JP2005049663A - マスク検査装置およびマスク検査方法 - Google Patents

マスク検査装置およびマスク検査方法 Download PDF

Info

Publication number
JP2005049663A
JP2005049663A JP2003282245A JP2003282245A JP2005049663A JP 2005049663 A JP2005049663 A JP 2005049663A JP 2003282245 A JP2003282245 A JP 2003282245A JP 2003282245 A JP2003282245 A JP 2003282245A JP 2005049663 A JP2005049663 A JP 2005049663A
Authority
JP
Japan
Prior art keywords
mask
optical system
light
phase
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003282245A
Other languages
English (en)
Inventor
Ken Ozawa
謙 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003282245A priority Critical patent/JP2005049663A/ja
Publication of JP2005049663A publication Critical patent/JP2005049663A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

【課題】位相シフトマスクの位相シフトパターン欠陥と通常のマスクパターン欠陥の両方を、簡単な操作で検出できるようにする。
【解決手段】光源110と、光源110より射出する光Lを均一化する照明光学系120と、照明光学系120より射出され露光用マスク150を透過した光Lを集光して観測面140に結像する対物光学系130とを備えた露光用マスク150の位相欠陥を検査するマスク検査装置100であって、対物光学系瞳面PLで露光用マスク150を透過した0次回折光が通過する領域に設けた位相差フィルタ167と、照明光学系瞳面iPLで位相差フィルタ167と共役な形状を有する円環開口絞り163とを備えたものである。
【選択図】図1

