの判別が困難となる。どちらの場合も背景部分とパターン部分で光の反射率に差がつかないからである。
図14に、図13に示したパターン174の観察像の特徴を示す。なお、(a)は試料の光学像を示している。(b)と(c)は、A−A’ラインでの試料の光学像の明るさのプロファイルを示している。因みに、(b)に示すプロファイルは、明視野観察画像のプロファイルの例である。(c)に示すプロファイルは、暗視野観察画像のプロファイルの例である。
前述したように、背景部分とパターン部分で光の反射率に差がない試料の場合には、明視野観察で得られる光学像は、(b)のプロファイルに示すように、全体的に明るい像となる。なお、パターン部分では、光の散乱により像に寄与する光量が若干減る。このため、パターンが暗く見える場合が多い。
背景部分の明るさを”d”、パターン部分の明るさの低下量を”c”とすると、光学的コントラストC_BFは、
C_BF≒c/(2d)
により表すことができる。従って、背景部分とパターン部分で光の反射率に差がない試料の場合には、光学的コントラストC_BFは小さい値となる。
一方、暗視野観察で得られる光学像は、(c)のプロファイルに示すように、全体的に暗い画像となる。図7又は図8に示したように、パターンの無い部分では、照明光の正反射光成分が結像光学系において全て遮光される。このため、撮像素子193により取得される光学像は暗くなる。一方、パターン部では、光の散乱によって若干の光が結像光学系を通過して像に寄与する。このため、パターンが明るく見える。背景部分の明るさをb、パターン部分の明るさをaとすると、光学的コントラストC_DFは、
C_DF=(a−b)/(a+b)
により表すことができる。従って、パターン部分で散乱される光を多く結像光学系に取り込めれば、コントラストを高めることが可能となる。
このように、明視野観察ではコントラストが低くなるパターンの観察には、暗視野観察が適している。
しかし、暗視野観察では、光学像をカメラ195で撮像する際に明るさ不足が問題となる。図15に、撮像素子193の撮像面に形成される光学像の明るさと、カメラ195のアナログ信号出力の関係を示す。横軸は光学像の明るさを示し、縦軸はカメラ195のアナログ出力信号レベルを示している。また、曲線210は、カメラ195の光電変換特性を示している。
カメラ195のアナログ出力信号は、AD変換器197によってデジタル信号に変換される。図15の縦軸に示す幅pの目盛りは、AD変換の際のステップ幅を示している。曲線210に示すように、カメラ195の光電変換特性は、光強度が強い領域では線形であるが、光強度が弱い領域で線形でなくなることが多い。一方で、暗視野観察で得られる光学像は、背景が暗い上に、パターン部分の光強度も弱いことが多い。
図14の(c)に示すプロファイル(背景の明るさがb、パターン部の明るさがaで表される)を図15の横軸上で表すと、明るさa、bともに非線形領域に入ってしまう。この場合、カメラ195のアナログ出力信号の振幅は最大でもレベルeとなり、AD変換した際に0となってしまう。すなわち、出力画像199では、パターンそのものを認識できなくなってしまう。
この解決方法には、照明光源110としてより出力の大きいものを用いる方法、照明光学系120の照明効率を高める方法等が考えられる。試料に照射する光量を増やすことができれば、図15に示すように、背景の明るさをb’、パターン部分の明るさをa’に増やすことができる。この場合、パターン部分に対応するアナログ出力信号の最大振幅レベルはe’となり、AD変換後も検出可能なレベルになる。
しかし、出力の大きな光源は、体積が大きくなる、コストが高くなる、開発に時間がかかる等の問題がある。また、照明効率には理論限界があり、あまり改善の余地はない。
一方、別の対策として、カメラ195の光電変換のゲインを高めることも考えられる。図16に、この場合の原理図を示す。曲線220は、ゲインを高めたカメラ195の光電変換特性を示している。図に示すように、ゲインを高めることによって、光強度が一定レベル以上の領域では、光強度に対する出力信号のレベルを高めることが可能になる。ところが、図に示す明るさa、bのように、光強度がそもそも低い領域では、アナログ出力信号のレベルはほとんど変化せず、カメラ195のゲインを高める効果は得られない。
これに対し、図1又は図5に示す光学顕微鏡装置の場合には、暗視野観察で得られる光学像に正反射光成分を加えることにより、光学像の背景明るさをカメラ195で検出可能なレベルに持ち上げることができる。その上、こうして得られる光学像を光電変換ゲインの高いカメラ195で撮像する。
図17に、図1又は図5に示す光学顕微鏡装置を用いる場合にカメラ195から出力されるアナログ出力信号の波形を示す。まず、横軸を見て分かるように、暗視野光成分の光学像に正反射光成分を加えることにより、像の背景明るさがbからfに高められている。この光成分を光電変換ゲインの高いカメラ195で撮像することにより、本来はeのレベルしか得られなかったパターン部分のアナログ出力信号のレベルをgに増やすことができる。結果的に、前述した実施例の手法を用いれば、出力の大きい照明光源110を用いなくても、AD変換後も検出可能なレベルのアナログ出力信号を得ることができる。
[まとめ]
以上説明したように、各実施例に係る装置構成の採用により、従来の明視野観察では十分なコントラストが得られなかった試料に対しても十分なコントラストを得ることが可能となる。そして、各光顕微鏡装置を半導体ウエハの検査装置に適用することにより、ウエハのアライメントに必要なパターンコントラストを安定的に得ることが可能になる。
[他の装置例]
前述の実施例では、結像光学系165を構成する対物レンズ160を通して照明光を試料(対物面170)に導く例を説明したが、従来の明暗視野対物レンズで用いられているように、照明光を対物レンズの外側から試料に導く方式と併用しても良い。
前述の実施例の場合には、基本的に試料が反射物体である場合について説明したが、装置構成5に示したように、透過物体を透過照明で観察する場合にも適用できる。
なお、本発明は上述した形態例に限定されるものでなく、様々な変形例が含まれる。例えば、上述した形態例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある形態例の一部を他の形態例の構成に置き換えることが可能であり、また、ある形態例の構成に他の形態例の構成を加えることも可能である。また、各形態例の構成の一部について、他の構成を追加、削除又は置換することも可能である。
100a、100b、100c、100d、100e、100f…光学顕微鏡装置
110…照明光源
120…照明光学系
165…結像光学系
180a、180b、180c、180d…結像光学系の開口フィルタ
193…撮像素子
140a、140b…照明光学系の開口フィルタ
170…結像光学系の物体面(試料面)

