WO2018205579A1 - 用于可调激光器的反射镜结构和可调激光器 - Google Patents

用于可调激光器的反射镜结构和可调激光器 Download PDF

Info

Publication number
WO2018205579A1
WO2018205579A1 PCT/CN2017/114689 CN2017114689W WO2018205579A1 WO 2018205579 A1 WO2018205579 A1 WO 2018205579A1 CN 2017114689 W CN2017114689 W CN 2017114689W WO 2018205579 A1 WO2018205579 A1 WO 2018205579A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mirror structure
mirror
coupled
region
Prior art date
Application number
PCT/CN2017/114689
Other languages
English (en)
French (fr)
Inventor
武林
陈宏民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019561996A priority Critical patent/JP6818911B2/ja
Priority to EP17908778.8A priority patent/EP3605755B1/en
Publication of WO2018205579A1 publication Critical patent/WO2018205579A1/zh
Priority to US16/674,283 priority patent/US11211767B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0811Construction or shape of optical resonators or components thereof comprising three or more reflectors incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/0812Construction or shape of optical resonators or components thereof comprising three or more reflectors incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02453Heating, e.g. the laser is heated for stabilisation against temperature fluctuations of the environment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02461Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods
    • H01S5/1218Multiplicity of periods in superstructured configuration, e.g. more than one period in an alternate sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/204Strongly index guided structures
    • H01S5/2045Strongly index guided structures employing free standing waveguides or air gap confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/2086Methods of obtaining the confinement using special etching techniques lateral etch control, e.g. mask induced
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1007Branched waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/209Methods of obtaining the confinement using special etching techniques special etch stop layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser

Definitions

  • This application relates to the field of lasers and, more particularly, to mirror structures and tunable lasers for tunable lasers.
  • a tunable laser refers to a laser whose output wavelength can be adjusted within a certain range.
  • the monolithically integrated tunable laser has the advantages of small size and high integration, and thus has become the mainstream technology in the field of optical communication.
  • a monolithically integrated Y-branch tunable laser consists of a gain region, a phase region, a multi-mode interferometer (MMI) coupler, and a reflection.
  • the mirror structure 1 and the mirror structure 2 are composed.
  • the active gain region is typically a Multiple Quantum Well (MQW) that converts electrical energy into light energy when subjected to electrical injection to provide gain.
  • MQW Multiple Quantum Well
  • the reflectance spectra of mirror structure 1 and mirror structure 2 are wavelength selective for wavelength tuning.
  • the mirrors commonly used in mirror structures can be distributed Bragg Reflection (DBR) or microrings.
  • the Y-branch monolithic integrated tunable laser adjusts the wavelength, which essentially adjusts the refractive index of the mirror or phase-area optical waveguide.
  • the principle of adjusting the refractive index of the optical waveguide is mainly quantum-limited Stark effect (Quantum Confined Stark) Effect, QCSE), current injection and thermal tuning, where the QCSE effect has a relatively small change in refractive index and is less used in lasers; current injection has a large amount of change in refractive index and transient response is very fast (nanoseconds) ), is widely used, but current injection introduces a large waveguide loss, resulting in laser excitation ray width of megahertz level, can not meet the requirements of coherent optical communication systems; thermal tuning changes the refractive index by changing the temperature effect of the material, Although the response rate is slower than current injection, the tuning loss is much smaller than the current injection, and a line width of less than 400 kilohertz (kHz) can be achieved to meet the requirements of a coherent optical
  • thermal tuning has the advantage that a narrower laser linewidth can be obtained compared to current injection tuning, with the disadvantage that the power consumption of the tuning component is excessive.
  • Thermal tuning is accomplished by placing a heater (typically a heating resistor) in the mirror area of the mirror structure. By adjusting the power of the heater, the temperature of the heater can be changed, thereby changing the temperature of the mirror region, and finally changing the refractive index of the mirror region by the temperature effect to adjust the wavelength position of the reflection main peak of the mirror.
  • a heater typically a heating resistor
  • the temperature of the heater can be changed, thereby changing the temperature of the mirror region, and finally changing the refractive index of the mirror region by the temperature effect to adjust the wavelength position of the reflection main peak of the mirror.
  • the lower the power consumption of the thermal tuning component in the tunable laser means that the thermal regulation efficiency of the tuning component is higher and the overall power consumption of the laser is lower.
  • the present application provides a mirror and a tunable laser for a tunable laser that can reduce the overall power consumption of the tunable laser.
  • a mirror structure for a tunable laser comprising:
  • a substrate layer a support layer, an under cladding layer, a waveguide layer, an over cladding layer, and a heater layer stacked in this order from bottom to top;
  • the mirror structure further includes a superstructure grating disposed between the upper cladding layer and the lower cladding layer along a direction of propagation of light in the waveguide layer, the heater layer being located An area on the upper surface of the upper cladding layer facing the superstructure grating;
  • the support layer includes a first sub-support layer and a second sub-support layer, the first sub-support layer and the second sub-support layer being located on the substrate layer along a direction of propagation of light in the waveguide layer
  • a space extending along a propagation direction of light in the waveguide layer is formed between the substrate layer, the first sub-support layer, the second sub-support layer, and the lower cladding layer on both sides of the upper surface, along a first column opening and a second column opening are disposed on an upper surface of the upper cladding layer in a propagation direction of the light in the waveguide layer, and the first column opening and the second column opening are respectively located in the
  • the first column opening and the second column opening respectively comprise a plurality of openings, each of which penetrates downwardly Said cladding layer, said waveguide layer and said lower cladding layer reaching said space,
  • a region above the space between the first column opening and the second column opening forms a suspended structure, and an area between the first column opening and the adjacent two of the second column openings Forming a lateral support structure of the suspended structure
  • the spatial period of the super-structure grating refers to a corresponding distance of a period of a modulation function of the super-structure grating on the super-structure grating.
  • the first spatial period of the superstructure grating and the second spatial period of the superstructure grating may be the same spatial period on the superstructure grating, or may be different spaces on the superstructure grating cycle.
  • the difference between the relative position of the first region in the first spatial period and the relative position of the second region in the second spatial period includes: the first region to the first spatial period The distance from the beginning (or the end) is different from the distance from the second region to the beginning (or end) of the second spatial period.
  • the mirror structure for the tunable laser of the embodiment of the invention adopts a super-structure grating as a mirror, and forms a suspended structure around the region where the super-structure grating is located, and forms a thermal isolation around the region where the super-structure grating is located by using the suspended structure.
  • the thermal resistance is increased, the heat loss is reduced, and the heat is concentrated in the region where the super-structure grating is located, thereby improving the thermal tuning efficiency of the mirror structure and reducing the overall power consumption of the tunable laser.
  • mechanical support is provided for the suspended structure by providing lateral support structures on both sides of the suspended structure.
  • any two lateral support structures on the same side of the suspended structure fall in different positions in the spatial period of the superstructure grating in the superstructure grating, and help to avoid the reflection spectrum of the superstructure grating during thermal tuning. Deterioration of flatness helps to avoid deterioration of tunable laser performance.
  • the number of openings of at least one of the first column opening and the second column opening is different from the number of modulation cycles of the superstructure grating.
  • the first column opening and the second column opening comprise the same number of openings.
  • the first column opening and the second column opening are symmetrical with respect to a center line between the first column opening and the second column opening.
  • the first column opening and the second column opening respectively comprise a plurality of openings arranged periodically, and adjacent ones of the first column openings and/or the second column openings The distance between any two openings is different from the spatial period of the superstructure grating.
  • the plurality of openings arranged periodically means that each of the plurality of openings is equal in size and the distance between each adjacent two openings is equal.
  • the support layer further includes at least one bottom support structure for supporting the first column opening and the second column opening above the space supporting the bottom from the bottom The suspended structure between.
  • the mechanical strength of the suspended structure can be further enhanced.
  • the at least one bottom support structure is a plurality of bottom support structures, the plurality of bottom support structures being arranged in the space along a direction of propagation of light in the waveguide layer, A region between at least two adjacent bottom support structures of the plurality of bottom support structures is misaligned with a modulation peak or a modulation valley of the superstructure grating.
  • each of the openings has a different width along a direction of propagation of light in the waveguide layer.
  • a bottom support structure can be formed in a portion where the opening is narrow by injecting an etchant at these openings.
  • the mirror structure further includes:
  • the mirror structure further includes:
  • the heater layer being located on an upper surface of the dielectric layer opposite to the superstructure grating.
  • the dielectric layer can be used to prevent current leakage from the heater into the overcladding layer.
  • the dielectric layer also covers an inner wall of each of the openings. This can protect the sides of the upper cladding layer, the waveguide layer, and the lower cladding layer from being corroded by the etchant.
  • the superstructure grating is located in the upper cladding layer, or partially located in the upper cladding layer and partially in the waveguide layer, or in the waveguide layer, or partially in the The lower cladding layer is partially located in the waveguide layer or in the lower cladding layer.
  • the modulation function of the superstructure grating is as follows:
  • N is the number of reflection main peaks of the modulation function of the superstructure grating, which is a natural number
  • z represents the position along the direction of propagation of the light on the superstructure grating
  • ⁇ k is the spatial period of the cosine function.
  • a tunable laser comprising:
  • a gain region a gain region, a first phase region, a multimode interference coupler, a first mirror structure, and a second mirror structure;
  • a first end of the first phase region is coupled to a first end of the gain region, and a second end of the first phase region is coupled to a first end of the multimode interference coupler, the multimode interference a second end of the coupler is coupled to the first end of the first mirror, and a third end of the multimode interference coupler is coupled to the first end of the second mirror;
  • At least one of the first mirror structure and the second mirror structure employs the mirror structure of the first aspect or any of the above possible implementations of the first aspect.
  • the tunable laser of the embodiment of the invention by the mirror structure described in the first aspect or the above-mentioned possible implementation manner of the first aspect, is advantageous for reducing the overall power consumption of the tunable laser.
  • the tunable laser further includes: a second phase region
  • a first end of the second phase region is coupled to a second end of the multimode interference coupler, and a second end of the second phase region is coupled to a first end of the first mirror structure, or
  • a first end of the second phase region is coupled to a third end of the multimode interference coupler, and a second end of the second phase region is coupled to a first end of the second mirror structure.
  • the tunable laser further includes: one or more semiconductor optical amplifiers SOA, each SOA being coupled to the second end of the gain region, or to the second of the first mirror structure The ends are connected or connected to the second end of the second mirror structure.
  • SOA semiconductor optical amplifier
  • the tunable laser further includes: one or more photodiodes PD, each PD being coupled to the second end of the gain region, or to the second end of the first mirror structure Connected or connected to the second end of the second mirror structure. Power monitoring or power attenuation can be performed on the tunable laser by integrating the PD.
  • the tunable laser can also integrate both SOA and PD.
  • the SOA can be coupled to the second end of the gain region, and the PD is coupled to the second end of the first mirror structure or the second mirror structure, as shown in FIG. It should be understood that the SOA may also be coupled to the second end of the first mirror structure or the second mirror structure, the PD being coupled to the second end of the gain region. This not only amplifies the optical power of the tunable laser output, but also performs power monitoring or power attenuation.
  • a tunable laser comprising:
  • a first mirror structure a gain region, a phase region, and a second mirror structure
  • a first end of the first mirror structure is coupled to a first end of the gain region, a second end of the gain region is coupled to a first end of the phase region, and a second end of the phase region is The first ends of the second mirror structure are connected,
  • At least one of the first mirror structure and the second mirror structure employs the mirror structure of the first aspect or any of the above possible implementations of the first aspect.
  • the tunable laser of the embodiment of the invention by the mirror structure described in the first aspect or the above-mentioned possible implementation manner of the first aspect, is advantageous for reducing the overall power consumption of the tunable laser.
  • the tunable laser further includes: one or two semiconductor optical amplifiers SOA, each SOA being coupled to the second end of the first mirror structure or the second mirror structure.
  • SOA semiconductor optical amplifier
  • the tunable laser further includes: one or two photodiodes PD, each PD being coupled to the second end of the first mirror structure or the second mirror structure. Power monitoring or power attenuation can be performed on the tunable laser by integrating the PD.
  • the tunable laser can also integrate both SOA and PD.
  • the SOA is coupled to the second end of the first mirror structure
  • the PD is coupled to the second end of the second mirror structure
  • the SOA is coupled to the second end of the second mirror structure, the PD and the first mirror structure The second end is connected. This not only amplifies the optical power of the tunable laser output, but also performs power monitoring or power attenuation.
  • FIG. 1 is a schematic structural view of a Y-branch type tunable laser
  • FIG. 2 is a schematic cross-sectional view of a mirror structure for a tunable laser in the prior art
  • FIG. 3 is a schematic cross-sectional view of a mirror structure for a tunable laser in accordance with an embodiment of the present invention
  • FIG. 4 is a top plan view of a mirror structure for a tunable laser in accordance with an embodiment of the present invention
  • FIG. 5 is a top plan view of a mirror structure for a tunable laser in accordance with another embodiment of the present invention.
  • FIG. 6 is another schematic cross-sectional view of a mirror structure for a tunable laser in accordance with an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a modulation envelope of a modulation function of a superstructure grating
  • Figure 8 is a schematic view showing the temperature distribution of the region where the superstructure grating is heated after the heater is heated;
  • FIG. 9 is a schematic diagram of a reflection spectrum of a mirror structure for a tunable laser, in accordance with an embodiment of the present invention.
  • Figure 10 is a schematic illustration of the reflectance spectrum of a poorly performing mirror structure
  • Figure 11 is a schematic diagram showing the relationship between the ratio between the distance between adjacent openings and the spatial period of the superstructure grating and the flatness of the reflection spectrum;
  • FIG. 12 is a schematic cross-sectional view of a mirror structure for a tunable laser in accordance with another embodiment of the present invention.
  • FIG. 13 is a top plan view of a mirror structure for a tunable laser in accordance with another embodiment of the present invention.
  • FIG. 14 is a top plan view of a mirror structure for a tunable laser in accordance with another embodiment of the present invention.
  • 15 is a schematic cross-sectional view showing a structure of a mirror for a tunable laser according to another embodiment of the present invention.
  • 16 is a schematic structural view of a tunable laser according to an embodiment of the present invention.
  • 17 is a schematic structural view of a tunable laser according to another embodiment of the present invention.
  • FIG. 18 is a schematic structural view of a tunable laser according to another embodiment of the present invention.
  • FIG. 19 is a schematic structural view of a tunable laser according to another embodiment of the present invention.
  • FIG. 20 is a schematic structural view of a tunable laser according to another embodiment of the present invention.
  • 21 is a schematic structural view of a tunable laser according to another embodiment of the present invention.
  • FIG. 22 is a schematic structural view of a tunable laser according to another embodiment of the present invention.
  • FIG. 23 is a schematic structural view of a tunable laser according to another embodiment of the present invention.
  • the mirror structure includes, in order from bottom to top, a substrate layer 01, a buffer layer 02, a lower cladding layer 03, a waveguide layer 04, an upper cladding layer 05, a dielectric layer 06, and a heater layer 07.
  • the mirror structure further includes a mirror 08 (shown in black and white as shown in Fig. 2), and the mirror 08 is located at the interface of the waveguide layer 04 and the upper cladding layer 05.
  • the waveguide layer 04 is used to provide a low loss propagation path of light.
  • the upper cladding layer 05 and the lower cladding layer 03 have a lower refractive index than the waveguide layer 04, so that light is totally reflected when propagating in the waveguide layer 04, so that the light energy can be confined as much as possible in the waveguide layer.
  • the waveguide layer 04 may be Indium Gallium Arsenide Phosphide (InGaAsP), and the upper cladding layer 05 and the lower cladding layer 03 may be indium phosphide (Indium Phosphide, InP).
  • the refractive index of the InP material is lower than that of InGaAsP, so that light propagates in the waveguide layer 04 to form total reflection.
  • the heater layer 07 places a heater for changing the temperature of the mirror area.
  • the dielectric layer 06 serves to prevent the current of the heater from leaking into the upper cladding layer 05.
  • the dielectric layer 05 may be made of an insulating material.
  • the dielectric layer 05 may be made of an insulating material such as silicon dioxide (SiO 2 ) or aluminum oxide (Al 2 O 3 ).
  • the mirror is distributed at the interface of the waveguide layer 04 and the upper cladding layer 05 (shown as the black and white phase portion in Fig. 2).
  • the effective refractive index of the mirror region in the mirror structure changes as the temperature changes, causing the wavelength position of the reflection peak of the mirror to shift, thereby tuning the wavelength.
  • the material of the buffer layer 02 may be indium phosphide (Indium Phosphide, InP).
  • the buffer layer 02 disposed on the substrate layer 01 and the lower cladding layer 03 serves to provide a better quality InP material, providing a better material basis for other layer materials, thereby facilitating the growth of other layer materials. It should be noted that the buffer layer 02 may not be provided. If the buffer layer 02 is not provided, the lower cladding layer 03 is directly disposed on the upper surface of the substrate layer 01.
  • an embodiment of the present invention provides a mirror structure for a tunable laser, which utilizes a suspended structure to form thermal isolation around a waveguide layer where the mirror and the mirror are located, thereby improving thermal resistance to reduce heat loss and heat. Focus on the mirror area.
  • the mirror structure includes a substrate layer 01, a buffer layer 02, a lower barrier layer 09, a support layer 10, an upper barrier layer 11, an under cladding layer 03, a waveguide layer 04, and a top layer stacked in this order from bottom to top.
  • the support layer 10 includes a first sub-support layer 10a and a second sub-support layer 10b, which are located on the upper surface of the lower barrier layer 09 along the direction of propagation of light in the waveguide layer 04. Both sides, lower barrier 09. A space 10c extending along a propagation direction of light in the waveguide layer 04 is formed between the first sub-support layer 10a, the second sub-support layer 10b, and the upper barrier layer 11.
  • the buffer layer 02, the lower barrier layer 09 and the upper barrier layer 11 may not be included in the mirror structure. Accordingly, the support layer 10 is directly disposed on the upper surface of the substrate layer 01, that is, the first sub-support layer 10a and the second sub-support layer 10b are located on the upper surface of the substrate layer 01 along the propagation direction of the light in the waveguide layer 04. On the side, at this time, a space 10c extending along the propagation direction of light in the waveguide layer 04 is formed between the substrate layer 01, the first sub-support layer 10a, the second sub-support layer 10b, and the lower cladding layer 03.
  • the mirror structure shown in Figure 3 also includes a mirror 08 (shown in black and white as shown in Figure 3).
  • the mirror 08 can be a Super Structure Grating (SSG).
  • the superstructure grating is disposed between the lower cladding layer 03 and the upper cladding layer 05 along the propagation direction of the light in the waveguide layer 04, and the heater layer 07 is located on the upper surface of the dielectric layer 06 opposite to the superstructure grating 08.
  • FIGS. 4 and 5 show two top views of the mirror structure shown in Fig. 3.
  • P1 to P7 correspond to a space period of the superstructure grating, respectively.
  • a first column opening 12 and a second column opening 13 are provided on the upper surface of the dielectric layer 04 along the propagation direction of light in the waveguide layer 04, the first column opening 12 and the second
  • the column openings 13 respectively include a plurality of openings (such as 12-1 to 12-8, 13-1 to 13-8 as shown in FIG. 4), and the first column opening 12 and the second column opening 13 are respectively located on the dielectric layer 06. Both sides of the area on the surface opposite the superstructure grating 08.
  • the difference between Fig. 4 and Fig. 5 is only that the shapes of the openings are different.
  • each of the first column opening 12 and the second column opening 13 penetrates the dielectric layer 06, the upper cladding layer 05, the waveguide layer 04, and the lower cladding layer 03 down to the space 10c.
  • the area above the space 10c between the first row of openings 12 and the second column of openings 13 constitutes a suspended structure 20, as shown in the dashed box in FIG.
  • the mirror structure for the tunable laser of the embodiment of the invention adopts a super-structure grating as a mirror, and forms a suspended structure around the region where the super-structure grating is located, and forms a thermal isolation around the region where the super-structure grating is located by using the suspended structure.
  • the thermal resistance is increased, the heat loss is reduced, and the heat is concentrated in the region where the super-structure grating is located, thereby improving the thermal tuning efficiency of the mirror structure and reducing the overall power consumption of the tunable laser.
  • the dielectric layer 06 may further cover the inner walls of the first column opening 12 and the second column opening 13.
  • the dielectric layer 06 may cover the sides of the upper cladding layer 05, the waveguide layer 04, the lower cladding layer 03, and the upper barrier layer 11. This can protect the sides of the upper cladding layer 05, the waveguide layer 04, the lower cladding layer 03, and the upper barrier layer 11 from being corroded by the etchant.
  • the embodiment of the present invention is not limited thereto, and the dielectric layer 06 may cover only the upper surface of the upper cladding layer 05.
  • the dielectric layer 06 may not be disposed in the mirror structure in the embodiment of the present invention.
  • the heating layer 07 may be directly disposed on the upper surface of the upper cladding layer 05.