Description

本発明は、マスク検査装置およびマスク検査方法に関し、詳しくは低段差の位相欠陥およびそれ以外の通常パターン欠陥の検出を可能とするマスク検査装置およびマスク検査方法に関する。
現在、半導体デバイス製造プロセスにおいて、ウエハにパターンを形成するためには、光露光用レチクル(フォトマスク)と称される設計パターンの原版を、ウエハ上に縮小露光する方式が主流となっている。このフォトマスクは、設計パターンの原版であるため、欠陥は一つでも存在してはならない。そのため厳しい欠陥検査を行い、異物の付着も含めて欠陥がゼロであるとの品質保証をする必要がある。
フォトマスクの欠陥検査としては、一般的に、光源からの光をフォトマスクに照射し、そのマスクパターンからの回折光を、対物レンズを通してセンサ上に結像させ、その光量変化を測定する方式が取られている(例えば、特許文献1参照。)。
ところが、半導体デバイスの微細化に伴い、マスクパターンが微細化すると、フォトマスクの形成に、OPC(Optical Proximity Correction:光近接効果補正)マスクや位相シフトマスク等の新しい技術が使用され、従来の欠陥検査方法では、品質保証が難しくなってきている。
近年、位相シフトマスク(alt−PSMマスク)の欠陥検出装置において、位相欠陥検出能力が不足しているという問題がある。欠陥検出方法は従来マスクと同様に透過型、反射型、もしくは透過反射のミックス処理などを施しているが、実際にウエハ上のCD(critical dimension)に影響のある低段差の位相欠陥の検出には能力が不足している。これは透明な位相欠陥は通常のようなマスク透過像の結像方式では僅かな可視度しか得られないためである。
一方で、生物顕微鏡などの分野においては、透明物体を観測するために、暗視野顕微鏡や位相差顕微鏡が一般に適用されている。これらに関しては多くの書籍があり、例えば鶴田著(培風館)応用光学Ip.256−259項に詳細に説明されている。
暗視野顕微鏡は被検物に対するフーリエ変換面である対物光学系瞳面に遮光領域を設けて、被検物からの0次回折光(直進光)を遮蔽し、高次回折光(散乱光)のみを用いる方式である。0次回折光は物体の凹凸の情報を含まないDC成分光であり、物体の凹凸情報は高次回折光に含まれている。暗視野顕微鏡では、0次回折光がカットされ、高次回折光のみによる結像になるので、通常の明視野顕微鏡よりも高いコントラストで物体の凹凸を可視化することが可能である。デメリットは回折光の大半を占める0次回折光を遮光してしまうので、結像信号全体としては小さくなり、信号処理の再現性が十分に得られないことである。
位相差顕微鏡は、対物光学系瞳面(結像光学系瞳面ともいう)で0次回折光と高次回折光及び散乱光の間に位相差を意図的に付ける位相差フィルタを付加したものである。これにより光量の大きな0次回折光も像コントラスト形成に寄与できるようになり、暗視野顕微鏡より明るい像を得ることができることが特徴である。また、0次回折光と高次回折光との強度比が大きすぎると、像コントラストは低下するので、位相差顕微鏡では0次回折光を対物光学系瞳面で位相変調に加えて、減光することもある。また、暗視野顕微鏡における2次光源形状(照明光学系瞳面での強度分布)は、光軸を中心とする円形または円環であり、これに対する対物光学系瞳面での遮光部分の形状はこれと共役な形状とすることが一般的である。同様に位相差顕微鏡における2次光源形状(照明光学系瞳面での強度分布)は、光軸を中心とする円形または円環であり、これに対する対物光学系瞳面での位相差を付ける部分の形状はこれと共役な形状とすることが一般的である。
特開平8−313448号公報(第3−4頁、第1,2図)
解決しようとする問題点は、現在、マスク欠陥検査においては、低段差であっても実際にパターン転写寸法に影響があるような位相欠陥に対して十分な検出感度を有していない。生物顕微鏡の分野で使用されている、暗視野顕微鏡、位相差顕微鏡を適用すると、低段差の位相欠陥は検出できるが、それ以外の通常パターン欠陥、即ちバイナリパターンの欠陥の検出が困難になるという問題が生じる点である。
本発明のマスク検査装置は、光源と、前記光源より射出する光を均一化する照明光学系と、前記照明光学系より射出され露光用マスクを透過した光を集光して観測面に結像する対物光学系とを備えた露光用マスクの位相欠陥を検査するマスク検査装置であって、前記対物光学系の瞳面における前記露光用マスクを透過した0次回折光が通過する領域に設けた位相差フィルタと、前記位相差フィルタと共役な形状を有するもので前記照明光学系の瞳面に設けた絞りとを備えたものである。また位相差フィルタおよび絞りのそれぞれと切り替え可能とする円形開口絞りを備えたことを最も主要な特徴とする。
上記マスク検査装置では、対物光学系の瞳面における露光用マスクを透過した0次回折光が通過する領域に位相差フィルタを設け、照明光学系の瞳面に位相差フィルタと共役な形状を有する絞りを設けたことから、位相差顕微鏡と同様な原理により低段差の位相欠陥を可視化して、欠陥検出できるようになる。すなわち、対物光学系瞳面には0次回折光の位相をシフトさせる位相差フィルタを挿入し、照明光学系瞳面には絞り(例えば円環開口絞りであり、前述の位相差フィルタと相似形(共役)である)を挿入することにより、通常の透過型パターン欠陥検査装置を位相差顕微鏡型の欠陥検査装置にできる。また、位相差フィルタと絞りという簡単な部材を付加するだけであるため、低コストで実現できる。さらに、位相差フィルタおよび絞りのそれぞれと切り替え可能とする円形開口絞りを備えることにより、通常の透明基板に遮光膜のみをパターン形成した通常のマスクの検査機能、すなわち、透過型顕微鏡型のバイナリパターンマスク検査装置の機能を持たせることも可能となる。このように、位相差顕微鏡型のマスク検査装置と透過型顕微鏡型のマスク検査装置とを両立させたマスク検査装置となる。
本発明のマスク検査装置は、光源と、前記光源より射出する光を均一化する照明光学系と、前記照明光学系より射出され露光用マスクを透過した光を集光して観測面に結像する対物光学系とを備えた露光用マスクの位相欠陥を検査するマスク検査装置であって、前記対物光学系の瞳面における前記露光用マスクを透過した0次回折光が通過する領域に遮光板を備えたものである。また前記遮光板と切り替え可能とする円形開口絞りを備えたことを最も主要な特徴とする。
