JP2012174938A - 光半導体素子およびその製造方法 - Google Patents
光半導体素子およびその製造方法 Download PDFInfo
- Publication number
- JP2012174938A JP2012174938A JP2011036376A JP2011036376A JP2012174938A JP 2012174938 A JP2012174938 A JP 2012174938A JP 2011036376 A JP2011036376 A JP 2011036376A JP 2011036376 A JP2011036376 A JP 2011036376A JP 2012174938 A JP2012174938 A JP 2012174938A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- optical
- layer
- region
- optical waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
【課題】 光導波層の断熱性を効率よく高めることができる光半導体素子およびその製造方法を提供する。
【解決手段】 光半導体素子の製造方法は、半導体基板上に、半導体中間層を形成する工程と、半導体中間層上に光導波層を含む半導体積層体を形成する工程と、その内面に半導体中間層が露出する溝を半導体積層体に形成する工程と、溝の内面に露出した半導体中間層を選択的ウェットエッチングによって除去することで、空隙を形成する工程と、を含むことを特徴とする。
【選択図】 図7
【解決手段】 光半導体素子の製造方法は、半導体基板上に、半導体中間層を形成する工程と、半導体中間層上に光導波層を含む半導体積層体を形成する工程と、その内面に半導体中間層が露出する溝を半導体積層体に形成する工程と、溝の内面に露出した半導体中間層を選択的ウェットエッチングによって除去することで、空隙を形成する工程と、を含むことを特徴とする。
【選択図】 図7
Description
本発明は、光半導体素子およびその製造方法に関する。
波長可変半導体レーザなどの光半導体素子においては、内部に光導波層を備える反射領域上に、ヒータが設置される。このヒータを発熱させることによって、光導波層の温度を変化させることができる。その結果、光導波層の屈折率を制御して、光導波層の波長特性を制御することができる。しかしながら、波長可変半導体レーザなどの光半導体素子は、低い消費電力で駆動できることが求められている。そこで、光導波層下に低熱伝導率層を配置して、断熱性を高める技術が知られている(例えば、特許文献1参照)。
より低い消費電力駆動を実現するためには、さらなる断熱性の向上が必要となる。
本発明は、上記課題に鑑みなされたものであり、光導波層の断熱性を効率よく高めることができる光半導体素子およびその製造方法を提供することを目的とする。
本発明に係る光半導体素子の製造方法は、半導体基板上に半導体中間層を形成する工程と、前記半導体中間層上に光導波層を含む半導体積層体を形成する工程と、その内面に前記半導体中間層が露出する溝を前記半導体積層体に形成する工程と、前記溝の内面に露出した前記半導体中間層を選択的ウェットエッチングによって除去することで、空隙を形成する工程と、を含むことを特徴とするものである。
前記半導体積層体は、前記光導波層の両側を埋め込んだ埋め込み層を備え、前記溝は、前記光導波層を含む前記埋め込み層の両側に設けられていてもよい。前記半導体基板は、InPであり、前記半導体中間層は、InGaAsP、InGaAlAs、InAlAsPまたはInGaAlAsPとしてもよい。前記ウェットエッチングに用いるエッチャントは、過酸化水素水を加えた希釈フッ酸としてもよい。
前記半導体積層体は、前記光導波層に沿って、回折格子とスペース部とからなり、その光学的長さがそれぞれ等しいセグメントが複数設けられたSG−DBR構造を有していてもよい。前記半導体積層体は、前記光導波層に沿って、回折格子とスペース部とからなるセグメントが複数設けられ、少なくとも2つのセグメントの光学的長さが異なるCSG−DBR構造を有していてもよい。
前記光導波層に沿って、ヒータが設けられていてもよい。前記半導体中間層は、前記導波路における光伝播方向で複数に分割して設けられていてもよい。前記半導体中間層は、前記セグメントに対して1つずつ、前記光導波層における光伝播方向に複数に分割して設けられていてもよい。
本発明に係る光半導体素子は、半導体基板上に設けられ、内部に光導波層を有する反射領域と、前記半導体基板上に設けられ、前記反射領域の前記光導波層と光結合する利得領域と、を備え、前記反射領域は、前記光導波層よりも前記半導体基板側において、空隙を有することを特徴とするものである。
前記光導波層上にヒータが設けられてなることを特徴とする請求項10記載の光半導体素子。前記反射領域は、回折格子とスペース部とからなるセグメントが複数設けられ、SG−DBR構造を有していてもよい。前記反射領域は、回折格子とスペース部とからなるセグメントが複数設けられ、少なくとも2つのセグメントの光学的長さが異なるCSG−DBR構造を有していてもよい。前記空隙は、前記光導波層における光伝播方向において、複数に分割されていてもよい。前記空隙は、前記セグメントに対して1つずつ、前記光導波層における光伝播方向に複数に分割して設けられていてもよい。
本発明に係る光半導体素子およびその製造方法によれば、光導波層の断熱性を効率よく高めることができる。
以下、本発明を実施するための形態を説明する。
光半導体素子の一例として、波長可変半導体レーザの全体構成について説明し、次いで光半導体素子の製造方法について説明する。図1(a)は、実施例1に係る波長可変半導体レーザ100の平面図である。図1(b)は、図1(a)のα−α線断面図である。図2は、図1(a)のβ−β線断面図である。
図1(a)および図1(b)に示したように、波長可変半導体レーザ100は、SOA(Semiconductor Optical Amplifier)領域D、SG−DFB(Sampled Grating Distributed Feedback)領域A、SG−DBR(Sampled Grating Distributed Reflector)領域B、および光吸収領域Cをこの順に連結させた構造を有する。SG−DBR領域Bの両側には、光進行方向に沿って溝30が形成されている。
SG−DFB領域Aは、波長可変半導体レーザ100の利得領域として機能する。図1(b)に示すように、SG−DFB領域Aは、半導体基板1上において、下クラッド層2、活性層3、上クラッド層6、コンタクト層7、および電極8が積層された構造を有する。
SG−DBR領域Bは、波長可変半導体レーザ100の反射領域として機能する。SG−DBR領域Bは、半導体基板1上において、下クラッド層2、光導波層4、および上クラッド層6が積層された構造を有する。SG−DBR領域B上には、ヒータ10が設けられている。本実施例においては、上クラッド層6上に、絶縁層9を介してヒータ10が設けられている。ヒータ10には、電源電極11およびグランド電極12が設けられている。