  • Fig. 3 is a schematic view showing the 1'-1' section of Fig. 4, that is, a schematic sectional view of the opening area.
  • Figure 6 is a schematic view of the 2'-2' section of Figures 4 and 5, i.e., a schematic cross-sectional view of the spaced regions between adjacent openings.
  • the dielectric layer 06, the upper cladding layer 05, the waveguide layer 04, and the lower cladding layer 03 of the upper portion of the cross-sectional area shown in Fig. 6 are not etched as compared with the cross-section shown in Fig. 3, forming lateral support for the suspended structure 20.
  • the structure to ensure the mechanical support of the entire suspended structure, can prevent the suspended structure 20 from collapsing or being damaged.
  • the area between adjacent two openings in each column of openings can serve as a lateral support between the suspended area 20 and other areas of the mirror structure.
  • the lateral support structure on the same side of the suspended structure 20 may satisfy the condition that the first lateral support structure corresponds to the first region of the first spatial period in the superstructure grating, and the second lateral support structure corresponds to the superstructure grating a second region of the second spatial period, the relative position of the first region in the first spatial period and the second region in the second spatial perimeter The relative positions in the period are different.
  • the first lateral support structure and the second lateral support structure are any two lateral support structures of the plurality of support structures on the same side of the suspended structure 20.
  • first spatial period of the superstructure grating and the second spatial period of the superstructure grating may be the same spatial period on the superstructure grating.
  • first spatial period and the second spatial period may be any one of the seven spatial periods P1 to P7 shown in FIG.
  • the first spatial period of the superstructure grating and the second spatial period of the superstructure grating may also be different spatial periods on the superstructure grating.
  • the first spatial period may be the spatial period P1 shown in FIG. 4
  • the second spatial period may be any one of the spatial periods P2 to P7 shown in FIG.
  • the relative position of the first region in the first spatial period and the relative position of the second region in the second spatial period include: the first region to the beginning end (or the end end) of the first spatial period The distance is different from the distance from the second region to the beginning (or end) of the second spatial period.
  • the method of calculating the distance from the first region to the beginning end (or the end point) of the first spatial period is the same as the method for calculating the distance from the second region to the beginning end (or the end point) of the second spatial period.
  • the distance from one region to the beginning of a spatial period is: the distance between the leftmost end of the region and the beginning of the spatial period, or the distance between the rightmost end of the region and the beginning of the spatial period.
  • any two lateral support structures on the same side of the suspended structure fall in different locations in the spatial period of the superstructure grating in the superstructure grating, and may include: a lateral support structure and a superstructure grating
  • the peak or trough phase of the spatial period of 08 is misaligned.
  • the peak in the spatial period of the superstructure grating refers to the maximum value of the modulation function of the superstructure grating in the space period
  • the valley in the spatial period of the superstructure grating refers to the pole of the modulation function of the superstructure grating in the space period. Small value.
  • the spatial period of the superstructure grating refers to the corresponding distance of the period of the modulation function of the superstructure grating on the superstructure grating.
  • the temperature of the region connected to the lateral support is slightly lower than the temperature of the other regions.
  • the lateral support between the openings is aligned with the peak or valley of the superstructure grating modulation function, the number of openings will be equal to the number of cycles of the superstructure grating modulation function, and the performance of the superstructure grating will be seriously deteriorated.
  • the flatness of the reflection spectrum of the superstructure grating is very poor, which is liable to cause deterioration in various performances such as uneven laser output power, easy mode hopping, and mode loss.
  • any two lateral support structures on the same side of the suspended structure where the superstructure grating is located correspond to the superstructure grating.
  • the region falls at different positions in the spatial period of the super-structure grating, which is beneficial to avoid deterioration of the flatness of the reflection spectrum of the super-structure grating during thermal tuning, thereby facilitating the deterioration of the performance of the tunable laser.
  • the number of openings of at least one of the first column of openings 12 and the second column of openings 13 is different from the number of modulation cycles of the superstructured grating 08. This helps to further avoid the deterioration of the flatness of the reflection spectrum of the superstructure grating, thereby improving the thermal tuning performance of the mirror structure.
  • At least one of the first column opening 12 and the second column opening 13 includes a plurality of openings that are periodically arranged, and any two adjacent ones of the first column opening 12 and/or the second column opening 13 The distance between the openings is different from the spatial period of the superstructure grating.
  • the plurality of openings arranged periodically means that each of the plurality of openings is equal in size and each adjacent The distance between the two openings is equal.
  • a method for calculating the distance between any two adjacent openings is not limited.
  • the distance between any two adjacent openings may be: the distance between the left or right end of the two openings, or the distance between the centers of the two openings.
  • the modulation function of the superstructure grating is as follows:
  • N is the number of reflection main peaks of the modulation function of the superstructure grating, which is a natural number.
  • z represents the position along the direction of light propagation on the superstructure grating.
  • the data discretization process can be performed on the modulation function of the superstructure grating.
  • Figure 7 shows a schematic diagram of a two-level digital dispersion of a superstructure grating using a threshold for the case of eight reflection peaks.
  • the abscissa indicates the position along the light propagation direction on the superstructure grating
  • the ordinate indicates the amplitude of the modulation function.
  • the modulation function of the superstructure grating is an analog continuous periodic function.
  • the continuously changing dotted line is the modulation envelope before the dispersion
  • the solid line of the step type is the discrete modulation envelope.
  • the superstructure grating may be a 2-level discrete super-structure grating, a 3-level discrete super-structure grating or a more advanced discrete super-structure grating.
  • the first column of openings 12 and the second column of openings 13 comprise the same number of openings.
  • the mirror structure of the embodiment of the present invention will be described below by taking a super-structure grating having a reflection main spectrum of 8 reflection main peaks and a modulation function of 7 cycles as an example. It is assumed that the period of the modulation function of the superstructure grating is 71 ⁇ m for a total of 7 cycles.
  • the heater is heated, the heat in the side support structure area can be dissipated along the lateral support structure, and the temperature of this area is slightly lower than the temperature of the other areas. If the lateral support structure is periodically distributed on both sides of the suspended structure, the temperature distribution of the superstructure grating region during heating is as shown in FIG. In Fig.
  • the abscissa indicates the position along the light propagation direction on the superstructure grating, and the ordinate indicates the temperature.
  • the number of openings on both sides of the waveguide shown in Figures 4 and 5 is 8, and the corresponding areas of any two lateral support structures in the superstructure grating fall at different positions in the spatial period of the superstructure grating, at this time the heater After heating, the reflection spectrum of the superstructure grating is very flat (as shown in Figure 9), which can meet the working requirements of the laser.
  • the abscissa indicates the wavelength of the reflected light of the superstructure grating, and the ordinate indicates the power reflectance.
  • the performance of the superstructure grating may be severely deteriorated, and the flatness of the reflection spectrum is very poor (Fig. 10). As shown in the figure), it is easy to cause deterioration in various performances such as uneven laser output power, easy mode hopping, and mode loss.
  • the support structure between any two adjacent openings is aligned with the peak or valley of the modulation function of the superstructure grating, the distance between two adjacent openings is the same as the spatial period of the superstructure grating. The result shown in Fig.
  • the distance between two adjacent openings is equal to the spatial period of the superstructure grating (ie, the ratio of the two is 1)
  • the reflection spectrum of the superstructure grating is seriously deteriorated, and the flatness is only 20%. Therefore, by optimizing the position and number of openings, it can help to improve the thermal tuning performance of the mirror structure.
  • the flatness F of the reflection spectrum can be calculated according to the following formula:
  • V peak represents the magnitude of the reflection main peak
  • mean (V peak ) represents the average value of the reflection main peak
  • max (V peak ) represents the maximum value of the reflection main peak
  • min (V peak ) represents the minimum value of the reflection main peak
  • the lateral direction between any two of the at least one row of openings can be made by making the distance between the adjacent two openings in the at least one row of openings different from the spatial period of the superstructure grating.
  • the crest or valley misalignment of the modulation structure of the support structure and the superstructure grating helps to avoid deterioration of the flatness of the reflection spectrum of the superstructure grating, thereby improving the thermal tuning performance of the mirror structure.
  • the first column of openings 12 and the second column of openings 13 are symmetrical with respect to a centerline between the first column of openings 12 and the second column of openings 13. Such a structure is advantageous for simplifying the manufacturing process.
  • the embodiment of the present invention does not It is defined that the number of openings included in the first row of openings 12 and the second column of openings 13 may also be different, and/or that the first column of openings 12 and the second column of openings 13 are asymmetrical with respect to the centerline therebetween. It should also be noted that the shape of the opening in the embodiment of the present invention is not limited to the rectangular shape shown in FIG. 4 and the dumbbell type shown in FIG. 5, and may be other regular or irregular shapes.
  • the shape and size of the plurality of openings in the first row of openings 12 and/or the second row of openings 13 in the embodiment of the present invention may be the same or different, which is not limited by the embodiment of the present invention.
  • the outermost two openings of the first column opening 12 and the second column opening 13 may be different in shape and size from the other openings.
  • the embodiment of the present invention is not limited thereto, and the outermost two openings of each column may have the same shape and size as the other openings in the column.
  • each of the first column opening 12 and the second column opening 13 may be the same as or different from the length of the superstructure grating.
  • the outer end portions of the outermost two openings of the first row of openings 12 and the second row of openings 13 may or may not be aligned with the two end portions of the superstructure grating, and the embodiment of the present invention Not limited.
  • FIG. 12 Another embodiment of the present invention provides a mirror structure for a tunable laser.
  • the mirror structure is different from the mirror structure shown in FIGS. 3 to 5 in that the support layer 10 further includes At least one bottom support structure 10d, at least one bottom support structure 10d for supporting the suspended structure 20 above the space 10c from the bottom.
  • the mechanical strength of the suspended structure can be further enhanced.
  • the at least one bottom support structure 10d may be located directly below the suspended structure 20, as shown in FIG. This enables support of the suspended structure from the bottom, enhancing the mechanical strength of the suspended structure.
  • 13 and 14 are top views of the mirror structure shown in Fig. 12, respectively. As shown in Figures 13 and 14, each opening has a different width in the direction of propagation of the light. During the fabrication of the mirror structure, a wider portion of the opening is filled with more etchant, and a narrower opening is less etchant, so the material below the suspended structure corresponding to the narrower opening region will It is not completely etched away by the etchant, so that the remaining material can form a bottom support structure under the suspended structure, and the material in the wider area of the opening will be completely engraved.
  • Fig. 12 is a schematic view showing a 3'-3' section of the narrower opening portion of Figs. 13 and 14.
  • FIG. 6 Schematic diagram of the 1'-1' section.
  • Figure 13 and the 2'-2' section of the wider portion of the opening in Fig. 14 are as shown in Fig. 3.
  • FIG. 13 and FIG. 14 are intended to help those skilled in the art to better understand the embodiments of the present invention, and do not limit the scope of the embodiments of the present invention. It will be apparent to those skilled in the art that various modifications and changes can be made in the shape of the opening in accordance with the examples of FIG. 13 and FIG. 14 which are within the scope of the embodiments of the present invention.
  • the size, shape and position of the at least one bottom support structure 10d can be controlled by adjusting the shape of the opening to control the etched area of the etchant entering from the opening.
  • the number of bottom support structures 10d can be the same as the number of openings in the first column of openings 12 and/or the second column of openings 13.
  • the number of the bottom support structures 10d may be one or more.
  • Fig. 15 is a view showing a section 4'-4' of Figs. 13 and 14, and as shown in Fig. 15, a plurality of bottom support structures 10d may be arranged in the space 10c along the propagation direction of light in the waveguide layer 04.
  • the distance between the bottom support structures of any two adjacent ones of the plurality of bottom support structures 10d is different from the spatial period of the superstructure grating.
  • FIG. 12 For other parts of the mirror structure shown in FIG. 12, FIG. 13 and FIG. 14, reference may be made to the related description of the mirror structure shown in FIG. 3 to FIG. 6, and details are not described herein again.
  • the leftmost and rightmost openings of the first column opening 12 and the second column opening 13 may be used to prevent the temperature on both sides of the superstructure grating 08 from being too low.
  • the ratio of the width of the opening to the width of the gap between the openings is adjustable, and the larger the opening width, the better the thermal tuning efficiency, but the worse the mechanical support.
  • each layer of material may be etched using an etchant to obtain the suspended structure.
  • the etchant may enter through the opening on the upper surface of the dielectric layer, and sequentially etch away the portions of the upper cladding layer, the waveguide layer, and the lower cladding layer from top to bottom, reach the support layer, and then etch away the support from the lateral direction. A portion of the material in the layer below the mirror to form a suspended structure.
  • the upper barrier layer 11 in various embodiments of the present invention can be used to prevent etching of the lower cladding layer 03, and the lower barrier layer 09 can be used to prevent etching of the buffer layer 02.
  • the upper barrier layer 11 and the lower barrier layer 09 do not react with the etchant, or the etching reaction rate of the upper barrier layer 11 and the lower barrier layer 09 is different from the etching reaction rate of the support layer 10.
  • the mirror in the embodiment of the present invention may not be provided with the upper barrier layer 11 and/or the lower barrier layer 09.
  • the material of the upper barrier layer 11 in the mirror structure may be InGaAs and may have a thickness of 10 to 1000 nm.
  • the material of the lower barrier layer 09 may be InGaAs and may have a thickness of 10 to 1000 nm.
  • the support layer 10 may include three layers, for example, InP, InAlAs, and InP, and the support layer 10 may have a thickness of 100 to 10000 nm.
  • the material combination of the upper barrier layer 11, the support layer 10, and the lower barrier layer 09 may also be any of the following: InP, InGaAs, and InP; InP, InAlAs, and InP; InGaAs, InP, and InGaAs; InAlAs, InP, and InAlAs; InGaAsP, InP, InGaAsP.
  • the material combination of the upper barrier layer 11, the support layer 10, and the lower barrier layer 09 may also be InGaAs, InP-InGaAs-InP, and InGaAs; InAlAs, InP-InAlAs- InP and InAlAs; InAlAs, InP-InGaAs-InP and InAlAs; InGaAsP, InP-InAlAs-InP, InGaAs, or InGaAsP, InP-InAlAs-InP, InGaAsP, etc., wherein InP-InGaAs-InP indicates that the support layer 10 is composed of InP, InGaAs and InP are composed, and InP-InAlAs-InP indicates that the support layer 10 is composed of InP, InAlAs, and InP.
  • Another embodiment of the present invention also provides a tunable laser including a gain region, a first phase region, a multimode interference coupler, a first mirror structure, and a second mirror structure.
  • a first end of the first phase region is coupled to the first end of the gain region
  • a second end of the first phase region is coupled to the first end of the multimode interference coupler
  • the second end of the multimode interference coupler is coupled to the first end
  • the first end of the mirror is connected
  • the third end of the multimode interference coupler is connected to the first end of the second mirror.
  • the structure of the tunable laser can be referred to FIG. 1.
  • the phase region, the mirror 1 and the mirror 2 in FIG. 1 respectively correspond to the first phase region, the first mirror structure and the second reflection in the embodiment of the present invention.
  • Mirror structure is provided.
  • the tunable laser of the embodiment of the present invention at least one of the first mirror structure and the second mirror structure adopts the mirror structure provided by the embodiment of the present invention.
  • the tunable laser of the embodiment of the present invention is advantageous for reducing the overall power consumption of the tunable laser by adopting the mirror structure provided by the embodiment of the present invention.
  • the tunable laser of the embodiment of the present invention may further include a second phase region located between the first mirror structure and the multimode interference coupler or the second mirror structure Between the multimode interference coupler. This matches the phase of the reflection spectrum of the two mirror structures. Specifically, the first end of the second phase region is connected to the second end of the multimode interference coupler, the second end of the second phase region is connected to the first end of the first mirror structure, or the second phase region is The first end is coupled to the third end of the multimode interference coupler, and the second end of the second phase region is coupled to the first end of the second mirror structure.
  • the tunable laser of the embodiment of the present invention may further include a semiconductor optical amplifier (SOA).
  • SOA semiconductor optical amplifier
  • the SOA is connected to the second end of the gain region.
  • the SOA is coupled to the second end of the first mirror structure or the second mirror structure.
  • the tunable laser may further comprise two SOAs, one SOA being connected to the second end of the gain region and one SOA being connected to the second end of the first mirror structure or the second mirror structure.
  • the tunable laser may further comprise three SOAs connected to the second end of the gain region, the second end of the first mirror structure or the second end of the second mirror structure, respectively.
  • the tunable laser of the embodiment of the present invention may further include: a photodiode PD.
  • the PD is connected to the second end of the gain region.
  • the PD is connected to the second end of the first mirror structure or to the second end of the second mirror structure.
  • the tunable laser may further comprise two PDs, one PD being connected to the second end of the first mirror and one PD being connected to the second end of the second mirror structure. Power monitoring or power attenuation can be performed on the tunable laser by integrating the PD.
  • the tunable laser of the embodiment of the present invention can also integrate SOA and PD at the same time, so that not only the optical power output of the tunable laser can be amplified, but also power monitoring or power attenuation can be performed.
  • the SOA can be coupled to the second end of the gain region
  • the PD can be coupled to the second end of the first mirror structure or the second mirror structure, as shown in FIG.
  • the SOA may also be coupled to the second end of the first mirror structure or the second mirror structure, the PD being coupled to the second end of the gain region.
  • the second phase region may not be disposed between the MMI and the first mirror structure in the tunable laser shown in FIGS. 17 and 18.
  • the tunable laser includes a first mirror structure, a gain region, a phase region, and a second mirror structure. a first end of the first mirror structure is coupled to the first end of the gain region, a second end of the gain region is coupled to the first end of the phase region, and the second end of the phase region is coupled to the second mirror.
  • the first ends of the structures are connected, and at least one of the first mirror structure and the second mirror structure employs the mirror structure provided by the embodiments of the present invention.
  • the tunable laser of the embodiment of the present invention is advantageous for reducing the overall power consumption of the tunable laser by adopting the mirror structure provided by the embodiment of the present invention.
  • the tunable laser may further include an SOA.
  • the SOA is coupled to the second end of the first mirror structure or the second mirror structure.
  • the tunable laser may further comprise two SOAs, one SOA being coupled to the second end of the first mirror structure and one SOA being coupled to the second end of the second mirror structure.
  • the tunable laser may further include a PD.
  • the PD is coupled to the second end of the first mirror structure or the second mirror structure.
  • the tunable laser may further comprise two PDs, one PD being connected to the second end of the first mirror structure and one PD being connected to the second end of the second mirror structure. Power monitoring or power attenuation can be performed on the tunable laser by integrating the PD.
  • the tunable laser may further include SOA and PD.
  • the SOA is coupled to the second end of the first mirror structure and the PD is coupled to the second end of the second mirror structure.
  • the SOA is coupled to the second end of the second mirror structure and the PD is coupled to the second end of the first mirror structure. This not only amplifies the optical power of the tunable laser output, but also performs power monitoring or power attenuation.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