Claims (16)

  1. 試料の拡大像を観察又は撮像する光学顕微鏡装置において、
    照明光源と、
    前記照明光源からの光を試料に導く照明光学系と、
    試料からの光を集め、像を形成する結像光学系と、
    結像光学系のシステム開口を規定する位置に配置され、正反射光成分を減衰させる第1の開口フィルタと、
    結像光学系の像面に配置され、光学像を電気信号に変換する撮像素子と、
    照明光学系中で、前記第1の開口フィルタと共役な位置に配置された第2の開口フィルタと
    を有することを特徴とする光学顕微鏡装置。
  2. 請求項1に記載の光学顕微鏡装置において、
    前記第1及び第2の開口フィルタのうちの一方は、コヒーレンスファクタが1未満(σ<1)の円形状の開口を有し、他方は輪帯状の開口を有する
    ことを特徴とする光学顕微鏡装置。
  3. 請求項2に記載の光学顕微鏡装置において、
    前記第1の開口フィルタはコヒーレンスファクタが1未満(σ<1)の円形状の開口を有し、前記第2の開口フィルタは輪帯状の開口を有する
    ことを特徴とする光学顕微鏡装置。
  4. 請求項2に記載の光学顕微鏡装置において、
    前記第2の開口フィルタはコヒーレンスファクタが1未満(σ<1)の円形状の開口を有し、前記第1の開口フィルタは輪帯状の開口を有する
    ことを特徴とする光学顕微鏡装置。
  5. 請求項2に記載の光学顕微鏡装置において、
    前記輪帯状の開口は、非光透過性の円板状の第1の部材と、前記開口に対して外側に位置して前記開口の外延を規定する非光透過性の第2の部材で挟まれた空間として形成され、前記第1の部材を支持するように前記第2の部材から延びる支持部材は、試料面に形成されたパターンに対して平行又は直角に配置される
    ことを特徴とする光学顕微鏡装置。
  6. 請求項5に記載の光学顕微鏡装置において、
    前記支持部材は4つであり、前記第1の部材を四方向から支持する
    ことを特徴とする光学顕微鏡装置。
  7. 請求項1に記載の光学顕微鏡装置において、
    前記結像光学系により形成される光学像の平均明るさが、前記撮像素子による光電変換特性が線形な領域に入るように、前記第1の開口フィルタの透過特性と前記第2の開口フィルタの透過特性の関係を定める
    ことを特徴とする光学顕微鏡装置。
  8. 請求項1に記載の光学顕微鏡装置において、
    前記照明光学系からの光を結像光学系の対物レンズを通して試料に照射する
    ことを特徴とする光学顕微鏡装置。
  9. 荷電粒子源と、荷電粒子線が照射される試料を保持する試料ステージと、前記荷電粒子源から放射された荷電粒子線を試料上で走査させる走査コイルと、前記荷電粒子線が照射した試料から得られる信号を検出する検出器とを有する荷電粒子線装置と、
    照明光源と、前記照明光源からの光を前記試料に導く照明光学系と、試料からの光を集め、像を形成する結像光学系と、結像光学系のシステム開口を規定する位置に配置され、正反射光成分を減衰させる第1の開口フィルタと、結像光学系の像面に配置され、光学像を電気信号に変換する撮像素子と、照明光学系中で、前記第1の開口フィルタと共役な位置に配置された第2の開口フィルタとを有する光学顕微鏡と
    を有する検査装置。
  10. 請求項9に記載の検査装置において、
    前記第1及び第2の開口フィルタのうちの一方は、コヒーレンスファクタが1未満(σ<1)の円形状の開口を有し、他方は輪帯状の開口を有する
    ことを特徴とする検査装置。
  11. 請求項10に記載の検査装置において、
    前記第1の開口フィルタはコヒーレンスファクタが1未満(σ<1)の円形状の開口を有し、前記第2の開口フィルタは輪帯状の開口を有する
    ことを特徴とする検査装置。
  12. 請求項10に記載の検査装置において、
    前記第2の開口フィルタはコヒーレンスファクタが1未満(σ<1)の円形状の開口を有し、前記第1の開口フィルタは輪帯状の開口を有する
    ことを特徴とする検査装置。
  13. 請求項10に記載の検査装置において、
    前記輪帯状の開口は、非光透過性の円板状の第1の部材と、前記開口に対して外側に位置して前記開口の外延を規定する非光透過性の第2の部材で挟まれた空間として形成され、前記第1の部材を支持するように前記第2の部材から延びる支持部材は、試料面に形成されたパターンに対して平行又は直角に配置される
    ことを特徴とする検査装置。
  14. 請求項13に記載の検査装置において、
    前記支持部材は4つであり、前記第1の部材を四方向から支持する
    ことを特徴とする検査装置。
  15. 請求項9に記載の検査装置において、
    前記結像光学系により形成される光学像の平均明るさが、前記撮像素子による光電変換特性が線形な領域に入るように、前記第1の開口フィルタの透過特性と前記第2の開口フィルタの透過特性の関係を定める
    ことを特徴とする検査装置。
  16. 請求項9に記載の検査装置において、
    前記照明光学系からの光を結像光学系の対物レンズを通して試料に照射する
    ことを特徴とする検査装置。
JP2011181633A 2011-08-23 2011-08-23 光学顕微鏡装置及びこれを備えた検査装置 Active JP5611149B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011181633A JP5611149B2 (ja) 2011-08-23 2011-08-23 光学顕微鏡装置及びこれを備えた検査装置
PCT/JP2012/068300 WO2013027514A1 (ja) 2011-08-23 2012-07-19 光学顕微鏡装置及びこれを備えた検査装置
US14/240,323 US9851548B2 (en) 2011-08-23 2012-07-19 Optical microscope device and testing apparatus comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011181633A JP5611149B2 (ja) 2011-08-23 2011-08-23 光学顕微鏡装置及びこれを備えた検査装置

Publications (2)

Publication Number Publication Date
JP2013044879A true JP2013044879A (ja) 2013-03-04
JP5611149B2 JP5611149B2 (ja) 2014-10-22

Family

ID=47746265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011181633A Active JP5611149B2 (ja) 2011-08-23 2011-08-23 光学顕微鏡装置及びこれを備えた検査装置

Country Status (3)