光吸収領域Cは、半導体基板1上において、下クラッド層2、光吸収層5、上クラッド層6、コンタクト層13、および電極14が積層された構造を有する。光吸収領域Cの長さは、例えば、600μm程度である。SOA領域Dは、半導体基板1上において、下クラッド層2、光増幅層19、上クラッド層6、コンタクト層20、および電極21が積層された構造を有する。なお、絶縁層9は、電極8と電極21との間にも形成されている。SOA領域Dの長さは、例えば、600μm程度である。
以上説明したように、SG−DFB領域A、SG−DBR領域B、光吸収領域CおよびSOA領域Dは、共通の半導体基板1上に一体的に形成されている。そして、活性層3,光導波層4,光吸収層5、および光増幅層19は、互いに光結合している。SOA領域D側の端面には、AR膜16が形成されている。光吸収領域C側の端面には、反射膜17が形成されている。
SG−DFB領域AおよびSG−DBR領域Bの下クラッド層2には、回折格子(コルゲーション)18が形成されている。このSG−DFB領域AおよびSG−DBR領域Bは、複数のセグメントにより構成される。ここでセグメントとは、回折格子18が設けられている領域と回折格子18が設けられていないスペース部とが連結された部分を指す。回折格子18は、下クラッド層2とは異なる屈折率の材料で構成されている。回折格子を構成する材料は、下クラッド層2がInPの場合、例えばGa0.22In0.78As0.47P0.53を用いることができる。
回折格子18は、2光束干渉露光法を使用したパターンニングにより形成することができる。回折格子18に連結したスペース部は、回折格子18のパターンをレジストに露光した後、スペース部に相当する位置に再度露光を施すことで、回折格子18のパターンが転写されないようにすることで実現できる。
SG−DFB領域Aにおける各セグメントの光学的長さは同一に設計されている。SG−DBR領域Bにおける各セグメントの光学的長さも同一に設計されている。ただし、SG−DFB領域Aにおける各セグメントの光学的長さとSG−DBR領域Bにおける各セグメントの光学的長さとは異なっている。SG−DFB領域AおよびSG−DBR領域Bにおける回折格子18は、いずれも同一のピッチおよび同一の周期を有している。一例として、SG−DFB領域AおよびSG−DBR領域Bのいずれにおいても、各セグメントに含まれる回折格子18は、1ピッチ240nm×20周期=4.8μmの長さを有する。そして、SG−DFB領域Aの各セグメントにおけるスペース部の長さは、66.0μmの長さであることから、SG−DFB領域Aの1つのセグメントの長さは70.8μmである。また、SG−DBR領域Bの各セグメントにおけるスペース部の長さは、73.1μmの長さであることから、SG−DBR領域Bの1つのセグメントの長さは77.9μmである。SG−DFB領域AおよびSG−DBR領域Bの組み合わせにより、バーニア効果を利用して、所望の波長で安定してレーザ発振させることができる。
なお、SG−DFB領域AおよびSG−DBR領域Bは、一例として、それぞれ6つのセグメントを備える。それにより、SG−DFB領域Aは、424.8μm程度の長さを有する。また、SG−DBR領域Bは、467.4μm程度の長さを有する。
半導体基板1は、例えば、n型InPからなる結晶基板である。下クラッド層2はn型、上クラッド層6はp型であり、それぞれ例えばInPによって構成される。下クラッド層2と上クラッド層6は、活性層3,光導波層4,光吸収層5を上下で光を閉じ込めている。
活性層3は、電流注入により利得を得ることのできる半導体により構成されている。活性層3は、例えば量子井戸構造を有しており、例えばGa0.32In0.68As0.92P0.08(厚さ5nm)からなる井戸層と、Ga0.22In0.78As0.47P0.53(厚さ10nm)からなる障壁層が交互に積層された構造を有する。光導波層4は、例えばバルク半導体層で構成することができ、例えばGa0.22In0.78As0.47P0.53によって構成することができる。
光吸収層5は、波長可変半導体レーザ100の発振波長に対して、吸収特性を有する材料が選択される。光吸収層5としては、その吸収端波長が例えば波長可変半導体レーザ100の発振波長に対して長波長側に位置する材料が選択される。
光吸収層5は、例えば、量子井戸構造で構成することが可能であり、例えばGa0.47In0.53As(厚さ5nm)の井戸層とGa0.28In0.72As0.61P0.39(厚さ10nm)の障壁層が交互に積層された構造を有する。また、光吸収層5はバルク半導体であってよく、例えばGa0.46In0.54As0.98P0.02からなる材料を選択することもできる。なお、光吸収層5は、活性層3と同じ材料で構成してもよい。その場合、活性層3と光吸収層5とを同一工程で作製することができるため、製造工程が簡素化される。
コンタクト層7,13は、例えばp型Ga0.47In0.53As結晶によって構成することができる。絶縁層9は、SiN,SiO2等の絶縁体からなる保護膜である。ヒータ10は、NiCr等で構成された薄膜抵抗体である。ヒータ10は、SG−DBR領域Bの複数のセグメントにまたがって形成されている。
電極8,14、電源電極11およびグランド電極12は、金等の導電性材料からなる。半導体基板1の裏面には、裏面電極15が形成されている。裏面電極15は、SG−DFB領域A、SG−DBR領域B、光吸収領域CおよびSOA領域Dにまたがって形成されている。
AR膜16は、1.0%以下の反射率を有する端面膜であり、実質的にその端面が無反射となる特性を有する。一方、反射膜17は、AR膜16と比較して有意の反射率を有しており、具体的には10%以上の反射率を実現する端面膜である。なお、ここで反射率とは、波長可変半導体レーザ100の内部に対する反射率を指す。
光増幅層19は、例えば量子井戸構造で構成することができ、例えばGa0.35In0.65As0.99P0.01(厚さ5nm)の井戸層とGa0.15In0.85As0.32P0.68(厚さ10nm)の障壁層が交互に積層された構造とすることができる。また、他の構造として、例えばGa0.44In0.56As0.95P0.05からなるバルク半導体を採用することもできる。コンタクト層20は、例えばp型Ga0.47In0.53As結晶からなる。なお、光増幅層19と活性層3とを同じ材料で構成することもできる。この場合、光増幅層19と活性層3とを同一工程で作製することができるため、製造工程が簡素化される。
次に、この波長可変半導体レーザ100の光伝播方向に直角な断面構造について説明する。図2は、SG−DBR領域Bにおける断面構造を説明するための図である。図2に示すように、SG−DBR領域Bは、下クラッド層2、光導波層4および上クラッド層6が積層された構造と、その両側を埋め込む高抵抗層51を備えている。
そして、光導波層4の下部には、その光伝播方向に沿って空隙22が形成されている。光導波層4を含む半導体領域50は、空隙22の両端に位置する壁によって支持されている。半導体領域50は、空隙22と絶縁膜9とによって挟まれた半導体積層体のことである。図1(b)の例では、壁はSG−DBR領域Bと光吸収領域Cとの境界およびSG−DBR領域BとSG−DFB領域Aとの境界に位置している。