一种用于可调激光器的反射镜结构和可调激光器,该反射镜结构采用超结构光栅作为反射镜(08),并在该超结构光栅所在区域的周围形成悬空结构(20),利用悬空结构(20)在超结构光栅所在区域周围形成热隔离,提高热阻,减少了热量流失,使得热量集中在超结构光栅所在区域,从而能够提高反射镜结构的热调谐效率,有利于降低可调激光器的整体功耗。同时,通过在悬空结构(20)两侧设置侧向支撑结构,为悬空结构(20)提供机械支撑。另外,使得悬空结构(20)同一侧的任意两个侧向支撑结构在超结构光栅中对应的区域落在超结构光栅的空间周期中的不同位置,在热调谐时有助于避免超结构光栅的反射谱的平坦性恶化,从而有助于避免可调激光器性能的恶化。

Description

用于可调激光器的反射镜结构和可调激光器
本申请要求于2017年05月09日提交中国专利局、申请号为201710322040.1、申请名称为“用于可调激光器的反射镜结构和可调激光器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及激光器领域,并且更具体地,涉及用于可调激光器的反射镜结构和可调激光器。
背景技术
在光通信领域,可调激光器(Tunable Laser,TL)是指输出波长可在一定范围内进行调节的激光器。单片集成可调激光器具有体积小、集成度高等优点,因此成为当前光通信领域的主流技术。
以单片集成Y分支型可调激光器为例,如图1所示,单片集成Y分支型可调激光器由增益区、相位区、多模干涉(Multi-mode Interferometer,MMI)耦合器、反射镜结构1和反射镜结构2组成。有源增益区一般为多量子阱(Multiple Quantum Well,MQW),当受到电注入时,将电能转化为光能,从而提供增益。反射镜结构1和反射镜结构2的反射谱对波长具有选择性,用来进行波长调谐。反射镜结构中常用的反射镜可以为分布布拉格反射镜(Distributed Bragg Reflection,DBR)或者微环。Y分支型单片集成可调激光器对波长进行调节,本质上就是调节反射镜或者相位区光波导的折射率,对光波导折射率进行调节的原理主要有量子限制斯塔克效应(Quantum Confined Stark Effect,QCSE)、电流注入和热调谐,其中QCSE效应对折射率的改变量相对较小,在激光器中应用较少;电流注入对折射率改变量大,且瞬态响应非常快(纳秒级),被广泛应用,但电流注入会引入很大的波导损耗,导致激光器的激射线宽为兆赫兹级别,不能满足相干光通信系统的要求;热调谐通过改变材料的温度效应来改变折射率,虽然响应速率比电流注入慢,但其调谐损耗相对电流注入要小很多,可以实现小于400千赫兹(kHz)的线宽,从而满足相干光通信系统的要求。然而,对于相同的波长调谐范围,电流注入调谐比热调谐功耗要小很多,比如对于DBR反射镜的反射谱调谐6nm,热调谐组件的功耗(如大于100毫瓦(mW))可以远超基于电流的调谐组件的功耗(约15mW)。综上,与电流注入调谐相比,热调谐的优点在于可以获得更窄的激光器线宽,而缺点在于调谐组件的功耗过大。
热调谐是通过在反射镜结构中的反射镜区域放置加热器(一般为加热电阻)来实现的。通过调节加热器的功率,就可以改变加热器的温度,从而改变反射镜区域的温度,最终通过温度效应改变反射镜区域的折射率来调节反射镜的反射主峰的波长位置。为了调节相同的波长范围,可调激光器中的热调谐组件的功耗越小,意味着调谐组件的热调节效率更高,激光器的整体功耗也就越低。
因此,如何降低热调谐组件的功耗成为需要解决的问题。
发明内容
本申请提供一种用于可调激光器的反射镜和可调激光器,能够降低可调激光器的整体功耗。
第一方面,提供了一种用于可调激光器的反射镜结构,该反射镜结构包括:
从下至上依次堆叠的衬底层、支撑层、下包层、波导层、上包层和加热器层;
所述反射镜结构还包括超结构光栅,所述超结构光栅沿着光在所述波导层中的传播方向设置在所述上包层与所述下包层之间,所述加热器层位于所述上包层的上表面上与所述超结构光栅正对的区域;
所述支撑层包括第一子支撑层和第二子支撑层,所述第一子支撑层和所述第二子支撑层沿着光在所述波导层中的传播方向位于所述衬底层的上表面的两侧,所述衬底层、所述第一子支撑层、第二子支撑层和所述下包层之间形成沿着光在所述波导层中的传播方向延伸的空间,沿着光在所述波导层中的传播方向在所述上包层的上表面上设置有第一列开口和第二列开口,所述第一列开口和所述第二列开口分别位于所述上包层的上表面上与所述超结构光栅正对的区域的两侧,所述第一列开口和所述第二列开口分别包括多个开口,每个所述开口向下穿透所述上包层、所述波导层和所述下包层到达所述空间,
所述空间上方位于所述第一列开口与所述第二列开口之间的区域形成悬空结构,所述第一列开口和所述第二列开口中相邻的两个开口之间的区域形成所述悬空结构的侧向支撑结构,
第一侧向支撑结构对应于所述超结构光栅中的第一空间周期的第一区域,第二侧向支撑结构对应于所述超结构光栅中的第二空间周期的第二区域,所述第一区域在所述第一空间周期中的相对位置与所述第二区域在所述第二空间周期中的相对位置不同,所述第一侧向支撑结构和所述第二侧向支撑结构为位于所述悬空结构同一侧的任意两个侧向支撑结构。其中,所述超结构光栅的空间周期指的是:所述超结构光栅的调制函数的周期在所述超结构光栅上对应的距离。
所述超结构光栅的第一空间周期和所述超结构光栅的第二空间周期可以是位于所述超结构光栅上的同一个空间周期,也可以是位于所述超结构光栅上的不同的空间周期。
所述第一区域在所述第一空间周期中的相对位置与所述第二区域在所述第二空间周期中的相对位置不同包括:所述第一区域到所述第一空间周期的起始端(或终点端)的距离与所述第二区域到所述第二空间周期的起始端(或终点端)的距离不同。
本发明实施例的用于可调激光器的反射镜结构采用超结构光栅作为反射镜,并在该超结构光栅所在区域的周围形成悬空结构,利用悬空结构在超结构光栅所在区域周围形成热隔离,提高热阻,减少了热量流失,使得热量集中在超结构光栅所在区域,从而能够提高反射镜结构的热调谐效率,有利于降低可调激光器的整体功耗。同时,通过在该悬空结构两侧设置侧向支撑结构,为悬空结构提供机械支撑。另外,悬空结构同一侧的任意两个侧向支撑结构在超结构光栅中对应的区域落在超结构光栅的空间周期中的不同位置,在热调谐时有助于避免超结构光栅的反射谱的平坦性恶化,从而有助于避免可调激光器性能的恶化。
在一些可能的实现方式中,所述第一列开口和所述第二列开口中的至少一列开口的开口数量与所述超结构光栅的调制周期的数量不同。
在一些可能的实现方式中,所述第一列开口和所述第二列开口包括的开口数量相同。
在一些可能的实现方式中,所述第一列开口和所述第二列开口相对于所述第一列开口和所述第二列开口之间的中线对称。
在一些可能的实现方式中,所述第一列开口和所述第二列开口分别包括周期性排列的多个开口,且所述第一列开口和/所述第二列开口中的相邻的任意两个开口之间的距离与所述超结构光栅的空间周期不同。这里,周期性排列的多个开口指的是:该多个开口中每个开口的尺寸相等,且每相邻的两个开口之间的距离相等。
在一些可能的实现方式中,所述支撑层还包括至少一个底部支撑结构,所述至少一个底部支撑结构用于从底部支撑所述空间上方位于所述第一列开口与所述第二列开口之间的所述悬空结构。
通过设置底部支撑结构为悬空结构提供底部支撑,能够进一步增强悬空结构的机械强度。
在一些可能的实现方式中,所述至少一个底部支撑结构为多个底部支撑结构,所述多个底部支撑结构沿着光在所述波导层中的传播方向排列在所述空间内,所述多个底部支撑结构中至少两个相邻的底部支撑结构之间的区域与所述超结构光栅的调制峰或调制谷错位。
在一些可能的实现方式中,每个所述开口在沿着光在所述波导层中的传播方向上具有不同的宽度。
这样在反射镜结构的制作过程中,通过在这些开口注入刻蚀剂能够在开口较窄的部分形成底部支撑结构。
在一些可能的实现方式中,该反射镜结构还包括:
上阻挡层和下阻挡层,所述上阻挡层位于所述下包层与所述支撑层之间,所述下阻挡层位于所述支撑层与所述衬底层之间。
通过设置上阻挡层和下阻挡层,能够防止刻蚀掉下包层和衬底层。
在一些可能的实现方式中,该反射镜结构还包括:
介质层,所述介质层位于所述上包层和所述加热层之间,所述加热器层位于所述介质层的上表面上与所述超结构光栅正对的区域。介质层可以用于防止加热器的电流泄露到上包层中。
在一些可能的实现方式中,所述介质层还覆盖每个所述开口的内壁。这样能够保护上包层、波导层、下包层的侧面不被刻蚀剂腐蚀。
在一些可能的实现方式中,所述超结构光栅位于所述上包层中,或部分位于所述上包层且部分位于所述波导层,或位于所述波导层中,或部分位于所述下包层且部分位于所述波导层,或位于所述下包层中。
在一些可能的实现方式中,所述超结构光栅的调制函数如下所示:
Figure PCTCN2017114689-appb-000001
其中,N为所述超结构光栅的调制函数的反射主峰的数量,为自然数,
Figure PCTCN2017114689-appb-000002
为相位,z表示所述超结构光栅上沿光的传播方向的位置,
Figure PCTCN2017114689-appb-000003
Λk为余弦函数的空间周期。
第二方面,提供了一种可调激光器,该可调激光器包括:
增益区、第一相位区、多模干涉耦合器、第一反射镜结构和第二反射镜结构;
所述第一相位区的第一端与所述增益区的第一端相连,所述第一相位区的第二端与所述多模干涉耦合器的第一端相连,所述多模干涉耦合器的第二端与所述第一反射镜的第一端相连,所述多模干涉耦合器的第三端与所述第二反射镜的第一端相连;
所述第一反射镜结构和所述第二反射镜结构中的至少一个采用第一方面或第一方面的上述任一种可能的实现方式所述的反射镜结构。
本发明实施例的可调激光器,通过第一方面或第一方面的上述任一种可能的实现方式所述的反射镜结构,有利于降低可调激光器的整体功耗。
在一些可能的实现方式中,该可调激光器还包括:第二相位区,
所述第二相位区的第一端与所述多模干涉耦合器的第二端相连,所述第二相位区的第二端与所述第一反射镜结构的第一端相连,或者,
所述第二相位区的第一端与所述多模干涉耦合器的第三端相连,所述第二相位区的第二端与所述第二反射镜结构的第一端相连。
在一些可能的实现方式中,该可调激光器还包括:一个或多个半导体光放大器SOA,每个SOA与所述增益区的第二端相连,或与所述第一反射镜结构的第二端相连,或与所述第二反射镜结构的第二端相连。通过集成SOA,可以对可调激光器输出的光功率进行放大。
在一些可能的实现方式中,该可调激光器还包括:一个或多个光电二极管PD,每个PD与所述增益区的第二端相连,或与所述第一反射镜结构的第二端相连,或与所述第二反射镜结构的第二端相连。通过集成PD,可以对可调激光器进行功率监测或功率衰减。
在一些可能的实现方式中,该可调激光器还可以同时集成SOA和PD。例如,该SOA可以与增益区的第二端相连,PD与第一反射镜结构或第二反射镜结构的第二端相连,如图14所示。应理解,该SOA也可以与第一反射镜结构或第二反射镜结构的第二端相连,PD与增益区的第二端相连。这样不仅可以对可调激光器输出的光功率进行放大,还可以进行功率监测或功率衰减。
第三方面,提供了一种可调激光器,该可调激光器包括:
第一反射镜结构、增益区、相位区和第二反射镜结构,
所述第一反射镜结构的第一端与所述增益区的第一端相连,所述增益区的第二端与所述相位区的第一端相连,所述相位区的第二端与所述第二反射镜结构的第一端相连,
所述第一反射镜结构和第二反射镜结构中的至少一个采用第一方面或第一方面的上述任一种可能的实现方式所述的反射镜结构。
本发明实施例的可调激光器,通过第一方面或第一方面的上述任一种可能的实现方式所述的反射镜结构,有利于降低可调激光器的整体功耗。
在一些可能的实现方式中,该可调激光器还包括:一个或两个半导体光放大器SOA,每个SOA与所述第一反射镜结构或第二反射镜结构的第二端相连。通过集成SOA,可以对可调激光器输出的光功率进行放大。
在一些可能的实现方式中,该可调激光器还包括:一个或两个光电二极管PD,每个PD与所述第一反射镜结构或第二反射镜结构的第二端相连。通过集成PD,可以对可调激光器进行功率监测或功率衰减。
在一些可能的实现方式中,该可调激光器还可以同时集成SOA和PD。例如,SOA与第一反射镜结构的第二端相连,PD与第二反射镜结构的第二端相连,或者,SOA与第二反射镜结构的第二端相连,PD与第一反射镜结构的第二端相连。这样不仅可以对可调激光器输出的光功率进行放大,还可以进行功率监测或功率衰减。
附图说明
图1是Y分支型可调激光器的结构示意图;
图2是现有技术中用于可调激光器的反射镜结构的截面示意图;