Country Link
US (1) US9851548B2 (ja)
JP (1) JP5611149B2 (ja)
WO (1) WO2013027514A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087114A (ja) * 2013-10-28 2015-05-07 凸版印刷株式会社 検査装置
JP2017068090A (ja) * 2015-09-30 2017-04-06 キヤノン株式会社 結像光学系及びそれを備える画像読取装置
JP2017068203A (ja) * 2015-10-02 2017-04-06 株式会社ニコン 顕微鏡
JPWO2016063429A1 (ja) * 2014-10-20 2017-08-03 オリンパス株式会社 標本観察装置及び標本観察方法
KR101785039B1 (ko) 2016-04-08 2017-10-12 광주과학기술원 부분 암시야 모듈을 포함하는 암시야 현미경
KR20190028448A (ko) * 2016-07-13 2019-03-18 옥스포드 유니버시티 이노베이션 리미티드 간섭계 산란 현미경
JP2020071051A (ja) * 2018-10-29 2020-05-07 三星電子株式会社Samsung Electronics Co.,Ltd. 照明装置及び検査装置
US10782535B2 (en) 2015-09-30 2020-09-22 Canon Kabushiki Kaisha Image forming optical system and image reading apparatus including the same
JP2021060209A (ja) * 2019-10-03 2021-04-15 レーザーテック株式会社 検査装置及び検査方法
JP2021099353A (ja) * 2018-01-15 2021-07-01 株式会社東芝 物体の表面検査装置
JP7465669B2 (ja) 2020-02-18 2024-04-11 株式会社エビデント 暗視野コンデンサ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9696264B2 (en) * 2013-04-03 2017-07-04 Kla-Tencor Corporation Apparatus and methods for determining defect depths in vertical stack memory
EP2993509B1 (en) * 2013-04-30 2019-06-26 Olympus Corporation Sample observation device and sample observation method
JP6506908B2 (ja) * 2014-02-24 2019-04-24 オリンパス株式会社 合焦方法、計測方法、合焦装置、及び計測装置
US10408766B2 (en) * 2015-02-04 2019-09-10 Bosch Packaging Technology K.K. Inspection device and inspection system
JP5866586B1 (ja) * 2015-09-22 2016-02-17 マシンビジョンライティング株式会社 検査用照明装置及び検査システム
JP6768289B2 (ja) * 2015-12-01 2020-10-14 キヤノン株式会社 走査型顕微鏡
GB2561238A (en) * 2017-04-07 2018-10-10 Univ Bath Apparatus and method for monitoring objects in space
US11314073B2 (en) * 2018-10-29 2022-04-26 Samsung Electronics Co., Ltd. Lighting device and inspection apparatus having the same
CN113203708A (zh) * 2021-04-22 2021-08-03 平方和(北京)科技有限公司 一种光学设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068604A (ja) * 2001-08-23 2003-03-07 Nikon Corp 照明光学装置および該照明光学装置を備えた露光装置
JP2005049663A (ja) * 2003-07-30 2005-02-24 Sony Corp マスク検査装置およびマスク検査方法
JP2007026885A (ja) * 2005-07-15 2007-02-01 Keyence Corp 拡大観察装置、拡大観察装置の操作方法、拡大観察装置操作プログラムおよびコンピュータで読み取り可能な記録媒体並びに記録した機器