上記マスク検査装置では、対物光学系の瞳面における露光用マスクを透過した0次回折光が通過する領域に遮光板を備えたことから、暗視野顕微鏡と同様な原理により低段差の位相欠陥を可視化して、欠陥検出できるようになる。すなわち、対物光学系瞳面には遮光板(遮光フィルタ)を挿入し、照明光学系瞳面には絞り(例えば円環開口絞り)を挿入することにより、通常の透過型パターン欠陥検査装置を暗視野顕微鏡化することにできる。また、遮光板という簡単な部材を付加するだけであるため、低コストで実現できる。さらに、遮光板と切り替え可能とする円形開口絞りを備えることにより、通常の透明基板に遮光膜のみをパターン形成した通常のマスクの検査機能、すなわち、透過型顕微鏡型のマスク検査装置の機能を持たせることも可能となる。このように、暗視野顕微鏡型のマスク検査装置と透過型顕微鏡型のマスク検査装置とを両立させたマスク検査装置となる。
本発明のマスク検査方法は、光源より射出した光を照明光学系により均一化し、前記照明光学系より射出され露光用マスクを透過した光を対物光学系により集光して観測面に結像することで露光用マスクの位相欠陥を検査するマスク検査方法であって、前記対物光学系の瞳面における前記露光用マスクを透過した0次回折光が通過する領域に位相差フィルタを設け、前記照明光学系の瞳面に前記位相差フィルタと共役な形状を有する絞りを設けて検査するマスク検査方法である。また前記位相差フィルタおよび前記絞りのそれぞれを円形開口絞りに切り替えてマスク欠陥を検査することを最も主要な特徴とする。
上記マスク検査方法では、対物光学系の瞳面における露光用マスクを透過した0次回折光が通過する領域に位相差フィルタを設け、照明光学系の瞳面に前記位相差フィルタと共役な形状を有する絞りを設けてマスク検査を行うことから、位相差顕微鏡と同様な原理により低段差の位相欠陥を可視化して、マスクの欠陥検出ができるようになる。この検査方法は、対物光学系瞳面には位相差フィルタを挿入し、照明光学系瞳面には絞り(例えば円環開口絞りであり、それは前述の位相差フィルタと相似形(共役)である。)を挿入することにより実現されるので、通常の透過型パターン欠陥検査装置を容易に位相差顕微鏡型の位相欠陥検査装置にできる。また、位相差フィルタと絞りという簡単な部材を付加するだけであるため、低コストで実現できる。さらに、位相差フィルタおよび絞りのそれぞれと円形開口絞りとを切り替えることにより、通常の透明基板に遮光膜のみをパターン形成した通常のマスクの検査が行える。すなわち、位相差顕微鏡による位相シフトマスクのマスク検査と、透過型顕微鏡による通常の遮光膜パターンで形成されたマスク検査とを両立させたマスク検査方法の実現が可能になる。
本発明のマスク検査方法は、光源より射出した光を照明光学系により均一化し、前記照明光学系より射出され露光用マスクを透過した光を対物光学系により集光して観測面に結像することで露光用マスクの位相欠陥を検査するマスク検査方法であって、前記対物光学系の瞳面における前記露光用マスクを透過した0次回折光が通過する領域に遮光板を設けたマスク検査方法である。また、前記遮光板を円形開口絞りに切り替えてマスク欠陥を検査することを最も主要な特徴とする。
上記マスク検査方法では、対物光学系の瞳面における露光用マスクを透過した0次回折光が通過する領域に遮光板を設けたことから、暗視野顕微鏡と同様な原理により低段差の位相欠陥を可視化して、欠陥検出できるようになる。この検査方法は、対物光学系瞳面には遮光板(遮光フィルタ)を挿入し、照明光学系瞳面には絞り(例えば円環開口絞りであり、それは前述の遮光フィルタと相似形(共役)である)を挿入することにより実現されるので、通常の透過型パターン欠陥検査装置を容易に暗視野顕微鏡にできる。また、遮光板という簡単な部材を付加するだけであるため、低コストで実現できる。さらに、遮光板と円形開口絞りとを切り替えることにより、通常の透明基板に遮光膜のみをパターン形成した通常のマスクの検査が行える。すなわち、暗視野顕微鏡による位相シフトマスクのマスク検査と、透過型顕微鏡による通常の遮光膜パターンで形成されたマスク検査とを両立させたマスク検査方法の実現が可能になる。
本発明のマスク検査装置は、位相シフトマスクの位相欠陥から発生する回折光の位相と強度を、対物光学系瞳面PLで露光用マスクを透過した0次回折光が通過する領域に位相差フィルタを設け、照明光学系瞳面には位相差フィルタと共役な形状を有する絞りを設けるので、位相差顕微鏡と同様の原理により、観測面における結像のコントラストを大きく上げることができる。また、位相差フィルタおよび絞りのそれぞれを円形開口絞りに切り替えることができるので、通常のバイナリパターンの欠陥検出と位相シフトマスクのシフタ内の位相欠陥検査との両立ができる。これにより、一台のマスク検査装置で異なるモードの欠陥検査を行うことが可能になり、検査コストの低減、検査時間の短縮が図れる。
本発明のマスク検査装置は、位相シフトマスクの位相欠陥から発生する回折光の位相と強度を、対物光学系瞳面PLで露光用マスクを透過した0次回折光が通過する領域に遮光板を設けるので、暗視野顕微鏡と同様の原理により、観測面における結像のコントラストを大きく上げることができる。また、遮光板を円形開口絞りに切り替えることができるので、通常のバイナリパターンの欠陥検出と位相シフトマスクのシフタ内の位相欠陥検査との両立ができる。これにより、一台のマスク検査装置で異なるモードの欠陥検査を行うことが可能になり、検査コストの低減、検査時間の短縮が図れる。
本発明のマスク検査方法は、位相シフトマスクの位相欠陥から発生する回折光の位相と強度を、対物光学系瞳面PLで露光用マスクを透過した0次回折光が通過する領域に位相差フィルタを設け、照明光学系瞳面に位相差フィルタと共役な形状を有する絞りを設けることにより、位相差顕微鏡と同様の原理により、観測面における結像のコントラストを大きく上げて検査することができる。また、位相差フィルタおよび絞りのそれぞれを円形開口絞りに切り替えて検査することにより、通常のバイナリパターンの欠陥検出と位相シフトマスクのシフタ内の位相欠陥検査との両立ができる。これにより、一台のマスク検査装置で異なるモードの欠陥検査を行うことが可能になり、検査コストの低減、検査時間の短縮が図れる。
本発明のマスク検査方法は、位相シフトマスクの位相欠陥から発生する回折光の位相と強度を、対物光学系瞳面PLで露光用マスクを透過した0次回折光が通過する領域に遮光板を設けることにより、暗視野顕微鏡と同様の原理により、観測面における結像のコントラストを大きく上げて検査することができる。また、遮光板を円形開口絞りに切り替えて検査することができるので、通常のバイナリパターンの欠陥検出と位相シフトマスクのシフタ内の位相欠陥検査との両立ができる。これにより、一台のマスク検査装置で異なるモードの欠陥検査を行うことが可能になり、検査コストの低減、検査時間の短縮が図れる。
一台のマスク検査装置で異なるモードの欠陥検査を行うという目的を、位相差顕微鏡と同様の原理によりもしくは暗視野顕微鏡と同様の原理により、観測面における結像のコントラストを大きく上げて検査することで実現した。
本発明のマスク検査装置およびマスク検査方法に係る第1実施の形態を、図1〜図6によって説明する。
図1の概略構成図に示すように、露光用マスクの位相欠陥を検査するマスク検査装置100は、光源110と、光源110より射出する光Lを均一化する照明光学系120と、照明光学系120より射出され露光用マスク150を透過した光Lを集光して観測面140に結像する対物光学系(結像光学系ともいう)130とを備えている。
上記光源110はレーザ光源またはランプ光源からなり、例えばランプ光源の場合はi線(波長=365nm)のランプ光源からなる。上記照明光学系120は、光源110から射出された光Lをコリメートするコリメータ121、2次光源形成ユニットで等価光源を形成する強度均一化素子123および強度が均一化された光を集光する集光部125とを備えたものである。この2次光源形成ユニットの強度均一化素子としてはフライアイレンズもしくは拡散板が用いられている。
上記照明光学系120における絞り装着面iPLは、上記対物光学系130の瞳面PLと共役の関係になっている。絞り装着面には例えばレボルバ状の回転板にいくつかの絞りを装着できるようになっており、必要に応じて切り替える。本例では、通常のマスク検査に用いる円形開口絞り161と位相シフトマスク検査に用いる円環開口絞り(リング状開口絞り)163が装着されている。この円環開口絞り163は、後に説明する位相差フィルタ167と共役な形状を照明光学系120の瞳面iPLにおいて有するものとなっている。
上記照明光学系120で形成された2次光源が試料となる露光用マスク150を照明している。構成としては所謂、ケーラ照明となっている。ここで試料となる露光用マスク150は位相シフトマスクとする。
次に、前記図1に示すように、上記露光用マスク150で回折、散乱された光は対物光学系130に入射され、この回折光の角度情報がフーリエ変換面である対物光学系瞳面PLで位置情報に変換されている。この対物光学系瞳面PLには、切り替え可能なレボルバ状に瞳フィルタ(位相差フィルタまたは円形開口絞り)が複数設置されている。瞳フィルタには例えば通常パターンの検査の時は円形開口絞り165を用い、位相差検査の際には環状の光源形状と共役な位相差フィルタ167を用いる。この位相差フィルタ167は上記対物光学系瞳面PLにおける露光用マスク150を透過した0次回折光が通過する領域に位相をシフトさせる段差または位相シフタ膜が設けられる。尚、この図1では通常のマスク検査装置で適用されているような照明系開口数と対物系開口数が等しいσ1.0の光学系を想定している。
上記対物光学系瞳面PLのフーリエイメージは観測面140に形成される。観測面140には受光素子(図示せず)が設置されている。この受光素子には、例えば、1次元ラインセンサもしくは2次元CCD(電荷結合素子:Charge Coupled Device)センサを用いることができる。
上記位相差フィルタを図2により説明する。図2に示すように、位相差フィルタ167の位相シフト部167aは輪帯比4/5のリング形状をしており、位相シフト部167aは、例えばT%透過(Tは適宜設定、設定方法に関しては後述する)、位相差は0次回折光が通過する領域における検査波長換算で90°シフトするようになっている。このような位相差フィルタはλ/4板ともいう。上記位相シフト部167aの外側は遮光部167sとなっており、今想定している系ではσ1.0以上の迷光は遮光するようになっている。上記位相シフト部167aの内側は検査波長の光を100%透過する透過部となっている。
上記マスク検査装置100では、対物光学系瞳面PLにおける露光用マスク150を透過した0次回折光が通過する領域の位相をシフトさせる位相差フィルタ167と、位相差フィルタ167の位相シフト領域と共役な形状を有するもので照明光学系瞳面iPLに設けた絞り(円環開口絞り163)とを備えたことから、位相差顕微鏡と同様な原理により低段差の位相欠陥を可視化して、欠陥検出できるようになる。すなわち、対物光学系瞳面PLには0次光通過領域の透過光の位相をシフトさせる位相差フィルタ167を挿入し、照明光学系瞳面iPLには絞り(例えば円環開口絞り163)を挿入することにより、通常の透過型パターン欠陥検査装置を位相差顕微鏡にできる。また、位相差フィルタ167と円環開口絞り163という簡単な部材を付加するだけであるため、低コストで実現できる。さらに、対物系の位相差フィルタ167および照明系の円環開口絞り163のそれぞれと切り替え可能とする円形開口絞り161、165を備えることにより、通常の透明基板に遮光膜のみをパターン形成した通常のマスクの検査機能、すなわち、透過型顕微鏡型のバイナリパターンマスク検査装置の機能を持たせることも可能となる。このように、位相差顕微鏡型のマスク検査装置と透過型顕微鏡型のマスク検査装置とを両立させたマスク検査装置となる。
次に、上記位相シフトマスクを、図3により説明する。図3(1)は位相シフトマスクである露光用マスク150を示す。この露光用マスク150は、例えばArFエキシマレーザ光を露光光源とするマスクとする。図3(1)に示すように、位相シフトマスクの露光用マスク150の同一に設計された2つのマスクパターンを比較することにより欠陥を見出すダイ検査方式を採用する。例えば、検査領域のマスクパターンM0とマスクパターンM1とを比較対照して欠陥を見出す。図3(2)は図3(1)のマスクパターンM1の位相差欠陥がある領域の拡大図である。また、図3(3)は図3(2)のA−A線拡大断面図である。図3(2)および(3)に示すように、露光用マスク150は、一例として、パターンピッチ800nm、線パターン152の線幅400nm、露光波長換算の位相差180°(π)の1次元繰り返しパターンとし、180°(π)シフタ154内に193nm換算で位相差(θ193)が60°(π/3)の位相凸欠陥155が含まれているとする。欠陥155のXYサイズは200nmの正方形と仮定する。尚、ここでマスクのウエハへの縮小投影倍率は1/4と仮定した。よって転写パターン寸法としては100nmのラインアンドスペースパターンとなる。