图3是根据本发明实施例的用于可调激光器的反射镜结构的截面示意图;
图4是根据本发明实施例的用于可调激光器的反射镜结构的俯视图;
图5是根据本发明另一实施例的用于可调激光器的反射镜结构的俯视图;
图6是根据本发明实施例的用于可调激光器的反射镜结构的另一截面示意图;
图7是超结构光栅的调制函数的调制包络的示意图;
图8是加热器加热后超结构光栅所在区域的温度分布示意图;
图9是根据本发明实施例的用于可调激光器的反射镜结构的反射谱的示意图;
图10是性能较差的反射镜结构的反射谱的示意图;
图11是相邻开口之间的距离与超结构光栅的空间周期之间的比值与反射谱平坦度之间的关系示意图;
图12是根据本发明另一实施例的用于可调激光器的反射镜结构的截面示意图;
图13是根据本发明另一实施例的用于可调激光器的反射镜结构的俯视图;
图14是根据本发明另一实施例的用于可调激光器的反射镜结构的俯视图;
图15是根据本发明另一实施例的用于可调激光器的反射镜结构截面示意图;
图16是根据本发明实施例的可调激光器的结构示意图;
图17是根据本发明另一实施例的可调激光器的结构示意图;
图18是根据本发明另一实施例的可调激光器的结构示意图;
图19是根据本发明另一实施例的可调激光器的结构示意图;
图20是根据本发明另一实施例的可调激光器的结构示意图;
图21是根据本发明另一实施例的可调激光器的结构示意图;
图22是根据本发明另一实施例的可调激光器的结构示意图;
图23是根据本发明另一实施例的可调激光器的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图2是采用热调谐方式的反射镜结构1-1截面的示意图。如图2所示,该反射镜结构从下到上依次包括:衬底层01、缓冲层02、下包层03、波导层04、上包层05、介质层06和加热器层07。该反射镜结构还包括反射镜08(如图2中黑白相间部分所示),反射镜08位于波导层04与上包层05的界面处。
其中,波导层04用于提供光的低损耗传播通道。上包层05和下包层03的折射率比波导层04低,因此光在波导层04中传播时会形成全反射,这样可以将光能量尽可能限制在波导层中。例如,波导层04可以采用铟镓砷磷(Indium Gallium Arsenide Phosphide,InGaAsP),上包层05和下包层03可以采用磷化铟(Indium Phosphide,InP)。InP材料的折射率比InGaAsP要低,因此光在波导层04中传播时会形成全反射。
加热器层07放置加热器,用来改变反射镜区域的温度。
介质层06用于防止加热器的电流泄露到上包层05中。介质层05可以采用绝缘材料。例如,介质层05可以采用二氧化硅(Silicon Dioxide,SiO2)、氧化铝(Aluminum oxide,Al2O3)等绝缘材料。
反射镜分布在波导层04与上包层05的界面处(如图2中黑白相间部分所示)。
在进行热调谐的时候,由于反射镜结构中反射镜区域的有效折射率会随着温度的改变而改变,使得该反射镜的反射峰的波长位置移动,从而对波长进行调谐。
缓冲层02的材料可以为磷化铟(Indium Phosphide,InP)。在衬底层01和下包层03上设置的缓冲层02用于提供质量更好的InP材料,为其它层材料提供更好的材料基础,从而有利于其它层材料的生长。需要说明的是,也可以不设置缓冲层02,如果不设置缓冲层02,则下包层03直接设置在衬底层01的上表面。
如图2中箭头所示,加热器被加热后温度升高,热量依次通过介质层06、上包层05传导至反射镜区域和波导层04。然而,大量的热继续向下传播至下包层03、缓冲层02甚至非常厚的衬底层01,同时,还有部分热量向加热器两侧水平传播。这些热量都被耗散掉了,并没有起到改变反射镜区域的温度的作用。相反地,这些耗散的热量还会引起非反射镜区域(比如增益区)的温度升高,带来热串扰。大量热被耗散流失,这正是热调节组件功耗较高的重要原因。
因此,本发明实施例提供了一种用于可调激光器的反射镜结构,通过利用悬空结构在反射镜和反射镜所在的波导层周围形成热隔离,提高热阻,以减少热量流失,将热量集中在反射镜区域。
下面将结合附图描述根据本发明实施例用于可调激光器的反射镜结构。
图3所示为根据本发明实施例的用于可调激光器的反射镜结构的截面示意图。如图3所示,该反射镜结构包括从下到上依次堆叠的衬底层01、缓冲层02、下阻挡层09、支撑层10、上阻挡层11、下包层03、波导层04、上包层05、介质层06和加热器07。
支撑层10包括第一子支撑层10a和第二子支撑层10b,第一子支撑层10a和第二子支撑层10b沿着光在波导层04中的传播方向位于下阻挡层09的上表面的两侧,下阻挡层 09、第一子支撑层10a、第二子支撑层10b和上阻挡层11之间形成沿着光在波导层04中的传播方向延伸的空间10c。
需要说明的是,反射镜结构中也可以不包括缓冲层02,下阻挡层09和上阻挡层11。相应地,支撑层10直接设置在衬底层01的上表面,即第一子支撑层10a和第二子支撑层10b沿着光在波导层04中的传播方向位于衬底层01的上表面的两侧,此时衬底层01、第一子支撑层10a、第二子支撑层10b和下包层03之间形成沿着光在波导层04中的传播方向延伸的空间10c。
图3所示反射镜结构还包括反射镜08(如图3中黑白相间部分所示)。反射镜08可以为超结构光栅(Super Structure Grating,SSG)。超结构光栅沿着光在波导层04中的传播方向设置在下包层03与上包层05的之间,加热器层07位于介质层06的上表面上与超结构光栅08正对的区域。
图4和图5所示为图3所示反射镜结构的两种俯视图,图4和图5中P1~P7分别对应超结构光栅的一个空间周期。如图4和图5所示,沿着光在波导层04中的传播方向在介质层04的上表面上设置有第一列开口12和第二列开口13,第一列开口12和第二列开口13分别包括多个开口(如图4中所示12-1~12-8,13-1~13-8),第一列开口12和第二列开口13分别位于介质层06的上表面上与超结构光栅08正对的区域的两侧。图4和图5的区别仅在于开口的形状不同。
如图3所示,第一列开口12和第二列开口13中的每个开口向下穿透介质层06、上包层05、波导层04和下包层03到达空间10c。这样,该空间10c上方位于第一列开口12和第二列开口13之间的区域构成悬空结构20,如图3中虚线框内所示。
本发明实施例的用于可调激光器的反射镜结构采用超结构光栅作为反射镜,并在该超结构光栅所在区域的周围形成悬空结构,利用悬空结构在超结构光栅所在区域周围形成热隔离,提高热阻,减少了热量流失,使得热量集中在超结构光栅所在区域,从而能够提高反射镜结构的热调谐效率,有利于降低可调激光器的整体功耗。
可选地,如图3所示,介质层06还可以进一步覆盖第一列开口12和第二列开口13的内壁。例如,介质层06可以覆盖上包层05、波导层04、下包层03和上阻挡层11的侧面。这样能够保护上包层05、波导层04、下包层03和上阻挡层11的侧面不被刻蚀剂腐蚀。但本发明实施例对此并不限定,介质层06可以仅覆盖上包层05的上表面。
需要说明的是,本发明实施例中的反射镜结构中也可以不设置介质层06,这样,加热层07可以直接设置在上包层05的上表面上。
图3是图4所示中1’-1’截面的示意图,即开口区域的截面示意图。图6是图4和图5中2’-2’截面的示意图,即相邻的开口之间的间隔区域的截面示意图。与图3所示截面相比,图6所示截面区域的上部的介质层06、上包层05、波导层04和下包层03都没有被刻蚀,形成对悬空结构20的侧向支撑结构,以保证整个悬空结构的机械支撑,能够防止悬空结构20塌陷或遭到破坏。因此,每列开口中相邻的两个开口之间的区域可以作为悬空区域20与反射镜结构其他区域之间的侧向支撑。
位于悬空结构20同一侧的侧向支撑结构可以满足以下条件:第一侧向支撑结构对应于超结构光栅中的第一空间周期的第一区域,第二侧向支撑结构对应于超结构光栅中的第二空间周期的第二区域,第一区域在第一空间周期中的相对位置与第二区域在第二空间周 期中的相对位置不同。其中,第一侧向支撑结构和第二侧向支撑结构为位于悬空结构20同一侧的多个支撑结构中的任意两个侧向支撑结构。
可选地,超结构光栅的第一空间周期和超结构光栅的第二空间周期可以是位于超结构光栅上的同一个空间周期。例如,第一空间周期和第二空间周期可以是图4所示的7个空间周期P1~P7中的任一个。
可选地,超结构光栅的第一空间周期和超结构光栅的第二空间周期还可以是位于超结构光栅上的不同的空间周期。例如,第一空间周期可以是图4所示的空间周期P1,第二空间周期可以是图4所示的空间周期P2~P7中的任一个。
需要说明的是,第一区域在第一空间周期中的相对位置与第二区域在第二空间周期中的相对位置不同包括:第一区域到第一空间周期的起始端(或终点端)的距离与第二区域到第二空间周期的起始端(或终点端)的距离不同。
具体地,第一区域到第一空间周期的起始端(或终点端)的距离的计算方法与第二区域到第二空间周期的起始端(或终点端)的距离的计算方法相同。例如,一个区域到一个空间周期的起始端的距离为:该区域的最左端与该空间周期的起始端之间的距离,或该区域最右端与该空间周期的起始端之间的距离。
在一些实施例中,悬空结构同一侧的任意两个侧向支撑结构在超结构光栅中对应的区域落在超结构光栅的空间周期中的不同位置,可以包括:侧向支撑结构与超结构光栅08的空间周期内的波峰或波谷相错位。这样在热调谐时有利于避免超结构光栅的反射谱的平坦性恶化,从而有利于避免可调激光器性能的恶化。超结构光栅的空间周期内的波峰是指该空间周期内超结构光栅的调制函数的极大值,超结构光栅的空间周期内的波谷是指在该空间周期内超结构光栅的调制函数的极小值。
其中,超结构光栅的空间周期指的是:超结构光栅的调制函数的周期在超结构光栅上对应的距离。
加热器加热时,由于侧向支撑区域的热量可以沿着侧向支撑散走,因此与侧向支撑相连的区域的温度比其它区域的温度稍低。当开口之间的侧向支撑与超结构光栅调制函数的峰或者谷相对齐时,开口的数量将与超结构光栅调制函数的周期数相等,此时超结构光栅的性能会出现严重的恶化,此时超结构光栅的反射谱的平坦度非常差,这样容易引起激光器输出功率不均匀、容易跳模、模式缺失等多种性能的恶化。
因此,本发明实施例中,通过使用超结构光栅(Super Structure Grating,SSG)作为反射镜,同时使得超结构光栅所在的悬空结构同一侧的任意两个侧向支撑结构在超结构光栅中对应的区域落在超结构光栅的空间周期中的不同位置,在热调谐时有利于避免超结构光栅的反射谱的平坦性恶化,从而有利于避免可调激光器性能的恶化。
可选地,第一列开口12和第二列开口13中的至少一列开口的开口数量与超结构光栅08的调制周期的数量不同。这样有助于进一步避免超结构光栅的反射谱的平坦性恶化,从而可以提升反射镜结构的热调谐性能。
可选地,第一列开口12和第二列开口13中的至少一列开口包括周期性排列的多个开口,且第一列开口12和/第二列开口13中的相邻的任意两个开口之间的距离与超结构光栅的空间周期不同。
这里,周期性排列的多个开口指的是:该多个开口中每个开口的尺寸相等,且每相邻 的两个开口之间的距离相等。
本发明实施例中对相邻的任意两个开口之间的距离的计算方法不做限定。例如,相邻的任意两个开口之间的距离可以是:两个开口的左端部或右端部之间的距离,或两个开口的中心之间的距离。
可选地,该超结构光栅的调制函数如下所示:
Figure PCTCN2017114689-appb-000004
其中,N为超结构光栅的调制函数的反射主峰的数量,为自然数,
Figure PCTCN2017114689-appb-000005
为相位,z表示超结构光栅上沿着光传播方向的位置,
Figure PCTCN2017114689-appb-000006
Λk余弦函数的空间周期。
在一些实施例中,可以对超结构光栅的调制函数进行数据离散化处理。如图7所示为针对8个反射峰的情况,使用一个阈值对超结构光栅进行2级数字化离散的示意图。图7中横坐标表示超结构光栅上沿着光传播方向的位置,纵坐标表示调制函数的幅度。如图7所示,超结构光栅的调制函数为模拟连续周期性函数。如图7所示,连续变化的虚线为离散前的调制包络,台阶型实线为离散后的调制包络。应理解,对超结构光栅的调制函数进行离散时,也可以采用两个甚至更多的阈值进行更高级的数字化离散。即该超结构光栅可以为2级离散的超结构光栅、3级离散的超结构光栅或者更高级离散的超结构光栅。可选地,第一列开口12和第二列开口13包括的开口数量相同。