続いて、波長可変半導体レーザ100の動作について説明する。図3に示したように、波長可変半導体レーザ100は、温度制御装置(TEC:Thermoelectric cooler)200上に設置されている。温度制御装置200は、ペルチェ素子によって波長可変半導体レーザ100の温度を制御する装置である。
まず、電極8に所定の駆動電流を供給するとともに温度制御装置200によって、波長可変半導体レーザ100の温度を所定の値に制御する。それにより、SG−DFB領域Aの利得スペクトルが制御される。また、ヒータ10を所定の温度で発熱させる。これにより、SG−DBR領域Bの光導波層4の屈折率が決定されて、SG−DBR領域Bの反射スペクトルが制御される。利得スペクトルと反射スペクトルとの重ね合わせによって発振波長が選択される。また、電極21に所定の電流を供給することによって、光増幅層19に利得が与えられる。それにより、レーザ光が増幅される。この増幅されたレーザ光は、フロント側端面(SOA領域D側)から外部に出力される。
ここで、光導波層4の屈折率を変化させる手段として、キャリア効果、熱光学効果、電圧効果などを用いることができる。本実施例においては、熱光学効果を用いている。熱光学効果は屈折率変化で光学損失を引き起こさないため、本実施例に係る波長可変半導体レーザ100は、良好な特性を示す。しかしながら、温度による波長変化量は1℃あたり約0.1nm程度である。したがって、発振波長を3.6nmシフトさせるためには、36℃の温度変化が必要となる。このような大きい温度変化を実現するには、ヒータ10が発生する熱を効率よく光導波層4に伝える必要がある。本実施例に係る波長可変半導体レーザ100は、光導波層4の下部に空隙22を有している。空隙22は、半導体基板1と光導波層4との間を空間により熱的に分離する。これにより、ヒータ10が発生する熱が空隙22よりも下方へ伝わりにくくなる。また、光導波層4を含む半導体領域50の両側にメサ溝30を設けられていることから、ヒータ10が発生する熱が半導体領域50の両側へ伝わりにくくなる。以上により、本実施例においては、ヒータ10が発生する熱が半導体領域50に留まり易くなる。その結果、光導波層4の温度を効率よく制御することができる。
なお、図示しないが、本実施例に係るSG−DBR領域Bのヒータ10の代わりに電流注入によるキャリア効果を利用して、光導波層4の屈折率を制御する場合であっても、本実施例と同様の構成を採用することができる。温度制御装置200によって制御された半導体基板1の温度による熱光学効果により、上記キャリア効果以外の要因で、光導波層4が屈折率変動を受けてしまう。このような場合において、前記した如き空隙22を設ければ、その熱的分離の効果により、上記熱光学効果の影響を低減できる。
なお、SG−DFB領域Aにおいては空隙が設けられていないため、温度制御装置200と活性層3との間で、効率よく熱が伝達する。それにより、温度制御装置200を用いてSG−DFB領域Aの屈折率を効率よく制御することができる。
(変形例1)
図1(b)の波長可変半導体レーザ100では、半導体領域50が空隙22の両側の壁の部分によって保持されていた。本変形例は、空隙22を複数に分割し、半導体領域50を前記壁と、空隙22の間に位置する柱部とで支持する構造を採用したものである。
図1(b)の波長可変半導体レーザ100では、半導体領域50が空隙22の両側の壁の部分によって保持されていた。本変形例は、空隙22を複数に分割し、半導体領域50を前記壁と、空隙22の間に位置する柱部とで支持する構造を採用したものである。
図4は、変形例1に係る波長可変半導体レーザ101の模式的断面図である。波長可変半導体レーザ101が図1(b)の波長可変半導体レーザ100と異なる点は、空隙22の配置箇所である。図4に示したように、空隙22は、光伝播方向において、複数に分割されている。空隙22は、SG−DBR領域Bの各セグメントそれぞれに対応して柱部が位置するように配置することが好ましい。柱部を各セグメントに対応して配置する場合この柱部は、各セグメントのスペース部あるいは回折格子18の下方、あるいはその両方に跨った部分に配置することができる。ただし、柱部の位置は全てのセグメントにおいてそろっていることが好ましい。これは、柱部により伝導される熱の影響が、各セグメントにおいて同等になるためである。
例えば、空隙22の長さを39μm程度とし、柱部の長さを39μm程度とすることができる。柱部の位置は、各セグメントにおいてそろって設けられる。なお、柱部を回折格子18とスペース部に跨った位置に形成する場合、柱部が回折格子18の両側に接続するスペース部に同じだけはみ出すように設けることが好ましい。
(変形例2)
図5は、変形例2に係る波長可変半導体レーザ102の模式的断面図である。波長可変半導体レーザ102が図4の波長可変半導体レーザ100と異なる点は、SG−DFB領域Aの代わりにもう一つのSG−DBR領域Eが設けられ、SG−DBR領域BとSG−DBR領域Eとの間に利得領域Fおよび位相調整領域Gが設けられている点である。
図5は、変形例2に係る波長可変半導体レーザ102の模式的断面図である。波長可変半導体レーザ102が図4の波長可変半導体レーザ100と異なる点は、SG−DFB領域Aの代わりにもう一つのSG−DBR領域Eが設けられ、SG−DBR領域BとSG−DBR領域Eとの間に利得領域Fおよび位相調整領域Gが設けられている点である。
利得領域Fは、半導体基板1上において、下クラッド層2、利得層25、上クラッド層6、コンタクト層26、および電極27が積層された構造を有する。利得層25は、例えば互いに組成の異なる井戸層Ga0.32In0.68As0.92P0.08(厚さ5nm)と障壁層Ga0.22In0.78As0.47P0.53(厚さ10nm)が積層された構造を有する。コンタクト層26は、例えばInGaAsP結晶からなる。SG−DBR領域Eは、SG−DBR領域Bと同様の構成を有する。ただし、SG−DBR領域BとSG−DBR領域Eとで、セグメントの長さが異なっている。
位相調整領域Gは、基板1上に、下クラッド層2、導波路コア28、上クラッド層6、絶縁膜9、およびヒータ10が積層された構造を有する。導波路コア28は、例えばバルクであり、例えばGa0.28In0.72As0.61P0.39からなる導波層である。なお、位相調整領域Gも、SG−DBR領域Bと同様に、溝30によってメサ状に形成されている。
波長可変半導体レーザ102においては、電極27に所定の駆動電流を注入することによって利得層25で光が発生する。また、SG−DBR領域BおよびSG−DBR領域Eの各ヒータ10の発熱量を個別に制御することによって、SG−DBR領域BおよびSG−DBR領域Eの反射スペクトルが個別に制御される。さらに、位相調整領域Gのヒータ10の発熱量を制御することによって、SG−DBR領域BおよびSG−DBR領域Eによって選択された所望の反射スペクトルにおいて、所望の発振波長に調整される。なお、SG−DBR領域B、SG−DBR領域E、および位相調整領域Gは、それぞれヒータの代わりに電流注入による屈折率制御を行うことも可能である。