ここで実際のマスクはArF(λ193 =193nm)レーザ光で露光されるが、検査波長はi線(λ365 =365nm)であるために、検査波長で見た位相差は数1式で与えられる。
Figure 2005049663
ここでn365 、n193 はそれぞれ石英基盤の波長λ365 =365nm、λ193 =193nmでの屈折率であり、θ193 は193nm換算、θ365 は365nm換算の位相差である。露光波長換算で60°位相欠陥は検査波長であるi線換算で約30°となり、検査波長にとっては低段差を検出しなければいけないことになる。
次に、本発明のマスク検査方法を、前記図1によって説明したマスク検査装置100を用い、通常のいわゆるバイナリパターン(白黒パターン)のマスクを検査する場合と位相差マスク部分を検査する場合とに分けて、マスク検査を行う。
まず、照明光学系瞳面iPLおよび対物光学系瞳面PLに円形開口絞り161、165を設置し、通常のバイナリパターンマスク欠陥検査を実施する。
その後、照明光学系瞳面iPLに円環開口絞り163を設置し、対物光学系瞳面PLに位相差フィルタ167を設置する。そして、光源110より射出した光Lを照明光学系120により均一化し、この照明光学系120より射出され露光用マスク150を透過した光Lを対物光学系130により集光して観測面140に結像することで露光用マスク150の位相欠陥を検査する。
位相欠陥の検査について以下に説明する。まず、位相シフトマスクである露光用マスク150を観察した時の対物光学系瞳面PLにおける回折光の分布を図4によって説明する。図4に示すように、欠陥ではないウエハ上換算で100nm幅の線パターン、100nm幅のスペースのパターンは0次回折光の原点Oを中心に、±λ365/Pの位置に±1次回折光の中心が形成される。位相シフトマスクは露光波長(193nm)では0°、180°(π)シフタ間の干渉により0次光が相殺されゼロになるが、検査波長(365nm)で見た位相差は約86°となり、0次光は相殺されず、通常の3光束干渉により観測面140上に結像される。なお、ここでの照明光学系のコヒーレントファクタ(σ)は通常検査機で適用されている1.0を想定している。
次に、対物光学系瞳面における強度分布を例として示す。ここでも図3に示したマスクパターン、検査装置は検査波長365nm、拡大倍率20倍、対物レンズのNA0.85、照明σ1.0を想定した。図5は欠陥ありのマスクパターンの瞳強度分布から欠陥なしのマスクパターンの瞳強度分布を差し引いたものを示す図であり、即ち位相欠陥からの回折光のみを抽出したものとなっている。すなわち、これに位相欠陥の情報が含まれているのであるが、その強度は極めて小さいことがわかる。
上記位相欠陥情報は、対物光学系瞳面PLに挿入された位相差フィルタ167により、0次光が通過する環状部分では位相が90°シフトし、位相欠陥からの回折光と同位相になり、0次光も結像に寄与できる。したがって、微小段差の位相欠陥であっても可視度が上がり、観測ができるようになる。
ここで、先に図3(1)によって示したように、位相シフトマスクの露光用マスク150の同一に設計された2つのマスクパターンを比較することにより欠陥を見出すダイ検査方式を採用する。すなわち、欠陥のないマスクパターンM0と欠陥のあるマスクパターンM1を観測した強度分布データの差分を取る。この差は欠陥によって発生している信号である。ここで、〔(マスクパターンM1の強度)/(マスクパターンM0の強度)〕−1を欠陥の可視度と定義する。
図1によって説明した光学系の観測面140における強度分布をシミュレーションした結果を図6によって説明する。ここで対物レンズの開口数(NA)は0.8、コヒーレンスファクタσは1.0、照明形状はσ=1.0の円形もしくはσ1.0の4/5輪帯とする。検査マスクは図3に示したものを想定した。また、検査される露光用マスク150から観測面140への拡大倍率は20倍とし、露光装置のマスクのウエハ上縮小投影倍率は1/4とした。即ちマスク上のパターン寸法は400nmラインアンドスペースであり、本検査装置では20倍に拡大して観測するので、観測面におけるパターン寸法は8000nmラインアンドスペースとなる。また、観測面140における1次元または2次元センサアレイの単位サイズを1.28μmとしている。即ち、マスクの像が20倍に拡大され観測面140上に結像し、観測面140では1.28μm移動平均で強度分布計測されることになる。
図6に示す各グラフ中、3つの曲線は、曲線aは位相欠陥がないマスクパターンの観測結果を表し、曲線bは位相欠陥があるマスクパターンの観測結果を表し、これらをY左軸で示す。曲線cは曲線aと曲線bとの比率―1(可視度)を表し、Y右軸で示す。このように、位相差顕微鏡系の適用とダイ検査を組み合わせることにより、位相欠陥の検出感度を上げることが可能となることがわかる。以下、各グラフの詳細を説明する。
図6(1)、(2)、(3)はシミュレーション結果であり、図6(1)に示すグラフは、対物光学系瞳面PLにはλ/4板が挿入されておらず、照明光学系瞳面iPLには通常円形開口絞り(σ1.0)が使用されている場合の検出結果である。これは通常のマスクパターン欠陥検出時の設定である。一般にこのような比較検査における信号処理では可視度として5%程度以上は必要とされており、図6(1)では、位相欠陥は通常検査方法では検出されるのに十分な欠陥の可視度が得られないことがわかる。
図6(2)に示すグラフは、対物光学系瞳面PLに4/5輪帯の円環領域が100%透過のλ/4板が装着されており、照明光学系瞳面iPLにはそれと共役なσ1.0の輪帯比4/5円環開口絞りが装着されている場合の検出結果である。図6(2)に示すように、位相欠陥からのエッジ信号、すなわち可視度が約4倍になっていることがわかる。
図6(3)に示すグラフは、対物光学系瞳面PLに4/5輪帯の円環領域が50%透過のλ/4板が装着されており、照明光学系瞳面iPLにはλ/4板と共役なσ1.0の輪帯比4/5円環開口絞りが装着されている場合の検出結果である。図6(3)に示すように、可視度は十分得られるが、0次光が50%減光されているため、光強度差(すなわち光量総量)が小さくなり、電気的な再現性が劣化することがわかる。
以上の結果より、検出結果の最適化を決めるにあたっては、可視度と光量のバランスを考えて、λ/4板の透過率Tを設定すればよい。
上記マスク検査方法では、対物光学系瞳面PLで露光用マスク150を透過した0次回折光が通過する領域に位相差フィルタ167を設け、照明光学系瞳面iPLで位相差フィルタ167と共役な形状を有する円環開口絞り167を設けて検査することから、位相差顕微鏡と同様な原理により低段差の位相欠陥154を可視化して、欠陥検出できるようになる。この検査方法は、対物光学系瞳面PLには位相差フィルタ167を挿入し、照明光学系瞳面iPLには対物光学系瞳面の位相差フィルタ部と相似形の絞り(例えば円環開口絞り163)を挿入することにより実現されるので、通常の透過型パターン欠陥検査装置を容易に位相差顕微鏡にできる。また、位相差フィルタ167と円環開口絞り163という簡単な部材を付加するだけであるため、低コストで実現できる検査方法である。また、位相差顕微鏡方式は通常のパターン検査、すなわち白黒欠陥検査にとっては優位性がなく、これらの欠陥検出には通常の検査方法の方が望ましい。このときは、本発明のマスク検査装置100において、対物光学系瞳面PLに円形開口絞り165を用い、照明光学系瞳面iPLには円形開口絞り161を用いればよい。具体的な方法としては、最初に通常のパターン欠陥検査を行う(通常検査モード)、その後に、位相シフト部のみを位相差検出モードで検査するようにする。このように1枚のフォトマスクの欠陥検査をする際には、位相差検出設定と通常設定を組み合わせて検査することになる。
また、本発明のマスク検査装置およびマスク検査方法は、検査波長で90°以下の低段差位相欠陥検出にとって、イメージ(結像)の明暗差が大きく表れ、特に有効である。
本実施の形態では凸型の位相欠陥を扱ったが、凹型欠陥についても同様の効果がある。また、検査波長を365nmとしたが、より短波長化すると検査感度は向上する。
次に、本発明のマスク検査装置およびマスク検査方法に係る第2実施の形態を説明する。第2実施の形態に係るマスク検査装置は、前記図1において、位相差フィルタ167の代わりに、対物光学系瞳面PLで露光用マスク150を透過した0次回折光が通過する領域に遮光板(図示せず)を備えたものである。即ち0%透過の位相差フィルタと考えればよい。この遮光板の内側は、検査光が透過する透過部となっている。例えば透明ガラスで形成することができる。また遮光板の内側は開口としてもよい。また、この遮光板は、円形開口絞りと切り替え可能となっている。上記遮光板および円形開口絞りも、前記説明したのと同様に、例えば、絞り装着面に設けられたレボルバ状の回転板に装着できるものであり、必要に応じて切り替え可能となっている。
本発明のマスク検査方法に係る第2実施の形態では、対物光学系瞳面PLで露光用マスク150を透過した0次回折光が通過する領域に遮光板を設けたことから、暗視野顕微鏡と同様な原理により低段差の位相欠陥を可視化して、欠陥検出できるようになる。この検査方法は、対物光学系瞳面PLには遮光板(遮光フィルタ)を挿入し、照明光学系瞳面iPLには絞り(例えば円環開口絞り)を挿入することにより実現されるので、通常の透過型パターン欠陥検査装置を容易に暗視野顕微鏡にできる。また、遮光板という簡単な部材を付加するだけであるため、低コストで実現できる。さらに、遮光板と円形開口絞りとを切り替えることにより、通常の透明基板に遮光膜のみをパターン形成した通常のマスク検査が行える。すなわち、暗視野顕微鏡による位相シフトマスクの検査と、透過型顕微鏡による通常の遮光膜パターンのみで形成されたマスク(通常パターンのマスク)の検査とを両立させたマスク検査方法の実現が可能になる。したがって、通常パターンと位相シフトパターンとが一枚のマスクに形成されたマスクを一台のマスク検査装置により検査することが可能になる。
最後に本検査装置において、観測面の照度を上げる方法を述べる。ここまでの説明においては照明系瞳面に円環絞りを配置するようにしていたが、これでは絞りで遮光された分、即ち絞りの開口面積比例で観測面での照度も小さくなってしまう。例えば4/5輪帯絞りの場合はσ1.0の円形開口比で36%の照度になってしまう。これにより位相差顕微鏡モードでは検出再現性、検出スループットが劣化することが予想される。
これの対応として、図7に示すように、前記図1によって説明したコリメータ121と強度均一化素子(ユニフォーマ)123の間にDOE(Diffractive Optical Element)と呼ばれている回折光学素子126を設置する。このDOEは平行光Lpを入射すると、強度均一化素子123の入射面にリング状の強度分布Rを形成するように設計されている。これに関しては例えば特開2001−242414号公報などにDOEの具体的な設計手法が述べられている。これによりエネルギー利用効率は理想的には100%となり、光量ロスは発生しない(最小限で済む)。位相差検出顕微鏡モードにおいては、DOE126とσ1.0以上の照明光を遮光する円形絞り161と位相差フィルタ167を組み合わせて使用することになる。なお、バイナリパターン検査時には、上記回折光学素子126を光路から退避させる。
また、本発明のマスク検査装置およびマスク検査方法は、一例として、通常の半導体装置製造工程の露光工程で用いるマスク、液晶表示装置、有機エレクトロルミネッセンス表示装置等の表示装置製造工程の露光工程で用いるマスクの検査に有効である。
本発明のマスク検査装置およびマスク検査方法は、半導体装置製造に用いる露光用マスクのマスク検査装置およびマスク検査方法に限らず、液晶表示装置、エレクトロルミネッセンス表示装置等の各種表示装置の露光用マスクの検査にも適用できる。より広範な用途としては、検査波長に対して透明な基板にパターンが形成された基板のパターン検査にも適用できる。
本発明のマスク検査装置およびマスク検査方法に係る第1実施の形態を示す概略構成図である。 位相差フィルタを示す平面図である。 位相シフトマスクのダイ検査概念図および位相シフトマスクの要部概略断面図である。 対物光学系瞳面の回折光強度図である。 対物光学系瞳面における抽出された位相欠陥からの回折光の強度分布図である。 本発明に係る第1実施の形態の効果をシミュレーション検証した結果を示す図面である。 本発明のマスク検査装置およびマスク検査方法に係る高効率輪帯照明系の概略構成図である。
符号の説明
100…マスク検査装置、110…光源、120…照明光学系、130…対物光学系、140…観測面、150…露光用マスク、163…円環開口絞り、167…位相差フィルタ、iPL…照明光学系瞳面、PL…対物光学系瞳面

Claims (18)

  1. 光源と、前記光源より射出する光を均一化する照明光学系と、前記照明光学系より射出され露光用マスクを透過した光を集光して観測面に結像する対物光学系とを備えた露光用マスクの位相欠陥を検査するマスク検査装置であって、
    前記対物光学系の瞳面における前記露光用マスクを透過した0次回折光が通過する領域に設けた位相差フィルタと、
    前記位相差フィルタと共役な形状を有するもので前記照明光学系の瞳面に設けた絞りとを備えた
    ことを特徴とするマスク検査装置。
  2. 前記位相差フィルタおよび前記絞りのそれぞれと切り替え可能とする円形開口絞りを備えた
    ことを特徴とする請求項1記載のマスク検査装置。
  3. 前記位相差フィルタは、1/4波長板からなり、前記露光用マスクからの0次回折光が通過する領域における検査波長換算の位相が90°シフトされているものからなる
    ことを特徴とする請求項1記載のマスク検査装置。
  4. 前記位相差フィルタの位相差が変調される部分は円環形状を有する
    ことを特徴とする請求項1記載のマスク検査装置。
  5. 前記絞りは円環開口形状を有する
    ことを特徴とする請求項1記載のマスク検査装置。
  6. 光源と、前記光源より射出する光を均一化する照明光学系と、前記照明光学系より射出され露光用マスクを透過した光を集光して観測面に結像する対物光学系とを備えた露光用マスクの位相欠陥を検査するマスク検査装置であって、
    前記対物光学系の瞳面における前記露光用マスクを透過した0次回折光が通過する領域に遮光板を備えた
    ことを特徴とするマスク検査装置。
  7. 前記遮光板と切り替え可能とする円形開口絞りを備えた
    ことを特徴とする請求項6記載のマスク検査装置。
  8. 前記照明光学系に設けられた強度均一化素子より光源側に回折光学素子が設置されている
    ことを特徴とする請求項1記載のマスク検査装置。
  9. 前記回折光学素子は、入射平行光を円環形状に変換する素子であって、前記照明光学系に設けられた強度均一化素子の入射面に円環状の強度分布をエネルギー損失が最小で形成するものからなる
    ことを特徴とする請求項8記載のマスク検査装置。
  10. 光源より射出した光を照明光学系により均一化し、前記照明光学系より射出され露光用マスクを透過した光を対物光学系により集光して観測面に照射することで露光用マスクの位相欠陥を検査するマスク検査方法であって、
    前記対物光学系の瞳面における前記露光用マスクを透過した0次回折光が通過する領域に位相差フィルタを設け、
    前記位相差フィルタと共役な形状を有するもので前記照明光学系の瞳面に絞りを設けた
    ことを特徴とするマスク検査方法。
  11. 前記位相差フィルタおよび前記絞りのそれぞれを円形開口絞りに切り替えてマスク欠陥を検査する
    ことを特徴とする請求項10記載のマスク検査方法。
  12. 前記位相差フィルタは、1/4波長板からなり、前記露光用マスクからの0次回折光が通過する領域における検査波長換算の位相が90°シフトされているものからなる
    ことを特徴とする請求項10記載のマスク検査方法。
  13. 前記位相差フィルタの位相差が変調される部分は円環形状を有するものを用いる
    ことを特徴とする請求項10記載のマスク検査方法。
  14. 前記絞りは円環開口形状を有するものを用いる
    ことを特徴とする請求項10記載のマスク検査方法。
  15. 前記照明光学系に設けられた強度均一化素子より光源側に回折光学素子を設置する
    ことを特徴とする請求項10記載のマスク検査方法。
  16. 前記回折光学素子は、入射平行光を円環形状に変換する素子であって、前記照明光学系に設けられた強度均一化素子の入射面に円環状の強度分布をエネルギー損失が最小で形成するものからなる
    ことを特徴とする請求項15記載のマスク検査方法。
  17. 光源より射出した光を照明光学系により均一化し、前記照明光学系より射出され露光用マスクを透過した光を対物光学系により集光して観測面に照射することで露光用マスクの位相欠陥を検査するマスク検査方法であって、
    前記対物光学系の瞳面における前記露光用マスクを透過した0次回折光が通過する領域に遮光板を設けた
    ことを特徴とするマスク検査方法。
  18. 前記遮光板を円形開口絞りに切り替えてマスク欠陥を検査する
    ことを特徴とする請求項17記載のマスク検査方法。