下面以反射谱有8个反射主峰,调制函数为7个周期的超结构光栅为例来说明本发明实施例的反射镜结构。假设超结构光栅的调制函数的周期为71μm,共7个周期。加热器加热时,由于侧支撑结构区域热可以沿着侧向支撑结构散走,该区域的温度比其它区域的温度稍低。如果侧向支撑结构周期性期分布在悬空结构两侧,则加热时超结构光栅区域的温度分布图如图8所示。图8中横坐标表示超结构光栅上沿着光传播方向的位置,纵坐标表示温度。图4和图5所示波导两侧的开口的数量为8,且任意两个侧向支撑结构在超结构光栅中对应的区域落在超结构光栅的空间周期中的不同位置,此时加热器加热后,超结构光栅的反射谱很平坦(如图9所示),可以满足激光器的工作需求。图9中横坐标表示超结构光栅的反射光的波长,纵坐标表示功率反射率。如果相邻的两个开口之间的侧向支撑结构与超结构光栅的调制函数的波峰或波谷对齐,则超结构光栅的性能会出现严重的恶化,反射谱的平坦度非常差(如图10所示),这样容易引起激光器输出功率不均匀、容易跳模、模式缺失等多种性能的恶化。相邻的任意两个开口之间的支撑结构与超结构光栅的调制函数的波峰或者波谷相对齐时,两个相邻开口之间的距离与超结构光栅的空间周期相同。通过扫描相邻两个开口之间的距离与超结构光栅的空间周期的比值与反射谱平坦度之间的关系,可得图11所示的结果。如图11所示,当两个相邻开口的距离等于超结构光栅的空间周期(即二者比值为1)时,超结构光栅的反射谱会严重恶化,平坦度仅为20%。因此,通过优化开口的位置和数量可以有助于提升反射镜结构的热调谐性能。
可以根据以下公式计算得反射谱的平坦度F:
Figure PCTCN2017114689-appb-000007
其中,Vpeak表示反射主峰的幅值,mean(Vpeak)表示反射主峰的幅值的平均值,max(Vpeak)表示反射主峰的最大值,min(Vpeak)表示反射主峰的最小值。
本发明实施例中,通过使得至少一列开口中的相邻的任意两个开口之间的距离区域与超结构光栅的空间周期不同,能够使得至少一列开口中的任意两个开口之间的侧向支撑结构与超结构光栅的调制函数的波峰或波谷错位,这样有助于避免超结构光栅的反射谱的平坦性恶化,从而可以提升反射镜结构的热调谐性能。可选地,第一列开口12和第二列开口13相对于第一列开口12和第二列开13口之间的中线对称。这样的结构有利于简化制作工艺。
需要说明的是,图3、图4和图5所示仅以第一列开口12和第二列开口13相对于二者之间的中线相对称为例,但本发明实施例对此并不限定,第一列开口12和第二列开口13包括的开口数量也可以不同,和/或第一列开口12和第二列开口13相对于二者之间的中线不对称。还应注意,本发明实施例中的开口形状不限于图4所示的矩形和图5所示哑铃型,还可以为其他规则或不规则的形状。
还应注意,本发明实施例中第一列开口12和/或第二列开口13中的多个开口的形状、尺寸可以相同也可以不同,本发明实施例对此并不限定。另外,如图4和图5所示,第一列开口12和第二列开口13中最外侧的两个开口的形状和尺寸可以与其他开口的形状和尺寸不同。但本发明实施例对此并不限定,每列开口最外侧的两个开口的形状和尺寸也可以与该列中的其他开口的形状和尺寸相同。
还需要说明的是,第一列开口12和第二列开口13各自的长度与超结构光栅的长度可以相同也可以不同。换句话说,第一列开口12和第二列开口13各自最外侧的两个开口的外侧端部与超结构光栅的两侧端部可以对齐,也可以不对齐,本发明实施例对此并不限定。
本发明实施例还提供了另一种用于可调激光器的反射镜结构,如图12所示,该反射镜结构与图3~图5所示反射镜结构的区别在于,支撑层10还包括至少一个底部支撑结构10d,至少一个底部支撑结构10d用于从底部支撑空间10c上方的悬空结构20。本发明实施例中,通过设置底部支撑结构为悬空结构提供底部支撑,能够进一步增强悬空结构的机械强度。
可选地,该至少一个底部支撑结构10d可以位于悬空结构20正下方,如图12所示。这样能够从底部对悬空结构进行支撑,增强悬空结构的机械强度。图13和图14所示分别为图12所示的反射镜结构的一种俯视图。如图13和图14所示,每个开口在沿着光的传播方向上具有不同的宽度。在反射镜结构的制作过程中,开口较宽的部分注入的刻蚀剂较多,开口较窄的地方注入的刻蚀剂较少,因此在悬空结构下方对应于开口较窄的区域的材料将不会被刻蚀剂完全刻蚀掉,从而剩下的部分材料能够在悬空结构下方形成底部支撑结构,而开口较宽的区域的材料将会被完全刻饰掉。如图12所示为图13和图14中开口较窄部分的3’-3’截面的示意图。
同时,从开口注入的刻蚀剂还会从侧向将悬空结构下方对应于侧向支撑结构的区域的材料刻蚀掉,如图6所示为图13和图14中侧向支撑结构部分的1’-1’截面的示意图。图 13和图14中开口较宽部分的2’-2’截面如图3所示。
需要说明的是,图13和图14所示的开口是为了帮助本领域技术人员更好地理解本发明实施例,而非要限制本发明实施例的范围。本领域技术人员根据所给出的图13和图14的例子,显然可以对开口的形状进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
通过调节开口的形状,控制从开口中进入的刻蚀剂的刻蚀区域,可以控制至少一个底部支撑结构10d的尺寸、形状和位置。底部支撑机构越小,热调谐效率越好,但机械支撑越差。
在一些实施例中,底部支撑结构10d的数量可以与第一列开口12和/或第二列开口13中的开口数量相同。
可选地,底部支撑结构10d的数量可以为1个或多个。图15所示为图13和图14中4’-4’截面的示意图,如图15所示,多个底部支撑结构10d可以沿着光在波导层04中的传播方向排列在空间10c内。可选地,多个底部支撑结构10d中相邻的任意两个的底部支撑结构之间的距离与超结构光栅的空间周期不同。
图12、图13和图14所示反射镜结构中的其他部分可以参考图3~图6所示反射镜结构的相关描述,在此不再赘述。
本发明各实施例的反射镜结构中,第一列开口12和第二列开口13中最左端与最右端的开口可以用来避免超结构光栅08两侧的温度过低。
应注意,本发明实施例中,开口宽度与开口之间的间隔宽度的比例可调,开口宽度越大,热调谐效率越好,但机械支撑越差。
需要说明的是,本发明实施例对悬空结构的制作工艺不做限定。例如,可以使用刻蚀剂对各层材料进行刻蚀以得到该悬空结构。例如,刻蚀剂可以通过介质层的上表面上的开口进入,从上至下依次刻蚀掉上包层、波导层、下包层的部分,到达支撑层,然后从侧向刻蚀掉支撑层中位于反射镜下方的部分材料,以形成悬空结构。
本发明各实施例中的上阻挡层11可以用于防止刻蚀掉下包层03,下阻挡层09可以用于防止刻蚀掉缓冲层02。例如,上阻挡层11和下阻挡层09与刻蚀剂不发生反应,或者上阻挡层11和下阻挡层09的刻蚀反应速率与支撑层10的刻蚀反应速率不同。应注意,本发明实施例中的反射镜也可以不设置上阻挡层11和/或下阻挡层09。在一些实施例中,反射镜结构中的上阻挡层11的材料可以是InGaAs,厚度可以是10~1000nm。下阻挡层09的材料可以是InGaAs,厚度可以是10~1000nm。可选地,支撑层10可以包括三层,例如依次是InP、InAlAs和InP,支撑层10的厚度可以是100~10000nm。
在一些实施例中,上阻挡层11、支撑层10和下阻挡层09三层的材料组合还可以为以下任一种:InP、InGaAs和InP;InP、InAlAs和InP;InGaAs、InP和InGaAs;InAlAs、InP和InAlAs;InGaAsP、InP、InGaAsP。可选地,当支撑层10由三层材料组成时,上阻挡层11、支撑层10和下阻挡层09的材料组合还可以为InGaAs、InP-InGaAs-InP和InGaAs;InAlAs、InP-InAlAs-InP和InAlAs;InAlAs、InP-InGaAs-InP和InAlAs;InGaAsP、InP-InAlAs-InP、InGaAs,或者InGaAsP、InP-InAlAs-InP、InGaAsP等等,其中InP-InGaAs-InP表示支撑层10由InP、InGaAs和InP组成,InP-InAlAs-InP表示支撑层10由InP、InAlAs和InP组成。以上仅为上阻挡层、支撑层和下阻挡层材料的一些例子,本 发明实施例对此并不限定,本领域技术人员根据这些例子可以进行各种等级的修改或变化,这些修改或变化也落入本发明实施例的范围内。
本发明另一实施例还提供了一种可调激光器,该可调激光器包括增益区、第一相位区、多模干涉耦合器、第一反射镜结构和第二反射镜结构。第一相位区的第一端与增益区的第一端相连,第一相位区的第二端与多模干涉耦合器的第一端相连,多模干涉耦合器的第二端与第一反射镜的第一端相连,多模干涉耦合器的第三端与第二反射镜的第一端相连。该可调激光器的结构可以参考图1所示,图1中的相位区、反射镜1和反射镜2分别对应于本发明实施例中的第一相位区、第一反射镜结构和第二反射镜结构。
需要说明的是,本发明实施例的可调激光器中,第一反射镜结构和第二反射镜结构中的至少一个采用上文中本发明实施例提供的反射镜结构。本发明实施例的可调激光器,通过采用上文中本发明实施例提供的反射镜结构,有利于降低可调激光器的整体功耗。
可选地,如图16所示,本发明实施例的可调激光器还可以包括第二相位区,该第二相位区位于第一反射镜结构与多模干涉耦合器之间或第二反射镜结构与多模干涉耦合器之间。这样能够匹配两个反射镜结构的反射谱的相位。具体的,第二相位区的第一端与多模干涉耦合器的第二端相连,第二相位区的第二端与第一反射镜结构的第一端相连,或者,第二相位区的第一端与多模干涉耦合器的第三端相连,第二相位区的第二端与第二反射镜结构的第一端相连。
可选地,本发明实施例的可调激光器还可以包括一个半导体光放大器(Semiconductor Optical Amplifier,SOA)。如图17所示,SOA与增益区的第二端相连。或者,该SOA与第一反射镜结构或第二反射镜结构的第二端相连。或者,可调激光器还可以包括两个SOA,一个SOA与增益区的第二端相连,一个SOA与第一反射镜结构或第二反射镜结构的第二端相连。或者,可调激光器还可以包括三个SOA,这三个SOA分别于增益区的第二端、第一反射镜结构的第二端或第二反射镜结构的第二端相连。通过集成SOA,可以对可调激光器输出的光功率进行放大。
可选地,本发明实施例的可调激光器还可以包括:一个光电二极管PD。如图18所示,PD与增益区的第二端相连。或者,该PD与第一反射镜结构的第二端相连,或与第二反射镜结构的第二端相连。或者,可调激光器还可以包括两个PD,一个PD与第一反射镜的第二端相连,一个PD与第二反射镜结构的第二端相连。通过集成PD,可以对可调激光器进行功率监测或者功率衰减。
需要说明的是,本发明实施例的可调激光器还可以同时集成SOA和PD,这样不仅可以对可调激光器输出的光功率进行放大,还可以进行功率监测或功率衰减。例如,该SOA可以与增益区的第二端相连,PD与第一反射镜结构或第二反射镜结构的第二端相连,如图19所示。应理解,该SOA也可以与第一反射镜结构或第二反射镜结构的第二端相连,PD与增益区的第二端相连。
需要说明的是,图17和图18所示可调激光器中MMI与第一反射镜结构之间也可以不设置第二相位区。
本发明另一实施例还提供了另一种可调激光器,如图20所示,该可调激光器包括:第一反射镜结构、增益区、相位区和第二反射镜结构。第一反射镜结构的第一端与增益区的第一端相连,增益区的第二端与相位区的第一端相连,相位区的第二端与第二反射镜结 构的第一端相连,第一反射镜结构和第二反射镜结构中的至少一个采用上文中本发明实施例提供的反射镜结构。本发明实施例的可调激光器,通过采用上文中本发明实施例提供的反射镜结构,有利于降低可调激光器的整体功耗。
可选地,如图21所示,可调激光器还可以包括一个SOA。SOA与第一反射镜结构或第二反射镜结构的第二端相连。或者,可调激光器还可以包括两个SOA,一个SOA与第一反射镜结构的第二端相连,一个SOA与第二反射镜结构的第二端相连。通过集成SOA,可以对可调激光器输出的光功率进行放大。
可选地,如图22所示,可调激光器还可以包括一个PD。PD与第一反射镜结构或第二反射镜结构的第二端相连。或者,可调激光器还可以包括两个PD,一个PD与第一反射镜结构的第二端相连,一个PD与第二反射镜结构的第二端相连。通过集成PD,可以对可调激光器进行功率监测或功率衰减。
可选地,如图23所示,可调激光器还可以包括SOA和PD。SOA与第一反射镜结构的第二端相连,PD与第二反射镜结构的第二端相连。或者,SOA与第二反射镜结构的第二端相连,PD与第一反射镜结构的第二端相连。这样不仅可以对可调激光器输出的光功率进行放大,还可以进行功率监测或功率衰减。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (21)