図5の例では、SG−DBR領域B,Eおよび位相調整領域Gのすべてに空隙22が形成されている。なお、空隙22はSG−DBR領域B,Eおよび位相調整領域Gのいずれか一だけに設けることもできる。空隙22あるいは柱部の配置については、変形例1と同様である。本変形例においても空隙22が設けられていることから、ヒータ10が発生する熱が空隙22よりも下方へ伝わりにくくなる。それにより、導波路コア28の断熱性を効率よく高めることができる。
(変形例3)
図6(a)は、変形例3に係る波長可変半導体レーザ103の模式的平面図である。図6(b)は、波長可変半導体レーザ103の模式的断面図である。波長可変半導体レーザ103が図4の波長可変半導体レーザ100と異なる点は、SG−DBR領域Bの変わりにCSG−DBR(Chirped Sampled Grating Distributed Reflector)領域Hを備えている点である。CSG−DBR領域HがSG−DBR領域Bと異なる点は、各セグメントの光学的長さが異なる点およびヒータ10が複数設けられている点である。各ヒータ10には、それぞれ、電源電極11およびグランド電極12が設けられている。
図6(a)は、変形例3に係る波長可変半導体レーザ103の模式的平面図である。図6(b)は、波長可変半導体レーザ103の模式的断面図である。波長可変半導体レーザ103が図4の波長可変半導体レーザ100と異なる点は、SG−DBR領域Bの変わりにCSG−DBR(Chirped Sampled Grating Distributed Reflector)領域Hを備えている点である。CSG−DBR領域HがSG−DBR領域Bと異なる点は、各セグメントの光学的長さが異なる点およびヒータ10が複数設けられている点である。各ヒータ10には、それぞれ、電源電極11およびグランド電極12が設けられている。
また、CSG−DBR領域Hにおいては、少なくとも2つのセグメントの光学的長さが、互いに異なっている。それにより、CSG−DBR領域Hの波長特性のピーク同士の強度は、波長依存性を有するようになる。一方、SG−DFB領域Aにおける各セグメントの光学的長さは、実質的に互いに同一である。これらSG−DFB領域AおよびCSG−DBR領域Hの組み合わせにより、バーニア効果を利用して、所望の波長で安定してレーザ発振させることができる。
本変形例においては、一例として、CSG−DBR領域H内には、異なる光学的長さを有する3つのセグメントグループX,Y,Zがある。それぞれセグメントグループXは3つ、セグメントグループYは2つ、セグメントグループZは2つのセグメントが設けられ、合計7つのセグメントが設けられている。例えば、回折格子18は、SG−DFB領域AおよびCSG−DBR領域Hのセグメントにおいて、同一のピッチおよび同一の周期を有し、1ピッチ240nm×20周期=4.8μmの長さを有する。SG−DFB領域Aに最も近いセグメントグループXのスペース部の長さは、120.2μmの長さを有することから、セグメントグループXのセグメントの長さは125.0μmである。セグメントグループXの隣に配置されたセグメントグループYのスペース部は、115.2μmの長さを有することから、セグメントグループYのセグメントの長さは120.0μmである。セグメントグループYの隣に配置されたセグメントグループZのスペース部の長さは、125.2μmの長さを有することから、セグメントグループZのセグメントの長さは130.0μmである。これらのことより、CSG−DBR領域Hは、875μm程度の長さを有する。それぞれのセグメントグループには、セグメントグループ内のセグメントをまたぐようにヒータ10が設けられている。
また、このときのSG−DFB領域Aは、一例として、6つのセグメントを備える。SG−DFB領域Aのセグメントのスペース部の長さは、132.7μmの長さを有することから、SG−DFB領域Aの各セグメントの長さは、137.5μmである。それにより、SG−DFB領域Aは、825μm程度の長さを有する。
本変形例においては、CSG−DBR領域Hの半導体基板1において、光導波層4の延伸方向に沿って空隙22が形成されている。本変形例においては、空隙22が複数に分割されており、空隙22あるいは柱部の配置については、変形例1と同様である。前記したように、CSG−DBR領域Hには、セグメント長の異なるグループが存在するが、空隙22と柱部が各セグメントに与える影響が無視できる場合には、空隙22と柱部の配置関係は、変形例1と同様でよい。
(製造方法)
図7(a)〜図7(g)は、上記のSG−DBR領域B,E、位相調整領域GまたはCSG−DBR領域Hの製造方法を説明するための図である。図7(a)〜図7(g)は、各工程における模式的断面図を表している。まず、図7(a)に示すように、半導体基板1の第1主面に、半導体中間層40を成長させる。例えば、半導体中間層40として、半導体基板1と格子整合する半導体を用いる。半導体基板1としてInPを用いる場合には、半導体中間層40として、InPを含む半導体を用いる。具体的には、半導体中間層40として、InGaAsP、InGaAlAs、InAlAsP、InGaAlAsPなどのInPと格子整合する半導体混晶を用いる。半導体中間層40の厚みは、一例として、1.25μmである。なお、後述するウェットエッチング処理が適度な速度で行うことができればよいため、半導体中間層40の厚みは、0.5μmあれば十分である。
図7(a)〜図7(g)は、上記のSG−DBR領域B,E、位相調整領域GまたはCSG−DBR領域Hの製造方法を説明するための図である。図7(a)〜図7(g)は、各工程における模式的断面図を表している。まず、図7(a)に示すように、半導体基板1の第1主面に、半導体中間層40を成長させる。例えば、半導体中間層40として、半導体基板1と格子整合する半導体を用いる。半導体基板1としてInPを用いる場合には、半導体中間層40として、InPを含む半導体を用いる。具体的には、半導体中間層40として、InGaAsP、InGaAlAs、InAlAsP、InGaAlAsPなどのInPと格子整合する半導体混晶を用いる。半導体中間層40の厚みは、一例として、1.25μmである。なお、後述するウェットエッチング処理が適度な速度で行うことができればよいため、半導体中間層40の厚みは、0.5μmあれば十分である。
その後、半導体中間層40のうち、空隙22が形成される領域以外の領域に対して、ドライエッチング処理を施す。一例として、ICPドライエッチャーを用い、アンテナパワーを200Wとし、バイアスパワーを100Wとし、SiCl4/Ar流量を0.1sccmとし、APC圧を0.8Paとし、半導体基板1の温度を150℃とすることができる。なお、図7(a)の工程において、ドライエッチング処理後に残る半導体中間層40の幅は、空隙22より大きくてもよい。
次に、図7(b)に示すように、半導体中間層40をn型InPで埋め込み、埋め込みに用いたn型InPに対して平坦化エッチを施す。平坦化されたn型InPは、半導体基板1の一部として機能する。次いで、図7(c)に示すように、平坦化したn型InP上に、回折格子18を構成する層、バッファ層2a、光導波層4を構成する層、およびバッファ層6aを成長させる。それにより、半導体基板1の第1主面に、半導体積層体が形成される。なお、回折格子18が設けられていない箇所においては、回折格子18を構成する層を除去した後に、下クラッド層2を構成する層を成長させる。また、バッファ層2aは、n型InPであり、下クラッド層2としても機能する。バッファ層6は、p型InPである。
次に、図7(d)に示すように、図7(c)の工程で成長させた半導体積層体の半導体中間層40の略中央部を含む領域が残るように、ドライエッチング処理を施す。一例として、ICPドライエッチャーを用い、アンテナパワーを200Wとし、バイアスパワーを100Wとし、SiCl4/Ar流量を0.1sccmとし、APC圧を0.8Paとし、半導体基板1の温度を150℃とすることができる。図7(d)の工程においては、半導体基板1が露出しかつ半導体中間層40が露出する前に、ドライエッチング処理を終了する。このエッチングが終了した時点での半導体積層体の高さは、例えば1.0μmである。また、その幅は、例えば、1.5μmである。
次に、図7(e)に示すように、図7(d)の工程で形成されたメサ上および図7(d)の工程で除去された領域上に埋め込み層として機能する高抵抗層51を成長させる。高抵抗層51は、例えばFeドープInPである。さらに、上クラッド層6および高抵抗層51の上面全体に、0.6μm程度の厚みの絶縁膜9を形成する。また、図7(d)のメサの上方の絶縁膜9上に、ヒータ10を形成する。
次いで、図7(f)に示すように、絶縁膜9および高抵抗層51にドライエッチング処理を施すことで、図1(a)の溝30を形成する。図7(f)の工程においては、半導体中間層40よりも深い位置までドライエッチング処理を施す。メサの側面に半導体中間層40が露出する。一例として、半導体中間層40よりも1.0μm以下の深さまでドライエッチング処理してもよい。また、一例として、メサの幅が5.0μmとなり、溝30の幅が4.0μmになるようにドライエッチング処理してもよい。一例として、ICPドライエッチャーを用い、アンテナパワーを200Wとし、バイアスパワーを100Wとし、SiCl4/Ar流量を0.1sccmとし、APC圧を0.8Paとし、半導体基板1の温度を150℃とすることができる。
次に、図7(g)に示すように、半導体中間層40に対し、選択的ウェットエッチング処理を施すことによって、半導体中間層40を除去する。この場合、埋め込み層(高抵抗層51)によって光導波層4を含む構造が埋め込まれているため、選択的ウェットエッチングによって光導波層4が損傷されることが回避できる。なお、選択的ウェットエッチングにおけるエッチャントと半導体中間層40との組み合わせは、半導体中間層40に対する選択比が半導体基板1に対する選択比よりも高くなるように選択される。
半導体中間層40としてInGaAsP、InGaAlAs、InAlAsP、InGaAlAsPなどを用いる場合には、エッチャントとして、過酸化水素水を加えた希釈フッ酸を用いることができる。例えば、25℃のエッチャントを用いて4分程度エッチングすることによって、半導体中間層40を除去することができる。最後に、半導体基板1の裏面に裏面電極15を形成することによって、SG−DBR領域B,E、位相調整領域GまたはCSG−DBR領域Hが完成する。
なお、溝30の深さが10.0μm以下のとき、溝30の幅を3.0μm以上にすることで、エッチャントを溝30の底まで流入させ、半導体中間層40を除去することができる。さらに、溝30の幅を6.0μm以上にすることで、残渣を残すことなく半導体中間層40を除去することができる。なお、CSG−DBR領域Hも同様の製造方法で形成することができる。
(製造方法の他の例)
図8(a)〜図8(c)は、SG−DBR領域B,E、位相調整領域GまたはCSG−DBR領域Hの製造方法の他の例を説明するための図である。図8(a)〜図8(c)は、各工程における模式的断面図を表している。まず、図7(a)〜図7(e)の工程を実施する。なお、図7(a)の工程においては、半導体中間層40の幅を、空隙22よりも大きくしておく。
図8(a)〜図8(c)は、SG−DBR領域B,E、位相調整領域GまたはCSG−DBR領域Hの製造方法の他の例を説明するための図である。図8(a)〜図8(c)は、各工程における模式的断面図を表している。まず、図7(a)〜図7(e)の工程を実施する。なお、図7(a)の工程においては、半導体中間層40の幅を、空隙22よりも大きくしておく。
次に、図8(a)に示すように絶縁膜9および高抵抗層51にドライエッチング処理を施すことで、図1(a)の溝30を形成する。図8(a)の工程においては、半導体中間層40が露出するまでドライエッチング処理を施す。一例として、半導体中間層40よりも1.0μm以下の深さまでドライエッチング処理してもよい。一例として、ICPドライエッチャーを用い、アンテナパワーを200Wとし、バイアスパワーを100Wとし、SiCl4/Ar流量を0.1sccmとし、APC圧を0.8Paとし、半導体基板1の温度を150℃とすることができる。
次に、図8(b)に示すように、半導体中間層40に対し、選択的ウェットエッチング処理を施すことによって、半導体中間層40を除去する。図8(b)の例では、エッチャントとして、過酸化水素水を加えた希釈フッ酸を用いることができる。例えば、25℃のエッチャントを用いて3分程度エッチングすることによって、半導体中間層40を除去することができる。次に、図8(c)に示すように、半導体基板1の裏面に裏面電極15を形成することによって、SG−DBR領域B,E、位相調整領域GまたはCSG−DBR領域Hが完成する。
なお、溝30の深さが10.0μm以下のとき、溝30の幅を3.0μm以上にすることで、エッチャントを溝30の底まで流入させ、半導体中間層40を除去することができる。さらに、溝30の幅を6.0μm以上にすることで、残渣を残すことなく半導体中間層40を除去することができる。なお、CSG−DBR領域Hも同様の製造方法で形成することができる。
図8(a)〜図8(c)の例では、ウェットエッチング処理を施す際の半導体中間層40の露出面積が大きくなる。それにより、図7(a)〜図7(g)の工程と比較して、ウェットエッチングの処理時間を短縮化することができる。なお、半導体中間層40の厚みが小さく半導体中間層40を露出させることが困難である場合には、図7(a)〜図7(g)の工程が有利である。
なお、図7(a)〜図8(c)の例では、メサ部の形成前に絶縁膜9が形成されているが、それに限られない。例えば、半導体中間層40の除去後に絶縁膜9を形成してもよい。この場合、メサ部の側面、溝30の底面、溝30のメサ部と異なる側面にも絶縁膜9が形成される。なお、絶縁膜9は、窒化シリコン(SiN)、酸化シリコン(SiO2)等の絶縁体からなる保護膜で形成されている。
(空隙の幅)
図9(a)および図9(b)は、空隙22の幅について説明するための図である。図9(a)に示すように、空隙22は、一方の溝30から他方の溝30まで形成されていてもよい。図9(a)の例は、図8(c)の例に対応している。また、図9(b)を参照して、空隙22は、両方の溝30のメサと反対側まで伸びていてもよい。
図9(a)および図9(b)は、空隙22の幅について説明するための図である。図9(a)に示すように、空隙22は、一方の溝30から他方の溝30まで形成されていてもよい。図9(a)の例は、図8(c)の例に対応している。また、図9(b)を参照して、空隙22は、両方の溝30のメサと反対側まで伸びていてもよい。
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
1 半導体基板
2 下クラッド層
3 活性層
4 光導波層
5 光吸収層
6 上クラッド層
7 コンタクト層
8,14 電極
10 ヒータ
11 電源電極
12 グランド電極
13 コンタクト層
15 裏面電極
16 AR膜
17 HR膜
18 回折格子
100 波長可変半導体レーザ
2 下クラッド層
3 活性層
4 光導波層
5 光吸収層
6 上クラッド層
7 コンタクト層
8,14 電極
10 ヒータ
11 電源電極
12 グランド電極
13 コンタクト層
15 裏面電極
16 AR膜
17 HR膜
18 回折格子
100 波長可変半導体レーザ
Claims (15)
- 半導体基板上に、半導体中間層を形成する工程と、
前記半導体中間層上に光導波層を含む半導体積層体を形成する工程と、
その内面に前記半導体中間層が露出する溝を前記半導体積層体に形成する工程と、
前記溝の内面に露出した前記半導体中間層を選択的ウェットエッチングによって除去することで、空隙を形成する工程と、を含むことを特徴とする光半導体素子の製造方法。 - 前記半導体積層体は、前記光導波層の両側を埋め込んだ埋め込み層を備え、前記溝は、前記光導波層を含む前記埋め込み層の両側に設けられてなることを特徴とする請求項1記載の光半導体素子の製造方法。
- 前記半導体基板は、InPであり、
前記半導体中間層は、InGaAsP、InGaAlAs、InAlAsPまたはInGaAlAsPであることを特徴とする請求項1または2記載の光半導体素子の製造方法。 - 前記ウェットエッチングに用いるエッチャントは、過酸化水素水を加えた希釈フッ酸であることを特徴とする請求項3記載の光半導体素子の製造方法。
- 前記半導体積層体は、前記光導波層に沿って、回折格子とスペース部とからなり、その光学的長さがそれぞれ等しいセグメントが複数設けられたSG−DBR構造を有することを特徴とする請求項1〜4のいずれかに記載の光半導体素子の製造方法。
- 前記半導体積層体は、前記光導波層に沿って、回折格子とスペース部とからなるセグメントが複数設けられ、少なくとも2つのセグメントの光学的長さが異なるCSG−DBR構造を有することを特徴とする請求項1〜4のいずれかに記載の光半導体素子の製造方法。
- 前記光導波層に沿って、ヒータが設けられてなることを特徴とする請求項1〜6のいずれかに記載の光半導体素子の製造方法。
- 前記半導体中間層は、前記導波路における光伝播方向で複数に分割して設けられていることを特徴とする請求項1〜7のいずれかに記載の光半導体素子の製造方法。
- 前記半導体中間層は、前記セグメントに対して1つずつ、前記光導波層における光伝播方向に複数に分割して設けられることを特徴とする請求項5または6記載の光半導体素子の製造方法。
- 半導体基板上に設けられ、内部に光導波層を有する反射領域と、
前記半導体基板上に設けられ、前記反射領域の前記光導波層と光結合する利得領域と、を備え、
前記反射領域は、前記光導波層よりも前記半導体基板側において、空隙を有することを特徴とする光半導体素子。 - 前記光導波層上にヒータが設けられてなることを特徴とする請求項10記載の光半導体素子。
- 前記反射領域は、回折格子とスペース部とからなるセグメントが複数設けられ、SG−DBR構造を有することを特徴とする請求項10記載の光半導体素子。
- 前記反射領域は、回折格子とスペース部とからなるセグメントが複数設けられ、少なくとも2つのセグメントの光学的長さが異なるCSG−DBR構造を有することを特徴とする請求項10記載の光半導体素子。
- 前記空隙は、前記光導波層における光伝播方向において、複数に分割されてなることを特徴とする請求項10〜13のいずれかに記載の光半導体素子。
- 前記空隙は、前記セグメントに対して1つずつ、前記光導波層における光伝播方向に複数に分割して設けられることを特徴とする請求項12または13記載の光半導体素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011036376A JP2012174938A (ja) | 2011-02-22 | 2011-02-22 | 光半導体素子およびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011036376A JP2012174938A (ja) | 2011-02-22 | 2011-02-22 | 光半導体素子およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012174938A true JP2012174938A (ja) | 2012-09-10 |
Family
ID=46977547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011036376A Pending JP2012174938A (ja) | 2011-02-22 | 2011-02-22 | 光半導体素子およびその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012174938A (ja) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014192247A (ja) * | 2013-03-26 | 2014-10-06 | Nippon Telegr & Teleph Corp <Ntt> | 熱光学素子およびその作製方法 |
WO2014179461A3 (en) * | 2013-04-30 | 2015-01-08 | Huawei Technologies Co., Ltd. | Tunable laser with high thermal wavelength tuning efficiency |
JP2015170750A (ja) * | 2014-03-07 | 2015-09-28 | 住友電気工業株式会社 | 光半導体素子及び光半導体素子の製造方法 |
US9577142B2 (en) | 2014-10-30 | 2017-02-21 | Sumitomo Electric Device Innovations, Inc. | Process for forming semiconductor laser diode implemented with sampled grating |
JP2017163081A (ja) * | 2016-03-11 | 2017-09-14 | 古河電気工業株式会社 | 半導体光素子、およびその製造方法 |
CN107230930A (zh) * | 2016-03-23 | 2017-10-03 | 华为技术有限公司 | 一种可调激光器及制备方法 |
WO2018061106A1 (ja) * | 2016-09-28 | 2018-04-05 | 三菱電機株式会社 | レーザレーダ装置 |
WO2018147307A1 (ja) * | 2017-02-07 | 2018-08-16 | 古河電気工業株式会社 | 光導波路構造 |
WO2018205579A1 (zh) * | 2017-05-09 | 2018-11-15 | 华为技术有限公司 | 用于可调激光器的反射镜结构和可调激光器 |
JP2019087714A (ja) * | 2017-01-23 | 2019-06-06 | 住友電気工業株式会社 | 光半導体素子の製造方法 |
JP2019161070A (ja) * | 2018-03-14 | 2019-09-19 | 古河電気工業株式会社 | 光導波路構造及びその製造方法 |
US10756507B2 (en) | 2017-01-23 | 2020-08-25 | Sumitomo Electric Industries, Ltd. | Process of forming epitaxial substrate and semiconductor optical device |
JP2020134594A (ja) * | 2019-02-14 | 2020-08-31 | 古河電気工業株式会社 | 光導波路構造及びその製造方法 |
JP2020134599A (ja) * | 2019-02-14 | 2020-08-31 | 古河電気工業株式会社 | 光半導体素子および集積型半導体レーザ |
CN113396512A (zh) * | 2019-02-08 | 2021-09-14 | 古河电气工业株式会社 | 半导体元件 |
EP3879645A4 (en) * | 2018-11-29 | 2022-04-06 | Huawei Technologies Co., Ltd. | TWO-SECTION DBR LASER AND MONOLITHIC INTEGRATED ARRAY LIGHT SOURCE CHIP |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62213190A (ja) * | 1986-03-13 | 1987-09-19 | Fujitsu Ltd | 半導体レ−ザの製造方法 |
JPH04206586A (ja) * | 1990-11-30 | 1992-07-28 | Fujitsu Ltd | 半導体発光装置及びその製造方法 |
JP2003525469A (ja) * | 2000-03-03 | 2003-08-26 | サーントル・ナシヨナル・ドゥ・ラ・ルシェルシェ・シヤンティフィック | 電気的に調整可能な変換作用を有する半導体光電子装置 |
US20090041073A1 (en) * | 2007-04-13 | 2009-02-12 | Finisar Corporation | Dbr laser with improved thermal tuning efficiency |
JP2010129830A (ja) * | 2008-11-28 | 2010-06-10 | Sumitomo Electric Device Innovations Inc | 半導体レーザのチューニング方法 |
-
2011
- 2011-02-22 JP JP2011036376A patent/JP2012174938A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62213190A (ja) * | 1986-03-13 | 1987-09-19 | Fujitsu Ltd | 半導体レ−ザの製造方法 |
JPH04206586A (ja) * | 1990-11-30 | 1992-07-28 | Fujitsu Ltd | 半導体発光装置及びその製造方法 |
JP2003525469A (ja) * | 2000-03-03 | 2003-08-26 | サーントル・ナシヨナル・ドゥ・ラ・ルシェルシェ・シヤンティフィック | 電気的に調整可能な変換作用を有する半導体光電子装置 |
US20090041073A1 (en) * | 2007-04-13 | 2009-02-12 | Finisar Corporation | Dbr laser with improved thermal tuning efficiency |
JP2010129830A (ja) * | 2008-11-28 | 2010-06-10 | Sumitomo Electric Device Innovations Inc | 半導体レーザのチューニング方法 |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014192247A (ja) * | 2013-03-26 | 2014-10-06 | Nippon Telegr & Teleph Corp <Ntt> | 熱光学素子およびその作製方法 |
WO2014179461A3 (en) * | 2013-04-30 | 2015-01-08 | Huawei Technologies Co., Ltd. | Tunable laser with high thermal wavelength tuning efficiency |
US9231361B2 (en) | 2013-04-30 | 2016-01-05 | Futurewei Technologies, Inc. | Tunable laser with high thermal wavelength tuning efficiency |
JP2015170750A (ja) * | 2014-03-07 | 2015-09-28 | 住友電気工業株式会社 | 光半導体素子及び光半導体素子の製造方法 |
US9577142B2 (en) | 2014-10-30 | 2017-02-21 | Sumitomo Electric Device Innovations, Inc. | Process for forming semiconductor laser diode implemented with sampled grating |
JP2017163081A (ja) * | 2016-03-11 | 2017-09-14 | 古河電気工業株式会社 | 半導体光素子、およびその製造方法 |
CN107230930A (zh) * | 2016-03-23 | 2017-10-03 | 华为技术有限公司 | 一种可调激光器及制备方法 |
EP3422498A4 (en) * | 2016-03-23 | 2019-03-27 | Huawei Technologies Co., Ltd. | TUNABLE LASER AND PREPARATION METHOD THEREFOR |
JP2019509642A (ja) * | 2016-03-23 | 2019-04-04 | 華為技術有限公司Huawei Technologies Co.,Ltd. | 可変レーザー及び可変レーザーの製造方法 |
US10666014B2 (en) * | 2016-03-23 | 2020-05-26 | Huawei Technologies Co., Ltd. | Tunable laser and manufacturing method for tunable laser |
WO2018061106A1 (ja) * | 2016-09-28 | 2018-04-05 | 三菱電機株式会社 | レーザレーダ装置 |
JPWO2018061106A1 (ja) * | 2016-09-28 | 2018-09-27 | 三菱電機株式会社 | レーザレーダ装置 |
JP7007926B2 (ja) | 2017-01-23 | 2022-01-25 | 住友電気工業株式会社 | 光半導体素子の製造方法 |
US10756507B2 (en) | 2017-01-23 | 2020-08-25 | Sumitomo Electric Industries, Ltd. | Process of forming epitaxial substrate and semiconductor optical device |
JP2019087714A (ja) * | 2017-01-23 | 2019-06-06 | 住友電気工業株式会社 | 光半導体素子の製造方法 |
CN110249245A (zh) * | 2017-02-07 | 2019-09-17 | 古河电气工业株式会社 | 光波导构造 |
US11482838B2 (en) | 2017-02-07 | 2022-10-25 | Furukawa Electric Co., Ltd. | Optical waveguide structure |
JP7145765B2 (ja) | 2017-02-07 | 2022-10-03 | 古河電気工業株式会社 | 光導波路構造 |
JPWO2018147307A1 (ja) * | 2017-02-07 | 2019-11-21 | 古河電気工業株式会社 | 光導波路構造 |
WO2018147307A1 (ja) * | 2017-02-07 | 2018-08-16 | 古河電気工業株式会社 | 光導波路構造 |
WO2018205579A1 (zh) * | 2017-05-09 | 2018-11-15 | 华为技术有限公司 | 用于可调激光器的反射镜结构和可调激光器 |
US11211767B2 (en) | 2017-05-09 | 2021-12-28 | Huawei Technologies Co., Ltd. | Reflector structure for tunable laser and tunable laser |
JP7012409B2 (ja) | 2018-03-14 | 2022-01-28 | 古河電気工業株式会社 | 光導波路構造及びその製造方法 |
JP2019161070A (ja) * | 2018-03-14 | 2019-09-19 | 古河電気工業株式会社 | 光導波路構造及びその製造方法 |
EP3879645A4 (en) * | 2018-11-29 | 2022-04-06 | Huawei Technologies Co., Ltd. | TWO-SECTION DBR LASER AND MONOLITHIC INTEGRATED ARRAY LIGHT SOURCE CHIP |
CN113396512A (zh) * | 2019-02-08 | 2021-09-14 | 古河电气工业株式会社 | 半导体元件 |
JP2020134599A (ja) * | 2019-02-14 | 2020-08-31 | 古河電気工業株式会社 | 光半導体素子および集積型半導体レーザ |
JP2020134594A (ja) * | 2019-02-14 | 2020-08-31 | 古河電気工業株式会社 | 光導波路構造及びその製造方法 |
JP7246960B2 (ja) | 2019-02-14 | 2023-03-28 | 古河電気工業株式会社 | 光導波路構造及びその製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012174938A (ja) | 光半導体素子およびその製造方法 | |
Van Campenhout et al. | A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks | |
JP6224495B2 (ja) | 半導体レーザ装置 | |
JP4643794B2 (ja) | 半導体発光素子 | |
US7463663B2 (en) | Semiconductor laser diode and integrated semiconductor optical waveguide device | |
US10756507B2 (en) | Process of forming epitaxial substrate and semiconductor optical device | |
JP2011204895A (ja) | 半導体レーザ装置 | |
US10014660B2 (en) | Laser device and process for fabricating such a laser device | |
US8638825B2 (en) | Wavelength tunable laser diode | |
JP2015170750A (ja) | 光半導体素子及び光半導体素子の製造方法 | |
JP5795126B2 (ja) | 半導体レーザ素子、集積型半導体レーザ素子、および、半導体レーザ素子の製造方法 | |
US7177335B2 (en) | Semiconductor laser array with a lattice structure | |
JP6212754B2 (ja) | 光半導体装置及びその製造方法 | |
US20160336719A1 (en) | Integrated semiconductor laser device and semiconductor laser module | |
JP2009064837A (ja) | 半導体レーザ及び半導体光集積素子 | |
JP4864858B2 (ja) | 波長可変レーザ光発生装置 | |
JP2011003886A (ja) | 半導体レーザ素子及びその作製方法 | |
JP2019204814A (ja) | 半導体レーザ | |
Shi et al. | Flip-chip bonded evanescently coupled III-V-on-Si single-mode laser with slotted feedback structure | |
JP2013197502A (ja) | 変調器集積半導体レーザ | |
JP7007926B2 (ja) | 光半導体素子の製造方法 | |
JP2010278278A (ja) | 光半導体装置 | |
JP2015053451A (ja) | 長波長帯半導体レーザ | |
JP2011119311A (ja) | 半導体レーザ装置 | |
JP3186645B2 (ja) | 半導体レーザ及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140820 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141216 |