JP2010062281A (ja) * 2008-09-03 2010-03-18 Canon Inc 照明光学系及び露光装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089129A (ja) * 1998-09-16 2000-03-31 Nikon Corp 位相差付与部材の位置決め方法
TW554411B (en) * 2001-08-23 2003-09-21 Nikon Corp Exposure apparatus
JP2003149169A (ja) 2001-11-16 2003-05-21 Tokyo Seimitsu Co Ltd ウエハ欠陥検査装置
JP2004101406A (ja) 2002-09-11 2004-04-02 Tokyo Seimitsu Co Ltd 外観検査装置
JP4902342B2 (ja) 2006-12-27 2012-03-21 株式会社日立ハイテクノロジーズ 検査装置
US7898653B2 (en) 2006-12-20 2011-03-01 Hitachi High-Technologies Corporation Foreign matter inspection apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068604A (ja) * 2001-08-23 2003-03-07 Nikon Corp 照明光学装置および該照明光学装置を備えた露光装置
JP2005049663A (ja) * 2003-07-30 2005-02-24 Sony Corp マスク検査装置およびマスク検査方法
JP2007026885A (ja) * 2005-07-15 2007-02-01 Keyence Corp 拡大観察装置、拡大観察装置の操作方法、拡大観察装置操作プログラムおよびコンピュータで読み取り可能な記録媒体並びに記録した機器
JP2010062281A (ja) * 2008-09-03 2010-03-18 Canon Inc 照明光学系及び露光装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087114A (ja) * 2013-10-28 2015-05-07 凸版印刷株式会社 検査装置
JPWO2016063429A1 (ja) * 2014-10-20 2017-08-03 オリンパス株式会社 標本観察装置及び標本観察方法
US10782535B2 (en) 2015-09-30 2020-09-22 Canon Kabushiki Kaisha Image forming optical system and image reading apparatus including the same
JP2017068090A (ja) * 2015-09-30 2017-04-06 キヤノン株式会社 結像光学系及びそれを備える画像読取装置
JP2017068203A (ja) * 2015-10-02 2017-04-06 株式会社ニコン 顕微鏡
KR101785039B1 (ko) 2016-04-08 2017-10-12 광주과학기술원 부분 암시야 모듈을 포함하는 암시야 현미경
JP2019520612A (ja) * 2016-07-13 2019-07-18 オックスフォード ユニヴァーシティ イノヴェーション リミテッド 干渉散乱顕微鏡
KR20190028448A (ko) * 2016-07-13 2019-03-18 옥스포드 유니버시티 이노베이션 리미티드 간섭계 산란 현미경
KR102402863B1 (ko) * 2016-07-13 2022-05-26 옥스포드 유니버시티 이노베이션 리미티드 간섭계 산란 현미경
JP7260467B2 (ja) 2016-07-13 2023-04-18 オックスフォード ユニヴァーシティ イノヴェーション リミテッド 干渉散乱顕微鏡
JP2021099353A (ja) * 2018-01-15 2021-07-01 株式会社東芝 物体の表面検査装置
US11249028B2 (en) 2018-01-15 2022-02-15 Kabushiki Kaisha Toshiba Apparatus for inspecting object surface
JP2020071051A (ja) * 2018-10-29 2020-05-07 三星電子株式会社Samsung Electronics Co.,Ltd. 照明装置及び検査装置
JP7221648B2 (ja) 2018-10-29 2023-02-14 三星電子株式会社 照明装置及び検査装置
JP2021060209A (ja) * 2019-10-03 2021-04-15 レーザーテック株式会社 検査装置及び検査方法
JP7296296B2 (ja) 2019-10-03 2023-06-22 レーザーテック株式会社 検査装置及び検査方法
JP7465669B2 (ja) 2020-02-18 2024-04-11 株式会社エビデント 暗視野コンデンサ

Also Published As

Publication number Publication date
WO2013027514A1 (ja) 2013-02-28
JP5611149B2 (ja) 2014-10-22
US20140210983A1 (en) 2014-07-31
US9851548B2 (en) 2017-12-26

Similar Documents

Publication Publication Date Title
JP5611149B2 (ja) 光学顕微鏡装置及びこれを備えた検査装置
US9678021B2 (en) Method and apparatus for inspecting defects
US8467048B2 (en) Pattern defect inspection apparatus and method
US7714997B2 (en) Apparatus for inspecting defects
JP4150592B2 (ja) 自動合焦方法
JP4260587B2 (ja) パターン欠陥検査装置
JP2019015742A (ja) 試料を二つの別個のチャンネルで同時に検査するためのシステム
JP6086362B2 (ja) 検査システム及び検査用照明装置
JPH10325711A (ja) 検査方法およびその装置並びに半導体基板の製造方法
KR101895255B1 (ko) 결함 검사 장치 및 결함 검사 방법
JP4645113B2 (ja) 光検査方法及び光検査装置並びに光検査システム
KR20180099567A (ko) 패널 입자감 검출장치
KR101445463B1 (ko) 결함 검사 방법 및 그 장치
JP2022517067A (ja) 非円形瞳を有する検査システム
CN116430570B (zh) 光强校正、照明、显微镜成像、硅片缺陷检测装置及方法
JP6784773B2 (ja) 標本観察装置
KR20150066425A (ko) 조명 장치 및 이를 이용한 광학 검사 장치와 광학 현미경
JP2008046011A (ja) 表面検査装置
JP2010190776A (ja) 撮像装置および表面検査装置
TWI437263B (zh) 觀察光學系及雷射加工裝置
JP4958663B2 (ja) 照明用アダプタ、照明装置、及び撮像素子検査用照明装置
JPH0682373A (ja) 欠陥検査方法
CN117269190A (zh) 一种晶圆缺陷光学检测系统
CN113302538A (zh) 利用吸收滤光器进行相衬成像的角度可变照明
JP2004317310A (ja) 暗視野照明装置、及び欠陥検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140902

R150 Certificate of patent or registration of utility model

Ref document number: 5611149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350