  1. 一种用于可调激光器的反射镜结构,其特征在于,包括:
    从下至上依次堆叠的衬底层、支撑层、下包层、波导层、上包层和加热器层;
    所述反射镜结构还包括超结构光栅,所述超结构光栅沿着光在所述波导层中的传播方向设置在所述上包层与所述下包层之间,所述加热器层位于所述上包层的上表面上与所述超结构光栅正对的区域;
    所述支撑层包括第一子支撑层和第二子支撑层,所述第一子支撑层和所述第二子支撑层沿着光在所述波导层中的传播方向位于所述衬底层的上表面的两侧,所述衬底层、所述第一子支撑层、第二子支撑层和所述下包层之间形成沿着光在所述波导层中的传播方向延伸的空间,沿着光在所述波导层中的传播方向在所述上包层的上表面上设置有第一列开口和第二列开口,所述第一列开口和所述第二列开口分别位于所述上包层的上表面上与所述超结构光栅正对的区域的两侧,所述第一列开口和所述第二列开口分别包括多个开口,每个所述开口向下穿透所述上包层、所述波导层和所述下包层到达所述空间,所述空间上方位于所述第一列开口与所述第二列开口之间的区域形成悬空结构,所述第一列开口和所述第二列开口中相邻的两个开口之间的区域形成所述悬空结构的侧向支撑结构,
    第一侧向支撑结构对应于所述超结构光栅中的第一空间周期的第一区域,第二侧向支撑结构对应于所述超结构光栅中的第二空间周期的第二区域,所述第一区域在所述第一空间周期中的相对位置与所述第二区域在所述第二空间周期中的相对位置不同,所述第一侧向支撑结构和所述第二侧向支撑结构为位于所述悬空结构同一侧的多个支撑结构中的任意两个侧向支撑结构。
  2. 根据权利要求1所述的反射镜结构,其特征在于,所述第一列开口和所述第二列开口中的至少一列开口的开口数量与所述超结构光栅的调制周期的数量不同。
  3. 根据权利要求1或2所述的反射镜结构,其特征在于,所述第一列开口和所述第二列开口包括的开口数量相同。
  4. 根据权利要求1至3中任一项所述的反射镜结构,其特征在于,所述第一列开口和所述第二列开口相对于所述第一列开口和所述第二列开口之间的中线对称。
  5. 根据权利要求1至4中任一项所述的反射镜结构,其特征在于,所述第一列开口和所述第二列开口中的至少一列开口包括周期性排列的多个开口,且所述第一列开口和/或所述第二列开口中的相邻的任意两个开口之间的距离与所述超结构光栅的空间周期不同。
  6. 根据权利要求1至5中任一项所述的反射镜结构,其特征在于,所述支撑层还包括至少一个底部支撑结构,所述至少一个底部支撑结构用于从底部支撑所述悬空结构。
  7. 根据权利要求6所述的反射镜结构,其特征在于,所述至少一个底部支撑结构为多个底部支撑结构,所述多个底部支撑结构沿着光在所述波导层中的传播方向排列在所述空间内。
  8. 根据权利要求6或7所述的反射镜结构,其特征在于,每个所述开口在沿着光在所述波导层中的传播方向上具有不同的宽度。
  9. 根据权利要求1至8中任一项所述的反射镜结构,其特征在于,还包括:
    上阻挡层和下阻挡层,所述上阻挡层位于所述下包层与所述支撑层之间,所述下阻挡层位于所述支撑层与所述衬底层之间。
  10. 根据权利要求1至9中任一项所述的反射镜结构,其特征在于,还包括:
    介质层,所述介质层位于所述上包层和所述加热层之间,所述加热器层位于所述介质层的上表面上与所述超结构光栅正对的区域。
  11. 根据权利要求10所述的反射镜结构,其特征在于,所述介质层还覆盖每个所述开口的内壁。
  12. 根据权利要求1至11中任一项所述的反射镜结构,其特征在于,还包括:
    缓冲层,所述缓冲层位于所述支撑层和所述衬底层之间。
  13. 根据权利要求1至12中任一项所述的反射镜结构,其特征在于,所述超结构光栅位于所述上包层中,或部分位于所述上包层且部分位于所述波导层,或位于所述波导层中,或部分位于所述下包层且部分位于所述波导层之间,或位于所述下包层中。
  14. 一种可调激光器,其特征在于,包括:
    增益区、第一相位区、多模干涉耦合器、第一反射镜结构和第二反射镜结构;
    所述第一相位区的第一端与所述增益区的第一端相连,所述第一相位区的第二端与所述多模干涉耦合器的第一端相连,所述多模干涉耦合器的第二端与所述第一反射镜的第一端相连,所述多模干涉耦合器的第三端与所述第二反射镜的第一端相连;
    所述第一反射镜结构和所述第二反射镜结构中的至少一个采用如权利要求1至13中任一项所述的反射镜结构。
  15. 根据权利要求14所述的可调激光器,其特征在于,还包括:第二相位区,
    所述第二相位区的第一端与所述多模干涉耦合器的第二端相连,所述第二相位区的第二端与所述第一反射镜结构的第一端相连,或者,
    所述第二相位区的第一端与所述多模干涉耦合器的第三端相连,所述第二相位区的第二端与所述第二反射镜结构的第一端相连。
  16. 根据权利要求14或15所述的可调激光器,其特征在于,还包括:一个或多个半导体光放大器SOA,
    每个SOA与所述增益区的第二端相连,或与所述第一反射镜结构的第二端相连,或与所述第二反射镜结构的第二端相连。
  17. 根据权利要求14或15所述的可调激光器,其特征在于,还包括:一个或多个光电二极管PD,
    每个PD与所述增益区的第二端相连,或与所述第一反射镜结构的第二端相连,或与所述第二反射镜结构的第二端相连。
  18. 一种可调激光器,其特征在于,包括:
    第一反射镜结构、增益区、相位区和第二反射镜结构,
    所述第一反射镜结构的第一端与所述增益区的第一端相连,所述增益区的第二端与所述相位区的第一端相连,所述相位区的第二端与所述第二反射镜结构的第一端相连,
    所述第一反射镜结构和第二反射镜结构中的至少一个采用如权利要求1至13中任一项所述的反射镜结构。
  19. 根据权利要求18所述的可调激光器,其特征在于,还包括:
    一个或两个半导体光放大器SOA,每个SOA与所述第一反射镜结构或第二反射镜结构的第二端相连。
  20. 根据权利要求18所述的可调激光器,其特征在于,还包括:
    一个或两个光电二极管PD,每个PD与所述第一反射镜结构或第二反射镜结构的第二端相连。
  21. 根据权利要求18所述的可调激光器,其特征在于,还包括:
    一个SOA和一个PD,所述SOA与所述第一反射镜结构的第二端相连,所述PD与所述第二反射镜结构的第二端相连,
    或者,所述PD与所述第一反射镜结构的第二端相连,所述SOA与所述第二反射镜结构的第二端相连。
PCT/CN2017/114689 2017-05-09 2017-12-06 用于可调激光器的反射镜结构和可调激光器 WO2018205579A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019561996A JP6818911B2 (ja) 2017-05-09 2017-12-06 可変レーザーの反射器構造および可変レーザー
EP17908778.8A EP3605755B1 (en) 2017-05-09 2017-12-06 Reflector structure used for adjustable laser and adjustable laser
US16/674,283 US11211767B2 (en) 2017-05-09 2019-11-05 Reflector structure for tunable laser and tunable laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710322040.1 2017-05-09
CN201710322040.1A CN108879309B (zh) 2017-05-09 2017-05-09 用于可调激光器的反射镜结构和可调激光器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/674,283 Continuation US11211767B2 (en) 2017-05-09 2019-11-05 Reflector structure for tunable laser and tunable laser