JP2003282245A 2003-07-30 2003-07-30 マスク検査装置およびマスク検査方法 Pending JP2005049663A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003282245A JP2005049663A (ja) 2003-07-30 2003-07-30 マスク検査装置およびマスク検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282245A JP2005049663A (ja) 2003-07-30 2003-07-30 マスク検査装置およびマスク検査方法

Publications (1)

Publication Number Publication Date
JP2005049663A true JP2005049663A (ja) 2005-02-24

Family

ID=34267510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282245A Pending JP2005049663A (ja) 2003-07-30 2003-07-30 マスク検査装置およびマスク検査方法

Country Status (1)

Country Link
JP (1) JP2005049663A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515951A (ja) * 2007-01-11 2010-05-13 ケーエルエー−テンカー コーポレイション 瞳孔フィルターを用いたリソグラフィー画像再構成によるフォトマスクの検査と検証
US8384876B2 (en) 2008-12-16 2013-02-26 Samsung Electronics, Co., Ltd. Method of detecting reticle errors
WO2013027514A1 (ja) * 2011-08-23 2013-02-28 株式会社日立ハイテクノロジーズ 光学顕微鏡装置及びこれを備えた検査装置
DE102014213198A1 (de) * 2014-07-08 2016-01-14 Carl Zeiss Sms Gmbh Verfahren zur Lokalisierung von Defekten auf Substraten

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515951A (ja) * 2007-01-11 2010-05-13 ケーエルエー−テンカー コーポレイション 瞳孔フィルターを用いたリソグラフィー画像再構成によるフォトマスクの検査と検証
US8384876B2 (en) 2008-12-16 2013-02-26 Samsung Electronics, Co., Ltd. Method of detecting reticle errors
KR101511158B1 (ko) 2008-12-16 2015-04-13 삼성전자주식회사 레티클 에러 검출 방법
WO2013027514A1 (ja) * 2011-08-23 2013-02-28 株式会社日立ハイテクノロジーズ 光学顕微鏡装置及びこれを備えた検査装置
JP2013044879A (ja) * 2011-08-23 2013-03-04 Hitachi High-Technologies Corp 光学顕微鏡装置及びこれを備えた検査装置
US9851548B2 (en) 2011-08-23 2017-12-26 Hitachi High-Technologies Corporation Optical microscope device and testing apparatus comprising same
DE102014213198A1 (de) * 2014-07-08 2016-01-14 Carl Zeiss Sms Gmbh Verfahren zur Lokalisierung von Defekten auf Substraten
WO2016005420A1 (de) * 2014-07-08 2016-01-14 Carl Zeiss Sms Gmbh Verfahren zur lokalisierung von defekten auf substraten
JP2017527841A (ja) * 2014-07-08 2017-09-21 カール・ツァイス・エスエムティー・ゲーエムベーハー 基板上の欠陥の場所を特定する方法
US10108085B2 (en) 2014-07-08 2018-10-23 Carl Zeiss Smt Gmbh Method for localizing defects on substrates
DE102014213198B4 (de) 2014-07-08 2020-08-06 Carl Zeiss Ag Verfahren zur Lokalisierung von Defekten auf Substraten

Similar Documents

Publication Publication Date Title
US6990225B2 (en) Inspection method of photo mask for use in manufacturing semiconductor device
US7061603B2 (en) Method for inspecting exposure apparatus
JP3200894B2 (ja) 露光方法及びその装置
KR102145075B1 (ko) 레티클에 대한 시변 세기 맵 생성
JP5281741B2 (ja) 欠陥検査装置
JP3302926B2 (ja) 露光装置の検査方法
US6972836B2 (en) Measuring method of illuminance unevenness of exposure apparatus, correcting method of illuminance unevenness, manufacturing method of semiconductor device, and exposure apparatus
KR101511158B1 (ko) 레티클 에러 검출 방법
JP4645113B2 (ja) 光検査方法及び光検査装置並びに光検査システム
TW201830132A (zh) 用於決定基材上第一結構元件與第二結構元件之間距離的方法
US7676078B2 (en) Inspection method, processor and method for manufacturing a semiconductor device
US7940384B2 (en) Systems and methods for blocking specular reflection and suppressing modulation from periodic features on a specimen
JP2011169743A (ja) 検査装置および検査方法
JP3632241B2 (ja) 位置検出装置
JP2005049663A (ja) マスク検査装置およびマスク検査方法
KR100273835B1 (ko) 포토마스크 패턴의 미소결함 검사방법 및 그 장치
JPH05119468A (ja) マスク検査装置
JP3600920B2 (ja) 位置検出装置、それを用いた露光装置、その露光装置を用いた素子製造方法。
JP4518704B2 (ja) 位相シフトマスク検査装置及び位相シフトマスク検査方法
JP4007043B2 (ja) グレーティング検査装置及び検査方法
JP3201399B2 (ja) 半導体デバイスの製造方法
JPH04318550A (ja) 欠陥検査装置
JP4521548B2 (ja) 検査装置、検査方法及びパターン基板の製造方法
JP5005370B2 (ja) ハーフトーンマスク及びそれを用いたパターニング方法
JP4883817B2 (ja) 検査装置、検査方法及びパターン基板の製造方法