Publications (1)

Publication Number Publication Date
WO2018205579A1 true WO2018205579A1 (zh) 2018-11-15

Family

ID=64104681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114689 WO2018205579A1 (zh) 2017-05-09 2017-12-06 用于可调激光器的反射镜结构和可调激光器

Country Status (5)

Country Link
US (1) US11211767B2 (zh)
EP (1) EP3605755B1 (zh)
JP (1) JP6818911B2 (zh)
CN (1) CN108879309B (zh)
WO (1) WO2018205579A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210036482A1 (en) * 2018-04-30 2021-02-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermally tunable laser and method for fabricating such laser

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732667B (zh) * 2017-04-17 2021-01-05 华为技术有限公司 一种超结构光栅和可调谐激光器
CN113169517A (zh) * 2018-11-29 2021-07-23 华为技术有限公司 两段式dbr激光器及单片集成阵列光源芯片
CN111463657B (zh) * 2019-01-18 2021-09-07 海思光电子有限公司 可调谐激光器
US11502480B2 (en) * 2020-04-29 2022-11-15 Lumentum Operations Llc Thermally-controlled photonic structure
CN117192689A (zh) * 2020-04-29 2023-12-08 朗美通经营有限责任公司 热控光子结构
GB2595880B (en) * 2020-06-09 2023-05-10 Rockley Photonics Ltd Optoelectronic device and method of manufacture thereof
US20220029378A1 (en) * 2021-05-06 2022-01-27 Electronics And Telecommunications Research Institute Optical waveguide device and laser apparatus including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090074020A1 (en) * 2007-05-14 2009-03-19 Finisar Corporation DBR laser with improved thermal tuning effciency
CN102414600A (zh) * 2009-03-31 2012-04-11 甲骨文美国公司 具有大热阻抗的光学器件
JP2012174938A (ja) * 2011-02-22 2012-09-10 Sumitomo Electric Ind Ltd 光半導体素子およびその製造方法
CN103532009A (zh) * 2012-07-05 2014-01-22 Jds尤尼弗思公司 可调谐布拉格光栅及使用该光栅的可调谐激光二极管
JP2015170750A (ja) * 2014-03-07 2015-09-28 住友電気工業株式会社 光半導体素子及び光半導体素子の製造方法
CN105409071A (zh) * 2013-04-30 2016-03-16 华为技术有限公司 具有高热波长调谐效率的可调激光器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4074724B2 (ja) * 1999-04-07 2008-04-09 日本オプネクスト株式会社 波長可変光源及びそれを用いた光学装置
US6707836B2 (en) * 2000-12-22 2004-03-16 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device
US6816636B2 (en) * 2001-09-12 2004-11-09 Honeywell International Inc. Tunable optical filter
JP5098984B2 (ja) * 2008-12-10 2012-12-12 富士通セミコンダクター株式会社 インターフェース装置及び再同期化方法
CN101841129B (zh) * 2010-05-24 2011-06-29 中国科学院长春光学精密机械与物理研究所 单片集成锁相面发射分布反馈半导体激光器阵列
CN102519638A (zh) * 2011-11-30 2012-06-27 承德石油高等专科学校 一种基于边缘解调技术的光纤光栅压力测试仪及测试方法
CN102570313B (zh) * 2011-12-26 2013-12-25 南京邮电大学 基于硅衬底氮化物材料的集成光子器件及其制备方法
CN103185604B (zh) * 2011-12-30 2016-02-03 上海拜安传感技术有限公司 具有测距功能的光纤光栅波长同步解调系统
US9209603B2 (en) 2013-05-21 2015-12-08 Futurewei Technologies, Inc. Laser with full C-band tunability and narrow linewidth
GB2522410A (en) * 2014-01-20 2015-07-29 Rockley Photonics Ltd Tunable SOI laser
WO2016176364A1 (en) * 2015-04-30 2016-11-03 Apple Inc. Vernier effect dbr lasers incorporating integrated tuning elements
US10122149B2 (en) 2016-01-04 2018-11-06 Infinera Corporation Tunable waveguide devices
CN107230930A (zh) * 2016-03-23 2017-10-03 华为技术有限公司 一种可调激光器及制备方法
CN108732667B (zh) * 2017-04-17 2021-01-05 华为技术有限公司 一种超结构光栅和可调谐激光器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090074020A1 (en) * 2007-05-14 2009-03-19 Finisar Corporation DBR laser with improved thermal tuning effciency
CN102414600A (zh) * 2009-03-31 2012-04-11 甲骨文美国公司 具有大热阻抗的光学器件
JP2012174938A (ja) * 2011-02-22 2012-09-10 Sumitomo Electric Ind Ltd 光半導体素子およびその製造方法
CN103532009A (zh) * 2012-07-05 2014-01-22 Jds尤尼弗思公司 可调谐布拉格光栅及使用该光栅的可调谐激光二极管
CN105409071A (zh) * 2013-04-30 2016-03-16 华为技术有限公司 具有高热波长调谐效率的可调激光器
JP2015170750A (ja) * 2014-03-07 2015-09-28 住友電気工業株式会社 光半導体素子及び光半導体素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605755A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210036482A1 (en) * 2018-04-30 2021-02-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermally tunable laser and method for fabricating such laser
US11695250B2 (en) * 2018-04-30 2023-07-04 Fraunhofer—Gesellschaft zur F rderung der angewandten Forschung e.V. Thermally tunable laser and method for fabricating such laser

Also Published As

Publication number Publication date
JP2020520112A (ja) 2020-07-02
EP3605755A1 (en) 2020-02-05
CN108879309B (zh) 2021-02-12
JP6818911B2 (ja) 2021-01-27
CN108879309A (zh) 2018-11-23
EP3605755A4 (en) 2020-04-29
US11211767B2 (en) 2021-12-28
EP3605755B1 (en) 2021-10-13
US20200076155A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
WO2018205579A1 (zh) 用于可调激光器的反射镜结构和可调激光器
US9240673B2 (en) Tunable SOI laser
US10534131B2 (en) Semiconductor optical integrated device having buried hetero structure waveguide and deep ridge waveguide
JP6093660B2 (ja) チューナブル・ブラッグ・グレーティング、およびそれを用いたチューナブル・レーザ・ダイオード
EP3422498B1 (en) Tunable laser and preparation method thereof
US9502861B2 (en) Semiconductor laser
US10931085B2 (en) Super structure grating and tunable laser
US20130016942A1 (en) Adiabatic Mode-Profile Conversion by Selective Oxidation for Photonic Integrated Circuit
US20130094074A1 (en) Gain medium providing laser and amplifier functionality to optical device
CN112868149A (zh) 光放大器
WO2018205580A1 (zh) 用于可调激光器的反射镜结构和可调激光器
WO2020147828A1 (zh) 可调谐激光器
US20130207140A1 (en) Semiconductor Optical Element Semiconductor Optical Module and Manufacturing Method Thereof
US11462885B2 (en) Variable-confinement monolithic master oscillator power amplifier
CN110376766B (zh) 一种反射装置及可调谐激光器
JP6965816B2 (ja) 半導体光素子
JP4033822B2 (ja) Dbr型波長可変光源
JP5017302B2 (ja) 吸収型半導体光変調器
US20240039250A1 (en) Opto-electronic device
JP5017300B2 (ja) 吸収型半導体光変調器
WO2024100836A1 (en) Semiconductor laser, method of designing diffraction grating layer of semiconductor laser, and method of manufacturing semiconductor laser
Ge et al. Design of enlarged-asymmetric-power single-mode silicon evanescent lasers with asymmetric distributed feedback gratings
Yamakawa et al. Hollow waveguide dbr lasers with novel 2d optical confinement toward athermal and narrow linewidth operations
JP2010238890A (ja) 半導体パルスレーザ
Kim et al. Novel ring cavity resonators incorporating total internal reflection mirrors and semiconductor optical amplifiers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017908778

Country of ref document: EP

Effective date: 20191031

Ref document number: 2019561996

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE